net: introduce and use netdev_features_t for device features sets
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_cmn.h
1 /* bnx2x_cmn.h: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17 #ifndef BNX2X_CMN_H
18 #define BNX2X_CMN_H
19
20 #include <linux/types.h>
21 #include <linux/pci.h>
22 #include <linux/netdevice.h>
23
24
25 #include "bnx2x.h"
26
27 /* This is used as a replacement for an MCP if it's not present */
28 extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */
29
30 extern int num_queues;
31
32 /************************ Macros ********************************/
33 #define BNX2X_PCI_FREE(x, y, size) \
34 do { \
35 if (x) { \
36 dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \
37 x = NULL; \
38 y = 0; \
39 } \
40 } while (0)
41
42 #define BNX2X_FREE(x) \
43 do { \
44 if (x) { \
45 kfree((void *)x); \
46 x = NULL; \
47 } \
48 } while (0)
49
50 #define BNX2X_PCI_ALLOC(x, y, size) \
51 do { \
52 x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \
53 if (x == NULL) \
54 goto alloc_mem_err; \
55 memset((void *)x, 0, size); \
56 } while (0)
57
58 #define BNX2X_ALLOC(x, size) \
59 do { \
60 x = kzalloc(size, GFP_KERNEL); \
61 if (x == NULL) \
62 goto alloc_mem_err; \
63 } while (0)
64
65 /*********************** Interfaces ****************************
66 * Functions that need to be implemented by each driver version
67 */
68 /* Init */
69
70 /**
71 * bnx2x_send_unload_req - request unload mode from the MCP.
72 *
73 * @bp: driver handle
74 * @unload_mode: requested function's unload mode
75 *
76 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
77 */
78 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode);
79
80 /**
81 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
82 *
83 * @bp: driver handle
84 */
85 void bnx2x_send_unload_done(struct bnx2x *bp);
86
87 /**
88 * bnx2x_config_rss_pf - configure RSS parameters.
89 *
90 * @bp: driver handle
91 * @ind_table: indirection table to configure
92 * @config_hash: re-configure RSS hash keys configuration
93 */
94 int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash);
95
96 /**
97 * bnx2x__init_func_obj - init function object
98 *
99 * @bp: driver handle
100 *
101 * Initializes the Function Object with the appropriate
102 * parameters which include a function slow path driver
103 * interface.
104 */
105 void bnx2x__init_func_obj(struct bnx2x *bp);
106
107 /**
108 * bnx2x_setup_queue - setup eth queue.
109 *
110 * @bp: driver handle
111 * @fp: pointer to the fastpath structure
112 * @leading: boolean
113 *
114 */
115 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
116 bool leading);
117
118 /**
119 * bnx2x_setup_leading - bring up a leading eth queue.
120 *
121 * @bp: driver handle
122 */
123 int bnx2x_setup_leading(struct bnx2x *bp);
124
125 /**
126 * bnx2x_fw_command - send the MCP a request
127 *
128 * @bp: driver handle
129 * @command: request
130 * @param: request's parameter
131 *
132 * block until there is a reply
133 */
134 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param);
135
136 /**
137 * bnx2x_initial_phy_init - initialize link parameters structure variables.
138 *
139 * @bp: driver handle
140 * @load_mode: current mode
141 */
142 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode);
143
144 /**
145 * bnx2x_link_set - configure hw according to link parameters structure.
146 *
147 * @bp: driver handle
148 */
149 void bnx2x_link_set(struct bnx2x *bp);
150
151 /**
152 * bnx2x_link_test - query link status.
153 *
154 * @bp: driver handle
155 * @is_serdes: bool
156 *
157 * Returns 0 if link is UP.
158 */
159 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes);
160
161 /**
162 * bnx2x_drv_pulse - write driver pulse to shmem
163 *
164 * @bp: driver handle
165 *
166 * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox
167 * in the shmem.
168 */
169 void bnx2x_drv_pulse(struct bnx2x *bp);
170
171 /**
172 * bnx2x_igu_ack_sb - update IGU with current SB value
173 *
174 * @bp: driver handle
175 * @igu_sb_id: SB id
176 * @segment: SB segment
177 * @index: SB index
178 * @op: SB operation
179 * @update: is HW update required
180 */
181 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
182 u16 index, u8 op, u8 update);
183
184 /* Disable transactions from chip to host */
185 void bnx2x_pf_disable(struct bnx2x *bp);
186
187 /**
188 * bnx2x__link_status_update - handles link status change.
189 *
190 * @bp: driver handle
191 */
192 void bnx2x__link_status_update(struct bnx2x *bp);
193
194 /**
195 * bnx2x_link_report - report link status to upper layer.
196 *
197 * @bp: driver handle
198 */
199 void bnx2x_link_report(struct bnx2x *bp);
200
201 /* None-atomic version of bnx2x_link_report() */
202 void __bnx2x_link_report(struct bnx2x *bp);
203
204 /**
205 * bnx2x_get_mf_speed - calculate MF speed.
206 *
207 * @bp: driver handle
208 *
209 * Takes into account current linespeed and MF configuration.
210 */
211 u16 bnx2x_get_mf_speed(struct bnx2x *bp);
212
213 /**
214 * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler
215 *
216 * @irq: irq number
217 * @dev_instance: private instance
218 */
219 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance);
220
221 /**
222 * bnx2x_interrupt - non MSI-X interrupt handler
223 *
224 * @irq: irq number
225 * @dev_instance: private instance
226 */
227 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance);
228 #ifdef BCM_CNIC
229
230 /**
231 * bnx2x_cnic_notify - send command to cnic driver
232 *
233 * @bp: driver handle
234 * @cmd: command
235 */
236 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd);
237
238 /**
239 * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information
240 *
241 * @bp: driver handle
242 */
243 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp);
244 #endif
245
246 /**
247 * bnx2x_int_enable - enable HW interrupts.
