Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x.h
1 /* bnx2x.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2013 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 */
13
14 #ifndef BNX2X_H
15 #define BNX2X_H
16
17 #include <linux/pci.h>
18 #include <linux/netdevice.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/types.h>
21 #include <linux/pci_regs.h>
22
23 #include <linux/ptp_clock_kernel.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/timecounter.h>
26
27 /* compilation time flags */
28
29 /* define this to make the driver freeze on error to allow getting debug info
30 * (you will need to reboot afterwards) */
31 /* #define BNX2X_STOP_ON_ERROR */
32
33 #define DRV_MODULE_VERSION "1.710.51-0"
34 #define DRV_MODULE_RELDATE "2014/02/10"
35 #define BNX2X_BC_VER 0x040200
36
37 #if defined(CONFIG_DCB)
38 #define BCM_DCBNL
39 #endif
40
41 #include "bnx2x_hsi.h"
42
43 #include "../cnic_if.h"
44
45 #define BNX2X_MIN_MSIX_VEC_CNT(bp) ((bp)->min_msix_vec_cnt)
46
47 #include <linux/mdio.h>
48
49 #include "bnx2x_reg.h"
50 #include "bnx2x_fw_defs.h"
51 #include "bnx2x_mfw_req.h"
52 #include "bnx2x_link.h"
53 #include "bnx2x_sp.h"
54 #include "bnx2x_dcb.h"
55 #include "bnx2x_stats.h"
56 #include "bnx2x_vfpf.h"
57
58 enum bnx2x_int_mode {
59 BNX2X_INT_MODE_MSIX,
60 BNX2X_INT_MODE_INTX,
61 BNX2X_INT_MODE_MSI
62 };
63
64 /* error/debug prints */
65
66 #define DRV_MODULE_NAME "bnx2x"
67
68 /* for messages that are currently off */
69 #define BNX2X_MSG_OFF 0x0
70 #define BNX2X_MSG_MCP 0x0010000 /* was: NETIF_MSG_HW */
71 #define BNX2X_MSG_STATS 0x0020000 /* was: NETIF_MSG_TIMER */
72 #define BNX2X_MSG_NVM 0x0040000 /* was: NETIF_MSG_HW */
73 #define BNX2X_MSG_DMAE 0x0080000 /* was: NETIF_MSG_HW */
74 #define BNX2X_MSG_SP 0x0100000 /* was: NETIF_MSG_INTR */
75 #define BNX2X_MSG_FP 0x0200000 /* was: NETIF_MSG_INTR */
76 #define BNX2X_MSG_IOV 0x0800000
77 #define BNX2X_MSG_PTP 0x1000000
78 #define BNX2X_MSG_IDLE 0x2000000 /* used for idle check*/
79 #define BNX2X_MSG_ETHTOOL 0x4000000
80 #define BNX2X_MSG_DCB 0x8000000
81
82 /* regular debug print */
83 #define DP_INNER(fmt, ...) \
84 pr_notice("[%s:%d(%s)]" fmt, \
85 __func__, __LINE__, \
86 bp->dev ? (bp->dev->name) : "?", \
87 ##__VA_ARGS__);
88
89 #define DP(__mask, fmt, ...) \
90 do { \
91 if (unlikely(bp->msg_enable & (__mask))) \
92 DP_INNER(fmt, ##__VA_ARGS__); \
93 } while (0)
94
95 #define DP_AND(__mask, fmt, ...) \
96 do { \
97 if (unlikely((bp->msg_enable & (__mask)) == __mask)) \
98 DP_INNER(fmt, ##__VA_ARGS__); \
99 } while (0)
100
101 #define DP_CONT(__mask, fmt, ...) \
102 do { \
103 if (unlikely(bp->msg_enable & (__mask))) \
104 pr_cont(fmt, ##__VA_ARGS__); \
105 } while (0)
106
107 /* errors debug print */
108 #define BNX2X_DBG_ERR(fmt, ...) \
109 do { \
110 if (unlikely(netif_msg_probe(bp))) \
111 pr_err("[%s:%d(%s)]" fmt, \
112 __func__, __LINE__, \
113 bp->dev ? (bp->dev->name) : "?", \
114 ##__VA_ARGS__); \
115 } while (0)
116
117 /* for errors (never masked) */
118 #define BNX2X_ERR(fmt, ...) \
119 do { \
120 pr_err("[%s:%d(%s)]" fmt, \
121 __func__, __LINE__, \
122 bp->dev ? (bp->dev->name) : "?", \
123 ##__VA_ARGS__); \
124 } while (0)
125
126 #define BNX2X_ERROR(fmt, ...) \
127 pr_err("[%s:%d]" fmt, __func__, __LINE__, ##__VA_ARGS__)
128
129 /* before we have a dev->name use dev_info() */
130 #define BNX2X_DEV_INFO(fmt, ...) \
131 do { \
132 if (unlikely(netif_msg_probe(bp))) \
133 dev_info(&bp->pdev->dev, fmt, ##__VA_ARGS__); \
134 } while (0)
135
136 /* Error handling */
137 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int);
138 #ifdef BNX2X_STOP_ON_ERROR
139 #define bnx2x_panic() \
140 do { \
141 bp->panic = 1; \
142 BNX2X_ERR("driver assert\n"); \
143 bnx2x_panic_dump(bp, true); \
144 } while (0)
145 #else
146 #define bnx2x_panic() \
147 do { \
148 bp->panic = 1; \
149 BNX2X_ERR("driver assert\n"); \
150 bnx2x_panic_dump(bp, false); \
151 } while (0)
152 #endif
153
154 #define bnx2x_mc_addr(ha) ((ha)->addr)
155 #define bnx2x_uc_addr(ha) ((ha)->addr)
156
157 #define U64_LO(x) ((u32)(((u64)(x)) & 0xffffffff))
158 #define U64_HI(x) ((u32)(((u64)(x)) >> 32))
159 #define HILO_U64(hi, lo) ((((u64)(hi)) << 32) + (lo))
160
161 #define REG_ADDR(bp, offset) ((bp->regview) + (offset))
162
163 #define REG_RD(bp, offset) readl(REG_ADDR(bp, offset))
164 #define REG_RD8(bp, offset) readb(REG_ADDR(bp, offset))
165 #define REG_RD16(bp, offset) readw(REG_ADDR(bp, offset))
166
167 #define REG_WR(bp, offset, val) writel((u32)val, REG_ADDR(bp, offset))
168 #define REG_WR8(bp, offset, val) writeb((u8)val, REG_ADDR(bp, offset))
169 #define REG_WR16(bp, offset, val) writew((u16)val, REG_ADDR(bp, offset))
170
171 #define REG_RD_IND(bp, offset) bnx2x_reg_rd_ind(bp, offset)
172 #define REG_WR_IND(bp, offset, val) bnx2x_reg_wr_ind(bp, offset, val)
173
174 #define REG_RD_DMAE(bp, offset, valp, len32) \
175 do { \
176 bnx2x_read_dmae(bp, offset, len32);\
177 memcpy(valp, bnx2x_sp(bp, wb_data[0]), (len32) * 4); \
178 } while (0)
179
180 #define REG_WR_DMAE(bp, offset, valp, len32) \
181 do { \
182 memcpy(bnx2x_sp(bp, wb_data[0]), valp, (len32) * 4); \
183 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data), \
184 offset, len32); \
185 } while (0)
186
187 #define REG_WR_DMAE_LEN(bp, offset, valp, len32) \
188 REG_WR_DMAE(bp, offset, valp, len32)
189
190 #define VIRT_WR_DMAE_LEN(bp, data, addr, len32, le32_swap) \
191 do { \
192 memcpy(GUNZIP_BUF(bp), data, (len32) * 4); \
193 bnx2x_write_big_buf_wb(bp, addr, len32); \
194 } while (0)
195
196 #define SHMEM_ADDR(bp, field) (bp->common.shmem_base + \
197 offsetof(struct shmem_region, field))
198 #define SHMEM_RD(bp, field) REG_RD(bp, SHMEM_ADDR(bp, field))
199 #define SHMEM_WR(bp, field, val) REG_WR(bp, SHMEM_ADDR(bp, field), val)
200
201 #define SHMEM2_ADDR(bp, field) (bp->common.shmem2_base + \
202 offsetof(struct shmem2_region, field))
203 #define SHMEM2_RD(bp, field) REG_RD(bp, SHMEM2_ADDR(bp, field))
204 #define SHMEM2_WR(bp, field, val) REG_WR(bp, SHMEM2_ADDR(bp, field), val)
205 #define MF_CFG_ADDR(bp, field) (bp->common.mf_cfg_base + \
206 offsetof(struct mf_cfg, field))
207 #define MF2_CFG_ADDR(bp, field) (bp->common.mf2_cfg_base + \
208 offsetof(struct mf2_cfg, field))
209
210 #define MF_CFG_RD(bp, field) REG_RD(bp, MF_CFG_ADDR(bp, field))
211 #define MF_CFG_WR(bp, field, val) REG_WR(bp,\
212 MF_CFG_ADDR(bp, field), (val))
213 #define MF2_CFG_RD(bp, field) REG_RD(bp, MF2_CFG_ADDR(bp, field))
214
215 #define SHMEM2_HAS(bp, field) ((bp)->common.shmem2_base && \
216 (SHMEM2_RD((bp), size) > \
217 offsetof(struct shmem2_region, field)))
218
219 #define EMAC_RD(bp, reg) REG_RD(bp, emac_base + reg)
220 #define EMAC_WR(bp, reg, val) REG_WR(bp, emac_base + reg, val)
221
222 /* SP SB indices */
223
224 /* General SP events - stats query, cfc delete, etc */
225 #define HC_SP_INDEX_ETH_DEF_CONS 3
226
227 /* EQ completions */
228 #define HC_SP_INDEX_EQ_CONS 7
229
230 /* FCoE L2 connection completions */
231 #define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS 6
232 #define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS 4
233 /* iSCSI L2 */
234 #define HC_SP_INDEX_ETH_ISCSI_CQ_CONS 5
235 #define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
236
237 /* Special clients parameters */
238
239 /* SB indices */
240 /* FCoE L2 */
241 #define BNX2X_FCOE_L2_RX_INDEX \
242 (&bp->def_status_blk->sp_sb.\
243 index_values[HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS])
244
245 #define BNX2X_FCOE_L2_TX_INDEX \
246 (&bp->def_status_blk->sp_sb.\
247 index_values[HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS])
248
249 /**
250 * CIDs and CLIDs:
251 * CLIDs below is a CLID for func 0, then the CLID for other
252 * functions will be calculated by the formula:
253 *
254 * FUNC_N_CLID_X = N * NUM_SPECIAL_CLIENTS + FUNC_0_CLID_X
255 *
256 */
257 enum {
258 BNX2X_ISCSI_ETH_CL_ID_IDX,
259 BNX2X_FCOE_ETH_CL_ID_IDX,
260 BNX2X_MAX_CNIC_ETH_CL_ID_IDX,
261 };
262
263 /* use a value high enough to be above all the PFs, which has least significant
264 * nibble as 8, so when cnic needs to come up with a CID for UIO to use to
265 * calculate doorbell address according to old doorbell configuration scheme
266 * (db_msg_sz 1 << 7 * cid + 0x40 DPM offset) it can come up with a valid number
267 * We must avoid coming up with cid 8 for iscsi since according to this method
268 * the designated UIO cid will come out 0 and it has a special handling for that
269 * case which doesn't suit us. Therefore will will cieling to closes cid which
270 * has least signigifcant nibble 8 and if it is 8 we will move forward to 0x18.
271 */
272
273 #define BNX2X_1st_NON_L2_ETH_CID(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * \
274 (bp)->max_cos)
275 /* amount of cids traversed by UIO's DPM addition to doorbell */
276 #define UIO_DPM 8
277 /* roundup to DPM offset */
278 #define UIO_ROUNDUP(bp) (roundup(BNX2X_1st_NON_L2_ETH_CID(bp), \
279 UIO_DPM))
280 /* offset to nearest value which has lsb nibble matching DPM */
281 #define UIO_CID_OFFSET(bp) ((UIO_ROUNDUP(bp) + UIO_DPM) % \
282 (UIO_DPM * 2))
283 /* add offset to rounded-up cid to get a value which could be used with UIO */
284 #define UIO_DPM_ALIGN(bp) (UIO_ROUNDUP(bp) + UIO_CID_OFFSET(bp))
285 /* but wait - avoid UIO special case for cid 0 */
286 #define UIO_DPM_CID0_OFFSET(bp) ((UIO_DPM * 2) * \
287 (UIO_DPM_ALIGN(bp) == UIO_DPM))
288 /* Properly DPM aligned CID dajusted to cid 0 secal case */
289 #define BNX2X_CNIC_START_ETH_CID(bp) (UIO_DPM_ALIGN(bp) + \
290 (UIO_DPM_CID0_OFFSET(bp)))
291 /* how many cids were wasted - need this value for cid allocation */
292 #define UIO_CID_PAD(bp) (BNX2X_CNIC_START_ETH_CID(bp) - \
293 BNX2X_1st_NON_L2_ETH_CID(bp))
294 /* iSCSI L2 */
295 #define BNX2X_ISCSI_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp))
296 /* FCoE L2 */
297 #define BNX2X_FCOE_ETH_CID(bp) (BNX2X_CNIC_START_ETH_CID(bp) + 1)
298
299 #define CNIC_SUPPORT(bp) ((bp)->cnic_support)
300 #define CNIC_ENABLED(bp) ((bp)->cnic_enabled)
301 #define CNIC_LOADED(bp) ((bp)->cnic_loaded)
302 #define FCOE_INIT(bp) ((bp)->fcoe_init)
303
304 #define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
305 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
306
307 #define SM_RX_ID 0
308 #define SM_TX_ID 1
309
310 /* defines for multiple tx priority indices */
311 #define FIRST_TX_ONLY_COS_INDEX 1
312 #define FIRST_TX_COS_INDEX 0
313
314 /* rules for calculating the cids of tx-only connections */
315 #define CID_TO_FP(cid, bp) ((cid) % BNX2X_NUM_NON_CNIC_QUEUES(bp))
316 #define CID_COS_TO_TX_ONLY_CID(cid, cos, bp) \
317 (cid + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
318
319 /* fp index inside class of service range */
320 #define FP_COS_TO_TXQ(fp, cos, bp) \
321 ((fp)->index + cos * BNX2X_NUM_NON_CNIC_QUEUES(bp))
322
323 /* Indexes for transmission queues array:
324 * txdata for RSS i CoS j is at location i + (j * num of RSS)
325 * txdata for FCoE (if exist) is at location max cos * num of RSS
326 * txdata for FWD (if exist) is one location after FCoE
327 * txdata for OOO (if exist) is one location after FWD
328 */
329 enum {
330 FCOE_TXQ_IDX_OFFSET,
331 FWD_TXQ_IDX_OFFSET,
332 OOO_TXQ_IDX_OFFSET,
333 };
334 #define MAX_ETH_TXQ_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) * (bp)->max_cos)
335 #define FCOE_TXQ_IDX(bp) (MAX_ETH_TXQ_IDX(bp) + FCOE_TXQ_IDX_OFFSET)
336
337 /* fast path */
338 /*
339 * This driver uses new build_skb() API :
340 * RX ring buffer contains pointer to kmalloc() data only,
341 * skb are built only after Hardware filled the frame.
