bnx2x: Function Level Reset Final Cleanup
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2 *
3 * Copyright (c) 2007-2011 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 *
9 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
10 * Written by: Eliezer Tamir
11 * Based on code from Michael Chan's bnx2 driver
12 * UDP CSUM errata workaround by Arik Gendelman
13 * Slowpath and fastpath rework by Vladislav Zolotarov
14 * Statistics and Link management by Yitchak Gertner
15 *
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h> /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/init.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/bitops.h>
36 #include <linux/irq.h>
37 #include <linux/delay.h>
38 #include <asm/byteorder.h>
39 #include <linux/time.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/stringify.h>
56 #include <linux/vmalloc.h>
57
58 #include "bnx2x.h"
59 #include "bnx2x_init.h"
60 #include "bnx2x_init_ops.h"
61 #include "bnx2x_cmn.h"
62 #include "bnx2x_dcb.h"
63 #include "bnx2x_sp.h"
64
65 #include <linux/firmware.h>
66 #include "bnx2x_fw_file_hdr.h"
67 /* FW files */
68 #define FW_FILE_VERSION \
69 __stringify(BCM_5710_FW_MAJOR_VERSION) "." \
70 __stringify(BCM_5710_FW_MINOR_VERSION) "." \
71 __stringify(BCM_5710_FW_REVISION_VERSION) "." \
72 __stringify(BCM_5710_FW_ENGINEERING_VERSION)
73 #define FW_FILE_NAME_E1 "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
74 #define FW_FILE_NAME_E1H "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
75 #define FW_FILE_NAME_E2 "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
76
77 /* Time in jiffies before concluding the transmitter is hung */
78 #define TX_TIMEOUT (5*HZ)
79
80 static char version[] __devinitdata =
81 "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
82 DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
83
84 MODULE_AUTHOR("Eliezer Tamir");
85 MODULE_DESCRIPTION("Broadcom NetXtreme II "
86 "BCM57710/57711/57711E/"
87 "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
88 "57840/57840_MF Driver");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(DRV_MODULE_VERSION);
91 MODULE_FIRMWARE(FW_FILE_NAME_E1);
92 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
93 MODULE_FIRMWARE(FW_FILE_NAME_E2);
94
95 static int multi_mode = 1;
96 module_param(multi_mode, int, 0);
97 MODULE_PARM_DESC(multi_mode, " Multi queue mode "
98 "(0 Disable; 1 Enable (default))");
99
100 int num_queues;
101 module_param(num_queues, int, 0);
102 MODULE_PARM_DESC(num_queues, " Number of queues for multi_mode=1"
103 " (default is as a number of CPUs)");
104
105 static int disable_tpa;
106 module_param(disable_tpa, int, 0);
107 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
108
109 #define INT_MODE_INTx 1
110 #define INT_MODE_MSI 2
111 static int int_mode;
112 module_param(int_mode, int, 0);
113 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
114 "(1 INT#x; 2 MSI)");
115
116 static int dropless_fc;
117 module_param(dropless_fc, int, 0);
118 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
119
120 static int poll;
121 module_param(poll, int, 0);
122 MODULE_PARM_DESC(poll, " Use polling (for debug)");
123
124 static int mrrs = -1;
125 module_param(mrrs, int, 0);
126 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
127
128 static int debug;
129 module_param(debug, int, 0);
130 MODULE_PARM_DESC(debug, " Default debug msglevel");
131
132
133
134 struct workqueue_struct *bnx2x_wq;
135
136 enum bnx2x_board_type {
137 BCM57710 = 0,
138 BCM57711,
139 BCM57711E,
140 BCM57712,
141 BCM57712_MF,
142 BCM57800,
143 BCM57800_MF,
144 BCM57810,
145 BCM57810_MF,
146 BCM57840,
147 BCM57840_MF
148 };
149
150 /* indexed by board_type, above */
151 static struct {
152 char *name;
153 } board_info[] __devinitdata = {
154 { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
155 { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
156 { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
157 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
158 { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
159 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
160 { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
161 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
162 { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
163 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
164 { "Broadcom NetXtreme II BCM57840 10/20 Gigabit "
165 "Ethernet Multi Function"}
166 };
167
168 #ifndef PCI_DEVICE_ID_NX2_57710
169 #define PCI_DEVICE_ID_NX2_57710 CHIP_NUM_57710
170 #endif
171 #ifndef PCI_DEVICE_ID_NX2_57711
172 #define PCI_DEVICE_ID_NX2_57711 CHIP_NUM_57711
173 #endif
174 #ifndef PCI_DEVICE_ID_NX2_57711E
175 #define PCI_DEVICE_ID_NX2_57711E CHIP_NUM_57711E
176 #endif
177 #ifndef PCI_DEVICE_ID_NX2_57712
178 #define PCI_DEVICE_ID_NX2_57712 CHIP_NUM_57712
179 #endif
180 #ifndef PCI_DEVICE_ID_NX2_57712_MF
181 #define PCI_DEVICE_ID_NX2_57712_MF CHIP_NUM_57712_MF
182 #endif
183 #ifndef PCI_DEVICE_ID_NX2_57800
184 #define PCI_DEVICE_ID_NX2_57800 CHIP_NUM_57800
185 #endif
186 #ifndef PCI_DEVICE_ID_NX2_57800_MF
187 #define PCI_DEVICE_ID_NX2_57800_MF CHIP_NUM_57800_MF
188 #endif
189 #ifndef PCI_DEVICE_ID_NX2_57810
190 #define PCI_DEVICE_ID_NX2_57810 CHIP_NUM_57810
191 #endif
192 #ifndef PCI_DEVICE_ID_NX2_57810_MF
193 #define PCI_DEVICE_ID_NX2_57810_MF CHIP_NUM_57810_MF
194 #endif
195 #ifndef PCI_DEVICE_ID_NX2_57840
196 #define PCI_DEVICE_ID_NX2_57840 CHIP_NUM_57840
197 #endif
198 #ifndef PCI_DEVICE_ID_NX2_57840_MF
199 #define PCI_DEVICE_ID_NX2_57840_MF CHIP_NUM_57840_MF
200 #endif
201 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
202 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
203 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
204 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
205 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
206 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
207 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
208 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
209 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
210 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
211 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840), BCM57840 },
212 { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
213 { 0 }
214 };
215
216 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
217
218 /****************************************************************************
219 * General service functions
220 ****************************************************************************/
221
222 static inline void __storm_memset_dma_mapping(struct bnx2x *bp,
223 u32 addr, dma_addr_t mapping)
224 {
225 REG_WR(bp, addr, U64_LO(mapping));
226 REG_WR(bp, addr + 4, U64_HI(mapping));
227 }
228
229 static inline void storm_memset_spq_addr(struct bnx2x *bp,
230 dma_addr_t mapping, u16 abs_fid)
231 {
232 u32 addr = XSEM_REG_FAST_MEMORY +
233 XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
234
235 __storm_memset_dma_mapping(bp, addr, mapping);
236 }
237
238 static inline void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
239 u16 pf_id)
240 {
241 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
242 pf_id);
243 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
244 pf_id);
245 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
246 pf_id);
247 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
248 pf_id);
249 }
250
251 static inline void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
252 u8 enable)
253 {
254 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
255 enable);
256 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
257 enable);
258 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
259 enable);
260 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
261 enable);
262 }
263
264 static inline void storm_memset_eq_data(struct bnx2x *bp,
265 struct event_ring_data *eq_data,
266 u16 pfid)
267 {
268 size_t size = sizeof(struct event_ring_data);
269
270 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
271
272 __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
273 }
274
275 static inline void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
276 u16 pfid)
277 {
278 u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
279 REG_WR16(bp, addr, eq_prod);
280 }
281
282 /* used only at init
283 * locking is done by mcp
284 */
285 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
286 {
287 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
288 pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
289 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
290 PCICFG_VENDOR_ID_OFFSET);
291 }
292
293 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
294 {
295 u32 val;
296
297 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
298 pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
299 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
300 PCICFG_VENDOR_ID_OFFSET);
301
302 return val;
303 }
304
305 #define DMAE_DP_SRC_GRC "grc src_addr [%08x]"
306 #define DMAE_DP_SRC_PCI "pci src_addr [%x:%08x]"
307 #define DMAE_DP_DST_GRC "grc dst_addr [%08x]"
308 #define DMAE_DP_DST_PCI "pci dst_addr [%x:%08x]"
309 #define DMAE_DP_DST_NONE "dst_addr [none]"
310
311 static void bnx2x_dp_dmae(struct bnx2x *bp, struct dmae_command *dmae,
312 int msglvl)
313 {
314 u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
315
316 switch (dmae->opcode & DMAE_COMMAND_DST) {
317 case DMAE_CMD_DST_PCI:
318 if (src_type == DMAE_CMD_SRC_PCI)
319 DP(msglvl, "DMAE: opcode 0x%08x\n"
320 "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
321 "comp_addr [%x:%08x], comp_val 0x%08x\n",
322 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
323 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
324 dmae->comp_addr_hi, dmae->comp_addr_lo,
325 dmae->comp_val);
326 else
327 DP(msglvl, "DMAE: opcode 0x%08x\n"
328 "src [%08x], len [%d*4], dst [%x:%08x]\n"
329 "comp_addr [%x:%08x], comp_val 0x%08x\n",
330 dmae->opcode, dmae->src_addr_lo >> 2,
331 dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
332 dmae->comp_addr_hi, dmae->comp_addr_lo,
333 dmae->comp_val);
334 break;
335 case DMAE_CMD_DST_GRC:
336 if (src_type == DMAE_CMD_SRC_PCI)
337 DP(msglvl, "DMAE: opcode 0x%08x\n"
338 "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
339 "comp_addr [%x:%08x], comp_val 0x%08x\n",
340 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
341 dmae->len, dmae->dst_addr_lo >> 2,
342 dmae->comp_addr_hi, dmae->comp_addr_lo,
343 dmae->comp_val);
344 else
345 DP(msglvl, "DMAE: opcode 0x%08x\n"
346 "src [%08x], len [%d*4], dst [%08x]\n"
347 "comp_addr [%x:%08x], comp_val 0x%08x\n",
348 dmae->opcode, dmae->src_addr_lo >> 2,
349 dmae->len, dmae->dst_addr_lo >> 2,
350 dmae->comp_addr_hi, dmae->comp_addr_lo,
351 dmae->comp_val);
352 break;
353 default:
354 if (src_type == DMAE_CMD_SRC_PCI)
355 DP(msglvl, "DMAE: opcode 0x%08x\n"
356 "src_addr [%x:%08x] len [%d * 4] dst_addr [none]\n"
357 "comp_addr [%x:%08x] comp_val 0x%08x\n",
358 dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
359 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
360 dmae->comp_val);
361 else
362 DP(msglvl, "DMAE: opcode 0x%08x\n"
363 "src_addr [%08x] len [%d * 4] dst_addr [none]\n"
364 "comp_addr [%x:%08x] comp_val 0x%08x\n",
365 dmae->opcode, dmae->src_addr_lo >> 2,
366 dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
367 dmae->comp_val);
368 break;
369 }
370
371 }
372
373 /* copy command into DMAE command memory and set DMAE command go */
374 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
375 {
376 u32 cmd_offset;
377 int i;
378
379 cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
380 for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
381 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
382
383 DP(BNX2X_MSG_OFF, "DMAE cmd[%d].%d (0x%08x) : 0x%08x\n",
384 idx, i, cmd_offset + i*4, *(((u32 *)dmae) + i));
385 }
386 REG_WR(bp, dmae_reg_go_c[idx], 1);
387 }
388
389 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
390 {
391 return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
392 DMAE_CMD_C_ENABLE);
393 }
394
395 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
396 {
397 return opcode & ~DMAE_CMD_SRC_RESET;
398 }
399
400 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
401 bool with_comp, u8 comp_type)
402 {
403 u32 opcode = 0;
404
405 opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
406 (dst_type << DMAE_COMMAND_DST_SHIFT));
407
408 opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
409
410 opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
411 opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
412 (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
413 opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
414
415 #ifdef __BIG_ENDIAN
416 opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
417 #else
418 opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
419 #endif
420 if (with_comp)
421 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
422 return opcode;
423 }
424
425 static void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
426 struct dmae_command *dmae,
427 u8 src_type, u8 dst_type)
428 {
429 memset(dmae, 0, sizeof(struct dmae_command));
430
431 /* set the opcode */
432 dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
433 true, DMAE_COMP_PCI);
434
435 /* fill in the completion parameters */
436 dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
437 dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
438 dmae->comp_val = DMAE_COMP_VAL;
439 }
440
441 /* issue a dmae command over the init-channel and wailt for completion */
442 static int bnx2x_issue_dmae_with_comp(struct bnx2x *bp,
443 struct dmae_command *dmae)
444 {
445 u32 *wb_comp = bnx2x_sp(bp, wb_comp);
446 int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
447 int rc = 0;
448
449 DP(BNX2X_MSG_OFF, "data before [0x%08x 0x%08x 0x%08x 0x%08x]\n",
450 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
451 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
452
453 /*
454 * Lock the dmae channel. Disable BHs to prevent a dead-lock
455 * as long as this code is called both from syscall context and
456 * from ndo_set_rx_mode() flow that may be called from BH.