248 *
249 * @bp: driver handle
250 */
251 void bnx2x_int_enable(struct bnx2x *bp);
252
253 /**
254 * bnx2x_int_disable_sync - disable interrupts.
255 *
256 * @bp: driver handle
257 * @disable_hw: true, disable HW interrupts.
258 *
259 * This function ensures that there are no
260 * ISRs or SP DPCs (sp_task) are running after it returns.
261 */
262 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw);
263
264 /**
265 * bnx2x_nic_init - init driver internals.
266 *
267 * @bp: driver handle
268 * @load_code: COMMON, PORT or FUNCTION
269 *
270 * Initializes:
271 * - rings
272 * - status blocks
273 * - etc.
274 */
275 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code);
276
277 /**
278 * bnx2x_alloc_mem - allocate driver's memory.
279 *
280 * @bp: driver handle
281 */
282 int bnx2x_alloc_mem(struct bnx2x *bp);
283
284 /**
285 * bnx2x_free_mem - release driver's memory.
286 *
287 * @bp: driver handle
288 */
289 void bnx2x_free_mem(struct bnx2x *bp);
290
291 /**
292 * bnx2x_set_num_queues - set number of queues according to mode.
293 *
294 * @bp: driver handle
295 */
296 void bnx2x_set_num_queues(struct bnx2x *bp);
297
298 /**
299 * bnx2x_chip_cleanup - cleanup chip internals.
300 *
301 * @bp: driver handle
302 * @unload_mode: COMMON, PORT, FUNCTION
303 *
304 * - Cleanup MAC configuration.
305 * - Closes clients.
306 * - etc.
307 */
308 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode);
309
310 /**
311 * bnx2x_acquire_hw_lock - acquire HW lock.
312 *
313 * @bp: driver handle
314 * @resource: resource bit which was locked
315 */
316 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource);
317
318 /**
319 * bnx2x_release_hw_lock - release HW lock.
320 *
321 * @bp: driver handle
322 * @resource: resource bit which was locked
323 */
324 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource);
325
326 /**
327 * bnx2x_release_leader_lock - release recovery leader lock
328 *
329 * @bp: driver handle
330 */
331 int bnx2x_release_leader_lock(struct bnx2x *bp);
332
333 /**
334 * bnx2x_set_eth_mac - configure eth MAC address in the HW
335 *
336 * @bp: driver handle
337 * @set: set or clear
338 *
339 * Configures according to the value in netdev->dev_addr.
340 */
341 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set);
342
343 /**
344 * bnx2x_set_rx_mode - set MAC filtering configurations.
345 *
346 * @dev: netdevice
347 *
348 * called with netif_tx_lock from dev_mcast.c
349 * If bp->state is OPEN, should be called with
350 * netif_addr_lock_bh()
351 */
352 void bnx2x_set_rx_mode(struct net_device *dev);
353
354 /**
355 * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW.
356 *
357 * @bp: driver handle
358 *
359 * If bp->state is OPEN, should be called with
360 * netif_addr_lock_bh().
361 */
362 void bnx2x_set_storm_rx_mode(struct bnx2x *bp);
363
364 /**
365 * bnx2x_set_q_rx_mode - configures rx_mode for a single queue.
366 *
367 * @bp: driver handle
368 * @cl_id: client id
369 * @rx_mode_flags: rx mode configuration
370 * @rx_accept_flags: rx accept configuration
371 * @tx_accept_flags: tx accept configuration (tx switch)
372 * @ramrod_flags: ramrod configuration
373 */
374 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
375 unsigned long rx_mode_flags,
376 unsigned long rx_accept_flags,
377 unsigned long tx_accept_flags,
378 unsigned long ramrod_flags);
379
380 /* Parity errors related */
381 void bnx2x_inc_load_cnt(struct bnx2x *bp);
382 u32 bnx2x_dec_load_cnt(struct bnx2x *bp);
383 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print);
384 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine);
385 void bnx2x_set_reset_in_progress(struct bnx2x *bp);
386 void bnx2x_set_reset_global(struct bnx2x *bp);
387 void bnx2x_disable_close_the_gate(struct bnx2x *bp);
388
389 /**
390 * bnx2x_sp_event - handle ramrods completion.
391 *
392 * @fp: fastpath handle for the event
393 * @rr_cqe: eth_rx_cqe
394 */
395 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe);
396
397 /**
398 * bnx2x_ilt_set_info - prepare ILT configurations.
399 *
400 * @bp: driver handle
401 */
402 void bnx2x_ilt_set_info(struct bnx2x *bp);
403
404 /**
405 * bnx2x_dcbx_init - initialize dcbx protocol.
406 *
407 * @bp: driver handle
408 */
409 void bnx2x_dcbx_init(struct bnx2x *bp);
410
411 /**
412 * bnx2x_set_power_state - set power state to the requested value.
413 *
414 * @bp: driver handle
415 * @state: required state D0 or D3hot
416 *
417 * Currently only D0 and D3hot are supported.
418 */
419 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state);
420
421 /**
422 * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW.
