bnx2x: previous driver unload revised
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.h
1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2012 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19
20 #include <linux/types.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24
25
26 #include "bnx2x.h"
27
28 /* This is used as a replacement for an MCP if it's not present */
29 extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
30
31 extern int num_queues;
32
33 /************************ Macros ********************************/
34 #define BNX2X_PCI_FREE(x, y, size) \
35 do { \
36 if (x) { \
37 dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
38 x = NULL; \
39 y = 0; \
40 } \
41 } while (0)
42
43 #define BNX2X_FREE(x) \
44 do { \
45 if (x) { \
46 kfree((void *)x); \
47 x = NULL; \
48 } \
49 } while (0)
50
51 #define BNX2X_PCI_ALLOC(x, y, size) \
52 do { \
53 x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
54 if (x == NULL) \
55 goto alloc_mem_err; \
56 memset((void *)x, 0, size); \
57 } while (0)
58
59 #define BNX2X_ALLOC(x, size) \
60 do { \
61 x = kzalloc(size, GFP_KERNEL); \
62 if (x == NULL) \
63 goto alloc_mem_err; \
64 } while (0)
65
66 /*********************** Interfaces ****************************
67 * Functions that need to be implemented by each driver version
68 */
69 /* Init */
70
71 /**
72 * bnx2x_send_unload_req - request unload mode from the MCP.
73 *
74 * @bp: driver handle
75 * @unload_mode: requested function's unload mode
76 *
77 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
78 */
79 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
80
81 /**
82 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
83 *
84 * @bp: driver handle
85 */
86 void bnx2x_send_unload_done(struct bnx2x *bp);
87
88 /**
89 * bnx2x_config_rss_pf - configure RSS parameters.
90 *
91 * @bp: driver handle
92 * @ind_table: indirection table to configure
93 * @config_hash: re-configure RSS hash keys configuration
94 */
95 int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
96
97 /**
98 * bnx2x__init_func_obj - init function object
99 *
100 * @bp: driver handle
101 *
102 * Initializes the Function Object with the appropriate
103 * parameters which include a function slow path driver
104 * interface.
105 */
106 void bnx2x__init_func_obj(struct bnx2x *bp);
107
108 /**
109 * bnx2x_setup_queue - setup eth queue.
110 *
111 * @bp: driver handle
112 * @fp: pointer to the fastpath structure
113 * @leading: boolean
114 *
115 */
116 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
117 bool leading);
118
119 /**
120 * bnx2x_setup_leading - bring up a leading eth queue.
121 *
122 * @bp: driver handle
123 */
124 int bnx2x_setup_leading(struct bnx2x *bp);
125
126 /**
127 * bnx2x_fw_command - send the MCP a request
128 *
129 * @bp: driver handle
130 * @command: request
131 * @param: request's parameter
132 *
133 * block until there is a reply
134 */
135 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
136
137 /**
138 * bnx2x_initial_phy_init - initialize link parameters structure variables.
139 *
140 * @bp: driver handle
141 * @load_mode: current mode
142 */
143 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
144
145 /**
146 * bnx2x_link_set - configure hw according to link parameters structure.
147 *
148 * @bp: driver handle
149 */
150 void bnx2x_link_set(struct bnx2x *bp);
151
152 /**
153 * bnx2x_link_test - query link status.
154 *
155 * @bp: driver handle
156 * @is_serdes: bool
157 *
158 * Returns 0 if link is UP.
159 */
160 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
161
162 /**
163 * bnx2x_drv_pulse - write driver pulse to shmem
164 *
165 * @bp: driver handle
166 *
167 * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
168 * in the shmem.
169 */
170 void bnx2x_drv_pulse(struct bnx2x *bp);
171
172 /**
173 * bnx2x_igu_ack_sb - update IGU with current SB value
174 *
175 * @bp: driver handle
176 * @igu_sb_id: SB id
177 * @segment: SB segment
178 * @index: SB index
179 * @op: SB operation
180 * @update: is HW update required
181 */
182 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
183 u16 index, u8 op, u8 update);
184
185 /* Disable transactions from chip to host */
186 void bnx2x_pf_disable(struct bnx2x *bp);
187
188 /**
189 * bnx2x__link_status_update - handles link status change.
190 *
191 * @bp: driver handle
192 */
193 void bnx2x__link_status_update(struct bnx2x *bp);
194
195 /**
196 * bnx2x_link_report - report link status to upper layer.
197 *
198 * @bp: driver handle
199 */
200 void bnx2x_link_report(struct bnx2x *bp);
201
202 /* None-atomic version of bnx2x_link_report() */
203 void __bnx2x_link_report(struct bnx2x *bp);
204
205 /**
206 * bnx2x_get_mf_speed - calculate MF speed.
207 *
208 * @bp: driver handle
209 *
210 * Takes into account current linespeed and MF configuration.
211 */
212 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
213
214 /**
215 * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
216 *
217 * @irq: irq number
218 * @dev_instance: private instance
219 */
220 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
221
222 /**
223 * bnx2x_interrupt - non MSI-X interrupt handler
224 *
225 * @irq: irq number
226 * @dev_instance: private instance
227 */
228 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
229 #ifdef BCM_CNIC
230
231 /**
232 * bnx2x_cnic_notify - send command to cnic driver
233 *
234 * @bp: driver handle
235 * @cmd: command
236 */
237 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
238
239 /**
240 * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
241 *
242 * @bp: driver handle
243 */
244 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
245 #endif
246
247 /**
248 * bnx2x_int_enable - enable HW interrupts.
249 *
250 * @bp: driver handle
251 */
252 void bnx2x_int_enable(struct bnx2x *bp);
253
254 /**
255 * bnx2x_int_disable_sync - disable interrupts.
