irq_domain: correct a minor wrong comment for linear revmap
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.c
1 /* bnx2x_cmn.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/etherdevice.h>
21 #include <linux/if_vlan.h>
22 #include <linux/interrupt.h>
23 #include <linux/ip.h>
24 #include <net/ipv6.h>
25 #include <net/ip6_checksum.h>
26 #include <linux/prefetch.h>
27 #include "bnx2x_cmn.h"
28 #include "bnx2x_init.h"
29 #include "bnx2x_sp.h"
30
31
32
33 /**
34 * bnx2x_move_fp - move content of the fastpath structure.
35 *
36 * @bp: driver handle
37 * @from: source FP index
38 * @to: destination FP index
39 *
40 * Makes sure the contents of the bp->fp[to].napi is kept
41 * intact. This is done by first copying the napi struct from
42 * the target to the source, and then mem copying the entire
43 * source onto the target
44 */
45 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
46 {
47 struct bnx2x_fastpath *from_fp = &bp->fp[from];
48 struct bnx2x_fastpath *to_fp = &bp->fp[to];
49
50 /* Copy the NAPI object as it has been already initialized */
51 from_fp->napi = to_fp->napi;
52
53 /* Move bnx2x_fastpath contents */
54 memcpy(to_fp, from_fp, sizeof(*to_fp));
55 to_fp->index = to;
56 }
57
58 int load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
59
60 /* free skb in the packet ring at pos idx
61 * return idx of last bd freed
62 */
63 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
64 u16 idx, unsigned int *pkts_compl,
65 unsigned int *bytes_compl)
66 {
67 struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
68 struct eth_tx_start_bd *tx_start_bd;
69 struct eth_tx_bd *tx_data_bd;
70 struct sk_buff *skb = tx_buf->skb;
71 u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
72 int nbd;
73
74 /* prefetch skb end pointer to speedup dev_kfree_skb() */
75 prefetch(&skb->end);
76
77 DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d buff @(%p)->skb %p\n",
78 txdata->txq_index, idx, tx_buf, skb);
79
80 /* unmap first bd */
81 tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
82 dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
83 BD_UNMAP_LEN(tx_start_bd), DMA_TO_DEVICE);
84
85
86 nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
87 #ifdef BNX2X_STOP_ON_ERROR
88 if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
89 BNX2X_ERR("BAD nbd!\n");
90 bnx2x_panic();
91 }
92 #endif
93 new_cons = nbd + tx_buf->first_bd;
94
95 /* Get the next bd */
96 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
97
98 /* Skip a parse bd... */
99 --nbd;
100 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
101
102 /* ...and the TSO split header bd since they have no mapping */
103 if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
104 --nbd;
105 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
106 }
107
108 /* now free frags */
109 while (nbd > 0) {
110
111 tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
112 dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
113 BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
114 if (--nbd)
115 bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
116 }
117
118 /* release skb */
119 WARN_ON(!skb);
120 if (likely(skb)) {
121 (*pkts_compl)++;
122 (*bytes_compl) += skb->len;
123 }
124
125 dev_kfree_skb_any(skb);
126 tx_buf->first_bd = 0;
127 tx_buf->skb = NULL;
128
129 return new_cons;
130 }
131
132 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
133 {
134 struct netdev_queue *txq;
135 u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
136 unsigned int pkts_compl = 0, bytes_compl = 0;
137
138 #ifdef BNX2X_STOP_ON_ERROR
139 if (unlikely(bp->panic))
140 return -1;
141 #endif
142
143 txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
144 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
145 sw_cons = txdata->tx_pkt_cons;
146
147 while (sw_cons != hw_cons) {
148 u16 pkt_cons;
149
150 pkt_cons = TX_BD(sw_cons);
151
152 DP(NETIF_MSG_TX_DONE,
153 "queue[%d]: hw_cons %u sw_cons %u pkt_cons %u\n",
154 txdata->txq_index, hw_cons, sw_cons, pkt_cons);
155
156 bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
157 &pkts_compl, &bytes_compl);
158
159 sw_cons++;
160 }
161
162 netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
163
164 txdata->tx_pkt_cons = sw_cons;
165 txdata->tx_bd_cons = bd_cons;
166
167 /* Need to make the tx_bd_cons update visible to start_xmit()
168 * before checking for netif_tx_queue_stopped(). Without the
169 * memory barrier, there is a small possibility that
170 * start_xmit() will miss it and cause the queue to be stopped
171 * forever.
172 * On the other hand we need an rmb() here to ensure the proper
173 * ordering of bit testing in the following
174 * netif_tx_queue_stopped(txq) call.
175 */
176 smp_mb();
177
178 if (unlikely(netif_tx_queue_stopped(txq))) {
179 /* Taking tx_lock() is needed to prevent reenabling the queue
180 * while it's empty. This could have happen if rx_action() gets
181 * suspended in bnx2x_tx_int() after the condition before
182 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
183 *
184 * stops the queue->sees fresh tx_bd_cons->releases the queue->
185 * sends some packets consuming the whole queue again->
186 * stops the queue
187 */
188
189 __netif_tx_lock(txq, smp_processor_id());
190
191 if ((netif_tx_queue_stopped(txq)) &&
192 (bp->state == BNX2X_STATE_OPEN) &&
193 (bnx2x_tx_avail(bp, txdata) >= MAX_SKB_FRAGS + 3))
194 netif_tx_wake_queue(txq);
195
196 __netif_tx_unlock(txq);
197 }
198 return 0;
199 }
200
201 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
202 u16 idx)
203 {
204 u16 last_max = fp->last_max_sge;
205
206 if (SUB_S16(idx, last_max) > 0)
207 fp->last_max_sge = idx;
208 }
209
210 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
211 u16 sge_len,
212 struct eth_end_agg_rx_cqe *cqe)
213 {
214 struct bnx2x *bp = fp->bp;
215 u16 last_max, last_elem, first_elem;
216 u16 delta = 0;
217 u16 i;
218
219 if (!sge_len)
220 return;
221
222 /* First mark all used pages */
223 for (i = 0; i < sge_len; i++)
224 BIT_VEC64_CLEAR_BIT(fp->sge_mask,
225 RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
226
227 DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
228 sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
229
230 /* Here we assume that the last SGE index is the biggest */
231 prefetch((void *)(fp->sge_mask));
232 bnx2x_update_last_max_sge(fp,
233 le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
234
235 last_max = RX_SGE(fp->last_max_sge);
236 last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
237 first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
238
239 /* If ring is not full */
240 if (last_elem + 1 != first_elem)
241 last_elem++;
242
243 /* Now update the prod */
244 for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
245 if (likely(fp->sge_mask[i]))
246 break;
247
248 fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
249 delta += BIT_VEC64_ELEM_SZ;
250 }
251
252 if (delta > 0) {
253 fp->rx_sge_prod += delta;
254 /* clear page-end entries */
255 bnx2x_clear_sge_mask_next_elems(fp);
256 }
257
258 DP(NETIF_MSG_RX_STATUS,
259 "fp->last_max_sge = %d fp->rx_sge_prod = %d\n",
260 fp->last_max_sge, fp->rx_sge_prod);
261 }
262
263 /* Set Toeplitz hash value in the skb using the value from the
264 * CQE (calculated by HW).
265 */
266 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
267 const struct eth_fast_path_rx_cqe *cqe)
268 {
269 /* Set Toeplitz hash from CQE */
270 if ((bp->dev->features & NETIF_F_RXHASH) &&
271 (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG))
272 return le32_to_cpu(cqe->rss_hash_result);
273 return 0;
274 }
275
276 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
277 u16 cons, u16 prod,
278 struct eth_fast_path_rx_cqe *cqe)
279 {
280 struct bnx2x *bp = fp->bp;
281 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
282 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
283 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
284 dma_addr_t mapping;
285 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
286 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
287
288 /* print error if current state != stop */
289 if (tpa_info->tpa_state != BNX2X_TPA_STOP)
290 BNX2X_ERR("start of bin not in stop [%d]\n", queue);
291
292 /* Try to map an empty data buffer from the aggregation info */
293 mapping = dma_map_single(&bp->pdev->dev,
294 first_buf->data + NET_SKB_PAD,
295 fp->rx_buf_size, DMA_FROM_DEVICE);
296 /*
297 * ...if it fails - move the skb from the consumer to the producer
298 * and set the current aggregation state as ERROR to drop it
299 * when TPA_STOP arrives.
300 */
301
302 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
303 /* Move the BD from the consumer to the producer */
304 bnx2x_reuse_rx_data(fp, cons, prod);
305 tpa_info->tpa_state = BNX2X_TPA_ERROR;
306 return;
307 }
308
309 /* move empty data from pool to prod */
310 prod_rx_buf->data = first_buf->data;
311 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
312 /* point prod_bd to new data */
313 prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
314 prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
315
316 /* move partial skb from cons to pool (don't unmap yet) */
317 *first_buf = *cons_rx_buf;
318
319 /* mark bin state as START */
320 tpa_info->parsing_flags =
321 le16_to_cpu(cqe->pars_flags.flags);
322 tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
323 tpa_info->tpa_state = BNX2X_TPA_START;
324 tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
325 tpa_info->placement_offset = cqe->placement_offset;
326 tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe);
327 if (fp->mode == TPA_MODE_GRO) {
328 u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
329 tpa_info->full_page =
330 SGE_PAGE_SIZE * PAGES_PER_SGE / gro_size * gro_size;
331 tpa_info->gro_size = gro_size;
332 }
333
334 #ifdef BNX2X_STOP_ON_ERROR
335 fp->tpa_queue_used |= (1 << queue);
336 #ifdef _ASM_GENERIC_INT_L64_H
337 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n",
338 #else
339 DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
340 #endif
341 fp->tpa_queue_used);
342 #endif
343 }
344
345 /* Timestamp option length allowed for TPA aggregation:
346 *
347 * nop nop kind length echo val
348 */
349 #define TPA_TSTAMP_OPT_LEN 12
350 /**
351 * bnx2x_set_lro_mss - calculate the approximate value of the MSS
352 *
353 * @bp: driver handle
354 * @parsing_flags: parsing flags from the START CQE
355 * @len_on_bd: total length of the first packet for the
356 * aggregation.
357 *
358 * Approximate value of the MSS for this aggregation calculated using
359 * the first packet of it.
360 */
361 static u16 bnx2x_set_lro_mss(struct bnx2x *bp, u16 parsing_flags,
362 u16 len_on_bd)
363 {
364 /*
365 * TPA arrgregation won't have either IP options or TCP options
366 * other than timestamp or IPv6 extension headers.
367 */
368 u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
369
370 if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
371 PRS_FLAG_OVERETH_IPV6)
372 hdrs_len += sizeof(struct ipv6hdr);
373 else /* IPv4 */
374 hdrs_len += sizeof(struct iphdr);
375
376
377 /* Check if there was a TCP timestamp, if there is it's will
378 * always be 12 bytes length: nop nop kind length echo val.
379 *
380 * Otherwise FW would close the aggregation.
381 */
382 if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
383 hdrs_len += TPA_TSTAMP_OPT_LEN;
384
385 return len_on_bd - hdrs_len;
386 }
387
388 static int bnx2x_alloc_rx_sge(struct bnx2x *bp,
389 struct bnx2x_fastpath *fp, u16 index)
390 {
391 struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
392 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
393 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
394 dma_addr_t mapping;
395
396 if (unlikely(page == NULL)) {
397 BNX2X_ERR("Can't alloc sge\n");
398 return -ENOMEM;
399 }
400
401 mapping = dma_map_page(&bp->pdev->dev, page, 0,
402 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
403 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
404 __free_pages(page, PAGES_PER_SGE_SHIFT);
405 BNX2X_ERR("Can't map sge\n");
406 return -ENOMEM;
407 }
408
409 sw_buf->page = page;
410 dma_unmap_addr_set(sw_buf, mapping, mapping);
411
412 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
413 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
414
415 return 0;
416 }
417
418 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
419 struct bnx2x_agg_info *tpa_info,
420 u16 pages,
421 struct sk_buff *skb,
422 struct eth_end_agg_rx_cqe *cqe,
423 u16 cqe_idx)
424 {
425 struct sw_rx_page *rx_pg, old_rx_pg;
426 u32 i, frag_len, frag_size;
427 int err, j, frag_id = 0;
428 u16 len_on_bd = tpa_info->len_on_bd;
429 u16 full_page = 0, gro_size = 0;
430
431 frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
432
433 if (fp->mode == TPA_MODE_GRO) {
434 gro_size = tpa_info->gro_size;
435 full_page = tpa_info->full_page;
436 }
437
438 /* This is needed in order to enable forwarding support */
439 if (frag_size) {
440 skb_shinfo(skb)->gso_size = bnx2x_set_lro_mss(bp,
441 tpa_info->parsing_flags, len_on_bd);
442
443 /* set for GRO */
444 if (fp->mode == TPA_MODE_GRO)
445 skb_shinfo(skb)->gso_type =
446 (GET_FLAG(tpa_info->parsing_flags,
447 PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
448 PRS_FLAG_OVERETH_IPV6) ?
449 SKB_GSO_TCPV6 : SKB_GSO_TCPV4;
450 }
451
452
453 #ifdef BNX2X_STOP_ON_ERROR
454 if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) {
455 BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
456 pages, cqe_idx);
457 BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
458 bnx2x_panic();
459 return -EINVAL;
460 }
461 #endif
462
463 /* Run through the SGL and compose the fragmented skb */
464 for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
465 u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
466
467 /* FW gives the indices of the SGE as if the ring is an array
468 (meaning that "next" element will consume 2 indices) */
469 if (fp->mode == TPA_MODE_GRO)
470 frag_len = min_t(u32, frag_size, (u32)full_page);
471 else /* LRO */
472 frag_len = min_t(u32, frag_size,
473 (u32)(SGE_PAGE_SIZE * PAGES_PER_SGE));
474
475 rx_pg = &fp->rx_page_ring[sge_idx];
476 old_rx_pg = *rx_pg;
477
478 /* If we fail to allocate a substitute page, we simply stop
479 where we are and drop the whole packet */
480 err = bnx2x_alloc_rx_sge(bp, fp, sge_idx);
481 if (unlikely(err)) {
482 fp->eth_q_stats.rx_skb_alloc_failed++;
483 return err;
484 }
485
486 /* Unmap the page as we r going to pass it to the stack */
487 dma_unmap_page(&bp->pdev->dev,
488 dma_unmap_addr(&old_rx_pg, mapping),
489 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
490 /* Add one frag and update the appropriate fields in the skb */
491 if (fp->mode == TPA_MODE_LRO)
492 skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len);
493 else { /* GRO */
494 int rem;
495 int offset = 0;
496 for (rem = frag_len; rem > 0; rem -= gro_size) {
497 int len = rem > gro_size ? gro_size : rem;
498 skb_fill_page_desc(skb, frag_id++,
499 old_rx_pg.page, offset, len);
500 if (offset)
501 get_page(old_rx_pg.page);
502 offset += len;
503 }
504 }
505
506 skb->data_len += frag_len;
507 skb->truesize += SGE_PAGE_SIZE * PAGES_PER_SGE;
508 skb->len += frag_len;
509
510 frag_size -= frag_len;
511 }
512
513 return 0;
514 }
515
516 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
517 struct bnx2x_agg_info *tpa_info,
518 u16 pages,
519 struct eth_end_agg_rx_cqe *cqe,
520 u16 cqe_idx)
521 {
522 struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
523 u8 pad = tpa_info->placement_offset;
524 u16 len = tpa_info->len_on_bd;
525 struct sk_buff *skb = NULL;
526 u8 *new_data, *data = rx_buf->data;
527 u8 old_tpa_state = tpa_info->tpa_state;
528
529 tpa_info->tpa_state = BNX2X_TPA_STOP;
530
531 /* If we there was an error during the handling of the TPA_START -
532 * drop this aggregation.