423 *
424 * @bp: driver handle
425 * @value: new value
426 */
427 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value);
428 /* Error handling */
429 void bnx2x_panic_dump(struct bnx2x *bp);
430
431 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl);
432
433 /* dev_close main block */
434 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode);
435
436 /* dev_open main block */
437 int bnx2x_nic_load(struct bnx2x *bp, int load_mode);
438
439 /* hard_xmit callback */
440 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev);
441
442 /* setup_tc callback */
443 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc);
444
445 /* select_queue callback */
446 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb);
447
448 /* reload helper */
449 int bnx2x_reload_if_running(struct net_device *dev);
450
451 int bnx2x_change_mac_addr(struct net_device *dev, void *p);
452
453 /* NAPI poll Rx part */
454 int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget);
455
456 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
457 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod);
458
459 /* NAPI poll Tx part */
460 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata);
461
462 /* suspend/resume callbacks */
463 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state);
464 int bnx2x_resume(struct pci_dev *pdev);
465
466 /* Release IRQ vectors */
467 void bnx2x_free_irq(struct bnx2x *bp);
468
469 void bnx2x_free_fp_mem(struct bnx2x *bp);
470 int bnx2x_alloc_fp_mem(struct bnx2x *bp);
471 void bnx2x_init_rx_rings(struct bnx2x *bp);
472 void bnx2x_free_skbs(struct bnx2x *bp);
473 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw);
474 void bnx2x_netif_start(struct bnx2x *bp);
475
476 /**
477 * bnx2x_enable_msix - set msix configuration.
478 *
479 * @bp: driver handle
480 *
481 * fills msix_table, requests vectors, updates num_queues
482 * according to number of available vectors.
483 */
484 int bnx2x_enable_msix(struct bnx2x *bp);
485
486 /**
487 * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly
488 *
489 * @bp: driver handle
490 */
491 int bnx2x_enable_msi(struct bnx2x *bp);
492
493 /**
494 * bnx2x_poll - NAPI callback
495 *
496 * @napi: napi structure
497 * @budget:
498 *
499 */
500 int bnx2x_poll(struct napi_struct *napi, int budget);
501
502 /**
503 * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure
504 *
505 * @bp: driver handle
506 */
507 int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp);
508
509 /**
510 * bnx2x_free_mem_bp - release memories outsize main driver structure
511 *
512 * @bp: driver handle
513 */
514 void bnx2x_free_mem_bp(struct bnx2x *bp);
515
516 /**
517 * bnx2x_change_mtu - change mtu netdev callback
518 *
519 * @dev: net device
520 * @new_mtu: requested mtu
521 *
522 */
523 int bnx2x_change_mtu(struct net_device *dev, int new_mtu);
524
525 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
526 /**
527 * bnx2x_fcoe_get_wwn - return the requested WWN value for this port
528 *
529 * @dev: net_device
530 * @wwn: output buffer
531 * @type: WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port)
532 *
533 */
534 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type);
535 #endif
536 netdev_features_t bnx2x_fix_features(struct net_device *dev,
537 netdev_features_t features);
538 int bnx2x_set_features(struct net_device *dev, netdev_features_t features);
539
540 /**
541 * bnx2x_tx_timeout - tx timeout netdev callback
542 *
543 * @dev: net device
544 */
545 void bnx2x_tx_timeout(struct net_device *dev);
546
547 /*********************** Inlines **********************************/
548 /*********************** Fast path ********************************/
549 static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp)
550 {
551 barrier(); /* status block is written to by the chip */
552 fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
553 }
554
555 static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp,
556 struct bnx2x_fastpath *fp, u16 bd_prod,
557 u16 rx_comp_prod, u16 rx_sge_prod, u32 start)
558 {
559 struct ustorm_eth_rx_producers rx_prods = {0};
560 u32 i;
561
562 /* Update producers */
563 rx_prods.bd_prod = bd_prod;
564 rx_prods.cqe_prod = rx_comp_prod;
565 rx_prods.sge_prod = rx_sge_prod;
566
567 /*
568 * Make sure that the BD and SGE data is updated before updating the
569 * producers since FW might read the BD/SGE right after the producer
570 * is updated.
571 * This is only applicable for weak-ordered memory model archs such
572 * as IA-64. The following barrier is also mandatory since FW will
573 * assumes BDs must have buffers.
