net: systemport: log RX buffer allocation and RX/TX DMA failures
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bcmsysport.c
1 /*
2 * Broadcom BCM7xxx System Port Ethernet MAC driver
3 *
4 * Copyright (C) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/netdevice.h>
18 #include <linux/etherdevice.h>
19 #include <linux/platform_device.h>
20 #include <linux/of.h>
21 #include <linux/of_net.h>
22 #include <linux/of_mdio.h>
23 #include <linux/phy.h>
24 #include <linux/phy_fixed.h>
25 #include <net/ip.h>
26 #include <net/ipv6.h>
27
28 #include "bcmsysport.h"
29
30 /* I/O accessors register helpers */
31 #define BCM_SYSPORT_IO_MACRO(name, offset) \
32 static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off) \
33 { \
34 u32 reg = __raw_readl(priv->base + offset + off); \
35 return reg; \
36 } \
37 static inline void name##_writel(struct bcm_sysport_priv *priv, \
38 u32 val, u32 off) \
39 { \
40 __raw_writel(val, priv->base + offset + off); \
41 } \
42
43 BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET);
44 BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET);
45 BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET);
46 BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET);
47 BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET);
48 BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET);
49 BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET);
50 BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET);
51 BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET);
52 BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET);
53
54 /* L2-interrupt masking/unmasking helpers, does automatic saving of the applied
55 * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths.
56 */
57 #define BCM_SYSPORT_INTR_L2(which) \
58 static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \
59 u32 mask) \
60 { \
61 intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR); \
62 priv->irq##which##_mask &= ~(mask); \
63 } \
64 static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \
65 u32 mask) \
66 { \
67 intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET); \
68 priv->irq##which##_mask |= (mask); \
69 } \
70
71 BCM_SYSPORT_INTR_L2(0)
72 BCM_SYSPORT_INTR_L2(1)
73
74 /* Register accesses to GISB/RBUS registers are expensive (few hundred
75 * nanoseconds), so keep the check for 64-bits explicit here to save
76 * one register write per-packet on 32-bits platforms.
77 */
78 static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv,
79 void __iomem *d,
80 dma_addr_t addr)
81 {
82 #ifdef CONFIG_PHYS_ADDR_T_64BIT
83 __raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK,
84 d + DESC_ADDR_HI_STATUS_LEN);
85 #endif
86 __raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO);
87 }
88
89 static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv,
90 struct dma_desc *desc,
91 unsigned int port)
92 {
93 /* Ports are latched, so write upper address first */
94 tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port));
95 tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port));
96 }
97
98 /* Ethtool operations */
99 static int bcm_sysport_set_settings(struct net_device *dev,
100 struct ethtool_cmd *cmd)
101 {
102 struct bcm_sysport_priv *priv = netdev_priv(dev);
103
104 if (!netif_running(dev))
105 return -EINVAL;
106
107 return phy_ethtool_sset(priv->phydev, cmd);
108 }
109
110 static int bcm_sysport_get_settings(struct net_device *dev,
111 struct ethtool_cmd *cmd)
112 {
113 struct bcm_sysport_priv *priv = netdev_priv(dev);
114
115 if (!netif_running(dev))
116 return -EINVAL;
117
118 return phy_ethtool_gset(priv->phydev, cmd);
119 }
120
121 static int bcm_sysport_set_rx_csum(struct net_device *dev,
122 netdev_features_t wanted)
123 {
124 struct bcm_sysport_priv *priv = netdev_priv(dev);
125 u32 reg;
126
127 priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM);
128 reg = rxchk_readl(priv, RXCHK_CONTROL);
129 if (priv->rx_chk_en)
130 reg |= RXCHK_EN;
131 else
132 reg &= ~RXCHK_EN;
133
134 /* If UniMAC forwards CRC, we need to skip over it to get
135 * a valid CHK bit to be set in the per-packet status word
136 */
137 if (priv->rx_chk_en && priv->crc_fwd)
138 reg |= RXCHK_SKIP_FCS;
139 else
140 reg &= ~RXCHK_SKIP_FCS;
141
142 /* If Broadcom tags are enabled (e.g: using a switch), make
143 * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom
144 * tag after the Ethernet MAC Source Address.
145 */
146 if (netdev_uses_dsa(dev))
147 reg |= RXCHK_BRCM_TAG_EN;
148 else
149 reg &= ~RXCHK_BRCM_TAG_EN;
150
151 rxchk_writel(priv, reg, RXCHK_CONTROL);
152
153 return 0;
154 }
155
156 static int bcm_sysport_set_tx_csum(struct net_device *dev,
157 netdev_features_t wanted)
158 {
159 struct bcm_sysport_priv *priv = netdev_priv(dev);
160 u32 reg;
161
162 /* Hardware transmit checksum requires us to enable the Transmit status
163 * block prepended to the packet contents
164 */
165 priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
166 reg = tdma_readl(priv, TDMA_CONTROL);
167 if (priv->tsb_en)
168 reg |= TSB_EN;
169 else
170 reg &= ~TSB_EN;
171 tdma_writel(priv, reg, TDMA_CONTROL);
172
173 return 0;
174 }
175
176 static int bcm_sysport_set_features(struct net_device *dev,
177 netdev_features_t features)
178 {
179 netdev_features_t changed = features ^ dev->features;
180 netdev_features_t wanted = dev->wanted_features;
181 int ret = 0;
182
183 if (changed & NETIF_F_RXCSUM)
184 ret = bcm_sysport_set_rx_csum(dev, wanted);
185 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
186 ret = bcm_sysport_set_tx_csum(dev, wanted);
187
188 return ret;
189 }
190
191 /* Hardware counters must be kept in sync because the order/offset
192 * is important here (order in structure declaration = order in hardware)
193 */
194 static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = {
195 /* general stats */
196 STAT_NETDEV(rx_packets),
197 STAT_NETDEV(tx_packets),
198 STAT_NETDEV(rx_bytes),
199 STAT_NETDEV(tx_bytes),
200 STAT_NETDEV(rx_errors),
201 STAT_NETDEV(tx_errors),
202 STAT_NETDEV(rx_dropped),
203 STAT_NETDEV(tx_dropped),
204 STAT_NETDEV(multicast),
205 /* UniMAC RSV counters */
206 STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
207 STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
208 STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
209 STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
210 STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
211 STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
212 STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
213 STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
214 STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
215 STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
216 STAT_MIB_RX("rx_pkts", mib.rx.pkt),
217 STAT_MIB_RX("rx_bytes", mib.rx.bytes),
218 STAT_MIB_RX("rx_multicast", mib.rx.mca),
219 STAT_MIB_RX("rx_broadcast", mib.rx.bca),
220 STAT_MIB_RX("rx_fcs", mib.rx.fcs),
221 STAT_MIB_RX("rx_control", mib.rx.cf),
222 STAT_MIB_RX("rx_pause", mib.rx.pf),
223 STAT_MIB_RX("rx_unknown", mib.rx.uo),
224 STAT_MIB_RX("rx_align", mib.rx.aln),
225 STAT_MIB_RX("rx_outrange", mib.rx.flr),
226 STAT_MIB_RX("rx_code", mib.rx.cde),
227 STAT_MIB_RX("rx_carrier", mib.rx.fcr),
228 STAT_MIB_RX("rx_oversize", mib.rx.ovr),
229 STAT_MIB_RX("rx_jabber", mib.rx.jbr),
230 STAT_MIB_RX("rx_mtu_err", mib.rx.mtue),
231 STAT_MIB_RX("rx_good_pkts", mib.rx.pok),
232 STAT_MIB_RX("rx_unicast", mib.rx.uc),
233 STAT_MIB_RX("rx_ppp", mib.rx.ppp),
234 STAT_MIB_RX("rx_crc", mib.rx.rcrc),
235 /* UniMAC TSV counters */
236 STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
237 STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
238 STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
239 STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
240 STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
241 STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
242 STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
243 STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
244 STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
245 STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
246 STAT_MIB_TX("tx_pkts", mib.tx.pkts),
247 STAT_MIB_TX("tx_multicast", mib.tx.mca),
248 STAT_MIB_TX("tx_broadcast", mib.tx.bca),
249 STAT_MIB_TX("tx_pause", mib.tx.pf),
250 STAT_MIB_TX("tx_control", mib.tx.cf),
251 STAT_MIB_TX("tx_fcs_err", mib.tx.fcs),
252 STAT_MIB_TX("tx_oversize", mib.tx.ovr),
253 STAT_MIB_TX("tx_defer", mib.tx.drf),
254 STAT_MIB_TX("tx_excess_defer", mib.tx.edf),
255 STAT_MIB_TX("tx_single_col", mib.tx.scl),
256 STAT_MIB_TX("tx_multi_col", mib.tx.mcl),
257 STAT_MIB_TX("tx_late_col", mib.tx.lcl),
258 STAT_MIB_TX("tx_excess_col", mib.tx.ecl),
