bcm63xx_enet: check 1000BASE-T advertisement configuration
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bcm63xx_enet.c
1 /*
2 * Driver for BCM963xx builtin Ethernet mac
3 *
4 * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46
47 /*
48 * io helpers to access mac registers
49 */
50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 return bcm_readl(priv->base + off);
53 }
54
55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 u32 val, u32 off)
57 {
58 bcm_writel(val, priv->base + off);
59 }
60
61 /*
62 * io helpers to access switch registers
63 */
64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 return bcm_readl(priv->base + off);
67 }
68
69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 u32 val, u32 off)
71 {
72 bcm_writel(val, priv->base + off);
73 }
74
75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 return bcm_readw(priv->base + off);
78 }
79
80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 u16 val, u32 off)
82 {
83 bcm_writew(val, priv->base + off);
84 }
85
86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 return bcm_readb(priv->base + off);
89 }
90
91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 u8 val, u32 off)
93 {
94 bcm_writeb(val, priv->base + off);
95 }
96
97
98 /* io helpers to access shared registers */
99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103
104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 u32 val, u32 off)
106 {
107 bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109
110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 return bcm_readl(bcm_enet_shared_base[1] +
113 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115
116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 u32 val, u32 off, int chan)
118 {
119 bcm_writel(val, bcm_enet_shared_base[1] +
120 bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122
123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127
128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 u32 val, u32 off, int chan)
130 {
131 bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133
134 /*
135 * write given data into mii register and wait for transfer to end
136 * with timeout (average measured transfer time is 25us)
137 */
138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 int limit;
141
142 /* make sure mii interrupt status is cleared */
143 enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144
145 enet_writel(priv, data, ENET_MIIDATA_REG);
146 wmb();
147
148 /* busy wait on mii interrupt bit, with timeout */
149 limit = 1000;
150 do {
151 if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 break;
153 udelay(1);
154 } while (limit-- > 0);
155
156 return (limit < 0) ? 1 : 0;
157 }
158
159 /*
160 * MII internal read callback
161 */
162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 int regnum)
164 {
165 u32 tmp, val;
166
167 tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 tmp |= ENET_MIIDATA_OP_READ_MASK;
171
172 if (do_mdio_op(priv, tmp))
173 return -1;
174
175 val = enet_readl(priv, ENET_MIIDATA_REG);
176 val &= 0xffff;
177 return val;
178 }
179
180 /*
181 * MII internal write callback
182 */
183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 int regnum, u16 value)
185 {
186 u32 tmp;
187
188 tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193
194 (void)do_mdio_op(priv, tmp);
195 return 0;
196 }
197
198 /*
199 * MII read callback from phylib
200 */
201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 int regnum)
203 {
204 return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206
207 /*
208 * MII write callback from phylib
209 */
210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 int regnum, u16 value)
212 {
213 return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215
216 /*
217 * MII read callback from mii core
218 */
219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 int regnum)
221 {
222 return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224
225 /*
226 * MII write callback from mii core
227 */
228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 int regnum, int value)
230 {
231 bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233
234 /*
235 * refill rx queue
236 */
237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 struct bcm_enet_priv *priv;
240
241 priv = netdev_priv(dev);
242
243 while (priv->rx_desc_count < priv->rx_ring_size) {
244 struct bcm_enet_desc *desc;
245 struct sk_buff *skb;
246 dma_addr_t p;
247 int desc_idx;
248 u32 len_stat;
249
250 desc_idx = priv->rx_dirty_desc;
251 desc = &priv->rx_desc_cpu[desc_idx];
252
253 if (!priv->rx_skb[desc_idx]) {
254 skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 if (!skb)
256 break;
257 priv->rx_skb[desc_idx] = skb;
258 p = dma_map_single(&priv->pdev->dev, skb->data,
259 priv->rx_skb_size,
260 DMA_FROM_DEVICE);
261 desc->address = p;
262 }
263
264 len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 len_stat |= DMADESC_OWNER_MASK;
266 if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 priv->rx_dirty_desc = 0;
269 } else {
270 priv->rx_dirty_desc++;
271 }
272 wmb();
273 desc->len_stat = len_stat;
274
275 priv->rx_desc_count++;
276
277 /* tell dma engine we allocated one buffer */
278 if (priv->dma_has_sram)
279 enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 else
281 enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 }
283
284 /* If rx ring is still empty, set a timer to try allocating
285 * again at a later time. */
286 if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 priv->rx_timeout.expires = jiffies + HZ;
289 add_timer(&priv->rx_timeout);
290 }
291
292 return 0;
293 }
294
295 /*
296 * timer callback to defer refill rx queue in case we're OOM
297 */
298 static void bcm_enet_refill_rx_timer(unsigned long data)
299 {
300 struct net_device *dev;
301 struct bcm_enet_priv *priv;
302
303 dev = (struct net_device *)data;
304 priv = netdev_priv(dev);
305
306 spin_lock(&priv->rx_lock);
307 bcm_enet_refill_rx((struct net_device *)data);
308 spin_unlock(&priv->rx_lock);
309 }
310
311 /*
312 * extract packet from rx queue
313 */
314 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
315 {
316 struct bcm_enet_priv *priv;
317 struct device *kdev;
318 int processed;
319
320 priv = netdev_priv(dev);
321 kdev = &priv->pdev->dev;
322 processed = 0;
323
324 /* don't scan ring further than number of refilled
325 * descriptor */
326 if (budget > priv->rx_desc_count)
327 budget = priv->rx_desc_count;
328
329 do {
330 struct bcm_enet_desc *desc;
331 struct sk_buff *skb;
332 int desc_idx;
333 u32 len_stat;
334 unsigned int len;
335
336 desc_idx = priv->rx_curr_desc;
337 desc = &priv->rx_desc_cpu[desc_idx];
338
339 /* make sure we actually read the descriptor status at
340 * each loop */
341 rmb();
342
343 len_stat = desc->len_stat;
344
345 /* break if dma ownership belongs to hw */
346 if (len_stat & DMADESC_OWNER_MASK)
347 break;
348
349 processed++;
350 priv->rx_curr_desc++;
351 if (priv->rx_curr_desc == priv->rx_ring_size)
352 priv->rx_curr_desc = 0;
353 priv->rx_desc_count--;
354
355 /* if the packet does not have start of packet _and_
356 * end of packet flag set, then just recycle it */
357 if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
358 (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
359 dev->stats.rx_dropped++;
360 continue;
361 }
362
363 /* recycle packet if it's marked as bad */
364 if (!priv->enet_is_sw &&
365 unlikely(len_stat & DMADESC_ERR_MASK)) {
366 dev->stats.rx_errors++;
367
368 if (len_stat & DMADESC_OVSIZE_MASK)
369 dev->stats.rx_length_errors++;
370 if (len_stat & DMADESC_CRC_MASK)
371 dev->stats.rx_crc_errors++;
372 if (len_stat & DMADESC_UNDER_MASK)
373 dev->stats.rx_frame_errors++;
374 if (len_stat & DMADESC_OV_MASK)
375 dev->stats.rx_fifo_errors++;
376 continue;
377 }
378
379 /* valid packet */
380 skb = priv->rx_skb[desc_idx];
381 len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
382 /* don't include FCS */
383 len -= 4;
384
385 if (len < copybreak) {
386 struct sk_buff *nskb;
387
388 nskb = napi_alloc_skb(&priv->napi, len);
389 if (!nskb) {
390 /* forget packet, just rearm desc */
391 dev->stats.rx_dropped++;
392 continue;
393 }
394
395 dma_sync_single_for_cpu(kdev, desc->address,
396 len, DMA_FROM_DEVICE);
397 memcpy(nskb->data, skb->data, len);
398 dma_sync_single_for_device(kdev, desc->address,
399 len, DMA_FROM_DEVICE);
400 skb = nskb;
401 } else {
402 dma_unmap_single(&priv->pdev->dev, desc->address,
403 priv->rx_skb_size, DMA_FROM_DEVICE);
404 priv->rx_skb[desc_idx] = NULL;
405 }
406
407 skb_put(skb, len);
408 skb->protocol = eth_type_trans(skb, dev);
409 dev->stats.rx_packets++;
410 dev->stats.rx_bytes += len;
411 netif_receive_skb(skb);
412
413 } while (--budget > 0);
414
415 if (processed || !priv->rx_desc_count) {
416 bcm_enet_refill_rx(dev);
417
418 /* kick rx dma */
419 enet_dmac_writel(priv, priv->dma_chan_en_mask,
420 ENETDMAC_CHANCFG, priv->rx_chan);
421 }
422
423 return processed;
424 }
425
426
427 /*
428 * try to or force reclaim of transmitted buffers
429 */
430 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
431 {
432 struct bcm_enet_priv *priv;
433 int released;
434
435 priv = netdev_priv(dev);
436 released = 0;
437
438 while (priv->tx_desc_count < priv->tx_ring_size) {
439 struct bcm_enet_desc *desc;
440 struct sk_buff *skb;
441
442 /* We run in a bh and fight against start_xmit, which
443 * is called with bh disabled */
444 spin_lock(&priv->tx_lock);
445
446 desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
447
448 if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
449 spin_unlock(&priv->tx_lock);
450 break;
451 }
452
453 /* ensure other field of the descriptor were not read
454 * before we checked ownership */
455 rmb();
456
457 skb = priv->tx_skb[priv->tx_dirty_desc];