574 */
575 wmb();
576
577 for (i = 0; i < sizeof(rx_prods)/4; i++)
578 REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]);
579
580 mmiowb(); /* keep prod updates ordered */
581
582 DP(NETIF_MSG_RX_STATUS,
583 "queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n",
584 fp->index, bd_prod, rx_comp_prod, rx_sge_prod);
585 }
586
587 static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id,
588 u8 segment, u16 index, u8 op,
589 u8 update, u32 igu_addr)
590 {
591 struct igu_regular cmd_data = {0};
592
593 cmd_data.sb_id_and_flags =
594 ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
595 (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
596 (update << IGU_REGULAR_BUPDATE_SHIFT) |
597 (op << IGU_REGULAR_ENABLE_INT_SHIFT));
598
599 DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n",
600 cmd_data.sb_id_and_flags, igu_addr);
601 REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags);
602
603 /* Make sure that ACK is written */
604 mmiowb();
605 barrier();
606 }
607
608 static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func,
609 u8 idu_sb_id, bool is_Pf)
610 {
611 u32 data, ctl, cnt = 100;
612 u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
613 u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
614 u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
615 u32 sb_bit = 1 << (idu_sb_id%32);
616 u32 func_encode = func |
617 ((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT);
618 u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
619
620 /* Not supported in BC mode */
621 if (CHIP_INT_MODE_IS_BC(bp))
622 return;
623
624 data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
625 << IGU_REGULAR_CLEANUP_TYPE_SHIFT) |
626 IGU_REGULAR_CLEANUP_SET |
627 IGU_REGULAR_BCLEANUP;
628
629 ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT |
630 func_encode << IGU_CTRL_REG_FID_SHIFT |
631 IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
632
633 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
634 data, igu_addr_data);
635 REG_WR(bp, igu_addr_data, data);
636 mmiowb();
637 barrier();
638 DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
639 ctl, igu_addr_ctl);
640 REG_WR(bp, igu_addr_ctl, ctl);
641 mmiowb();
642 barrier();
643
644 /* wait for clean up to finish */
645 while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
646 msleep(20);
647
648
649 if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
650 DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: "
651 "idu_sb_id %d offset %d bit %d (cnt %d)\n",
652 idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
653 }
654 }
655
656 static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id,
657 u8 storm, u16 index, u8 op, u8 update)
658 {
659 u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
660 COMMAND_REG_INT_ACK);
661 struct igu_ack_register igu_ack;
662
663 igu_ack.status_block_index = index;
664 igu_ack.sb_id_and_flags =
665 ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
666 (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
667 (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
668 (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
669
670 DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n",
671 (*(u32 *)&igu_ack), hc_addr);
672 REG_WR(bp, hc_addr, (*(u32 *)&igu_ack));
673
674 /* Make sure that ACK is written */
675 mmiowb();
676 barrier();
677 }
678
679 static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm,
680 u16 index, u8 op, u8 update)
681 {
682 if (bp->common.int_block == INT_BLOCK_HC)
683 bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update);
684 else {
685 u8 segment;
686
687 if (CHIP_INT_MODE_IS_BC(bp))
688 segment = storm;
689 else if (igu_sb_id != bp->igu_dsb_id)
690 segment = IGU_SEG_ACCESS_DEF;
691 else if (storm == ATTENTION_ID)
692 segment = IGU_SEG_ACCESS_ATTN;
693 else
694 segment = IGU_SEG_ACCESS_DEF;
695 bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update);
696 }
697 }
698
699 static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp)
700 {
701 u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 +
702 COMMAND_REG_SIMD_MASK);
703 u32 result = REG_RD(bp, hc_addr);
704
705 DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n",
706 result, hc_addr);
707
708 barrier();
709 return result;
710 }
711
712 static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp)
713 {
714 u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
715 u32 result = REG_RD(bp, igu_addr);
716
717 DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n",
718 result, igu_addr);
719
720 barrier();
721 return result;
722 }
723
724 static inline u16 bnx2x_ack_int(struct bnx2x *bp)
725 {
726 barrier();
727 if (bp->common.int_block == INT_BLOCK_HC)
728 return bnx2x_hc_ack_int(bp);
729 else
730 return bnx2x_igu_ack_int(bp);
731 }
732
733 static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata)
734 {
735 /* Tell compiler that consumer and producer can change */
736 barrier();
737 return txdata->tx_pkt_prod != txdata->tx_pkt_cons;
738 }
739
740 static inline u16 bnx2x_tx_avail(struct bnx2x *bp,
741 struct bnx2x_fp_txdata *txdata)
742 {
743 s16 used;
744 u16 prod;
745 u16 cons;
746
747 prod = txdata->tx_bd_prod;
748 cons = txdata->tx_bd_cons;
749
750 /* NUM_TX_RINGS = number of "next-page" entries
751 It will be used as a threshold */
752 used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS;
753
754 #ifdef BNX2X_STOP_ON_ERROR
755 WARN_ON(used < 0);
756 WARN_ON(used > bp->tx_ring_size);
757 WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL);
758 #endif
759
760 return (s16)(bp->tx_ring_size) - used;
761 }
762
763 static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata)
764 {
765 u16 hw_cons;
766
767 /* Tell compiler that status block fields can change */
768 barrier();
769 hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
770 return hw_cons != txdata->tx_pkt_cons;
771 }
772
773 static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp)
774 {
775 u8 cos;
776 for_each_cos_in_tx_queue(fp, cos)
777 if (bnx2x_tx_queue_has_work(&fp->txdata[cos]))
778 return true;
779 return false;
780 }
781
782 static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp)
783 {
784 u16 rx_cons_sb;
785
786 /* Tell compiler that status block fields can change */
787 barrier();
788 rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb);
789 if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT)
790 rx_cons_sb++;
791 return (fp->rx_comp_cons != rx_cons_sb);
792 }
793
794 /**
795 * bnx2x_tx_disable - disables tx from stack point of view
796 *
797 * @bp: driver handle
798 */
799 static inline void bnx2x_tx_disable(struct bnx2x *bp)
800 {
801 netif_tx_disable(bp->dev);
802 netif_carrier_off(bp->dev);
803 }
804
805 static inline void bnx2x_free_rx_sge(struct bnx2x *bp,
806 struct bnx2x_fastpath *fp, u16 index)
807 {
808 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
809 struct page *page = sw_buf->page;
810 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
811
812 /* Skip "next page" elements */
813 if (!page)
814 return;
815
816 dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping),
817 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
818 __free_pages(page, PAGES_PER_SGE_SHIFT);
819
820 sw_buf->page = NULL;
821 sge->addr_hi = 0;
822 sge->addr_lo = 0;
823 }
824
825 static inline void bnx2x_add_all_napi(struct bnx2x *bp)
826 {
827 int i;
828
829 /* Add NAPI objects */
830 for_each_rx_queue(bp, i)
831 netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
832 bnx2x_poll, BNX2X_NAPI_WEIGHT);
833 }
834
835 static inline void bnx2x_del_all_napi(struct bnx2x *bp)
836 {
837 int i;
838
839 for_each_rx_queue(bp, i)
840 netif_napi_del(&bnx2x_fp(bp, i, napi));
841 }
842
843 static inline void bnx2x_disable_msi(struct bnx2x *bp)
844 {
845 if (bp->flags & USING_MSIX_FLAG) {
846 pci_disable_msix(bp->pdev);
847 bp->flags &= ~USING_MSIX_FLAG;
848 } else if (bp->flags & USING_MSI_FLAG) {
849 pci_disable_msi(bp->pdev);
850 bp->flags &= ~USING_MSI_FLAG;
851 }
852 }
853
854 static inline int bnx2x_calc_num_queues(struct bnx2x *bp)
855 {
856 return num_queues ?