342 */
343 struct sw_rx_bd {
344 u8 *data;
345 DEFINE_DMA_UNMAP_ADDR(mapping);
346 };
347
348 struct sw_tx_bd {
349 struct sk_buff *skb;
350 u16 first_bd;
351 u8 flags;
352 /* Set on the first BD descriptor when there is a split BD */
353 #define BNX2X_TSO_SPLIT_BD (1<<0)
354 #define BNX2X_HAS_SECOND_PBD (1<<1)
355 };
356
357 struct sw_rx_page {
358 struct page *page;
359 DEFINE_DMA_UNMAP_ADDR(mapping);
360 };
361
362 union db_prod {
363 struct doorbell_set_prod data;
364 u32 raw;
365 };
366
367 /* dropless fc FW/HW related params */
368 #define BRB_SIZE(bp) (CHIP_IS_E3(bp) ? 1024 : 512)
369 #define MAX_AGG_QS(bp) (CHIP_IS_E1(bp) ? \
370 ETH_MAX_AGGREGATION_QUEUES_E1 :\
371 ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
372 #define FW_DROP_LEVEL(bp) (3 + MAX_SPQ_PENDING + MAX_AGG_QS(bp))
373 #define FW_PREFETCH_CNT 16
374 #define DROPLESS_FC_HEADROOM 100
375
376 /* MC hsi */
377 #define BCM_PAGE_SHIFT 12
378 #define BCM_PAGE_SIZE (1 << BCM_PAGE_SHIFT)
379 #define BCM_PAGE_MASK (~(BCM_PAGE_SIZE - 1))
380 #define BCM_PAGE_ALIGN(addr) (((addr) + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
381
382 #define PAGES_PER_SGE_SHIFT 0
383 #define PAGES_PER_SGE (1 << PAGES_PER_SGE_SHIFT)
384 #define SGE_PAGE_SIZE PAGE_SIZE
385 #define SGE_PAGE_SHIFT PAGE_SHIFT
386 #define SGE_PAGE_ALIGN(addr) PAGE_ALIGN((typeof(PAGE_SIZE))(addr))
387 #define SGE_PAGES (SGE_PAGE_SIZE * PAGES_PER_SGE)
388 #define TPA_AGG_SIZE min_t(u32, (min_t(u32, 8, MAX_SKB_FRAGS) * \
389 SGE_PAGES), 0xffff)
390
391 /* SGE ring related macros */
392 #define NUM_RX_SGE_PAGES 2
393 #define RX_SGE_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
394 #define NEXT_PAGE_SGE_DESC_CNT 2
395 #define MAX_RX_SGE_CNT (RX_SGE_CNT - NEXT_PAGE_SGE_DESC_CNT)
396 /* RX_SGE_CNT is promised to be a power of 2 */
397 #define RX_SGE_MASK (RX_SGE_CNT - 1)
398 #define NUM_RX_SGE (RX_SGE_CNT * NUM_RX_SGE_PAGES)
399 #define MAX_RX_SGE (NUM_RX_SGE - 1)
400 #define NEXT_SGE_IDX(x) ((((x) & RX_SGE_MASK) == \
401 (MAX_RX_SGE_CNT - 1)) ? \
402 (x) + 1 + NEXT_PAGE_SGE_DESC_CNT : \
403 (x) + 1)
404 #define RX_SGE(x) ((x) & MAX_RX_SGE)
405
406 /*
407 * Number of required SGEs is the sum of two:
408 * 1. Number of possible opened aggregations (next packet for
409 * these aggregations will probably consume SGE immediately)
410 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
411 * after placement on BD for new TPA aggregation)
412 *
413 * Takes into account NEXT_PAGE_SGE_DESC_CNT "next" elements on each page
414 */
415 #define NUM_SGE_REQ (MAX_AGG_QS(bp) + \
416 (BRB_SIZE(bp) - MAX_AGG_QS(bp)) / 2)
417 #define NUM_SGE_PG_REQ ((NUM_SGE_REQ + MAX_RX_SGE_CNT - 1) / \
418 MAX_RX_SGE_CNT)
419 #define SGE_TH_LO(bp) (NUM_SGE_REQ + \
420 NUM_SGE_PG_REQ * NEXT_PAGE_SGE_DESC_CNT)
421 #define SGE_TH_HI(bp) (SGE_TH_LO(bp) + DROPLESS_FC_HEADROOM)
422
423 /* Manipulate a bit vector defined as an array of u64 */
424
425 /* Number of bits in one sge_mask array element */
426 #define BIT_VEC64_ELEM_SZ 64
427 #define BIT_VEC64_ELEM_SHIFT 6
428 #define BIT_VEC64_ELEM_MASK ((u64)BIT_VEC64_ELEM_SZ - 1)
429
430 #define __BIT_VEC64_SET_BIT(el, bit) \
431 do { \
432 el = ((el) | ((u64)0x1 << (bit))); \
433 } while (0)
434
435 #define __BIT_VEC64_CLEAR_BIT(el, bit) \
436 do { \
437 el = ((el) & (~((u64)0x1 << (bit)))); \
438 } while (0)
439
440 #define BIT_VEC64_SET_BIT(vec64, idx) \
441 __BIT_VEC64_SET_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
442 (idx) & BIT_VEC64_ELEM_MASK)
443
444 #define BIT_VEC64_CLEAR_BIT(vec64, idx) \
445 __BIT_VEC64_CLEAR_BIT((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT], \
446 (idx) & BIT_VEC64_ELEM_MASK)
447
448 #define BIT_VEC64_TEST_BIT(vec64, idx) \
449 (((vec64)[(idx) >> BIT_VEC64_ELEM_SHIFT] >> \
450 ((idx) & BIT_VEC64_ELEM_MASK)) & 0x1)
451
452 /* Creates a bitmask of all ones in less significant bits.
453 idx - index of the most significant bit in the created mask */
454 #define BIT_VEC64_ONES_MASK(idx) \
455 (((u64)0x1 << (((idx) & BIT_VEC64_ELEM_MASK) + 1)) - 1)
456 #define BIT_VEC64_ELEM_ONE_MASK ((u64)(~0))
457
458 /*******************************************************/
459
460 /* Number of u64 elements in SGE mask array */
461 #define RX_SGE_MASK_LEN (NUM_RX_SGE / BIT_VEC64_ELEM_SZ)
462 #define RX_SGE_MASK_LEN_MASK (RX_SGE_MASK_LEN - 1)
463 #define NEXT_SGE_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
464
465 union host_hc_status_block {
466 /* pointer to fp status block e1x */
467 struct host_hc_status_block_e1x *e1x_sb;
468 /* pointer to fp status block e2 */
469 struct host_hc_status_block_e2 *e2_sb;
470 };
471
472 struct bnx2x_agg_info {
473 /*
474 * First aggregation buffer is a data buffer, the following - are pages.
475 * We will preallocate the data buffer for each aggregation when
476 * we open the interface and will replace the BD at the consumer
477 * with this one when we receive the TPA_START CQE in order to
478 * keep the Rx BD ring consistent.
479 */
480 struct sw_rx_bd first_buf;
481 u8 tpa_state;
482 #define BNX2X_TPA_START 1
483 #define BNX2X_TPA_STOP 2
484 #define BNX2X_TPA_ERROR 3
485 u8 placement_offset;
486 u16 parsing_flags;
487 u16 vlan_tag;
488 u16 len_on_bd;
489 u32 rxhash;
490 enum pkt_hash_types rxhash_type;
491 u16 gro_size;
492 u16 full_page;
493 };
494
495 #define Q_STATS_OFFSET32(stat_name) \
496 (offsetof(struct bnx2x_eth_q_stats, stat_name) / 4)
497
498 struct bnx2x_fp_txdata {
499
500 struct sw_tx_bd *tx_buf_ring;
501
502 union eth_tx_bd_types *tx_desc_ring;
503 dma_addr_t tx_desc_mapping;
504
505 u32 cid;
506
507 union db_prod tx_db;
508
509 u16 tx_pkt_prod;
510 u16 tx_pkt_cons;
511 u16 tx_bd_prod;
512 u16 tx_bd_cons;
513
514 unsigned long tx_pkt;
515
516 __le16 *tx_cons_sb;
517
518 int txq_index;
519 struct bnx2x_fastpath *parent_fp;
520 int tx_ring_size;
521 };
522
523 enum bnx2x_tpa_mode_t {
524 TPA_MODE_LRO,
525 TPA_MODE_GRO
526 };
527
528 struct bnx2x_fastpath {
529 struct bnx2x *bp; /* parent */
530
531 struct napi_struct napi;
532
533 #ifdef CONFIG_NET_RX_BUSY_POLL
534 unsigned int state;
535 #define BNX2X_FP_STATE_IDLE 0
536 #define BNX2X_FP_STATE_NAPI (1 << 0) /* NAPI owns this FP */
537 #define BNX2X_FP_STATE_POLL (1 << 1) /* poll owns this FP */
538 #define BNX2X_FP_STATE_DISABLED (1 << 2)
539 #define BNX2X_FP_STATE_NAPI_YIELD (1 << 3) /* NAPI yielded this FP */
540 #define BNX2X_FP_STATE_POLL_YIELD (1 << 4) /* poll yielded this FP */
541 #define BNX2X_FP_OWNED (BNX2X_FP_STATE_NAPI | BNX2X_FP_STATE_POLL)
542 #define BNX2X_FP_YIELD (BNX2X_FP_STATE_NAPI_YIELD | BNX2X_FP_STATE_POLL_YIELD)
543 #define BNX2X_FP_LOCKED (BNX2X_FP_OWNED | BNX2X_FP_STATE_DISABLED)
544 #define BNX2X_FP_USER_PEND (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_POLL_YIELD)
545 /* protect state */
546 spinlock_t lock;
547 #endif /* CONFIG_NET_RX_BUSY_POLL */
548
549 union host_hc_status_block status_blk;
550 /* chip independent shortcuts into sb structure */
551 __le16 *sb_index_values;
552 __le16 *sb_running_index;
553 /* chip independent shortcut into rx_prods_offset memory */
554 u32 ustorm_rx_prods_offset;
555
556 u32 rx_buf_size;
557 u32 rx_frag_size; /* 0 if kmalloced(), or rx_buf_size + NET_SKB_PAD */
558 dma_addr_t status_blk_mapping;
559
560 enum bnx2x_tpa_mode_t mode;
561
562 u8 max_cos; /* actual number of active tx coses */
563 struct bnx2x_fp_txdata *txdata_ptr[BNX2X_MULTI_TX_COS];
564
565 struct sw_rx_bd *rx_buf_ring; /* BDs mappings ring */
566 struct sw_rx_page *rx_page_ring; /* SGE pages mappings ring */
567
568 struct eth_rx_bd *rx_desc_ring;
569 dma_addr_t rx_desc_mapping;
570
571 union eth_rx_cqe *rx_comp_ring;
572 dma_addr_t rx_comp_mapping;
573
574 /* SGE ring */
575 struct eth_rx_sge *rx_sge_ring;
576 dma_addr_t rx_sge_mapping;
577
578 u64 sge_mask[RX_SGE_MASK_LEN];
579
580 u32 cid;
581
582 __le16 fp_hc_idx;
583
584 u8 index; /* number in fp array */
585 u8 rx_queue; /* index for skb_record */
586 u8 cl_id; /* eth client id */
587 u8 cl_qzone_id;
588 u8 fw_sb_id; /* status block number in FW */
589 u8 igu_sb_id; /* status block number in HW */
590
591 u16 rx_bd_prod;
592 u16 rx_bd_cons;
593 u16 rx_comp_prod;
594 u16 rx_comp_cons;
595 u16 rx_sge_prod;
596 /* The last maximal completed SGE */
597 u16 last_max_sge;
598 __le16 *rx_cons_sb;
599 unsigned long rx_pkt,
600 rx_calls;
601
602 /* TPA related */
603 struct bnx2x_agg_info *tpa_info;
604 u8 disable_tpa;
605 #ifdef BNX2X_STOP_ON_ERROR
606 u64 tpa_queue_used;
607 #endif
608 /* The size is calculated using the following:
609 sizeof name field from netdev structure +
610 4 ('-Xx-' string) +
611 4 (for the digits and to make it DWORD aligned) */
612 #define FP_NAME_SIZE (sizeof(((struct net_device *)0)->name) + 8)
613 char name[FP_NAME_SIZE];
614 };
615
616 #define bnx2x_fp(bp, nr, var) ((bp)->fp[(nr)].var)
617 #define bnx2x_sp_obj(bp, fp) ((bp)->sp_objs[(fp)->index])
618 #define bnx2x_fp_stats(bp, fp) (&((bp)->fp_stats[(fp)->index]))
619 #define bnx2x_fp_qstats(bp, fp) (&((bp)->fp_stats[(fp)->index].eth_q_stats))
620
621 #ifdef CONFIG_NET_RX_BUSY_POLL
622 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
623 {
624 spin_lock_init(&fp->lock);
625 fp->state = BNX2X_FP_STATE_IDLE;
626 }
627
628 /* called from the device poll routine to get ownership of a FP */
629 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
630 {
631 bool rc = true;
632
633 spin_lock_bh(&fp->lock);
634 if (fp->state & BNX2X_FP_LOCKED) {
635 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
636 fp->state |= BNX2X_FP_STATE_NAPI_YIELD;
637 rc = false;
638 } else {
639 /* we don't care if someone yielded */
640 fp->state = BNX2X_FP_STATE_NAPI;
641 }
642 spin_unlock_bh(&fp->lock);
643 return rc;
644 }
645
646 /* returns true is someone tried to get the FP while napi had it */
647 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
648 {
649 bool rc = false;
650
651 spin_lock_bh(&fp->lock);
652 WARN_ON(fp->state &
653 (BNX2X_FP_STATE_POLL | BNX2X_FP_STATE_NAPI_YIELD));
654
655 if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
656 rc = true;
657
658 /* state ==> idle, unless currently disabled */
659 fp->state &= BNX2X_FP_STATE_DISABLED;