458 priv->tx_skb[priv->tx_dirty_desc] = NULL;
459 dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
460 DMA_TO_DEVICE);
461
462 priv->tx_dirty_desc++;
463 if (priv->tx_dirty_desc == priv->tx_ring_size)
464 priv->tx_dirty_desc = 0;
465 priv->tx_desc_count++;
466
467 spin_unlock(&priv->tx_lock);
468
469 if (desc->len_stat & DMADESC_UNDER_MASK)
470 dev->stats.tx_errors++;
471
472 dev_kfree_skb(skb);
473 released++;
474 }
475
476 if (netif_queue_stopped(dev) && released)
477 netif_wake_queue(dev);
478
479 return released;
480 }
481
482 /*
483 * poll func, called by network core
484 */
485 static int bcm_enet_poll(struct napi_struct *napi, int budget)
486 {
487 struct bcm_enet_priv *priv;
488 struct net_device *dev;
489 int rx_work_done;
490
491 priv = container_of(napi, struct bcm_enet_priv, napi);
492 dev = priv->net_dev;
493
494 /* ack interrupts */
495 enet_dmac_writel(priv, priv->dma_chan_int_mask,
496 ENETDMAC_IR, priv->rx_chan);
497 enet_dmac_writel(priv, priv->dma_chan_int_mask,
498 ENETDMAC_IR, priv->tx_chan);
499
500 /* reclaim sent skb */
501 bcm_enet_tx_reclaim(dev, 0);
502
503 spin_lock(&priv->rx_lock);
504 rx_work_done = bcm_enet_receive_queue(dev, budget);
505 spin_unlock(&priv->rx_lock);
506
507 if (rx_work_done >= budget) {
508 /* rx queue is not yet empty/clean */
509 return rx_work_done;
510 }
511
512 /* no more packet in rx/tx queue, remove device from poll
513 * queue */
514 napi_complete(napi);
515
516 /* restore rx/tx interrupt */
517 enet_dmac_writel(priv, priv->dma_chan_int_mask,
518 ENETDMAC_IRMASK, priv->rx_chan);
519 enet_dmac_writel(priv, priv->dma_chan_int_mask,
520 ENETDMAC_IRMASK, priv->tx_chan);
521
522 return rx_work_done;
523 }
524
525 /*
526 * mac interrupt handler
527 */
528 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
529 {
530 struct net_device *dev;
531 struct bcm_enet_priv *priv;
532 u32 stat;
533
534 dev = dev_id;
535 priv = netdev_priv(dev);
536
537 stat = enet_readl(priv, ENET_IR_REG);
538 if (!(stat & ENET_IR_MIB))
539 return IRQ_NONE;
540
541 /* clear & mask interrupt */
542 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
543 enet_writel(priv, 0, ENET_IRMASK_REG);
544
545 /* read mib registers in workqueue */
546 schedule_work(&priv->mib_update_task);
547
548 return IRQ_HANDLED;
549 }
550
551 /*
552 * rx/tx dma interrupt handler
553 */
554 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
555 {
556 struct net_device *dev;
557 struct bcm_enet_priv *priv;
558
559 dev = dev_id;
560 priv = netdev_priv(dev);
561
562 /* mask rx/tx interrupts */
563 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
564 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
565
566 napi_schedule(&priv->napi);
567
568 return IRQ_HANDLED;
569 }
570
571 /*
572 * tx request callback
573 */
574 static int bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576 struct bcm_enet_priv *priv;
577 struct bcm_enet_desc *desc;
578 u32 len_stat;
579 int ret;
580
581 priv = netdev_priv(dev);
582
583 /* lock against tx reclaim */
584 spin_lock(&priv->tx_lock);
585
586 /* make sure the tx hw queue is not full, should not happen
587 * since we stop queue before it's the case */
588 if (unlikely(!priv->tx_desc_count)) {
589 netif_stop_queue(dev);
590 dev_err(&priv->pdev->dev, "xmit called with no tx desc "
591 "available?\n");
592 ret = NETDEV_TX_BUSY;
593 goto out_unlock;
594 }
595
596 /* pad small packets sent on a switch device */
597 if (priv->enet_is_sw && skb->len < 64) {
598 int needed = 64 - skb->len;
599 char *data;
600
601 if (unlikely(skb_tailroom(skb) < needed)) {
602 struct sk_buff *nskb;
603
604 nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
605 if (!nskb) {
606 ret = NETDEV_TX_BUSY;
607 goto out_unlock;
608 }
609 dev_kfree_skb(skb);
610 skb = nskb;
611 }
612 data = skb_put(skb, needed);
613 memset(data, 0, needed);
614 }
615
616 /* point to the next available desc */
617 desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
618 priv->tx_skb[priv->tx_curr_desc] = skb;
619
620 /* fill descriptor */
621 desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
622 DMA_TO_DEVICE);
623
624 len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
625 len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
626 DMADESC_APPEND_CRC |
627 DMADESC_OWNER_MASK;
628
629 priv->tx_curr_desc++;
630 if (priv->tx_curr_desc == priv->tx_ring_size) {
631 priv->tx_curr_desc = 0;
632 len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
633 }
634 priv->tx_desc_count--;
635
636 /* dma might be already polling, make sure we update desc
637 * fields in correct order */
638 wmb();
639 desc->len_stat = len_stat;
640 wmb();
641
642 /* kick tx dma */
643 enet_dmac_writel(priv, priv->dma_chan_en_mask,
644 ENETDMAC_CHANCFG, priv->tx_chan);
645
646 /* stop queue if no more desc available */
647 if (!priv->tx_desc_count)
648 netif_stop_queue(dev);
649
650 dev->stats.tx_bytes += skb->len;
651 dev->stats.tx_packets++;
652 ret = NETDEV_TX_OK;
653
654 out_unlock:
655 spin_unlock(&priv->tx_lock);
656 return ret;
657 }
658
659 /*
660 * Change the interface's mac address.
661 */
662 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
663 {
664 struct bcm_enet_priv *priv;
665 struct sockaddr *addr = p;
666 u32 val;
667
668 priv = netdev_priv(dev);
669 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
670
671 /* use perfect match register 0 to store my mac address */
672 val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
673 (dev->dev_addr[4] << 8) | dev->dev_addr[5];
674 enet_writel(priv, val, ENET_PML_REG(0));
675
676 val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
677 val |= ENET_PMH_DATAVALID_MASK;
678 enet_writel(priv, val, ENET_PMH_REG(0));
679
680 return 0;
681 }
682
683 /*
684 * Change rx mode (promiscuous/allmulti) and update multicast list
685 */
686 static void bcm_enet_set_multicast_list(struct net_device *dev)
687 {
688 struct bcm_enet_priv *priv;
689 struct netdev_hw_addr *ha;
690 u32 val;
691 int i;
692
693 priv = netdev_priv(dev);
694
695 val = enet_readl(priv, ENET_RXCFG_REG);
696
697 if (dev->flags & IFF_PROMISC)
698 val |= ENET_RXCFG_PROMISC_MASK;
699 else
700 val &= ~ENET_RXCFG_PROMISC_MASK;
701
702 /* only 3 perfect match registers left, first one is used for
703 * own mac address */
704 if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
705 val |= ENET_RXCFG_ALLMCAST_MASK;
706 else
707 val &= ~ENET_RXCFG_ALLMCAST_MASK;
708
709 /* no need to set perfect match registers if we catch all
710 * multicast */
711 if (val & ENET_RXCFG_ALLMCAST_MASK) {
712 enet_writel(priv, val, ENET_RXCFG_REG);
713 return;
714 }
715
716 i = 0;
717 netdev_for_each_mc_addr(ha, dev) {
718 u8 *dmi_addr;
719 u32 tmp;
720
721 if (i == 3)
722 break;
723 /* update perfect match registers */
724 dmi_addr = ha->addr;
725 tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
726 (dmi_addr[4] << 8) | dmi_addr[5];
727 enet_writel(priv, tmp, ENET_PML_REG(i + 1));
728
729 tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
730 tmp |= ENET_PMH_DATAVALID_MASK;
731 enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
732 }
733
734 for (; i < 3; i++) {
735 enet_writel(priv, 0, ENET_PML_REG(i + 1));
736 enet_writel(priv, 0, ENET_PMH_REG(i + 1));
737 }
738
739 enet_writel(priv, val, ENET_RXCFG_REG);
740 }
741
742 /*
743 * set mac duplex parameters
744 */
745 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
746 {
747 u32 val;
748
749 val = enet_readl(priv, ENET_TXCTL_REG);
750 if (fullduplex)
751 val |= ENET_TXCTL_FD_MASK;
752 else
753 val &= ~ENET_TXCTL_FD_MASK;
754 enet_writel(priv, val, ENET_TXCTL_REG);
755 }
756
757 /*
758 * set mac flow control parameters
759 */
760 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
761 {
762 u32 val;
763
764 /* rx flow control (pause frame handling) */
765 val = enet_readl(priv, ENET_RXCFG_REG);
766 if (rx_en)
767 val |= ENET_RXCFG_ENFLOW_MASK;
768 else
769 val &= ~ENET_RXCFG_ENFLOW_MASK;
770 enet_writel(priv, val, ENET_RXCFG_REG);
771
772 if (!priv->dma_has_sram)
773 return;
774
775 /* tx flow control (pause frame generation) */
776 val = enet_dma_readl(priv, ENETDMA_CFG_REG);
777 if (tx_en)
778 val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
779 else
780 val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
781 enet_dma_writel(priv, val, ENETDMA_CFG_REG);
782 }
783
784 /*
785 * link changed callback (from phylib)
786 */
787 static void bcm_enet_adjust_phy_link(struct net_device *dev)
788 {
789 struct bcm_enet_priv *priv;
790 struct phy_device *phydev;
791 int status_changed;
792
793 priv = netdev_priv(dev);
794 phydev = priv->phydev;
795 status_changed = 0;
796
797 if (priv->old_link != phydev->link) {
798 status_changed = 1;
799 priv->old_link = phydev->link;
800 }
801
802 /* reflect duplex change in mac configuration */
803 if (phydev->link && phydev->duplex != priv->old_duplex) {
804 bcm_enet_set_duplex(priv,
805 (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
806 status_changed = 1;
807 priv->old_duplex = phydev->duplex;
808 }
809
810 /* enable flow control if remote advertise it (trust phylib to
811 * check that duplex is full */
812 if (phydev->link && phydev->pause != priv->old_pause) {
813 int rx_pause_en, tx_pause_en;
814
815 if (phydev->pause) {
816 /* pause was advertised by lpa and us */
817 rx_pause_en = 1;
818 tx_pause_en = 1;
819 } else if (!priv->pause_auto) {
820 /* pause setting overrided by user */
821 rx_pause_en = priv->pause_rx;
822 tx_pause_en = priv->pause_tx;
823 } else {
824 rx_pause_en = 0;
825 tx_pause_en = 0;
826 }
827
828 bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
829 status_changed = 1;
830 priv->old_pause = phydev->pause;
831 }
832
833 if (status_changed) {
834 pr_info("%s: link %s", dev->name, phydev->link ?