533 */
534 if (old_tpa_state == BNX2X_TPA_ERROR)
535 goto drop;
536
537 /* Try to allocate the new data */
538 new_data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
539
540 /* Unmap skb in the pool anyway, as we are going to change
541 pool entry status to BNX2X_TPA_STOP even if new skb allocation
542 fails. */
543 dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
544 fp->rx_buf_size, DMA_FROM_DEVICE);
545 if (likely(new_data))
546 skb = build_skb(data, 0);
547
548 if (likely(skb)) {
549 #ifdef BNX2X_STOP_ON_ERROR
550 if (pad + len > fp->rx_buf_size) {
551 BNX2X_ERR("skb_put is about to fail... pad %d len %d rx_buf_size %d\n",
552 pad, len, fp->rx_buf_size);
553 bnx2x_panic();
554 return;
555 }
556 #endif
557
558 skb_reserve(skb, pad + NET_SKB_PAD);
559 skb_put(skb, len);
560 skb->rxhash = tpa_info->rxhash;
561
562 skb->protocol = eth_type_trans(skb, bp->dev);
563 skb->ip_summed = CHECKSUM_UNNECESSARY;
564
565 if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
566 skb, cqe, cqe_idx)) {
567 if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
568 __vlan_hwaccel_put_tag(skb, tpa_info->vlan_tag);
569 napi_gro_receive(&fp->napi, skb);
570 } else {
571 DP(NETIF_MSG_RX_STATUS,
572 "Failed to allocate new pages - dropping packet!\n");
573 dev_kfree_skb_any(skb);
574 }
575
576
577 /* put new data in bin */
578 rx_buf->data = new_data;
579
580 return;
581 }
582 kfree(new_data);
583 drop:
584 /* drop the packet and keep the buffer in the bin */
585 DP(NETIF_MSG_RX_STATUS,
586 "Failed to allocate or map a new skb - dropping packet!\n");
587 fp->eth_q_stats.rx_skb_alloc_failed++;
588 }
589
590 static int bnx2x_alloc_rx_data(struct bnx2x *bp,
591 struct bnx2x_fastpath *fp, u16 index)
592 {
593 u8 *data;
594 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
595 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
596 dma_addr_t mapping;
597
598 data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
599 if (unlikely(data == NULL))
600 return -ENOMEM;
601
602 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
603 fp->rx_buf_size,
604 DMA_FROM_DEVICE);
605 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
606 kfree(data);
607 BNX2X_ERR("Can't map rx data\n");
608 return -ENOMEM;
609 }
610
611 rx_buf->data = data;
612 dma_unmap_addr_set(rx_buf, mapping, mapping);
613
614 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
615 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
616
617 return 0;
618 }
619
620
621 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
622 {
623 struct bnx2x *bp = fp->bp;
624 u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
625 u16 hw_comp_cons, sw_comp_cons, sw_comp_prod;
626 int rx_pkt = 0;
627
628 #ifdef BNX2X_STOP_ON_ERROR
629 if (unlikely(bp->panic))
630 return 0;
631 #endif
632
633 /* CQ "next element" is of the size of the regular element,
634 that's why it's ok here */
635 hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb);
636 if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
637 hw_comp_cons++;
638
639 bd_cons = fp->rx_bd_cons;
640 bd_prod = fp->rx_bd_prod;
641 bd_prod_fw = bd_prod;
642 sw_comp_cons = fp->rx_comp_cons;
643 sw_comp_prod = fp->rx_comp_prod;
644
645 /* Memory barrier necessary as speculative reads of the rx
646 * buffer can be ahead of the index in the status block
647 */
648 rmb();
649
650 DP(NETIF_MSG_RX_STATUS,
651 "queue[%d]: hw_comp_cons %u sw_comp_cons %u\n",
652 fp->index, hw_comp_cons, sw_comp_cons);
653
654 while (sw_comp_cons != hw_comp_cons) {
655 struct sw_rx_bd *rx_buf = NULL;
656 struct sk_buff *skb;
657 union eth_rx_cqe *cqe;
658 struct eth_fast_path_rx_cqe *cqe_fp;
659 u8 cqe_fp_flags;
660 enum eth_rx_cqe_type cqe_fp_type;
661 u16 len, pad, queue;
662 u8 *data;
663
664 #ifdef BNX2X_STOP_ON_ERROR
665 if (unlikely(bp->panic))
666 return 0;
667 #endif
668
669 comp_ring_cons = RCQ_BD(sw_comp_cons);
670 bd_prod = RX_BD(bd_prod);
671 bd_cons = RX_BD(bd_cons);
672
673 cqe = &fp->rx_comp_ring[comp_ring_cons];
674 cqe_fp = &cqe->fast_path_cqe;
675 cqe_fp_flags = cqe_fp->type_error_flags;
676 cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
677
678 DP(NETIF_MSG_RX_STATUS,
679 "CQE type %x err %x status %x queue %x vlan %x len %u\n",
680 CQE_TYPE(cqe_fp_flags),
681 cqe_fp_flags, cqe_fp->status_flags,
682 le32_to_cpu(cqe_fp->rss_hash_result),
683 le16_to_cpu(cqe_fp->vlan_tag),
684 le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
685
686 /* is this a slowpath msg? */
687 if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
688 bnx2x_sp_event(fp, cqe);
689 goto next_cqe;
690 }
691
692 rx_buf = &fp->rx_buf_ring[bd_cons];
693 data = rx_buf->data;
694
695 if (!CQE_TYPE_FAST(cqe_fp_type)) {
696 struct bnx2x_agg_info *tpa_info;
697 u16 frag_size, pages;
698 #ifdef BNX2X_STOP_ON_ERROR
699 /* sanity check */
700 if (fp->disable_tpa &&
701 (CQE_TYPE_START(cqe_fp_type) ||
702 CQE_TYPE_STOP(cqe_fp_type)))
703 BNX2X_ERR("START/STOP packet while disable_tpa type %x\n",
704 CQE_TYPE(cqe_fp_type));
705 #endif
706
707 if (CQE_TYPE_START(cqe_fp_type)) {
708 u16 queue = cqe_fp->queue_index;
709 DP(NETIF_MSG_RX_STATUS,
710 "calling tpa_start on queue %d\n",
711 queue);
712
713 bnx2x_tpa_start(fp, queue,
714 bd_cons, bd_prod,
715 cqe_fp);
716
717 goto next_rx;
718
719 }
720 queue = cqe->end_agg_cqe.queue_index;
721 tpa_info = &fp->tpa_info[queue];
722 DP(NETIF_MSG_RX_STATUS,
723 "calling tpa_stop on queue %d\n",
724 queue);
725
726 frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
727 tpa_info->len_on_bd;
728
729 if (fp->mode == TPA_MODE_GRO)
730 pages = (frag_size + tpa_info->full_page - 1) /
731 tpa_info->full_page;
732 else
733 pages = SGE_PAGE_ALIGN(frag_size) >>
734 SGE_PAGE_SHIFT;
735
736 bnx2x_tpa_stop(bp, fp, tpa_info, pages,
737 &cqe->end_agg_cqe, comp_ring_cons);
738 #ifdef BNX2X_STOP_ON_ERROR
739 if (bp->panic)
740 return 0;
741 #endif
742
743 bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
744 goto next_cqe;
745 }
746 /* non TPA */
747 len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
748 pad = cqe_fp->placement_offset;
749 dma_sync_single_for_cpu(&bp->pdev->dev,
750 dma_unmap_addr(rx_buf, mapping),
751 pad + RX_COPY_THRESH,
752 DMA_FROM_DEVICE);
753 pad += NET_SKB_PAD;
754 prefetch(data + pad); /* speedup eth_type_trans() */
755 /* is this an error packet? */
756 if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
757 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
758 "ERROR flags %x rx packet %u\n",
759 cqe_fp_flags, sw_comp_cons);
760 fp->eth_q_stats.rx_err_discard_pkt++;
761 goto reuse_rx;
762 }
763
764 /* Since we don't have a jumbo ring
765 * copy small packets if mtu > 1500
766 */
767 if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
768 (len <= RX_COPY_THRESH)) {
769 skb = netdev_alloc_skb_ip_align(bp->dev, len);
770 if (skb == NULL) {
771 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
772 "ERROR packet dropped because of alloc failure\n");
773 fp->eth_q_stats.rx_skb_alloc_failed++;
774 goto reuse_rx;
775 }
776 memcpy(skb->data, data + pad, len);
777 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
778 } else {
779 if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod) == 0)) {
780 dma_unmap_single(&bp->pdev->dev,
781 dma_unmap_addr(rx_buf, mapping),
782 fp->rx_buf_size,
783 DMA_FROM_DEVICE);
784 skb = build_skb(data, 0);
785 if (unlikely(!skb)) {
786 kfree(data);
787 fp->eth_q_stats.rx_skb_alloc_failed++;
788 goto next_rx;
789 }
790 skb_reserve(skb, pad);
791 } else {
792 DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
793 "ERROR packet dropped because of alloc failure\n");
794 fp->eth_q_stats.rx_skb_alloc_failed++;
795 reuse_rx:
796 bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
797 goto next_rx;
798 }
799 }
800
801 skb_put(skb, len);
802 skb->protocol = eth_type_trans(skb, bp->dev);
803
804 /* Set Toeplitz hash for a none-LRO skb */
805 skb->rxhash = bnx2x_get_rxhash(bp, cqe_fp);
806
807 skb_checksum_none_assert(skb);
808
809 if (bp->dev->features & NETIF_F_RXCSUM) {
810
811 if (likely(BNX2X_RX_CSUM_OK(cqe)))
812 skb->ip_summed = CHECKSUM_UNNECESSARY;
813 else
814 fp->eth_q_stats.hw_csum_err++;
815 }
816
817 skb_record_rx_queue(skb, fp->rx_queue);
818
819 if (le16_to_cpu(cqe_fp->pars_flags.flags) &
820 PARSING_FLAGS_VLAN)
821 __vlan_hwaccel_put_tag(skb,
822 le16_to_cpu(cqe_fp->vlan_tag));
823 napi_gro_receive(&fp->napi, skb);
824
825
826 next_rx:
827 rx_buf->data = NULL;
828
829 bd_cons = NEXT_RX_IDX(bd_cons);
830 bd_prod = NEXT_RX_IDX(bd_prod);
831 bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
832 rx_pkt++;
833 next_cqe:
834 sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
835 sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
836
837 if (rx_pkt == budget)
838 break;
839 } /* while */
840
841 fp->rx_bd_cons = bd_cons;
842 fp->rx_bd_prod = bd_prod_fw;
843 fp->rx_comp_cons = sw_comp_cons;
844 fp->rx_comp_prod = sw_comp_prod;
845
846 /* Update producers */
847 bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
848 fp->rx_sge_prod);
849
850 fp->rx_pkt += rx_pkt;
851 fp->rx_calls++;
852
853 return rx_pkt;
854 }
855
856 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
857 {
858 struct bnx2x_fastpath *fp = fp_cookie;
859 struct bnx2x *bp = fp->bp;
860 u8 cos;
861
862 DP(NETIF_MSG_INTR,
863 "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
864 fp->index, fp->fw_sb_id, fp->igu_sb_id);
865 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
866
867 #ifdef BNX2X_STOP_ON_ERROR
868 if (unlikely(bp->panic))
869 return IRQ_HANDLED;
870 #endif
871
872 /* Handle Rx and Tx according to MSI-X vector */
873 prefetch(fp->rx_cons_sb);
874
875 for_each_cos_in_tx_queue(fp, cos)
876 prefetch(fp->txdata[cos].tx_cons_sb);
877
878 prefetch(&fp->sb_running_index[SM_RX_ID]);
879 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
880
881 return IRQ_HANDLED;
882 }
883
884 /* HW Lock for shared dual port PHYs */
885 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
886 {
887 mutex_lock(&bp->port.phy_mutex);
888
889 if (bp->port.need_hw_lock)
890 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
891 }
892
893 void bnx2x_release_phy_lock(struct bnx2x *bp)
894 {
895 if (bp->port.need_hw_lock)
896 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
897
898 mutex_unlock(&bp->port.phy_mutex);
899 }
900
901 /* calculates MF speed according to current linespeed and MF configuration */
902 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
903 {
904 u16 line_speed = bp->link_vars.line_speed;
905 if (IS_MF(bp)) {
906 u16 maxCfg = bnx2x_extract_max_cfg(bp,
907 bp->mf_config[BP_VN(bp)]);
908
909 /* Calculate the current MAX line speed limit for the MF
910 * devices
911 */
912 if (IS_MF_SI(bp))
913 line_speed = (line_speed * maxCfg) / 100;
914 else { /* SD mode */
915 u16 vn_max_rate = maxCfg * 100;
916
917 if (vn_max_rate < line_speed)
918 line_speed = vn_max_rate;
919 }
920 }
921
922 return line_speed;
923 }
924
925 /**
926 * bnx2x_fill_report_data - fill link report data to report
927 *
928 * @bp: driver handle
929 * @data: link state to update
930 *
931 * It uses a none-atomic bit operations because is called under the mutex.
932 */
933 static void bnx2x_fill_report_data(struct bnx2x *bp,
934 struct bnx2x_link_report_data *data)
935 {
936 u16 line_speed = bnx2x_get_mf_speed(bp);
937
938 memset(data, 0, sizeof(*data));
939
940 /* Fill the report data: efective line speed */
941 data->line_speed = line_speed;
942
943 /* Link is down */
944 if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
945 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
946 &data->link_report_flags);
947
948 /* Full DUPLEX */
949 if (bp->link_vars.duplex == DUPLEX_FULL)
950 __set_bit(BNX2X_LINK_REPORT_FD, &data->link_report_flags);
951
952 /* Rx Flow Control is ON */
953 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
954 __set_bit(BNX2X_LINK_REPORT_RX_FC_ON, &data->link_report_flags);
955
956 /* Tx Flow Control is ON */
957 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
958 __set_bit(BNX2X_LINK_REPORT_TX_FC_ON, &data->link_report_flags);
959 }
960
961 /**
962 * bnx2x_link_report - report link status to OS.
963 *
964 * @bp: driver handle
965 *
966 * Calls the __bnx2x_link_report() under the same locking scheme
967 * as a link/PHY state managing code to ensure a consistent link
968 * reporting.
969 */
970
971 void bnx2x_link_report(struct bnx2x *bp)
972 {
973 bnx2x_acquire_phy_lock(bp);
974 __bnx2x_link_report(bp);
975 bnx2x_release_phy_lock(bp);
976 }
977
978 /**
979 * __bnx2x_link_report - report link status to OS.
980 *
981 * @bp: driver handle
982 *
983 * None atomic inmlementation.
984 * Should be called under the phy_lock.
985 */
986 void __bnx2x_link_report(struct bnx2x *bp)
987 {
988 struct bnx2x_link_report_data cur_data;
989
990 /* reread mf_cfg */
991 if (!CHIP_IS_E1(bp))
992 bnx2x_read_mf_cfg(bp);
993
994 /* Read the current link report info */
995 bnx2x_fill_report_data(bp, &cur_data);
996
997 /* Don't report link down or exactly the same link status twice */
998 if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
999 (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1000 &bp->last_reported_link.link_report_flags) &&
1001 test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1002 &cur_data.link_report_flags)))
1003 return;
1004
1005 bp->link_cnt++;
1006
1007 /* We are going to report a new link parameters now -
1008 * remember the current data for the next time.
1009 */
1010 memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1011
1012 if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1013 &cur_data.link_report_flags)) {
1014 netif_carrier_off(bp->dev);
1015 netdev_err(bp->dev, "NIC Link is Down\n");
1016 return;
1017 } else {
1018 const char *duplex;
1019 const char *flow;
1020
1021 netif_carrier_on(bp->dev);
1022
1023 if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1024 &cur_data.link_report_flags))
1025 duplex = "full";
1026 else
1027 duplex = "half";
1028
1029 /* Handle the FC at the end so that only these flags would be
1030 * possibly set. This way we may easily check if there is no FC
1031 * enabled.