660 spin_unlock_bh(&fp->lock);
661 return rc;
662 }
663
664 /* called from bnx2x_low_latency_poll() */
665 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
666 {
667 bool rc = true;
668
669 spin_lock_bh(&fp->lock);
670 if ((fp->state & BNX2X_FP_LOCKED)) {
671 fp->state |= BNX2X_FP_STATE_POLL_YIELD;
672 rc = false;
673 } else {
674 /* preserve yield marks */
675 fp->state |= BNX2X_FP_STATE_POLL;
676 }
677 spin_unlock_bh(&fp->lock);
678 return rc;
679 }
680
681 /* returns true if someone tried to get the FP while it was locked */
682 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
683 {
684 bool rc = false;
685
686 spin_lock_bh(&fp->lock);
687 WARN_ON(fp->state & BNX2X_FP_STATE_NAPI);
688
689 if (fp->state & BNX2X_FP_STATE_POLL_YIELD)
690 rc = true;
691
692 /* state ==> idle, unless currently disabled */
693 fp->state &= BNX2X_FP_STATE_DISABLED;
694 spin_unlock_bh(&fp->lock);
695 return rc;
696 }
697
698 /* true if a socket is polling, even if it did not get the lock */
699 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
700 {
701 WARN_ON(!(fp->state & BNX2X_FP_OWNED));
702 return fp->state & BNX2X_FP_USER_PEND;
703 }
704
705 /* false if fp is currently owned */
706 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
707 {
708 int rc = true;
709
710 spin_lock_bh(&fp->lock);
711 if (fp->state & BNX2X_FP_OWNED)
712 rc = false;
713 fp->state |= BNX2X_FP_STATE_DISABLED;
714 spin_unlock_bh(&fp->lock);
715
716 return rc;
717 }
718 #else
719 static inline void bnx2x_fp_init_lock(struct bnx2x_fastpath *fp)
720 {
721 }
722
723 static inline bool bnx2x_fp_lock_napi(struct bnx2x_fastpath *fp)
724 {
725 return true;
726 }
727
728 static inline bool bnx2x_fp_unlock_napi(struct bnx2x_fastpath *fp)
729 {
730 return false;
731 }
732
733 static inline bool bnx2x_fp_lock_poll(struct bnx2x_fastpath *fp)
734 {
735 return false;
736 }
737
738 static inline bool bnx2x_fp_unlock_poll(struct bnx2x_fastpath *fp)
739 {
740 return false;
741 }
742
743 static inline bool bnx2x_fp_ll_polling(struct bnx2x_fastpath *fp)
744 {
745 return false;
746 }
747 static inline bool bnx2x_fp_ll_disable(struct bnx2x_fastpath *fp)
748 {
749 return true;
750 }
751 #endif /* CONFIG_NET_RX_BUSY_POLL */
752
753 /* Use 2500 as a mini-jumbo MTU for FCoE */
754 #define BNX2X_FCOE_MINI_JUMBO_MTU 2500
755
756 #define FCOE_IDX_OFFSET 0
757
758 #define FCOE_IDX(bp) (BNX2X_NUM_NON_CNIC_QUEUES(bp) + \
759 FCOE_IDX_OFFSET)
760 #define bnx2x_fcoe_fp(bp) (&bp->fp[FCOE_IDX(bp)])
761 #define bnx2x_fcoe(bp, var) (bnx2x_fcoe_fp(bp)->var)
762 #define bnx2x_fcoe_inner_sp_obj(bp) (&bp->sp_objs[FCOE_IDX(bp)])
763 #define bnx2x_fcoe_sp_obj(bp, var) (bnx2x_fcoe_inner_sp_obj(bp)->var)
764 #define bnx2x_fcoe_tx(bp, var) (bnx2x_fcoe_fp(bp)-> \
765 txdata_ptr[FIRST_TX_COS_INDEX] \
766 ->var)
767
768 #define IS_ETH_FP(fp) ((fp)->index < BNX2X_NUM_ETH_QUEUES((fp)->bp))
769 #define IS_FCOE_FP(fp) ((fp)->index == FCOE_IDX((fp)->bp))
770 #define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(bp))
771
772 /* MC hsi */
773 #define MAX_FETCH_BD 13 /* HW max BDs per packet */
774 #define RX_COPY_THRESH 92
775
776 #define NUM_TX_RINGS 16
777 #define TX_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
778 #define NEXT_PAGE_TX_DESC_CNT 1
779 #define MAX_TX_DESC_CNT (TX_DESC_CNT - NEXT_PAGE_TX_DESC_CNT)
780 #define NUM_TX_BD (TX_DESC_CNT * NUM_TX_RINGS)
781 #define MAX_TX_BD (NUM_TX_BD - 1)
782 #define MAX_TX_AVAIL (MAX_TX_DESC_CNT * NUM_TX_RINGS - 2)
783 #define NEXT_TX_IDX(x) ((((x) & MAX_TX_DESC_CNT) == \
784 (MAX_TX_DESC_CNT - 1)) ? \
785 (x) + 1 + NEXT_PAGE_TX_DESC_CNT : \
786 (x) + 1)
787 #define TX_BD(x) ((x) & MAX_TX_BD)
788 #define TX_BD_POFF(x) ((x) & MAX_TX_DESC_CNT)
789
790 /* number of NEXT_PAGE descriptors may be required during placement */
791 #define NEXT_CNT_PER_TX_PKT(bds) \
792 (((bds) + MAX_TX_DESC_CNT - 1) / \
793 MAX_TX_DESC_CNT * NEXT_PAGE_TX_DESC_CNT)
794 /* max BDs per tx packet w/o next_pages:
795 * START_BD - describes packed
796 * START_BD(splitted) - includes unpaged data segment for GSO
797 * PARSING_BD - for TSO and CSUM data
798 * PARSING_BD2 - for encapsulation data
799 * Frag BDs - describes pages for frags
800 */
801 #define BDS_PER_TX_PKT 4
802 #define MAX_BDS_PER_TX_PKT (MAX_SKB_FRAGS + BDS_PER_TX_PKT)
803 /* max BDs per tx packet including next pages */
804 #define MAX_DESC_PER_TX_PKT (MAX_BDS_PER_TX_PKT + \
805 NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))
806
807 /* The RX BD ring is special, each bd is 8 bytes but the last one is 16 */
808 #define NUM_RX_RINGS 8
809 #define RX_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
810 #define NEXT_PAGE_RX_DESC_CNT 2
811 #define MAX_RX_DESC_CNT (RX_DESC_CNT - NEXT_PAGE_RX_DESC_CNT)
812 #define RX_DESC_MASK (RX_DESC_CNT - 1)
813 #define NUM_RX_BD (RX_DESC_CNT * NUM_RX_RINGS)
814 #define MAX_RX_BD (NUM_RX_BD - 1)
815 #define MAX_RX_AVAIL (MAX_RX_DESC_CNT * NUM_RX_RINGS - 2)
816
817 /* dropless fc calculations for BDs
818 *
819 * Number of BDs should as number of buffers in BRB:
820 * Low threshold takes into account NEXT_PAGE_RX_DESC_CNT
821 * "next" elements on each page
822 */
823 #define NUM_BD_REQ BRB_SIZE(bp)
824 #define NUM_BD_PG_REQ ((NUM_BD_REQ + MAX_RX_DESC_CNT - 1) / \
825 MAX_RX_DESC_CNT)
826 #define BD_TH_LO(bp) (NUM_BD_REQ + \
827 NUM_BD_PG_REQ * NEXT_PAGE_RX_DESC_CNT + \
828 FW_DROP_LEVEL(bp))
829 #define BD_TH_HI(bp) (BD_TH_LO(bp) + DROPLESS_FC_HEADROOM)
830
831 #define MIN_RX_AVAIL ((bp)->dropless_fc ? BD_TH_HI(bp) + 128 : 128)
832
833 #define MIN_RX_SIZE_TPA_HW (CHIP_IS_E1(bp) ? \
834 ETH_MIN_RX_CQES_WITH_TPA_E1 : \
835 ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
836 #define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
837 #define MIN_RX_SIZE_TPA (max_t(u32, MIN_RX_SIZE_TPA_HW, MIN_RX_AVAIL))
838 #define MIN_RX_SIZE_NONTPA (max_t(u32, MIN_RX_SIZE_NONTPA_HW,\
839 MIN_RX_AVAIL))
840
841 #define NEXT_RX_IDX(x) ((((x) & RX_DESC_MASK) == \
842 (MAX_RX_DESC_CNT - 1)) ? \
843 (x) + 1 + NEXT_PAGE_RX_DESC_CNT : \
844 (x) + 1)
845 #define RX_BD(x) ((x) & MAX_RX_BD)
846
847 /*
848 * As long as CQE is X times bigger than BD entry we have to allocate X times
849 * more pages for CQ ring in order to keep it balanced with BD ring
850 */
851 #define CQE_BD_REL (sizeof(union eth_rx_cqe) / sizeof(struct eth_rx_bd))
852 #define NUM_RCQ_RINGS (NUM_RX_RINGS * CQE_BD_REL)
853 #define RCQ_DESC_CNT (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
854 #define NEXT_PAGE_RCQ_DESC_CNT 1
855 #define MAX_RCQ_DESC_CNT (RCQ_DESC_CNT - NEXT_PAGE_RCQ_DESC_CNT)
856 #define NUM_RCQ_BD (RCQ_DESC_CNT * NUM_RCQ_RINGS)
857 #define MAX_RCQ_BD (NUM_RCQ_BD - 1)
858 #define MAX_RCQ_AVAIL (MAX_RCQ_DESC_CNT * NUM_RCQ_RINGS - 2)
859 #define NEXT_RCQ_IDX(x) ((((x) & MAX_RCQ_DESC_CNT) == \
860 (MAX_RCQ_DESC_CNT - 1)) ? \
861 (x) + 1 + NEXT_PAGE_RCQ_DESC_CNT : \
862 (x) + 1)
863 #define RCQ_BD(x) ((x) & MAX_RCQ_BD)
864
865 /* dropless fc calculations for RCQs
866 *
867 * Number of RCQs should be as number of buffers in BRB:
868 * Low threshold takes into account NEXT_PAGE_RCQ_DESC_CNT
869 * "next" elements on each page
870 */
871 #define NUM_RCQ_REQ BRB_SIZE(bp)
872 #define NUM_RCQ_PG_REQ ((NUM_BD_REQ + MAX_RCQ_DESC_CNT - 1) / \
873 MAX_RCQ_DESC_CNT)
874 #define RCQ_TH_LO(bp) (NUM_RCQ_REQ + \
875 NUM_RCQ_PG_REQ * NEXT_PAGE_RCQ_DESC_CNT + \
876 FW_DROP_LEVEL(bp))
877 #define RCQ_TH_HI(bp) (RCQ_TH_LO(bp) + DROPLESS_FC_HEADROOM)
878
879 /* This is needed for determining of last_max */
880 #define SUB_S16(a, b) (s16)((s16)(a) - (s16)(b))
881 #define SUB_S32(a, b) (s32)((s32)(a) - (s32)(b))
882
883 #define BNX2X_SWCID_SHIFT 17
884 #define BNX2X_SWCID_MASK ((0x1 << BNX2X_SWCID_SHIFT) - 1)
885
886 /* used on a CID received from the HW */
887 #define SW_CID(x) (le32_to_cpu(x) & BNX2X_SWCID_MASK)
888 #define CQE_CMD(x) (le32_to_cpu(x) >> \
889 COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
890
891 #define BD_UNMAP_ADDR(bd) HILO_U64(le32_to_cpu((bd)->addr_hi), \
892 le32_to_cpu((bd)->addr_lo))
893 #define BD_UNMAP_LEN(bd) (le16_to_cpu((bd)->nbytes))
894
895 #define BNX2X_DB_MIN_SHIFT 3 /* 8 bytes */
896 #define BNX2X_DB_SHIFT 3 /* 8 bytes*/
897 #if (BNX2X_DB_SHIFT < BNX2X_DB_MIN_SHIFT)
898 #error "Min DB doorbell stride is 8"
899 #endif
900 #define DOORBELL(bp, cid, val) \
901 do { \
902 writel((u32)(val), bp->doorbells + (bp->db_size * (cid))); \
903 } while (0)
904
905 /* TX CSUM helpers */
906 #define SKB_CS_OFF(skb) (offsetof(struct tcphdr, check) - \
907 skb->csum_offset)
908 #define SKB_CS(skb) (*(u16 *)(skb_transport_header(skb) + \
909 skb->csum_offset))
910
911 #define pbd_tcp_flags(tcp_hdr) (ntohl(tcp_flag_word(tcp_hdr))>>16 & 0xff)
912
913 #define XMIT_PLAIN 0
914 #define XMIT_CSUM_V4 (1 << 0)
915 #define XMIT_CSUM_V6 (1 << 1)
916 #define XMIT_CSUM_TCP (1 << 2)
917 #define XMIT_GSO_V4 (1 << 3)
918 #define XMIT_GSO_V6 (1 << 4)
919 #define XMIT_CSUM_ENC_V4 (1 << 5)
920 #define XMIT_CSUM_ENC_V6 (1 << 6)
921 #define XMIT_GSO_ENC_V4 (1 << 7)
922 #define XMIT_GSO_ENC_V6 (1 << 8)
923
924 #define XMIT_CSUM_ENC (XMIT_CSUM_ENC_V4 | XMIT_CSUM_ENC_V6)
925 #define XMIT_GSO_ENC (XMIT_GSO_ENC_V4 | XMIT_GSO_ENC_V6)
926
927 #define XMIT_CSUM (XMIT_CSUM_V4 | XMIT_CSUM_V6 | XMIT_CSUM_ENC)
928 #define XMIT_GSO (XMIT_GSO_V4 | XMIT_GSO_V6 | XMIT_GSO_ENC)
929
930 /* stuff added to make the code fit 80Col */
931 #define CQE_TYPE(cqe_fp_flags) ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
932 #define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
933 #define CQE_TYPE_STOP(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
934 #define CQE_TYPE_SLOW(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
935 #define CQE_TYPE_FAST(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
936
937 #define ETH_RX_ERROR_FALGS ETH_FAST_PATH_RX_CQE_PHY_DECODE_ERR_FLG
938
939 #define BNX2X_PRS_FLAG_OVERETH_IPV4(flags) \
940 (((le16_to_cpu(flags) & \
941 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) >> \
942 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL_SHIFT) \
943 == PRS_FLAG_OVERETH_IPV4)
944 #define BNX2X_RX_SUM_FIX(cqe) \