835 "UP" : "DOWN");
836 if (phydev->link)
837 pr_cont(" - %d/%s - flow control %s", phydev->speed,
838 DUPLEX_FULL == phydev->duplex ? "full" : "half",
839 phydev->pause == 1 ? "rx&tx" : "off");
840
841 pr_cont("\n");
842 }
843 }
844
845 /*
846 * link changed callback (if phylib is not used)
847 */
848 static void bcm_enet_adjust_link(struct net_device *dev)
849 {
850 struct bcm_enet_priv *priv;
851
852 priv = netdev_priv(dev);
853 bcm_enet_set_duplex(priv, priv->force_duplex_full);
854 bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
855 netif_carrier_on(dev);
856
857 pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
858 dev->name,
859 priv->force_speed_100 ? 100 : 10,
860 priv->force_duplex_full ? "full" : "half",
861 priv->pause_rx ? "rx" : "off",
862 priv->pause_tx ? "tx" : "off");
863 }
864
865 /*
866 * open callback, allocate dma rings & buffers and start rx operation
867 */
868 static int bcm_enet_open(struct net_device *dev)
869 {
870 struct bcm_enet_priv *priv;
871 struct sockaddr addr;
872 struct device *kdev;
873 struct phy_device *phydev;
874 int i, ret;
875 unsigned int size;
876 char phy_id[MII_BUS_ID_SIZE + 3];
877 void *p;
878 u32 val;
879
880 priv = netdev_priv(dev);
881 kdev = &priv->pdev->dev;
882
883 if (priv->has_phy) {
884 /* connect to PHY */
885 snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
886 priv->mii_bus->id, priv->phy_id);
887
888 phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
889 PHY_INTERFACE_MODE_MII);
890
891 if (IS_ERR(phydev)) {
892 dev_err(kdev, "could not attach to PHY\n");
893 return PTR_ERR(phydev);
894 }
895
896 /* mask with MAC supported features */
897 phydev->supported &= (SUPPORTED_10baseT_Half |
898 SUPPORTED_10baseT_Full |
899 SUPPORTED_100baseT_Half |
900 SUPPORTED_100baseT_Full |
901 SUPPORTED_Autoneg |
902 SUPPORTED_Pause |
903 SUPPORTED_MII);
904 phydev->advertising = phydev->supported;
905
906 if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
907 phydev->advertising |= SUPPORTED_Pause;
908 else
909 phydev->advertising &= ~SUPPORTED_Pause;
910
911 dev_info(kdev, "attached PHY at address %d [%s]\n",
912 phydev->addr, phydev->drv->name);
913
914 priv->old_link = 0;
915 priv->old_duplex = -1;
916 priv->old_pause = -1;
917 priv->phydev = phydev;
918 }
919
920 /* mask all interrupts and request them */
921 enet_writel(priv, 0, ENET_IRMASK_REG);
922 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
923 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
924
925 ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
926 if (ret)
927 goto out_phy_disconnect;
928
929 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
930 dev->name, dev);
931 if (ret)
932 goto out_freeirq;
933
934 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
935 0, dev->name, dev);
936 if (ret)
937 goto out_freeirq_rx;
938
939 /* initialize perfect match registers */
940 for (i = 0; i < 4; i++) {
941 enet_writel(priv, 0, ENET_PML_REG(i));
942 enet_writel(priv, 0, ENET_PMH_REG(i));
943 }
944
945 /* write device mac address */
946 memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
947 bcm_enet_set_mac_address(dev, &addr);
948
949 /* allocate rx dma ring */
950 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
951 p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
952 if (!p) {
953 ret = -ENOMEM;
954 goto out_freeirq_tx;
955 }
956
957 priv->rx_desc_alloc_size = size;
958 priv->rx_desc_cpu = p;
959
960 /* allocate tx dma ring */
961 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
962 p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
963 if (!p) {
964 ret = -ENOMEM;
965 goto out_free_rx_ring;
966 }
967
968 priv->tx_desc_alloc_size = size;
969 priv->tx_desc_cpu = p;
970
971 priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
972 GFP_KERNEL);
973 if (!priv->tx_skb) {
974 ret = -ENOMEM;
975 goto out_free_tx_ring;
976 }
977
978 priv->tx_desc_count = priv->tx_ring_size;
979 priv->tx_dirty_desc = 0;
980 priv->tx_curr_desc = 0;
981 spin_lock_init(&priv->tx_lock);
982
983 /* init & fill rx ring with skbs */
984 priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
985 GFP_KERNEL);
986 if (!priv->rx_skb) {
987 ret = -ENOMEM;
988 goto out_free_tx_skb;
989 }
990
991 priv->rx_desc_count = 0;
992 priv->rx_dirty_desc = 0;
993 priv->rx_curr_desc = 0;
994
995 /* initialize flow control buffer allocation */
996 if (priv->dma_has_sram)
997 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998 ENETDMA_BUFALLOC_REG(priv->rx_chan));
999 else
1000 enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
1001 ENETDMAC_BUFALLOC, priv->rx_chan);
1002
1003 if (bcm_enet_refill_rx(dev)) {
1004 dev_err(kdev, "cannot allocate rx skb queue\n");
1005 ret = -ENOMEM;
1006 goto out;
1007 }
1008
1009 /* write rx & tx ring addresses */
1010 if (priv->dma_has_sram) {
1011 enet_dmas_writel(priv, priv->rx_desc_dma,
1012 ENETDMAS_RSTART_REG, priv->rx_chan);
1013 enet_dmas_writel(priv, priv->tx_desc_dma,
1014 ENETDMAS_RSTART_REG, priv->tx_chan);
1015 } else {
1016 enet_dmac_writel(priv, priv->rx_desc_dma,
1017 ENETDMAC_RSTART, priv->rx_chan);
1018 enet_dmac_writel(priv, priv->tx_desc_dma,
1019 ENETDMAC_RSTART, priv->tx_chan);
1020 }
1021
1022 /* clear remaining state ram for rx & tx channel */
1023 if (priv->dma_has_sram) {
1024 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1025 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1026 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1027 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1028 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1029 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1030 } else {
1031 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1032 enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1033 }
1034
1035 /* set max rx/tx length */
1036 enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1037 enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1038
1039 /* set dma maximum burst len */
1040 enet_dmac_writel(priv, priv->dma_maxburst,
1041 ENETDMAC_MAXBURST, priv->rx_chan);
1042 enet_dmac_writel(priv, priv->dma_maxburst,
1043 ENETDMAC_MAXBURST, priv->tx_chan);
1044
1045 /* set correct transmit fifo watermark */
1046 enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1047
1048 /* set flow control low/high threshold to 1/3 / 2/3 */
1049 if (priv->dma_has_sram) {
1050 val = priv->rx_ring_size / 3;
1051 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1052 val = (priv->rx_ring_size * 2) / 3;
1053 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1054 } else {
1055 enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1056 enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1057 enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1058 }
1059
1060 /* all set, enable mac and interrupts, start dma engine and
1061 * kick rx dma channel */
1062 wmb();
1063 val = enet_readl(priv, ENET_CTL_REG);
1064 val |= ENET_CTL_ENABLE_MASK;
1065 enet_writel(priv, val, ENET_CTL_REG);
1066 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1067 enet_dmac_writel(priv, priv->dma_chan_en_mask,
1068 ENETDMAC_CHANCFG, priv->rx_chan);
1069
1070 /* watch "mib counters about to overflow" interrupt */
1071 enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1072 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1073
1074 /* watch "packet transferred" interrupt in rx and tx */
1075 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 ENETDMAC_IR, priv->rx_chan);
1077 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1078 ENETDMAC_IR, priv->tx_chan);
1079
1080 /* make sure we enable napi before rx interrupt */
1081 napi_enable(&priv->napi);
1082
1083 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 ENETDMAC_IRMASK, priv->rx_chan);
1085 enet_dmac_writel(priv, priv->dma_chan_int_mask,
1086 ENETDMAC_IRMASK, priv->tx_chan);
1087
1088 if (priv->has_phy)
1089 phy_start(priv->phydev);
1090 else
1091 bcm_enet_adjust_link(dev);
1092
1093 netif_start_queue(dev);
1094 return 0;
1095
1096 out:
1097 for (i = 0; i < priv->rx_ring_size; i++) {
1098 struct bcm_enet_desc *desc;
1099
1100 if (!priv->rx_skb[i])
1101 continue;
1102
1103 desc = &priv->rx_desc_cpu[i];
1104 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1105 DMA_FROM_DEVICE);
1106 kfree_skb(priv->rx_skb[i]);
1107 }
1108 kfree(priv->rx_skb);
1109
1110 out_free_tx_skb:
1111 kfree(priv->tx_skb);
1112
1113 out_free_tx_ring:
1114 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1115 priv->tx_desc_cpu, priv->tx_desc_dma);
1116
1117 out_free_rx_ring:
1118 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1119 priv->rx_desc_cpu, priv->rx_desc_dma);
1120
1121 out_freeirq_tx:
1122 free_irq(priv->irq_tx, dev);
1123
1124 out_freeirq_rx:
1125 free_irq(priv->irq_rx, dev);
1126
1127 out_freeirq:
1128 free_irq(dev->irq, dev);
1129
1130 out_phy_disconnect:
1131 phy_disconnect(priv->phydev);
1132
1133 return ret;
1134 }
1135
1136 /*
1137 * disable mac
1138 */
1139 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1140 {
1141 int limit;
1142 u32 val;
1143
1144 val = enet_readl(priv, ENET_CTL_REG);
1145 val |= ENET_CTL_DISABLE_MASK;
1146 enet_writel(priv, val, ENET_CTL_REG);
1147
1148 limit = 1000;
1149 do {
1150 u32 val;
1151
1152 val = enet_readl(priv, ENET_CTL_REG);
1153 if (!(val & ENET_CTL_DISABLE_MASK))
1154 break;
1155 udelay(1);
1156 } while (limit--);
1157 }
1158
1159 /*
1160 * disable dma in given channel
1161 */
1162 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1163 {
1164 int limit;
1165
1166 enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1167
1168 limit = 1000;
1169 do {
1170 u32 val;
1171
1172 val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1173 if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1174 break;
1175 udelay(1);
1176 } while (limit--);
1177 }
1178
1179 /*
1180 * stop callback
1181 */
1182 static int bcm_enet_stop(struct net_device *dev)
1183 {
1184 struct bcm_enet_priv *priv;
1185 struct device *kdev;
1186 int i;
1187
1188 priv = netdev_priv(dev);
1189 kdev = &priv->pdev->dev;
1190
1191 netif_stop_queue(dev);
1192 napi_disable(&priv->napi);
1193 if (priv->has_phy)
1194 phy_stop(priv->phydev);
1195 del_timer_sync(&priv->rx_timeout);
1196
1197 /* mask all interrupts */
1198 enet_writel(priv, 0, ENET_IRMASK_REG);
1199 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1200 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1201
1202 /* make sure no mib update is scheduled */
1203 cancel_work_sync(&priv->mib_update_task);
1204
1205 /* disable dma & mac */
1206 bcm_enet_disable_dma(priv, priv->tx_chan);
1207 bcm_enet_disable_dma(priv, priv->rx_chan);
1208 bcm_enet_disable_mac(priv);
1209
1210 /* force reclaim of all tx buffers */