457 */
458 spin_lock_bh(&bp->dmae_lock);
459
460 /* reset completion */
461 *wb_comp = 0;
462
463 /* post the command on the channel used for initializations */
464 bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
465
466 /* wait for completion */
467 udelay(5);
468 while ((*wb_comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
469 DP(BNX2X_MSG_OFF, "wb_comp 0x%08x\n", *wb_comp);
470
471 if (!cnt) {
472 BNX2X_ERR("DMAE timeout!\n");
473 rc = DMAE_TIMEOUT;
474 goto unlock;
475 }
476 cnt--;
477 udelay(50);
478 }
479 if (*wb_comp & DMAE_PCI_ERR_FLAG) {
480 BNX2X_ERR("DMAE PCI error!\n");
481 rc = DMAE_PCI_ERROR;
482 }
483
484 DP(BNX2X_MSG_OFF, "data after [0x%08x 0x%08x 0x%08x 0x%08x]\n",
485 bp->slowpath->wb_data[0], bp->slowpath->wb_data[1],
486 bp->slowpath->wb_data[2], bp->slowpath->wb_data[3]);
487
488 unlock:
489 spin_unlock_bh(&bp->dmae_lock);
490 return rc;
491 }
492
493 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
494 u32 len32)
495 {
496 struct dmae_command dmae;
497
498 if (!bp->dmae_ready) {
499 u32 *data = bnx2x_sp(bp, wb_data[0]);
500
501 DP(BNX2X_MSG_OFF,
502 "DMAE is not ready (dst_addr %08x len32 %d) using indirect\n",
503 dst_addr, len32);
504 if (CHIP_IS_E1(bp))
505 bnx2x_init_ind_wr(bp, dst_addr, data, len32);
506 else
507 bnx2x_init_str_wr(bp, dst_addr, data, len32);
508 return;
509 }
510
511 /* set opcode and fixed command fields */
512 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
513
514 /* fill in addresses and len */
515 dmae.src_addr_lo = U64_LO(dma_addr);
516 dmae.src_addr_hi = U64_HI(dma_addr);
517 dmae.dst_addr_lo = dst_addr >> 2;
518 dmae.dst_addr_hi = 0;
519 dmae.len = len32;
520
521 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
522
523 /* issue the command and wait for completion */
524 bnx2x_issue_dmae_with_comp(bp, &dmae);
525 }
526
527 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
528 {
529 struct dmae_command dmae;
530
531 if (!bp->dmae_ready) {
532 u32 *data = bnx2x_sp(bp, wb_data[0]);
533 int i;
534
535 if (CHIP_IS_E1(bp)) {
536 DP(BNX2X_MSG_OFF,
537 "DMAE is not ready (src_addr %08x len32 %d) using indirect\n",
538 src_addr, len32);
539 for (i = 0; i < len32; i++)
540 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
541 } else
542 for (i = 0; i < len32; i++)
543 data[i] = REG_RD(bp, src_addr + i*4);
544
545 return;
546 }
547
548 /* set opcode and fixed command fields */
549 bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
550
551 /* fill in addresses and len */
552 dmae.src_addr_lo = src_addr >> 2;
553 dmae.src_addr_hi = 0;
554 dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
555 dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
556 dmae.len = len32;
557
558 bnx2x_dp_dmae(bp, &dmae, BNX2X_MSG_OFF);
559
560 /* issue the command and wait for completion */
561 bnx2x_issue_dmae_with_comp(bp, &dmae);
562 }
563
564 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
565 u32 addr, u32 len)
566 {
567 int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
568 int offset = 0;
569
570 while (len > dmae_wr_max) {
571 bnx2x_write_dmae(bp, phys_addr + offset,
572 addr + offset, dmae_wr_max);
573 offset += dmae_wr_max * 4;
574 len -= dmae_wr_max;
575 }
576
577 bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
578 }
579
580 /* used only for slowpath so not inlined */
581 static void bnx2x_wb_wr(struct bnx2x *bp, int reg, u32 val_hi, u32 val_lo)
582 {
583 u32 wb_write[2];
584
585 wb_write[0] = val_hi;
586 wb_write[1] = val_lo;
587 REG_WR_DMAE(bp, reg, wb_write, 2);
588 }
589
590 #ifdef USE_WB_RD
591 static u64 bnx2x_wb_rd(struct bnx2x *bp, int reg)
592 {
593 u32 wb_data[2];
594
595 REG_RD_DMAE(bp, reg, wb_data, 2);
596
597 return HILO_U64(wb_data[0], wb_data[1]);
598 }
599 #endif
600
601 static int bnx2x_mc_assert(struct bnx2x *bp)
602 {
603 char last_idx;
604 int i, rc = 0;
605 u32 row0, row1, row2, row3;
606
607 /* XSTORM */
608 last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
609 XSTORM_ASSERT_LIST_INDEX_OFFSET);
610 if (last_idx)
611 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
612
613 /* print the asserts */
614 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
615
616 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
617 XSTORM_ASSERT_LIST_OFFSET(i));
618 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
619 XSTORM_ASSERT_LIST_OFFSET(i) + 4);
620 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
621 XSTORM_ASSERT_LIST_OFFSET(i) + 8);
622 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
623 XSTORM_ASSERT_LIST_OFFSET(i) + 12);
624
625 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
626 BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x"
627 " 0x%08x 0x%08x 0x%08x\n",
628 i, row3, row2, row1, row0);
629 rc++;
630 } else {
631 break;
632 }
633 }
634
635 /* TSTORM */
636 last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
637 TSTORM_ASSERT_LIST_INDEX_OFFSET);
638 if (last_idx)
639 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
640
641 /* print the asserts */
642 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
643
644 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
645 TSTORM_ASSERT_LIST_OFFSET(i));
646 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
647 TSTORM_ASSERT_LIST_OFFSET(i) + 4);
648 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
649 TSTORM_ASSERT_LIST_OFFSET(i) + 8);
650 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
651 TSTORM_ASSERT_LIST_OFFSET(i) + 12);
652
653 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
654 BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x"
655 " 0x%08x 0x%08x 0x%08x\n",
656 i, row3, row2, row1, row0);
657 rc++;
658 } else {
659 break;
660 }
661 }
662
663 /* CSTORM */
664 last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
665 CSTORM_ASSERT_LIST_INDEX_OFFSET);
666 if (last_idx)
667 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
668
669 /* print the asserts */
670 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
671
672 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
673 CSTORM_ASSERT_LIST_OFFSET(i));
674 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
675 CSTORM_ASSERT_LIST_OFFSET(i) + 4);
676 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
677 CSTORM_ASSERT_LIST_OFFSET(i) + 8);
678 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
679 CSTORM_ASSERT_LIST_OFFSET(i) + 12);
680
681 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
682 BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x"
683 " 0x%08x 0x%08x 0x%08x\n",
684 i, row3, row2, row1, row0);
685 rc++;
686 } else {
687 break;
688 }
689 }
690
691 /* USTORM */
692 last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
693 USTORM_ASSERT_LIST_INDEX_OFFSET);
694 if (last_idx)
695 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
696
697 /* print the asserts */
698 for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
699
700 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
701 USTORM_ASSERT_LIST_OFFSET(i));
702 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
703 USTORM_ASSERT_LIST_OFFSET(i) + 4);
704 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
705 USTORM_ASSERT_LIST_OFFSET(i) + 8);
706 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
707 USTORM_ASSERT_LIST_OFFSET(i) + 12);
708
709 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
710 BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x"
711 " 0x%08x 0x%08x 0x%08x\n",
712 i, row3, row2, row1, row0);
713 rc++;
714 } else {
715 break;
716 }
717 }
718
719 return rc;
720 }
721
722 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
723 {
724 u32 addr, val;
725 u32 mark, offset;
726 __be32 data[9];
727 int word;
728 u32 trace_shmem_base;
729 if (BP_NOMCP(bp)) {
730 BNX2X_ERR("NO MCP - can not dump\n");
731 return;
732 }
733 netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
734 (bp->common.bc_ver & 0xff0000) >> 16,
735 (bp->common.bc_ver & 0xff00) >> 8,
736 (bp->common.bc_ver & 0xff));
737
738 val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
739 if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
740 printk("%s" "MCP PC at 0x%x\n", lvl, val);
741
742 if (BP_PATH(bp) == 0)
743 trace_shmem_base = bp->common.shmem_base;
744 else
745 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
746 addr = trace_shmem_base - 0x0800 + 4;
747 mark = REG_RD(bp, addr);
748 mark = (CHIP_IS_E1x(bp) ? MCP_REG_MCPR_SCRATCH : MCP_A_REG_MCPR_SCRATCH)
749 + ((mark + 0x3) & ~0x3) - 0x08000000;
750 printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
751
752 printk("%s", lvl);
753 for (offset = mark; offset <= trace_shmem_base; offset += 0x8*4) {
754 for (word = 0; word < 8; word++)
755 data[word] = htonl(REG_RD(bp, offset + 4*word));
756 data[8] = 0x0;
757 pr_cont("%s", (char *)data);
758 }
759 for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
760 for (word = 0; word < 8; word++)
761 data[word] = htonl(REG_RD(bp, offset + 4*word));
762 data[8] = 0x0;
763 pr_cont("%s", (char *)data);
764 }
765 printk("%s" "end of fw dump\n", lvl);
766 }
767
768 static inline void bnx2x_fw_dump(struct bnx2x *bp)
769 {
770 bnx2x_fw_dump_lvl(bp, KERN_ERR);
771 }
772
773 void bnx2x_panic_dump(struct bnx2x *bp)
774 {
775 int i;
776 u16 j;
777 struct hc_sp_status_block_data sp_sb_data;
778 int func = BP_FUNC(bp);
779 #ifdef BNX2X_STOP_ON_ERROR
780 u16 start = 0, end = 0;
781 u8 cos;
782 #endif
783
784 bp->stats_state = STATS_STATE_DISABLED;
785 DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
786
787 BNX2X_ERR("begin crash dump -----------------\n");
788
789 /* Indices */
790 /* Common */
791 BNX2X_ERR("def_idx(0x%x) def_att_idx(0x%x) attn_state(0x%x)"
792 " spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
793 bp->def_idx, bp->def_att_idx, bp->attn_state,
794 bp->spq_prod_idx, bp->stats_counter);
795 BNX2X_ERR("DSB: attn bits(0x%x) ack(0x%x) id(0x%x) idx(0x%x)\n",
796 bp->def_status_blk->atten_status_block.attn_bits,
797 bp->def_status_blk->atten_status_block.attn_bits_ack,
798 bp->def_status_blk->atten_status_block.status_block_id,
799 bp->def_status_blk->atten_status_block.attn_bits_index);
800 BNX2X_ERR(" def (");
801 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
802 pr_cont("0x%x%s",
803 bp->def_status_blk->sp_sb.index_values[i],
804 (i == HC_SP_SB_MAX_INDICES - 1) ? ") " : " ");
805
806 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
807 *((u32 *)&sp_sb_data + i) = REG_RD(bp, BAR_CSTRORM_INTMEM +
808 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
809 i*sizeof(u32));
810
811 pr_cont("igu_sb_id(0x%x) igu_seg_id(0x%x) pf_id(0x%x) vnic_id(0x%x) vf_id(0x%x) vf_valid (0x%x) state(0x%x)\n",
812 sp_sb_data.igu_sb_id,
813 sp_sb_data.igu_seg_id,
814 sp_sb_data.p_func.pf_id,
815 sp_sb_data.p_func.vnic_id,
816 sp_sb_data.p_func.vf_id,
817 sp_sb_data.p_func.vf_valid,
818 sp_sb_data.state);
819
820
821 for_each_eth_queue(bp, i) {
822 struct bnx2x_fastpath *fp = &bp->fp[i];
823 int loop;
824 struct hc_status_block_data_e2 sb_data_e2;
825 struct hc_status_block_data_e1x sb_data_e1x;