256 *
257 * @bp: driver handle
258 * @disable_hw: true, disable HW interrupts.
259 *
260 * This function ensures that there are no
261 * ISRs or SP DPCs (sp_task) are running after it returns.
262 */
263 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
264
265 /**
266 * bnx2x_nic_init - init driver internals.
267 *
268 * @bp: driver handle
269 * @load_code: COMMON, PORT or FUNCTION
270 *
271 * Initializes:
272 * - rings
273 * - status blocks
274 * - etc.
275 */
276 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
277
278 /**
279 * bnx2x_alloc_mem - allocate driver's memory.
280 *
281 * @bp: driver handle
282 */
283 int bnx2x_alloc_mem(struct bnx2x *bp);
284
285 /**
286 * bnx2x_free_mem - release driver's memory.
287 *
288 * @bp: driver handle
289 */
290 void bnx2x_free_mem(struct bnx2x *bp);
291
292 /**
293 * bnx2x_set_num_queues - set number of queues according to mode.
294 *
295 * @bp: driver handle
296 */
297 void bnx2x_set_num_queues(struct bnx2x *bp);
298
299 /**
300 * bnx2x_chip_cleanup - cleanup chip internals.
301 *
302 * @bp: driver handle
303 * @unload_mode: COMMON, PORT, FUNCTION
304 *
305 * - Cleanup MAC configuration.
306 * - Closes clients.
307 * - etc.
308 */
309 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
310
311 /**
312 * bnx2x_acquire_hw_lock - acquire HW lock.
313 *
314 * @bp: driver handle
315 * @resource: resource bit which was locked
316 */
317 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
318
319 /**
320 * bnx2x_release_hw_lock - release HW lock.
321 *
322 * @bp: driver handle
323 * @resource: resource bit which was locked
324 */
325 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
326
327 /**
328 * bnx2x_release_leader_lock - release recovery leader lock
329 *
330 * @bp: driver handle
331 */
332 int bnx2x_release_leader_lock(struct bnx2x *bp);
333
334 /**
335 * bnx2x_set_eth_mac - configure eth MAC address in the HW
336 *
337 * @bp: driver handle
338 * @set: set or clear
339 *
340 * Configures according to the value in netdev->dev_addr.
341 */
342 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
343
344 /**
345 * bnx2x_set_rx_mode - set MAC filtering configurations.
346 *
347 * @dev: netdevice
348 *
349 * called with netif_tx_lock from dev_mcast.c
350 * If bp->state is OPEN, should be called with
351 * netif_addr_lock_bh()
352 */
353 void bnx2x_set_rx_mode(struct net_device *dev);
354
355 /**
356 * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
357 *
358 * @bp: driver handle
359 *
360 * If bp->state is OPEN, should be called with
361 * netif_addr_lock_bh().
362 */
363 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
364
365 /**
366 * bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
367 *
368 * @bp: driver handle
369 * @cl_id: client id
370 * @rx_mode_flags: rx mode configuration
371 * @rx_accept_flags: rx accept configuration
372 * @tx_accept_flags: tx accept configuration (tx switch)
373 * @ramrod_flags: ramrod configuration
374 */
375 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
376 unsigned long rx_mode_flags,
377 unsigned long rx_accept_flags,
378 unsigned long tx_accept_flags,
379 unsigned long ramrod_flags);
380
381 /* Parity errors related */
382 void bnx2x_set_pf_load(struct bnx2x *bp);
383 bool bnx2x_clear_pf_load(struct bnx2x *bp);
384 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
385 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
386 void bnx2x_set_reset_in_progress(struct bnx2x *bp);
387 void bnx2x_set_reset_global(struct bnx2x *bp);
388 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
389
390 /**
391 * bnx2x_sp_event - handle ramrods completion.
392 *
393 * @fp: fastpath handle for the event
394 * @rr_cqe: eth_rx_cqe
395 */
396 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
397
398 /**
399 * bnx2x_ilt_set_info - prepare ILT configurations.
400 *
401 * @bp: driver handle
402 */
403 void bnx2x_ilt_set_info(struct bnx2x *bp);
404
405 /**
406 * bnx2x_dcbx_init - initialize dcbx protocol.
407 *
408 * @bp: driver handle
409 */
410 void bnx2x_dcbx_init(struct bnx2x *bp);
411
412 /**
413 * bnx2x_set_power_state - set power state to the requested value.
414 *
415 * @bp: driver handle
416 * @state: required state D0 or D3hot
417 *
418 * Currently only D0 and D3hot are supported.
419 */
420 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
421
422 /**
423 * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
424 *
425 * @bp: driver handle
426 * @value: new value
427 */
428 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
429 /* Error handling */
430 void bnx2x_panic_dump(struct bnx2x *bp);
431
432 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
433
434 /* validate currect fw is loaded */
435 bool bnx2x_test_firmware_version(struct bnx2x *bp, bool is_err);
436
437 /* dev_close main block */
438 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
439
440 /* dev_open main block */
441 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
442
443 /* hard_xmit callback */
444 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
445
446 /* setup_tc callback */
447 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
448
449 /* select_queue callback */
450 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
451
452 /* reload helper */
453 int bnx2x_reload_if_running(struct net_device *dev);
454
455 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
456
457 /* NAPI poll Rx part */
458 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
459
460 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
461 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
462
463 /* NAPI poll Tx part */
464 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
465
466 /* suspend/resume callbacks */
467 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
468 int bnx2x_resume(struct pci_dev *pdev);
469
470 /* Release IRQ vectors */
471 void bnx2x_free_irq(struct bnx2x *bp);
472
473 void bnx2x_free_fp_mem(struct bnx2x *bp);
474 int bnx2x_alloc_fp_mem(struct bnx2x *bp);
475 void bnx2x_init_rx_rings(struct bnx2x *bp);
476 void bnx2x_free_skbs(struct bnx2x *bp);
477 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
478 void bnx2x_netif_start(struct bnx2x *bp);
479
480 /**
481 * bnx2x_enable_msix - set msix configuration.