857 min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) :
858 min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp));
859 }
860
861 static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp)
862 {
863 int i, j;
864
865 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
866 int idx = RX_SGE_CNT * i - 1;
867
868 for (j = 0; j < 2; j++) {
869 BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx);
870 idx--;
871 }
872 }
873 }
874
875 static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp)
876 {
877 /* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */
878 memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask));
879
880 /* Clear the two last indices in the page to 1:
881 these are the indices that correspond to the "next" element,
882 hence will never be indicated and should be removed from
883 the calculations. */
884 bnx2x_clear_sge_mask_next_elems(fp);
885 }
886
887 static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp,
888 struct bnx2x_fastpath *fp, u16 index)
889 {
890 struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT);
891 struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
892 struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
893 dma_addr_t mapping;
894
895 if (unlikely(page == NULL))
896 return -ENOMEM;
897
898 mapping = dma_map_page(&bp->pdev->dev, page, 0,
899 SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE);
900 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
901 __free_pages(page, PAGES_PER_SGE_SHIFT);
902 return -ENOMEM;
903 }
904
905 sw_buf->page = page;
906 dma_unmap_addr_set(sw_buf, mapping, mapping);
907
908 sge->addr_hi = cpu_to_le32(U64_HI(mapping));
909 sge->addr_lo = cpu_to_le32(U64_LO(mapping));
910
911 return 0;
912 }
913
914 static inline int bnx2x_alloc_rx_data(struct bnx2x *bp,
915 struct bnx2x_fastpath *fp, u16 index)
916 {
917 u8 *data;
918 struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
919 struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
920 dma_addr_t mapping;
921
922 data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC);
923 if (unlikely(data == NULL))
924 return -ENOMEM;
925
926 mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
927 fp->rx_buf_size,
928 DMA_FROM_DEVICE);
929 if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
930 kfree(data);
931 return -ENOMEM;
932 }
933
934 rx_buf->data = data;
935 dma_unmap_addr_set(rx_buf, mapping, mapping);
936
937 rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
938 rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
939
940 return 0;
941 }
942
943 /* note that we are not allocating a new buffer,
944 * we are just moving one from cons to prod
945 * we are not creating a new mapping,
946 * so there is no need to check for dma_mapping_error().
947 */
948 static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp,
949 u16 cons, u16 prod)
950 {
951 struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
952 struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
953 struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons];
954 struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
955
956 dma_unmap_addr_set(prod_rx_buf, mapping,
957 dma_unmap_addr(cons_rx_buf, mapping));
958 prod_rx_buf->data = cons_rx_buf->data;
959 *prod_bd = *cons_bd;
960 }
961
962 /************************* Init ******************************************/
963
964 /**
965 * bnx2x_func_start - init function
966 *
967 * @bp: driver handle
968 *
969 * Must be called before sending CLIENT_SETUP for the first client.
970 */
971 static inline int bnx2x_func_start(struct bnx2x *bp)
972 {
973 struct bnx2x_func_state_params func_params = {0};
974 struct bnx2x_func_start_params *start_params =
975 &func_params.params.start;
976
977 /* Prepare parameters for function state transitions */
978 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
979
980 func_params.f_obj = &bp->func_obj;
981 func_params.cmd = BNX2X_F_CMD_START;
982
983 /* Function parameters */
984 start_params->mf_mode = bp->mf_mode;
985 start_params->sd_vlan_tag = bp->mf_ov;
986 if (CHIP_IS_E1x(bp))
987 start_params->network_cos_mode = OVERRIDE_COS;
988 else
989 start_params->network_cos_mode = STATIC_COS;
990
991 return bnx2x_func_state_change(bp, &func_params);
992 }
993
994
995 /**
996 * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format
997 *
998 * @fw_hi: pointer to upper part
999 * @fw_mid: pointer to middle part
1000 * @fw_lo: pointer to lower part
1001 * @mac: pointer to MAC address
1002 */
1003 static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo,
1004 u8 *mac)
1005 {
1006 ((u8 *)fw_hi)[0] = mac[1];
1007 ((u8 *)fw_hi)[1] = mac[0];
1008 ((u8 *)fw_mid)[0] = mac[3];
1009 ((u8 *)fw_mid)[1] = mac[2];
1010 ((u8 *)fw_lo)[0] = mac[5];
1011 ((u8 *)fw_lo)[1] = mac[4];
1012 }
1013
1014 static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp,
1015 struct bnx2x_fastpath *fp, int last)
1016 {
1017 int i;
1018
1019 if (fp->disable_tpa)
1020 return;
1021
1022 for (i = 0; i < last; i++)
1023 bnx2x_free_rx_sge(bp, fp, i);
1024 }
1025
1026 static inline void bnx2x_free_tpa_pool(struct bnx2x *bp,
1027 struct bnx2x_fastpath *fp, int last)
1028 {
1029 int i;
1030
1031 for (i = 0; i < last; i++) {