945 BNX2X_PRS_FLAG_OVERETH_IPV4(cqe->fast_path_cqe.pars_flags.flags)
946
947 #define FP_USB_FUNC_OFF \
948 offsetof(struct cstorm_status_block_u, func)
949 #define FP_CSB_FUNC_OFF \
950 offsetof(struct cstorm_status_block_c, func)
951
952 #define HC_INDEX_ETH_RX_CQ_CONS 1
953
954 #define HC_INDEX_OOO_TX_CQ_CONS 4
955
956 #define HC_INDEX_ETH_TX_CQ_CONS_COS0 5
957
958 #define HC_INDEX_ETH_TX_CQ_CONS_COS1 6
959
960 #define HC_INDEX_ETH_TX_CQ_CONS_COS2 7
961
962 #define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
963
964 #define BNX2X_RX_SB_INDEX \
965 (&fp->sb_index_values[HC_INDEX_ETH_RX_CQ_CONS])
966
967 #define BNX2X_TX_SB_INDEX_BASE BNX2X_TX_SB_INDEX_COS0
968
969 #define BNX2X_TX_SB_INDEX_COS0 \
970 (&fp->sb_index_values[HC_INDEX_ETH_TX_CQ_CONS_COS0])
971
972 /* end of fast path */
973
974 /* common */
975
976 struct bnx2x_common {
977
978 u32 chip_id;
979 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
980 #define CHIP_ID(bp) (bp->common.chip_id & 0xfffffff0)
981
982 #define CHIP_NUM(bp) (bp->common.chip_id >> 16)
983 #define CHIP_NUM_57710 0x164e
984 #define CHIP_NUM_57711 0x164f
985 #define CHIP_NUM_57711E 0x1650
986 #define CHIP_NUM_57712 0x1662
987 #define CHIP_NUM_57712_MF 0x1663
988 #define CHIP_NUM_57712_VF 0x166f
989 #define CHIP_NUM_57713 0x1651
990 #define CHIP_NUM_57713E 0x1652
991 #define CHIP_NUM_57800 0x168a
992 #define CHIP_NUM_57800_MF 0x16a5
993 #define CHIP_NUM_57800_VF 0x16a9
994 #define CHIP_NUM_57810 0x168e
995 #define CHIP_NUM_57810_MF 0x16ae
996 #define CHIP_NUM_57810_VF 0x16af
997 #define CHIP_NUM_57811 0x163d
998 #define CHIP_NUM_57811_MF 0x163e
999 #define CHIP_NUM_57811_VF 0x163f
1000 #define CHIP_NUM_57840_OBSOLETE 0x168d
1001 #define CHIP_NUM_57840_MF_OBSOLETE 0x16ab
1002 #define CHIP_NUM_57840_4_10 0x16a1
1003 #define CHIP_NUM_57840_2_20 0x16a2
1004 #define CHIP_NUM_57840_MF 0x16a4
1005 #define CHIP_NUM_57840_VF 0x16ad
1006 #define CHIP_IS_E1(bp) (CHIP_NUM(bp) == CHIP_NUM_57710)
1007 #define CHIP_IS_57711(bp) (CHIP_NUM(bp) == CHIP_NUM_57711)
1008 #define CHIP_IS_57711E(bp) (CHIP_NUM(bp) == CHIP_NUM_57711E)
1009 #define CHIP_IS_57712(bp) (CHIP_NUM(bp) == CHIP_NUM_57712)
1010 #define CHIP_IS_57712_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_VF)
1011 #define CHIP_IS_57712_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57712_MF)
1012 #define CHIP_IS_57800(bp) (CHIP_NUM(bp) == CHIP_NUM_57800)
1013 #define CHIP_IS_57800_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_MF)
1014 #define CHIP_IS_57800_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57800_VF)
1015 #define CHIP_IS_57810(bp) (CHIP_NUM(bp) == CHIP_NUM_57810)
1016 #define CHIP_IS_57810_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_MF)
1017 #define CHIP_IS_57810_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57810_VF)
1018 #define CHIP_IS_57811(bp) (CHIP_NUM(bp) == CHIP_NUM_57811)
1019 #define CHIP_IS_57811_MF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_MF)
1020 #define CHIP_IS_57811_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57811_VF)
1021 #define CHIP_IS_57840(bp) \
1022 ((CHIP_NUM(bp) == CHIP_NUM_57840_4_10) || \
1023 (CHIP_NUM(bp) == CHIP_NUM_57840_2_20) || \
1024 (CHIP_NUM(bp) == CHIP_NUM_57840_OBSOLETE))
1025 #define CHIP_IS_57840_MF(bp) ((CHIP_NUM(bp) == CHIP_NUM_57840_MF) || \
1026 (CHIP_NUM(bp) == CHIP_NUM_57840_MF_OBSOLETE))
1027 #define CHIP_IS_57840_VF(bp) (CHIP_NUM(bp) == CHIP_NUM_57840_VF)
1028 #define CHIP_IS_E1H(bp) (CHIP_IS_57711(bp) || \
1029 CHIP_IS_57711E(bp))
1030 #define CHIP_IS_57811xx(bp) (CHIP_IS_57811(bp) || \
1031 CHIP_IS_57811_MF(bp) || \
1032 CHIP_IS_57811_VF(bp))
1033 #define CHIP_IS_E2(bp) (CHIP_IS_57712(bp) || \
1034 CHIP_IS_57712_MF(bp) || \
1035 CHIP_IS_57712_VF(bp))
1036 #define CHIP_IS_E3(bp) (CHIP_IS_57800(bp) || \
1037 CHIP_IS_57800_MF(bp) || \
1038 CHIP_IS_57800_VF(bp) || \
1039 CHIP_IS_57810(bp) || \
1040 CHIP_IS_57810_MF(bp) || \
1041 CHIP_IS_57810_VF(bp) || \
1042 CHIP_IS_57811xx(bp) || \
1043 CHIP_IS_57840(bp) || \
1044 CHIP_IS_57840_MF(bp) || \
1045 CHIP_IS_57840_VF(bp))
1046 #define CHIP_IS_E1x(bp) (CHIP_IS_E1((bp)) || CHIP_IS_E1H((bp)))
1047 #define USES_WARPCORE(bp) (CHIP_IS_E3(bp))
1048 #define IS_E1H_OFFSET (!CHIP_IS_E1(bp))
1049
1050 #define CHIP_REV_SHIFT 12
1051 #define CHIP_REV_MASK (0xF << CHIP_REV_SHIFT)
1052 #define CHIP_REV_VAL(bp) (bp->common.chip_id & CHIP_REV_MASK)
1053 #define CHIP_REV_Ax (0x0 << CHIP_REV_SHIFT)
1054 #define CHIP_REV_Bx (0x1 << CHIP_REV_SHIFT)
1055 /* assume maximum 5 revisions */
1056 #define CHIP_REV_IS_SLOW(bp) (CHIP_REV_VAL(bp) > 0x00005000)
1057 /* Emul versions are A=>0xe, B=>0xc, C=>0xa, D=>8, E=>6 */
1058 #define CHIP_REV_IS_EMUL(bp) ((CHIP_REV_IS_SLOW(bp)) && \
1059 !(CHIP_REV_VAL(bp) & 0x00001000))
1060 /* FPGA versions are A=>0xf, B=>0xd, C=>0xb, D=>9, E=>7 */
1061 #define CHIP_REV_IS_FPGA(bp) ((CHIP_REV_IS_SLOW(bp)) && \
1062 (CHIP_REV_VAL(bp) & 0x00001000))
1063
1064 #define CHIP_TIME(bp) ((CHIP_REV_IS_EMUL(bp)) ? 2000 : \
1065 ((CHIP_REV_IS_FPGA(bp)) ? 200 : 1))
1066
1067 #define CHIP_METAL(bp) (bp->common.chip_id & 0x00000ff0)
1068 #define CHIP_BOND_ID(bp) (bp->common.chip_id & 0x0000000f)
1069 #define CHIP_REV_SIM(bp) (((CHIP_REV_MASK - CHIP_REV_VAL(bp)) >>\
1070 (CHIP_REV_SHIFT + 1)) \
1071 << CHIP_REV_SHIFT)
1072 #define CHIP_REV(bp) (CHIP_REV_IS_SLOW(bp) ? \
1073 CHIP_REV_SIM(bp) :\
1074 CHIP_REV_VAL(bp))
1075 #define CHIP_IS_E3B0(bp) (CHIP_IS_E3(bp) && \
1076 (CHIP_REV(bp) == CHIP_REV_Bx))
1077 #define CHIP_IS_E3A0(bp) (CHIP_IS_E3(bp) && \
1078 (CHIP_REV(bp) == CHIP_REV_Ax))
1079 /* This define is used in two main places:
1080 * 1. In the early stages of nic_load, to know if to configure Parser / Searcher
1081 * to nic-only mode or to offload mode. Offload mode is configured if either the
1082 * chip is E1x (where MIC_MODE register is not applicable), or if cnic already
1083 * registered for this port (which means that the user wants storage services).
1084 * 2. During cnic-related load, to know if offload mode is already configured in
1085 * the HW or needs to be configured.
1086 * Since the transition from nic-mode to offload-mode in HW causes traffic
1087 * corruption, nic-mode is configured only in ports on which storage services
1088 * where never requested.
1089 */
1090 #define CONFIGURE_NIC_MODE(bp) (!CHIP_IS_E1x(bp) && !CNIC_ENABLED(bp))
1091
1092 int flash_size;
1093 #define BNX2X_NVRAM_1MB_SIZE 0x20000 /* 1M bit in bytes */
1094 #define BNX2X_NVRAM_TIMEOUT_COUNT 30000
1095 #define BNX2X_NVRAM_PAGE_SIZE 256
1096
1097 u32 shmem_base;
1098 u32 shmem2_base;
1099 u32 mf_cfg_base;
1100 u32 mf2_cfg_base;
1101
1102 u32 hw_config;
1103
1104 u32 bc_ver;
1105
1106 u8 int_block;
1107 #define INT_BLOCK_HC 0
1108 #define INT_BLOCK_IGU 1
1109 #define INT_BLOCK_MODE_NORMAL 0
1110 #define INT_BLOCK_MODE_BW_COMP 2
1111 #define CHIP_INT_MODE_IS_NBC(bp) \
1112 (!CHIP_IS_E1x(bp) && \
1113 !((bp)->common.int_block & INT_BLOCK_MODE_BW_COMP))
1114 #define CHIP_INT_MODE_IS_BC(bp) (!CHIP_INT_MODE_IS_NBC(bp))
1115
1116 u8 chip_port_mode;
1117 #define CHIP_4_PORT_MODE 0x0
1118 #define CHIP_2_PORT_MODE 0x1
1119 #define CHIP_PORT_MODE_NONE 0x2
1120 #define CHIP_MODE(bp) (bp->common.chip_port_mode)
1121 #define CHIP_MODE_IS_4_PORT(bp) (CHIP_MODE(bp) == CHIP_4_PORT_MODE)
1122
1123 u32 boot_mode;
1124 };
1125
1126 /* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
1127 #define BNX2X_IGU_STAS_MSG_VF_CNT 64
1128 #define BNX2X_IGU_STAS_MSG_PF_CNT 4
1129
1130 #define MAX_IGU_ATTN_ACK_TO 100
1131 /* end of common */
1132
1133 /* port */
1134
1135 struct bnx2x_port {
1136 u32 pmf;
1137
1138 u32 link_config[LINK_CONFIG_SIZE];
1139
1140 u32 supported[LINK_CONFIG_SIZE];
1141
1142 u32 advertising[LINK_CONFIG_SIZE];
1143
1144 u32 phy_addr;
1145
1146 /* used to synchronize phy accesses */
1147 struct mutex phy_mutex;
1148
1149 u32 port_stx;
1150
1151 struct nig_stats old_nig_stats;
1152 };
1153
1154 /* end of port */
1155
1156 #define STATS_OFFSET32(stat_name) \
1157 (offsetof(struct bnx2x_eth_stats, stat_name) / 4)
1158
1159 /* slow path */
1160 #define BNX2X_MAX_NUM_OF_VFS 64
1161 #define BNX2X_VF_CID_WND 4 /* log num of queues per VF. HW config. */
1162 #define BNX2X_CIDS_PER_VF (1 << BNX2X_VF_CID_WND)
1163
1164 /* We need to reserve doorbell addresses for all VF and queue combinations */
1165 #define BNX2X_VF_CIDS (BNX2X_MAX_NUM_OF_VFS * BNX2X_CIDS_PER_VF)
1166
1167 /* The doorbell is configured to have the same number of CIDs for PFs and for
1168 * VFs. For this reason the PF CID zone is as large as the VF zone.
1169 */
1170 #define BNX2X_FIRST_VF_CID BNX2X_VF_CIDS
1171 #define BNX2X_MAX_NUM_VF_QUEUES 64
1172 #define BNX2X_VF_ID_INVALID 0xFF
1173
1174 /* the number of VF CIDS multiplied by the amount of bytes reserved for each
1175 * cid must not exceed the size of the VF doorbell
1176 */
1177 #define BNX2X_VF_BAR_SIZE 512
1178 #if (BNX2X_VF_BAR_SIZE < BNX2X_CIDS_PER_VF * (1 << BNX2X_DB_SHIFT))
1179 #error "VF doorbell bar size is 512"
1180 #endif
1181
1182 /*
1183 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
1184 * control by the number of fast-path status blocks supported by the
1185 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
1186 * status block represents an independent interrupts context that can
1187 * serve a regular L2 networking queue. However special L2 queues such
1188 * as the FCoE queue do not require a FP-SB and other components like
1189 * the CNIC may consume FP-SB reducing the number of possible L2 queues
1190 *
1191 * If the maximum number of FP-SB available is X then:
1192 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
1193 * regular L2 queues is Y=X-1
1194 * b. In MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
1195 * c. If the FCoE L2 queue is supported the actual number of L2 queues
1196 * is Y+1
1197 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
1198 * slow-path interrupts) or Y+2 if CNIC is supported (one additional
1199 * FP interrupt context for the CNIC).
1200 * e. The number of HW context (CID count) is always X or X+1 if FCoE
1201 * L2 queue is supported. The cid for the FCoE L2 queue is always X.