482 *
483 * @bp: driver handle
484 *
485 * fills msix_table, requests vectors, updates num_queues
486 * according to number of available vectors.
487 */
488 int bnx2x_enable_msix(struct bnx2x *bp);
489
490 /**
491 * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
492 *
493 * @bp: driver handle
494 */
495 int bnx2x_enable_msi(struct bnx2x *bp);
496
497 /**
498 * bnx2x_poll - NAPI callback
499 *
500 * @napi: napi structure
501 * @budget:
502 *
503 */
504 int bnx2x_poll(struct napi_struct *napi, int budget);
505
506 /**
507 * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
508 *
509 * @bp: driver handle
510 */
511 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
512
513 /**
514 * bnx2x_free_mem_bp - release memories outsize main driver structure
515 *
516 * @bp: driver handle
517 */
518 void bnx2x_free_mem_bp(struct bnx2x *bp);
519
520 /**
521 * bnx2x_change_mtu - change mtu netdev callback
522 *
523 * @dev: net device
524 * @new_mtu: requested mtu
525 *
526 */
527 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
528
529 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
530 /**
531 * bnx2x_fcoe_get_wwn - return the requested WWN value for this port
532 *
533 * @dev: net_device
534 * @wwn: output buffer
535 * @type: WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
536 *
537 */
538 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
539 #endif
540
541 netdev_features_t bnx2x_fix_features(struct net_device *dev,
542 netdev_features_t features);
543 int bnx2x_set_features(struct net_device *dev, netdev_features_t features);
544
545 /**
546 * bnx2x_tx_timeout - tx timeout netdev callback
547 *
548 * @dev: net device
549 */
550 void bnx2x_tx_timeout(struct net_device *dev);
551
552 /*********************** Inlines **********************************/
553 /*********************** Fast path ********************************/
554 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
555 {
556 barrier(); /* status block is written to by the chip */
557 fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
558 }
559
560 static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
561 struct bnx2x_fastpath *fp, u16 bd_prod,
562 u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
563 {
564 struct ustorm_eth_rx_producers rx_prods = {0};
565 u32 i;
566
567 /* Update producers */
568 rx_prods.bd_prod = bd_prod;
569 rx_prods.cqe_prod = rx_comp_prod;
570 rx_prods.sge_prod = rx_sge_prod;
571
572 /*
573 * Make sure that the BD and SGE data is updated before updating the
574 * producers since FW might read the BD/SGE right after the producer
575 * is updated.
576 * This is only applicable for weak-ordered memory model archs such
577 * as IA-64. The following barrier is also mandatory since FW will
578 * assumes BDs must have buffers.
579 */
580 wmb();
581
582 for (i = 0; i < sizeof(rx_prods)/4; i++)
583 REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
584
585 mmiowb(); /* keep prod updates ordered */
586
587 DP(NETIF_MSG_RX_STATUS,
588 "queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n",
589 fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
590 }
591
592 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
593 u8 segment, u16 index, u8 op,
594 u8 update, u32 igu_addr)
595 {
596 struct igu_regular cmd_data = {0};
597
598 cmd_data.sb_id_and_flags =
599 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
600 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
601 (update << IGU_REGULAR_BUPDATE_SHIFT) |
602 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
603
604 DP(NETIF_MSG_INTR, "write 0x%08x to IGU addr 0x%x\n",
605 cmd_data.sb_id_and_flags, igu_addr);
606 REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
607
608 /* Make sure that ACK is written */
609 mmiowb();
610 barrier();
611 }
612
613 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
614 u8 idu_sb_id, bool is_Pf)
615 {
616 u32 data, ctl, cnt = 100;
617 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
618 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
619 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
620 u32 sb_bit = 1 << (idu_sb_id%32);
621 u32 func_encode = func | (is_Pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
622 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
623
624 /* Not supported in BC mode */
625 if (CHIP_INT_MODE_IS_BC(bp))
626 return;
627
628 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
629 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
630 IGU_REGULAR_CLEANUP_SET |
631 IGU_REGULAR_BCLEANUP;
632
633 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
634 func_encode << IGU_CTRL_REG_FID_SHIFT |
635 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
636
637 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
638 data, igu_addr_data);
639 REG_WR(bp, igu_addr_data, data);
640 mmiowb();
641 barrier();
642 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
643 ctl, igu_addr_ctl);
644 REG_WR(bp, igu_addr_ctl, ctl);
645 mmiowb();
646 barrier();
647
648 /* wait for clean up to finish */
649 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
650 msleep(20);
651
652
653 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
654 DP(NETIF_MSG_HW,
655 "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
656 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
657 }
658 }
659
660 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
661 u8 storm, u16 index, u8 op, u8 update)
662 {
663 u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
664 COMMAND_REG_INT_ACK);
665 struct igu_ack_register igu_ack;
666
667 igu_ack.status_block_index = index;
668 igu_ack.sb_id_and_flags =
669 ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
670 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
671 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
672 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
673
674 REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
675
676 /* Make sure that ACK is written */
677 mmiowb();
678 barrier();
679 }
680
681 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
682 u16 index, u8 op, u8 update)
683 {
684 if (bp->common.int_block == INT_BLOCK_HC)
685 bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
686 else {
687 u8 segment;
688
689 if (CHIP_INT_MODE_IS_BC(bp))
690 segment = storm;
691 else if (igu_sb_id != bp->igu_dsb_id)
692 segment = IGU_SEG_ACCESS_DEF;
693 else if (storm == ATTENTION_ID)
694 segment = IGU_SEG_ACCESS_ATTN;
695 else
696 segment = IGU_SEG_ACCESS_DEF;
697 bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
698 }
699 }
700
701 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
702 {
703 u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