1211 bcm_enet_tx_reclaim(dev, 1);
1212
1213 /* free the rx skb ring */
1214 for (i = 0; i < priv->rx_ring_size; i++) {
1215 struct bcm_enet_desc *desc;
1216
1217 if (!priv->rx_skb[i])
1218 continue;
1219
1220 desc = &priv->rx_desc_cpu[i];
1221 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1222 DMA_FROM_DEVICE);
1223 kfree_skb(priv->rx_skb[i]);
1224 }
1225
1226 /* free remaining allocated memory */
1227 kfree(priv->rx_skb);
1228 kfree(priv->tx_skb);
1229 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1230 priv->rx_desc_cpu, priv->rx_desc_dma);
1231 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1232 priv->tx_desc_cpu, priv->tx_desc_dma);
1233 free_irq(priv->irq_tx, dev);
1234 free_irq(priv->irq_rx, dev);
1235 free_irq(dev->irq, dev);
1236
1237 /* release phy */
1238 if (priv->has_phy) {
1239 phy_disconnect(priv->phydev);
1240 priv->phydev = NULL;
1241 }
1242
1243 return 0;
1244 }
1245
1246 /*
1247 * ethtool callbacks
1248 */
1249 struct bcm_enet_stats {
1250 char stat_string[ETH_GSTRING_LEN];
1251 int sizeof_stat;
1252 int stat_offset;
1253 int mib_reg;
1254 };
1255
1256 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m), \
1257 offsetof(struct bcm_enet_priv, m)
1258 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m), \
1259 offsetof(struct net_device_stats, m)
1260
1261 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1262 { "rx_packets", DEV_STAT(rx_packets), -1 },
1263 { "tx_packets", DEV_STAT(tx_packets), -1 },
1264 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
1265 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
1266 { "rx_errors", DEV_STAT(rx_errors), -1 },
1267 { "tx_errors", DEV_STAT(tx_errors), -1 },
1268 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
1269 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
1270
1271 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1272 { "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1273 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1274 { "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1275 { "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1276 { "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1277 { "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1278 { "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1279 { "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1280 { "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1281 { "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1282 { "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1283 { "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1284 { "rx_dropped", GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1285 { "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1286 { "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1287 { "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1288 { "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1289 { "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1290 { "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1291 { "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1292
1293 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1294 { "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1295 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1296 { "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1297 { "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1298 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1299 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1300 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1301 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1302 { "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1303 { "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1304 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1305 { "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1306 { "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1307 { "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1308 { "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1309 { "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1310 { "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1311 { "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1312 { "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1313 { "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1314 { "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1315
1316 };
1317
1318 #define BCM_ENET_STATS_LEN ARRAY_SIZE(bcm_enet_gstrings_stats)
1319
1320 static const u32 unused_mib_regs[] = {
1321 ETH_MIB_TX_ALL_OCTETS,
1322 ETH_MIB_TX_ALL_PKTS,
1323 ETH_MIB_RX_ALL_OCTETS,
1324 ETH_MIB_RX_ALL_PKTS,
1325 };
1326
1327
1328 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1329 struct ethtool_drvinfo *drvinfo)
1330 {
1331 strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1332 strlcpy(drvinfo->version, bcm_enet_driver_version,
1333 sizeof(drvinfo->version));
1334 strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1335 strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1336 drvinfo->n_stats = BCM_ENET_STATS_LEN;
1337 }
1338
1339 static int bcm_enet_get_sset_count(struct net_device *netdev,
1340 int string_set)
1341 {
1342 switch (string_set) {
1343 case ETH_SS_STATS:
1344 return BCM_ENET_STATS_LEN;
1345 default:
1346 return -EINVAL;
1347 }
1348 }
1349
1350 static void bcm_enet_get_strings(struct net_device *netdev,
1351 u32 stringset, u8 *data)
1352 {
1353 int i;
1354
1355 switch (stringset) {
1356 case ETH_SS_STATS:
1357 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1358 memcpy(data + i * ETH_GSTRING_LEN,
1359 bcm_enet_gstrings_stats[i].stat_string,
1360 ETH_GSTRING_LEN);
1361 }
1362 break;
1363 }
1364 }
1365
1366 static void update_mib_counters(struct bcm_enet_priv *priv)
1367 {
1368 int i;
1369
1370 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1371 const struct bcm_enet_stats *s;
1372 u32 val;
1373 char *p;
1374
1375 s = &bcm_enet_gstrings_stats[i];
1376 if (s->mib_reg == -1)
1377 continue;
1378
1379 val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1380 p = (char *)priv + s->stat_offset;
1381
1382 if (s->sizeof_stat == sizeof(u64))
1383 *(u64 *)p += val;
1384 else
1385 *(u32 *)p += val;
1386 }
1387
1388 /* also empty unused mib counters to make sure mib counter
1389 * overflow interrupt is cleared */
1390 for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1391 (void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1392 }
1393
1394 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1395 {
1396 struct bcm_enet_priv *priv;
1397
1398 priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1399 mutex_lock(&priv->mib_update_lock);
1400 update_mib_counters(priv);
1401 mutex_unlock(&priv->mib_update_lock);
1402
1403 /* reenable mib interrupt */
1404 if (netif_running(priv->net_dev))
1405 enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1406 }
1407
1408 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1409 struct ethtool_stats *stats,
1410 u64 *data)
1411 {
1412 struct bcm_enet_priv *priv;
1413 int i;
1414
1415 priv = netdev_priv(netdev);
1416
1417 mutex_lock(&priv->mib_update_lock);
1418 update_mib_counters(priv);
1419
1420 for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1421 const struct bcm_enet_stats *s;
1422 char *p;
1423
1424 s = &bcm_enet_gstrings_stats[i];
1425 if (s->mib_reg == -1)
1426 p = (char *)&netdev->stats;
1427 else
1428 p = (char *)priv;
1429 p += s->stat_offset;
1430 data[i] = (s->sizeof_stat == sizeof(u64)) ?
1431 *(u64 *)p : *(u32 *)p;
1432 }
1433 mutex_unlock(&priv->mib_update_lock);
1434 }
1435
1436 static int bcm_enet_nway_reset(struct net_device *dev)
1437 {
1438 struct bcm_enet_priv *priv;
1439
1440 priv = netdev_priv(dev);
1441 if (priv->has_phy) {
1442 if (!priv->phydev)
1443 return -ENODEV;
1444 return genphy_restart_aneg(priv->phydev);
1445 }
1446
1447 return -EOPNOTSUPP;
1448 }
1449
1450 static int bcm_enet_get_settings(struct net_device *dev,
1451 struct ethtool_cmd *cmd)
1452 {
1453 struct bcm_enet_priv *priv;
1454
1455 priv = netdev_priv(dev);
1456
1457 cmd->maxrxpkt = 0;
1458 cmd->maxtxpkt = 0;
1459
1460 if (priv->has_phy) {
1461 if (!priv->phydev)
1462 return -ENODEV;
1463 return phy_ethtool_gset(priv->phydev, cmd);
1464 } else {
1465 cmd->autoneg = 0;
1466 ethtool_cmd_speed_set(cmd, ((priv->force_speed_100)
1467 ? SPEED_100 : SPEED_10));
1468 cmd->duplex = (priv->force_duplex_full) ?
1469 DUPLEX_FULL : DUPLEX_HALF;
1470 cmd->supported = ADVERTISED_10baseT_Half |
1471 ADVERTISED_10baseT_Full |
1472 ADVERTISED_100baseT_Half |
1473 ADVERTISED_100baseT_Full;
1474 cmd->advertising = 0;
1475 cmd->port = PORT_MII;
1476 cmd->transceiver = XCVR_EXTERNAL;
1477 }
1478 return 0;
1479 }
1480
1481 static int bcm_enet_set_settings(struct net_device *dev,
1482 struct ethtool_cmd *cmd)
1483 {
1484 struct bcm_enet_priv *priv;
1485
1486 priv = netdev_priv(dev);
1487 if (priv->has_phy) {
1488 if (!priv->phydev)
1489 return -ENODEV;
1490 return phy_ethtool_sset(priv->phydev, cmd);
1491 } else {
1492
1493 if (cmd->autoneg ||
1494 (cmd->speed != SPEED_100 && cmd->speed != SPEED_10) ||
1495 cmd->port != PORT_MII)
1496 return -EINVAL;
1497
1498 priv->force_speed_100 = (cmd->speed == SPEED_100) ? 1 : 0;
1499 priv->force_duplex_full = (cmd->duplex == DUPLEX_FULL) ? 1 : 0;
1500
1501 if (netif_running(dev))
1502 bcm_enet_adjust_link(dev);
1503 return 0;
1504 }
1505 }
1506
1507 static void bcm_enet_get_ringparam(struct net_device *dev,
1508 struct ethtool_ringparam *ering)
1509 {
1510 struct bcm_enet_priv *priv;
1511
1512 priv = netdev_priv(dev);
1513
1514 /* rx/tx ring is actually only limited by memory */
1515 ering->rx_max_pending = 8192;
1516 ering->tx_max_pending = 8192;
1517 ering->rx_pending = priv->rx_ring_size;
1518 ering->tx_pending = priv->tx_ring_size;
1519 }
1520
1521 static int bcm_enet_set_ringparam(struct net_device *dev,
1522 struct ethtool_ringparam *ering)
1523 {
1524 struct bcm_enet_priv *priv;
1525 int was_running;
1526
1527 priv = netdev_priv(dev);
1528
1529 was_running = 0;
1530 if (netif_running(dev)) {
1531 bcm_enet_stop(dev);
1532 was_running = 1;
1533 }
1534
1535 priv->rx_ring_size = ering->rx_pending;
1536 priv->tx_ring_size = ering->tx_pending;
1537
1538 if (was_running) {
1539 int err;
1540
1541 err = bcm_enet_open(dev);
1542 if (err)
1543 dev_close(dev);
1544 else
1545 bcm_enet_set_multicast_list(dev);
1546 }
1547 return 0;
1548 }
1549
1550 static void bcm_enet_get_pauseparam(struct net_device *dev,
1551 struct ethtool_pauseparam *ecmd)
1552 {
1553 struct bcm_enet_priv *priv;
1554
1555 priv = netdev_priv(dev);
1556 ecmd->autoneg = priv->pause_auto;
1557 ecmd->rx_pause = priv->pause_rx;