1202 */
1203
1204 /* fast-path interrupt contexts E1x */
1205 #define FP_SB_MAX_E1x 16
1206 /* fast-path interrupt contexts E2 */
1207 #define FP_SB_MAX_E2 HC_SB_MAX_SB_E2
1208
1209 union cdu_context {
1210 struct eth_context eth;
1211 char pad[1024];
1212 };
1213
1214 /* CDU host DB constants */
1215 #define CDU_ILT_PAGE_SZ_HW 2
1216 #define CDU_ILT_PAGE_SZ (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
1217 #define ILT_PAGE_CIDS (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
1218
1219 #define CNIC_ISCSI_CID_MAX 256
1220 #define CNIC_FCOE_CID_MAX 2048
1221 #define CNIC_CID_MAX (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
1222 #define CNIC_ILT_LINES DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
1223
1224 #define QM_ILT_PAGE_SZ_HW 0
1225 #define QM_ILT_PAGE_SZ (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
1226 #define QM_CID_ROUND 1024
1227
1228 /* TM (timers) host DB constants */
1229 #define TM_ILT_PAGE_SZ_HW 0
1230 #define TM_ILT_PAGE_SZ (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
1231 #define TM_CONN_NUM (BNX2X_FIRST_VF_CID + \
1232 BNX2X_VF_CIDS + \
1233 CNIC_ISCSI_CID_MAX)
1234 #define TM_ILT_SZ (8 * TM_CONN_NUM)
1235 #define TM_ILT_LINES DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
1236
1237 /* SRC (Searcher) host DB constants */
1238 #define SRC_ILT_PAGE_SZ_HW 0
1239 #define SRC_ILT_PAGE_SZ (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
1240 #define SRC_HASH_BITS 10
1241 #define SRC_CONN_NUM (1 << SRC_HASH_BITS) /* 1024 */
1242 #define SRC_ILT_SZ (sizeof(struct src_ent) * SRC_CONN_NUM)
1243 #define SRC_T2_SZ SRC_ILT_SZ
1244 #define SRC_ILT_LINES DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
1245
1246 #define MAX_DMAE_C 8
1247
1248 /* DMA memory not used in fastpath */
1249 struct bnx2x_slowpath {
1250 union {
1251 struct mac_configuration_cmd e1x;
1252 struct eth_classify_rules_ramrod_data e2;
1253 } mac_rdata;
1254
1255 union {
1256 struct tstorm_eth_mac_filter_config e1x;
1257 struct eth_filter_rules_ramrod_data e2;
1258 } rx_mode_rdata;
1259
1260 union {
1261 struct mac_configuration_cmd e1;
1262 struct eth_multicast_rules_ramrod_data e2;
1263 } mcast_rdata;
1264
1265 struct eth_rss_update_ramrod_data rss_rdata;
1266
1267 /* Queue State related ramrods are always sent under rtnl_lock */
1268 union {
1269 struct client_init_ramrod_data init_data;
1270 struct client_update_ramrod_data update_data;
1271 struct tpa_update_ramrod_data tpa_data;
1272 } q_rdata;
1273
1274 union {
1275 struct function_start_data func_start;
1276 /* pfc configuration for DCBX ramrod */
1277 struct flow_control_configuration pfc_config;
1278 } func_rdata;
1279
1280 /* afex ramrod can not be a part of func_rdata union because these
1281 * events might arrive in parallel to other events from func_rdata.
1282 * Therefore, if they would have been defined in the same union,
1283 * data can get corrupted.
1284 */
1285 union {
1286 struct afex_vif_list_ramrod_data viflist_data;
1287 struct function_update_data func_update;
1288 } func_afex_rdata;
1289
1290 /* used by dmae command executer */
1291 struct dmae_command dmae[MAX_DMAE_C];
1292
1293 u32 stats_comp;
1294 union mac_stats mac_stats;
1295 struct nig_stats nig_stats;
1296 struct host_port_stats port_stats;
1297 struct host_func_stats func_stats;
1298
1299 u32 wb_comp;
1300 u32 wb_data[4];
1301
1302 union drv_info_to_mcp drv_info_to_mcp;
1303 };
1304
1305 #define bnx2x_sp(bp, var) (&bp->slowpath->var)
1306 #define bnx2x_sp_mapping(bp, var) \
1307 (bp->slowpath_mapping + offsetof(struct bnx2x_slowpath, var))
1308
1309 /* attn group wiring */
1310 #define MAX_DYNAMIC_ATTN_GRPS 8
1311
1312 struct attn_route {
1313 u32 sig[5];
1314 };
1315
1316 struct iro {
1317 u32 base;
1318 u16 m1;
1319 u16 m2;
1320 u16 m3;
1321 u16 size;
1322 };
1323
1324 struct hw_context {
1325 union cdu_context *vcxt;
1326 dma_addr_t cxt_mapping;
1327 size_t size;
1328 };
1329
1330 /* forward */
1331 struct bnx2x_ilt;
1332
1333 struct bnx2x_vfdb;
1334
1335 enum bnx2x_recovery_state {
1336 BNX2X_RECOVERY_DONE,
1337 BNX2X_RECOVERY_INIT,
1338 BNX2X_RECOVERY_WAIT,
1339 BNX2X_RECOVERY_FAILED,
1340 BNX2X_RECOVERY_NIC_LOADING
1341 };
1342
1343 /*
1344 * Event queue (EQ or event ring) MC hsi
1345 * NUM_EQ_PAGES and EQ_DESC_CNT_PAGE must be power of 2
1346 */
1347 #define NUM_EQ_PAGES 1
1348 #define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1349 #define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1350 #define NUM_EQ_DESC (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1351 #define EQ_DESC_MASK (NUM_EQ_DESC - 1)
1352 #define MAX_EQ_AVAIL (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1353
1354 /* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1355 #define NEXT_EQ_IDX(x) ((((x) & EQ_DESC_MAX_PAGE) == \
1356 (EQ_DESC_MAX_PAGE - 1)) ? (x) + 2 : (x) + 1)
1357
1358 /* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1359 #define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1360
1361 #define BNX2X_EQ_INDEX \
1362 (&bp->def_status_blk->sp_sb.\
1363 index_values[HC_SP_INDEX_EQ_CONS])
1364
1365 /* This is a data that will be used to create a link report message.
1366 * We will keep the data used for the last link report in order
1367 * to prevent reporting the same link parameters twice.
1368 */
1369 struct bnx2x_link_report_data {
1370 u16 line_speed; /* Effective line speed */
1371 unsigned long link_report_flags;/* BNX2X_LINK_REPORT_XXX flags */
1372 };
1373
1374 enum {
1375 BNX2X_LINK_REPORT_FD, /* Full DUPLEX */
1376 BNX2X_LINK_REPORT_LINK_DOWN,
1377 BNX2X_LINK_REPORT_RX_FC_ON,
1378 BNX2X_LINK_REPORT_TX_FC_ON,
1379 };
1380
1381 enum {
1382 BNX2X_PORT_QUERY_IDX,
1383 BNX2X_PF_QUERY_IDX,
1384 BNX2X_FCOE_QUERY_IDX,
1385 BNX2X_FIRST_QUEUE_QUERY_IDX,
1386 };
1387
1388 struct bnx2x_fw_stats_req {
1389 struct stats_query_header hdr;
1390 struct stats_query_entry query[FP_SB_MAX_E1x+
1391 BNX2X_FIRST_QUEUE_QUERY_IDX];
1392 };
1393
1394 struct bnx2x_fw_stats_data {
1395 struct stats_counter storm_counters;
1396 struct per_port_stats port;
1397 struct per_pf_stats pf;
1398 struct fcoe_statistics_params fcoe;
1399 struct per_queue_stats queue_stats[1];
1400 };
1401
1402 /* Public slow path states */
1403 enum sp_rtnl_flag {
1404 BNX2X_SP_RTNL_SETUP_TC,
1405 BNX2X_SP_RTNL_TX_TIMEOUT,
1406 BNX2X_SP_RTNL_FAN_FAILURE,
1407 BNX2X_SP_RTNL_AFEX_F_UPDATE,
1408 BNX2X_SP_RTNL_ENABLE_SRIOV,
1409 BNX2X_SP_RTNL_VFPF_MCAST,
1410 BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
1411 BNX2X_SP_RTNL_RX_MODE,
1412 BNX2X_SP_RTNL_HYPERVISOR_VLAN,
1413 BNX2X_SP_RTNL_TX_STOP,
1414 BNX2X_SP_RTNL_GET_DRV_VERSION,
1415 };
1416
1417 enum bnx2x_iov_flag {
1418 BNX2X_IOV_HANDLE_VF_MSG,
1419 BNX2X_IOV_HANDLE_FLR,
1420 };
1421
1422 struct bnx2x_prev_path_list {
1423 struct list_head list;
1424 u8 bus;
1425 u8 slot;
1426 u8 path;
1427 u8 aer;
1428 u8 undi;
1429 };
1430
1431 struct bnx2x_sp_objs {
1432 /* MACs object */
1433 struct bnx2x_vlan_mac_obj mac_obj;
1434
1435 /* Queue State object */
1436 struct bnx2x_queue_sp_obj q_obj;
1437 };
1438
1439 struct bnx2x_fp_stats {
1440 struct tstorm_per_queue_stats old_tclient;
1441 struct ustorm_per_queue_stats old_uclient;
1442 struct xstorm_per_queue_stats old_xclient;
1443 struct bnx2x_eth_q_stats eth_q_stats;
1444 struct bnx2x_eth_q_stats_old eth_q_stats_old;
1445 };
1446
1447 enum {
1448 SUB_MF_MODE_UNKNOWN = 0,
1449 SUB_MF_MODE_UFP,
1450 SUB_MF_MODE_NPAR1_DOT_5,
1451 };
1452
1453 struct bnx2x {
1454 /* Fields used in the tx and intr/napi performance paths
1455 * are grouped together in the beginning of the structure
1456 */
1457 struct bnx2x_fastpath *fp;
1458 struct bnx2x_sp_objs *sp_objs;
1459 struct bnx2x_fp_stats *fp_stats;
1460 struct bnx2x_fp_txdata *bnx2x_txq;
1461 void __iomem *regview;
1462 void __iomem *doorbells;
1463 u16 db_size;
1464
1465 u8 pf_num; /* absolute PF number */
1466 u8 pfid; /* per-path PF number */
1467 int base_fw_ndsb; /**/
1468 #define BP_PATH(bp) (CHIP_IS_E1x(bp) ? 0 : (bp->pf_num & 1))
1469 #define BP_PORT(bp) (bp->pfid & 1)
1470 #define BP_FUNC(bp) (bp->pfid)
1471 #define BP_ABS_FUNC(bp) (bp->pf_num)
1472 #define BP_VN(bp) ((bp)->pfid >> 1)
1473 #define BP_MAX_VN_NUM(bp) (CHIP_MODE_IS_4_PORT(bp) ? 2 : 4)
1474 #define BP_L_ID(bp) (BP_VN(bp) << 2)
1475 #define BP_FW_MB_IDX_VN(bp, vn) (BP_PORT(bp) +\
1476 (vn) * ((CHIP_IS_E1x(bp) || (CHIP_MODE_IS_4_PORT(bp))) ? 2 : 1))
1477 #define BP_FW_MB_IDX(bp) BP_FW_MB_IDX_VN(bp, BP_VN(bp))
1478
1479 #ifdef CONFIG_BNX2X_SRIOV
1480 /* protects vf2pf mailbox from simultaneous access */
1481 struct mutex vf2pf_mutex;
1482 /* vf pf channel mailbox contains request and response buffers */
1483 struct bnx2x_vf_mbx_msg *vf2pf_mbox;
1484 dma_addr_t vf2pf_mbox_mapping;
1485
1486 /* we set aside a copy of the acquire response */
1487 struct pfvf_acquire_resp_tlv acquire_resp;
1488
1489 /* bulletin board for messages from pf to vf */
1490 union pf_vf_bulletin *pf2vf_bulletin;
1491 dma_addr_t pf2vf_bulletin_mapping;
1492
1493 union pf_vf_bulletin shadow_bulletin;
1494 struct pf_vf_bulletin_content old_bulletin;
1495
1496 u16 requested_nr_virtfn;
1497 #endif /* CONFIG_BNX2X_SRIOV */
1498
1499 struct net_device *dev;
1500 struct pci_dev *pdev;
1501
1502 const struct iro *iro_arr;
1503 #define IRO (bp->iro_arr)
1504
1505 enum bnx2x_recovery_state recovery_state;
1506 int is_leader;
1507 struct msix_entry *msix_table;
1508
1509 int tx_ring_size;
1510
1511 /* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
1512 #define ETH_OVREHEAD (ETH_HLEN + 8 + 8)
1513 #define ETH_MIN_PACKET_SIZE 60
1514 #define ETH_MAX_PACKET_SIZE 1500
1515 #define ETH_MAX_JUMBO_PACKET_SIZE 9600
1516 /* TCP with Timestamp Option (32) + IPv6 (40) */
1517 #define ETH_MAX_TPA_HEADER_SIZE 72
1518
1519 /* Max supported alignment is 256 (8 shift)
1520 * minimal alignment shift 6 is optimal for 57xxx HW performance
1521 */
1522 #define BNX2X_RX_ALIGN_SHIFT max(6, min(8, L1_CACHE_SHIFT))
1523
1524 /* FW uses 2 Cache lines Alignment for start packet and size
1525 *
1526 * We assume skb_build() uses sizeof(struct skb_shared_info) bytes
1527 * at the end of skb->data, to avoid wasting a full cache line.
1528 * This reduces memory use (skb->truesize).
1529 */
1530 #define BNX2X_FW_RX_ALIGN_START (1UL << BNX2X_RX_ALIGN_SHIFT)
1531
1532 #define BNX2X_FW_RX_ALIGN_END \
1533 max_t(u64, 1UL << BNX2X_RX_ALIGN_SHIFT, \
1534 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
1535
1536 #define BNX2X_PXP_DRAM_ALIGN (BNX2X_RX_ALIGN_SHIFT - 5)
1537
1538 struct host_sp_status_block *def_status_blk;
1539 #define DEF_SB_IGU_ID 16
1540 #define DEF_SB_ID HC_SP_SB_ID
1541 __le16 def_idx;
1542 __le16 def_att_idx;
1543 u32 attn_state;
1544 struct attn_route attn_group[MAX_DYNAMIC_ATTN_GRPS];
1545
1546 /* slow path ring */
1547 struct eth_spe *spq;
1548 dma_addr_t spq_mapping;
1549 u16 spq_prod_idx;
1550 struct eth_spe *spq_prod_bd;
1551 struct eth_spe *spq_last_bd;
1552 __le16 *dsb_sp_prod;
1553 atomic_t cq_spq_left; /* ETH_XXX ramrods credit */
1554 /* used to synchronize spq accesses */
1555 spinlock_t spq_lock;
1556
1557 /* event queue */
1558 union event_ring_elem *eq_ring;
1559 dma_addr_t eq_mapping;
1560 u16 eq_prod;
1561 u16 eq_cons;
1562 __le16 *eq_cons_sb;
1563 atomic_t eq_spq_left; /* COMMON_XXX ramrods credit */
1564
1565 /* Counter for marking that there is a STAT_QUERY ramrod pending */
1566 u16 stats_pending;
1567 /* Counter for completed statistics ramrods */
1568 u16 stats_comp;
1569
1570 /* End of fields used in the performance code paths */
1571
1572 int panic;
1573 int msg_enable;
1574
1575 u32 flags;
1576 #define PCIX_FLAG (1 << 0)
1577 #define PCI_32BIT_FLAG (1 << 1)
1578 #define ONE_PORT_FLAG (1 << 2)
1579 #define NO_WOL_FLAG (1 << 3)
1580 #define USING_MSIX_FLAG (1 << 5)
1581 #define USING_MSI_FLAG (1 << 6)
1582 #define DISABLE_MSI_FLAG (1 << 7)
1583 #define TPA_ENABLE_FLAG (1 << 8)
1584 #define NO_MCP_FLAG (1 << 9)
1585 #define GRO_ENABLE_FLAG (1 << 10)
1586 #define MF_FUNC_DIS (1 << 11)
1587 #define OWN_CNIC_IRQ (1 << 12)
1588 #define NO_ISCSI_OOO_FLAG (1 << 13)
1589 #define NO_ISCSI_FLAG (1 << 14)
1590 #define NO_FCOE_FLAG (1 << 15)
1591 #define BC_SUPPORTS_PFC_STATS (1 << 17)
1592 #define TX_SWITCHING (1 << 18)
1593 #define BC_SUPPORTS_FCOE_FEATURES (1 << 19)
1594 #define USING_SINGLE_MSIX_FLAG (1 << 20)
1595 #define BC_SUPPORTS_DCBX_MSG_NON_PMF (1 << 21)
1596 #define IS_VF_FLAG (1 << 22)
1597 #define BC_SUPPORTS_RMMOD_CMD (1 << 23)
1598 #define HAS_PHYS_PORT_ID (1 << 24)
1599 #define AER_ENABLED (1 << 25)
1600 #define PTP_SUPPORTED (1 << 26)
1601 #define TX_TIMESTAMPING_EN (1 << 27)
1602
1603 #define BP_NOMCP(bp) ((bp)->flags & NO_MCP_FLAG)
1604
1605 #ifdef CONFIG_BNX2X_SRIOV
1606 #define IS_VF(bp) ((bp)->flags & IS_VF_FLAG)
1607 #define IS_PF(bp) (!((bp)->flags & IS_VF_FLAG))
1608 #else
1609 #define IS_VF(bp) false
1610 #define IS_PF(bp) true
1611 #endif
1612
1613 #define NO_ISCSI(bp) ((bp)->flags & NO_ISCSI_FLAG)
1614 #define NO_ISCSI_OOO(bp) ((bp)->flags & NO_ISCSI_OOO_FLAG)
1615 #define NO_FCOE(bp) ((bp)->flags & NO_FCOE_FLAG)
1616
1617 u8 cnic_support;
1618 bool cnic_enabled;
1619 bool cnic_loaded;
1620 struct cnic_eth_dev *(*cnic_probe)(struct net_device *);
1621
1622 /* Flag that indicates that we can start looking for FCoE L2 queue
1623 * completions in the default status block.