704 COMMAND_REG_SIMD_MASK);
705 u32 result = REG_RD(bp, hc_addr);
706
707 barrier();
708 return result;
709 }
710
711 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
712 {
713 u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
714 u32 result = REG_RD(bp, igu_addr);
715
716 DP(NETIF_MSG_INTR, "read 0x%08x from IGU addr 0x%x\n",
717 result, igu_addr);
718
719 barrier();
720 return result;
721 }
722
723 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
724 {
725 barrier();
726 if (bp->common.int_block == INT_BLOCK_HC)
727 return bnx2x_hc_ack_int(bp);
728 else
729 return bnx2x_igu_ack_int(bp);
730 }
731
732 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
733 {
734 /* Tell compiler that consumer and producer can change */
735 barrier();
736 return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
737 }
738
739 static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
740 struct bnx2x_fp_txdata *txdata)
741 {
742 s16 used;
743 u16 prod;
744 u16 cons;
745
746 prod = txdata->tx_bd_prod;
747 cons = txdata->tx_bd_cons;
748
749 /* NUM_TX_RINGS = number of "next-page" entries
750 It will be used as a threshold */
751 used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
752
753 #ifdef BNX2X_STOP_ON_ERROR
754 WARN_ON(used < 0);
755 WARN_ON(used > bp->tx_ring_size);
756 WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
757 #endif
758
759 return (s16)(bp->tx_ring_size) - used;
760 }
761
762 static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
763 {
764 u16 hw_cons;
765
766 /* Tell compiler that status block fields can change */
767 barrier();
768 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
769 return hw_cons != txdata->tx_pkt_cons;
770 }
771
772 static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
773 {
774 u8 cos;
775 for_each_cos_in_tx_queue(fp, cos)
776 if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
777 return true;
778 return false;
779 }
780
781 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
782 {
783 u16 rx_cons_sb;
784
785 /* Tell compiler that status block fields can change */
786 barrier();
787 rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
788 if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
789 rx_cons_sb++;
790 return (fp->rx_comp_cons != rx_cons_sb);
791 }
792
793 /**
794 * bnx2x_tx_disable - disables tx from stack point of view
795 *
796 * @bp: driver handle
797 */
798 static inline void bnx2x_tx_disable(struct bnx2x *bp)
799 {
800 netif_tx_disable(bp->dev);
801 netif_carrier_off(bp->dev);
802 }
803
804 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
805 struct bnx2x_fastpath *fp, u16 index)
806 {
807 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
808 struct page *page = sw_buf->page;
809 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
810
811 /* Skip "next page" elements */
812 if (!page)
813 return;
814
815 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
816 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
817 __free_pages(page, PAGES_PER_SGE_SHIFT);
818
819 sw_buf->page = NULL;
820 sge->addr_hi = 0;
821 sge->addr_lo = 0;
822 }
823
824 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
825 {
826 int i;
827
828 /* Add NAPI objects */
829 for_each_rx_queue(bp, i)
830 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
831 bnx2x_poll, BNX2X_NAPI_WEIGHT);
832 }
833
834 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
835 {
836 int i;
837
838 for_each_rx_queue(bp, i)
839 netif_napi_del(&bnx2x_fp(bp, i, napi));
840 }
841
842 static inline void bnx2x_disable_msi(struct bnx2x *bp)
843 {
844 if (bp->flags & USING_MSIX_FLAG) {
845 pci_disable_msix(bp->pdev);
846 bp->flags &= ~USING_MSIX_FLAG;
847 } else if (bp->flags & USING_MSI_FLAG) {
848 pci_disable_msi(bp->pdev);
849 bp->flags &= ~USING_MSI_FLAG;
850 }
851 }
852
853 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
854 {
855 return num_queues ?
856 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
857 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
858 }
859
860 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
861 {
862 int i, j;
863
864 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
865 int idx = RX_SGE_CNT * i - 1;
866
867 for (j = 0; j < 2; j++) {
868 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
869 idx--;
870 }
871 }
872 }
873
874 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
875 {
876 /* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
877 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
878
879 /* Clear the two last indices in the page to 1:
880 these are the indices that correspond to the "next" element,
881 hence will never be indicated and should be removed from
882 the calculations. */
883 bnx2x_clear_sge_mask_next_elems(fp);
884 }
885
886 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
887 struct bnx2x_fastpath *fp, u16 index)
888 {
889 struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
890 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
891 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
892 dma_addr_t mapping;
893
894 if (unlikely(page == NULL)) {
895 BNX2X_ERR("Can't alloc sge\n");
896 return -ENOMEM;
897 }
898
899 mapping = dma_map_page(&bp->pdev->dev, page, 0,
900 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
901 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
902 __free_pages(page, PAGES_PER_SGE_SHIFT);
903 BNX2X_ERR("Can't map sge\n");
904 return -ENOMEM;
905 }
906
907 sw_buf->page = page;
908 dma_unmap_addr_set(sw_buf, mapping, mapping);
909
910 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
911 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
912
913 return 0;
914 }
915
916 static inline int bnx2x_alloc_rx_data(struct bnx2x *bp,
917 struct bnx2x_fastpath *fp, u16 index)
918 {
919 u8 *data;
920 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
921 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
922 dma_addr_t mapping;
923
924 data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
925 if (unlikely(data == NULL))
926 return -ENOMEM;
927
928 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
929 fp->rx_buf_size,
930 DMA_FROM_DEVICE);
931 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
932 kfree(data);
933 BNX2X_ERR("Can't map rx data\n");
934 return -ENOMEM;
935 }
936
937 rx_buf->data = data;
938 dma_unmap_addr_set(rx_buf, mapping, mapping);
939
940 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
941 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
942
943 return 0;
944 }
945
946 /* note that we are not allocating a new buffer,
947 * we are just moving one from cons to prod
948 * we are not creating a new mapping,
949 * so there is no need to check for dma_mapping_error().