259 STAT_MIB_TX("tx_frags", mib.tx.frg),
260 STAT_MIB_TX("tx_total_col", mib.tx.ncl),
261 STAT_MIB_TX("tx_jabber", mib.tx.jbr),
262 STAT_MIB_TX("tx_bytes", mib.tx.bytes),
263 STAT_MIB_TX("tx_good_pkts", mib.tx.pok),
264 STAT_MIB_TX("tx_unicast", mib.tx.uc),
265 /* UniMAC RUNT counters */
266 STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
267 STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
268 STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
269 STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
270 /* RXCHK misc statistics */
271 STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR),
272 STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc,
273 RXCHK_OTHER_DISC_CNTR),
274 /* RBUF misc statistics */
275 STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR),
276 STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR),
277 STAT_MIB_RX("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
278 STAT_MIB_RX("rx_dma_failed", mib.rx_dma_failed),
279 STAT_MIB_TX("tx_dma_failed", mib.tx_dma_failed),
280 };
281
282 #define BCM_SYSPORT_STATS_LEN ARRAY_SIZE(bcm_sysport_gstrings_stats)
283
284 static void bcm_sysport_get_drvinfo(struct net_device *dev,
285 struct ethtool_drvinfo *info)
286 {
287 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
288 strlcpy(info->version, "0.1", sizeof(info->version));
289 strlcpy(info->bus_info, "platform", sizeof(info->bus_info));
290 info->n_stats = BCM_SYSPORT_STATS_LEN;
291 }
292
293 static u32 bcm_sysport_get_msglvl(struct net_device *dev)
294 {
295 struct bcm_sysport_priv *priv = netdev_priv(dev);
296
297 return priv->msg_enable;
298 }
299
300 static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable)
301 {
302 struct bcm_sysport_priv *priv = netdev_priv(dev);
303
304 priv->msg_enable = enable;
305 }
306
307 static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set)
308 {
309 switch (string_set) {
310 case ETH_SS_STATS:
311 return BCM_SYSPORT_STATS_LEN;
312 default:
313 return -EOPNOTSUPP;
314 }
315 }
316
317 static void bcm_sysport_get_strings(struct net_device *dev,
318 u32 stringset, u8 *data)
319 {
320 int i;
321
322 switch (stringset) {
323 case ETH_SS_STATS:
324 for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
325 memcpy(data + i * ETH_GSTRING_LEN,
326 bcm_sysport_gstrings_stats[i].stat_string,
327 ETH_GSTRING_LEN);
328 }
329 break;
330 default:
331 break;
332 }
333 }
334
335 static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv)
336 {
337 int i, j = 0;
338
339 for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
340 const struct bcm_sysport_stats *s;
341 u8 offset = 0;
342 u32 val = 0;
343 char *p;
344
345 s = &bcm_sysport_gstrings_stats[i];
346 switch (s->type) {
347 case BCM_SYSPORT_STAT_NETDEV:
348 continue;
349 case BCM_SYSPORT_STAT_MIB_RX:
350 case BCM_SYSPORT_STAT_MIB_TX:
351 case BCM_SYSPORT_STAT_RUNT:
352 if (s->type != BCM_SYSPORT_STAT_MIB_RX)
353 offset = UMAC_MIB_STAT_OFFSET;
354 val = umac_readl(priv, UMAC_MIB_START + j + offset);
355 break;
356 case BCM_SYSPORT_STAT_RXCHK:
357 val = rxchk_readl(priv, s->reg_offset);
358 if (val == ~0)
359 rxchk_writel(priv, 0, s->reg_offset);
360 break;
361 case BCM_SYSPORT_STAT_RBUF:
362 val = rbuf_readl(priv, s->reg_offset);
363 if (val == ~0)
364 rbuf_writel(priv, 0, s->reg_offset);
365 break;
366 }
367
368 j += s->stat_sizeof;
369 p = (char *)priv + s->stat_offset;
370 *(u32 *)p = val;
371 }
372
373 netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n");
374 }
375
376 static void bcm_sysport_get_stats(struct net_device *dev,
377 struct ethtool_stats *stats, u64 *data)
378 {
379 struct bcm_sysport_priv *priv = netdev_priv(dev);
380 int i;
381
382 if (netif_running(dev))
383 bcm_sysport_update_mib_counters(priv);
384
385 for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) {
386 const struct bcm_sysport_stats *s;
387 char *p;
388
389 s = &bcm_sysport_gstrings_stats[i];
390 if (s->type == BCM_SYSPORT_STAT_NETDEV)
391 p = (char *)&dev->stats;
392 else
393 p = (char *)priv;
394 p += s->stat_offset;
395 data[i] = *(u32 *)p;
396 }
397 }
398
399 static void bcm_sysport_get_wol(struct net_device *dev,
400 struct ethtool_wolinfo *wol)
401 {
402 struct bcm_sysport_priv *priv = netdev_priv(dev);
403 u32 reg;
404
405 wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE;
406 wol->wolopts = priv->wolopts;
407
408 if (!(priv->wolopts & WAKE_MAGICSECURE))
409 return;
410
411 /* Return the programmed SecureOn password */
412 reg = umac_readl(priv, UMAC_PSW_MS);
413 put_unaligned_be16(reg, &wol->sopass[0]);
414 reg = umac_readl(priv, UMAC_PSW_LS);
415 put_unaligned_be32(reg, &wol->sopass[2]);
416 }
417
418 static int bcm_sysport_set_wol(struct net_device *dev,
419 struct ethtool_wolinfo *wol)
420 {
421 struct bcm_sysport_priv *priv = netdev_priv(dev);
422 struct device *kdev = &priv->pdev->dev;
423 u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE;
424
425 if (!device_can_wakeup(kdev))
426 return -ENOTSUPP;
427
428 if (wol->wolopts & ~supported)
429 return -EINVAL;
430
431 /* Program the SecureOn password */
432 if (wol->wolopts & WAKE_MAGICSECURE) {
433 umac_writel(priv, get_unaligned_be16(&wol->sopass[0]),
434 UMAC_PSW_MS);
435 umac_writel(priv, get_unaligned_be32(&wol->sopass[2]),
436 UMAC_PSW_LS);
437 }
438
439 /* Flag the device and relevant IRQ as wakeup capable */
440 if (wol->wolopts) {
441 device_set_wakeup_enable(kdev, 1);
442 if (priv->wol_irq_disabled)
443 enable_irq_wake(priv->wol_irq);
444 priv->wol_irq_disabled = 0;
445 } else {
446 device_set_wakeup_enable(kdev, 0);
447 /* Avoid unbalanced disable_irq_wake calls */
448 if (!priv->wol_irq_disabled)
449 disable_irq_wake(priv->wol_irq);
450 priv->wol_irq_disabled = 1;
451 }
452
453 priv->wolopts = wol->wolopts;
454
455 return 0;
456 }
457
458 static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb)
459 {
460 dev_kfree_skb_any(cb->skb);
461 cb->skb = NULL;
462 dma_unmap_addr_set(cb, dma_addr, 0);
463 }
464
465 static int bcm_sysport_rx_refill(struct bcm_sysport_priv *priv,
466 struct bcm_sysport_cb *cb)
467 {
468 struct device *kdev = &priv->pdev->dev;
469 struct net_device *ndev = priv->netdev;
470 dma_addr_t mapping;
471 int ret;
472
473 cb->skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH);
474 if (!cb->skb) {
475 netif_err(priv, rx_err, ndev, "SKB alloc failed\n");
476 return -ENOMEM;
477 }
478
479 mapping = dma_map_single(kdev, cb->skb->data,
480 RX_BUF_LENGTH, DMA_FROM_DEVICE);
481 ret = dma_mapping_error(kdev, mapping);
482 if (ret) {
483 priv->mib.rx_dma_failed++;
484 bcm_sysport_free_cb(cb);
485 netif_err(priv, rx_err, ndev, "DMA mapping failure\n");
486 return ret;
487 }
488
489 dma_unmap_addr_set(cb, dma_addr, mapping);
490 dma_desc_set_addr(priv, priv->rx_bd_assign_ptr, mapping);
491
492 priv->rx_bd_assign_index++;
493 priv->rx_bd_assign_index &= (priv->num_rx_bds - 1);
494 priv->rx_bd_assign_ptr = priv->rx_bds +
495 (priv->rx_bd_assign_index * DESC_SIZE);
496
497 netif_dbg(priv, rx_status, ndev, "RX refill\n");
498
499 return 0;
500 }
501
502 static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv)
503 {
504 struct bcm_sysport_cb *cb;
505 int ret = 0;
506 unsigned int i;
507
508 for (i = 0; i < priv->num_rx_bds; i++) {
509 cb = &priv->rx_cbs[priv->rx_bd_assign_index];
510 if (cb->skb)
511 continue;
512
513 ret = bcm_sysport_rx_refill(priv, cb);
514 if (ret)
515 break;
516 }
517
518 return ret;
519 }
520
521 /* Poll the hardware for up to budget packets to process */
522 static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv,
523 unsigned int budget)
524 {
525 struct device *kdev = &priv->pdev->dev;
526 struct net_device *ndev = priv->netdev;
527 unsigned int processed = 0, to_process;
528 struct bcm_sysport_cb *cb;
529 struct sk_buff *skb;
530 unsigned int p_index;
531 u16 len, status;
532 struct bcm_rsb *rsb;
533 int ret;
534
535 /* Determine how much we should process since last call */
536 p_index = rdma_readl(priv, RDMA_PROD_INDEX);
537 p_index &= RDMA_PROD_INDEX_MASK;
538
539 if (p_index < priv->rx_c_index)
540 to_process = (RDMA_CONS_INDEX_MASK + 1) -
541 priv->rx_c_index + p_index;
542 else
543 to_process = p_index - priv->rx_c_index;
544
545 netif_dbg(priv, rx_status, ndev,
546 "p_index=%d rx_c_index=%d to_process=%d\n",
547 p_index, priv->rx_c_index, to_process);
548
549 while ((processed < to_process) && (processed < budget)) {
550 cb = &priv->rx_cbs[priv->rx_read_ptr];
551 skb = cb->skb;
552
553 processed++;
554 priv->rx_read_ptr++;
555
556 if (priv->rx_read_ptr == priv->num_rx_bds)
557 priv->rx_read_ptr = 0;
558
559 /* We do not have a backing SKB, so we do not a corresponding
560 * DMA mapping for this incoming packet since
561 * bcm_sysport_rx_refill always either has both skb and mapping
562 * or none.