1624 */
1625 bool fcoe_init;
1626
1627 int mrrs;
1628
1629 struct delayed_work sp_task;
1630 struct delayed_work iov_task;
1631
1632 atomic_t interrupt_occurred;
1633 struct delayed_work sp_rtnl_task;
1634
1635 struct delayed_work period_task;
1636 struct timer_list timer;
1637 int current_interval;
1638
1639 u16 fw_seq;
1640 u16 fw_drv_pulse_wr_seq;
1641 u32 func_stx;
1642
1643 struct link_params link_params;
1644 struct link_vars link_vars;
1645 u32 link_cnt;
1646 struct bnx2x_link_report_data last_reported_link;
1647
1648 struct mdio_if_info mdio;
1649
1650 struct bnx2x_common common;
1651 struct bnx2x_port port;
1652
1653 struct cmng_init cmng;
1654
1655 u32 mf_config[E1HVN_MAX];
1656 u32 mf_ext_config;
1657 u32 path_has_ovlan; /* E3 */
1658 u16 mf_ov;
1659 u8 mf_mode;
1660 #define IS_MF(bp) (bp->mf_mode != 0)
1661 #define IS_MF_SI(bp) (bp->mf_mode == MULTI_FUNCTION_SI)
1662 #define IS_MF_SD(bp) (bp->mf_mode == MULTI_FUNCTION_SD)
1663 #define IS_MF_AFEX(bp) (bp->mf_mode == MULTI_FUNCTION_AFEX)
1664 u8 mf_sub_mode;
1665 #define IS_MF_UFP(bp) (IS_MF_SD(bp) && \
1666 bp->mf_sub_mode == SUB_MF_MODE_UFP)
1667
1668 u8 wol;
1669
1670 int rx_ring_size;
1671
1672 u16 tx_quick_cons_trip_int;
1673 u16 tx_quick_cons_trip;
1674 u16 tx_ticks_int;
1675 u16 tx_ticks;
1676
1677 u16 rx_quick_cons_trip_int;
1678 u16 rx_quick_cons_trip;
1679 u16 rx_ticks_int;
1680 u16 rx_ticks;
1681 /* Maximal coalescing timeout in us */
1682 #define BNX2X_MAX_COALESCE_TOUT (0xff*BNX2X_BTR)
1683
1684 u32 lin_cnt;
1685
1686 u16 state;
1687 #define BNX2X_STATE_CLOSED 0
1688 #define BNX2X_STATE_OPENING_WAIT4_LOAD 0x1000
1689 #define BNX2X_STATE_OPENING_WAIT4_PORT 0x2000
1690 #define BNX2X_STATE_OPEN 0x3000
1691 #define BNX2X_STATE_CLOSING_WAIT4_HALT 0x4000
1692 #define BNX2X_STATE_CLOSING_WAIT4_DELETE 0x5000
1693
1694 #define BNX2X_STATE_DIAG 0xe000
1695 #define BNX2X_STATE_ERROR 0xf000
1696
1697 #define BNX2X_MAX_PRIORITY 8
1698 int num_queues;
1699 uint num_ethernet_queues;
1700 uint num_cnic_queues;
1701 int disable_tpa;
1702
1703 u32 rx_mode;
1704 #define BNX2X_RX_MODE_NONE 0
1705 #define BNX2X_RX_MODE_NORMAL 1
1706 #define BNX2X_RX_MODE_ALLMULTI 2
1707 #define BNX2X_RX_MODE_PROMISC 3
1708 #define BNX2X_MAX_MULTICAST 64
1709
1710 u8 igu_dsb_id;
1711 u8 igu_base_sb;
1712 u8 igu_sb_cnt;
1713 u8 min_msix_vec_cnt;
1714
1715 u32 igu_base_addr;
1716 dma_addr_t def_status_blk_mapping;
1717
1718 struct bnx2x_slowpath *slowpath;
1719 dma_addr_t slowpath_mapping;
1720
1721 /* Mechanism protecting the drv_info_to_mcp */
1722 struct mutex drv_info_mutex;
1723 bool drv_info_mng_owner;
1724
1725 /* Total number of FW statistics requests */
1726 u8 fw_stats_num;
1727
1728 /*
1729 * This is a memory buffer that will contain both statistics
1730 * ramrod request and data.
1731 */
1732 void *fw_stats;
1733 dma_addr_t fw_stats_mapping;
1734
1735 /*
1736 * FW statistics request shortcut (points at the
1737 * beginning of fw_stats buffer).
1738 */
1739 struct bnx2x_fw_stats_req *fw_stats_req;
1740 dma_addr_t fw_stats_req_mapping;
1741 int fw_stats_req_sz;
1742
1743 /*
1744 * FW statistics data shortcut (points at the beginning of
1745 * fw_stats buffer + fw_stats_req_sz).
1746 */
1747 struct bnx2x_fw_stats_data *fw_stats_data;
1748 dma_addr_t fw_stats_data_mapping;
1749 int fw_stats_data_sz;
1750
1751 /* For max 1024 cids (VF RSS), 32KB ILT page size and 1KB
1752 * context size we need 8 ILT entries.
1753 */
1754 #define ILT_MAX_L2_LINES 32
1755 struct hw_context context[ILT_MAX_L2_LINES];
1756
1757 struct bnx2x_ilt *ilt;
1758 #define BP_ILT(bp) ((bp)->ilt)
1759 #define ILT_MAX_LINES 256
1760 /*
1761 * Maximum supported number of RSS queues: number of IGU SBs minus one that goes
1762 * to CNIC.
1763 */
1764 #define BNX2X_MAX_RSS_COUNT(bp) ((bp)->igu_sb_cnt - CNIC_SUPPORT(bp))
1765
1766 /*
1767 * Maximum CID count that might be required by the bnx2x:
1768 * Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI
1769 */
1770
1771 #define BNX2X_L2_CID_COUNT(bp) (BNX2X_NUM_ETH_QUEUES(bp) * BNX2X_MULTI_TX_COS \
1772 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1773 #define BNX2X_L2_MAX_CID(bp) (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS \
1774 + CNIC_SUPPORT(bp) * (2 + UIO_CID_PAD(bp)))
1775 #define L2_ILT_LINES(bp) (DIV_ROUND_UP(BNX2X_L2_CID_COUNT(bp),\
1776 ILT_PAGE_CIDS))
1777
1778 int qm_cid_count;
1779
1780 bool dropless_fc;
1781
1782 void *t2;
1783 dma_addr_t t2_mapping;
1784 struct cnic_ops __rcu *cnic_ops;
1785 void *cnic_data;
1786 u32 cnic_tag;
1787 struct cnic_eth_dev cnic_eth_dev;
1788 union host_hc_status_block cnic_sb;
1789 dma_addr_t cnic_sb_mapping;
1790 struct eth_spe *cnic_kwq;
1791 struct eth_spe *cnic_kwq_prod;
1792 struct eth_spe *cnic_kwq_cons;
1793 struct eth_spe *cnic_kwq_last;
1794 u16 cnic_kwq_pending;
1795 u16 cnic_spq_pending;
1796 u8 fip_mac[ETH_ALEN];
1797 struct mutex cnic_mutex;
1798 struct bnx2x_vlan_mac_obj iscsi_l2_mac_obj;
1799
1800 /* Start index of the "special" (CNIC related) L2 clients */
1801 u8 cnic_base_cl_id;
1802
1803 int dmae_ready;
1804 /* used to synchronize dmae accesses */
1805 spinlock_t dmae_lock;
1806
1807 /* used to protect the FW mail box */
1808 struct mutex fw_mb_mutex;
1809
1810 /* used to synchronize stats collecting */
1811 int stats_state;
1812
1813 /* used for synchronization of concurrent threads statistics handling */
1814 struct mutex stats_lock;
1815
1816 /* used by dmae command loader */
1817 struct dmae_command stats_dmae;
1818 int executer_idx;
1819
1820 u16 stats_counter;
1821 struct bnx2x_eth_stats eth_stats;
1822 struct host_func_stats func_stats;
1823 struct bnx2x_eth_stats_old eth_stats_old;
1824 struct bnx2x_net_stats_old net_stats_old;
1825 struct bnx2x_fw_port_stats_old fw_stats_old;
1826 bool stats_init;
1827
1828 struct z_stream_s *strm;
1829 void *gunzip_buf;
1830 dma_addr_t gunzip_mapping;
1831 int gunzip_outlen;
1832 #define FW_BUF_SIZE 0x8000
1833 #define GUNZIP_BUF(bp) (bp->gunzip_buf)
1834 #define GUNZIP_PHYS(bp) (bp->gunzip_mapping)
1835 #define GUNZIP_OUTLEN(bp) (bp->gunzip_outlen)
1836
1837 struct raw_op *init_ops;
1838 /* Init blocks offsets inside init_ops */
1839 u16 *init_ops_offsets;
1840 /* Data blob - has 32 bit granularity */
1841 u32 *init_data;
1842 u32 init_mode_flags;
1843 #define INIT_MODE_FLAGS(bp) (bp->init_mode_flags)
1844 /* Zipped PRAM blobs - raw data */
1845 const u8 *tsem_int_table_data;
1846 const u8 *tsem_pram_data;
1847 const u8 *usem_int_table_data;
1848 const u8 *usem_pram_data;
1849 const u8 *xsem_int_table_data;
1850 const u8 *xsem_pram_data;
1851 const u8 *csem_int_table_data;
1852 const u8 *csem_pram_data;
1853 #define INIT_OPS(bp) (bp->init_ops)
1854 #define INIT_OPS_OFFSETS(bp) (bp->init_ops_offsets)
1855 #define INIT_DATA(bp) (bp->init_data)
1856 #define INIT_TSEM_INT_TABLE_DATA(bp) (bp->tsem_int_table_data)
1857 #define INIT_TSEM_PRAM_DATA(bp) (bp->tsem_pram_data)
1858 #define INIT_USEM_INT_TABLE_DATA(bp) (bp->usem_int_table_data)
1859 #define INIT_USEM_PRAM_DATA(bp) (bp->usem_pram_data)
1860 #define INIT_XSEM_INT_TABLE_DATA(bp) (bp->xsem_int_table_data)
1861 #define INIT_XSEM_PRAM_DATA(bp) (bp->xsem_pram_data)
1862 #define INIT_CSEM_INT_TABLE_DATA(bp) (bp->csem_int_table_data)
1863 #define INIT_CSEM_PRAM_DATA(bp) (bp->csem_pram_data)
1864
1865 #define PHY_FW_VER_LEN 20
1866 char fw_ver[32];
1867 const struct firmware *firmware;
1868
1869 struct bnx2x_vfdb *vfdb;
1870 #define IS_SRIOV(bp) ((bp)->vfdb)
1871
1872 /* DCB support on/off */
1873 u16 dcb_state;
1874 #define BNX2X_DCB_STATE_OFF 0
1875 #define BNX2X_DCB_STATE_ON 1
1876
1877 /* DCBX engine mode */
1878 int dcbx_enabled;
1879 #define BNX2X_DCBX_ENABLED_OFF 0
1880 #define BNX2X_DCBX_ENABLED_ON_NEG_OFF 1
1881 #define BNX2X_DCBX_ENABLED_ON_NEG_ON 2
1882 #define BNX2X_DCBX_ENABLED_INVALID (-1)
1883
1884 bool dcbx_mode_uset;
1885
1886 struct bnx2x_config_dcbx_params dcbx_config_params;
1887 struct bnx2x_dcbx_port_params dcbx_port_params;
1888 int dcb_version;
1889
1890 /* CAM credit pools */
1891
1892 /* used only in sriov */
1893 struct bnx2x_credit_pool_obj vlans_pool;
1894
1895 struct bnx2x_credit_pool_obj macs_pool;
1896
1897 /* RX_MODE object */
1898 struct bnx2x_rx_mode_obj rx_mode_obj;
1899
1900 /* MCAST object */
1901 struct bnx2x_mcast_obj mcast_obj;
1902
1903 /* RSS configuration object */
1904 struct bnx2x_rss_config_obj rss_conf_obj;
1905
1906 /* Function State controlling object */
1907 struct bnx2x_func_sp_obj func_obj;
1908
1909 unsigned long sp_state;
1910
1911 /* operation indication for the sp_rtnl task */
1912 unsigned long sp_rtnl_state;
1913
1914 /* Indication of the IOV tasks */
1915 unsigned long iov_task_state;
1916
1917 /* DCBX Negotiation results */
1918 struct dcbx_features dcbx_local_feat;
1919 u32 dcbx_error;
1920
1921 #ifdef BCM_DCBNL
1922 struct dcbx_features dcbx_remote_feat;
1923 u32 dcbx_remote_flags;
1924 #endif
1925 /* AFEX: store default vlan used */
1926 int afex_def_vlan_tag;
1927 enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1928 u32 pending_max;
1929
1930 /* multiple tx classes of service */
1931 u8 max_cos;
1932
1933 /* priority to cos mapping */
1934 u8 prio_to_cos[8];
1935
1936 int fp_array_size;
1937 u32 dump_preset_idx;
1938
1939 u8 phys_port_id[ETH_ALEN];
1940
1941 /* PTP related context */
1942 struct ptp_clock *ptp_clock;
1943 struct ptp_clock_info ptp_clock_info;
1944 struct work_struct ptp_task;
1945 struct cyclecounter cyclecounter;
1946 struct timecounter timecounter;
1947 bool timecounter_init_done;
1948 struct sk_buff *ptp_tx_skb;
1949 unsigned long ptp_tx_start;
1950 bool hwtstamp_ioctl_called;
1951 u16 tx_type;
1952 u16 rx_filter;
1953
1954 struct bnx2x_link_report_data vf_link_vars;
1955 };
1956
1957 /* Tx queues may be less or equal to Rx queues */
1958 extern int num_queues;
1959 #define BNX2X_NUM_QUEUES(bp) (bp->num_queues)
1960 #define BNX2X_NUM_ETH_QUEUES(bp) ((bp)->num_ethernet_queues)
1961 #define BNX2X_NUM_NON_CNIC_QUEUES(bp) (BNX2X_NUM_QUEUES(bp) - \
1962 (bp)->num_cnic_queues)
1963 #define BNX2X_NUM_RX_QUEUES(bp) BNX2X_NUM_QUEUES(bp)
1964
1965 #define is_multi(bp) (BNX2X_NUM_QUEUES(bp) > 1)
1966
1967 #define BNX2X_MAX_QUEUES(bp) BNX2X_MAX_RSS_COUNT(bp)
1968 /* #define is_eth_multi(bp) (BNX2X_NUM_ETH_QUEUES(bp) > 1) */
1969
1970 #define RSS_IPV4_CAP_MASK \
1971 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_CAPABILITY
1972
1973 #define RSS_IPV4_TCP_CAP_MASK \
1974 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV4_TCP_CAPABILITY
1975
1976 #define RSS_IPV6_CAP_MASK \
1977 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_CAPABILITY
1978
1979 #define RSS_IPV6_TCP_CAP_MASK \
1980 TSTORM_ETH_FUNCTION_COMMON_CONFIG_RSS_IPV6_TCP_CAPABILITY
1981
1982 /* func init flags */
1983 #define FUNC_FLG_RSS 0x0001
1984 #define FUNC_FLG_STATS 0x0002
1985 /* removed FUNC_FLG_UNMATCHED 0x0004 */
1986 #define FUNC_FLG_TPA 0x0008
1987 #define FUNC_FLG_SPQ 0x0010
1988 #define FUNC_FLG_LEADING 0x0020 /* PF only */
1989 #define FUNC_FLG_LEADING_STATS 0x0040
1990 struct bnx2x_func_init_params {
1991 /* dma */
1992 dma_addr_t fw_stat_map; /* valid iff FUNC_FLG_STATS */
1993 dma_addr_t spq_map; /* valid iff FUNC_FLG_SPQ */
1994
1995 u16 func_flgs;
1996 u16 func_id; /* abs fid */
1997 u16 pf_id;
1998 u16 spq_prod; /* valid iff FUNC_FLG_SPQ */
1999 };
2000
2001 #define for_each_cnic_queue(bp, var) \
2002 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2003 (var)++) \
2004 if (skip_queue(bp, var)) \
2005 continue; \
2006 else
2007
2008 #define for_each_eth_queue(bp, var) \
2009 for ((var) = 0; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
2010
2011 #define for_each_nondefault_eth_queue(bp, var) \