1032 struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1033 struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1034 u8 *data = first_buf->data;
1035
1036 if (data == NULL) {
1037 DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1038 continue;
1039 }
1040 if (tpa_info->tpa_state == BNX2X_TPA_START)
1041 dma_unmap_single(&bp->pdev->dev,
1042 dma_unmap_addr(first_buf, mapping),
1043 fp->rx_buf_size, DMA_FROM_DEVICE);
1044 kfree(data);
1045 first_buf->data = NULL;
1046 }
1047 }
1048
1049 static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
1050 {
1051 int i;
1052
1053 for (i = 1; i <= NUM_TX_RINGS; i++) {
1054 struct eth_tx_next_bd *tx_next_bd =
1055 &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
1056
1057 tx_next_bd->addr_hi =
1058 cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
1059 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1060 tx_next_bd->addr_lo =
1061 cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
1062 BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
1063 }
1064
1065 SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
1066 txdata->tx_db.data.zero_fill1 = 0;
1067 txdata->tx_db.data.prod = 0;
1068
1069 txdata->tx_pkt_prod = 0;
1070 txdata->tx_pkt_cons = 0;
1071 txdata->tx_bd_prod = 0;
1072 txdata->tx_bd_cons = 0;
1073 txdata->tx_pkt = 0;
1074 }
1075
1076 static inline void bnx2x_init_tx_rings(struct bnx2x *bp)
1077 {
1078 int i;
1079 u8 cos;
1080
1081 for_each_tx_queue(bp, i)
1082 for_each_cos_in_tx_queue(&bp->fp[i], cos)
1083 bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]);
1084 }
1085
1086 static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp)
1087 {
1088 int i;
1089
1090 for (i = 1; i <= NUM_RX_RINGS; i++) {
1091 struct eth_rx_bd *rx_bd;
1092
1093 rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2];
1094 rx_bd->addr_hi =
1095 cpu_to_le32(U64_HI(fp->rx_desc_mapping +
1096 BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1097 rx_bd->addr_lo =
1098 cpu_to_le32(U64_LO(fp->rx_desc_mapping +
1099 BCM_PAGE_SIZE*(i % NUM_RX_RINGS)));
1100 }
1101 }
1102
1103 static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1104 {
1105 int i;
1106
1107 for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1108 struct eth_rx_sge *sge;
1109
1110 sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1111 sge->addr_hi =
1112 cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1113 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1114
1115 sge->addr_lo =
1116 cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1117 BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1118 }
1119 }
1120
1121 static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
1122 {
1123 int i;
1124 for (i = 1; i <= NUM_RCQ_RINGS; i++) {
1125 struct eth_rx_cqe_next_page *nextpg;
1126
1127 nextpg = (struct eth_rx_cqe_next_page *)
1128 &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
1129 nextpg->addr_hi =
1130 cpu_to_le32(U64_HI(fp->rx_comp_mapping +
1131 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1132 nextpg->addr_lo =
1133 cpu_to_le32(U64_LO(fp->rx_comp_mapping +
1134 BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
1135 }
1136 }
1137
1138 /* Returns the number of actually allocated BDs */
1139 static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
1140 int rx_ring_size)
1141 {
1142 struct bnx2x *bp = fp->bp;
1143 u16 ring_prod, cqe_ring_prod;
1144 int i;
1145
1146 fp->rx_comp_cons = 0;
1147 cqe_ring_prod = ring_prod = 0;
1148
1149 /* This routine is called only during fo init so
1150 * fp->eth_q_stats.rx_skb_alloc_failed = 0
1151 */
1152 for (i = 0; i < rx_ring_size; i++) {
1153 if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) {
1154 fp->eth_q_stats.rx_skb_alloc_failed++;
1155 continue;
1156 }
1157 ring_prod = NEXT_RX_IDX(ring_prod);
1158 cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
1159 WARN_ON(ring_prod <= (i - fp->eth_q_stats.rx_skb_alloc_failed));
1160 }
1161
1162 if (fp->eth_q_stats.rx_skb_alloc_failed)
1163 BNX2X_ERR("was only able to allocate "
1164 "%d rx skbs on queue[%d]\n",
1165 (i - fp->eth_q_stats.rx_skb_alloc_failed), fp->index);
1166
1167 fp->rx_bd_prod = ring_prod;
1168 /* Limit the CQE producer by the CQE ring size */
1169 fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
1170 cqe_ring_prod);
1171 fp->rx_pkt = fp->rx_calls = 0;
1172
1173 return i - fp->eth_q_stats.rx_skb_alloc_failed;
1174 }
1175
1176 /* Statistics ID are global per chip/path, while Client IDs for E1x are per
1177 * port.
1178 */
1179 static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp)
1180 {
1181 if (!CHIP_IS_E1x(fp->bp))
1182 return fp->cl_id;
1183 else
1184 return fp->cl_id + BP_PORT(fp->bp) * FP_SB_MAX_E1x;
1185 }
1186
1187 static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp,
1188 bnx2x_obj_type obj_type)
1189 {
1190 struct bnx2x *bp = fp->bp;
1191
1192 /* Configure classification DBs */
1193 bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid,
1194 BP_FUNC(bp), bnx2x_sp(bp, mac_rdata),
1195 bnx2x_sp_mapping(bp, mac_rdata),
1196 BNX2X_FILTER_MAC_PENDING,
1197 &bp->sp_state, obj_type,
1198 &bp->macs_pool);
1199 }
1200
1201 /**
1202 * bnx2x_get_path_func_num - get number of active functions
1203 *
1204 * @bp: driver handle
1205 *
1206 * Calculates the number of active (not hidden) functions on the
1207 * current path.