950 */
951 static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp,
952 u16 cons, u16 prod)
953 {
954 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
955 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
956 struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
957 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
958
959 dma_unmap_addr_set(prod_rx_buf, mapping,
960 dma_unmap_addr(cons_rx_buf, mapping));
961 prod_rx_buf->data = cons_rx_buf->data;
962 *prod_bd = *cons_bd;
963 }
964
965 /************************* Init ******************************************/
966
967 /**
968 * bnx2x_func_start - init function
969 *
970 * @bp: driver handle
971 *
972 * Must be called before sending CLIENT_SETUP for the first client.
973 */
974 static inline int bnx2x_func_start(struct bnx2x *bp)
975 {
976 struct bnx2x_func_state_params func_params = {NULL};
977 struct bnx2x_func_start_params *start_params =
978 &func_params.params.start;
979
980 /* Prepare parameters for function state transitions */
981 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
982
983 func_params.f_obj = &bp->func_obj;
984 func_params.cmd = BNX2X_F_CMD_START;
985
986 /* Function parameters */
987 start_params->mf_mode = bp->mf_mode;
988 start_params->sd_vlan_tag = bp->mf_ov;
989
990 if (CHIP_IS_E2(bp) || CHIP_IS_E3(bp))
991 start_params->network_cos_mode = STATIC_COS;
992 else /* CHIP_IS_E1X */
993 start_params->network_cos_mode = FW_WRR;
994
995 return bnx2x_func_state_change(bp, &func_params);
996 }
997
998
999 /**
1000 * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
1001 *
1002 * @fw_hi: pointer to upper part
1003 * @fw_mid: pointer to middle part
1004 * @fw_lo: pointer to lower part
1005 * @mac: pointer to MAC address
1006 */
1007 static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
1008 u8 *mac)
1009 {
1010 ((u8 *)fw_hi)[0] = mac[1];
1011 ((u8 *)fw_hi)[1] = mac[0];
1012 ((u8 *)fw_mid)[0] = mac[3];
1013 ((u8 *)fw_mid)[1] = mac[2];
1014 ((u8 *)fw_lo)[0] = mac[5];
1015 ((u8 *)fw_lo)[1] = mac[4];
1016 }
1017
1018 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
1019 struct bnx2x_fastpath *fp, int last)
1020 {
1021 int i;
1022
1023 if (fp->disable_tpa)
1024 return;
1025
1026 for (i = 0; i < last; i++)
1027 bnx2x_free_rx_sge(bp, fp, i);
1028 }
1029
1030 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
1031 struct bnx2x_fastpath *fp, int last)
1032 {
1033 int i;
1034
1035 for (i = 0; i < last; i++) {
1036 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1037 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1038 u8 *data = first_buf->data;
1039
1040 if (data == NULL) {
1041 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1042 continue;
1043 }
1044 if (tpa_info->tpa_state == BNX2X_TPA_START)
1045 dma_unmap_single(&bp->pdev->dev,
1046 dma_unmap_addr(first_buf, mapping),
1047 fp->rx_buf_size, DMA_FROM_DEVICE);
1048 kfree(data);
1049 first_buf->data = NULL;
1050 }
1051 }
1052
1053 static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
1054 {
1055 int i;
1056
1057 for (i = 1; i <= NUM_TX_RINGS; i++) {
1058 struct eth_tx_next_bd *tx_next_bd =
1059 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
1060
1061 tx_next_bd->addr_hi =
1062 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
1063 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1064 tx_next_bd->addr_lo =
1065 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
1066 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1067 }
1068
1069 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
1070 txdata->tx_db.data.zero_fill1 = 0;
1071 txdata->tx_db.data.prod = 0;
1072
1073 txdata->tx_pkt_prod = 0;
1074 txdata->tx_pkt_cons = 0;
1075 txdata->tx_bd_prod = 0;
1076 txdata->tx_bd_cons = 0;
1077 txdata->tx_pkt = 0;
1078 }
1079
1080 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
1081 {
1082 int i;
1083 u8 cos;
1084
1085 for_each_tx_queue(bp, i)
1086 for_each_cos_in_tx_queue(&bp->fp[i], cos)
1087 bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
1088 }
1089
1090 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
1091 {
1092 int i;
1093
1094 for (i = 1; i <= NUM_RX_RINGS; i++) {
1095 struct eth_rx_bd *rx_bd;
1096
1097 rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
1098 rx_bd->addr_hi =
1099 cpu_to_le32(U64_HI(fp->rx_desc_mapping +
1100 BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1101 rx_bd->addr_lo =
1102 cpu_to_le32(U64_LO(fp->rx_desc_mapping +
1103 BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1104 }
1105 }
1106
1107 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1108 {
1109 int i;
1110
1111 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1112 struct eth_rx_sge *sge;
1113
1114 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1115 sge->addr_hi =
1116 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1117 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1118
1119 sge->addr_lo =
1120 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1121 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1122 }
1123 }
1124
1125 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
1126 {
1127 int i;
1128 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
1129 struct eth_rx_cqe_next_page *nextpg;
1130
1131 nextpg = (struct eth_rx_cqe_next_page *)
1132 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
1133 nextpg->addr_hi =
1134 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
1135 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1136 nextpg->addr_lo =
1137 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
1138 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1139 }
1140 }
1141
1142 /* Returns the number of actually allocated BDs */
1143 static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
1144 int rx_ring_size)
1145 {
1146 struct bnx2x *bp = fp->bp;
1147 u16 ring_prod, cqe_ring_prod;
1148 int i, failure_cnt = 0;
1149
1150 fp->rx_comp_cons = 0;
1151 cqe_ring_prod = ring_prod = 0;
1152
1153 /* This routine is called only during fo init so
1154 * fp->eth_q_stats.rx_skb_alloc_failed = 0
1155 */
1156 for (i = 0; i < rx_ring_size; i++) {
1157 if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
1158 failure_cnt++;
1159 continue;
1160 }
1161 ring_prod = NEXT_RX_IDX(ring_prod);
1162 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
1163 WARN_ON(ring_prod <= (i - failure_cnt));
1164 }
1165
1166 if (failure_cnt)
1167 BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
1168 i - failure_cnt, fp->index);
1169
1170 fp->rx_bd_prod = ring_prod;
1171 /* Limit the CQE producer by the CQE ring size */
1172 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
1173 cqe_ring_prod);
1174 fp->rx_pkt = fp->rx_calls = 0;
1175
1176 fp->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
1177
1178 return i - failure_cnt;
1179 }
1180
1181 /* Statistics ID are global per chip/path, while Client IDs for E1x are per
1182 * port.