2012 for ((var) = 1; (var) < BNX2X_NUM_ETH_QUEUES(bp); (var)++)
2013
2014 #define for_each_queue(bp, var) \
2015 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2016 if (skip_queue(bp, var)) \
2017 continue; \
2018 else
2019
2020 /* Skip forwarding FP */
2021 #define for_each_valid_rx_queue(bp, var) \
2022 for ((var) = 0; \
2023 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
2024 BNX2X_NUM_ETH_QUEUES(bp)); \
2025 (var)++) \
2026 if (skip_rx_queue(bp, var)) \
2027 continue; \
2028 else
2029
2030 #define for_each_rx_queue_cnic(bp, var) \
2031 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2032 (var)++) \
2033 if (skip_rx_queue(bp, var)) \
2034 continue; \
2035 else
2036
2037 #define for_each_rx_queue(bp, var) \
2038 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2039 if (skip_rx_queue(bp, var)) \
2040 continue; \
2041 else
2042
2043 /* Skip OOO FP */
2044 #define for_each_valid_tx_queue(bp, var) \
2045 for ((var) = 0; \
2046 (var) < (CNIC_LOADED(bp) ? BNX2X_NUM_QUEUES(bp) : \
2047 BNX2X_NUM_ETH_QUEUES(bp)); \
2048 (var)++) \
2049 if (skip_tx_queue(bp, var)) \
2050 continue; \
2051 else
2052
2053 #define for_each_tx_queue_cnic(bp, var) \
2054 for ((var) = BNX2X_NUM_ETH_QUEUES(bp); (var) < BNX2X_NUM_QUEUES(bp); \
2055 (var)++) \
2056 if (skip_tx_queue(bp, var)) \
2057 continue; \
2058 else
2059
2060 #define for_each_tx_queue(bp, var) \
2061 for ((var) = 0; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2062 if (skip_tx_queue(bp, var)) \
2063 continue; \
2064 else
2065
2066 #define for_each_nondefault_queue(bp, var) \
2067 for ((var) = 1; (var) < BNX2X_NUM_QUEUES(bp); (var)++) \
2068 if (skip_queue(bp, var)) \
2069 continue; \
2070 else
2071
2072 #define for_each_cos_in_tx_queue(fp, var) \
2073 for ((var) = 0; (var) < (fp)->max_cos; (var)++)
2074
2075 /* skip rx queue
2076 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2077 */
2078 #define skip_rx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
2079
2080 /* skip tx queue
2081 * if FCOE l2 support is disabled and this is the fcoe L2 queue
2082 */
2083 #define skip_tx_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
2084
2085 #define skip_queue(bp, idx) (NO_FCOE(bp) && IS_FCOE_IDX(idx))
2086
2087 /**
2088 * bnx2x_set_mac_one - configure a single MAC address
2089 *
2090 * @bp: driver handle
2091 * @mac: MAC to configure
2092 * @obj: MAC object handle
2093 * @set: if 'true' add a new MAC, otherwise - delete
2094 * @mac_type: the type of the MAC to configure (e.g. ETH, UC list)
2095 * @ramrod_flags: RAMROD_XXX flags (e.g. RAMROD_CONT, RAMROD_COMP_WAIT)
2096 *
2097 * Configures one MAC according to provided parameters or continues the
2098 * execution of previously scheduled commands if RAMROD_CONT is set in
2099 * ramrod_flags.
2100 *
2101 * Returns zero if operation has successfully completed, a positive value if the
2102 * operation has been successfully scheduled and a negative - if a requested
2103 * operations has failed.
2104 */
2105 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
2106 struct bnx2x_vlan_mac_obj *obj, bool set,
2107 int mac_type, unsigned long *ramrod_flags);
2108 /**
2109 * bnx2x_del_all_macs - delete all MACs configured for the specific MAC object
2110 *
2111 * @bp: driver handle
2112 * @mac_obj: MAC object handle
2113 * @mac_type: type of the MACs to clear (BNX2X_XXX_MAC)
2114 * @wait_for_comp: if 'true' block until completion
2115 *
2116 * Deletes all MACs of the specific type (e.g. ETH, UC list).
2117 *
2118 * Returns zero if operation has successfully completed, a positive value if the
2119 * operation has been successfully scheduled and a negative - if a requested
2120 * operations has failed.
2121 */
2122 int bnx2x_del_all_macs(struct bnx2x *bp,
2123 struct bnx2x_vlan_mac_obj *mac_obj,
2124 int mac_type, bool wait_for_comp);
2125
2126 /* Init Function API */
2127 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p);
2128 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
2129 u8 vf_valid, int fw_sb_id, int igu_sb_id);
2130 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port);
2131 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2132 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode);
2133 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port);
2134 void bnx2x_read_mf_cfg(struct bnx2x *bp);
2135
2136 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val);
2137
2138 /* dmae */
2139 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32);
2140 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
2141 u32 len32);
2142 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx);
2143 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type);
2144 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode);
2145 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
2146 bool with_comp, u8 comp_type);
2147
2148 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2149 u8 src_type, u8 dst_type);
2150 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
2151 u32 *comp);
2152
2153 /* FLR related routines */
2154 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp);
2155 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count);
2156 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt);
2157 u8 bnx2x_is_pcie_pending(struct pci_dev *dev);
2158 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
2159 char *msg, u32 poll_cnt);
2160
2161 void bnx2x_calc_fc_adv(struct bnx2x *bp);
2162 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
2163 u32 data_hi, u32 data_lo, int cmd_type);
2164 void bnx2x_update_coalesce(struct bnx2x *bp);
2165 int bnx2x_get_cur_phy_idx(struct bnx2x *bp);
2166
2167 bool bnx2x_port_after_undi(struct bnx2x *bp);
2168
2169 static inline u32 reg_poll(struct bnx2x *bp, u32 reg, u32 expected, int ms,
2170 int wait)
2171 {
2172 u32 val;
2173
2174 do {
2175 val = REG_RD(bp, reg);
2176 if (val == expected)
2177 break;
2178 ms -= wait;
2179 msleep(wait);
2180
2181 } while (ms > 0);
2182
2183 return val;
2184 }
2185
2186 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id,
2187 bool is_pf);
2188
2189 #define BNX2X_ILT_ZALLOC(x, y, size) \
2190 x = dma_zalloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL)
2191
2192 #define BNX2X_ILT_FREE(x, y, size) \
2193 do { \
2194 if (x) { \
2195 dma_free_coherent(&bp->pdev->dev, size, x, y); \
2196 x = NULL; \
2197 y = 0; \
2198 } \
2199 } while (0)
2200
2201 #define ILOG2(x) (ilog2((x)))
2202
2203 #define ILT_NUM_PAGE_ENTRIES (3072)
2204 /* In 57710/11 we use whole table since we have 8 func
2205 * In 57712 we have only 4 func, but use same size per func, then only half of
2206 * the table in use
2207 */
2208 #define ILT_PER_FUNC (ILT_NUM_PAGE_ENTRIES/8)
2209
2210 #define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
2211 /*
2212 * the phys address is shifted right 12 bits and has an added
2213 * 1=valid bit added to the 53rd bit
2214 * then since this is a wide register(TM)
2215 * we split it into two 32 bit writes
2216 */
2217 #define ONCHIP_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
2218 #define ONCHIP_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
2219
2220 /* load/unload mode */
2221 #define LOAD_NORMAL 0
2222 #define LOAD_OPEN 1
2223 #define LOAD_DIAG 2
2224 #define LOAD_LOOPBACK_EXT 3
2225 #define UNLOAD_NORMAL 0
2226 #define UNLOAD_CLOSE 1
2227 #define UNLOAD_RECOVERY 2
2228
2229 /* DMAE command defines */
2230 #define DMAE_TIMEOUT -1
2231 #define DMAE_PCI_ERROR -2 /* E2 and onward */
2232 #define DMAE_NOT_RDY -3
2233 #define DMAE_PCI_ERR_FLAG 0x80000000
2234
2235 #define DMAE_SRC_PCI 0
2236 #define DMAE_SRC_GRC 1
2237
2238 #define DMAE_DST_NONE 0
2239 #define DMAE_DST_PCI 1
2240 #define DMAE_DST_GRC 2
2241
2242 #define DMAE_COMP_PCI 0
2243 #define DMAE_COMP_GRC 1
2244
2245 /* E2 and onward - PCI error handling in the completion */
2246
2247 #define DMAE_COMP_REGULAR 0
2248 #define DMAE_COM_SET_ERR 1
2249
2250 #define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << \
2251 DMAE_COMMAND_SRC_SHIFT)
2252 #define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << \
2253 DMAE_COMMAND_SRC_SHIFT)
2254
2255 #define DMAE_CMD_DST_PCI (DMAE_DST_PCI << \
2256 DMAE_COMMAND_DST_SHIFT)
2257 #define DMAE_CMD_DST_GRC (DMAE_DST_GRC << \
2258 DMAE_COMMAND_DST_SHIFT)
2259
2260 #define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << \
2261 DMAE_COMMAND_C_DST_SHIFT)
2262 #define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << \
2263 DMAE_COMMAND_C_DST_SHIFT)
2264
2265 #define DMAE_CMD_C_ENABLE DMAE_COMMAND_C_TYPE_ENABLE
2266
2267 #define DMAE_CMD_ENDIANITY_NO_SWAP (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2268 #define DMAE_CMD_ENDIANITY_B_SWAP (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2269 #define DMAE_CMD_ENDIANITY_DW_SWAP (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2270 #define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2271
2272 #define DMAE_CMD_PORT_0 0
2273 #define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2274
2275 #define DMAE_CMD_SRC_RESET DMAE_COMMAND_SRC_RESET
2276 #define DMAE_CMD_DST_RESET DMAE_COMMAND_DST_RESET
2277 #define DMAE_CMD_E1HVN_SHIFT DMAE_COMMAND_E1HVN_SHIFT
2278
2279 #define DMAE_SRC_PF 0
2280 #define DMAE_SRC_VF 1
2281
2282 #define DMAE_DST_PF 0
2283 #define DMAE_DST_VF 1
2284
2285 #define DMAE_C_SRC 0
2286 #define DMAE_C_DST 1
2287
2288 #define DMAE_LEN32_RD_MAX 0x80
2289 #define DMAE_LEN32_WR_MAX(bp) (CHIP_IS_E1(bp) ? 0x400 : 0x2000)
2290
2291 #define DMAE_COMP_VAL 0x60d0d0ae /* E2 and on - upper bit
2292 * indicates error
2293 */
2294
2295 #define MAX_DMAE_C_PER_PORT 8
2296 #define INIT_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2297 BP_VN(bp))
2298 #define PMF_DMAE_C(bp) (BP_PORT(bp) * MAX_DMAE_C_PER_PORT + \
2299 E1HVN_MAX)
2300
2301 /* PCIE link and speed */
2302 #define PCICFG_LINK_WIDTH 0x1f00000
2303 #define PCICFG_LINK_WIDTH_SHIFT 20
2304 #define PCICFG_LINK_SPEED 0xf0000
2305 #define PCICFG_LINK_SPEED_SHIFT 16
2306
2307 #define BNX2X_NUM_TESTS_SF 7
2308 #define BNX2X_NUM_TESTS_MF 3
2309 #define BNX2X_NUM_TESTS(bp) (IS_MF(bp) ? BNX2X_NUM_TESTS_MF : \
2310 IS_VF(bp) ? 0 : BNX2X_NUM_TESTS_SF)
2311
2312 #define BNX2X_PHY_LOOPBACK 0
2313 #define BNX2X_MAC_LOOPBACK 1
2314 #define BNX2X_EXT_LOOPBACK 2
2315 #define BNX2X_PHY_LOOPBACK_FAILED 1
2316 #define BNX2X_MAC_LOOPBACK_FAILED 2
2317 #define BNX2X_EXT_LOOPBACK_FAILED 3
2318 #define BNX2X_LOOPBACK_FAILED (BNX2X_MAC_LOOPBACK_FAILED | \
2319 BNX2X_PHY_LOOPBACK_FAILED)
2320
2321 #define STROM_ASSERT_ARRAY_SIZE 50
2322
2323 /* must be used on a CID before placing it on a HW ring */
2324 #define HW_CID(bp, x) ((BP_PORT(bp) << 23) | \
2325 (BP_VN(bp) << BNX2X_SWCID_SHIFT) | \
2326 (x))
2327
2328 #define SP_DESC_CNT (BCM_PAGE_SIZE / sizeof(struct eth_spe))
2329 #define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
2330
2331 #define BNX2X_BTR 4
2332 #define MAX_SPQ_PENDING 8
2333
2334 /* CMNG constants, as derived from system spec calculations */
2335 /* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
2336 #define DEF_MIN_RATE 100
2337 /* resolution of the rate shaping timer - 400 usec */
2338 #define RS_PERIODIC_TIMEOUT_USEC 400
2339 /* number of bytes in single QM arbitration cycle -
2340 * coefficient for calculating the fairness timer */
2341 #define QM_ARB_BYTES 160000
2342 /* resolution of Min algorithm 1:100 */
2343 #define MIN_RES 100
2344 /* how many bytes above threshold for the minimal credit of Min algorithm*/
2345 #define MIN_ABOVE_THRESH 32768
2346 /* Fairness algorithm integration time coefficient -
2347 * for calculating the actual Tfair */
2348 #define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