1032 */
1033 if (cur_data.link_report_flags) {
1034 if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1035 &cur_data.link_report_flags)) {
1036 if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1037 &cur_data.link_report_flags))
1038 flow = "ON - receive & transmit";
1039 else
1040 flow = "ON - receive";
1041 } else {
1042 flow = "ON - transmit";
1043 }
1044 } else {
1045 flow = "none";
1046 }
1047 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1048 cur_data.line_speed, duplex, flow);
1049 }
1050 }
1051
1052 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1053 {
1054 int i;
1055
1056 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1057 struct eth_rx_sge *sge;
1058
1059 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1060 sge->addr_hi =
1061 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1062 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1063
1064 sge->addr_lo =
1065 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1066 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1067 }
1068 }
1069
1070 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1071 struct bnx2x_fastpath *fp, int last)
1072 {
1073 int i;
1074
1075 for (i = 0; i < last; i++) {
1076 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1077 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1078 u8 *data = first_buf->data;
1079
1080 if (data == NULL) {
1081 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1082 continue;
1083 }
1084 if (tpa_info->tpa_state == BNX2X_TPA_START)
1085 dma_unmap_single(&bp->pdev->dev,
1086 dma_unmap_addr(first_buf, mapping),
1087 fp->rx_buf_size, DMA_FROM_DEVICE);
1088 kfree(data);
1089 first_buf->data = NULL;
1090 }
1091 }
1092
1093 void bnx2x_init_rx_rings(struct bnx2x *bp)
1094 {
1095 int func = BP_FUNC(bp);
1096 u16 ring_prod;
1097 int i, j;
1098
1099 /* Allocate TPA resources */
1100 for_each_rx_queue(bp, j) {
1101 struct bnx2x_fastpath *fp = &bp->fp[j];
1102
1103 DP(NETIF_MSG_IFUP,
1104 "mtu %d rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1105
1106 if (!fp->disable_tpa) {
1107 /* Fill the per-aggregtion pool */
1108 for (i = 0; i < MAX_AGG_QS(bp); i++) {
1109 struct bnx2x_agg_info *tpa_info =
1110 &fp->tpa_info[i];
1111 struct sw_rx_bd *first_buf =
1112 &tpa_info->first_buf;
1113
1114 first_buf->data = kmalloc(fp->rx_buf_size + NET_SKB_PAD,
1115 GFP_ATOMIC);
1116 if (!first_buf->data) {
1117 BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1118 j);
1119 bnx2x_free_tpa_pool(bp, fp, i);
1120 fp->disable_tpa = 1;
1121 break;
1122 }
1123 dma_unmap_addr_set(first_buf, mapping, 0);
1124 tpa_info->tpa_state = BNX2X_TPA_STOP;
1125 }
1126
1127 /* "next page" elements initialization */
1128 bnx2x_set_next_page_sgl(fp);
1129
1130 /* set SGEs bit mask */
1131 bnx2x_init_sge_ring_bit_mask(fp);
1132
1133 /* Allocate SGEs and initialize the ring elements */
1134 for (i = 0, ring_prod = 0;
1135 i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1136
1137 if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) {
1138 BNX2X_ERR("was only able to allocate %d rx sges\n",
1139 i);
1140 BNX2X_ERR("disabling TPA for queue[%d]\n",
1141 j);
1142 /* Cleanup already allocated elements */
1143 bnx2x_free_rx_sge_range(bp, fp,
1144 ring_prod);
1145 bnx2x_free_tpa_pool(bp, fp,
1146 MAX_AGG_QS(bp));
1147 fp->disable_tpa = 1;
1148 ring_prod = 0;
1149 break;
1150 }
1151 ring_prod = NEXT_SGE_IDX(ring_prod);
1152 }
1153
1154 fp->rx_sge_prod = ring_prod;
1155 }
1156 }
1157
1158 for_each_rx_queue(bp, j) {
1159 struct bnx2x_fastpath *fp = &bp->fp[j];
1160
1161 fp->rx_bd_cons = 0;
1162
1163 /* Activate BD ring */
1164 /* Warning!
1165 * this will generate an interrupt (to the TSTORM)
1166 * must only be done after chip is initialized
1167 */
1168 bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1169 fp->rx_sge_prod);
1170
1171 if (j != 0)
1172 continue;
1173
1174 if (CHIP_IS_E1(bp)) {
1175 REG_WR(bp, BAR_USTRORM_INTMEM +
1176 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1177 U64_LO(fp->rx_comp_mapping));
1178 REG_WR(bp, BAR_USTRORM_INTMEM +
1179 USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1180 U64_HI(fp->rx_comp_mapping));
1181 }
1182 }
1183 }
1184
1185 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1186 {
1187 int i;
1188 u8 cos;
1189
1190 for_each_tx_queue(bp, i) {
1191 struct bnx2x_fastpath *fp = &bp->fp[i];
1192 for_each_cos_in_tx_queue(fp, cos) {
1193 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
1194 unsigned pkts_compl = 0, bytes_compl = 0;
1195
1196 u16 sw_prod = txdata->tx_pkt_prod;
1197 u16 sw_cons = txdata->tx_pkt_cons;
1198
1199 while (sw_cons != sw_prod) {
1200 bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1201 &pkts_compl, &bytes_compl);
1202 sw_cons++;
1203 }
1204 netdev_tx_reset_queue(
1205 netdev_get_tx_queue(bp->dev, txdata->txq_index));
1206 }
1207 }
1208 }
1209
1210 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1211 {
1212 struct bnx2x *bp = fp->bp;
1213 int i;
1214
1215 /* ring wasn't allocated */
1216 if (fp->rx_buf_ring == NULL)
1217 return;
1218
1219 for (i = 0; i < NUM_RX_BD; i++) {
1220 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1221 u8 *data = rx_buf->data;
1222
1223 if (data == NULL)
1224 continue;
1225 dma_unmap_single(&bp->pdev->dev,
1226 dma_unmap_addr(rx_buf, mapping),
1227 fp->rx_buf_size, DMA_FROM_DEVICE);
1228
1229 rx_buf->data = NULL;
1230 kfree(data);
1231 }
1232 }
1233
1234 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1235 {
1236 int j;
1237
1238 for_each_rx_queue(bp, j) {
1239 struct bnx2x_fastpath *fp = &bp->fp[j];
1240
1241 bnx2x_free_rx_bds(fp);
1242
1243 if (!fp->disable_tpa)
1244 bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1245 }
1246 }
1247
1248 void bnx2x_free_skbs(struct bnx2x *bp)
1249 {
1250 bnx2x_free_tx_skbs(bp);
1251 bnx2x_free_rx_skbs(bp);
1252 }
1253
1254 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1255 {
1256 /* load old values */
1257 u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1258
1259 if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1260 /* leave all but MAX value */
1261 mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1262
1263 /* set new MAX value */
1264 mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1265 & FUNC_MF_CFG_MAX_BW_MASK;
1266
1267 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1268 }
1269 }
1270
1271 /**
1272 * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1273 *
1274 * @bp: driver handle
1275 * @nvecs: number of vectors to be released
1276 */
1277 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1278 {
1279 int i, offset = 0;
1280
1281 if (nvecs == offset)
1282 return;
1283 free_irq(bp->msix_table[offset].vector, bp->dev);
1284 DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1285 bp->msix_table[offset].vector);
1286 offset++;
1287 #ifdef BCM_CNIC
1288 if (nvecs == offset)
1289 return;
1290 offset++;
1291 #endif
1292
1293 for_each_eth_queue(bp, i) {
1294 if (nvecs == offset)
1295 return;
1296 DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1297 i, bp->msix_table[offset].vector);
1298
1299 free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1300 }
1301 }
1302
1303 void bnx2x_free_irq(struct bnx2x *bp)
1304 {
1305 if (bp->flags & USING_MSIX_FLAG &&
1306 !(bp->flags & USING_SINGLE_MSIX_FLAG))
1307 bnx2x_free_msix_irqs(bp, BNX2X_NUM_ETH_QUEUES(bp) +
1308 CNIC_PRESENT + 1);
1309 else
1310 free_irq(bp->dev->irq, bp->dev);
1311 }
1312
1313 int __devinit bnx2x_enable_msix(struct bnx2x *bp)
1314 {
1315 int msix_vec = 0, i, rc, req_cnt;
1316
1317 bp->msix_table[msix_vec].entry = msix_vec;
1318 BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1319 bp->msix_table[0].entry);
1320 msix_vec++;
1321
1322 #ifdef BCM_CNIC
1323 bp->msix_table[msix_vec].entry = msix_vec;
1324 BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1325 bp->msix_table[msix_vec].entry, bp->msix_table[msix_vec].entry);
1326 msix_vec++;
1327 #endif
1328 /* We need separate vectors for ETH queues only (not FCoE) */
1329 for_each_eth_queue(bp, i) {
1330 bp->msix_table[msix_vec].entry = msix_vec;
1331 BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1332 msix_vec, msix_vec, i);
1333 msix_vec++;
1334 }
1335
1336 req_cnt = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_PRESENT + 1;
1337
1338 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], req_cnt);
1339
1340 /*
1341 * reconfigure number of tx/rx queues according to available
1342 * MSI-X vectors
1343 */
1344 if (rc >= BNX2X_MIN_MSIX_VEC_CNT) {
1345 /* how less vectors we will have? */
1346 int diff = req_cnt - rc;
1347
1348 BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1349
1350 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc);
1351
1352 if (rc) {
1353 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1354 goto no_msix;
1355 }
1356 /*
1357 * decrease number of queues by number of unallocated entries
1358 */
1359 bp->num_queues -= diff;
1360
1361 BNX2X_DEV_INFO("New queue configuration set: %d\n",
1362 bp->num_queues);
1363 } else if (rc > 0) {
1364 /* Get by with single vector */
1365 rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], 1);
1366 if (rc) {
1367 BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1368 rc);
1369 goto no_msix;
1370 }
1371
1372 BNX2X_DEV_INFO("Using single MSI-X vector\n");
1373 bp->flags |= USING_SINGLE_MSIX_FLAG;
1374
1375 } else if (rc < 0) {
1376 BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1377 goto no_msix;
1378 }
1379
1380 bp->flags |= USING_MSIX_FLAG;
1381
1382 return 0;
1383
1384 no_msix:
1385 /* fall to INTx if not enough memory */
1386 if (rc == -ENOMEM)
1387 bp->flags |= DISABLE_MSI_FLAG;
1388
1389 return rc;
1390 }
1391
1392 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1393 {
1394 int i, rc, offset = 0;
1395
1396 rc = request_irq(bp->msix_table[offset++].vector,
1397 bnx2x_msix_sp_int, 0,
1398 bp->dev->name, bp->dev);
1399 if (rc) {
1400 BNX2X_ERR("request sp irq failed\n");
1401 return -EBUSY;
1402 }
1403
1404 #ifdef BCM_CNIC
1405 offset++;
1406 #endif
1407 for_each_eth_queue(bp, i) {
1408 struct bnx2x_fastpath *fp = &bp->fp[i];
1409 snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1410 bp->dev->name, i);
1411
1412 rc = request_irq(bp->msix_table[offset].vector,
1413 bnx2x_msix_fp_int, 0, fp->name, fp);
1414 if (rc) {
1415 BNX2X_ERR("request fp #%d irq (%d) failed rc %d\n", i,
1416 bp->msix_table[offset].vector, rc);
1417 bnx2x_free_msix_irqs(bp, offset);
1418 return -EBUSY;
1419 }
1420
1421 offset++;
1422 }
1423
1424 i = BNX2X_NUM_ETH_QUEUES(bp);
1425 offset = 1 + CNIC_PRESENT;
1426 netdev_info(bp->dev, "using MSI-X IRQs: sp %d fp[%d] %d ... fp[%d] %d\n",
1427 bp->msix_table[0].vector,
1428 0, bp->msix_table[offset].vector,
1429 i - 1, bp->msix_table[offset + i - 1].vector);
1430
1431 return 0;
1432 }
1433
1434 int bnx2x_enable_msi(struct bnx2x *bp)
1435 {
1436 int rc;
1437
1438 rc = pci_enable_msi(bp->pdev);
1439 if (rc) {
1440 BNX2X_DEV_INFO("MSI is not attainable\n");
1441 return -1;
1442 }
1443 bp->flags |= USING_MSI_FLAG;
1444
1445 return 0;
1446 }
1447
1448 static int bnx2x_req_irq(struct bnx2x *bp)
1449 {
1450 unsigned long flags;
1451 unsigned int irq;
1452
1453 if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1454 flags = 0;
1455 else
1456 flags = IRQF_SHARED;
1457
1458 if (bp->flags & USING_MSIX_FLAG)
1459 irq = bp->msix_table[0].vector;
1460 else
1461 irq = bp->pdev->irq;
1462
1463 return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1464 }
1465
1466 static int bnx2x_setup_irqs(struct bnx2x *bp)
1467 {
1468 int rc = 0;
1469 if (bp->flags & USING_MSIX_FLAG &&
1470 !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1471 rc = bnx2x_req_msix_irqs(bp);
1472 if (rc)
1473 return rc;
1474 } else {
1475 bnx2x_ack_int(bp);
1476 rc = bnx2x_req_irq(bp);
1477 if (rc) {
1478 BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc);
1479 return rc;
1480 }
1481 if (bp->flags & USING_MSI_FLAG) {
1482 bp->dev->irq = bp->pdev->irq;
1483 netdev_info(bp->dev, "using MSI IRQ %d\n",
1484 bp->dev->irq);
1485 }
1486 if (bp->flags & USING_MSIX_FLAG) {
1487 bp->dev->irq = bp->msix_table[0].vector;
1488 netdev_info(bp->dev, "using MSIX IRQ %d\n",
1489 bp->dev->irq);
1490 }
1491 }
1492
1493 return 0;
1494 }
1495
1496 static void bnx2x_napi_enable(struct bnx2x *bp)
1497 {
1498 int i;
1499
1500 for_each_rx_queue(bp, i)
1501 napi_enable(&bnx2x_fp(bp, i, napi));
1502 }
1503
1504 static void bnx2x_napi_disable(struct bnx2x *bp)
1505 {
1506 int i;
1507
1508 for_each_rx_queue(bp, i)
1509 napi_disable(&bnx2x_fp(bp, i, napi));
1510 }
1511
1512 void bnx2x_netif_start(struct bnx2x *bp)
1513 {
1514 if (netif_running(bp->dev)) {
1515 bnx2x_napi_enable(bp);
1516 bnx2x_int_enable(bp);
1517 if (bp->state == BNX2X_STATE_OPEN)
1518 netif_tx_wake_all_queues(bp->dev);
1519 }
1520 }
1521
1522 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1523 {
1524 bnx2x_int_disable_sync(bp, disable_hw);
1525 bnx2x_napi_disable(bp);
1526 }
1527
1528 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb)
1529 {
1530 struct bnx2x *bp = netdev_priv(dev);
1531
1532 #ifdef BCM_CNIC
1533 if (!NO_FCOE(bp)) {
1534 struct ethhdr *hdr = (struct ethhdr *)skb->data;
1535 u16 ether_type = ntohs(hdr->h_proto);
1536
1537 /* Skip VLAN tag if present */
1538 if (ether_type == ETH_P_8021Q) {
1539 struct vlan_ethhdr *vhdr =
1540 (struct vlan_ethhdr *)skb->data;
1541
1542 ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1543 }
1544
1545 /* If ethertype is FCoE or FIP - use FCoE ring */
1546 if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1547 return bnx2x_fcoe_tx(bp, txq_index);
1548 }
1549 #endif
1550 /* select a non-FCoE queue */
1551 return __skb_tx_hash(dev, skb, BNX2X_NUM_ETH_QUEUES(bp));
1552 }
1553
1554
1555 void bnx2x_set_num_queues(struct bnx2x *bp)
1556 {
1557 /* RSS queues */
1558 bp->num_queues = bnx2x_calc_num_queues(bp);
1559
1560 #ifdef BCM_CNIC
1561 /* override in STORAGE SD modes */
1562 if (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))
1563 bp->num_queues = 1;
1564 #endif
1565 /* Add special queues */
1566 bp->num_queues += NON_ETH_CONTEXT_USE;
1567 }
1568
1569 /**
1570 * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1571 *
1572 * @bp: Driver handle
1573 *
1574 * We currently support for at most 16 Tx queues for each CoS thus we will
1575 * allocate a multiple of 16 for ETH L2 rings according to the value of the
1576 * bp->max_cos.