563 */
564 if (unlikely(!skb)) {
565 netif_err(priv, rx_err, ndev, "out of memory!\n");
566 ndev->stats.rx_dropped++;
567 ndev->stats.rx_errors++;
568 goto refill;
569 }
570
571 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
572 RX_BUF_LENGTH, DMA_FROM_DEVICE);
573
574 /* Extract the Receive Status Block prepended */
575 rsb = (struct bcm_rsb *)skb->data;
576 len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK;
577 status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) &
578 DESC_STATUS_MASK;
579
580 netif_dbg(priv, rx_status, ndev,
581 "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n",
582 p_index, priv->rx_c_index, priv->rx_read_ptr,
583 len, status);
584
585 if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) {
586 netif_err(priv, rx_status, ndev, "fragmented packet!\n");
587 ndev->stats.rx_dropped++;
588 ndev->stats.rx_errors++;
589 bcm_sysport_free_cb(cb);
590 goto refill;
591 }
592
593 if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) {
594 netif_err(priv, rx_err, ndev, "error packet\n");
595 if (status & RX_STATUS_OVFLOW)
596 ndev->stats.rx_over_errors++;
597 ndev->stats.rx_dropped++;
598 ndev->stats.rx_errors++;
599 bcm_sysport_free_cb(cb);
600 goto refill;
601 }
602
603 skb_put(skb, len);
604
605 /* Hardware validated our checksum */
606 if (likely(status & DESC_L4_CSUM))
607 skb->ip_summed = CHECKSUM_UNNECESSARY;
608
609 /* Hardware pre-pends packets with 2bytes before Ethernet
610 * header plus we have the Receive Status Block, strip off all
611 * of this from the SKB.
612 */
613 skb_pull(skb, sizeof(*rsb) + 2);
614 len -= (sizeof(*rsb) + 2);
615
616 /* UniMAC may forward CRC */
617 if (priv->crc_fwd) {
618 skb_trim(skb, len - ETH_FCS_LEN);
619 len -= ETH_FCS_LEN;
620 }
621
622 skb->protocol = eth_type_trans(skb, ndev);
623 ndev->stats.rx_packets++;
624 ndev->stats.rx_bytes += len;
625
626 napi_gro_receive(&priv->napi, skb);
627 refill:
628 ret = bcm_sysport_rx_refill(priv, cb);
629 if (ret)
630 priv->mib.alloc_rx_buff_failed++;
631 }
632
633 return processed;
634 }
635
636 static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv,
637 struct bcm_sysport_cb *cb,
638 unsigned int *bytes_compl,
639 unsigned int *pkts_compl)
640 {
641 struct device *kdev = &priv->pdev->dev;
642 struct net_device *ndev = priv->netdev;
643
644 if (cb->skb) {
645 ndev->stats.tx_bytes += cb->skb->len;
646 *bytes_compl += cb->skb->len;
647 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
648 dma_unmap_len(cb, dma_len),
649 DMA_TO_DEVICE);
650 ndev->stats.tx_packets++;
651 (*pkts_compl)++;
652 bcm_sysport_free_cb(cb);
653 /* SKB fragment */
654 } else if (dma_unmap_addr(cb, dma_addr)) {
655 ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len);
656 dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr),
657 dma_unmap_len(cb, dma_len), DMA_TO_DEVICE);
658 dma_unmap_addr_set(cb, dma_addr, 0);
659 }
660 }
661
662 /* Reclaim queued SKBs for transmission completion, lockless version */
663 static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
664 struct bcm_sysport_tx_ring *ring)
665 {
666 struct net_device *ndev = priv->netdev;
667 unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs;
668 unsigned int pkts_compl = 0, bytes_compl = 0;
669 struct bcm_sysport_cb *cb;
670 struct netdev_queue *txq;
671 u32 hw_ind;
672
673 txq = netdev_get_tx_queue(ndev, ring->index);
674
675 /* Compute how many descriptors have been processed since last call */
676 hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index));
677 c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK;
678 ring->p_index = (hw_ind & RING_PROD_INDEX_MASK);
679
680 last_c_index = ring->c_index;
681 num_tx_cbs = ring->size;
682
683 c_index &= (num_tx_cbs - 1);
684
685 if (c_index >= last_c_index)
686 last_tx_cn = c_index - last_c_index;
687 else
688 last_tx_cn = num_tx_cbs - last_c_index + c_index;
689
690 netif_dbg(priv, tx_done, ndev,
691 "ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n",
692 ring->index, c_index, last_tx_cn, last_c_index);
693
694 while (last_tx_cn-- > 0) {
695 cb = ring->cbs + last_c_index;
696 bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl);
697
698 ring->desc_count++;
699 last_c_index++;
700 last_c_index &= (num_tx_cbs - 1);
701 }
702
703 ring->c_index = c_index;
704
705 if (netif_tx_queue_stopped(txq) && pkts_compl)
706 netif_tx_wake_queue(txq);
707
708 netif_dbg(priv, tx_done, ndev,
709 "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n",
710 ring->index, ring->c_index, pkts_compl, bytes_compl);
711
712 return pkts_compl;
713 }
714
715 /* Locked version of the per-ring TX reclaim routine */
716 static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv,
717 struct bcm_sysport_tx_ring *ring)
718 {
719 unsigned int released;
720 unsigned long flags;
721
722 spin_lock_irqsave(&ring->lock, flags);
723 released = __bcm_sysport_tx_reclaim(priv, ring);
724 spin_unlock_irqrestore(&ring->lock, flags);
725
726 return released;
727 }
728
729 static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget)
730 {
731 struct bcm_sysport_tx_ring *ring =
732 container_of(napi, struct bcm_sysport_tx_ring, napi);
733 unsigned int work_done = 0;
734
735 work_done = bcm_sysport_tx_reclaim(ring->priv, ring);
736
737 if (work_done == 0) {
738 napi_complete(napi);
739 /* re-enable TX interrupt */
740 intrl2_1_mask_clear(ring->priv, BIT(ring->index));
741
742 return 0;
743 }
744
745 return budget;
746 }
747
748 static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv)
749 {
750 unsigned int q;
751
752 for (q = 0; q < priv->netdev->num_tx_queues; q++)
753 bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]);
754 }
755
756 static int bcm_sysport_poll(struct napi_struct *napi, int budget)
757 {
758 struct bcm_sysport_priv *priv =
759 container_of(napi, struct bcm_sysport_priv, napi);
760 unsigned int work_done = 0;
761
762 work_done = bcm_sysport_desc_rx(priv, budget);
763
764 priv->rx_c_index += work_done;
765 priv->rx_c_index &= RDMA_CONS_INDEX_MASK;