1183 */
1184 static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
1185 {
1186 struct bnx2x *bp = fp->bp;
1187 if (!CHIP_IS_E1x(bp)) {
1188 #ifdef BCM_CNIC
1189 /* there are special statistics counters for FCoE 136..140 */
1190 if (IS_FCOE_FP(fp))
1191 return bp->cnic_base_cl_id + (bp->pf_num >> 1);
1192 #endif
1193 return fp->cl_id;
1194 }
1195 return fp->cl_id + BP_PORT(bp) * FP_SB_MAX_E1x;
1196 }
1197
1198 static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
1199 bnx2x_obj_type obj_type)
1200 {
1201 struct bnx2x *bp = fp->bp;
1202
1203 /* Configure classification DBs */
1204 bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
1205 BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
1206 bnx2x_sp_mapping(bp, mac_rdata),
1207 BNX2X_FILTER_MAC_PENDING,
1208 &bp->sp_state, obj_type,
1209 &bp->macs_pool);
1210 }
1211
1212 /**
1213 * bnx2x_get_path_func_num - get number of active functions
1214 *
1215 * @bp: driver handle
1216 *
1217 * Calculates the number of active (not hidden) functions on the
1218 * current path.
1219 */
1220 static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
1221 {
1222 u8 func_num = 0, i;
1223
1224 /* 57710 has only one function per-port */
1225 if (CHIP_IS_E1(bp))
1226 return 1;
1227
1228 /* Calculate a number of functions enabled on the current
1229 * PATH/PORT.
1230 */
1231 if (CHIP_REV_IS_SLOW(bp)) {
1232 if (IS_MF(bp))
1233 func_num = 4;
1234 else
1235 func_num = 2;
1236 } else {
1237 for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
1238 u32 func_config =
1239 MF_CFG_RD(bp,
1240 func_mf_config[BP_PORT(bp) + 2 * i].
1241 config);
1242 func_num +=
1243 ((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
1244 }
1245 }
1246
1247 WARN_ON(!func_num);
1248
1249 return func_num;
1250 }
1251
1252 static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
1253 {
1254 /* RX_MODE controlling object */
1255 bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
1256
1257 /* multicast configuration controlling object */
1258 bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
1259 BP_FUNC(bp), BP_FUNC(bp),
1260 bnx2x_sp(bp, mcast_rdata),
1261 bnx2x_sp_mapping(bp, mcast_rdata),
1262 BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
1263 BNX2X_OBJ_TYPE_RX);
1264
1265 /* Setup CAM credit pools */
1266 bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
1267 bnx2x_get_path_func_num(bp));
1268
1269 /* RSS configuration object */
1270 bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
1271 bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
1272 bnx2x_sp(bp, rss_rdata),
1273 bnx2x_sp_mapping(bp, rss_rdata),
1274 BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
1275 BNX2X_OBJ_TYPE_RX);
1276 }
1277
1278 static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
1279 {
1280 if (CHIP_IS_E1x(fp->bp))
1281 return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
1282 else
1283 return fp->cl_id;
1284 }
1285
1286 static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
1287 {
1288 struct bnx2x *bp = fp->bp;
1289
1290 if (!CHIP_IS_E1x(bp))
1291 return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
1292 else
1293 return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
1294 }
1295
1296 static inline void bnx2x_init_txdata(struct bnx2x *bp,
1297 struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
1298 __le16 *tx_cons_sb)
1299 {
1300 txdata->cid = cid;
1301 txdata->txq_index = txq_index;
1302 txdata->tx_cons_sb = tx_cons_sb;
1303
1304 DP(NETIF_MSG_IFUP, "created tx data cid %d, txq %d\n",
1305 txdata->cid, txdata->txq_index);
1306 }
1307
1308 #ifdef BCM_CNIC
1309 static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
1310 {
1311 return bp->cnic_base_cl_id + cl_idx +
1312 (bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
1313 }
1314
1315 static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
1316 {
1317
1318 /* the 'first' id is allocated for the cnic */
1319 return bp->base_fw_ndsb;
1320 }
1321
1322 static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
1323 {
1324 return bp->igu_base_sb;
1325 }
1326
1327
1328 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
1329 {
1330 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
1331 unsigned long q_type = 0;
1332
1333 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
1334 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
1335 BNX2X_FCOE_ETH_CL_ID_IDX);
1336 /** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
1337 * 16 ETH clients per function when CNIC is enabled!
1338 *
1339 * Fix it ASAP!!!