1577 *
1578 * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1579 * index after all ETH L2 indices.
1580 *
1581 * If the actual number of Tx queues (for each CoS) is less than 16 then there
1582 * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1583 * 16..31,...) with indicies that are not coupled with any real Tx queue.
1584 *
1585 * The proper configuration of skb->queue_mapping is handled by
1586 * bnx2x_select_queue() and __skb_tx_hash().
1587 *
1588 * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1589 * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1590 */
1591 static int bnx2x_set_real_num_queues(struct bnx2x *bp)
1592 {
1593 int rc, tx, rx;
1594
1595 tx = MAX_TXQS_PER_COS * bp->max_cos;
1596 rx = BNX2X_NUM_ETH_QUEUES(bp);
1597
1598 /* account for fcoe queue */
1599 #ifdef BCM_CNIC
1600 if (!NO_FCOE(bp)) {
1601 rx += FCOE_PRESENT;
1602 tx += FCOE_PRESENT;
1603 }
1604 #endif
1605
1606 rc = netif_set_real_num_tx_queues(bp->dev, tx);
1607 if (rc) {
1608 BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1609 return rc;
1610 }
1611 rc = netif_set_real_num_rx_queues(bp->dev, rx);
1612 if (rc) {
1613 BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1614 return rc;
1615 }
1616
1617 DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1618 tx, rx);
1619
1620 return rc;
1621 }
1622
1623 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
1624 {
1625 int i;
1626
1627 for_each_queue(bp, i) {
1628 struct bnx2x_fastpath *fp = &bp->fp[i];
1629 u32 mtu;
1630
1631 /* Always use a mini-jumbo MTU for the FCoE L2 ring */
1632 if (IS_FCOE_IDX(i))
1633 /*
1634 * Although there are no IP frames expected to arrive to
1635 * this ring we still want to add an
1636 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
1637 * overrun attack.
1638 */
1639 mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
1640 else
1641 mtu = bp->dev->mtu;
1642 fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
1643 IP_HEADER_ALIGNMENT_PADDING +
1644 ETH_OVREHEAD +
1645 mtu +
1646 BNX2X_FW_RX_ALIGN_END;
1647 /* Note : rx_buf_size doesnt take into account NET_SKB_PAD */
1648 }
1649 }
1650
1651 static int bnx2x_init_rss_pf(struct bnx2x *bp)
1652 {
1653 int i;
1654 u8 ind_table[T_ETH_INDIRECTION_TABLE_SIZE] = {0};
1655 u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
1656
1657 /* Prepare the initial contents fo the indirection table if RSS is
1658 * enabled
1659 */
1660 for (i = 0; i < sizeof(ind_table); i++)
1661 ind_table[i] =
1662 bp->fp->cl_id +
1663 ethtool_rxfh_indir_default(i, num_eth_queues);
1664
1665 /*
1666 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
1667 * per-port, so if explicit configuration is needed , do it only
1668 * for a PMF.
1669 *
1670 * For 57712 and newer on the other hand it's a per-function
1671 * configuration.
1672 */
1673 return bnx2x_config_rss_eth(bp, ind_table,
1674 bp->port.pmf || !CHIP_IS_E1x(bp));
1675 }
1676
1677 int bnx2x_config_rss_pf(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
1678 u8 *ind_table, bool config_hash)
1679 {
1680 struct bnx2x_config_rss_params params = {NULL};
1681 int i;
1682
1683 /* Although RSS is meaningless when there is a single HW queue we
1684 * still need it enabled in order to have HW Rx hash generated.
1685 *
1686 * if (!is_eth_multi(bp))
1687 * bp->multi_mode = ETH_RSS_MODE_DISABLED;
1688 */
1689
1690 params.rss_obj = rss_obj;
1691
1692 __set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
1693
1694 __set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
1695
1696 /* RSS configuration */
1697 __set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
1698 __set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
1699 __set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
1700 __set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
1701
1702 /* Hash bits */
1703 params.rss_result_mask = MULTI_MASK;
1704
1705 memcpy(params.ind_table, ind_table, sizeof(params.ind_table));
1706
1707 if (config_hash) {
1708 /* RSS keys */
1709 for (i = 0; i < sizeof(params.rss_key) / 4; i++)
1710 params.rss_key[i] = random32();
1711
1712 __set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
1713 }
1714
1715 return bnx2x_config_rss(bp, &params);
1716 }
1717
1718 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
1719 {
1720 struct bnx2x_func_state_params func_params = {NULL};
1721
1722 /* Prepare parameters for function state transitions */
1723 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
1724
1725 func_params.f_obj = &bp->func_obj;
1726 func_params.cmd = BNX2X_F_CMD_HW_INIT;
1727
1728 func_params.params.hw_init.load_phase = load_code;
1729
1730 return bnx2x_func_state_change(bp, &func_params);
1731 }
1732
1733 /*
1734 * Cleans the object that have internal lists without sending
1735 * ramrods. Should be run when interrutps are disabled.
1736 */
1737 static void bnx2x_squeeze_objects(struct bnx2x *bp)
1738 {
1739 int rc;
1740 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
1741 struct bnx2x_mcast_ramrod_params rparam = {NULL};
1742 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
1743
1744 /***************** Cleanup MACs' object first *************************/
1745
1746 /* Wait for completion of requested */
1747 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
1748 /* Perform a dry cleanup */
1749 __set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
1750
1751 /* Clean ETH primary MAC */
1752 __set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
1753 rc = mac_obj->delete_all(bp, &bp->fp->mac_obj, &vlan_mac_flags,
1754 &ramrod_flags);
1755 if (rc != 0)
1756 BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
1757
1758 /* Cleanup UC list */
1759 vlan_mac_flags = 0;
1760 __set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
1761 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
1762 &ramrod_flags);
1763 if (rc != 0)
1764 BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
1765
1766 /***************** Now clean mcast object *****************************/
1767 rparam.mcast_obj = &bp->mcast_obj;
1768 __set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
1769
1770 /* Add a DEL command... */
1771 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
1772 if (rc < 0)
1773 BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
1774 rc);
1775
1776 /* ...and wait until all pending commands are cleared */
1777 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1778 while (rc != 0) {
1779 if (rc < 0) {
1780 BNX2X_ERR("Failed to clean multi-cast object: %d\n",
1781 rc);
1782 return;
1783 }
1784
1785 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
1786 }
1787 }
1788
1789 #ifndef BNX2X_STOP_ON_ERROR
1790 #define LOAD_ERROR_EXIT(bp, label) \
1791 do { \
1792 (bp)->state = BNX2X_STATE_ERROR; \
1793 goto label; \
1794 } while (0)
1795 #else
1796 #define LOAD_ERROR_EXIT(bp, label) \
1797 do { \
1798 (bp)->state = BNX2X_STATE_ERROR; \
1799 (bp)->panic = 1; \
1800 return -EBUSY; \
1801 } while (0)
1802 #endif
1803
1804 bool bnx2x_test_firmware_version(struct bnx2x *bp, bool is_err)
1805 {
1806 /* build FW version dword */
1807 u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
1808 (BCM_5710_FW_MINOR_VERSION << 8) +
1809 (BCM_5710_FW_REVISION_VERSION << 16) +
1810 (BCM_5710_FW_ENGINEERING_VERSION << 24);
1811
1812 /* read loaded FW from chip */
1813 u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
1814
1815 DP(NETIF_MSG_IFUP, "loaded fw %x, my fw %x\n", loaded_fw, my_fw);
1816
1817 if (loaded_fw != my_fw) {
1818 if (is_err)
1819 BNX2X_ERR("bnx2x with FW %x was already loaded, which mismatches my %x FW. aborting\n",
1820 loaded_fw, my_fw);
1821 return false;
1822 }
1823
1824 return true;
1825 }
1826
1827 /**
1828 * bnx2x_bz_fp - zero content of the fastpath structure.
1829 *
1830 * @bp: driver handle
1831 * @index: fastpath index to be zeroed
1832 *
1833 * Makes sure the contents of the bp->fp[index].napi is kept
1834 * intact.
1835 */
1836 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
1837 {
1838 struct bnx2x_fastpath *fp = &bp->fp[index];
1839 struct napi_struct orig_napi = fp->napi;
1840 /* bzero bnx2x_fastpath contents */
1841 if (bp->stats_init)
1842 memset(fp, 0, sizeof(*fp));
1843 else {
1844 /* Keep Queue statistics */
1845 struct bnx2x_eth_q_stats *tmp_eth_q_stats;
1846 struct bnx2x_eth_q_stats_old *tmp_eth_q_stats_old;
1847
1848 tmp_eth_q_stats = kzalloc(sizeof(struct bnx2x_eth_q_stats),
1849 GFP_KERNEL);
1850 if (tmp_eth_q_stats)
1851 memcpy(tmp_eth_q_stats, &fp->eth_q_stats,
1852 sizeof(struct bnx2x_eth_q_stats));
1853
1854 tmp_eth_q_stats_old =
1855 kzalloc(sizeof(struct bnx2x_eth_q_stats_old),
1856 GFP_KERNEL);
1857 if (tmp_eth_q_stats_old)
1858 memcpy(tmp_eth_q_stats_old, &fp->eth_q_stats_old,
1859 sizeof(struct bnx2x_eth_q_stats_old));
1860
1861 memset(fp, 0, sizeof(*fp));
1862
1863 if (tmp_eth_q_stats) {
1864 memcpy(&fp->eth_q_stats, tmp_eth_q_stats,
1865 sizeof(struct bnx2x_eth_q_stats));
1866 kfree(tmp_eth_q_stats);
1867 }
1868
1869 if (tmp_eth_q_stats_old) {
1870 memcpy(&fp->eth_q_stats_old, tmp_eth_q_stats_old,
1871 sizeof(struct bnx2x_eth_q_stats_old));
1872 kfree(tmp_eth_q_stats_old);
1873 }
1874
1875 }
1876
1877 /* Restore the NAPI object as it has been already initialized */
1878 fp->napi = orig_napi;
1879
1880 fp->bp = bp;
1881 fp->index = index;
1882 if (IS_ETH_FP(fp))
1883 fp->max_cos = bp->max_cos;
1884 else
1885 /* Special queues support only one CoS */
1886 fp->max_cos = 1;
1887
1888 /*
1889 * set the tpa flag for each queue. The tpa flag determines the queue
1890 * minimal size so it must be set prior to queue memory allocation
1891 */
1892 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
1893 (bp->flags & GRO_ENABLE_FLAG &&
1894 bnx2x_mtu_allows_gro(bp->dev->mtu)));
1895 if (bp->flags & TPA_ENABLE_FLAG)
1896 fp->mode = TPA_MODE_LRO;
1897 else if (bp->flags & GRO_ENABLE_FLAG)
1898 fp->mode = TPA_MODE_GRO;
1899
1900 #ifdef BCM_CNIC
1901 /* We don't want TPA on an FCoE L2 ring */
1902 if (IS_FCOE_FP(fp))
1903 fp->disable_tpa = 1;
1904 #endif
1905 }
1906
1907
1908 /* must be called with rtnl_lock */
1909 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
1910 {
1911 int port = BP_PORT(bp);
1912 u32 load_code;
1913 int i, rc;
1914
1915 #ifdef BNX2X_STOP_ON_ERROR
1916 if (unlikely(bp->panic)) {
1917 BNX2X_ERR("Can't load NIC when there is panic\n");
1918 return -EPERM;
1919 }
1920 #endif
1921
1922 bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
1923
1924 /* Set the initial link reported state to link down */
1925 bnx2x_acquire_phy_lock(bp);
1926 memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
1927 __set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1928 &bp->last_reported_link.link_report_flags);
1929 bnx2x_release_phy_lock(bp);
1930
1931 /* must be called before memory allocation and HW init */
1932 bnx2x_ilt_set_info(bp);
1933
1934 /*
1935 * Zero fastpath structures preserving invariants like napi, which are
1936 * allocated only once, fp index, max_cos, bp pointer.
1937 * Also set fp->disable_tpa.
1938 */
1939 DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
1940 for_each_queue(bp, i)
1941 bnx2x_bz_fp(bp, i);
1942
1943
1944 /* Set the receive queues buffer size */
1945 bnx2x_set_rx_buf_size(bp);
1946
1947 if (bnx2x_alloc_mem(bp))
1948 return -ENOMEM;
1949
1950 /* As long as bnx2x_alloc_mem() may possibly update
1951 * bp->num_queues, bnx2x_set_real_num_queues() should always
1952 * come after it.
1953 */
1954 rc = bnx2x_set_real_num_queues(bp);
1955 if (rc) {
1956 BNX2X_ERR("Unable to set real_num_queues\n");
1957 LOAD_ERROR_EXIT(bp, load_error0);
1958 }
1959
1960 /* configure multi cos mappings in kernel.
1961 * this configuration may be overriden by a multi class queue discipline
1962 * or by a dcbx negotiation result.
1963 */
1964 bnx2x_setup_tc(bp->dev, bp->max_cos);
1965
1966 bnx2x_napi_enable(bp);
1967
1968 /* set pf load just before approaching the MCP */
1969 bnx2x_set_pf_load(bp);
1970
1971 /* Send LOAD_REQUEST command to MCP
1972 * Returns the type of LOAD command:
1973 * if it is the first port to be initialized
1974 * common blocks should be initialized, otherwise - not
1975 */
1976 if (!BP_NOMCP(bp)) {
1977 /* init fw_seq */
1978 bp->fw_seq =
1979 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
1980 DRV_MSG_SEQ_NUMBER_MASK);
1981 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
1982
1983 /* Get current FW pulse sequence */
1984 bp->fw_drv_pulse_wr_seq =
1985 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
1986 DRV_PULSE_SEQ_MASK);
1987 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
1988
1989 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, 0);
1990 if (!load_code) {
1991 BNX2X_ERR("MCP response failure, aborting\n");
1992 rc = -EBUSY;
1993 LOAD_ERROR_EXIT(bp, load_error1);
1994 }
1995 if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) {
1996 BNX2X_ERR("Driver load refused\n");
1997 rc = -EBUSY; /* other port in diagnostic mode */
1998 LOAD_ERROR_EXIT(bp, load_error1);
1999 }
2000 if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2001 load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2002 /* abort nic load if version mismatch */
2003 if (!bnx2x_test_firmware_version(bp, true)) {
2004 rc = -EBUSY;
2005 LOAD_ERROR_EXIT(bp, load_error2);
2006 }
2007 }
2008
2009 } else {
2010 int path = BP_PATH(bp);
2011
2012 DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d] %d, %d, %d\n",
2013 path, load_count[path][0], load_count[path][1],
2014 load_count[path][2]);
2015 load_count[path][0]++;
2016 load_count[path][1 + port]++;
2017 DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d] %d, %d, %d\n",
2018 path, load_count[path][0], load_count[path][1],
2019 load_count[path][2]);
2020 if (load_count[path][0] == 1)
2021 load_code = FW_MSG_CODE_DRV_LOAD_COMMON;
2022 else if (load_count[path][1 + port] == 1)
2023 load_code = FW_MSG_CODE_DRV_LOAD_PORT;
2024 else
2025 load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION;
2026 }
2027
2028 if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2029 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2030 (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2031 bp->port.pmf = 1;
2032 /*
2033 * We need the barrier to ensure the ordering between the
2034 * writing to bp->port.pmf here and reading it from the
2035 * bnx2x_periodic_task().