826 struct hc_status_block_sm *hc_sm_p =
827 CHIP_IS_E1x(bp) ?
828 sb_data_e1x.common.state_machine :
829 sb_data_e2.common.state_machine;
830 struct hc_index_data *hc_index_p =
831 CHIP_IS_E1x(bp) ?
832 sb_data_e1x.index_data :
833 sb_data_e2.index_data;
834 u8 data_size, cos;
835 u32 *sb_data_p;
836 struct bnx2x_fp_txdata txdata;
837
838 /* Rx */
839 BNX2X_ERR("fp%d: rx_bd_prod(0x%x) rx_bd_cons(0x%x)"
840 " rx_comp_prod(0x%x)"
841 " rx_comp_cons(0x%x) *rx_cons_sb(0x%x)\n",
842 i, fp->rx_bd_prod, fp->rx_bd_cons,
843 fp->rx_comp_prod,
844 fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
845 BNX2X_ERR(" rx_sge_prod(0x%x) last_max_sge(0x%x)"
846 " fp_hc_idx(0x%x)\n",
847 fp->rx_sge_prod, fp->last_max_sge,
848 le16_to_cpu(fp->fp_hc_idx));
849
850 /* Tx */
851 for_each_cos_in_tx_queue(fp, cos)
852 {
853 txdata = fp->txdata[cos];
854 BNX2X_ERR("fp%d: tx_pkt_prod(0x%x) tx_pkt_cons(0x%x)"
855 " tx_bd_prod(0x%x) tx_bd_cons(0x%x)"
856 " *tx_cons_sb(0x%x)\n",
857 i, txdata.tx_pkt_prod,
858 txdata.tx_pkt_cons, txdata.tx_bd_prod,
859 txdata.tx_bd_cons,
860 le16_to_cpu(*txdata.tx_cons_sb));
861 }
862
863 loop = CHIP_IS_E1x(bp) ?
864 HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
865
866 /* host sb data */
867
868 #ifdef BCM_CNIC
869 if (IS_FCOE_FP(fp))
870 continue;
871 #endif
872 BNX2X_ERR(" run indexes (");
873 for (j = 0; j < HC_SB_MAX_SM; j++)
874 pr_cont("0x%x%s",
875 fp->sb_running_index[j],
876 (j == HC_SB_MAX_SM - 1) ? ")" : " ");
877
878 BNX2X_ERR(" indexes (");
879 for (j = 0; j < loop; j++)
880 pr_cont("0x%x%s",
881 fp->sb_index_values[j],
882 (j == loop - 1) ? ")" : " ");
883 /* fw sb data */
884 data_size = CHIP_IS_E1x(bp) ?
885 sizeof(struct hc_status_block_data_e1x) :
886 sizeof(struct hc_status_block_data_e2);
887 data_size /= sizeof(u32);
888 sb_data_p = CHIP_IS_E1x(bp) ?
889 (u32 *)&sb_data_e1x :
890 (u32 *)&sb_data_e2;
891 /* copy sb data in here */
892 for (j = 0; j < data_size; j++)
893 *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
894 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
895 j * sizeof(u32));
896
897 if (!CHIP_IS_E1x(bp)) {
898 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
899 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
900 "state(0x%x)\n",
901 sb_data_e2.common.p_func.pf_id,
902 sb_data_e2.common.p_func.vf_id,
903 sb_data_e2.common.p_func.vf_valid,
904 sb_data_e2.common.p_func.vnic_id,
905 sb_data_e2.common.same_igu_sb_1b,
906 sb_data_e2.common.state);
907 } else {
908 pr_cont("pf_id(0x%x) vf_id(0x%x) vf_valid(0x%x) "
909 "vnic_id(0x%x) same_igu_sb_1b(0x%x) "
910 "state(0x%x)\n",
911 sb_data_e1x.common.p_func.pf_id,
912 sb_data_e1x.common.p_func.vf_id,
913 sb_data_e1x.common.p_func.vf_valid,
914 sb_data_e1x.common.p_func.vnic_id,
915 sb_data_e1x.common.same_igu_sb_1b,
916 sb_data_e1x.common.state);
917 }
918
919 /* SB_SMs data */
920 for (j = 0; j < HC_SB_MAX_SM; j++) {
921 pr_cont("SM[%d] __flags (0x%x) "
922 "igu_sb_id (0x%x) igu_seg_id(0x%x) "
923 "time_to_expire (0x%x) "
924 "timer_value(0x%x)\n", j,
925 hc_sm_p[j].__flags,
926 hc_sm_p[j].igu_sb_id,
927 hc_sm_p[j].igu_seg_id,
928 hc_sm_p[j].time_to_expire,
929 hc_sm_p[j].timer_value);
930 }
931
932 /* Indecies data */
933 for (j = 0; j < loop; j++) {
934 pr_cont("INDEX[%d] flags (0x%x) "
935 "timeout (0x%x)\n", j,
936 hc_index_p[j].flags,
937 hc_index_p[j].timeout);
938 }
939 }
940
941 #ifdef BNX2X_STOP_ON_ERROR
942 /* Rings */
943 /* Rx */
944 for_each_rx_queue(bp, i) {
945 struct bnx2x_fastpath *fp = &bp->fp[i];
946
947 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
948 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
949 for (j = start; j != end; j = RX_BD(j + 1)) {
950 u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
951 struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
952
953 BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x] sw_bd=[%p]\n",
954 i, j, rx_bd[1], rx_bd[0], sw_bd->data);
955 }
956
957 start = RX_SGE(fp->rx_sge_prod);
958 end = RX_SGE(fp->last_max_sge);
959 for (j = start; j != end; j = RX_SGE(j + 1)) {
960 u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
961 struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
962
963 BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x] sw_page=[%p]\n",
964 i, j, rx_sge[1], rx_sge[0], sw_page->page);
965 }
966
967 start = RCQ_BD(fp->rx_comp_cons - 10);
968 end = RCQ_BD(fp->rx_comp_cons + 503);
969 for (j = start; j != end; j = RCQ_BD(j + 1)) {
970 u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
971
972 BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
973 i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
974 }
975 }
976
977 /* Tx */
978 for_each_tx_queue(bp, i) {
979 struct bnx2x_fastpath *fp = &bp->fp[i];
980 for_each_cos_in_tx_queue(fp, cos) {
981 struct bnx2x_fp_txdata *txdata = &fp->txdata[cos];
982
983 start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
984 end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
985 for (j = start; j != end; j = TX_BD(j + 1)) {
986 struct sw_tx_bd *sw_bd =
987 &txdata->tx_buf_ring[j];
988
989 BNX2X_ERR("fp%d: txdata %d, "
990 "packet[%x]=[%p,%x]\n",
991 i, cos, j, sw_bd->skb,
992 sw_bd->first_bd);
993 }
994
995 start = TX_BD(txdata->tx_bd_cons - 10);
996 end = TX_BD(txdata->tx_bd_cons + 254);
997 for (j = start; j != end; j = TX_BD(j + 1)) {
998 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
999
1000 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]="
1001 "[%x:%x:%x:%x]\n",
1002 i, cos, j, tx_bd[0], tx_bd[1],
1003 tx_bd[2], tx_bd[3]);
1004 }
1005 }
1006 }
1007 #endif
1008 bnx2x_fw_dump(bp);
1009 bnx2x_mc_assert(bp);
1010 BNX2X_ERR("end crash dump -----------------\n");
1011 }
1012
1013 /*
1014 * FLR Support for E2
1015 *
1016 * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1017 * initialization.
1018 */
1019 #define FLR_WAIT_USEC 10000 /* 10 miliseconds */
1020 #define FLR_WAIT_INTERVAL 50 /* usec */
1021 #define FLR_POLL_CNT (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1022
1023 struct pbf_pN_buf_regs {
1024 int pN;
1025 u32 init_crd;
1026 u32 crd;
1027 u32 crd_freed;
1028 };
1029
1030 struct pbf_pN_cmd_regs {
1031 int pN;
1032 u32 lines_occup;
1033 u32 lines_freed;
1034 };
1035
1036 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1037 struct pbf_pN_buf_regs *regs,
1038 u32 poll_count)
1039 {
1040 u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1041 u32 cur_cnt = poll_count;
1042
1043 crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1044 crd = crd_start = REG_RD(bp, regs->crd);
1045 init_crd = REG_RD(bp, regs->init_crd);
1046
1047 DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1048 DP(BNX2X_MSG_SP, "CREDIT[%d] : s:%x\n", regs->pN, crd);
1049 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1050
1051 while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1052 (init_crd - crd_start))) {
1053 if (cur_cnt--) {
1054 udelay(FLR_WAIT_INTERVAL);
1055 crd = REG_RD(bp, regs->crd);
1056 crd_freed = REG_RD(bp, regs->crd_freed);
1057 } else {
1058 DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1059 regs->pN);
1060 DP(BNX2X_MSG_SP, "CREDIT[%d] : c:%x\n",
1061 regs->pN, crd);
1062 DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1063 regs->pN, crd_freed);
1064 break;
1065 }
1066 }
1067 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1068 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1069 }
1070
1071 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1072 struct pbf_pN_cmd_regs *regs,
1073 u32 poll_count)
1074 {
1075 u32 occup, to_free, freed, freed_start;
1076 u32 cur_cnt = poll_count;
1077
1078 occup = to_free = REG_RD(bp, regs->lines_occup);
1079 freed = freed_start = REG_RD(bp, regs->lines_freed);
1080
1081 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n", regs->pN, occup);
1082 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1083
1084 while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1085 if (cur_cnt--) {
1086 udelay(FLR_WAIT_INTERVAL);
1087 occup = REG_RD(bp, regs->lines_occup);
1088 freed = REG_RD(bp, regs->lines_freed);
1089 } else {
1090 DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1091 regs->pN);
1092 DP(BNX2X_MSG_SP, "OCCUPANCY[%d] : s:%x\n",
1093 regs->pN, occup);
1094 DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1095 regs->pN, freed);
1096 break;
1097 }
1098 }
1099 DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1100 poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1101 }
1102
1103 static inline u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1104 u32 expected, u32 poll_count)
1105 {
1106 u32 cur_cnt = poll_count;
1107 u32 val;
1108
1109 while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1110 udelay(FLR_WAIT_INTERVAL);
1111
1112 return val;
1113 }
1114
1115 static inline int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1116 char *msg, u32 poll_cnt)
1117 {
1118 u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1119 if (val != 0) {
1120 BNX2X_ERR("%s usage count=%d\n", msg, val);
1121 return 1;
1122 }
1123 return 0;
1124 }
1125
1126 static u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1127 {
1128 /* adjust polling timeout */
1129 if (CHIP_REV_IS_EMUL(bp))
1130 return FLR_POLL_CNT * 2000;
1131
1132 if (CHIP_REV_IS_FPGA(bp))
1133 return FLR_POLL_CNT * 120;
1134
1135 return FLR_POLL_CNT;
1136 }
1137
1138 static void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1139 {
1140 struct pbf_pN_cmd_regs cmd_regs[] = {
1141 {0, (CHIP_IS_E3B0(bp)) ?