1558 ecmd->tx_pause = priv->pause_tx;
1559 }
1560
1561 static int bcm_enet_set_pauseparam(struct net_device *dev,
1562 struct ethtool_pauseparam *ecmd)
1563 {
1564 struct bcm_enet_priv *priv;
1565
1566 priv = netdev_priv(dev);
1567
1568 if (priv->has_phy) {
1569 if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1570 /* asymetric pause mode not supported,
1571 * actually possible but integrated PHY has RO
1572 * asym_pause bit */
1573 return -EINVAL;
1574 }
1575 } else {
1576 /* no pause autoneg on direct mii connection */
1577 if (ecmd->autoneg)
1578 return -EINVAL;
1579 }
1580
1581 priv->pause_auto = ecmd->autoneg;
1582 priv->pause_rx = ecmd->rx_pause;
1583 priv->pause_tx = ecmd->tx_pause;
1584
1585 return 0;
1586 }
1587
1588 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1589 .get_strings = bcm_enet_get_strings,
1590 .get_sset_count = bcm_enet_get_sset_count,
1591 .get_ethtool_stats = bcm_enet_get_ethtool_stats,
1592 .nway_reset = bcm_enet_nway_reset,
1593 .get_settings = bcm_enet_get_settings,
1594 .set_settings = bcm_enet_set_settings,
1595 .get_drvinfo = bcm_enet_get_drvinfo,
1596 .get_link = ethtool_op_get_link,
1597 .get_ringparam = bcm_enet_get_ringparam,
1598 .set_ringparam = bcm_enet_set_ringparam,
1599 .get_pauseparam = bcm_enet_get_pauseparam,
1600 .set_pauseparam = bcm_enet_set_pauseparam,
1601 };
1602
1603 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1604 {
1605 struct bcm_enet_priv *priv;
1606
1607 priv = netdev_priv(dev);
1608 if (priv->has_phy) {
1609 if (!priv->phydev)
1610 return -ENODEV;
1611 return phy_mii_ioctl(priv->phydev, rq, cmd);
1612 } else {
1613 struct mii_if_info mii;
1614
1615 mii.dev = dev;
1616 mii.mdio_read = bcm_enet_mdio_read_mii;
1617 mii.mdio_write = bcm_enet_mdio_write_mii;
1618 mii.phy_id = 0;
1619 mii.phy_id_mask = 0x3f;
1620 mii.reg_num_mask = 0x1f;
1621 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1622 }
1623 }
1624
1625 /*
1626 * calculate actual hardware mtu
1627 */
1628 static int compute_hw_mtu(struct bcm_enet_priv *priv, int mtu)
1629 {
1630 int actual_mtu;
1631
1632 actual_mtu = mtu;
1633
1634 /* add ethernet header + vlan tag size */
1635 actual_mtu += VLAN_ETH_HLEN;
1636
1637 if (actual_mtu < 64 || actual_mtu > BCMENET_MAX_MTU)
1638 return -EINVAL;
1639
1640 /*
1641 * setup maximum size before we get overflow mark in
1642 * descriptor, note that this will not prevent reception of
1643 * big frames, they will be split into multiple buffers
1644 * anyway
1645 */
1646 priv->hw_mtu = actual_mtu;
1647
1648 /*
1649 * align rx buffer size to dma burst len, account FCS since
1650 * it's appended
1651 */
1652 priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1653 priv->dma_maxburst * 4);
1654 return 0;
1655 }
1656
1657 /*
1658 * adjust mtu, can't be called while device is running
1659 */
1660 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1661 {
1662 int ret;
1663
1664 if (netif_running(dev))
1665 return -EBUSY;
1666
1667 ret = compute_hw_mtu(netdev_priv(dev), new_mtu);
1668 if (ret)
1669 return ret;
1670 dev->mtu = new_mtu;
1671 return 0;
1672 }
1673
1674 /*
1675 * preinit hardware to allow mii operation while device is down
1676 */
1677 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1678 {
1679 u32 val;
1680 int limit;
1681
1682 /* make sure mac is disabled */
1683 bcm_enet_disable_mac(priv);
1684
1685 /* soft reset mac */
1686 val = ENET_CTL_SRESET_MASK;
1687 enet_writel(priv, val, ENET_CTL_REG);
1688 wmb();
1689
1690 limit = 1000;
1691 do {
1692 val = enet_readl(priv, ENET_CTL_REG);
1693 if (!(val & ENET_CTL_SRESET_MASK))
1694 break;
1695 udelay(1);
1696 } while (limit--);
1697
1698 /* select correct mii interface */
1699 val = enet_readl(priv, ENET_CTL_REG);
1700 if (priv->use_external_mii)
1701 val |= ENET_CTL_EPHYSEL_MASK;
1702 else
1703 val &= ~ENET_CTL_EPHYSEL_MASK;
1704 enet_writel(priv, val, ENET_CTL_REG);
1705
1706 /* turn on mdc clock */
1707 enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1708 ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1709
1710 /* set mib counters to self-clear when read */
1711 val = enet_readl(priv, ENET_MIBCTL_REG);
1712 val |= ENET_MIBCTL_RDCLEAR_MASK;
1713 enet_writel(priv, val, ENET_MIBCTL_REG);
1714 }
1715
1716 static const struct net_device_ops bcm_enet_ops = {
1717 .ndo_open = bcm_enet_open,
1718 .ndo_stop = bcm_enet_stop,
1719 .ndo_start_xmit = bcm_enet_start_xmit,
1720 .ndo_set_mac_address = bcm_enet_set_mac_address,
1721 .ndo_set_rx_mode = bcm_enet_set_multicast_list,
1722 .ndo_do_ioctl = bcm_enet_ioctl,
1723 .ndo_change_mtu = bcm_enet_change_mtu,
1724 };
1725
1726 /*
1727 * allocate netdevice, request register memory and register device.
1728 */
1729 static int bcm_enet_probe(struct platform_device *pdev)
1730 {
1731 struct bcm_enet_priv *priv;
1732 struct net_device *dev;
1733 struct bcm63xx_enet_platform_data *pd;
1734 struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1735 struct mii_bus *bus;
1736 const char *clk_name;
1737 int i, ret;
1738
1739 /* stop if shared driver failed, assume driver->probe will be
1740 * called in the same order we register devices (correct ?) */
1741 if (!bcm_enet_shared_base[0])
1742 return -ENODEV;
1743
1744 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1745 res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1746 res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1747 if (!res_irq || !res_irq_rx || !res_irq_tx)
1748 return -ENODEV;
1749
1750 ret = 0;
1751 dev = alloc_etherdev(sizeof(*priv));
1752 if (!dev)
1753 return -ENOMEM;
1754 priv = netdev_priv(dev);
1755
1756 priv->enet_is_sw = false;
1757 priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1758
1759 ret = compute_hw_mtu(priv, dev->mtu);
1760 if (ret)
1761 goto out;
1762
1763 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1764 priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1765 if (IS_ERR(priv->base)) {
1766 ret = PTR_ERR(priv->base);
1767 goto out;
1768 }
1769
1770 dev->irq = priv->irq = res_irq->start;
1771 priv->irq_rx = res_irq_rx->start;
1772 priv->irq_tx = res_irq_tx->start;
1773 priv->mac_id = pdev->id;
1774
1775 /* get rx & tx dma channel id for this mac */
1776 if (priv->mac_id == 0) {
1777 priv->rx_chan = 0;
1778 priv->tx_chan = 1;
1779 clk_name = "enet0";
1780 } else {
1781 priv->rx_chan = 2;
1782 priv->tx_chan = 3;
1783 clk_name = "enet1";
1784 }
1785
1786 priv->mac_clk = clk_get(&pdev->dev, clk_name);
1787 if (IS_ERR(priv->mac_clk)) {
1788 ret = PTR_ERR(priv->mac_clk);
1789 goto out;
1790 }
1791 clk_prepare_enable(priv->mac_clk);
1792
1793 /* initialize default and fetch platform data */
1794 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1795 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1796
1797 pd = dev_get_platdata(&pdev->dev);
1798 if (pd) {
1799 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1800 priv->has_phy = pd->has_phy;
1801 priv->phy_id = pd->phy_id;
1802 priv->has_phy_interrupt = pd->has_phy_interrupt;
1803 priv->phy_interrupt = pd->phy_interrupt;
1804 priv->use_external_mii = !pd->use_internal_phy;
1805 priv->pause_auto = pd->pause_auto;
1806 priv->pause_rx = pd->pause_rx;
1807 priv->pause_tx = pd->pause_tx;
1808 priv->force_duplex_full = pd->force_duplex_full;
1809 priv->force_speed_100 = pd->force_speed_100;
1810 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1811 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1812 priv->dma_chan_width = pd->dma_chan_width;
1813 priv->dma_has_sram = pd->dma_has_sram;
1814 priv->dma_desc_shift = pd->dma_desc_shift;
1815 }
1816
1817 if (priv->mac_id == 0 && priv->has_phy && !priv->use_external_mii) {
1818 /* using internal PHY, enable clock */
1819 priv->phy_clk = clk_get(&pdev->dev, "ephy");
1820 if (IS_ERR(priv->phy_clk)) {
1821 ret = PTR_ERR(priv->phy_clk);
1822 priv->phy_clk = NULL;
1823 goto out_put_clk_mac;
1824 }
1825 clk_prepare_enable(priv->phy_clk);
1826 }
1827
1828 /* do minimal hardware init to be able to probe mii bus */
1829 bcm_enet_hw_preinit(priv);
1830
1831 /* MII bus registration */
1832 if (priv->has_phy) {
1833
1834 priv->mii_bus = mdiobus_alloc();
1835 if (!priv->mii_bus) {
1836 ret = -ENOMEM;
1837 goto out_uninit_hw;
1838 }
1839
1840 bus = priv->mii_bus;
1841 bus->name = "bcm63xx_enet MII bus";
1842 bus->parent = &pdev->dev;
1843 bus->priv = priv;
1844 bus->read = bcm_enet_mdio_read_phylib;
1845 bus->write = bcm_enet_mdio_write_phylib;
1846 sprintf(bus->id, "%s-%d", pdev->name, priv->mac_id);
1847
1848 /* only probe bus where we think the PHY is, because
1849 * the mdio read operation return 0 instead of 0xffff
1850 * if a slave is not present on hw */
1851 bus->phy_mask = ~(1 << priv->phy_id);
1852
1853 bus->irq = devm_kzalloc(&pdev->dev, sizeof(int) * PHY_MAX_ADDR,
1854 GFP_KERNEL);
1855 if (!bus->irq) {
1856 ret = -ENOMEM;
1857 goto out_free_mdio;
1858 }
1859
1860 if (priv->has_phy_interrupt)
1861 bus->irq[priv->phy_id] = priv->phy_interrupt;
1862 else
1863 bus->irq[priv->phy_id] = PHY_POLL;
1864
1865 ret = mdiobus_register(bus);
1866 if (ret) {
1867 dev_err(&pdev->dev, "unable to register mdio bus\n");
1868 goto out_free_mdio;
1869 }
1870 } else {
1871
1872 /* run platform code to initialize PHY device */
1873 if (pd->mii_config &&
1874 pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1875 bcm_enet_mdio_write_mii)) {
1876 dev_err(&pdev->dev, "unable to configure mdio bus\n");
1877 goto out_uninit_hw;
1878 }
1879 }
1880
1881 spin_lock_init(&priv->rx_lock);
1882
1883 /* init rx timeout (used for oom) */
1884 init_timer(&priv->rx_timeout);
1885 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
1886 priv->rx_timeout.data = (unsigned long)dev;
1887
1888 /* init the mib update lock&work */
1889 mutex_init(&priv->mib_update_lock);
1890 INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1891
1892 /* zero mib counters */
1893 for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1894 enet_writel(priv, 0, ENET_MIB_REG(i));
1895
1896 /* register netdevice */
1897 dev->netdev_ops = &bcm_enet_ops;
1898 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1899
1900 dev->ethtool_ops = &bcm_enet_ethtool_ops;
1901 SET_NETDEV_DEV(dev, &pdev->dev);
1902
1903 ret = register_netdev(dev);
1904 if (ret)
1905 goto out_unregister_mdio;
1906
1907 netif_carrier_off(dev);
1908 platform_set_drvdata(pdev, dev);
1909 priv->pdev = pdev;
1910 priv->net_dev = dev;
1911
1912 return 0;
1913
1914 out_unregister_mdio:
1915 if (priv->mii_bus)
1916 mdiobus_unregister(priv->mii_bus);
1917
1918 out_free_mdio:
1919 if (priv->mii_bus)
1920 mdiobus_free(priv->mii_bus);
1921
1922 out_uninit_hw:
1923 /* turn off mdc clock */
1924 enet_writel(priv, 0, ENET_MIISC_REG);
1925 if (priv->phy_clk) {
1926 clk_disable_unprepare(priv->phy_clk);