2036 */
2037 smp_mb();
2038 } else
2039 bp->port.pmf = 0;
2040
2041 DP(NETIF_MSG_IFUP, "pmf %d\n", bp->port.pmf);
2042
2043 /* Init Function state controlling object */
2044 bnx2x__init_func_obj(bp);
2045
2046 /* Initialize HW */
2047 rc = bnx2x_init_hw(bp, load_code);
2048 if (rc) {
2049 BNX2X_ERR("HW init failed, aborting\n");
2050 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2051 LOAD_ERROR_EXIT(bp, load_error2);
2052 }
2053
2054 /* Connect to IRQs */
2055 rc = bnx2x_setup_irqs(bp);
2056 if (rc) {
2057 BNX2X_ERR("IRQs setup failed\n");
2058 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2059 LOAD_ERROR_EXIT(bp, load_error2);
2060 }
2061
2062 /* Setup NIC internals and enable interrupts */
2063 bnx2x_nic_init(bp, load_code);
2064
2065 /* Init per-function objects */
2066 bnx2x_init_bp_objs(bp);
2067
2068 if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2069 (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2070 (bp->common.shmem2_base)) {
2071 if (SHMEM2_HAS(bp, dcc_support))
2072 SHMEM2_WR(bp, dcc_support,
2073 (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2074 SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2075 if (SHMEM2_HAS(bp, afex_driver_support))
2076 SHMEM2_WR(bp, afex_driver_support,
2077 SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2078 }
2079
2080 /* Set AFEX default VLAN tag to an invalid value */
2081 bp->afex_def_vlan_tag = -1;
2082
2083 bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2084 rc = bnx2x_func_start(bp);
2085 if (rc) {
2086 BNX2X_ERR("Function start failed!\n");
2087 bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2088 LOAD_ERROR_EXIT(bp, load_error3);
2089 }
2090
2091 /* Send LOAD_DONE command to MCP */
2092 if (!BP_NOMCP(bp)) {
2093 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2094 if (!load_code) {
2095 BNX2X_ERR("MCP response failure, aborting\n");
2096 rc = -EBUSY;
2097 LOAD_ERROR_EXIT(bp, load_error3);
2098 }
2099 }
2100
2101 rc = bnx2x_setup_leading(bp);
2102 if (rc) {
2103 BNX2X_ERR("Setup leading failed!\n");
2104 LOAD_ERROR_EXIT(bp, load_error3);
2105 }
2106
2107 #ifdef BCM_CNIC
2108 /* Enable Timer scan */
2109 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2110 #endif
2111
2112 for_each_nondefault_queue(bp, i) {
2113 rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2114 if (rc) {
2115 BNX2X_ERR("Queue setup failed\n");
2116 LOAD_ERROR_EXIT(bp, load_error4);
2117 }
2118 }
2119
2120 rc = bnx2x_init_rss_pf(bp);
2121 if (rc) {
2122 BNX2X_ERR("PF RSS init failed\n");
2123 LOAD_ERROR_EXIT(bp, load_error4);
2124 }
2125
2126 /* Now when Clients are configured we are ready to work */
2127 bp->state = BNX2X_STATE_OPEN;
2128
2129 /* Configure a ucast MAC */
2130 rc = bnx2x_set_eth_mac(bp, true);
2131 if (rc) {
2132 BNX2X_ERR("Setting Ethernet MAC failed\n");
2133 LOAD_ERROR_EXIT(bp, load_error4);
2134 }
2135
2136 if (bp->pending_max) {
2137 bnx2x_update_max_mf_config(bp, bp->pending_max);
2138 bp->pending_max = 0;
2139 }
2140
2141 if (bp->port.pmf)
2142 bnx2x_initial_phy_init(bp, load_mode);
2143
2144 /* Start fast path */
2145
2146 /* Initialize Rx filter. */
2147 netif_addr_lock_bh(bp->dev);
2148 bnx2x_set_rx_mode(bp->dev);
2149 netif_addr_unlock_bh(bp->dev);
2150
2151 /* Start the Tx */
2152 switch (load_mode) {
2153 case LOAD_NORMAL:
2154 /* Tx queue should be only reenabled */
2155 netif_tx_wake_all_queues(bp->dev);
2156 break;
2157
2158 case LOAD_OPEN:
2159 netif_tx_start_all_queues(bp->dev);
2160 smp_mb__after_clear_bit();
2161 break;
2162
2163 case LOAD_DIAG:
2164 bp->state = BNX2X_STATE_DIAG;
2165 break;
2166
2167 default:
2168 break;
2169 }
2170
2171 if (bp->port.pmf)
2172 bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_DCB_CONFIGURED, 0);
2173 else
2174 bnx2x__link_status_update(bp);
2175
2176 /* start the timer */
2177 mod_timer(&bp->timer, jiffies + bp->current_interval);
2178
2179 #ifdef BCM_CNIC
2180 /* re-read iscsi info */
2181 bnx2x_get_iscsi_info(bp);
2182 bnx2x_setup_cnic_irq_info(bp);
2183 if (bp->state == BNX2X_STATE_OPEN)
2184 bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2185 #endif
2186
2187 /* mark driver is loaded in shmem2 */
2188 if (SHMEM2_HAS(bp, drv_capabilities_flag)) {
2189 u32 val;
2190 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2191 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2192 val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2193 DRV_FLAGS_CAPABILITIES_LOADED_L2);
2194 }
2195
2196 /* Wait for all pending SP commands to complete */
2197 if (!bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2198 BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2199 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
2200 return -EBUSY;
2201 }
2202
2203 bnx2x_dcbx_init(bp);
2204 return 0;
2205
2206 #ifndef BNX2X_STOP_ON_ERROR
2207 load_error4:
2208 #ifdef BCM_CNIC
2209 /* Disable Timer scan */
2210 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2211 #endif
2212 load_error3:
2213 bnx2x_int_disable_sync(bp, 1);
2214
2215 /* Clean queueable objects */
2216 bnx2x_squeeze_objects(bp);
2217
2218 /* Free SKBs, SGEs, TPA pool and driver internals */
2219 bnx2x_free_skbs(bp);
2220 for_each_rx_queue(bp, i)
2221 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2222
2223 /* Release IRQs */
2224 bnx2x_free_irq(bp);
2225 load_error2:
2226 if (!BP_NOMCP(bp)) {
2227 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2228 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2229 }
2230
2231 bp->port.pmf = 0;
2232 load_error1:
2233 bnx2x_napi_disable(bp);
2234 /* clear pf_load status, as it was already set */
2235 bnx2x_clear_pf_load(bp);
2236 load_error0:
2237 bnx2x_free_mem(bp);
2238
2239 return rc;
2240 #endif /* ! BNX2X_STOP_ON_ERROR */
2241 }
2242
2243 /* must be called with rtnl_lock */
2244 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode)
2245 {
2246 int i;
2247 bool global = false;
2248
2249 /* mark driver is unloaded in shmem2 */
2250 if (SHMEM2_HAS(bp, drv_capabilities_flag)) {
2251 u32 val;
2252 val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2253 SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2254 val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2255 }
2256
2257 if ((bp->state == BNX2X_STATE_CLOSED) ||
2258 (bp->state == BNX2X_STATE_ERROR)) {
2259 /* We can get here if the driver has been unloaded
2260 * during parity error recovery and is either waiting for a
2261 * leader to complete or for other functions to unload and
2262 * then ifdown has been issued. In this case we want to
2263 * unload and let other functions to complete a recovery
2264 * process.
2265 */
2266 bp->recovery_state = BNX2X_RECOVERY_DONE;
2267 bp->is_leader = 0;
2268 bnx2x_release_leader_lock(bp);
2269 smp_mb();
2270
2271 DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2272 BNX2X_ERR("Can't unload in closed or error state\n");
2273 return -EINVAL;
2274 }
2275
2276 /*
2277 * It's important to set the bp->state to the value different from
2278 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
2279 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
2280 */
2281 bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
2282 smp_mb();
2283
2284 /* Stop Tx */
2285 bnx2x_tx_disable(bp);
2286
2287 #ifdef BCM_CNIC
2288 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
2289 #endif
2290
2291 bp->rx_mode = BNX2X_RX_MODE_NONE;
2292
2293 del_timer_sync(&bp->timer);
2294
2295 /* Set ALWAYS_ALIVE bit in shmem */
2296 bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
2297
2298 bnx2x_drv_pulse(bp);
2299
2300 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2301 bnx2x_save_statistics(bp);
2302
2303 /* Cleanup the chip if needed */
2304 if (unload_mode != UNLOAD_RECOVERY)
2305 bnx2x_chip_cleanup(bp, unload_mode);
2306 else {
2307 /* Send the UNLOAD_REQUEST to the MCP */
2308 bnx2x_send_unload_req(bp, unload_mode);
2309
2310 /*
2311 * Prevent transactions to host from the functions on the
2312 * engine that doesn't reset global blocks in case of global
2313 * attention once gloabl blocks are reset and gates are opened
2314 * (the engine which leader will perform the recovery
2315 * last).
2316 */
2317 if (!CHIP_IS_E1x(bp))
2318 bnx2x_pf_disable(bp);
2319
2320 /* Disable HW interrupts, NAPI */
2321 bnx2x_netif_stop(bp, 1);
2322
2323 /* Release IRQs */
2324 bnx2x_free_irq(bp);
2325
2326 /* Report UNLOAD_DONE to MCP */
2327 bnx2x_send_unload_done(bp);
2328 }
2329
2330 /*
2331 * At this stage no more interrupts will arrive so we may safly clean
2332 * the queueable objects here in case they failed to get cleaned so far.
2333 */
2334 bnx2x_squeeze_objects(bp);
2335
2336 /* There should be no more pending SP commands at this stage */
2337 bp->sp_state = 0;
2338
2339 bp->port.pmf = 0;
2340
2341 /* Free SKBs, SGEs, TPA pool and driver internals */
2342 bnx2x_free_skbs(bp);
2343 for_each_rx_queue(bp, i)
2344 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2345
2346 bnx2x_free_mem(bp);
2347
2348 bp->state = BNX2X_STATE_CLOSED;
2349
2350 /* Check if there are pending parity attentions. If there are - set
2351 * RECOVERY_IN_PROGRESS.
2352 */
2353 if (bnx2x_chk_parity_attn(bp, &global, false)) {
2354 bnx2x_set_reset_in_progress(bp);
2355
2356 /* Set RESET_IS_GLOBAL if needed */
2357 if (global)
2358 bnx2x_set_reset_global(bp);
2359 }
2360
2361
2362 /* The last driver must disable a "close the gate" if there is no
2363 * parity attention or "process kill" pending.
2364 */
2365 if (!bnx2x_clear_pf_load(bp) && bnx2x_reset_is_done(bp, BP_PATH(bp)))
2366 bnx2x_disable_close_the_gate(bp);
2367
2368 return 0;
2369 }
2370
2371 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
2372 {
2373 u16 pmcsr;
2374
2375 /* If there is no power capability, silently succeed */
2376 if (!bp->pm_cap) {
2377 BNX2X_DEV_INFO("No power capability. Breaking.\n");
2378 return 0;
2379 }
2380
2381 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
2382
2383 switch (state) {
2384 case PCI_D0:
2385 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2386 ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
2387 PCI_PM_CTRL_PME_STATUS));
2388
2389 if (pmcsr & PCI_PM_CTRL_STATE_MASK)
2390 /* delay required during transition out of D3hot */
2391 msleep(20);
2392 break;
2393
2394 case PCI_D3hot:
2395 /* If there are other clients above don't
2396 shut down the power */
2397 if (atomic_read(&bp->pdev->enable_cnt) != 1)
2398 return 0;
2399 /* Don't shut down the power for emulation and FPGA */
2400 if (CHIP_REV_IS_SLOW(bp))
2401 return 0;
2402
2403 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
2404 pmcsr |= 3;
2405
2406 if (bp->wol)
2407 pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2408
2409 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
2410 pmcsr);
2411
2412 /* No more memory access after this point until
2413 * device is brought back to D0.
2414 */
2415 break;
2416
2417 default:
2418 dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
2419 return -EINVAL;
2420 }
2421 return 0;
2422 }
2423
2424 /*
2425 * net_device service functions
2426 */
2427 int bnx2x_poll(struct napi_struct *napi, int budget)
2428 {
2429 int work_done = 0;
2430 u8 cos;
2431 struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
2432 napi);
2433 struct bnx2x *bp = fp->bp;
2434
2435 while (1) {
2436 #ifdef BNX2X_STOP_ON_ERROR
2437 if (unlikely(bp->panic)) {
2438 napi_complete(napi);
2439 return 0;
2440 }
2441 #endif
2442
2443 for_each_cos_in_tx_queue(fp, cos)
2444 if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
2445 bnx2x_tx_int(bp, &fp->txdata[cos]);
2446
2447
2448 if (bnx2x_has_rx_work(fp)) {
2449 work_done += bnx2x_rx_int(fp, budget - work_done);
2450
2451 /* must not complete if we consumed full budget */
2452 if (work_done >= budget)
2453 break;
2454 }
2455
2456 /* Fall out from the NAPI loop if needed */
2457 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
2458 #ifdef BCM_CNIC
2459 /* No need to update SB for FCoE L2 ring as long as
2460 * it's connected to the default SB and the SB
2461 * has been updated when NAPI was scheduled.
2462 */
2463 if (IS_FCOE_FP(fp)) {
2464 napi_complete(napi);
2465 break;
2466 }
2467 #endif
2468
2469 bnx2x_update_fpsb_idx(fp);
2470 /* bnx2x_has_rx_work() reads the status block,
2471 * thus we need to ensure that status block indices
2472 * have been actually read (bnx2x_update_fpsb_idx)
2473 * prior to this check (bnx2x_has_rx_work) so that
2474 * we won't write the "newer" value of the status block
2475 * to IGU (if there was a DMA right after
2476 * bnx2x_has_rx_work and if there is no rmb, the memory
2477 * reading (bnx2x_update_fpsb_idx) may be postponed
2478 * to right before bnx2x_ack_sb). In this case there
2479 * will never be another interrupt until there is
2480 * another update of the status block, while there
2481 * is still unhandled work.