1142 PBF_REG_TQ_OCCUPANCY_Q0 :
1143 PBF_REG_P0_TQ_OCCUPANCY,
1144 (CHIP_IS_E3B0(bp)) ?
1145 PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1146 PBF_REG_P0_TQ_LINES_FREED_CNT},
1147 {1, (CHIP_IS_E3B0(bp)) ?
1148 PBF_REG_TQ_OCCUPANCY_Q1 :
1149 PBF_REG_P1_TQ_OCCUPANCY,
1150 (CHIP_IS_E3B0(bp)) ?
1151 PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1152 PBF_REG_P1_TQ_LINES_FREED_CNT},
1153 {4, (CHIP_IS_E3B0(bp)) ?
1154 PBF_REG_TQ_OCCUPANCY_LB_Q :
1155 PBF_REG_P4_TQ_OCCUPANCY,
1156 (CHIP_IS_E3B0(bp)) ?
1157 PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1158 PBF_REG_P4_TQ_LINES_FREED_CNT}
1159 };
1160
1161 struct pbf_pN_buf_regs buf_regs[] = {
1162 {0, (CHIP_IS_E3B0(bp)) ?
1163 PBF_REG_INIT_CRD_Q0 :
1164 PBF_REG_P0_INIT_CRD ,
1165 (CHIP_IS_E3B0(bp)) ?
1166 PBF_REG_CREDIT_Q0 :
1167 PBF_REG_P0_CREDIT,
1168 (CHIP_IS_E3B0(bp)) ?
1169 PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1170 PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1171 {1, (CHIP_IS_E3B0(bp)) ?
1172 PBF_REG_INIT_CRD_Q1 :
1173 PBF_REG_P1_INIT_CRD,
1174 (CHIP_IS_E3B0(bp)) ?
1175 PBF_REG_CREDIT_Q1 :
1176 PBF_REG_P1_CREDIT,
1177 (CHIP_IS_E3B0(bp)) ?
1178 PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1179 PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1180 {4, (CHIP_IS_E3B0(bp)) ?
1181 PBF_REG_INIT_CRD_LB_Q :
1182 PBF_REG_P4_INIT_CRD,
1183 (CHIP_IS_E3B0(bp)) ?
1184 PBF_REG_CREDIT_LB_Q :
1185 PBF_REG_P4_CREDIT,
1186 (CHIP_IS_E3B0(bp)) ?
1187 PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1188 PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1189 };
1190
1191 int i;
1192
1193 /* Verify the command queues are flushed P0, P1, P4 */
1194 for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1195 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1196
1197
1198 /* Verify the transmission buffers are flushed P0, P1, P4 */
1199 for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1200 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1201 }
1202
1203 #define OP_GEN_PARAM(param) \
1204 (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1205
1206 #define OP_GEN_TYPE(type) \
1207 (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1208
1209 #define OP_GEN_AGG_VECT(index) \
1210 (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1211
1212
1213 static inline int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func,
1214 u32 poll_cnt)
1215 {
1216 struct sdm_op_gen op_gen = {0};
1217
1218 u32 comp_addr = BAR_CSTRORM_INTMEM +
1219 CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1220 int ret = 0;
1221
1222 if (REG_RD(bp, comp_addr)) {
1223 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1224 return 1;
1225 }
1226
1227 op_gen.command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1228 op_gen.command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1229 op_gen.command |= OP_GEN_AGG_VECT(clnup_func);
1230 op_gen.command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1231
1232 DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1233 REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen.command);
1234
1235 if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1236 BNX2X_ERR("FW final cleanup did not succeed\n");
1237 ret = 1;
1238 }
1239 /* Zero completion for nxt FLR */
1240 REG_WR(bp, comp_addr, 0);
1241
1242 return ret;
1243 }
1244
1245 static inline u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1246 {
1247 int pos;
1248 u16 status;
1249
1250 pos = pci_pcie_cap(dev);
1251 if (!pos)
1252 return false;
1253
1254 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
1255 return status & PCI_EXP_DEVSTA_TRPND;
1256 }
1257
1258 /* PF FLR specific routines
1259 */
1260 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1261 {
1262
1263 /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1264 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1265 CFC_REG_NUM_LCIDS_INSIDE_PF,
1266 "CFC PF usage counter timed out",
1267 poll_cnt))
1268 return 1;
1269
1270
1271 /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1272 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1273 DORQ_REG_PF_USAGE_CNT,
1274 "DQ PF usage counter timed out",
1275 poll_cnt))
1276 return 1;
1277
1278 /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1279 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1280 QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1281 "QM PF usage counter timed out",
1282 poll_cnt))
1283 return 1;
1284
1285 /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1286 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1287 TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1288 "Timers VNIC usage counter timed out",
1289 poll_cnt))
1290 return 1;
1291 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1292 TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1293 "Timers NUM_SCANS usage counter timed out",
1294 poll_cnt))
1295 return 1;
1296
1297 /* Wait DMAE PF usage counter to zero */
1298 if (bnx2x_flr_clnup_poll_hw_counter(bp,
1299 dmae_reg_go_c[INIT_DMAE_C(bp)],
1300 "DMAE dommand register timed out",
1301 poll_cnt))
1302 return 1;
1303
1304 return 0;
1305 }
1306
1307 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1308 {
1309 u32 val;
1310
1311 val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1312 DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1313
1314 val = REG_RD(bp, PBF_REG_DISABLE_PF);
1315 DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1316
1317 val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1318 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1319
1320 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1321 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1322
1323 val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1324 DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1325
1326 val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1327 DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1328
1329 val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1330 DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1331
1332 val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1333 DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1334 val);
1335 }
1336
1337 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1338 {
1339 u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1340
1341 DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1342
1343 /* Re-enable PF target read access */
1344 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1345
1346 /* Poll HW usage counters */
1347 DP(BNX2X_MSG_SP, "Polling usage counters\n");
1348 if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1349 return -EBUSY;
1350
1351 /* Zero the igu 'trailing edge' and 'leading edge' */
1352
1353 /* Send the FW cleanup command */
1354 if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1355 return -EBUSY;
1356
1357 /* ATC cleanup */
1358
1359 /* Verify TX hw is flushed */
1360 bnx2x_tx_hw_flushed(bp, poll_cnt);
1361
1362 /* Wait 100ms (not adjusted according to platform) */
1363 msleep(100);
1364
1365 /* Verify no pending pci transactions */
1366 if (bnx2x_is_pcie_pending(bp->pdev))
1367 BNX2X_ERR("PCIE Transactions still pending\n");
1368
1369 /* Debug */
1370 bnx2x_hw_enable_status(bp);
1371
1372 /*
1373 * Master enable - Due to WB DMAE writes performed before this
1374 * register is re-initialized as part of the regular function init
1375 */
1376 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1377
1378 return 0;
1379 }
1380
1381 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1382 {
1383 int port = BP_PORT(bp);
1384 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1385 u32 val = REG_RD(bp, addr);
1386 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1387 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1388
1389 if (msix) {
1390 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1391 HC_CONFIG_0_REG_INT_LINE_EN_0);
1392 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1393 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1394 } else if (msi) {
1395 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1396 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1397 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1398 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1399 } else {
1400 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1401 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1402 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1403 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1404
1405 if (!CHIP_IS_E1(bp)) {
1406 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1407 val, port, addr);
1408
1409 REG_WR(bp, addr, val);
1410
1411 val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1412 }
1413 }
1414
1415 if (CHIP_IS_E1(bp))
1416 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1417
1418 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x) mode %s\n",
1419 val, port, addr, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1420
1421 REG_WR(bp, addr, val);
1422 /*
1423 * Ensure that HC_CONFIG is written before leading/trailing edge config
1424 */
1425 mmiowb();
1426 barrier();
1427
1428 if (!CHIP_IS_E1(bp)) {
1429 /* init leading/trailing edge */
1430 if (IS_MF(bp)) {
1431 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1432 if (bp->port.pmf)
1433 /* enable nig and gpio3 attention */
1434 val |= 0x1100;
1435 } else
1436 val = 0xffff;
1437
1438 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1439 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1440 }
1441
1442 /* Make sure that interrupts are indeed enabled from here on */
1443 mmiowb();
1444 }
1445
1446 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1447 {
1448 u32 val;
1449 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1450 int msi = (bp->flags & USING_MSI_FLAG) ? 1 : 0;
1451
1452 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1453
1454 if (msix) {
1455 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1456 IGU_PF_CONF_SINGLE_ISR_EN);
1457 val |= (IGU_PF_CONF_FUNC_EN |
1458 IGU_PF_CONF_MSI_MSIX_EN |
1459 IGU_PF_CONF_ATTN_BIT_EN);
1460 } else if (msi) {
1461 val &= ~IGU_PF_CONF_INT_LINE_EN;
1462 val |= (IGU_PF_CONF_FUNC_EN |
1463 IGU_PF_CONF_MSI_MSIX_EN |
1464 IGU_PF_CONF_ATTN_BIT_EN |
1465 IGU_PF_CONF_SINGLE_ISR_EN);
1466 } else {
1467 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1468 val |= (IGU_PF_CONF_FUNC_EN |
1469 IGU_PF_CONF_INT_LINE_EN |
1470 IGU_PF_CONF_ATTN_BIT_EN |
1471 IGU_PF_CONF_SINGLE_ISR_EN);
1472 }
1473
1474 DP(NETIF_MSG_INTR, "write 0x%x to IGU mode %s\n",
1475 val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1476
1477 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1478
1479 barrier();
1480
1481 /* init leading/trailing edge */
1482 if (IS_MF(bp)) {
1483 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1484 if (bp->port.pmf)
1485 /* enable nig and gpio3 attention */
1486 val |= 0x1100;
1487 } else
1488 val = 0xffff;
1489
1490 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1491 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1492
1493 /* Make sure that interrupts are indeed enabled from here on */
1494 mmiowb();
1495 }
1496
1497 void bnx2x_int_enable(struct bnx2x *bp)
1498 {
1499 if (bp->common.int_block == INT_BLOCK_HC)
1500 bnx2x_hc_int_enable(bp);
1501 else
1502 bnx2x_igu_int_enable(bp);
1503 }
1504
1505 static void bnx2x_hc_int_disable(struct bnx2x *bp)
1506 {
1507 int port = BP_PORT(bp);
1508 u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1509 u32 val = REG_RD(bp, addr);
1510
1511 /*
1512 * in E1 we must use only PCI configuration space to disable
1513 * MSI/MSIX capablility
1514 * It's forbitten to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
1515 */
1516 if (CHIP_IS_E1(bp)) {
1517 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
1518 * Use mask register to prevent from HC sending interrupts
1519 * after we exit the function
1520 */
1521 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
1522
1523 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1524 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1525 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1526 } else
1527 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1528 HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1529 HC_CONFIG_0_REG_INT_LINE_EN_0 |
1530 HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1531
1532 DP(NETIF_MSG_INTR, "write %x to HC %d (addr 0x%x)\n",
1533 val, port, addr);
1534
1535 /* flush all outstanding writes */
1536 mmiowb();
1537
1538 REG_WR(bp, addr, val);
1539 if (REG_RD(bp, addr) != val)