1927 clk_put(priv->phy_clk);
1928 }
1929
1930 out_put_clk_mac:
1931 clk_disable_unprepare(priv->mac_clk);
1932 clk_put(priv->mac_clk);
1933 out:
1934 free_netdev(dev);
1935 return ret;
1936 }
1937
1938
1939 /*
1940 * exit func, stops hardware and unregisters netdevice
1941 */
1942 static int bcm_enet_remove(struct platform_device *pdev)
1943 {
1944 struct bcm_enet_priv *priv;
1945 struct net_device *dev;
1946
1947 /* stop netdevice */
1948 dev = platform_get_drvdata(pdev);
1949 priv = netdev_priv(dev);
1950 unregister_netdev(dev);
1951
1952 /* turn off mdc clock */
1953 enet_writel(priv, 0, ENET_MIISC_REG);
1954
1955 if (priv->has_phy) {
1956 mdiobus_unregister(priv->mii_bus);
1957 mdiobus_free(priv->mii_bus);
1958 } else {
1959 struct bcm63xx_enet_platform_data *pd;
1960
1961 pd = dev_get_platdata(&pdev->dev);
1962 if (pd && pd->mii_config)
1963 pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1964 bcm_enet_mdio_write_mii);
1965 }
1966
1967 /* disable hw block clocks */
1968 if (priv->phy_clk) {
1969 clk_disable_unprepare(priv->phy_clk);
1970 clk_put(priv->phy_clk);
1971 }
1972 clk_disable_unprepare(priv->mac_clk);
1973 clk_put(priv->mac_clk);
1974
1975 free_netdev(dev);
1976 return 0;
1977 }
1978
1979 struct platform_driver bcm63xx_enet_driver = {
1980 .probe = bcm_enet_probe,
1981 .remove = bcm_enet_remove,
1982 .driver = {
1983 .name = "bcm63xx_enet",
1984 .owner = THIS_MODULE,
1985 },
1986 };
1987
1988 /*
1989 * switch mii access callbacks
1990 */
1991 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1992 int ext, int phy_id, int location)
1993 {
1994 u32 reg;
1995 int ret;
1996
1997 spin_lock_bh(&priv->enetsw_mdio_lock);
1998 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1999
2000 reg = ENETSW_MDIOC_RD_MASK |
2001 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2002 (location << ENETSW_MDIOC_REG_SHIFT);
2003
2004 if (ext)
2005 reg |= ENETSW_MDIOC_EXT_MASK;
2006
2007 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2008 udelay(50);
2009 ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
2010 spin_unlock_bh(&priv->enetsw_mdio_lock);
2011 return ret;
2012 }
2013
2014 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
2015 int ext, int phy_id, int location,
2016 uint16_t data)
2017 {
2018 u32 reg;
2019
2020 spin_lock_bh(&priv->enetsw_mdio_lock);
2021 enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
2022
2023 reg = ENETSW_MDIOC_WR_MASK |
2024 (phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
2025 (location << ENETSW_MDIOC_REG_SHIFT);
2026
2027 if (ext)
2028 reg |= ENETSW_MDIOC_EXT_MASK;
2029
2030 reg |= data;
2031
2032 enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
2033 udelay(50);
2034 spin_unlock_bh(&priv->enetsw_mdio_lock);
2035 }
2036
2037 static inline int bcm_enet_port_is_rgmii(int portid)
2038 {
2039 return portid >= ENETSW_RGMII_PORT0;
2040 }
2041
2042 /*
2043 * enet sw PHY polling
2044 */
2045 static void swphy_poll_timer(unsigned long data)
2046 {
2047 struct bcm_enet_priv *priv = (struct bcm_enet_priv *)data;
2048 unsigned int i;
2049
2050 for (i = 0; i < priv->num_ports; i++) {
2051 struct bcm63xx_enetsw_port *port;
2052 int val, j, up, advertise, lpa, speed, duplex, media;
2053 int external_phy = bcm_enet_port_is_rgmii(i);
2054 u8 override;
2055
2056 port = &priv->used_ports[i];
2057 if (!port->used)
2058 continue;
2059
2060 if (port->bypass_link)
2061 continue;
2062
2063 /* dummy read to clear */
2064 for (j = 0; j < 2; j++)
2065 val = bcmenet_sw_mdio_read(priv, external_phy,
2066 port->phy_id, MII_BMSR);
2067
2068 if (val == 0xffff)
2069 continue;
2070
2071 up = (val & BMSR_LSTATUS) ? 1 : 0;
2072 if (!(up ^ priv->sw_port_link[i]))
2073 continue;
2074
2075 priv->sw_port_link[i] = up;
2076
2077 /* link changed */
2078 if (!up) {
2079 dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2080 port->name);
2081 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2082 ENETSW_PORTOV_REG(i));
2083 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2084 ENETSW_PTCTRL_TXDIS_MASK,
2085 ENETSW_PTCTRL_REG(i));
2086 continue;
2087 }
2088
2089 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2090 port->phy_id, MII_ADVERTISE);
2091
2092 lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2093 MII_LPA);
2094
2095 /* figure out media and duplex from advertise and LPA values */
2096 media = mii_nway_result(lpa & advertise);
2097 duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2098
2099 if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2100 speed = 100;
2101 else
2102 speed = 10;
2103
2104 if (val & BMSR_ESTATEN) {
2105 advertise = bcmenet_sw_mdio_read(priv, external_phy,
2106 port->phy_id, MII_CTRL1000);
2107
2108 lpa = bcmenet_sw_mdio_read(priv, external_phy,
2109 port->phy_id, MII_STAT1000);
2110
2111 if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2112 && lpa & (LPA_1000FULL | LPA_1000HALF)) {
2113 speed = 1000;
2114 duplex = (lpa & LPA_1000FULL);
2115 }
2116 }
2117
2118 dev_info(&priv->pdev->dev,
2119 "link UP on %s, %dMbps, %s-duplex\n",
2120 port->name, speed, duplex ? "full" : "half");
2121
2122 override = ENETSW_PORTOV_ENABLE_MASK |
2123 ENETSW_PORTOV_LINKUP_MASK;
2124
2125 if (speed == 1000)
2126 override |= ENETSW_IMPOV_1000_MASK;
2127 else if (speed == 100)
2128 override |= ENETSW_IMPOV_100_MASK;
2129 if (duplex)
2130 override |= ENETSW_IMPOV_FDX_MASK;
2131
2132 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2133 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2134 }
2135
2136 priv->swphy_poll.expires = jiffies + HZ;
2137 add_timer(&priv->swphy_poll);
2138 }
2139
2140 /*
2141 * open callback, allocate dma rings & buffers and start rx operation
2142 */
2143 static int bcm_enetsw_open(struct net_device *dev)
2144 {
2145 struct bcm_enet_priv *priv;
2146 struct device *kdev;
2147 int i, ret;
2148 unsigned int size;
2149 void *p;
2150 u32 val;
2151
2152 priv = netdev_priv(dev);
2153 kdev = &priv->pdev->dev;
2154
2155 /* mask all interrupts and request them */
2156 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2157 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2158
2159 ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2160 0, dev->name, dev);
2161 if (ret)
2162 goto out_freeirq;
2163
2164 if (priv->irq_tx != -1) {
2165 ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2166 0, dev->name, dev);
2167 if (ret)
2168 goto out_freeirq_rx;
2169 }
2170
2171 /* allocate rx dma ring */
2172 size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2173 p = dma_alloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2174 if (!p) {
2175 dev_err(kdev, "cannot allocate rx ring %u\n", size);
2176 ret = -ENOMEM;
2177 goto out_freeirq_tx;
2178 }
2179
2180 memset(p, 0, size);
2181 priv->rx_desc_alloc_size = size;
2182 priv->rx_desc_cpu = p;
2183
2184 /* allocate tx dma ring */
2185 size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2186 p = dma_alloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2187 if (!p) {
2188 dev_err(kdev, "cannot allocate tx ring\n");
2189 ret = -ENOMEM;
2190 goto out_free_rx_ring;
2191 }
2192
2193 memset(p, 0, size);
2194 priv->tx_desc_alloc_size = size;
2195 priv->tx_desc_cpu = p;
2196
2197 priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
2198 GFP_KERNEL);
2199 if (!priv->tx_skb) {
2200 dev_err(kdev, "cannot allocate rx skb queue\n");
2201 ret = -ENOMEM;
2202 goto out_free_tx_ring;
2203 }
2204
2205 priv->tx_desc_count = priv->tx_ring_size;
2206 priv->tx_dirty_desc = 0;
2207 priv->tx_curr_desc = 0;
2208 spin_lock_init(&priv->tx_lock);
2209
2210 /* init & fill rx ring with skbs */
2211 priv->rx_skb = kzalloc(sizeof(struct sk_buff *) * priv->rx_ring_size,
2212 GFP_KERNEL);
2213 if (!priv->rx_skb) {
2214 dev_err(kdev, "cannot allocate rx skb queue\n");
2215 ret = -ENOMEM;
2216 goto out_free_tx_skb;
2217 }
2218
2219 priv->rx_desc_count = 0;
2220 priv->rx_dirty_desc = 0;
2221 priv->rx_curr_desc = 0;
2222
2223 /* disable all ports */
2224 for (i = 0; i < priv->num_ports; i++) {
2225 enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2226 ENETSW_PORTOV_REG(i));
2227 enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2228 ENETSW_PTCTRL_TXDIS_MASK,
2229 ENETSW_PTCTRL_REG(i));
2230
2231 priv->sw_port_link[i] = 0;
2232 }
2233
2234 /* reset mib */
2235 val = enetsw_readb(priv, ENETSW_GMCR_REG);
2236 val |= ENETSW_GMCR_RST_MIB_MASK;
2237 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2238 mdelay(1);
2239 val &= ~ENETSW_GMCR_RST_MIB_MASK;
2240 enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2241 mdelay(1);
2242
2243 /* force CPU port state */
2244 val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2245 val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2246 enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2247
2248 /* enable switch forward engine */
2249 val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2250 val |= ENETSW_SWMODE_FWD_EN_MASK;
2251 enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2252
2253 /* enable jumbo on all ports */
2254 enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2255 enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2256
2257 /* initialize flow control buffer allocation */
2258 enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2259 ENETDMA_BUFALLOC_REG(priv->rx_chan));
2260
2261 if (bcm_enet_refill_rx(dev)) {
2262 dev_err(kdev, "cannot allocate rx skb queue\n");
2263 ret = -ENOMEM;
2264 goto out;
2265 }
2266
2267 /* write rx & tx ring addresses */
2268 enet_dmas_writel(priv, priv->rx_desc_dma,
2269 ENETDMAS_RSTART_REG, priv->rx_chan);
2270 enet_dmas_writel(priv, priv->tx_desc_dma,
2271 ENETDMAS_RSTART_REG, priv->tx_chan);
2272
2273 /* clear remaining state ram for rx & tx channel */
2274 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2275 enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2276 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2277 enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2278 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2279 enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2280
2281 /* set dma maximum burst len */
2282 enet_dmac_writel(priv, priv->dma_maxburst,
2283 ENETDMAC_MAXBURST, priv->rx_chan);
2284 enet_dmac_writel(priv, priv->dma_maxburst,
2285 ENETDMAC_MAXBURST, priv->tx_chan);
2286
2287 /* set flow control low/high threshold to 1/3 / 2/3 */
2288 val = priv->rx_ring_size / 3;
2289 enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2290 val = (priv->rx_ring_size * 2) / 3;
2291 enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2292
2293 /* all set, enable mac and interrupts, start dma engine and
2294 * kick rx dma channel
2295 */
2296 wmb();