2482 */
2483 rmb();
2484
2485 if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
2486 napi_complete(napi);
2487 /* Re-enable interrupts */
2488 DP(NETIF_MSG_RX_STATUS,
2489 "Update index to %d\n", fp->fp_hc_idx);
2490 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
2491 le16_to_cpu(fp->fp_hc_idx),
2492 IGU_INT_ENABLE, 1);
2493 break;
2494 }
2495 }
2496 }
2497
2498 return work_done;
2499 }
2500
2501 /* we split the first BD into headers and data BDs
2502 * to ease the pain of our fellow microcode engineers
2503 * we use one mapping for both BDs
2504 * So far this has only been observed to happen
2505 * in Other Operating Systems(TM)
2506 */
2507 static noinline u16 bnx2x_tx_split(struct bnx2x *bp,
2508 struct bnx2x_fp_txdata *txdata,
2509 struct sw_tx_bd *tx_buf,
2510 struct eth_tx_start_bd **tx_bd, u16 hlen,
2511 u16 bd_prod, int nbd)
2512 {
2513 struct eth_tx_start_bd *h_tx_bd = *tx_bd;
2514 struct eth_tx_bd *d_tx_bd;
2515 dma_addr_t mapping;
2516 int old_len = le16_to_cpu(h_tx_bd->nbytes);
2517
2518 /* first fix first BD */
2519 h_tx_bd->nbd = cpu_to_le16(nbd);
2520 h_tx_bd->nbytes = cpu_to_le16(hlen);
2521
2522 DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d (%x:%x) nbd %d\n",
2523 h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo, h_tx_bd->nbd);
2524
2525 /* now get a new data BD
2526 * (after the pbd) and fill it */
2527 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
2528 d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
2529
2530 mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
2531 le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
2532
2533 d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
2534 d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
2535 d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
2536
2537 /* this marks the BD as one that has no individual mapping */
2538 tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
2539
2540 DP(NETIF_MSG_TX_QUEUED,
2541 "TSO split data size is %d (%x:%x)\n",
2542 d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
2543
2544 /* update tx_bd */
2545 *tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
2546
2547 return bd_prod;
2548 }
2549
2550 static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
2551 {
2552 if (fix > 0)
2553 csum = (u16) ~csum_fold(csum_sub(csum,
2554 csum_partial(t_header - fix, fix, 0)));
2555
2556 else if (fix < 0)
2557 csum = (u16) ~csum_fold(csum_add(csum,
2558 csum_partial(t_header, -fix, 0)));
2559
2560 return swab16(csum);
2561 }
2562
2563 static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
2564 {
2565 u32 rc;
2566
2567 if (skb->ip_summed != CHECKSUM_PARTIAL)
2568 rc = XMIT_PLAIN;
2569
2570 else {
2571 if (vlan_get_protocol(skb) == htons(ETH_P_IPV6)) {
2572 rc = XMIT_CSUM_V6;
2573 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2574 rc |= XMIT_CSUM_TCP;
2575
2576 } else {
2577 rc = XMIT_CSUM_V4;
2578 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2579 rc |= XMIT_CSUM_TCP;
2580 }
2581 }
2582
2583 if (skb_is_gso_v6(skb))
2584 rc |= XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6;
2585 else if (skb_is_gso(skb))
2586 rc |= XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP;
2587
2588 return rc;
2589 }
2590
2591 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
2592 /* check if packet requires linearization (packet is too fragmented)
2593 no need to check fragmentation if page size > 8K (there will be no
2594 violation to FW restrictions) */
2595 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
2596 u32 xmit_type)
2597 {
2598 int to_copy = 0;
2599 int hlen = 0;
2600 int first_bd_sz = 0;
2601
2602 /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
2603 if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) {
2604
2605 if (xmit_type & XMIT_GSO) {
2606 unsigned short lso_mss = skb_shinfo(skb)->gso_size;
2607 /* Check if LSO packet needs to be copied:
2608 3 = 1 (for headers BD) + 2 (for PBD and last BD) */
2609 int wnd_size = MAX_FETCH_BD - 3;
2610 /* Number of windows to check */
2611 int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
2612 int wnd_idx = 0;
2613 int frag_idx = 0;
2614 u32 wnd_sum = 0;
2615
2616 /* Headers length */
2617 hlen = (int)(skb_transport_header(skb) - skb->data) +
2618 tcp_hdrlen(skb);
2619
2620 /* Amount of data (w/o headers) on linear part of SKB*/
2621 first_bd_sz = skb_headlen(skb) - hlen;
2622
2623 wnd_sum = first_bd_sz;
2624
2625 /* Calculate the first sum - it's special */
2626 for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
2627 wnd_sum +=
2628 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
2629
2630 /* If there was data on linear skb data - check it */
2631 if (first_bd_sz > 0) {
2632 if (unlikely(wnd_sum < lso_mss)) {
2633 to_copy = 1;
2634 goto exit_lbl;
2635 }
2636
2637 wnd_sum -= first_bd_sz;
2638 }
2639
2640 /* Others are easier: run through the frag list and
2641 check all windows */
2642 for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
2643 wnd_sum +=
2644 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
2645
2646 if (unlikely(wnd_sum < lso_mss)) {
2647 to_copy = 1;
2648 break;
2649 }
2650 wnd_sum -=
2651 skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
2652 }
2653 } else {
2654 /* in non-LSO too fragmented packet should always
2655 be linearized */
2656 to_copy = 1;
2657 }
2658 }
2659
2660 exit_lbl:
2661 if (unlikely(to_copy))
2662 DP(NETIF_MSG_TX_QUEUED,
2663 "Linearization IS REQUIRED for %s packet. num_frags %d hlen %d first_bd_sz %d\n",
2664 (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
2665 skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
2666
2667 return to_copy;
2668 }
2669 #endif
2670
2671 static inline void bnx2x_set_pbd_gso_e2(struct sk_buff *skb, u32 *parsing_data,
2672 u32 xmit_type)
2673 {
2674 *parsing_data |= (skb_shinfo(skb)->gso_size <<
2675 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
2676 ETH_TX_PARSE_BD_E2_LSO_MSS;
2677 if ((xmit_type & XMIT_GSO_V6) &&
2678 (ipv6_hdr(skb)->nexthdr == NEXTHDR_IPV6))
2679 *parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
2680 }
2681
2682 /**
2683 * bnx2x_set_pbd_gso - update PBD in GSO case.
2684 *
2685 * @skb: packet skb
2686 * @pbd: parse BD
2687 * @xmit_type: xmit flags
2688 */
2689 static inline void bnx2x_set_pbd_gso(struct sk_buff *skb,
2690 struct eth_tx_parse_bd_e1x *pbd,
2691 u32 xmit_type)
2692 {
2693 pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
2694 pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq);
2695 pbd->tcp_flags = pbd_tcp_flags(skb);
2696
2697 if (xmit_type & XMIT_GSO_V4) {
2698 pbd->ip_id = swab16(ip_hdr(skb)->id);
2699 pbd->tcp_pseudo_csum =
2700 swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
2701 ip_hdr(skb)->daddr,
2702 0, IPPROTO_TCP, 0));
2703
2704 } else
2705 pbd->tcp_pseudo_csum =
2706 swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2707 &ipv6_hdr(skb)->daddr,
2708 0, IPPROTO_TCP, 0));
2709
2710 pbd->global_data |= ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN;
2711 }
2712
2713 /**
2714 * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
2715 *
2716 * @bp: driver handle
2717 * @skb: packet skb
2718 * @parsing_data: data to be updated
2719 * @xmit_type: xmit flags
2720 *
2721 * 57712 related
2722 */
2723 static inline u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
2724 u32 *parsing_data, u32 xmit_type)
2725 {
2726 *parsing_data |=
2727 ((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
2728 ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W_SHIFT) &
2729 ETH_TX_PARSE_BD_E2_TCP_HDR_START_OFFSET_W;
2730
2731 if (xmit_type & XMIT_CSUM_TCP) {
2732 *parsing_data |= ((tcp_hdrlen(skb) / 4) <<
2733 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
2734 ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
2735
2736 return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
2737 } else
2738 /* We support checksum offload for TCP and UDP only.
2739 * No need to pass the UDP header length - it's a constant.
2740 */
2741 return skb_transport_header(skb) +
2742 sizeof(struct udphdr) - skb->data;
2743 }
2744
2745 static inline void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
2746 struct eth_tx_start_bd *tx_start_bd, u32 xmit_type)
2747 {
2748 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
2749
2750 if (xmit_type & XMIT_CSUM_V4)
2751 tx_start_bd->bd_flags.as_bitfield |=
2752 ETH_TX_BD_FLAGS_IP_CSUM;
2753 else
2754 tx_start_bd->bd_flags.as_bitfield |=
2755 ETH_TX_BD_FLAGS_IPV6;
2756
2757 if (!(xmit_type & XMIT_CSUM_TCP))
2758 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
2759 }
2760
2761 /**
2762 * bnx2x_set_pbd_csum - update PBD with checksum and return header length
2763 *
2764 * @bp: driver handle
2765 * @skb: packet skb
2766 * @pbd: parse BD to be updated
2767 * @xmit_type: xmit flags
2768 */
2769 static inline u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
2770 struct eth_tx_parse_bd_e1x *pbd,
2771 u32 xmit_type)
2772 {
2773 u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
2774
2775 /* for now NS flag is not used in Linux */
2776 pbd->global_data =
2777 (hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
2778 ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
2779
2780 pbd->ip_hlen_w = (skb_transport_header(skb) -
2781 skb_network_header(skb)) >> 1;
2782
2783 hlen += pbd->ip_hlen_w;
2784
2785 /* We support checksum offload for TCP and UDP only */
2786 if (xmit_type & XMIT_CSUM_TCP)
2787 hlen += tcp_hdrlen(skb) / 2;
2788 else
2789 hlen += sizeof(struct udphdr) / 2;
2790
2791 pbd->total_hlen_w = cpu_to_le16(hlen);
2792 hlen = hlen*2;
2793
2794 if (xmit_type & XMIT_CSUM_TCP) {
2795 pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check);
2796
2797 } else {
2798 s8 fix = SKB_CS_OFF(skb); /* signed! */
2799
2800 DP(NETIF_MSG_TX_QUEUED,
2801 "hlen %d fix %d csum before fix %x\n",
2802 le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
2803
2804 /* HW bug: fixup the CSUM */
2805 pbd->tcp_pseudo_csum =
2806 bnx2x_csum_fix(skb_transport_header(skb),
2807 SKB_CS(skb), fix);
2808
2809 DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
2810 pbd->tcp_pseudo_csum);
2811 }
2812
2813 return hlen;
2814 }
2815
2816 /* called with netif_tx_lock
2817 * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
2818 * netif_wake_queue()
2819 */
2820 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
2821 {
2822 struct bnx2x *bp = netdev_priv(dev);
2823
2824 struct bnx2x_fastpath *fp;
2825 struct netdev_queue *txq;
2826 struct bnx2x_fp_txdata *txdata;
2827 struct sw_tx_bd *tx_buf;
2828 struct eth_tx_start_bd *tx_start_bd, *first_bd;
2829 struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
2830 struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
2831 struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
2832 u32 pbd_e2_parsing_data = 0;
2833 u16 pkt_prod, bd_prod;
2834 int nbd, txq_index, fp_index, txdata_index;
2835 dma_addr_t mapping;
2836 u32 xmit_type = bnx2x_xmit_type(bp, skb);
2837 int i;
2838 u8 hlen = 0;
2839 __le16 pkt_size = 0;
2840 struct ethhdr *eth;
2841 u8 mac_type = UNICAST_ADDRESS;
2842
2843 #ifdef BNX2X_STOP_ON_ERROR
2844 if (unlikely(bp->panic))
2845 return NETDEV_TX_BUSY;
2846 #endif
2847
2848 txq_index = skb_get_queue_mapping(skb);
2849 txq = netdev_get_tx_queue(dev, txq_index);
2850
2851 BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + FCOE_PRESENT);
2852
2853 /* decode the fastpath index and the cos index from the txq */
2854 fp_index = TXQ_TO_FP(txq_index);
2855 txdata_index = TXQ_TO_COS(txq_index);
2856
2857 #ifdef BCM_CNIC
2858 /*
2859 * Override the above for the FCoE queue:
2860 * - FCoE fp entry is right after the ETH entries.
2861 * - FCoE L2 queue uses bp->txdata[0] only.
2862 */
2863 if (unlikely(!NO_FCOE(bp) && (txq_index ==
2864 bnx2x_fcoe_tx(bp, txq_index)))) {
2865 fp_index = FCOE_IDX;
2866 txdata_index = 0;
2867 }
2868 #endif
2869
2870 /* enable this debug print to view the transmission queue being used
2871 DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
2872 txq_index, fp_index, txdata_index); */
2873
2874 /* locate the fastpath and the txdata */
2875 fp = &bp->fp[fp_index];
2876 txdata = &fp->txdata[txdata_index];
2877
2878 /* enable this debug print to view the tranmission details
2879 DP(NETIF_MSG_TX_QUEUED,
2880 "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
2881 txdata->cid, fp_index, txdata_index, txdata, fp); */
2882
2883 if (unlikely(bnx2x_tx_avail(bp, txdata) <
2884 (skb_shinfo(skb)->nr_frags + 3))) {
2885 fp->eth_q_stats.driver_xoff++;
2886 netif_tx_stop_queue(txq);
2887 BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
2888 return NETDEV_TX_BUSY;
2889 }
2890
2891 DP(NETIF_MSG_TX_QUEUED,
2892 "queue[%d]: SKB: summed %x protocol %x protocol(%x,%x) gso type %x xmit_type %x\n",
2893 txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
2894 ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type);
2895
2896 eth = (struct ethhdr *)skb->data;
2897
2898 /* set flag according to packet type (UNICAST_ADDRESS is default)*/
2899 if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
2900 if (is_broadcast_ether_addr(eth->h_dest))
2901 mac_type = BROADCAST_ADDRESS;
2902 else
2903 mac_type = MULTICAST_ADDRESS;
2904 }
2905
2906 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3)
2907 /* First, check if we need to linearize the skb (due to FW
2908 restrictions). No need to check fragmentation if page size > 8K
2909 (there will be no violation to FW restrictions) */
2910 if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
2911 /* Statistics of linearization */
2912 bp->lin_cnt++;
2913 if (skb_linearize(skb) != 0) {
2914 DP(NETIF_MSG_TX_QUEUED,
2915 "SKB linearization failed - silently dropping this SKB\n");
2916 dev_kfree_skb_any(skb);
2917 return NETDEV_TX_OK;
2918 }
2919 }
2920 #endif
2921 /* Map skb linear data for DMA */
2922 mapping = dma_map_single(&bp->pdev->dev, skb->data,
2923 skb_headlen(skb), DMA_TO_DEVICE);
2924 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
2925 DP(NETIF_MSG_TX_QUEUED,
2926 "SKB mapping failed - silently dropping this SKB\n");
2927 dev_kfree_skb_any(skb);
2928 return NETDEV_TX_OK;
2929 }
2930 /*
2931 Please read carefully. First we use one BD which we mark as start,
2932 then we have a parsing info BD (used for TSO or xsum),
2933 and only then we have the rest of the TSO BDs.
2934 (don't forget to mark the last one as last,
2935 and to unmap only AFTER you write to the BD ...)