1540 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1541 }
1542
1543 static void bnx2x_igu_int_disable(struct bnx2x *bp)
1544 {
1545 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1546
1547 val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
1548 IGU_PF_CONF_INT_LINE_EN |
1549 IGU_PF_CONF_ATTN_BIT_EN);
1550
1551 DP(NETIF_MSG_INTR, "write %x to IGU\n", val);
1552
1553 /* flush all outstanding writes */
1554 mmiowb();
1555
1556 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1557 if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
1558 BNX2X_ERR("BUG! proper val not read from IGU!\n");
1559 }
1560
1561 void bnx2x_int_disable(struct bnx2x *bp)
1562 {
1563 if (bp->common.int_block == INT_BLOCK_HC)
1564 bnx2x_hc_int_disable(bp);
1565 else
1566 bnx2x_igu_int_disable(bp);
1567 }
1568
1569 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1570 {
1571 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1572 int i, offset;
1573
1574 if (disable_hw)
1575 /* prevent the HW from sending interrupts */
1576 bnx2x_int_disable(bp);
1577
1578 /* make sure all ISRs are done */
1579 if (msix) {
1580 synchronize_irq(bp->msix_table[0].vector);
1581 offset = 1;
1582 #ifdef BCM_CNIC
1583 offset++;
1584 #endif
1585 for_each_eth_queue(bp, i)
1586 synchronize_irq(bp->msix_table[offset++].vector);
1587 } else
1588 synchronize_irq(bp->pdev->irq);
1589
1590 /* make sure sp_task is not running */
1591 cancel_delayed_work(&bp->sp_task);
1592 cancel_delayed_work(&bp->period_task);
1593 flush_workqueue(bnx2x_wq);
1594 }
1595
1596 /* fast path */
1597
1598 /*
1599 * General service functions
1600 */
1601
1602 /* Return true if succeeded to acquire the lock */
1603 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1604 {
1605 u32 lock_status;
1606 u32 resource_bit = (1 << resource);
1607 int func = BP_FUNC(bp);
1608 u32 hw_lock_control_reg;
1609
1610 DP(NETIF_MSG_HW, "Trying to take a lock on resource %d\n", resource);
1611
1612 /* Validating that the resource is within range */
1613 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1614 DP(NETIF_MSG_HW,
1615 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1616 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1617 return false;
1618 }
1619
1620 if (func <= 5)
1621 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1622 else
1623 hw_lock_control_reg =
1624 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1625
1626 /* Try to acquire the lock */
1627 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1628 lock_status = REG_RD(bp, hw_lock_control_reg);
1629 if (lock_status & resource_bit)
1630 return true;
1631
1632 DP(NETIF_MSG_HW, "Failed to get a lock on resource %d\n", resource);
1633 return false;
1634 }
1635
1636 /**
1637 * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1638 *
1639 * @bp: driver handle
1640 *
1641 * Returns the recovery leader resource id according to the engine this function
1642 * belongs to. Currently only only 2 engines is supported.
1643 */
1644 static inline int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1645 {
1646 if (BP_PATH(bp))
1647 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1648 else
1649 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1650 }
1651
1652 /**
1653 * bnx2x_trylock_leader_lock- try to aquire a leader lock.
1654 *
1655 * @bp: driver handle
1656 *
1657 * Tries to aquire a leader lock for cuurent engine.
1658 */
1659 static inline bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1660 {
1661 return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1662 }
1663
1664 #ifdef BCM_CNIC
1665 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1666 #endif
1667
1668 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1669 {
1670 struct bnx2x *bp = fp->bp;
1671 int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1672 int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1673 enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1674 struct bnx2x_queue_sp_obj *q_obj = &fp->q_obj;
1675
1676 DP(BNX2X_MSG_SP,
1677 "fp %d cid %d got ramrod #%d state is %x type is %d\n",
1678 fp->index, cid, command, bp->state,
1679 rr_cqe->ramrod_cqe.ramrod_type);
1680
1681 switch (command) {
1682 case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1683 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1684 drv_cmd = BNX2X_Q_CMD_UPDATE;
1685 break;
1686
1687 case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1688 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1689 drv_cmd = BNX2X_Q_CMD_SETUP;
1690 break;
1691
1692 case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1693 DP(NETIF_MSG_IFUP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1694 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1695 break;
1696
1697 case (RAMROD_CMD_ID_ETH_HALT):
1698 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1699 drv_cmd = BNX2X_Q_CMD_HALT;
1700 break;
1701
1702 case (RAMROD_CMD_ID_ETH_TERMINATE):
1703 DP(BNX2X_MSG_SP, "got MULTI[%d] teminate ramrod\n", cid);
1704 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1705 break;
1706
1707 case (RAMROD_CMD_ID_ETH_EMPTY):
1708 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1709 drv_cmd = BNX2X_Q_CMD_EMPTY;
1710 break;
1711
1712 default:
1713 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1714 command, fp->index);
1715 return;
1716 }
1717
1718 if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1719 q_obj->complete_cmd(bp, q_obj, drv_cmd))
1720 /* q_obj->complete_cmd() failure means that this was
1721 * an unexpected completion.
1722 *
1723 * In this case we don't want to increase the bp->spq_left
1724 * because apparently we haven't sent this command the first
1725 * place.
1726 */
1727 #ifdef BNX2X_STOP_ON_ERROR
1728 bnx2x_panic();
1729 #else
1730 return;
1731 #endif
1732
1733 smp_mb__before_atomic_inc();
1734 atomic_inc(&bp->cq_spq_left);
1735 /* push the change in bp->spq_left and towards the memory */
1736 smp_mb__after_atomic_inc();
1737
1738 DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1739
1740 return;
1741 }
1742
1743 void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp,
1744 u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod)
1745 {
1746 u32 start = BAR_USTRORM_INTMEM + fp->ustorm_rx_prods_offset;
1747
1748 bnx2x_update_rx_prod_gen(bp, fp, bd_prod, rx_comp_prod, rx_sge_prod,
1749 start);
1750 }
1751
1752 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1753 {
1754 struct bnx2x *bp = netdev_priv(dev_instance);
1755 u16 status = bnx2x_ack_int(bp);
1756 u16 mask;
1757 int i;
1758 u8 cos;
1759
1760 /* Return here if interrupt is shared and it's not for us */
1761 if (unlikely(status == 0)) {
1762 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1763 return IRQ_NONE;
1764 }
1765 DP(NETIF_MSG_INTR, "got an interrupt status 0x%x\n", status);
1766
1767 #ifdef BNX2X_STOP_ON_ERROR
1768 if (unlikely(bp->panic))
1769 return IRQ_HANDLED;
1770 #endif
1771
1772 for_each_eth_queue(bp, i) {
1773 struct bnx2x_fastpath *fp = &bp->fp[i];
1774
1775 mask = 0x2 << (fp->index + CNIC_PRESENT);
1776 if (status & mask) {
1777 /* Handle Rx or Tx according to SB id */
1778 prefetch(fp->rx_cons_sb);
1779 for_each_cos_in_tx_queue(fp, cos)
1780 prefetch(fp->txdata[cos].tx_cons_sb);
1781 prefetch(&fp->sb_running_index[SM_RX_ID]);
1782 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1783 status &= ~mask;
1784 }
1785 }
1786
1787 #ifdef BCM_CNIC
1788 mask = 0x2;
1789 if (status & (mask | 0x1)) {
1790 struct cnic_ops *c_ops = NULL;
1791
1792 if (likely(bp->state == BNX2X_STATE_OPEN)) {
1793 rcu_read_lock();
1794 c_ops = rcu_dereference(bp->cnic_ops);
1795 if (c_ops)
1796 c_ops->cnic_handler(bp->cnic_data, NULL);
1797 rcu_read_unlock();
1798 }
1799
1800 status &= ~mask;
1801 }
1802 #endif
1803
1804 if (unlikely(status & 0x1)) {
1805 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1806
1807 status &= ~0x1;
1808 if (!status)
1809 return IRQ_HANDLED;
1810 }
1811
1812 if (unlikely(status))
1813 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1814 status);
1815
1816 return IRQ_HANDLED;
1817 }
1818
1819 /* Link */
1820
1821 /*
1822 * General service functions
1823 */
1824
1825 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1826 {
1827 u32 lock_status;
1828 u32 resource_bit = (1 << resource);
1829 int func = BP_FUNC(bp);
1830 u32 hw_lock_control_reg;
1831 int cnt;
1832
1833 /* Validating that the resource is within range */
1834 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1835 DP(NETIF_MSG_HW,
1836 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1837 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1838 return -EINVAL;
1839 }
1840
1841 if (func <= 5) {
1842 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1843 } else {
1844 hw_lock_control_reg =
1845 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1846 }
1847
1848 /* Validating that the resource is not already taken */
1849 lock_status = REG_RD(bp, hw_lock_control_reg);
1850 if (lock_status & resource_bit) {
1851 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1852 lock_status, resource_bit);
1853 return -EEXIST;
1854 }
1855
1856 /* Try for 5 second every 5ms */
1857 for (cnt = 0; cnt < 1000; cnt++) {
1858 /* Try to acquire the lock */
1859 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1860 lock_status = REG_RD(bp, hw_lock_control_reg);
1861 if (lock_status & resource_bit)
1862 return 0;
1863
1864 msleep(5);
1865 }
1866 DP(NETIF_MSG_HW, "Timeout\n");
1867 return -EAGAIN;
1868 }
1869
1870 int bnx2x_release_leader_lock(struct bnx2x *bp)
1871 {
1872 return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1873 }
1874
1875 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
1876 {
1877 u32 lock_status;
1878 u32 resource_bit = (1 << resource);
1879 int func = BP_FUNC(bp);
1880 u32 hw_lock_control_reg;
1881
1882 DP(NETIF_MSG_HW, "Releasing a lock on resource %d\n", resource);
1883
1884 /* Validating that the resource is within range */
1885 if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1886 DP(NETIF_MSG_HW,
1887 "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1888 resource, HW_LOCK_MAX_RESOURCE_VALUE);
1889 return -EINVAL;
1890 }
1891
1892 if (func <= 5) {
1893 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1894 } else {
1895 hw_lock_control_reg =
1896 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1897 }
1898
1899 /* Validating that the resource is currently taken */
1900 lock_status = REG_RD(bp, hw_lock_control_reg);
1901 if (!(lock_status & resource_bit)) {
1902 DP(NETIF_MSG_HW, "lock_status 0x%x resource_bit 0x%x\n",
1903 lock_status, resource_bit);
1904 return -EFAULT;
1905 }
1906
1907 REG_WR(bp, hw_lock_control_reg, resource_bit);
1908 return 0;
1909 }
1910
1911
1912 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
1913 {
1914 /* The GPIO should be swapped if swap register is set and active */
1915 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1916 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1917 int gpio_shift = gpio_num +
1918 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1919 u32 gpio_mask = (1 << gpio_shift);
1920 u32 gpio_reg;
1921 int value;
1922
1923 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1924 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1925 return -EINVAL;
1926 }
1927
1928 /* read GPIO value */
1929 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
1930
1931 /* get the requested pin value */
1932 if ((gpio_reg & gpio_mask) == gpio_mask)
1933 value = 1;
1934 else
1935 value = 0;
1936
1937 DP(NETIF_MSG_LINK, "pin %d value 0x%x\n", gpio_num, value);
1938
1939 return value;
1940 }
1941
1942 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
1943 {
1944 /* The GPIO should be swapped if swap register is set and active */
1945 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
1946 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
1947 int gpio_shift = gpio_num +
1948 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
1949 u32 gpio_mask = (1 << gpio_shift);
1950 u32 gpio_reg;
1951
1952 if (gpio_num > MISC_REGISTERS_GPIO_3) {
1953 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
1954 return -EINVAL;
1955 }
1956
1957 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1958 /* read GPIO and mask except the float bits */
1959 gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
1960
1961 switch (mode) {
1962 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
1963 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output low\n",
1964 gpio_num, gpio_shift);
1965 /* clear FLOAT and set CLR */