2297 enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2298 enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2299 ENETDMAC_CHANCFG, priv->rx_chan);
2300
2301 /* watch "packet transferred" interrupt in rx and tx */
2302 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2303 ENETDMAC_IR, priv->rx_chan);
2304 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2305 ENETDMAC_IR, priv->tx_chan);
2306
2307 /* make sure we enable napi before rx interrupt */
2308 napi_enable(&priv->napi);
2309
2310 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2311 ENETDMAC_IRMASK, priv->rx_chan);
2312 enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2313 ENETDMAC_IRMASK, priv->tx_chan);
2314
2315 netif_carrier_on(dev);
2316 netif_start_queue(dev);
2317
2318 /* apply override config for bypass_link ports here. */
2319 for (i = 0; i < priv->num_ports; i++) {
2320 struct bcm63xx_enetsw_port *port;
2321 u8 override;
2322 port = &priv->used_ports[i];
2323 if (!port->used)
2324 continue;
2325
2326 if (!port->bypass_link)
2327 continue;
2328
2329 override = ENETSW_PORTOV_ENABLE_MASK |
2330 ENETSW_PORTOV_LINKUP_MASK;
2331
2332 switch (port->force_speed) {
2333 case 1000:
2334 override |= ENETSW_IMPOV_1000_MASK;
2335 break;
2336 case 100:
2337 override |= ENETSW_IMPOV_100_MASK;
2338 break;
2339 case 10:
2340 break;
2341 default:
2342 pr_warn("invalid forced speed on port %s: assume 10\n",
2343 port->name);
2344 break;
2345 }
2346
2347 if (port->force_duplex_full)
2348 override |= ENETSW_IMPOV_FDX_MASK;
2349
2350
2351 enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2352 enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2353 }
2354
2355 /* start phy polling timer */
2356 init_timer(&priv->swphy_poll);
2357 priv->swphy_poll.function = swphy_poll_timer;
2358 priv->swphy_poll.data = (unsigned long)priv;
2359 priv->swphy_poll.expires = jiffies;
2360 add_timer(&priv->swphy_poll);
2361 return 0;
2362
2363 out:
2364 for (i = 0; i < priv->rx_ring_size; i++) {
2365 struct bcm_enet_desc *desc;
2366
2367 if (!priv->rx_skb[i])
2368 continue;
2369
2370 desc = &priv->rx_desc_cpu[i];
2371 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2372 DMA_FROM_DEVICE);
2373 kfree_skb(priv->rx_skb[i]);
2374 }
2375 kfree(priv->rx_skb);
2376
2377 out_free_tx_skb:
2378 kfree(priv->tx_skb);
2379
2380 out_free_tx_ring:
2381 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2382 priv->tx_desc_cpu, priv->tx_desc_dma);
2383
2384 out_free_rx_ring:
2385 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2386 priv->rx_desc_cpu, priv->rx_desc_dma);
2387
2388 out_freeirq_tx:
2389 if (priv->irq_tx != -1)
2390 free_irq(priv->irq_tx, dev);
2391
2392 out_freeirq_rx:
2393 free_irq(priv->irq_rx, dev);
2394
2395 out_freeirq:
2396 return ret;
2397 }
2398
2399 /* stop callback */
2400 static int bcm_enetsw_stop(struct net_device *dev)
2401 {
2402 struct bcm_enet_priv *priv;
2403 struct device *kdev;
2404 int i;
2405
2406 priv = netdev_priv(dev);
2407 kdev = &priv->pdev->dev;
2408
2409 del_timer_sync(&priv->swphy_poll);
2410 netif_stop_queue(dev);
2411 napi_disable(&priv->napi);
2412 del_timer_sync(&priv->rx_timeout);
2413
2414 /* mask all interrupts */
2415 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2416 enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2417
2418 /* disable dma & mac */
2419 bcm_enet_disable_dma(priv, priv->tx_chan);
2420 bcm_enet_disable_dma(priv, priv->rx_chan);
2421
2422 /* force reclaim of all tx buffers */
2423 bcm_enet_tx_reclaim(dev, 1);
2424
2425 /* free the rx skb ring */
2426 for (i = 0; i < priv->rx_ring_size; i++) {
2427 struct bcm_enet_desc *desc;
2428
2429 if (!priv->rx_skb[i])
2430 continue;
2431
2432 desc = &priv->rx_desc_cpu[i];
2433 dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2434 DMA_FROM_DEVICE);
2435 kfree_skb(priv->rx_skb[i]);
2436 }
2437
2438 /* free remaining allocated memory */
2439 kfree(priv->rx_skb);
2440 kfree(priv->tx_skb);
2441 dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2442 priv->rx_desc_cpu, priv->rx_desc_dma);
2443 dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2444 priv->tx_desc_cpu, priv->tx_desc_dma);
2445 if (priv->irq_tx != -1)
2446 free_irq(priv->irq_tx, dev);
2447 free_irq(priv->irq_rx, dev);
2448
2449 return 0;
2450 }
2451
2452 /* try to sort out phy external status by walking the used_port field
2453 * in the bcm_enet_priv structure. in case the phy address is not
2454 * assigned to any physical port on the switch, assume it is external
2455 * (and yell at the user).
2456 */
2457 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2458 {
2459 int i;
2460
2461 for (i = 0; i < priv->num_ports; ++i) {
2462 if (!priv->used_ports[i].used)
2463 continue;
2464 if (priv->used_ports[i].phy_id == phy_id)
2465 return bcm_enet_port_is_rgmii(i);
2466 }
2467
2468 printk_once(KERN_WARNING "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2469 phy_id);
2470 return 1;
2471 }
2472
2473 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2474 * external/internal status of the given phy_id first.
2475 */
2476 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2477 int location)
2478 {
2479 struct bcm_enet_priv *priv;
2480
2481 priv = netdev_priv(dev);
2482 return bcmenet_sw_mdio_read(priv,
2483 bcm_enetsw_phy_is_external(priv, phy_id),
2484 phy_id, location);
2485 }
2486
2487 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2488 * external/internal status of the given phy_id first.
2489 */
2490 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2491 int location,
2492 int val)
2493 {
2494 struct bcm_enet_priv *priv;
2495
2496 priv = netdev_priv(dev);
2497 bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2498 phy_id, location, val);
2499 }
2500
2501 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2502 {
2503 struct mii_if_info mii;
2504
2505 mii.dev = dev;
2506 mii.mdio_read = bcm_enetsw_mii_mdio_read;
2507 mii.mdio_write = bcm_enetsw_mii_mdio_write;
2508 mii.phy_id = 0;
2509 mii.phy_id_mask = 0x3f;
2510 mii.reg_num_mask = 0x1f;
2511 return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2512
2513 }
2514
2515 static const struct net_device_ops bcm_enetsw_ops = {
2516 .ndo_open = bcm_enetsw_open,
2517 .ndo_stop = bcm_enetsw_stop,
2518 .ndo_start_xmit = bcm_enet_start_xmit,
2519 .ndo_change_mtu = bcm_enet_change_mtu,
2520 .ndo_do_ioctl = bcm_enetsw_ioctl,
2521 };
2522
2523
2524 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2525 { "rx_packets", DEV_STAT(rx_packets), -1 },
2526 { "tx_packets", DEV_STAT(tx_packets), -1 },
2527 { "rx_bytes", DEV_STAT(rx_bytes), -1 },
2528 { "tx_bytes", DEV_STAT(tx_bytes), -1 },
2529 { "rx_errors", DEV_STAT(rx_errors), -1 },
2530 { "tx_errors", DEV_STAT(tx_errors), -1 },
2531 { "rx_dropped", DEV_STAT(rx_dropped), -1 },
2532 { "tx_dropped", DEV_STAT(tx_dropped), -1 },
2533
2534 { "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2535 { "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2536 { "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2537 { "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2538 { "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2539 { "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2540 { "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2541 { "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2542 { "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2543 { "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2544 ETHSW_MIB_RX_1024_1522 },
2545 { "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2546 ETHSW_MIB_RX_1523_2047 },
2547 { "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2548 ETHSW_MIB_RX_2048_4095 },
2549 { "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2550 ETHSW_MIB_RX_4096_8191 },
2551 { "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2552 ETHSW_MIB_RX_8192_9728 },
2553 { "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2554 { "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2555 { "tx_dropped", GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2556 { "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2557 { "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2558
2559 { "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2560 { "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2561 { "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2562 { "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2563 { "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2564 { "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2565
2566 };
2567
2568 #define BCM_ENETSW_STATS_LEN \
2569 (sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2570
2571 static void bcm_enetsw_get_strings(struct net_device *netdev,
2572 u32 stringset, u8 *data)
2573 {
2574 int i;
2575
2576 switch (stringset) {
2577 case ETH_SS_STATS:
2578 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2579 memcpy(data + i * ETH_GSTRING_LEN,
2580 bcm_enetsw_gstrings_stats[i].stat_string,
2581 ETH_GSTRING_LEN);
2582 }
2583 break;
2584 }
2585 }
2586
2587 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2588 int string_set)
2589 {
2590 switch (string_set) {
2591 case ETH_SS_STATS:
2592 return BCM_ENETSW_STATS_LEN;
2593 default:
2594 return -EINVAL;
2595 }
2596 }
2597
2598 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2599 struct ethtool_drvinfo *drvinfo)
2600 {
2601 strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2602 strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2603 strncpy(drvinfo->fw_version, "N/A", 32);
2604 strncpy(drvinfo->bus_info, "bcm63xx", 32);
2605 drvinfo->n_stats = BCM_ENETSW_STATS_LEN;
2606 }
2607
2608 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2609 struct ethtool_stats *stats,
2610 u64 *data)
2611 {
2612 struct bcm_enet_priv *priv;
2613 int i;
2614
2615 priv = netdev_priv(netdev);
2616
2617 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2618 const struct bcm_enet_stats *s;
2619 u32 lo, hi;
2620 char *p;
2621 int reg;
2622
2623 s = &bcm_enetsw_gstrings_stats[i];
2624
2625 reg = s->mib_reg;
2626 if (reg == -1)
2627 continue;
2628
2629 lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2630 p = (char *)priv + s->stat_offset;
2631
2632 if (s->sizeof_stat == sizeof(u64)) {
2633 hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2634 *(u64 *)p = ((u64)hi << 32 | lo);
2635 } else {
2636 *(u32 *)p = lo;
2637 }
2638 }
2639
2640 for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2641 const struct bcm_enet_stats *s;
2642 char *p;
2643
2644 s = &bcm_enetsw_gstrings_stats[i];
2645
2646 if (s->mib_reg == -1)
2647 p = (char *)&netdev->stats + s->stat_offset;
2648 else
2649 p = (char *)priv + s->stat_offset;
2650
2651 data[i] = (s->sizeof_stat == sizeof(u64)) ?