1340 */
1341 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1342 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1343 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1344 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1345
1346 bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
1347 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
1348
1349 DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
1350
1351 /* qZone id equals to FW (per path) client id */
1352 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
1353 /* init shortcut */
1354 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
1355 bnx2x_rx_ustorm_prods_offset(fp);
1356
1357 /* Configure Queue State object */
1358 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1359 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1360
1361 /* No multi-CoS for FCoE L2 client */
1362 BUG_ON(fp->max_cos != 1);
1363
1364 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
1365 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
1366 bnx2x_sp_mapping(bp, q_rdata), q_type);
1367
1368 DP(NETIF_MSG_IFUP,
1369 "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
1370 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
1371 fp->igu_sb_id);
1372 }
1373 #endif
1374
1375 static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
1376 struct bnx2x_fp_txdata *txdata)
1377 {
1378 int cnt = 1000;
1379
1380 while (bnx2x_has_tx_work_unload(txdata)) {
1381 if (!cnt) {
1382 BNX2X_ERR("timeout waiting for queue[%d]: txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
1383 txdata->txq_index, txdata->tx_pkt_prod,
1384 txdata->tx_pkt_cons);
1385 #ifdef BNX2X_STOP_ON_ERROR
1386 bnx2x_panic();
1387 return -EBUSY;
1388 #else
1389 break;
1390 #endif
1391 }
1392 cnt--;
1393 usleep_range(1000, 1000);
1394 }
1395
1396 return 0;
1397 }
1398
1399 int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
1400
1401 static inline void __storm_memset_struct(struct bnx2x *bp,
1402 u32 addr, size_t size, u32 *data)
1403 {
1404 int i;
1405 for (i = 0; i < size/4; i++)
1406 REG_WR(bp, addr + (i * 4), data[i]);
1407 }
1408
1409 static inline void storm_memset_func_cfg(struct bnx2x *bp,
1410 struct tstorm_eth_function_common_config *tcfg,
1411 u16 abs_fid)
1412 {
1413 size_t size = sizeof(struct tstorm_eth_function_common_config);
1414
1415 u32 addr = BAR_TSTRORM_INTMEM +
1416 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
1417
1418 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
1419 }
1420
1421 static inline void storm_memset_cmng(struct bnx2x *bp,
1422 struct cmng_struct_per_port *cmng,
1423 u8 port)
1424 {
1425 size_t size = sizeof(struct cmng_struct_per_port);
1426
1427 u32 addr = BAR_XSTRORM_INTMEM +
1428 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1429
1430 __storm_memset_struct(bp, addr, size, (u32 *)cmng);
1431 }
1432
1433 /**
1434 * bnx2x_wait_sp_comp - wait for the outstanding SP commands.
1435 *
1436 * @bp: driver handle
1437 * @mask: bits that need to be cleared
1438 */
1439 static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
1440 {
1441 int tout = 5000; /* Wait for 5 secs tops */
1442
1443 while (tout--) {
1444 smp_mb();
1445 netif_addr_lock_bh(bp->dev);
1446 if (!(bp->sp_state & mask)) {
1447 netif_addr_unlock_bh(bp->dev);
1448 return true;
1449 }
1450 netif_addr_unlock_bh(bp->dev);
1451
1452 usleep_range(1000, 1000);
1453 }
1454
1455 smp_mb();
1456
1457 netif_addr_lock_bh(bp->dev);
1458 if (bp->sp_state & mask) {
1459 BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, mask 0x%lx\n",
1460 bp->sp_state, mask);
1461 netif_addr_unlock_bh(bp->dev);
1462 return false;
1463 }
1464 netif_addr_unlock_bh(bp->dev);
1465
1466 return true;
1467 }
1468
1469 /**
1470 * bnx2x_set_ctx_validation - set CDU context validation values
1471 *
1472 * @bp: driver handle
1473 * @cxt: context of the connection on the host memory
1474 * @cid: SW CID of the connection to be configured
1475 */
1476 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
1477 u32 cid);
1478
1479 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
1480 u8 sb_index, u8 disable, u16 usec);
1481 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1482 void bnx2x_release_phy_lock(struct bnx2x *bp);
1483
1484 /**
1485 * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
1486 *
1487 * @bp: driver handle
1488 * @mf_cfg: MF configuration
1489 *
1490 */
1491 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1492 {
1493 u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1494 FUNC_MF_CFG_MAX_BW_SHIFT;
1495 if (!max_cfg) {
1496 DP(NETIF_MSG_IFUP | BNX2X_MSG_ETHTOOL,
1497 "Max BW configured to 0 - using 100 instead\n");
1498 max_cfg = 100;
1499 }
1500 return max_cfg;
1501 }
1502
1503 /* checks if HW supports GRO for given MTU */
1504 static inline bool bnx2x_mtu_allows_gro(int mtu)
1505 {
1506 /* gro frags per page */
1507 int fpp = SGE_PAGE_SIZE / (mtu - ETH_MAX_TPA_HEADER_SIZE);
1508
1509 /*
1510 * 1. number of frags should not grow above MAX_SKB_FRAGS
1511 * 2. frag must fit the page
1512 */
1513 return mtu <= SGE_PAGE_SIZE && (U_ETH_SGL_SIZE * fpp) <= MAX_SKB_FRAGS;
1514 }
1515
1516 static inline bool bnx2x_need_gro_check(int mtu)
1517 {
1518 return (SGE_PAGES / (mtu - ETH_MAX_TPA_HEADER_SIZE - 1)) !=
1519 (SGE_PAGES / (mtu - ETH_MIN_TPA_HEADER_SIZE + 1));
1520 }
1521
1522 /**
1523 * bnx2x_bz_fp - zero content of the fastpath structure.