1966 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1967 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
1968 break;
1969
1970 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
1971 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> output high\n",
1972 gpio_num, gpio_shift);
1973 /* clear FLOAT and set SET */
1974 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1975 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
1976 break;
1977
1978 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
1979 DP(NETIF_MSG_LINK, "Set GPIO %d (shift %d) -> input\n",
1980 gpio_num, gpio_shift);
1981 /* set FLOAT */
1982 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
1983 break;
1984
1985 default:
1986 break;
1987 }
1988
1989 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
1990 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
1991
1992 return 0;
1993 }
1994
1995 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
1996 {
1997 u32 gpio_reg = 0;
1998 int rc = 0;
1999
2000 /* Any port swapping should be handled by caller. */
2001
2002 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2003 /* read GPIO and mask except the float bits */
2004 gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2005 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2006 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2007 gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2008
2009 switch (mode) {
2010 case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2011 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2012 /* set CLR */
2013 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2014 break;
2015
2016 case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2017 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2018 /* set SET */
2019 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2020 break;
2021
2022 case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2023 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2024 /* set FLOAT */
2025 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2026 break;
2027
2028 default:
2029 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2030 rc = -EINVAL;
2031 break;
2032 }
2033
2034 if (rc == 0)
2035 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2036
2037 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2038
2039 return rc;
2040 }
2041
2042 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2043 {
2044 /* The GPIO should be swapped if swap register is set and active */
2045 int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2046 REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2047 int gpio_shift = gpio_num +
2048 (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2049 u32 gpio_mask = (1 << gpio_shift);
2050 u32 gpio_reg;
2051
2052 if (gpio_num > MISC_REGISTERS_GPIO_3) {
2053 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2054 return -EINVAL;
2055 }
2056
2057 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2058 /* read GPIO int */
2059 gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2060
2061 switch (mode) {
2062 case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2063 DP(NETIF_MSG_LINK, "Clear GPIO INT %d (shift %d) -> "
2064 "output low\n", gpio_num, gpio_shift);
2065 /* clear SET and set CLR */
2066 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2067 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2068 break;
2069
2070 case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2071 DP(NETIF_MSG_LINK, "Set GPIO INT %d (shift %d) -> "
2072 "output high\n", gpio_num, gpio_shift);
2073 /* clear CLR and set SET */
2074 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2075 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2076 break;
2077
2078 default:
2079 break;
2080 }
2081
2082 REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2083 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2084
2085 return 0;
2086 }
2087
2088 static int bnx2x_set_spio(struct bnx2x *bp, int spio_num, u32 mode)
2089 {
2090 u32 spio_mask = (1 << spio_num);
2091 u32 spio_reg;
2092
2093 if ((spio_num < MISC_REGISTERS_SPIO_4) ||
2094 (spio_num > MISC_REGISTERS_SPIO_7)) {
2095 BNX2X_ERR("Invalid SPIO %d\n", spio_num);
2096 return -EINVAL;
2097 }
2098
2099 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2100 /* read SPIO and mask except the float bits */
2101 spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_REGISTERS_SPIO_FLOAT);
2102
2103 switch (mode) {
2104 case MISC_REGISTERS_SPIO_OUTPUT_LOW:
2105 DP(NETIF_MSG_LINK, "Set SPIO %d -> output low\n", spio_num);
2106 /* clear FLOAT and set CLR */
2107 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2108 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_CLR_POS);
2109 break;
2110
2111 case MISC_REGISTERS_SPIO_OUTPUT_HIGH:
2112 DP(NETIF_MSG_LINK, "Set SPIO %d -> output high\n", spio_num);
2113 /* clear FLOAT and set SET */
2114 spio_reg &= ~(spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2115 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_SET_POS);
2116 break;
2117
2118 case MISC_REGISTERS_SPIO_INPUT_HI_Z:
2119 DP(NETIF_MSG_LINK, "Set SPIO %d -> input\n", spio_num);
2120 /* set FLOAT */
2121 spio_reg |= (spio_mask << MISC_REGISTERS_SPIO_FLOAT_POS);
2122 break;
2123
2124 default:
2125 break;
2126 }
2127
2128 REG_WR(bp, MISC_REG_SPIO, spio_reg);
2129 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2130
2131 return 0;
2132 }
2133
2134 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2135 {
2136 u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2137 switch (bp->link_vars.ieee_fc &
2138 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2139 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2140 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2141 ADVERTISED_Pause);
2142 break;
2143
2144 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2145 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2146 ADVERTISED_Pause);
2147 break;
2148
2149 case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2150 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2151 break;
2152
2153 default:
2154 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2155 ADVERTISED_Pause);
2156 break;
2157 }
2158 }
2159
2160 u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2161 {
2162 if (!BP_NOMCP(bp)) {
2163 u8 rc;
2164 int cfx_idx = bnx2x_get_link_cfg_idx(bp);
2165 u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2166 /*
2167 * Initialize link parameters structure variables
2168 * It is recommended to turn off RX FC for jumbo frames
2169 * for better performance
2170 */
2171 if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2172 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2173 else
2174 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2175
2176 bnx2x_acquire_phy_lock(bp);
2177
2178 if (load_mode == LOAD_DIAG) {
2179 struct link_params *lp = &bp->link_params;
2180 lp->loopback_mode = LOOPBACK_XGXS;
2181 /* do PHY loopback at 10G speed, if possible */
2182 if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2183 if (lp->speed_cap_mask[cfx_idx] &
2184 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2185 lp->req_line_speed[cfx_idx] =
2186 SPEED_10000;
2187 else
2188 lp->req_line_speed[cfx_idx] =
2189 SPEED_1000;
2190 }
2191 }
2192
2193 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2194
2195 bnx2x_release_phy_lock(bp);
2196
2197 bnx2x_calc_fc_adv(bp);
2198
2199 if (CHIP_REV_IS_SLOW(bp) && bp->link_vars.link_up) {
2200 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2201 bnx2x_link_report(bp);
2202 } else
2203 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2204 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2205 return rc;
2206 }
2207 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2208 return -EINVAL;
2209 }
2210
2211 void bnx2x_link_set(struct bnx2x *bp)
2212 {
2213 if (!BP_NOMCP(bp)) {
2214 bnx2x_acquire_phy_lock(bp);
2215 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2216 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2217 bnx2x_release_phy_lock(bp);
2218
2219 bnx2x_calc_fc_adv(bp);
2220 } else
2221 BNX2X_ERR("Bootcode is missing - can not set link\n");
2222 }
2223
2224 static void bnx2x__link_reset(struct bnx2x *bp)
2225 {
2226 if (!BP_NOMCP(bp)) {
2227 bnx2x_acquire_phy_lock(bp);
2228 bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2229 bnx2x_release_phy_lock(bp);
2230 } else
2231 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2232 }
2233
2234 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2235 {
2236 u8 rc = 0;
2237
2238 if (!BP_NOMCP(bp)) {
2239 bnx2x_acquire_phy_lock(bp);
2240 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2241 is_serdes);
2242 bnx2x_release_phy_lock(bp);
2243 } else
2244 BNX2X_ERR("Bootcode is missing - can not test link\n");
2245
2246 return rc;
2247 }
2248
2249 static void bnx2x_init_port_minmax(struct bnx2x *bp)
2250 {
2251 u32 r_param = bp->link_vars.line_speed / 8;
2252 u32 fair_periodic_timeout_usec;
2253 u32 t_fair;
2254
2255 memset(&(bp->cmng.rs_vars), 0,
2256 sizeof(struct rate_shaping_vars_per_port));
2257 memset(&(bp->cmng.fair_vars), 0, sizeof(struct fairness_vars_per_port));
2258
2259 /* 100 usec in SDM ticks = 25 since each tick is 4 usec */
2260 bp->cmng.rs_vars.rs_periodic_timeout = RS_PERIODIC_TIMEOUT_USEC / 4;
2261
2262 /* this is the threshold below which no timer arming will occur
2263 1.25 coefficient is for the threshold to be a little bigger
2264 than the real time, to compensate for timer in-accuracy */
2265 bp->cmng.rs_vars.rs_threshold =
2266 (RS_PERIODIC_TIMEOUT_USEC * r_param * 5) / 4;
2267
2268 /* resolution of fairness timer */
2269 fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
2270 /* for 10G it is 1000usec. for 1G it is 10000usec. */
2271 t_fair = T_FAIR_COEF / bp->link_vars.line_speed;
2272
2273 /* this is the threshold below which we won't arm the timer anymore */
2274 bp->cmng.fair_vars.fair_threshold = QM_ARB_BYTES;
2275
2276 /* we multiply by 1e3/8 to get bytes/msec.
2277 We don't want the credits to pass a credit
2278 of the t_fair*FAIR_MEM (algorithm resolution) */
2279 bp->cmng.fair_vars.upper_bound = r_param * t_fair * FAIR_MEM;
2280 /* since each tick is 4 usec */
2281 bp->cmng.fair_vars.fairness_timeout = fair_periodic_timeout_usec / 4;
2282 }
2283
2284 /* Calculates the sum of vn_min_rates.
2285 It's needed for further normalizing of the min_rates.
2286 Returns:
2287 sum of vn_min_rates.
2288 or
2289 0 - if all the min_rates are 0.
2290 In the later case fainess algorithm should be deactivated.
2291 If not all min_rates are zero then those that are zeroes will be set to 1.
2292 */
2293 static void bnx2x_calc_vn_weight_sum(struct bnx2x *bp)
2294 {
2295 int all_zero = 1;
2296 int vn;
2297
2298 bp->vn_weight_sum = 0;
2299 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2300 u32 vn_cfg = bp->mf_config[vn];
2301 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2302 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2303
2304 /* Skip hidden vns */
2305 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2306 continue;
2307
2308 /* If min rate is zero - set it to 1 */
2309 if (!vn_min_rate)
2310 vn_min_rate = DEF_MIN_RATE;
2311 else
2312 all_zero = 0;
2313
2314 bp->vn_weight_sum += vn_min_rate;
2315 }
2316
2317 /* if ETS or all min rates are zeros - disable fairness */
2318 if (BNX2X_IS_ETS_ENABLED(bp)) {
2319 bp->cmng.flags.cmng_enables &=
2320 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2321 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2322 } else if (all_zero) {
2323 bp->cmng.flags.cmng_enables &=
2324 ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2325 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2326 " fairness will be disabled\n");
2327 } else
2328 bp->cmng.flags.cmng_enables |=
2329 CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2330 }
2331
2332 static void bnx2x_init_vn_minmax(struct bnx2x *bp, int vn)
2333 {
2334 struct rate_shaping_vars_per_vn m_rs_vn;
2335 struct fairness_vars_per_vn m_fair_vn;
2336 u32 vn_cfg = bp->mf_config[vn];
2337 int func = func_by_vn(bp, vn);
2338 u16 vn_min_rate, vn_max_rate;
2339 int i;
2340
2341 /* If function is hidden - set min and max to zeroes */
2342 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE) {
2343 vn_min_rate = 0;
2344 vn_max_rate = 0;
2345
2346 } else {
2347 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2348
2349 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2350 FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2351 /* If fairness is enabled (not all min rates are zeroes) and
2352 if current min rate is zero - set it to 1.