766 rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX);
767
768 if (work_done < budget) {
769 napi_complete(napi);
770 /* re-enable RX interrupts */
771 intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE);
772 }
773
774 return work_done;
775 }
776
777 static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv)
778 {
779 u32 reg;
780
781 /* Stop monitoring MPD interrupt */
782 intrl2_0_mask_set(priv, INTRL2_0_MPD);
783
784 /* Clear the MagicPacket detection logic */
785 reg = umac_readl(priv, UMAC_MPD_CTRL);
786 reg &= ~MPD_EN;
787 umac_writel(priv, reg, UMAC_MPD_CTRL);
788
789 netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n");
790 }
791
792 /* RX and misc interrupt routine */
793 static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id)
794 {
795 struct net_device *dev = dev_id;
796 struct bcm_sysport_priv *priv = netdev_priv(dev);
797
798 priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) &
799 ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
800 intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
801
802 if (unlikely(priv->irq0_stat == 0)) {
803 netdev_warn(priv->netdev, "spurious RX interrupt\n");
804 return IRQ_NONE;
805 }
806
807 if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) {
808 if (likely(napi_schedule_prep(&priv->napi))) {
809 /* disable RX interrupts */
810 intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE);
811 __napi_schedule(&priv->napi);
812 }
813 }
814
815 /* TX ring is full, perform a full reclaim since we do not know
816 * which one would trigger this interrupt
817 */
818 if (priv->irq0_stat & INTRL2_0_TX_RING_FULL)
819 bcm_sysport_tx_reclaim_all(priv);
820
821 if (priv->irq0_stat & INTRL2_0_MPD) {
822 netdev_info(priv->netdev, "Wake-on-LAN interrupt!\n");
823 bcm_sysport_resume_from_wol(priv);
824 }
825
826 return IRQ_HANDLED;
827 }
828
829 /* TX interrupt service routine */
830 static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id)
831 {
832 struct net_device *dev = dev_id;
833 struct bcm_sysport_priv *priv = netdev_priv(dev);
834 struct bcm_sysport_tx_ring *txr;
835 unsigned int ring;
836
837 priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) &
838 ~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
839 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
840
841 if (unlikely(priv->irq1_stat == 0)) {
842 netdev_warn(priv->netdev, "spurious TX interrupt\n");
843 return IRQ_NONE;
844 }
845
846 for (ring = 0; ring < dev->num_tx_queues; ring++) {
847 if (!(priv->irq1_stat & BIT(ring)))
848 continue;
849
850 txr = &priv->tx_rings[ring];
851
852 if (likely(napi_schedule_prep(&txr->napi))) {
853 intrl2_1_mask_set(priv, BIT(ring));
854 __napi_schedule(&txr->napi);
855 }
856 }
857
858 return IRQ_HANDLED;
859 }
860
861 static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id)
862 {
863 struct bcm_sysport_priv *priv = dev_id;
864
865 pm_wakeup_event(&priv->pdev->dev, 0);
866
867 return IRQ_HANDLED;
868 }
869
870 static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb,
871 struct net_device *dev)
872 {
873 struct sk_buff *nskb;
874 struct bcm_tsb *tsb;
875 u32 csum_info;
876 u8 ip_proto;
877 u16 csum_start;
878 u16 ip_ver;
879
880 /* Re-allocate SKB if needed */
881 if (unlikely(skb_headroom(skb) < sizeof(*tsb))) {
882 nskb = skb_realloc_headroom(skb, sizeof(*tsb));
883 dev_kfree_skb(skb);
884 if (!nskb) {
885 dev->stats.tx_errors++;
886 dev->stats.tx_dropped++;
887 return NULL;
888 }
889 skb = nskb;
890 }
891
892 tsb = (struct bcm_tsb *)skb_push(skb, sizeof(*tsb));
893 /* Zero-out TSB by default */
894 memset(tsb, 0, sizeof(*tsb));
895
896 if (skb->ip_summed == CHECKSUM_PARTIAL) {
897 ip_ver = htons(skb->protocol);
898 switch (ip_ver) {
899 case ETH_P_IP:
900 ip_proto = ip_hdr(skb)->protocol;
901 break;
902 case ETH_P_IPV6:
903 ip_proto = ipv6_hdr(skb)->nexthdr;
904 break;
905 default:
906 return skb;
907 }
908
909 /* Get the checksum offset and the L4 (transport) offset */
910 csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb);
911 csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK;
912 csum_info |= (csum_start << L4_PTR_SHIFT);
913
914 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
915 csum_info |= L4_LENGTH_VALID;
916 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
917 csum_info |= L4_UDP;
918 } else {
919 csum_info = 0;
920 }
921
922 tsb->l4_ptr_dest_map = csum_info;
923 }
924
925 return skb;
926 }
927
928 static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb,
929 struct net_device *dev)
930 {
931 struct bcm_sysport_priv *priv = netdev_priv(dev);
932 struct device *kdev = &priv->pdev->dev;
933 struct bcm_sysport_tx_ring *ring;
934 struct bcm_sysport_cb *cb;
935 struct netdev_queue *txq;
936 struct dma_desc *desc;
937 unsigned int skb_len;
938 unsigned long flags;
939 dma_addr_t mapping;
940 u32 len_status;
941 u16 queue;
942 int ret;
943
944 queue = skb_get_queue_mapping(skb);
945 txq = netdev_get_tx_queue(dev, queue);
946 ring = &priv->tx_rings[queue];
947
948 /* lock against tx reclaim in BH context and TX ring full interrupt */
949 spin_lock_irqsave(&ring->lock, flags);
950 if (unlikely(ring->desc_count == 0)) {
951 netif_tx_stop_queue(txq);
952 netdev_err(dev, "queue %d awake and ring full!\n", queue);
953 ret = NETDEV_TX_BUSY;
954 goto out;
955 }
956
957 /* Insert TSB and checksum infos */
958 if (priv->tsb_en) {
959 skb = bcm_sysport_insert_tsb(skb, dev);
960 if (!skb) {
961 ret = NETDEV_TX_OK;
962 goto out;
963 }
964 }
965
966 /* The Ethernet switch we are interfaced with needs packets to be at
967 * least 64 bytes (including FCS) otherwise they will be discarded when
968 * they enter the switch port logic. When Broadcom tags are enabled, we
969 * need to make sure that packets are at least 68 bytes
970 * (including FCS and tag) because the length verification is done after
971 * the Broadcom tag is stripped off the ingress packet.
972 */
973 if (skb_padto(skb, ETH_ZLEN + ENET_BRCM_TAG_LEN)) {
974 ret = NETDEV_TX_OK;
975 goto out;
976 }
977
978 skb_len = skb->len < ETH_ZLEN + ENET_BRCM_TAG_LEN ?