2936 And above all, all pdb sizes are in words - NOT DWORDS!
2937 */
2938
2939 /* get current pkt produced now - advance it just before sending packet
2940 * since mapping of pages may fail and cause packet to be dropped
2941 */
2942 pkt_prod = txdata->tx_pkt_prod;
2943 bd_prod = TX_BD(txdata->tx_bd_prod);
2944
2945 /* get a tx_buf and first BD
2946 * tx_start_bd may be changed during SPLIT,
2947 * but first_bd will always stay first
2948 */
2949 tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
2950 tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
2951 first_bd = tx_start_bd;
2952
2953 tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
2954 SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_ETH_ADDR_TYPE,
2955 mac_type);
2956
2957 /* header nbd */
2958 SET_FLAG(tx_start_bd->general_data, ETH_TX_START_BD_HDR_NBDS, 1);
2959
2960 /* remember the first BD of the packet */
2961 tx_buf->first_bd = txdata->tx_bd_prod;
2962 tx_buf->skb = skb;
2963 tx_buf->flags = 0;
2964
2965 DP(NETIF_MSG_TX_QUEUED,
2966 "sending pkt %u @%p next_idx %u bd %u @%p\n",
2967 pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
2968
2969 if (vlan_tx_tag_present(skb)) {
2970 tx_start_bd->vlan_or_ethertype =
2971 cpu_to_le16(vlan_tx_tag_get(skb));
2972 tx_start_bd->bd_flags.as_bitfield |=
2973 (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
2974 } else
2975 tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
2976
2977 /* turn on parsing and get a BD */
2978 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
2979
2980 if (xmit_type & XMIT_CSUM)
2981 bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
2982
2983 if (!CHIP_IS_E1x(bp)) {
2984 pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
2985 memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
2986 /* Set PBD in checksum offload case */
2987 if (xmit_type & XMIT_CSUM)
2988 hlen = bnx2x_set_pbd_csum_e2(bp, skb,
2989 &pbd_e2_parsing_data,
2990 xmit_type);
2991 if (IS_MF_SI(bp)) {
2992 /*
2993 * fill in the MAC addresses in the PBD - for local
2994 * switching
2995 */
2996 bnx2x_set_fw_mac_addr(&pbd_e2->src_mac_addr_hi,
2997 &pbd_e2->src_mac_addr_mid,
2998 &pbd_e2->src_mac_addr_lo,
2999 eth->h_source);
3000 bnx2x_set_fw_mac_addr(&pbd_e2->dst_mac_addr_hi,
3001 &pbd_e2->dst_mac_addr_mid,
3002 &pbd_e2->dst_mac_addr_lo,
3003 eth->h_dest);
3004 }
3005 } else {
3006 pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3007 memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3008 /* Set PBD in checksum offload case */
3009 if (xmit_type & XMIT_CSUM)
3010 hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3011
3012 }
3013
3014 /* Setup the data pointer of the first BD of the packet */
3015 tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3016 tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3017 nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3018 tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
3019 pkt_size = tx_start_bd->nbytes;
3020
3021 DP(NETIF_MSG_TX_QUEUED,
3022 "first bd @%p addr (%x:%x) nbd %d nbytes %d flags %x vlan %x\n",
3023 tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
3024 le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes),
3025 tx_start_bd->bd_flags.as_bitfield,
3026 le16_to_cpu(tx_start_bd->vlan_or_ethertype));
3027
3028 if (xmit_type & XMIT_GSO) {
3029
3030 DP(NETIF_MSG_TX_QUEUED,
3031 "TSO packet len %d hlen %d total len %d tso size %d\n",
3032 skb->len, hlen, skb_headlen(skb),
3033 skb_shinfo(skb)->gso_size);
3034
3035 tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
3036
3037 if (unlikely(skb_headlen(skb) > hlen))
3038 bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
3039 &tx_start_bd, hlen,
3040 bd_prod, ++nbd);
3041 if (!CHIP_IS_E1x(bp))
3042 bnx2x_set_pbd_gso_e2(skb, &pbd_e2_parsing_data,
3043 xmit_type);
3044 else
3045 bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
3046 }
3047
3048 /* Set the PBD's parsing_data field if not zero
3049 * (for the chips newer than 57711).
3050 */
3051 if (pbd_e2_parsing_data)
3052 pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
3053
3054 tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
3055
3056 /* Handle fragmented skb */
3057 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3058 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3059
3060 mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
3061 skb_frag_size(frag), DMA_TO_DEVICE);
3062 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3063 unsigned int pkts_compl = 0, bytes_compl = 0;
3064
3065 DP(NETIF_MSG_TX_QUEUED,
3066 "Unable to map page - dropping packet...\n");
3067
3068 /* we need unmap all buffers already mapped
3069 * for this SKB;
3070 * first_bd->nbd need to be properly updated
3071 * before call to bnx2x_free_tx_pkt
3072 */
3073 first_bd->nbd = cpu_to_le16(nbd);
3074 bnx2x_free_tx_pkt(bp, txdata,
3075 TX_BD(txdata->tx_pkt_prod),
3076 &pkts_compl, &bytes_compl);
3077 return NETDEV_TX_OK;
3078 }
3079
3080 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3081 tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3082 if (total_pkt_bd == NULL)
3083 total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3084
3085 tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3086 tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3087 tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
3088 le16_add_cpu(&pkt_size, skb_frag_size(frag));
3089 nbd++;
3090
3091 DP(NETIF_MSG_TX_QUEUED,
3092 "frag %d bd @%p addr (%x:%x) nbytes %d\n",
3093 i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
3094 le16_to_cpu(tx_data_bd->nbytes));
3095 }
3096
3097 DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
3098
3099 /* update with actual num BDs */
3100 first_bd->nbd = cpu_to_le16(nbd);
3101
3102 bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3103
3104 /* now send a tx doorbell, counting the next BD
3105 * if the packet contains or ends with it
3106 */
3107 if (TX_BD_POFF(bd_prod) < nbd)
3108 nbd++;
3109
3110 /* total_pkt_bytes should be set on the first data BD if
3111 * it's not an LSO packet and there is more than one
3112 * data BD. In this case pkt_size is limited by an MTU value.
3113 * However we prefer to set it for an LSO packet (while we don't
3114 * have to) in order to save some CPU cycles in a none-LSO
3115 * case, when we much more care about them.
3116 */
3117 if (total_pkt_bd != NULL)
3118 total_pkt_bd->total_pkt_bytes = pkt_size;
3119
3120 if (pbd_e1x)
3121 DP(NETIF_MSG_TX_QUEUED,
3122 "PBD (E1X) @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u tcp_flags %x xsum %x seq %u hlen %u\n",
3123 pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
3124 pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
3125 pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
3126 le16_to_cpu(pbd_e1x->total_hlen_w));
3127 if (pbd_e2)
3128 DP(NETIF_MSG_TX_QUEUED,
3129 "PBD (E2) @%p dst %x %x %x src %x %x %x parsing_data %x\n",
3130 pbd_e2, pbd_e2->dst_mac_addr_hi, pbd_e2->dst_mac_addr_mid,
3131 pbd_e2->dst_mac_addr_lo, pbd_e2->src_mac_addr_hi,
3132 pbd_e2->src_mac_addr_mid, pbd_e2->src_mac_addr_lo,
3133 pbd_e2->parsing_data);
3134 DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod);
3135
3136 netdev_tx_sent_queue(txq, skb->len);
3137
3138 skb_tx_timestamp(skb);
3139
3140 txdata->tx_pkt_prod++;
3141 /*
3142 * Make sure that the BD data is updated before updating the producer
3143 * since FW might read the BD right after the producer is updated.
3144 * This is only applicable for weak-ordered memory model archs such
3145 * as IA-64. The following barrier is also mandatory since FW will
3146 * assumes packets must have BDs.
3147 */
3148 wmb();
3149
3150 txdata->tx_db.data.prod += nbd;
3151 barrier();
3152
3153 DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
3154
3155 mmiowb();
3156
3157 txdata->tx_bd_prod += nbd;
3158
3159 if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_SKB_FRAGS + 3)) {
3160 netif_tx_stop_queue(txq);
3161
3162 /* paired memory barrier is in bnx2x_tx_int(), we have to keep
3163 * ordering of set_bit() in netif_tx_stop_queue() and read of
3164 * fp->bd_tx_cons */
3165 smp_mb();
3166
3167 fp->eth_q_stats.driver_xoff++;
3168 if (bnx2x_tx_avail(bp, txdata) >= MAX_SKB_FRAGS + 3)
3169 netif_tx_wake_queue(txq);
3170 }
3171 txdata->tx_pkt++;
3172
3173 return NETDEV_TX_OK;
3174 }
3175
3176 /**
3177 * bnx2x_setup_tc - routine to configure net_device for multi tc
3178 *
3179 * @netdev: net device to configure
3180 * @tc: number of traffic classes to enable
3181 *
3182 * callback connected to the ndo_setup_tc function pointer
3183 */
3184 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
3185 {
3186 int cos, prio, count, offset;
3187 struct bnx2x *bp = netdev_priv(dev);
3188
3189 /* setup tc must be called under rtnl lock */
3190 ASSERT_RTNL();
3191
3192 /* no traffic classes requested. aborting */
3193 if (!num_tc) {
3194 netdev_reset_tc(dev);
3195 return 0;
3196 }
3197
3198 /* requested to support too many traffic classes */
3199 if (num_tc > bp->max_cos) {
3200 BNX2X_ERR("support for too many traffic classes requested: %d. max supported is %d\n",
3201 num_tc, bp->max_cos);
3202 return -EINVAL;
3203 }
3204
3205 /* declare amount of supported traffic classes */
3206 if (netdev_set_num_tc(dev, num_tc)) {
3207 BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
3208 return -EINVAL;
3209 }
3210
3211 /* configure priority to traffic class mapping */
3212 for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
3213 netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[prio]);
3214 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
3215 "mapping priority %d to tc %d\n",
3216 prio, bp->prio_to_cos[prio]);
3217 }
3218
3219
3220 /* Use this configuration to diffrentiate tc0 from other COSes
3221 This can be used for ets or pfc, and save the effort of setting
3222 up a multio class queue disc or negotiating DCBX with a switch
3223 netdev_set_prio_tc_map(dev, 0, 0);
3224 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
3225 for (prio = 1; prio < 16; prio++) {
3226 netdev_set_prio_tc_map(dev, prio, 1);
3227 DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
3228 } */
3229
3230 /* configure traffic class to transmission queue mapping */
3231 for (cos = 0; cos < bp->max_cos; cos++) {
3232 count = BNX2X_NUM_ETH_QUEUES(bp);
3233 offset = cos * MAX_TXQS_PER_COS;
3234 netdev_set_tc_queue(dev, cos, count, offset);
3235 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
3236 "mapping tc %d to offset %d count %d\n",
3237 cos, offset, count);
3238 }
3239
3240 return 0;
3241 }
3242
3243 /* called with rtnl_lock */
3244 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
3245 {
3246 struct sockaddr *addr = p;
3247 struct bnx2x *bp = netdev_priv(dev);
3248 int rc = 0;
3249
3250 if (!bnx2x_is_valid_ether_addr(bp, addr->sa_data)) {
3251 BNX2X_ERR("Requested MAC address is not valid\n");
3252 return -EINVAL;
3253 }
3254
3255 #ifdef BCM_CNIC
3256 if ((IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp)) &&
3257 !is_zero_ether_addr(addr->sa_data)) {
3258 BNX2X_ERR("Can't configure non-zero address on iSCSI or FCoE functions in MF-SD mode\n");
3259 return -EINVAL;
3260 }
3261 #endif
3262
3263 if (netif_running(dev)) {
3264 rc = bnx2x_set_eth_mac(bp, false);
3265 if (rc)
3266 return rc;
3267 }
3268
3269 dev->addr_assign_type &= ~NET_ADDR_RANDOM;
3270 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3271
3272 if (netif_running(dev))
3273 rc = bnx2x_set_eth_mac(bp, true);
3274
3275 return rc;
3276 }
3277
3278 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
3279 {
3280 union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
3281 struct bnx2x_fastpath *fp = &bp->fp[fp_index];
3282 u8 cos;
3283
3284 /* Common */
3285 #ifdef BCM_CNIC
3286 if (IS_FCOE_IDX(fp_index)) {
3287 memset(sb, 0, sizeof(union host_hc_status_block));
3288 fp->status_blk_mapping = 0;
3289
3290 } else {
3291 #endif
3292 /* status blocks */
3293 if (!CHIP_IS_E1x(bp))
3294 BNX2X_PCI_FREE(sb->e2_sb,
3295 bnx2x_fp(bp, fp_index,
3296 status_blk_mapping),
3297 sizeof(struct host_hc_status_block_e2));
3298 else
3299 BNX2X_PCI_FREE(sb->e1x_sb,
3300 bnx2x_fp(bp, fp_index,
3301 status_blk_mapping),
3302 sizeof(struct host_hc_status_block_e1x));
3303 #ifdef BCM_CNIC
3304 }
3305 #endif
3306 /* Rx */
3307 if (!skip_rx_queue(bp, fp_index)) {
3308 bnx2x_free_rx_bds(fp);
3309
3310 /* fastpath rx rings: rx_buf rx_desc rx_comp */
3311 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
3312 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
3313 bnx2x_fp(bp, fp_index, rx_desc_mapping),
3314 sizeof(struct eth_rx_bd) * NUM_RX_BD);
3315
3316 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
3317 bnx2x_fp(bp, fp_index, rx_comp_mapping),
3318 sizeof(struct eth_fast_path_rx_cqe) *
3319 NUM_RCQ_BD);
3320
3321 /* SGE ring */
3322 BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
3323 BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
3324 bnx2x_fp(bp, fp_index, rx_sge_mapping),
3325 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
3326 }
3327
3328 /* Tx */
3329 if (!skip_tx_queue(bp, fp_index)) {
3330 /* fastpath tx rings: tx_buf tx_desc */
3331 for_each_cos_in_tx_queue(fp, cos) {
3332 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
3333
3334 DP(NETIF_MSG_IFDOWN,
3335 "freeing tx memory of fp %d cos %d cid %d\n",
3336 fp_index, cos, txdata->cid);
3337
3338 BNX2X_FREE(txdata->tx_buf_ring);
3339 BNX2X_PCI_FREE(txdata->tx_desc_ring,
3340 txdata->tx_desc_mapping,
3341 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
3342 }
3343 }
3344 /* end of fastpath */
3345 }
3346
3347 void bnx2x_free_fp_mem(struct bnx2x *bp)
3348 {
3349 int i;
3350 for_each_queue(bp, i)
3351 bnx2x_free_fp_mem_at(bp, i);
3352 }
3353
3354 static void set_sb_shortcuts(struct bnx2x *bp, int index)
3355 {
3356 union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
3357 if (!CHIP_IS_E1x(bp)) {
3358 bnx2x_fp(bp, index, sb_index_values) =
3359 (__le16 *)status_blk.e2_sb->sb.index_values;
3360 bnx2x_fp(bp, index, sb_running_index) =
3361 (__le16 *)status_blk.e2_sb->sb.running_index;
3362 } else {
3363 bnx2x_fp(bp, index, sb_index_values) =
3364 (__le16 *)status_blk.e1x_sb->sb.index_values;
3365 bnx2x_fp(bp, index, sb_running_index) =
3366 (__le16 *)status_blk.e1x_sb->sb.running_index;
3367 }
3368 }
3369
3370 /* Returns the number of actually allocated BDs */
3371 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
3372 int rx_ring_size)
3373 {
3374 struct bnx2x *bp = fp->bp;
3375 u16 ring_prod, cqe_ring_prod;
3376 int i, failure_cnt = 0;
3377
3378 fp->rx_comp_cons = 0;
3379 cqe_ring_prod = ring_prod = 0;
3380
3381 /* This routine is called only during fo init so
3382 * fp->eth_q_stats.rx_skb_alloc_failed = 0
3383 */
3384 for (i = 0; i < rx_ring_size; i++) {
3385 if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
3386 failure_cnt++;
3387 continue;
3388 }
3389 ring_prod = NEXT_RX_IDX(ring_prod);
3390 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
3391 WARN_ON(ring_prod <= (i - failure_cnt));
3392 }
3393
3394 if (failure_cnt)
3395 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
3396 i - failure_cnt, fp->index);
3397
3398 fp->rx_bd_prod = ring_prod;
3399 /* Limit the CQE producer by the CQE ring size */
3400 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
3401 cqe_ring_prod);
3402 fp->rx_pkt = fp->rx_calls = 0;
3403
3404 fp->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
3405
3406 return i - failure_cnt;
3407 }
3408
3409 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
3410 {
3411 int i;
3412
3413 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
3414 struct eth_rx_cqe_next_page *nextpg;
3415
3416 nextpg = (struct eth_rx_cqe_next_page *)
3417 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
3418 nextpg->addr_hi =
3419 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
3420 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
3421 nextpg->addr_lo =
3422 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
3423 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
3424 }
3425 }
3426
3427 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
3428 {
3429 union host_hc_status_block *sb;
3430 struct bnx2x_fastpath *fp = &bp->fp[index];
3431 int ring_size = 0;
3432 u8 cos;
3433 int rx_ring_size = 0;
3434
3435 #ifdef BCM_CNIC
3436 if (!bp->rx_ring_size &&
3437 (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
3438 rx_ring_size = MIN_RX_SIZE_NONTPA;
3439 bp->rx_ring_size = rx_ring_size;
3440 } else
3441 #endif
3442 if (!bp->rx_ring_size) {
3443 u32 cfg = SHMEM_RD(bp,
3444 dev_info.port_hw_config[BP_PORT(bp)].default_cfg);
3445
3446 rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
3447
3448 /* Dercease ring size for 1G functions */
3449 if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
3450 PORT_HW_CFG_NET_SERDES_IF_SGMII)
3451 rx_ring_size /= 10;
3452
3453 /* allocate at least number of buffers required by FW */
3454 rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
3455 MIN_RX_SIZE_TPA, rx_ring_size);
3456
3457 bp->rx_ring_size = rx_ring_size;
3458 } else /* if rx_ring_size specified - use it */
3459 rx_ring_size = bp->rx_ring_size;
3460
3461 /* Common */
3462 sb = &bnx2x_fp(bp, index, status_blk);
3463 #ifdef BCM_CNIC
3464 if (!IS_FCOE_IDX(index)) {
3465 #endif
3466 /* status blocks */
3467 if (!CHIP_IS_E1x(bp))
3468 BNX2X_PCI_ALLOC(sb->e2_sb,
3469 &bnx2x_fp(bp, index, status_blk_mapping),
3470 sizeof(struct host_hc_status_block_e2));
3471 else
3472 BNX2X_PCI_ALLOC(sb->e1x_sb,
3473 &bnx2x_fp(bp, index, status_blk_mapping),
3474 sizeof(struct host_hc_status_block_e1x));
3475 #ifdef BCM_CNIC
3476 }
3477 #endif
3478
3479 /* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
3480 * set shortcuts for it.