1524 *
1525 * @bp: driver handle
1526 * @index: fastpath index to be zeroed
1527 *
1528 * Makes sure the contents of the bp->fp[index].napi is kept
1529 * intact.
1530 */
1531 static inline void bnx2x_bz_fp(struct bnx2x *bp, int index)
1532 {
1533 struct bnx2x_fastpath *fp = &bp->fp[index];
1534 struct napi_struct orig_napi = fp->napi;
1535 /* bzero bnx2x_fastpath contents */
1536 if (bp->stats_init)
1537 memset(fp, 0, sizeof(*fp));
1538 else {
1539 /* Keep Queue statistics */
1540 struct bnx2x_eth_q_stats *tmp_eth_q_stats;
1541 struct bnx2x_eth_q_stats_old *tmp_eth_q_stats_old;
1542
1543 tmp_eth_q_stats = kzalloc(sizeof(struct bnx2x_eth_q_stats),
1544 GFP_KERNEL);
1545 if (tmp_eth_q_stats)
1546 memcpy(tmp_eth_q_stats, &fp->eth_q_stats,
1547 sizeof(struct bnx2x_eth_q_stats));
1548
1549 tmp_eth_q_stats_old =
1550 kzalloc(sizeof(struct bnx2x_eth_q_stats_old),
1551 GFP_KERNEL);
1552 if (tmp_eth_q_stats_old)
1553 memcpy(tmp_eth_q_stats_old, &fp->eth_q_stats_old,
1554 sizeof(struct bnx2x_eth_q_stats_old));
1555
1556 memset(fp, 0, sizeof(*fp));
1557
1558 if (tmp_eth_q_stats) {
1559 memcpy(&fp->eth_q_stats, tmp_eth_q_stats,
1560 sizeof(struct bnx2x_eth_q_stats));
1561 kfree(tmp_eth_q_stats);
1562 }
1563
1564 if (tmp_eth_q_stats_old) {
1565 memcpy(&fp->eth_q_stats_old, tmp_eth_q_stats_old,
1566 sizeof(struct bnx2x_eth_q_stats_old));
1567 kfree(tmp_eth_q_stats_old);
1568 }
1569
1570 }
1571
1572 /* Restore the NAPI object as it has been already initialized */
1573 fp->napi = orig_napi;
1574
1575 fp->bp = bp;
1576 fp->index = index;
1577 if (IS_ETH_FP(fp))
1578 fp->max_cos = bp->max_cos;
1579 else
1580 /* Special queues support only one CoS */
1581 fp->max_cos = 1;
1582
1583 /*
1584 * set the tpa flag for each queue. The tpa flag determines the queue
1585 * minimal size so it must be set prior to queue memory allocation
1586 */
1587 fp->disable_tpa = !(bp->flags & TPA_ENABLE_FLAG ||
1588 (bp->flags & GRO_ENABLE_FLAG &&
1589 bnx2x_mtu_allows_gro(bp->dev->mtu)));
1590 if (bp->flags & TPA_ENABLE_FLAG)
1591 fp->mode = TPA_MODE_LRO;
1592 else if (bp->flags & GRO_ENABLE_FLAG)
1593 fp->mode = TPA_MODE_GRO;
1594
1595 #ifdef BCM_CNIC
1596 /* We don't want TPA on an FCoE L2 ring */
1597 if (IS_FCOE_FP(fp))
1598 fp->disable_tpa = 1;
1599 #endif
1600 }
1601
1602 #ifdef BCM_CNIC
1603 /**
1604 * bnx2x_get_iscsi_info - update iSCSI params according to licensing info.
1605 *
1606 * @bp: driver handle
1607 *
1608 */
1609 void bnx2x_get_iscsi_info(struct bnx2x *bp);
1610 #endif
1611 /* returns func by VN for current port */
1612 static inline int func_by_vn(struct bnx2x *bp, int vn)
1613 {
1614 return 2 * vn + BP_PORT(bp);
1615 }
1616
1617 /**
1618 * bnx2x_link_sync_notify - send notification to other functions.
1619 *
1620 * @bp: driver handle
1621 *
1622 */
1623 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
1624 {
1625 int func;
1626 int vn;
1627
1628 /* Set the attention towards other drivers on the same port */
1629 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
1630 if (vn == BP_VN(bp))
1631 continue;
1632
1633 func = func_by_vn(bp, vn);
1634 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
1635 (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
1636 }
1637 }
1638
1639 /**
1640 * bnx2x_update_drv_flags - update flags in shmem
1641 *
1642 * @bp: driver handle
1643 * @flags: flags to update
1644 * @set: set or clear
1645 *
1646 */
1647 static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set)
1648 {
1649 if (SHMEM2_HAS(bp, drv_flags)) {
1650 u32 drv_flags;
1651 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
1652 drv_flags = SHMEM2_RD(bp, drv_flags);
1653
1654 if (set)
1655 SET_FLAGS(drv_flags, flags);
1656 else
1657 RESET_FLAGS(drv_flags, flags);
1658
1659 SHMEM2_WR(bp, drv_flags, drv_flags);
1660 DP(NETIF_MSG_IFUP, "drv_flags 0x%08x\n", drv_flags);
1661 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_DRV_FLAGS);
1662 }
1663 }
1664
1665 static inline bool bnx2x_is_valid_ether_addr(struct bnx2x *bp, u8 *addr)
1666 {
1667 if (is_valid_ether_addr(addr))
1668 return true;
1669 #ifdef BCM_CNIC
1670 if (is_zero_ether_addr(addr) && IS_MF_STORAGE_SD(bp))
1671 return true;
1672 #endif
1673 return false;
1674 }
1675
1676 #endif /* BNX2X_CMN_H */
This page took 0.070825 seconds and 5 git commands to generate.