979 ETH_ZLEN + ENET_BRCM_TAG_LEN : skb->len;
980
981 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
982 if (dma_mapping_error(kdev, mapping)) {
983 priv->mib.tx_dma_failed++;
984 netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n",
985 skb->data, skb_len);
986 ret = NETDEV_TX_OK;
987 goto out;
988 }
989
990 /* Remember the SKB for future freeing */
991 cb = &ring->cbs[ring->curr_desc];
992 cb->skb = skb;
993 dma_unmap_addr_set(cb, dma_addr, mapping);
994 dma_unmap_len_set(cb, dma_len, skb_len);
995
996 /* Fetch a descriptor entry from our pool */
997 desc = ring->desc_cpu;
998
999 desc->addr_lo = lower_32_bits(mapping);
1000 len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK;
1001 len_status |= (skb_len << DESC_LEN_SHIFT);
1002 len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) <<
1003 DESC_STATUS_SHIFT;
1004 if (skb->ip_summed == CHECKSUM_PARTIAL)
1005 len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT);
1006
1007 ring->curr_desc++;
1008 if (ring->curr_desc == ring->size)
1009 ring->curr_desc = 0;
1010 ring->desc_count--;
1011
1012 /* Ensure write completion of the descriptor status/length
1013 * in DRAM before the System Port WRITE_PORT register latches
1014 * the value
1015 */
1016 wmb();
1017 desc->addr_status_len = len_status;
1018 wmb();
1019
1020 /* Write this descriptor address to the RING write port */
1021 tdma_port_write_desc_addr(priv, desc, ring->index);
1022
1023 /* Check ring space and update SW control flow */
1024 if (ring->desc_count == 0)
1025 netif_tx_stop_queue(txq);
1026
1027 netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n",
1028 ring->index, ring->desc_count, ring->curr_desc);
1029
1030 ret = NETDEV_TX_OK;
1031 out:
1032 spin_unlock_irqrestore(&ring->lock, flags);
1033 return ret;
1034 }
1035
1036 static void bcm_sysport_tx_timeout(struct net_device *dev)
1037 {
1038 netdev_warn(dev, "transmit timeout!\n");
1039
1040 dev->trans_start = jiffies;
1041 dev->stats.tx_errors++;
1042
1043 netif_tx_wake_all_queues(dev);
1044 }
1045
1046 /* phylib adjust link callback */
1047 static void bcm_sysport_adj_link(struct net_device *dev)
1048 {
1049 struct bcm_sysport_priv *priv = netdev_priv(dev);
1050 struct phy_device *phydev = priv->phydev;
1051 unsigned int changed = 0;
1052 u32 cmd_bits = 0, reg;
1053
1054 if (priv->old_link != phydev->link) {
1055 changed = 1;
1056 priv->old_link = phydev->link;
1057 }
1058
1059 if (priv->old_duplex != phydev->duplex) {
1060 changed = 1;
1061 priv->old_duplex = phydev->duplex;
1062 }
1063
1064 switch (phydev->speed) {
1065 case SPEED_2500:
1066 cmd_bits = CMD_SPEED_2500;
1067 break;
1068 case SPEED_1000:
1069 cmd_bits = CMD_SPEED_1000;
1070 break;
1071 case SPEED_100:
1072 cmd_bits = CMD_SPEED_100;
1073 break;
1074 case SPEED_10:
1075 cmd_bits = CMD_SPEED_10;
1076 break;
1077 default:
1078 break;
1079 }
1080 cmd_bits <<= CMD_SPEED_SHIFT;
1081
1082 if (phydev->duplex == DUPLEX_HALF)
1083 cmd_bits |= CMD_HD_EN;
1084
1085 if (priv->old_pause != phydev->pause) {
1086 changed = 1;
1087 priv->old_pause = phydev->pause;
1088 }
1089
1090 if (!phydev->pause)
1091 cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE;
1092
1093 if (!changed)
1094 return;
1095
1096 if (phydev->link) {
1097 reg = umac_readl(priv, UMAC_CMD);
1098 reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) |
1099 CMD_HD_EN | CMD_RX_PAUSE_IGNORE |
1100 CMD_TX_PAUSE_IGNORE);
1101 reg |= cmd_bits;
1102 umac_writel(priv, reg, UMAC_CMD);
1103 }
1104
1105 phy_print_status(priv->phydev);
1106 }
1107
1108 static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv,
1109 unsigned int index)
1110 {
1111 struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1112 struct device *kdev = &priv->pdev->dev;
1113 size_t size;
1114 void *p;
1115 u32 reg;
1116
1117 /* Simple descriptors partitioning for now */
1118 size = 256;
1119
1120 /* We just need one DMA descriptor which is DMA-able, since writing to
1121 * the port will allocate a new descriptor in its internal linked-list
1122 */
1123 p = dma_zalloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma,
1124 GFP_KERNEL);
1125 if (!p) {
1126 netif_err(priv, hw, priv->netdev, "DMA alloc failed\n");
1127 return -ENOMEM;
1128 }
1129
1130 ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL);
1131 if (!ring->cbs) {
1132 netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1133 return -ENOMEM;
1134 }
1135
1136 /* Initialize SW view of the ring */
1137 spin_lock_init(&ring->lock);
1138 ring->priv = priv;
1139 netif_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64);
1140 ring->index = index;
1141 ring->size = size;
1142 ring->alloc_size = ring->size;
1143 ring->desc_cpu = p;
1144 ring->desc_count = ring->size;
1145 ring->curr_desc = 0;
1146
1147 /* Initialize HW ring */
1148 tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index));
1149 tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index));
1150 tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index));
1151 tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index));
1152 tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index));
1153 tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index));
1154
1155 /* Program the number of descriptors as MAX_THRESHOLD and half of
1156 * its size for the hysteresis trigger
1157 */
1158 tdma_writel(priv, ring->size |
1159 1 << RING_HYST_THRESH_SHIFT,
1160 TDMA_DESC_RING_MAX_HYST(index));
1161
1162 /* Enable the ring queue in the arbiter */
1163 reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN);
1164 reg |= (1 << index);
1165 tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN);
1166
1167 napi_enable(&ring->napi);
1168
1169 netif_dbg(priv, hw, priv->netdev,
1170 "TDMA cfg, size=%d, desc_cpu=%p\n",
1171 ring->size, ring->desc_cpu);
1172
1173 return 0;
1174 }
1175
1176 static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv,
1177 unsigned int index)
1178 {
1179 struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index];
1180 struct device *kdev = &priv->pdev->dev;
1181 u32 reg;
1182
1183 /* Caller should stop the TDMA engine */
1184 reg = tdma_readl(priv, TDMA_STATUS);
1185 if (!(reg & TDMA_DISABLED))
1186 netdev_warn(priv->netdev, "TDMA not stopped!\n");
1187
1188 /* ring->cbs is the last part in bcm_sysport_init_tx_ring which could
1189 * fail, so by checking this pointer we know whether the TX ring was
1190 * fully initialized or not.
1191 */
1192 if (!ring->cbs)
1193 return;
1194
1195 napi_disable(&ring->napi);
1196 netif_napi_del(&ring->napi);
1197
1198 bcm_sysport_tx_reclaim(priv, ring);
1199
1200 kfree(ring->cbs);
1201 ring->cbs = NULL;
1202
1203 if (ring->desc_dma) {
1204 dma_free_coherent(kdev, sizeof(struct dma_desc),
1205 ring->desc_cpu, ring->desc_dma);
1206 ring->desc_dma = 0;
1207 }
1208 ring->size = 0;
1209 ring->alloc_size = 0;
1210