2349 /* Memory of fairness algorithm . 2 cycles */
2350 #define FAIR_MEM 2
2351
2352 #define ATTN_NIG_FOR_FUNC (1L << 8)
2353 #define ATTN_SW_TIMER_4_FUNC (1L << 9)
2354 #define GPIO_2_FUNC (1L << 10)
2355 #define GPIO_3_FUNC (1L << 11)
2356 #define GPIO_4_FUNC (1L << 12)
2357 #define ATTN_GENERAL_ATTN_1 (1L << 13)
2358 #define ATTN_GENERAL_ATTN_2 (1L << 14)
2359 #define ATTN_GENERAL_ATTN_3 (1L << 15)
2360 #define ATTN_GENERAL_ATTN_4 (1L << 13)
2361 #define ATTN_GENERAL_ATTN_5 (1L << 14)
2362 #define ATTN_GENERAL_ATTN_6 (1L << 15)
2363
2364 #define ATTN_HARD_WIRED_MASK 0xff00
2365 #define ATTENTION_ID 4
2366
2367 #define IS_MF_STORAGE_ONLY(bp) (IS_MF_STORAGE_PERSONALITY_ONLY(bp) || \
2368 IS_MF_FCOE_AFEX(bp))
2369
2370 /* stuff added to make the code fit 80Col */
2371
2372 #define BNX2X_PMF_LINK_ASSERT \
2373 GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + BP_FUNC(bp))
2374
2375 #define BNX2X_MC_ASSERT_BITS \
2376 (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2377 GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2378 GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2379 GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2380
2381 #define BNX2X_MCP_ASSERT \
2382 GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2383
2384 #define BNX2X_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2385 #define BNX2X_GRC_RSV (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2386 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2387 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2388 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2389 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2390 GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2391
2392 #define HW_INTERRUT_ASSERT_SET_0 \
2393 (AEU_INPUTS_ATTN_BITS_TSDM_HW_INTERRUPT | \
2394 AEU_INPUTS_ATTN_BITS_TCM_HW_INTERRUPT | \
2395 AEU_INPUTS_ATTN_BITS_TSEMI_HW_INTERRUPT | \
2396 AEU_INPUTS_ATTN_BITS_BRB_HW_INTERRUPT | \
2397 AEU_INPUTS_ATTN_BITS_PBCLIENT_HW_INTERRUPT)
2398 #define HW_PRTY_ASSERT_SET_0 (AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR | \
2399 AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR | \
2400 AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR | \
2401 AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR |\
2402 AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR |\
2403 AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR |\
2404 AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR)
2405 #define HW_INTERRUT_ASSERT_SET_1 \
2406 (AEU_INPUTS_ATTN_BITS_QM_HW_INTERRUPT | \
2407 AEU_INPUTS_ATTN_BITS_TIMERS_HW_INTERRUPT | \
2408 AEU_INPUTS_ATTN_BITS_XSDM_HW_INTERRUPT | \
2409 AEU_INPUTS_ATTN_BITS_XCM_HW_INTERRUPT | \
2410 AEU_INPUTS_ATTN_BITS_XSEMI_HW_INTERRUPT | \
2411 AEU_INPUTS_ATTN_BITS_USDM_HW_INTERRUPT | \
2412 AEU_INPUTS_ATTN_BITS_UCM_HW_INTERRUPT | \
2413 AEU_INPUTS_ATTN_BITS_USEMI_HW_INTERRUPT | \
2414 AEU_INPUTS_ATTN_BITS_UPB_HW_INTERRUPT | \
2415 AEU_INPUTS_ATTN_BITS_CSDM_HW_INTERRUPT | \
2416 AEU_INPUTS_ATTN_BITS_CCM_HW_INTERRUPT)
2417 #define HW_PRTY_ASSERT_SET_1 (AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR |\
2418 AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR | \
2419 AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR |\
2420 AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR | \
2421 AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR |\
2422 AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR | \
2423 AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR |\
2424 AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR |\
2425 AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR |\
2426 AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR | \
2427 AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR | \
2428 AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR |\
2429 AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR | \
2430 AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR | \
2431 AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR |\
2432 AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR)
2433 #define HW_INTERRUT_ASSERT_SET_2 \
2434 (AEU_INPUTS_ATTN_BITS_CSEMI_HW_INTERRUPT | \
2435 AEU_INPUTS_ATTN_BITS_CDU_HW_INTERRUPT | \
2436 AEU_INPUTS_ATTN_BITS_DMAE_HW_INTERRUPT | \
2437 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_HW_INTERRUPT |\
2438 AEU_INPUTS_ATTN_BITS_MISC_HW_INTERRUPT)
2439 #define HW_PRTY_ASSERT_SET_2 (AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR | \
2440 AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR | \
2441 AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR |\
2442 AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR | \
2443 AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR | \
2444 AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR |\
2445 AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR | \
2446 AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR)
2447
2448 #define HW_PRTY_ASSERT_SET_3 (AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
2449 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
2450 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY | \
2451 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
2452
2453 #define HW_PRTY_ASSERT_SET_4 (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR | \
2454 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)
2455
2456 #define MULTI_MASK 0x7f
2457
2458 #define DEF_USB_FUNC_OFF offsetof(struct cstorm_def_status_block_u, func)
2459 #define DEF_CSB_FUNC_OFF offsetof(struct cstorm_def_status_block_c, func)
2460 #define DEF_XSB_FUNC_OFF offsetof(struct xstorm_def_status_block, func)
2461 #define DEF_TSB_FUNC_OFF offsetof(struct tstorm_def_status_block, func)
2462
2463 #define DEF_USB_IGU_INDEX_OFF \
2464 offsetof(struct cstorm_def_status_block_u, igu_index)
2465 #define DEF_CSB_IGU_INDEX_OFF \
2466 offsetof(struct cstorm_def_status_block_c, igu_index)
2467 #define DEF_XSB_IGU_INDEX_OFF \
2468 offsetof(struct xstorm_def_status_block, igu_index)
2469 #define DEF_TSB_IGU_INDEX_OFF \
2470 offsetof(struct tstorm_def_status_block, igu_index)
2471
2472 #define DEF_USB_SEGMENT_OFF \
2473 offsetof(struct cstorm_def_status_block_u, segment)
2474 #define DEF_CSB_SEGMENT_OFF \
2475 offsetof(struct cstorm_def_status_block_c, segment)
2476 #define DEF_XSB_SEGMENT_OFF \
2477 offsetof(struct xstorm_def_status_block, segment)
2478 #define DEF_TSB_SEGMENT_OFF \
2479 offsetof(struct tstorm_def_status_block, segment)
2480
2481 #define BNX2X_SP_DSB_INDEX \
2482 (&bp->def_status_blk->sp_sb.\
2483 index_values[HC_SP_INDEX_ETH_DEF_CONS])
2484
2485 #define CAM_IS_INVALID(x) \
2486 (GET_FLAG(x.flags, \
2487 MAC_CONFIGURATION_ENTRY_ACTION_TYPE) == \
2488 (T_ETH_MAC_COMMAND_INVALIDATE))
2489
2490 /* Number of u32 elements in MC hash array */
2491 #define MC_HASH_SIZE 8
2492 #define MC_HASH_OFFSET(bp, i) (BAR_TSTRORM_INTMEM + \
2493 TSTORM_APPROXIMATE_MATCH_MULTICAST_FILTERING_OFFSET(BP_FUNC(bp)) + i*4)
2494
2495 #ifndef PXP2_REG_PXP2_INT_STS
2496 #define PXP2_REG_PXP2_INT_STS PXP2_REG_PXP2_INT_STS_0
2497 #endif
2498
2499 #ifndef ETH_MAX_RX_CLIENTS_E2
2500 #define ETH_MAX_RX_CLIENTS_E2 ETH_MAX_RX_CLIENTS_E1H
2501 #endif
2502
2503 #define BNX2X_VPD_LEN 128
2504 #define VENDOR_ID_LEN 4
2505
2506 #define VF_ACQUIRE_THRESH 3
2507 #define VF_ACQUIRE_MAC_FILTERS 1
2508 #define VF_ACQUIRE_MC_FILTERS 10
2509
2510 #define GOOD_ME_REG(me_reg) (((me_reg) & ME_REG_VF_VALID) && \
2511 (!((me_reg) & ME_REG_VF_ERR)))
2512 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err);
2513
2514 /* Congestion management fairness mode */
2515 #define CMNG_FNS_NONE 0
2516 #define CMNG_FNS_MINMAX 1
2517
2518 #define HC_SEG_ACCESS_DEF 0 /*Driver decision 0-3*/
2519 #define HC_SEG_ACCESS_ATTN 4
2520 #define HC_SEG_ACCESS_NORM 0 /*Driver decision 0-1*/
2521
2522 static const u32 dmae_reg_go_c[] = {
2523 DMAE_REG_GO_C0, DMAE_REG_GO_C1, DMAE_REG_GO_C2, DMAE_REG_GO_C3,
2524 DMAE_REG_GO_C4, DMAE_REG_GO_C5, DMAE_REG_GO_C6, DMAE_REG_GO_C7,
2525 DMAE_REG_GO_C8, DMAE_REG_GO_C9, DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2526 DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2527 };
2528
2529 void bnx2x_set_ethtool_ops(struct bnx2x *bp, struct net_device *netdev);
2530 void bnx2x_notify_link_changed(struct bnx2x *bp);
2531
2532 #define BNX2X_MF_SD_PROTOCOL(bp) \
2533 ((bp)->mf_config[BP_VN(bp)] & FUNC_MF_CFG_PROTOCOL_MASK)
2534
2535 #define BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) \
2536 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_ISCSI)
2537
2538 #define BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp) \
2539 (BNX2X_MF_SD_PROTOCOL(bp) == FUNC_MF_CFG_PROTOCOL_FCOE)
2540
2541 #define IS_MF_ISCSI_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp))
2542 #define IS_MF_FCOE_SD(bp) (IS_MF_SD(bp) && BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp))
2543 #define IS_MF_ISCSI_SI(bp) (IS_MF_SI(bp) && BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp))
2544
2545 #define IS_MF_ISCSI_ONLY(bp) (IS_MF_ISCSI_SD(bp) || IS_MF_ISCSI_SI(bp))
2546
2547 #define BNX2X_MF_EXT_PROTOCOL_MASK \
2548 (MACP_FUNC_CFG_FLAGS_ETHERNET | \
2549 MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD | \
2550 MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2551
2552 #define BNX2X_MF_EXT_PROT(bp) ((bp)->mf_ext_config & \
2553 BNX2X_MF_EXT_PROTOCOL_MASK)
2554
2555 #define BNX2X_HAS_MF_EXT_PROTOCOL_FCOE(bp) \
2556 (BNX2X_MF_EXT_PROT(bp) & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2557
2558 #define BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp) \
2559 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD)
2560
2561 #define BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) \
2562 (BNX2X_MF_EXT_PROT(bp) == MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD)
2563
2564 #define IS_MF_FCOE_AFEX(bp) \
2565 (IS_MF_AFEX(bp) && BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp))
2566
2567 #define IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) \
2568 (IS_MF_SD(bp) && \
2569 (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp) || \
2570 BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)))
2571
2572 #define IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp) \
2573 (IS_MF_SI(bp) && \
2574 (BNX2X_IS_MF_EXT_PROTOCOL_ISCSI(bp) || \
2575 BNX2X_IS_MF_EXT_PROTOCOL_FCOE(bp)))
2576
2577 #define IS_MF_STORAGE_PERSONALITY_ONLY(bp) \
2578 (IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp) || \
2579 IS_MF_SI_STORAGE_PERSONALITY_ONLY(bp))
2580
2581
2582 #define SET_FLAG(value, mask, flag) \
2583 do {\
2584 (value) &= ~(mask);\
2585 (value) |= ((flag) << (mask##_SHIFT));\
2586 } while (0)
2587
2588 #define GET_FLAG(value, mask) \
2589 (((value) & (mask)) >> (mask##_SHIFT))
2590
2591 #define GET_FIELD(value, fname) \
2592 (((value) & (fname##_MASK)) >> (fname##_SHIFT))
2593
2594 enum {
2595 SWITCH_UPDATE,
2596 AFEX_UPDATE,
2597 };
2598
2599 #define NUM_MACS 8
2600
2601 void bnx2x_set_local_cmng(struct bnx2x *bp);
2602
2603 void bnx2x_update_mng_version(struct bnx2x *bp);
2604
2605 #define MCPR_SCRATCH_BASE(bp) \
2606 (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
2607
2608 #define E1H_MAX_MF_SB_COUNT (HC_SB_MAX_SB_E1X/(E1HVN_MAX * PORT_MAX))
2609
2610 void bnx2x_init_ptp(struct bnx2x *bp);
2611 int bnx2x_configure_ptp_filters(struct bnx2x *bp);
2612 void bnx2x_set_rx_ts(struct bnx2x *bp, struct sk_buff *skb);
2613
2614 #define BNX2X_MAX_PHC_DRIFT 31000000
2615 #define BNX2X_PTP_TX_TIMEOUT
2616
2617 #endif /* bnx2x.h */
This page took 0.08578 seconds and 5 git commands to generate.