3481 */
3482 if (!IS_FCOE_IDX(index))
3483 set_sb_shortcuts(bp, index);
3484
3485 /* Tx */
3486 if (!skip_tx_queue(bp, index)) {
3487 /* fastpath tx rings: tx_buf tx_desc */
3488 for_each_cos_in_tx_queue(fp, cos) {
3489 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
3490
3491 DP(NETIF_MSG_IFUP,
3492 "allocating tx memory of fp %d cos %d\n",
3493 index, cos);
3494
3495 BNX2X_ALLOC(txdata->tx_buf_ring,
3496 sizeof(struct sw_tx_bd) * NUM_TX_BD);
3497 BNX2X_PCI_ALLOC(txdata->tx_desc_ring,
3498 &txdata->tx_desc_mapping,
3499 sizeof(union eth_tx_bd_types) * NUM_TX_BD);
3500 }
3501 }
3502
3503 /* Rx */
3504 if (!skip_rx_queue(bp, index)) {
3505 /* fastpath rx rings: rx_buf rx_desc rx_comp */
3506 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_buf_ring),
3507 sizeof(struct sw_rx_bd) * NUM_RX_BD);
3508 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_desc_ring),
3509 &bnx2x_fp(bp, index, rx_desc_mapping),
3510 sizeof(struct eth_rx_bd) * NUM_RX_BD);
3511
3512 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_comp_ring),
3513 &bnx2x_fp(bp, index, rx_comp_mapping),
3514 sizeof(struct eth_fast_path_rx_cqe) *
3515 NUM_RCQ_BD);
3516
3517 /* SGE ring */
3518 BNX2X_ALLOC(bnx2x_fp(bp, index, rx_page_ring),
3519 sizeof(struct sw_rx_page) * NUM_RX_SGE);
3520 BNX2X_PCI_ALLOC(bnx2x_fp(bp, index, rx_sge_ring),
3521 &bnx2x_fp(bp, index, rx_sge_mapping),
3522 BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
3523 /* RX BD ring */
3524 bnx2x_set_next_page_rx_bd(fp);
3525
3526 /* CQ ring */
3527 bnx2x_set_next_page_rx_cq(fp);
3528
3529 /* BDs */
3530 ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
3531 if (ring_size < rx_ring_size)
3532 goto alloc_mem_err;
3533 }
3534
3535 return 0;
3536
3537 /* handles low memory cases */
3538 alloc_mem_err:
3539 BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
3540 index, ring_size);
3541 /* FW will drop all packets if queue is not big enough,
3542 * In these cases we disable the queue
3543 * Min size is different for OOO, TPA and non-TPA queues
3544 */
3545 if (ring_size < (fp->disable_tpa ?
3546 MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
3547 /* release memory allocated for this queue */
3548 bnx2x_free_fp_mem_at(bp, index);
3549 return -ENOMEM;
3550 }
3551 return 0;
3552 }
3553
3554 int bnx2x_alloc_fp_mem(struct bnx2x *bp)
3555 {
3556 int i;
3557
3558 /**
3559 * 1. Allocate FP for leading - fatal if error
3560 * 2. {CNIC} Allocate FCoE FP - fatal if error
3561 * 3. {CNIC} Allocate OOO + FWD - disable OOO if error
3562 * 4. Allocate RSS - fix number of queues if error
3563 */
3564
3565 /* leading */
3566 if (bnx2x_alloc_fp_mem_at(bp, 0))
3567 return -ENOMEM;
3568
3569 #ifdef BCM_CNIC
3570 if (!NO_FCOE(bp))
3571 /* FCoE */
3572 if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX))
3573 /* we will fail load process instead of mark
3574 * NO_FCOE_FLAG
3575 */
3576 return -ENOMEM;
3577 #endif
3578
3579 /* RSS */
3580 for_each_nondefault_eth_queue(bp, i)
3581 if (bnx2x_alloc_fp_mem_at(bp, i))
3582 break;
3583
3584 /* handle memory failures */
3585 if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
3586 int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
3587
3588 WARN_ON(delta < 0);
3589 #ifdef BCM_CNIC
3590 /**
3591 * move non eth FPs next to last eth FP
3592 * must be done in that order
3593 * FCOE_IDX < FWD_IDX < OOO_IDX
3594 */
3595
3596 /* move FCoE fp even NO_FCOE_FLAG is on */
3597 bnx2x_move_fp(bp, FCOE_IDX, FCOE_IDX - delta);
3598 #endif
3599 bp->num_queues -= delta;
3600 BNX2X_ERR("Adjusted num of queues from %d to %d\n",
3601 bp->num_queues + delta, bp->num_queues);
3602 }
3603
3604 return 0;
3605 }
3606
3607 void bnx2x_free_mem_bp(struct bnx2x *bp)
3608 {
3609 kfree(bp->fp);
3610 kfree(bp->msix_table);
3611 kfree(bp->ilt);
3612 }
3613
3614 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp)
3615 {
3616 struct bnx2x_fastpath *fp;
3617 struct msix_entry *tbl;
3618 struct bnx2x_ilt *ilt;
3619 int msix_table_size = 0;
3620
3621 /*
3622 * The biggest MSI-X table we might need is as a maximum number of fast
3623 * path IGU SBs plus default SB (for PF).
3624 */
3625 msix_table_size = bp->igu_sb_cnt + 1;
3626
3627 /* fp array: RSS plus CNIC related L2 queues */
3628 fp = kcalloc(BNX2X_MAX_RSS_COUNT(bp) + NON_ETH_CONTEXT_USE,
3629 sizeof(*fp), GFP_KERNEL);
3630 if (!fp)
3631 goto alloc_err;
3632 bp->fp = fp;
3633
3634 /* msix table */
3635 tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
3636 if (!tbl)
3637 goto alloc_err;
3638 bp->msix_table = tbl;
3639
3640 /* ilt */
3641 ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
3642 if (!ilt)
3643 goto alloc_err;
3644 bp->ilt = ilt;
3645
3646 return 0;
3647 alloc_err:
3648 bnx2x_free_mem_bp(bp);
3649 return -ENOMEM;
3650
3651 }
3652
3653 int bnx2x_reload_if_running(struct net_device *dev)
3654 {
3655 struct bnx2x *bp = netdev_priv(dev);
3656
3657 if (unlikely(!netif_running(dev)))
3658 return 0;
3659
3660 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
3661 return bnx2x_nic_load(bp, LOAD_NORMAL);
3662 }
3663
3664 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
3665 {
3666 u32 sel_phy_idx = 0;
3667 if (bp->link_params.num_phys <= 1)
3668 return INT_PHY;
3669
3670 if (bp->link_vars.link_up) {
3671 sel_phy_idx = EXT_PHY1;
3672 /* In case link is SERDES, check if the EXT_PHY2 is the one */
3673 if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
3674 (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
3675 sel_phy_idx = EXT_PHY2;
3676 } else {
3677
3678 switch (bnx2x_phy_selection(&bp->link_params)) {
3679 case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
3680 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
3681 case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
3682 sel_phy_idx = EXT_PHY1;
3683 break;
3684 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
3685 case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
3686 sel_phy_idx = EXT_PHY2;
3687 break;
3688 }
3689 }
3690
3691 return sel_phy_idx;
3692
3693 }
3694 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
3695 {
3696 u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
3697 /*
3698 * The selected actived PHY is always after swapping (in case PHY
3699 * swapping is enabled). So when swapping is enabled, we need to reverse
3700 * the configuration
3701 */
3702
3703 if (bp->link_params.multi_phy_config &
3704 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
3705 if (sel_phy_idx == EXT_PHY1)
3706 sel_phy_idx = EXT_PHY2;
3707 else if (sel_phy_idx == EXT_PHY2)
3708 sel_phy_idx = EXT_PHY1;
3709 }
3710 return LINK_CONFIG_IDX(sel_phy_idx);
3711 }
3712
3713 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
3714 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
3715 {
3716 struct bnx2x *bp = netdev_priv(dev);
3717 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
3718
3719 switch (type) {
3720 case NETDEV_FCOE_WWNN:
3721 *wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
3722 cp->fcoe_wwn_node_name_lo);
3723 break;
3724 case NETDEV_FCOE_WWPN:
3725 *wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
3726 cp->fcoe_wwn_port_name_lo);
3727 break;
3728 default:
3729 BNX2X_ERR("Wrong WWN type requested - %d\n", type);
3730 return -EINVAL;
3731 }
3732
3733 return 0;
3734 }
3735 #endif
3736
3737 /* called with rtnl_lock */
3738 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
3739 {
3740 struct bnx2x *bp = netdev_priv(dev);
3741
3742 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
3743 BNX2X_ERR("Can't perform change MTU during parity recovery\n");
3744 return -EAGAIN;
3745 }
3746
3747 if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) ||
3748 ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) {
3749 BNX2X_ERR("Can't support requested MTU size\n");
3750 return -EINVAL;
3751 }
3752
3753 /* This does not race with packet allocation
3754 * because the actual alloc size is
3755 * only updated as part of load
3756 */
3757 dev->mtu = new_mtu;
3758
3759 return bnx2x_reload_if_running(dev);
3760 }
3761
3762 netdev_features_t bnx2x_fix_features(struct net_device *dev,
3763 netdev_features_t features)
3764 {
3765 struct bnx2x *bp = netdev_priv(dev);
3766
3767 /* TPA requires Rx CSUM offloading */
3768 if (!(features & NETIF_F_RXCSUM) || bp->disable_tpa) {
3769 features &= ~NETIF_F_LRO;
3770 features &= ~NETIF_F_GRO;
3771 }
3772
3773 return features;
3774 }
3775
3776 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
3777 {
3778 struct bnx2x *bp = netdev_priv(dev);
3779 u32 flags = bp->flags;
3780 bool bnx2x_reload = false;
3781
3782 if (features & NETIF_F_LRO)
3783 flags |= TPA_ENABLE_FLAG;
3784 else
3785 flags &= ~TPA_ENABLE_FLAG;
3786
3787 if (features & NETIF_F_GRO)
3788 flags |= GRO_ENABLE_FLAG;
3789 else
3790 flags &= ~GRO_ENABLE_FLAG;
3791
3792 if (features & NETIF_F_LOOPBACK) {
3793 if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
3794 bp->link_params.loopback_mode = LOOPBACK_BMAC;
3795 bnx2x_reload = true;
3796 }
3797 } else {
3798 if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
3799 bp->link_params.loopback_mode = LOOPBACK_NONE;
3800 bnx2x_reload = true;
3801 }
3802 }
3803
3804 if (flags ^ bp->flags) {
3805 bp->flags = flags;
3806 bnx2x_reload = true;
3807 }
3808
3809 if (bnx2x_reload) {
3810 if (bp->recovery_state == BNX2X_RECOVERY_DONE)
3811 return bnx2x_reload_if_running(dev);
3812 /* else: bnx2x_nic_load() will be called at end of recovery */
3813 }
3814
3815 return 0;
3816 }
3817
3818 void bnx2x_tx_timeout(struct net_device *dev)
3819 {
3820 struct bnx2x *bp = netdev_priv(dev);
3821
3822 #ifdef BNX2X_STOP_ON_ERROR
3823 if (!bp->panic)
3824 bnx2x_panic();
3825 #endif
3826
3827 smp_mb__before_clear_bit();
3828 set_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state);
3829 smp_mb__after_clear_bit();
3830
3831 /* This allows the netif to be shutdown gracefully before resetting */
3832 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3833 }
3834
3835 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
3836 {
3837 struct net_device *dev = pci_get_drvdata(pdev);
3838 struct bnx2x *bp;
3839
3840 if (!dev) {
3841 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
3842 return -ENODEV;
3843 }
3844 bp = netdev_priv(dev);
3845
3846 rtnl_lock();
3847
3848 pci_save_state(pdev);
3849
3850 if (!netif_running(dev)) {
3851 rtnl_unlock();
3852 return 0;
3853 }
3854
3855 netif_device_detach(dev);
3856
3857 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
3858
3859 bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
3860
3861 rtnl_unlock();
3862
3863 return 0;
3864 }
3865
3866 int bnx2x_resume(struct pci_dev *pdev)
3867 {
3868 struct net_device *dev = pci_get_drvdata(pdev);
3869 struct bnx2x *bp;
3870 int rc;
3871
3872 if (!dev) {
3873 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
3874 return -ENODEV;
3875 }
3876 bp = netdev_priv(dev);
3877
3878 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
3879 BNX2X_ERR("Handling parity error recovery. Try again later\n");
3880 return -EAGAIN;
3881 }
3882
3883 rtnl_lock();
3884
3885 pci_restore_state(pdev);
3886
3887 if (!netif_running(dev)) {
3888 rtnl_unlock();
3889 return 0;
3890 }
3891
3892 bnx2x_set_power_state(bp, PCI_D0);
3893 netif_device_attach(dev);
3894
3895 rc = bnx2x_nic_load(bp, LOAD_OPEN);
3896
3897 rtnl_unlock();
3898
3899 return rc;
3900 }
3901
3902
3903 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
3904 u32 cid)
3905 {
3906 /* ustorm cxt validation */
3907 cxt->ustorm_ag_context.cdu_usage =
3908 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
3909 CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
3910 /* xcontext validation */
3911 cxt->xstorm_ag_context.cdu_reserved =
3912 CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
3913 CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
3914 }
3915
3916 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
3917 u8 fw_sb_id, u8 sb_index,
3918 u8 ticks)
3919 {
3920
3921 u32 addr = BAR_CSTRORM_INTMEM +
3922 CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
3923 REG_WR8(bp, addr, ticks);
3924 DP(NETIF_MSG_IFUP,
3925 "port %x fw_sb_id %d sb_index %d ticks %d\n",
3926 port, fw_sb_id, sb_index, ticks);
3927 }
3928
3929 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
3930 u16 fw_sb_id, u8 sb_index,
3931 u8 disable)
3932 {
3933 u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
3934 u32 addr = BAR_CSTRORM_INTMEM +
3935 CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
3936 u16 flags = REG_RD16(bp, addr);
3937 /* clear and set */
3938 flags &= ~HC_INDEX_DATA_HC_ENABLED;
3939 flags |= enable_flag;
3940 REG_WR16(bp, addr, flags);
3941 DP(NETIF_MSG_IFUP,
3942 "port %x fw_sb_id %d sb_index %d disable %d\n",
3943 port, fw_sb_id, sb_index, disable);
3944 }
3945
3946 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
3947 u8 sb_index, u8 disable, u16 usec)
3948 {
3949 int port = BP_PORT(bp);
3950 u8 ticks = usec / BNX2X_BTR;
3951
3952 storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
3953
3954 disable = disable ? 1 : (usec ? 0 : 1);
3955 storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
3956 }
This page took 0.115801 seconds and 5 git commands to generate.