1211 netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n");
1212 }
1213
1214 /* RDMA helper */
1215 static inline int rdma_enable_set(struct bcm_sysport_priv *priv,
1216 unsigned int enable)
1217 {
1218 unsigned int timeout = 1000;
1219 u32 reg;
1220
1221 reg = rdma_readl(priv, RDMA_CONTROL);
1222 if (enable)
1223 reg |= RDMA_EN;
1224 else
1225 reg &= ~RDMA_EN;
1226 rdma_writel(priv, reg, RDMA_CONTROL);
1227
1228 /* Poll for RMDA disabling completion */
1229 do {
1230 reg = rdma_readl(priv, RDMA_STATUS);
1231 if (!!(reg & RDMA_DISABLED) == !enable)
1232 return 0;
1233 usleep_range(1000, 2000);
1234 } while (timeout-- > 0);
1235
1236 netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n");
1237
1238 return -ETIMEDOUT;
1239 }
1240
1241 /* TDMA helper */
1242 static inline int tdma_enable_set(struct bcm_sysport_priv *priv,
1243 unsigned int enable)
1244 {
1245 unsigned int timeout = 1000;
1246 u32 reg;
1247
1248 reg = tdma_readl(priv, TDMA_CONTROL);
1249 if (enable)
1250 reg |= TDMA_EN;
1251 else
1252 reg &= ~TDMA_EN;
1253 tdma_writel(priv, reg, TDMA_CONTROL);
1254
1255 /* Poll for TMDA disabling completion */
1256 do {
1257 reg = tdma_readl(priv, TDMA_STATUS);
1258 if (!!(reg & TDMA_DISABLED) == !enable)
1259 return 0;
1260
1261 usleep_range(1000, 2000);
1262 } while (timeout-- > 0);
1263
1264 netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n");
1265
1266 return -ETIMEDOUT;
1267 }
1268
1269 static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv)
1270 {
1271 u32 reg;
1272 int ret;
1273
1274 /* Initialize SW view of the RX ring */
1275 priv->num_rx_bds = NUM_RX_DESC;
1276 priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET;
1277 priv->rx_bd_assign_ptr = priv->rx_bds;
1278 priv->rx_bd_assign_index = 0;
1279 priv->rx_c_index = 0;
1280 priv->rx_read_ptr = 0;
1281 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb),
1282 GFP_KERNEL);
1283 if (!priv->rx_cbs) {
1284 netif_err(priv, hw, priv->netdev, "CB allocation failed\n");
1285 return -ENOMEM;
1286 }
1287
1288 ret = bcm_sysport_alloc_rx_bufs(priv);
1289 if (ret) {
1290 netif_err(priv, hw, priv->netdev, "SKB allocation failed\n");
1291 return ret;
1292 }
1293
1294 /* Initialize HW, ensure RDMA is disabled */
1295 reg = rdma_readl(priv, RDMA_STATUS);
1296 if (!(reg & RDMA_DISABLED))
1297 rdma_enable_set(priv, 0);
1298
1299 rdma_writel(priv, 0, RDMA_WRITE_PTR_LO);
1300 rdma_writel(priv, 0, RDMA_WRITE_PTR_HI);
1301 rdma_writel(priv, 0, RDMA_PROD_INDEX);
1302 rdma_writel(priv, 0, RDMA_CONS_INDEX);
1303 rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT |
1304 RX_BUF_LENGTH, RDMA_RING_BUF_SIZE);
1305 /* Operate the queue in ring mode */
1306 rdma_writel(priv, 0, RDMA_START_ADDR_HI);
1307 rdma_writel(priv, 0, RDMA_START_ADDR_LO);
1308 rdma_writel(priv, 0, RDMA_END_ADDR_HI);
1309 rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO);
1310
1311 rdma_writel(priv, 1, RDMA_MBDONE_INTR);
1312
1313 netif_dbg(priv, hw, priv->netdev,
1314 "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n",
1315 priv->num_rx_bds, priv->rx_bds);
1316
1317 return 0;
1318 }
1319
1320 static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv)
1321 {
1322 struct bcm_sysport_cb *cb;
1323 unsigned int i;
1324 u32 reg;
1325
1326 /* Caller should ensure RDMA is disabled */
1327 reg = rdma_readl(priv, RDMA_STATUS);
1328 if (!(reg & RDMA_DISABLED))
1329 netdev_warn(priv->netdev, "RDMA not stopped!\n");
1330
1331 for (i = 0; i < priv->num_rx_bds; i++) {
1332 cb = &priv->rx_cbs[i];
1333 if (dma_unmap_addr(cb, dma_addr))
1334 dma_unmap_single(&priv->pdev->dev,
1335 dma_unmap_addr(cb, dma_addr),
1336 RX_BUF_LENGTH, DMA_FROM_DEVICE);
1337 bcm_sysport_free_cb(cb);
1338 }
1339
1340 kfree(priv->rx_cbs);
1341 priv->rx_cbs = NULL;
1342
1343 netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n");
1344 }
1345
1346 static void bcm_sysport_set_rx_mode(struct net_device *dev)
1347 {
1348 struct bcm_sysport_priv *priv = netdev_priv(dev);
1349 u32 reg;
1350
1351 reg = umac_readl(priv, UMAC_CMD);
1352 if (dev->flags & IFF_PROMISC)
1353 reg |= CMD_PROMISC;
1354 else
1355 reg &= ~CMD_PROMISC;
1356 umac_writel(priv, reg, UMAC_CMD);
1357
1358 /* No support for ALLMULTI */
1359 if (dev->flags & IFF_ALLMULTI)
1360 return;
1361 }
1362
1363 static inline void umac_enable_set(struct bcm_sysport_priv *priv,
1364 u32 mask, unsigned int enable)
1365 {
1366 u32 reg;
1367
1368 reg = umac_readl(priv, UMAC_CMD);
1369 if (enable)
1370 reg |= mask;
1371 else
1372 reg &= ~mask;
1373 umac_writel(priv, reg, UMAC_CMD);
1374
1375 /* UniMAC stops on a packet boundary, wait for a full-sized packet
1376 * to be processed (1 msec).
1377 */
1378 if (enable == 0)
1379 usleep_range(1000, 2000);
1380 }
1381
1382 static inline void umac_reset(struct bcm_sysport_priv *priv)
1383 {
1384 u32 reg;
1385
1386 reg = umac_readl(priv, UMAC_CMD);
1387 reg |= CMD_SW_RESET;
1388 umac_writel(priv, reg, UMAC_CMD);
1389 udelay(10);
1390 reg = umac_readl(priv, UMAC_CMD);
1391 reg &= ~CMD_SW_RESET;
1392 umac_writel(priv, reg, UMAC_CMD);
1393 }
1394
1395 static void umac_set_hw_addr(struct bcm_sysport_priv *priv,
1396 unsigned char *addr)
1397 {
1398 umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
1399 (addr[2] << 8) | addr[3], UMAC_MAC0);
1400 umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
1401 }
1402
1403 static void topctrl_flush(struct bcm_sysport_priv *priv)
1404 {
1405 topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1406 topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1407 mdelay(1);
1408 topctrl_writel(priv, 0, RX_FLUSH_CNTL);
1409 topctrl_writel(priv, 0, TX_FLUSH_CNTL);
1410 }
1411
1412 static void bcm_sysport_netif_start(struct net_device *dev)
1413 {
1414 struct bcm_sysport_priv *priv = netdev_priv(dev);
1415
1416 /* Enable NAPI */
1417 napi_enable(&priv->napi);
1418
1419 /* Enable RX interrupt and TX ring full interrupt */
1420 intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1421
1422 phy_start(priv->phydev);
1423
1424 /* Enable TX interrupts for the 32 TXQs */
1425 intrl2_1_mask_clear(priv, 0xffffffff);
1426
1427 /* Last call before we start the real business */
1428 netif_tx_start_all_queues(dev);
1429 }
1430
1431 static void rbuf_init(struct bcm_sysport_priv *priv)
1432 {
1433 u32 reg;
1434
1435 reg = rbuf_readl(priv, RBUF_CONTROL);
1436 reg |= RBUF_4B_ALGN | RBUF_RSB_EN;
1437 rbuf_writel(priv, reg, RBUF_CONTROL);
1438 }
1439
1440 static int bcm_sysport_open(struct net_device *dev)
1441 {
1442 struct bcm_sysport_priv *priv = netdev_priv(dev);
1443 unsigned int i;
1444 int ret;
1445
1446 /* Reset UniMAC */
1447 umac_reset(priv);
1448
1449 /* Flush TX and RX FIFOs at TOPCTRL level */
1450 topctrl_flush(priv);
1451
1452 /* Disable the UniMAC RX/TX */
1453 umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0);
1454
1455 /* Enable RBUF 2bytes alignment and Receive Status Block */