2652 *(u64 *)p : *(u32 *)p;
2653 }
2654 }
2655
2656 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2657 struct ethtool_ringparam *ering)
2658 {
2659 struct bcm_enet_priv *priv;
2660
2661 priv = netdev_priv(dev);
2662
2663 /* rx/tx ring is actually only limited by memory */
2664 ering->rx_max_pending = 8192;
2665 ering->tx_max_pending = 8192;
2666 ering->rx_mini_max_pending = 0;
2667 ering->rx_jumbo_max_pending = 0;
2668 ering->rx_pending = priv->rx_ring_size;
2669 ering->tx_pending = priv->tx_ring_size;
2670 }
2671
2672 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2673 struct ethtool_ringparam *ering)
2674 {
2675 struct bcm_enet_priv *priv;
2676 int was_running;
2677
2678 priv = netdev_priv(dev);
2679
2680 was_running = 0;
2681 if (netif_running(dev)) {
2682 bcm_enetsw_stop(dev);
2683 was_running = 1;
2684 }
2685
2686 priv->rx_ring_size = ering->rx_pending;
2687 priv->tx_ring_size = ering->tx_pending;
2688
2689 if (was_running) {
2690 int err;
2691
2692 err = bcm_enetsw_open(dev);
2693 if (err)
2694 dev_close(dev);
2695 }
2696 return 0;
2697 }
2698
2699 static struct ethtool_ops bcm_enetsw_ethtool_ops = {
2700 .get_strings = bcm_enetsw_get_strings,
2701 .get_sset_count = bcm_enetsw_get_sset_count,
2702 .get_ethtool_stats = bcm_enetsw_get_ethtool_stats,
2703 .get_drvinfo = bcm_enetsw_get_drvinfo,
2704 .get_ringparam = bcm_enetsw_get_ringparam,
2705 .set_ringparam = bcm_enetsw_set_ringparam,
2706 };
2707
2708 /* allocate netdevice, request register memory and register device. */
2709 static int bcm_enetsw_probe(struct platform_device *pdev)
2710 {
2711 struct bcm_enet_priv *priv;
2712 struct net_device *dev;
2713 struct bcm63xx_enetsw_platform_data *pd;
2714 struct resource *res_mem;
2715 int ret, irq_rx, irq_tx;
2716
2717 /* stop if shared driver failed, assume driver->probe will be
2718 * called in the same order we register devices (correct ?)
2719 */
2720 if (!bcm_enet_shared_base[0])
2721 return -ENODEV;
2722
2723 res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2724 irq_rx = platform_get_irq(pdev, 0);
2725 irq_tx = platform_get_irq(pdev, 1);
2726 if (!res_mem || irq_rx < 0)
2727 return -ENODEV;
2728
2729 ret = 0;
2730 dev = alloc_etherdev(sizeof(*priv));
2731 if (!dev)
2732 return -ENOMEM;
2733 priv = netdev_priv(dev);
2734 memset(priv, 0, sizeof(*priv));
2735
2736 /* initialize default and fetch platform data */
2737 priv->enet_is_sw = true;
2738 priv->irq_rx = irq_rx;
2739 priv->irq_tx = irq_tx;
2740 priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2741 priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2742 priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2743
2744 pd = dev_get_platdata(&pdev->dev);
2745 if (pd) {
2746 memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2747 memcpy(priv->used_ports, pd->used_ports,
2748 sizeof(pd->used_ports));
2749 priv->num_ports = pd->num_ports;
2750 priv->dma_has_sram = pd->dma_has_sram;
2751 priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2752 priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2753 priv->dma_chan_width = pd->dma_chan_width;
2754 }
2755
2756 ret = compute_hw_mtu(priv, dev->mtu);
2757 if (ret)
2758 goto out;
2759
2760 if (!request_mem_region(res_mem->start, resource_size(res_mem),
2761 "bcm63xx_enetsw")) {
2762 ret = -EBUSY;
2763 goto out;
2764 }
2765
2766 priv->base = ioremap(res_mem->start, resource_size(res_mem));
2767 if (priv->base == NULL) {
2768 ret = -ENOMEM;
2769 goto out_release_mem;
2770 }
2771
2772 priv->mac_clk = clk_get(&pdev->dev, "enetsw");
2773 if (IS_ERR(priv->mac_clk)) {
2774 ret = PTR_ERR(priv->mac_clk);
2775 goto out_unmap;
2776 }
2777 clk_enable(priv->mac_clk);
2778
2779 priv->rx_chan = 0;
2780 priv->tx_chan = 1;
2781 spin_lock_init(&priv->rx_lock);
2782
2783 /* init rx timeout (used for oom) */
2784 init_timer(&priv->rx_timeout);
2785 priv->rx_timeout.function = bcm_enet_refill_rx_timer;
2786 priv->rx_timeout.data = (unsigned long)dev;
2787
2788 /* register netdevice */
2789 dev->netdev_ops = &bcm_enetsw_ops;
2790 netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2791 dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2792 SET_NETDEV_DEV(dev, &pdev->dev);
2793
2794 spin_lock_init(&priv->enetsw_mdio_lock);
2795
2796 ret = register_netdev(dev);
2797 if (ret)
2798 goto out_put_clk;
2799
2800 netif_carrier_off(dev);
2801 platform_set_drvdata(pdev, dev);
2802 priv->pdev = pdev;
2803 priv->net_dev = dev;
2804
2805 return 0;
2806
2807 out_put_clk:
2808 clk_put(priv->mac_clk);
2809
2810 out_unmap:
2811 iounmap(priv->base);
2812
2813 out_release_mem:
2814 release_mem_region(res_mem->start, resource_size(res_mem));
2815 out:
2816 free_netdev(dev);
2817 return ret;
2818 }
2819
2820
2821 /* exit func, stops hardware and unregisters netdevice */
2822 static int bcm_enetsw_remove(struct platform_device *pdev)
2823 {
2824 struct bcm_enet_priv *priv;
2825 struct net_device *dev;
2826 struct resource *res;
2827
2828 /* stop netdevice */
2829 dev = platform_get_drvdata(pdev);
2830 priv = netdev_priv(dev);
2831 unregister_netdev(dev);
2832
2833 /* release device resources */
2834 iounmap(priv->base);
2835 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2836 release_mem_region(res->start, resource_size(res));
2837
2838 free_netdev(dev);
2839 return 0;
2840 }
2841
2842 struct platform_driver bcm63xx_enetsw_driver = {
2843 .probe = bcm_enetsw_probe,
2844 .remove = bcm_enetsw_remove,
2845 .driver = {
2846 .name = "bcm63xx_enetsw",
2847 .owner = THIS_MODULE,
2848 },
2849 };
2850
2851 /* reserve & remap memory space shared between all macs */
2852 static int bcm_enet_shared_probe(struct platform_device *pdev)
2853 {
2854 struct resource *res;
2855 void __iomem *p[3];
2856 unsigned int i;
2857
2858 memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2859
2860 for (i = 0; i < 3; i++) {
2861 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2862 p[i] = devm_ioremap_resource(&pdev->dev, res);
2863 if (IS_ERR(p[i]))
2864 return PTR_ERR(p[i]);
2865 }
2866
2867 memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2868
2869 return 0;
2870 }
2871
2872 static int bcm_enet_shared_remove(struct platform_device *pdev)
2873 {
2874 return 0;
2875 }
2876
2877 /* this "shared" driver is needed because both macs share a single
2878 * address space
2879 */
2880 struct platform_driver bcm63xx_enet_shared_driver = {
2881 .probe = bcm_enet_shared_probe,
2882 .remove = bcm_enet_shared_remove,
2883 .driver = {
2884 .name = "bcm63xx_enet_shared",
2885 .owner = THIS_MODULE,
2886 },
2887 };
2888
2889 /* entry point */
2890 static int __init bcm_enet_init(void)
2891 {
2892 int ret;
2893
2894 ret = platform_driver_register(&bcm63xx_enet_shared_driver);
2895 if (ret)
2896 return ret;
2897
2898 ret = platform_driver_register(&bcm63xx_enet_driver);
2899 if (ret)
2900 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2901
2902 ret = platform_driver_register(&bcm63xx_enetsw_driver);
2903 if (ret) {
2904 platform_driver_unregister(&bcm63xx_enet_driver);
2905 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2906 }
2907
2908 return ret;
2909 }
2910
2911 static void __exit bcm_enet_exit(void)
2912 {
2913 platform_driver_unregister(&bcm63xx_enet_driver);
2914 platform_driver_unregister(&bcm63xx_enetsw_driver);
2915 platform_driver_unregister(&bcm63xx_enet_shared_driver);
2916 }
2917
2918
2919 module_init(bcm_enet_init);
2920 module_exit(bcm_enet_exit);
2921
2922 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2923 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2924 MODULE_LICENSE("GPL");
This page took 0.099144 seconds and 5 git commands to generate.