1208 */
1209 static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp)
1210 {
1211 u8 func_num = 0, i;
1212
1213 /* 57710 has only one function per-port */
1214 if (CHIP_IS_E1(bp))
1215 return 1;
1216
1217 /* Calculate a number of functions enabled on the current
1218 * PATH/PORT.
1219 */
1220 if (CHIP_REV_IS_SLOW(bp)) {
1221 if (IS_MF(bp))
1222 func_num = 4;
1223 else
1224 func_num = 2;
1225 } else {
1226 for (i = 0; i < E1H_FUNC_MAX / 2; i++) {
1227 u32 func_config =
1228 MF_CFG_RD(bp,
1229 func_mf_config[BP_PORT(bp) + 2 * i].
1230 config);
1231 func_num +=
1232 ((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1);
1233 }
1234 }
1235
1236 WARN_ON(!func_num);
1237
1238 return func_num;
1239 }
1240
1241 static inline void bnx2x_init_bp_objs(struct bnx2x *bp)
1242 {
1243 /* RX_MODE controlling object */
1244 bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj);
1245
1246 /* multicast configuration controlling object */
1247 bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid,
1248 BP_FUNC(bp), BP_FUNC(bp),
1249 bnx2x_sp(bp, mcast_rdata),
1250 bnx2x_sp_mapping(bp, mcast_rdata),
1251 BNX2X_FILTER_MCAST_PENDING, &bp->sp_state,
1252 BNX2X_OBJ_TYPE_RX);
1253
1254 /* Setup CAM credit pools */
1255 bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp),
1256 bnx2x_get_path_func_num(bp));
1257
1258 /* RSS configuration object */
1259 bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id,
1260 bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp),
1261 bnx2x_sp(bp, rss_rdata),
1262 bnx2x_sp_mapping(bp, rss_rdata),
1263 BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state,
1264 BNX2X_OBJ_TYPE_RX);
1265 }
1266
1267 static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp)
1268 {
1269 if (CHIP_IS_E1x(fp->bp))
1270 return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H;
1271 else
1272 return fp->cl_id;
1273 }
1274
1275 static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
1276 {
1277 struct bnx2x *bp = fp->bp;
1278
1279 if (!CHIP_IS_E1x(bp))
1280 return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
1281 else
1282 return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
1283 }
1284
1285 static inline void bnx2x_init_txdata(struct bnx2x *bp,
1286 struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index,
1287 __le16 *tx_cons_sb)
1288 {
1289 txdata->cid = cid;
1290 txdata->txq_index = txq_index;
1291 txdata->tx_cons_sb = tx_cons_sb;
1292
1293 DP(BNX2X_MSG_SP, "created tx data cid %d, txq %d\n",
1294 txdata->cid, txdata->txq_index);
1295 }
1296
1297 #ifdef BCM_CNIC
1298 static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx)
1299 {
1300 return bp->cnic_base_cl_id + cl_idx +
1301 (bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX;
1302 }
1303
1304 static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp)
1305 {
1306
1307 /* the 'first' id is allocated for the cnic */
1308 return bp->base_fw_ndsb;
1309 }
1310
1311 static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp)
1312 {
1313 return bp->igu_base_sb;
1314 }
1315
1316
1317 static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp)
1318 {
1319 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
1320 unsigned long q_type = 0;
1321
1322 bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
1323 bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
1324 BNX2X_FCOE_ETH_CL_ID_IDX);
1325 /** Current BNX2X_FCOE_ETH_CID deffinition implies not more than
1326 * 16 ETH clients per function when CNIC is enabled!
1327 *
1328 * Fix it ASAP!!!
1329 */
1330 bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID;
1331 bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
1332 bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
1333 bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
1334
1335 bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]),
1336 fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX);
1337
1338 DP(BNX2X_MSG_SP, "created fcoe tx data (fp index %d)\n", fp->index);
1339
1340 /* qZone id equals to FW (per path) client id */
1341 bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
1342 /* init shortcut */
1343 bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
1344 bnx2x_rx_ustorm_prods_offset(fp);
1345
1346 /* Configure Queue State object */
1347 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
1348 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
1349
1350 /* No multi-CoS for FCoE L2 client */
1351 BUG_ON(fp->max_cos != 1);
1352
1353 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1,
1354 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
1355 bnx2x_sp_mapping(bp, q_rdata), q_type);
1356
1357 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d "
1358 "igu_sb %d\n",
1359 fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
1360 fp->igu_sb_id);
1361 }
1362 #endif
1363
1364 static inline int bnx2x_clean_tx_queue(struct bnx2x *bp,
1365 struct bnx2x_fp_txdata *txdata)
1366 {
1367 int cnt = 1000;
1368
1369 while (bnx2x_has_tx_work_unload(txdata)) {
1370 if (!cnt) {
1371 BNX2X_ERR("timeout waiting for queue[%d]: "
1372 "txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n",
1373 txdata->txq_index, txdata->tx_pkt_prod,
1374 txdata->tx_pkt_cons);
1375 #ifdef BNX2X_STOP_ON_ERROR
1376 bnx2x_panic();
1377 return -EBUSY;
1378 #else
1379 break;
1380 #endif
1381 }
1382 cnt--;
1383 usleep_range(1000, 1000);
1384 }
1385
1386 return 0;
1387 }
1388
1389 int bnx2x_get_link_cfg_idx(struct bnx2x *bp);
1390
1391 static inline void __storm_memset_struct(struct bnx2x *bp,
1392 u32 addr, size_t size, u32 *data)
1393 {
1394 int i;
1395 for (i = 0; i < size/4; i++)
1396 REG_WR(bp, addr + (i * 4), data[i]);
1397 }
1398
1399 static inline void storm_memset_func_cfg(struct bnx2x *bp,
1400 struct tstorm_eth_function_common_config *tcfg,
1401 u16 abs_fid)
1402 {
1403 size_t size = sizeof(struct tstorm_eth_function_common_config);
1404
1405 u32 addr = BAR_TSTRORM_INTMEM +
1406 TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
1407
1408 __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
1409 }
1410
1411 static inline void storm_memset_cmng(struct bnx2x *bp,
1412 struct cmng_struct_per_port *cmng,
1413 u8 port)
1414 {
1415 size_t size = sizeof(struct cmng_struct_per_port);
1416
1417 u32 addr = BAR_XSTRORM_INTMEM +
1418 XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
1419
1420 __storm_memset_struct(bp, addr, size, (u32 *)cmng);
1421 }
1422
1423 /**
1424 * bnx2x_wait_sp_comp - wait for the outstanding SP commands.