2353 This is a requirement of the algorithm. */
2354 if (bp->vn_weight_sum && (vn_min_rate == 0))
2355 vn_min_rate = DEF_MIN_RATE;
2356
2357 if (IS_MF_SI(bp))
2358 /* maxCfg in percents of linkspeed */
2359 vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2360 else
2361 /* maxCfg is absolute in 100Mb units */
2362 vn_max_rate = maxCfg * 100;
2363 }
2364
2365 DP(NETIF_MSG_IFUP,
2366 "func %d: vn_min_rate %d vn_max_rate %d vn_weight_sum %d\n",
2367 func, vn_min_rate, vn_max_rate, bp->vn_weight_sum);
2368
2369 memset(&m_rs_vn, 0, sizeof(struct rate_shaping_vars_per_vn));
2370 memset(&m_fair_vn, 0, sizeof(struct fairness_vars_per_vn));
2371
2372 /* global vn counter - maximal Mbps for this vn */
2373 m_rs_vn.vn_counter.rate = vn_max_rate;
2374
2375 /* quota - number of bytes transmitted in this period */
2376 m_rs_vn.vn_counter.quota =
2377 (vn_max_rate * RS_PERIODIC_TIMEOUT_USEC) / 8;
2378
2379 if (bp->vn_weight_sum) {
2380 /* credit for each period of the fairness algorithm:
2381 number of bytes in T_FAIR (the vn share the port rate).
2382 vn_weight_sum should not be larger than 10000, thus
2383 T_FAIR_COEF / (8 * vn_weight_sum) will always be greater
2384 than zero */
2385 m_fair_vn.vn_credit_delta =
2386 max_t(u32, (vn_min_rate * (T_FAIR_COEF /
2387 (8 * bp->vn_weight_sum))),
2388 (bp->cmng.fair_vars.fair_threshold +
2389 MIN_ABOVE_THRESH));
2390 DP(NETIF_MSG_IFUP, "m_fair_vn.vn_credit_delta %d\n",
2391 m_fair_vn.vn_credit_delta);
2392 }
2393
2394 /* Store it to internal memory */
2395 for (i = 0; i < sizeof(struct rate_shaping_vars_per_vn)/4; i++)
2396 REG_WR(bp, BAR_XSTRORM_INTMEM +
2397 XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func) + i * 4,
2398 ((u32 *)(&m_rs_vn))[i]);
2399
2400 for (i = 0; i < sizeof(struct fairness_vars_per_vn)/4; i++)
2401 REG_WR(bp, BAR_XSTRORM_INTMEM +
2402 XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func) + i * 4,
2403 ((u32 *)(&m_fair_vn))[i]);
2404 }
2405
2406 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2407 {
2408 if (CHIP_REV_IS_SLOW(bp))
2409 return CMNG_FNS_NONE;
2410 if (IS_MF(bp))
2411 return CMNG_FNS_MINMAX;
2412
2413 return CMNG_FNS_NONE;
2414 }
2415
2416 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2417 {
2418 int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2419
2420 if (BP_NOMCP(bp))
2421 return; /* what should be the default bvalue in this case */
2422
2423 /* For 2 port configuration the absolute function number formula
2424 * is:
2425 * abs_func = 2 * vn + BP_PORT + BP_PATH
2426 *
2427 * and there are 4 functions per port
2428 *
2429 * For 4 port configuration it is
2430 * abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2431 *
2432 * and there are 2 functions per port
2433 */
2434 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2435 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2436
2437 if (func >= E1H_FUNC_MAX)
2438 break;
2439
2440 bp->mf_config[vn] =
2441 MF_CFG_RD(bp, func_mf_config[func].config);
2442 }
2443 }
2444
2445 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2446 {
2447
2448 if (cmng_type == CMNG_FNS_MINMAX) {
2449 int vn;
2450
2451 /* clear cmng_enables */
2452 bp->cmng.flags.cmng_enables = 0;
2453
2454 /* read mf conf from shmem */
2455 if (read_cfg)
2456 bnx2x_read_mf_cfg(bp);
2457
2458 /* Init rate shaping and fairness contexts */
2459 bnx2x_init_port_minmax(bp);
2460
2461 /* vn_weight_sum and enable fairness if not 0 */
2462 bnx2x_calc_vn_weight_sum(bp);
2463
2464 /* calculate and set min-max rate for each vn */
2465 if (bp->port.pmf)
2466 for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2467 bnx2x_init_vn_minmax(bp, vn);
2468
2469 /* always enable rate shaping and fairness */
2470 bp->cmng.flags.cmng_enables |=
2471 CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2472 if (!bp->vn_weight_sum)
2473 DP(NETIF_MSG_IFUP, "All MIN values are zeroes"
2474 " fairness will be disabled\n");
2475 return;
2476 }
2477
2478 /* rate shaping and fairness are disabled */
2479 DP(NETIF_MSG_IFUP,
2480 "rate shaping and fairness are disabled\n");
2481 }
2482
2483 /* This function is called upon link interrupt */
2484 static void bnx2x_link_attn(struct bnx2x *bp)
2485 {
2486 /* Make sure that we are synced with the current statistics */
2487 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2488
2489 bnx2x_link_update(&bp->link_params, &bp->link_vars);
2490
2491 if (bp->link_vars.link_up) {
2492
2493 /* dropless flow control */
2494 if (!CHIP_IS_E1(bp) && bp->dropless_fc) {
2495 int port = BP_PORT(bp);
2496 u32 pause_enabled = 0;
2497
2498 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2499 pause_enabled = 1;
2500
2501 REG_WR(bp, BAR_USTRORM_INTMEM +
2502 USTORM_ETH_PAUSE_ENABLED_OFFSET(port),
2503 pause_enabled);
2504 }
2505
2506 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2507 struct host_port_stats *pstats;
2508
2509 pstats = bnx2x_sp(bp, port_stats);
2510 /* reset old mac stats */
2511 memset(&(pstats->mac_stx[0]), 0,
2512 sizeof(struct mac_stx));
2513 }
2514 if (bp->state == BNX2X_STATE_OPEN)
2515 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2516 }
2517
2518 if (bp->link_vars.link_up && bp->link_vars.line_speed) {
2519 int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2520
2521 if (cmng_fns != CMNG_FNS_NONE) {
2522 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2523 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2524 } else
2525 /* rate shaping and fairness are disabled */
2526 DP(NETIF_MSG_IFUP,
2527 "single function mode without fairness\n");
2528 }
2529
2530 __bnx2x_link_report(bp);
2531
2532 if (IS_MF(bp))
2533 bnx2x_link_sync_notify(bp);
2534 }
2535
2536 void bnx2x__link_status_update(struct bnx2x *bp)
2537 {
2538 if (bp->state != BNX2X_STATE_OPEN)
2539 return;
2540
2541 /* read updated dcb configuration */
2542 bnx2x_dcbx_pmf_update(bp);
2543
2544 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2545
2546 if (bp->link_vars.link_up)
2547 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2548 else
2549 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2550
2551 /* indicate link status */
2552 bnx2x_link_report(bp);
2553 }
2554
2555 static void bnx2x_pmf_update(struct bnx2x *bp)
2556 {
2557 int port = BP_PORT(bp);
2558 u32 val;
2559
2560 bp->port.pmf = 1;
2561 DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2562
2563 /*
2564 * We need the mb() to ensure the ordering between the writing to
2565 * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2566 */
2567 smp_mb();
2568
2569 /* queue a periodic task */
2570 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2571
2572 bnx2x_dcbx_pmf_update(bp);
2573
2574 /* enable nig attention */
2575 val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2576 if (bp->common.int_block == INT_BLOCK_HC) {
2577 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2578 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2579 } else if (!CHIP_IS_E1x(bp)) {
2580 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2581 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2582 }
2583
2584 bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2585 }
2586
2587 /* end of Link */
2588
2589 /* slow path */
2590
2591 /*
2592 * General service functions
2593 */
2594
2595 /* send the MCP a request, block until there is a reply */
2596 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2597 {
2598 int mb_idx = BP_FW_MB_IDX(bp);
2599 u32 seq;
2600 u32 rc = 0;
2601 u32 cnt = 1;
2602 u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2603
2604 mutex_lock(&bp->fw_mb_mutex);
2605 seq = ++bp->fw_seq;
2606 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2607 SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2608
2609 DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2610 (command | seq), param);
2611
2612 do {
2613 /* let the FW do it's magic ... */
2614 msleep(delay);
2615
2616 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2617
2618 /* Give the FW up to 5 second (500*10ms) */
2619 } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2620
2621 DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2622 cnt*delay, rc, seq);
2623
2624 /* is this a reply to our command? */
2625 if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2626 rc &= FW_MSG_CODE_MASK;
2627 else {
2628 /* FW BUG! */
2629 BNX2X_ERR("FW failed to respond!\n");
2630 bnx2x_fw_dump(bp);
2631 rc = 0;
2632 }
2633 mutex_unlock(&bp->fw_mb_mutex);
2634
2635 return rc;
2636 }
2637
2638
2639 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2640 {
2641 if (CHIP_IS_E1x(bp)) {
2642 struct tstorm_eth_function_common_config tcfg = {0};
2643
2644 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2645 }
2646
2647 /* Enable the function in the FW */
2648 storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2649 storm_memset_func_en(bp, p->func_id, 1);
2650
2651 /* spq */
2652 if (p->func_flgs & FUNC_FLG_SPQ) {
2653 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2654 REG_WR(bp, XSEM_REG_FAST_MEMORY +
2655 XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
2656 }
2657 }
2658
2659 /**
2660 * bnx2x_get_tx_only_flags - Return common flags
2661 *
2662 * @bp device handle
2663 * @fp queue handle
2664 * @zero_stats TRUE if statistics zeroing is needed
2665 *
2666 * Return the flags that are common for the Tx-only and not normal connections.
2667 */
2668 static inline unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
2669 struct bnx2x_fastpath *fp,
2670 bool zero_stats)
2671 {
2672 unsigned long flags = 0;
2673
2674 /* PF driver will always initialize the Queue to an ACTIVE state */
2675 __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
2676
2677 /* tx only connections collect statistics (on the same index as the
2678 * parent connection). The statistics are zeroed when the parent
2679 * connection is initialized.