1456 rbuf_init(priv);
1457
1458 /* Set maximum frame length */
1459 umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1460
1461 /* Set MAC address */
1462 umac_set_hw_addr(priv, dev->dev_addr);
1463
1464 /* Read CRC forward */
1465 priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD);
1466
1467 priv->phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link,
1468 0, priv->phy_interface);
1469 if (!priv->phydev) {
1470 netdev_err(dev, "could not attach to PHY\n");
1471 return -ENODEV;
1472 }
1473
1474 /* Reset house keeping link status */
1475 priv->old_duplex = -1;
1476 priv->old_link = -1;
1477 priv->old_pause = -1;
1478
1479 /* mask all interrupts and request them */
1480 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1481 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1482 intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1483 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET);
1484 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1485 intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1486
1487 ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev);
1488 if (ret) {
1489 netdev_err(dev, "failed to request RX interrupt\n");
1490 goto out_phy_disconnect;
1491 }
1492
1493 ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev);
1494 if (ret) {
1495 netdev_err(dev, "failed to request TX interrupt\n");
1496 goto out_free_irq0;
1497 }
1498
1499 /* Initialize both hardware and software ring */
1500 for (i = 0; i < dev->num_tx_queues; i++) {
1501 ret = bcm_sysport_init_tx_ring(priv, i);
1502 if (ret) {
1503 netdev_err(dev, "failed to initialize TX ring %d\n",
1504 i);
1505 goto out_free_tx_ring;
1506 }
1507 }
1508
1509 /* Initialize linked-list */
1510 tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
1511
1512 /* Initialize RX ring */
1513 ret = bcm_sysport_init_rx_ring(priv);
1514 if (ret) {
1515 netdev_err(dev, "failed to initialize RX ring\n");
1516 goto out_free_rx_ring;
1517 }
1518
1519 /* Turn on RDMA */
1520 ret = rdma_enable_set(priv, 1);
1521 if (ret)
1522 goto out_free_rx_ring;
1523
1524 /* Turn on TDMA */
1525 ret = tdma_enable_set(priv, 1);
1526 if (ret)
1527 goto out_clear_rx_int;
1528
1529 /* Turn on UniMAC TX/RX */
1530 umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1);
1531
1532 bcm_sysport_netif_start(dev);
1533
1534 return 0;
1535
1536 out_clear_rx_int:
1537 intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL);
1538 out_free_rx_ring:
1539 bcm_sysport_fini_rx_ring(priv);
1540 out_free_tx_ring:
1541 for (i = 0; i < dev->num_tx_queues; i++)
1542 bcm_sysport_fini_tx_ring(priv, i);
1543 free_irq(priv->irq1, dev);
1544 out_free_irq0:
1545 free_irq(priv->irq0, dev);
1546 out_phy_disconnect:
1547 phy_disconnect(priv->phydev);
1548 return ret;
1549 }
1550
1551 static void bcm_sysport_netif_stop(struct net_device *dev)
1552 {
1553 struct bcm_sysport_priv *priv = netdev_priv(dev);
1554
1555 /* stop all software from updating hardware */
1556 netif_tx_stop_all_queues(dev);
1557 napi_disable(&priv->napi);
1558 phy_stop(priv->phydev);
1559
1560 /* mask all interrupts */
1561 intrl2_0_mask_set(priv, 0xffffffff);
1562 intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1563 intrl2_1_mask_set(priv, 0xffffffff);
1564 intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR);
1565 }
1566
1567 static int bcm_sysport_stop(struct net_device *dev)
1568 {
1569 struct bcm_sysport_priv *priv = netdev_priv(dev);
1570 unsigned int i;
1571 int ret;
1572
1573 bcm_sysport_netif_stop(dev);
1574
1575 /* Disable UniMAC RX */
1576 umac_enable_set(priv, CMD_RX_EN, 0);
1577
1578 ret = tdma_enable_set(priv, 0);
1579 if (ret) {
1580 netdev_err(dev, "timeout disabling RDMA\n");
1581 return ret;
1582 }
1583
1584 /* Wait for a maximum packet size to be drained */
1585 usleep_range(2000, 3000);
1586
1587 ret = rdma_enable_set(priv, 0);
1588 if (ret) {
1589 netdev_err(dev, "timeout disabling TDMA\n");
1590 return ret;
1591 }
1592
1593 /* Disable UniMAC TX */
1594 umac_enable_set(priv, CMD_TX_EN, 0);
1595
1596 /* Free RX/TX rings SW structures */
1597 for (i = 0; i < dev->num_tx_queues; i++)
1598 bcm_sysport_fini_tx_ring(priv, i);
1599 bcm_sysport_fini_rx_ring(priv);
1600
1601 free_irq(priv->irq0, dev);
1602 free_irq(priv->irq1, dev);
1603
1604 /* Disconnect from PHY */
1605 phy_disconnect(priv->phydev);
1606
1607 return 0;
1608 }
1609
1610 static struct ethtool_ops bcm_sysport_ethtool_ops = {
1611 .get_settings = bcm_sysport_get_settings,
1612 .set_settings = bcm_sysport_set_settings,
1613 .get_drvinfo = bcm_sysport_get_drvinfo,
1614 .get_msglevel = bcm_sysport_get_msglvl,
1615 .set_msglevel = bcm_sysport_set_msglvl,
1616 .get_link = ethtool_op_get_link,
1617 .get_strings = bcm_sysport_get_strings,
1618 .get_ethtool_stats = bcm_sysport_get_stats,
1619 .get_sset_count = bcm_sysport_get_sset_count,
1620 .get_wol = bcm_sysport_get_wol,
1621 .set_wol = bcm_sysport_set_wol,
1622 };
1623
1624 static const struct net_device_ops bcm_sysport_netdev_ops = {
1625 .ndo_start_xmit = bcm_sysport_xmit,
1626 .ndo_tx_timeout = bcm_sysport_tx_timeout,
1627 .ndo_open = bcm_sysport_open,
1628 .ndo_stop = bcm_sysport_stop,
1629 .ndo_set_features = bcm_sysport_set_features,
1630 .ndo_set_rx_mode = bcm_sysport_set_rx_mode,
1631 };
1632
1633 #define REV_FMT "v%2x.%02x"
1634
1635 static int bcm_sysport_probe(struct platform_device *pdev)
1636 {
1637 struct bcm_sysport_priv *priv;
1638 struct device_node *dn;
1639 struct net_device *dev;
1640 const void *macaddr;
1641 struct resource *r;
1642 u32 txq, rxq;
1643 int ret;
1644
1645 dn = pdev->dev.of_node;
1646 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1647
1648 /* Read the Transmit/Receive Queue properties */
1649 if (of_property_read_u32(dn, "systemport,num-txq", &txq))
1650 txq = TDMA_NUM_RINGS;
1651 if (of_property_read_u32(dn, "systemport,num-rxq", &rxq))
1652 rxq = 1;
1653
1654 dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq);
1655 if (!dev)
1656 return -ENOMEM;
1657
1658 /* Initialize private members */
1659 priv = netdev_priv(dev);
1660
1661 priv->irq0 = platform_get_irq(pdev, 0);
1662 priv->irq1 = platform_get_irq(pdev, 1);
1663 priv->wol_irq = platform_get_irq(pdev, 2);
1664 if (priv->irq0 <= 0 || priv->irq1 <= 0) {
1665 dev_err(&pdev->dev, "invalid interrupts\n");
1666 ret = -EINVAL;
1667 goto err;
1668 }
1669
1670 priv->base = devm_ioremap_resource(&pdev->dev, r);
1671 if (IS_ERR(priv->base)) {
1672 ret = PTR_ERR(priv->base);
1673 goto err;
1674 }
1675
1676 priv->netdev = dev;
1677 priv->pdev = pdev;
1678
1679 priv->phy_interface = of_get_phy_mode(dn);
1680 /* Default to GMII interface mode */
1681 if (priv->phy_interface < 0)
1682 priv->phy_interface = PHY_INTERFACE_MODE_GMII;
1683
1684 /* In the case of a fixed PHY, the DT node associated
1685 * to the PHY is the Ethernet MAC DT node.