1425 *
1426 * @bp: driver handle
1427 * @mask: bits that need to be cleared
1428 */
1429 static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask)
1430 {
1431 int tout = 5000; /* Wait for 5 secs tops */
1432
1433 while (tout--) {
1434 smp_mb();
1435 netif_addr_lock_bh(bp->dev);
1436 if (!(bp->sp_state & mask)) {
1437 netif_addr_unlock_bh(bp->dev);
1438 return true;
1439 }
1440 netif_addr_unlock_bh(bp->dev);
1441
1442 usleep_range(1000, 1000);
1443 }
1444
1445 smp_mb();
1446
1447 netif_addr_lock_bh(bp->dev);
1448 if (bp->sp_state & mask) {
1449 BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, "
1450 "mask 0x%lx\n", bp->sp_state, mask);
1451 netif_addr_unlock_bh(bp->dev);
1452 return false;
1453 }
1454 netif_addr_unlock_bh(bp->dev);
1455
1456 return true;
1457 }
1458
1459 /**
1460 * bnx2x_set_ctx_validation - set CDU context validation values
1461 *
1462 * @bp: driver handle
1463 * @cxt: context of the connection on the host memory
1464 * @cid: SW CID of the connection to be configured
1465 */
1466 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
1467 u32 cid);
1468
1469 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
1470 u8 sb_index, u8 disable, u16 usec);
1471 void bnx2x_acquire_phy_lock(struct bnx2x *bp);
1472 void bnx2x_release_phy_lock(struct bnx2x *bp);
1473
1474 /**
1475 * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration.
1476 *
1477 * @bp: driver handle
1478 * @mf_cfg: MF configuration
1479 *
1480 */
1481 static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg)
1482 {
1483 u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >>
1484 FUNC_MF_CFG_MAX_BW_SHIFT;
1485 if (!max_cfg) {
1486 DP(NETIF_MSG_LINK,
1487 "Max BW configured to 0 - using 100 instead\n");
1488 max_cfg = 100;
1489 }
1490 return max_cfg;
1491 }
1492
1493 #ifdef BCM_CNIC
1494 /**
1495 * bnx2x_get_iscsi_info - update iSCSI params according to licensing info.
1496 *
1497 * @bp: driver handle
1498 *
1499 */
1500 void bnx2x_get_iscsi_info(struct bnx2x *bp);
1501 #endif
1502
1503 /* returns func by VN for current port */
1504 static inline int func_by_vn(struct bnx2x *bp, int vn)
1505 {
1506 return 2 * vn + BP_PORT(bp);
1507 }
1508
1509 /**
1510 * bnx2x_link_sync_notify - send notification to other functions.
1511 *
1512 * @bp: driver handle
1513 *
1514 */
1515 static inline void bnx2x_link_sync_notify(struct bnx2x *bp)
1516 {
1517 int func;
1518 int vn;
1519
1520 /* Set the attention towards other drivers on the same port */
1521 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
1522 if (vn == BP_VN(bp))
1523 continue;
1524
1525 func = func_by_vn(bp, vn);
1526 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 +
1527 (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1);
1528 }
1529 }
1530
1531 /**
1532 * bnx2x_update_drv_flags - update flags in shmem
1533 *
1534 * @bp: driver handle
1535 * @flags: flags to update
1536 * @set: set or clear
1537 *
1538 */
1539 static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set)
1540 {
1541 if (SHMEM2_HAS(bp, drv_flags)) {
1542 u32 drv_flags;
1543 bnx2x_acquire_hw_lock(bp, HW_LOCK_DRV_FLAGS);
1544 drv_flags = SHMEM2_RD(bp, drv_flags);
1545
1546 if (set)
1547 SET_FLAGS(drv_flags, flags);
1548 else
1549 RESET_FLAGS(drv_flags, flags);
1550
1551 SHMEM2_WR(bp, drv_flags, drv_flags);
1552 DP(NETIF_MSG_HW, "drv_flags 0x%08x\n", drv_flags);
1553 bnx2x_release_hw_lock(bp, HW_LOCK_DRV_FLAGS);
1554 }
1555 }
1556
1557 #endif /* BNX2X_CMN_H */
This page took 0.06687 seconds and 5 git commands to generate.