1686 */
1687 if (of_phy_is_fixed_link(dn)) {
1688 ret = of_phy_register_fixed_link(dn);
1689 if (ret) {
1690 dev_err(&pdev->dev, "failed to register fixed PHY\n");
1691 goto err;
1692 }
1693
1694 priv->phy_dn = dn;
1695 }
1696
1697 /* Initialize netdevice members */
1698 macaddr = of_get_mac_address(dn);
1699 if (!macaddr || !is_valid_ether_addr(macaddr)) {
1700 dev_warn(&pdev->dev, "using random Ethernet MAC\n");
1701 random_ether_addr(dev->dev_addr);
1702 } else {
1703 ether_addr_copy(dev->dev_addr, macaddr);
1704 }
1705
1706 SET_NETDEV_DEV(dev, &pdev->dev);
1707 dev_set_drvdata(&pdev->dev, dev);
1708 dev->ethtool_ops = &bcm_sysport_ethtool_ops;
1709 dev->netdev_ops = &bcm_sysport_netdev_ops;
1710 netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64);
1711
1712 /* HW supported features, none enabled by default */
1713 dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA |
1714 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
1715
1716 /* Request the WOL interrupt and advertise suspend if available */
1717 priv->wol_irq_disabled = 1;
1718 ret = devm_request_irq(&pdev->dev, priv->wol_irq,
1719 bcm_sysport_wol_isr, 0, dev->name, priv);
1720 if (!ret)
1721 device_set_wakeup_capable(&pdev->dev, 1);
1722
1723 /* Set the needed headroom once and for all */
1724 BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8);
1725 dev->needed_headroom += sizeof(struct bcm_tsb);
1726
1727 /* libphy will adjust the link state accordingly */
1728 netif_carrier_off(dev);
1729
1730 ret = register_netdev(dev);
1731 if (ret) {
1732 dev_err(&pdev->dev, "failed to register net_device\n");
1733 goto err;
1734 }
1735
1736 priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK;
1737 dev_info(&pdev->dev,
1738 "Broadcom SYSTEMPORT" REV_FMT
1739 " at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n",
1740 (priv->rev >> 8) & 0xff, priv->rev & 0xff,
1741 priv->base, priv->irq0, priv->irq1, txq, rxq);
1742
1743 return 0;
1744 err:
1745 free_netdev(dev);
1746 return ret;
1747 }
1748
1749 static int bcm_sysport_remove(struct platform_device *pdev)
1750 {
1751 struct net_device *dev = dev_get_drvdata(&pdev->dev);
1752
1753 /* Not much to do, ndo_close has been called
1754 * and we use managed allocations
1755 */
1756 unregister_netdev(dev);
1757 free_netdev(dev);
1758 dev_set_drvdata(&pdev->dev, NULL);
1759
1760 return 0;
1761 }
1762
1763 #ifdef CONFIG_PM_SLEEP
1764 static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv)
1765 {
1766 struct net_device *ndev = priv->netdev;
1767 unsigned int timeout = 1000;
1768 u32 reg;
1769
1770 /* Password has already been programmed */
1771 reg = umac_readl(priv, UMAC_MPD_CTRL);
1772 reg |= MPD_EN;
1773 reg &= ~PSW_EN;
1774 if (priv->wolopts & WAKE_MAGICSECURE)
1775 reg |= PSW_EN;
1776 umac_writel(priv, reg, UMAC_MPD_CTRL);
1777
1778 /* Make sure RBUF entered WoL mode as result */
1779 do {
1780 reg = rbuf_readl(priv, RBUF_STATUS);
1781 if (reg & RBUF_WOL_MODE)
1782 break;
1783
1784 udelay(10);
1785 } while (timeout-- > 0);
1786
1787 /* Do not leave the UniMAC RBUF matching only MPD packets */
1788 if (!timeout) {
1789 reg = umac_readl(priv, UMAC_MPD_CTRL);
1790 reg &= ~MPD_EN;
1791 umac_writel(priv, reg, UMAC_MPD_CTRL);
1792 netif_err(priv, wol, ndev, "failed to enter WOL mode\n");
1793 return -ETIMEDOUT;
1794 }
1795
1796 /* UniMAC receive needs to be turned on */
1797 umac_enable_set(priv, CMD_RX_EN, 1);
1798
1799 /* Enable the interrupt wake-up source */
1800 intrl2_0_mask_clear(priv, INTRL2_0_MPD);
1801
1802 netif_dbg(priv, wol, ndev, "entered WOL mode\n");
1803
1804 return 0;
1805 }
1806
1807 static int bcm_sysport_suspend(struct device *d)
1808 {
1809 struct net_device *dev = dev_get_drvdata(d);
1810 struct bcm_sysport_priv *priv = netdev_priv(dev);
1811 unsigned int i;
1812 int ret = 0;
1813 u32 reg;
1814
1815 if (!netif_running(dev))
1816 return 0;
1817
1818 bcm_sysport_netif_stop(dev);
1819
1820 phy_suspend(priv->phydev);
1821
1822 netif_device_detach(dev);
1823
1824 /* Disable UniMAC RX */
1825 umac_enable_set(priv, CMD_RX_EN, 0);
1826
1827 ret = rdma_enable_set(priv, 0);
1828 if (ret) {
1829 netdev_err(dev, "RDMA timeout!\n");
1830 return ret;
1831 }
1832
1833 /* Disable RXCHK if enabled */
1834 if (priv->rx_chk_en) {
1835 reg = rxchk_readl(priv, RXCHK_CONTROL);
1836 reg &= ~RXCHK_EN;
1837 rxchk_writel(priv, reg, RXCHK_CONTROL);
1838 }
1839
1840 /* Flush RX pipe */
1841 if (!priv->wolopts)
1842 topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL);
1843
1844 ret = tdma_enable_set(priv, 0);
1845 if (ret) {
1846 netdev_err(dev, "TDMA timeout!\n");
1847 return ret;
1848 }
1849
1850 /* Wait for a packet boundary */
1851 usleep_range(2000, 3000);
1852
1853 umac_enable_set(priv, CMD_TX_EN, 0);
1854
1855 topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL);
1856
1857 /* Free RX/TX rings SW structures */
1858 for (i = 0; i < dev->num_tx_queues; i++)
1859 bcm_sysport_fini_tx_ring(priv, i);
1860 bcm_sysport_fini_rx_ring(priv);
1861
1862 /* Get prepared for Wake-on-LAN */
1863 if (device_may_wakeup(d) && priv->wolopts)
1864 ret = bcm_sysport_suspend_to_wol(priv);
1865
1866 return ret;
1867 }
1868
1869 static int bcm_sysport_resume(struct device *d)
1870 {
1871 struct net_device *dev = dev_get_drvdata(d);
1872 struct bcm_sysport_priv *priv = netdev_priv(dev);
1873 unsigned int i;
1874 u32 reg;
1875 int ret;
1876
1877 if (!netif_running(dev))
1878 return 0;
1879
1880 umac_reset(priv);
1881
1882 /* We may have been suspended and never received a WOL event that
1883 * would turn off MPD detection, take care of that now
1884 */
1885 bcm_sysport_resume_from_wol(priv);
1886
1887 /* Initialize both hardware and software ring */
1888 for (i = 0; i < dev->num_tx_queues; i++) {
1889 ret = bcm_sysport_init_tx_ring(priv, i);
1890 if (ret) {
1891 netdev_err(dev, "failed to initialize TX ring %d\n",
1892 i);
1893 goto out_free_tx_rings;
1894 }
1895 }
1896
1897 /* Initialize linked-list */
1898 tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS);
1899
1900 /* Initialize RX ring */
1901 ret = bcm_sysport_init_rx_ring(priv);
1902 if (ret) {
1903 netdev_err(dev, "failed to initialize RX ring\n");
1904 goto out_free_rx_ring;
1905 }
1906
1907 netif_device_attach(dev);
1908
1909 /* RX pipe enable */
1910 topctrl_writel(priv, 0, RX_FLUSH_CNTL);
1911
1912 ret = rdma_enable_set(priv, 1);
1913 if (ret) {
1914 netdev_err(dev, "failed to enable RDMA\n");
1915 goto out_free_rx_ring;
1916 }
1917
1918 /* Enable rxhck */
1919 if (priv->rx_chk_en) {
1920 reg = rxchk_readl(priv, RXCHK_CONTROL);
1921 reg |= RXCHK_EN;
1922 rxchk_writel(priv, reg, RXCHK_CONTROL);
1923 }
1924
1925 rbuf_init(priv);
1926
1927 /* Set maximum frame length */
1928 umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1929
1930 /* Set MAC address */
1931 umac_set_hw_addr(priv, dev->dev_addr);
1932
1933 umac_enable_set(priv, CMD_RX_EN, 1);
1934
1935 /* TX pipe enable */
1936 topctrl_writel(priv, 0, TX_FLUSH_CNTL);
1937
1938 umac_enable_set(priv, CMD_TX_EN, 1);
1939
1940 ret = tdma_enable_set(priv, 1);
1941 if (ret) {
1942 netdev_err(dev, "TDMA timeout!\n");
1943 goto out_free_rx_ring;
1944 }
1945
1946 phy_resume(priv->phydev);
1947
1948 bcm_sysport_netif_start(dev);
1949
1950 return 0;
1951
1952 out_free_rx_ring:
1953 bcm_sysport_fini_rx_ring(priv);
1954 out_free_tx_rings:
1955 for (i = 0; i < dev->num_tx_queues; i++)
1956 bcm_sysport_fini_tx_ring(priv, i);
1957 return ret;
1958 }
1959 #endif
1960
1961 static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops,
1962 bcm_sysport_suspend, bcm_sysport_resume);
1963
1964 static const struct of_device_id bcm_sysport_of_match[] = {
1965 { .compatible = "brcm,systemport-v1.00" },
1966 { .compatible = "brcm,systemport" },
1967 { /* sentinel */ }
1968 };
1969
1970 static struct platform_driver bcm_sysport_driver = {
1971 .probe = bcm_sysport_probe,
1972 .remove = bcm_sysport_remove,
1973 .driver = {
1974 .name = "brcm-systemport",
1975 .owner = THIS_MODULE,
1976 .of_match_table = bcm_sysport_of_match,
1977 .pm = &bcm_sysport_pm_ops,
1978 },
1979 };
1980 module_platform_driver(bcm_sysport_driver);
1981
1982 MODULE_AUTHOR("Broadcom Corporation");
1983 MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver");
1984 MODULE_ALIAS("platform:brcm-systemport");
1985 MODULE_LICENSE("GPL");
This page took 0.079336 seconds and 6 git commands to generate.