2680 */
2681
2682 __set_bit(BNX2X_Q_FLG_STATS, &flags);
2683 if (zero_stats)
2684 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
2685
2686
2687 return flags;
2688 }
2689
2690 static inline unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
2691 struct bnx2x_fastpath *fp,
2692 bool leading)
2693 {
2694 unsigned long flags = 0;
2695
2696 /* calculate other queue flags */
2697 if (IS_MF_SD(bp))
2698 __set_bit(BNX2X_Q_FLG_OV, &flags);
2699
2700 if (IS_FCOE_FP(fp))
2701 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
2702
2703 if (!fp->disable_tpa) {
2704 __set_bit(BNX2X_Q_FLG_TPA, &flags);
2705 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
2706 }
2707
2708 if (leading) {
2709 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
2710 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
2711 }
2712
2713 /* Always set HW VLAN stripping */
2714 __set_bit(BNX2X_Q_FLG_VLAN, &flags);
2715
2716
2717 return flags | bnx2x_get_common_flags(bp, fp, true);
2718 }
2719
2720 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
2721 struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
2722 u8 cos)
2723 {
2724 gen_init->stat_id = bnx2x_stats_id(fp);
2725 gen_init->spcl_id = fp->cl_id;
2726
2727 /* Always use mini-jumbo MTU for FCoE L2 ring */
2728 if (IS_FCOE_FP(fp))
2729 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2730 else
2731 gen_init->mtu = bp->dev->mtu;
2732
2733 gen_init->cos = cos;
2734 }
2735
2736 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
2737 struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
2738 struct bnx2x_rxq_setup_params *rxq_init)
2739 {
2740 u8 max_sge = 0;
2741 u16 sge_sz = 0;
2742 u16 tpa_agg_size = 0;
2743
2744 if (!fp->disable_tpa) {
2745 pause->sge_th_lo = SGE_TH_LO(bp);
2746 pause->sge_th_hi = SGE_TH_HI(bp);
2747
2748 /* validate SGE ring has enough to cross high threshold */
2749 WARN_ON(bp->dropless_fc &&
2750 pause->sge_th_hi + FW_PREFETCH_CNT >
2751 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
2752
2753 tpa_agg_size = min_t(u32,
2754 (min_t(u32, 8, MAX_SKB_FRAGS) *
2755 SGE_PAGE_SIZE * PAGES_PER_SGE), 0xffff);
2756 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
2757 SGE_PAGE_SHIFT;
2758 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
2759 (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
2760 sge_sz = (u16)min_t(u32, SGE_PAGE_SIZE * PAGES_PER_SGE,
2761 0xffff);
2762 }
2763
2764 /* pause - not for e1 */
2765 if (!CHIP_IS_E1(bp)) {
2766 pause->bd_th_lo = BD_TH_LO(bp);
2767 pause->bd_th_hi = BD_TH_HI(bp);
2768
2769 pause->rcq_th_lo = RCQ_TH_LO(bp);
2770 pause->rcq_th_hi = RCQ_TH_HI(bp);
2771 /*
2772 * validate that rings have enough entries to cross
2773 * high thresholds
2774 */
2775 WARN_ON(bp->dropless_fc &&
2776 pause->bd_th_hi + FW_PREFETCH_CNT >
2777 bp->rx_ring_size);
2778 WARN_ON(bp->dropless_fc &&
2779 pause->rcq_th_hi + FW_PREFETCH_CNT >
2780 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
2781
2782 pause->pri_map = 1;
2783 }
2784
2785 /* rxq setup */
2786 rxq_init->dscr_map = fp->rx_desc_mapping;
2787 rxq_init->sge_map = fp->rx_sge_mapping;
2788 rxq_init->rcq_map = fp->rx_comp_mapping;
2789 rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
2790
2791 /* This should be a maximum number of data bytes that may be
2792 * placed on the BD (not including paddings).
2793 */
2794 rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
2795 BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
2796
2797 rxq_init->cl_qzone_id = fp->cl_qzone_id;
2798 rxq_init->tpa_agg_sz = tpa_agg_size;
2799 rxq_init->sge_buf_sz = sge_sz;
2800 rxq_init->max_sges_pkt = max_sge;
2801 rxq_init->rss_engine_id = BP_FUNC(bp);
2802
2803 /* Maximum number or simultaneous TPA aggregation for this Queue.
2804 *
2805 * For PF Clients it should be the maximum avaliable number.
2806 * VF driver(s) may want to define it to a smaller value.
2807 */
2808 rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
2809
2810 rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
2811 rxq_init->fw_sb_id = fp->fw_sb_id;
2812
2813 if (IS_FCOE_FP(fp))
2814 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
2815 else
2816 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
2817 }
2818
2819 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
2820 struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
2821 u8 cos)
2822 {
2823 txq_init->dscr_map = fp->txdata[cos].tx_desc_mapping;
2824 txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
2825 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
2826 txq_init->fw_sb_id = fp->fw_sb_id;
2827
2828 /*
2829 * set the tss leading client id for TX classfication ==
2830 * leading RSS client id
2831 */
2832 txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
2833
2834 if (IS_FCOE_FP(fp)) {
2835 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
2836 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
2837 }
2838 }
2839
2840 static void bnx2x_pf_init(struct bnx2x *bp)
2841 {
2842 struct bnx2x_func_init_params func_init = {0};
2843 struct event_ring_data eq_data = { {0} };
2844 u16 flags;
2845
2846 if (!CHIP_IS_E1x(bp)) {
2847 /* reset IGU PF statistics: MSIX + ATTN */
2848 /* PF */
2849 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2850 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2851 (CHIP_MODE_IS_4_PORT(bp) ?
2852 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2853 /* ATTN */
2854 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
2855 BNX2X_IGU_STAS_MSG_VF_CNT*4 +
2856 BNX2X_IGU_STAS_MSG_PF_CNT*4 +
2857 (CHIP_MODE_IS_4_PORT(bp) ?
2858 BP_FUNC(bp) : BP_VN(bp))*4, 0);
2859 }
2860
2861 /* function setup flags */
2862 flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
2863
2864 /* This flag is relevant for E1x only.
2865 * E2 doesn't have a TPA configuration in a function level.
2866 */
2867 flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
2868
2869 func_init.func_flgs = flags;
2870 func_init.pf_id = BP_FUNC(bp);
2871 func_init.func_id = BP_FUNC(bp);
2872 func_init.spq_map = bp->spq_mapping;
2873 func_init.spq_prod = bp->spq_prod_idx;
2874
2875 bnx2x_func_init(bp, &func_init);
2876
2877 memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
2878
2879 /*
2880 * Congestion management values depend on the link rate
2881 * There is no active link so initial link rate is set to 10 Gbps.
2882 * When the link comes up The congestion management values are
2883 * re-calculated according to the actual link rate.
2884 */
2885 bp->link_vars.line_speed = SPEED_10000;
2886 bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
2887
2888 /* Only the PMF sets the HW */
2889 if (bp->port.pmf)
2890 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2891
2892 /* init Event Queue */
2893 eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
2894 eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
2895 eq_data.producer = bp->eq_prod;
2896 eq_data.index_id = HC_SP_INDEX_EQ_CONS;
2897 eq_data.sb_id = DEF_SB_ID;
2898 storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
2899 }
2900
2901
2902 static void bnx2x_e1h_disable(struct bnx2x *bp)
2903 {
2904 int port = BP_PORT(bp);
2905
2906 bnx2x_tx_disable(bp);
2907
2908 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
2909 }
2910
2911 static void bnx2x_e1h_enable(struct bnx2x *bp)
2912 {
2913 int port = BP_PORT(bp);
2914
2915 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
2916
2917 /* Tx queue should be only reenabled */
2918 netif_tx_wake_all_queues(bp->dev);
2919
2920 /*
2921 * Should not call netif_carrier_on since it will be called if the link
2922 * is up when checking for link state
2923 */
2924 }
2925
2926 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
2927
2928 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
2929 {
2930 struct eth_stats_info *ether_stat =
2931 &bp->slowpath->drv_info_to_mcp.ether_stat;
2932
2933 /* leave last char as NULL */
2934 memcpy(ether_stat->version, DRV_MODULE_VERSION,
2935 ETH_STAT_INFO_VERSION_LEN - 1);
2936
2937 bp->fp[0].mac_obj.get_n_elements(bp, &bp->fp[0].mac_obj,
2938 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
2939 ether_stat->mac_local);
2940
2941 ether_stat->mtu_size = bp->dev->mtu;
2942
2943 if (bp->dev->features & NETIF_F_RXCSUM)
2944 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
2945 if (bp->dev->features & NETIF_F_TSO)
2946 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
2947 ether_stat->feature_flags |= bp->common.boot_mode;
2948
2949 ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
2950
2951 ether_stat->txq_size = bp->tx_ring_size;
2952 ether_stat->rxq_size = bp->rx_ring_size;
2953 }
2954
2955 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
2956 {
2957 #ifdef BCM_CNIC
2958 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
2959 struct fcoe_stats_info *fcoe_stat =
2960 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
2961
2962 memcpy(fcoe_stat->mac_local, bp->fip_mac, ETH_ALEN);
2963
2964 fcoe_stat->qos_priority =
2965 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
2966
2967 /* insert FCoE stats from ramrod response */
2968 if (!NO_FCOE(bp)) {
2969 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
2970 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2971 tstorm_queue_statistics;
2972
2973 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
2974 &bp->fw_stats_data->queue_stats[FCOE_IDX].
2975 xstorm_queue_statistics;
2976
2977 struct fcoe_statistics_params *fw_fcoe_stat =
2978 &bp->fw_stats_data->fcoe;
2979
2980 ADD_64(fcoe_stat->rx_bytes_hi, 0, fcoe_stat->rx_bytes_lo,
2981 fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
2982
2983 ADD_64(fcoe_stat->rx_bytes_hi,
2984 fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
2985 fcoe_stat->rx_bytes_lo,
2986 fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
2987
2988 ADD_64(fcoe_stat->rx_bytes_hi,
2989 fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
2990 fcoe_stat->rx_bytes_lo,
2991 fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
2992
2993 ADD_64(fcoe_stat->rx_bytes_hi,
2994 fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
2995 fcoe_stat->rx_bytes_lo,
2996 fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
2997
2998 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
2999 fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3000
3001 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3002 fcoe_q_tstorm_stats->rcv_ucast_pkts);
3003
3004 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3005 fcoe_q_tstorm_stats->rcv_bcast_pkts);
3006
3007 ADD_64(fcoe_stat->rx_frames_hi, 0, fcoe_stat->rx_frames_lo,
3008 fcoe_q_tstorm_stats->rcv_mcast_pkts);
3009
3010 ADD_64(fcoe_stat->tx_bytes_hi, 0, fcoe_stat->tx_bytes_lo,
3011 fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3012
3013 ADD_64(fcoe_stat->tx_bytes_hi,
3014 fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3015 fcoe_stat->tx_bytes_lo,
3016 fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3017
3018 ADD_64(fcoe_stat->tx_bytes_hi,
3019 fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3020 fcoe_stat->tx_bytes_lo,
3021 fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3022
3023 ADD_64(fcoe_stat->tx_bytes_hi,
3024 fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3025 fcoe_stat->tx_bytes_lo,
3026 fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3027
3028 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3029 fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3030
3031 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3032 fcoe_q_xstorm_stats->ucast_pkts_sent);
3033
3034 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3035 fcoe_q_xstorm_stats->bcast_pkts_sent);
3036
3037 ADD_64(fcoe_stat->tx_frames_hi, 0, fcoe_stat->tx_frames_lo,
3038 fcoe_q_xstorm_stats->mcast_pkts_sent);
3039 }
3040
3041 /* ask L5 driver to add data to the struct */
3042 bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3043 #endif
3044 }
3045
3046 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3047 {
3048 #ifdef BCM_CNIC
3049 struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3050 struct iscsi_stats_info *iscsi_stat =
3051 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3052
3053 memcpy(iscsi_stat->mac_local, bp->cnic_eth_dev.iscsi_mac, ETH_ALEN);
3054
3055 iscsi_stat->qos_priority =
3056 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3057
3058 /* ask L5 driver to add data to the struct */
3059 bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3060 #endif
3061 }
3062
3063 /* called due to MCP event (on pmf):
3064 * reread new bandwidth configuration
3065 * configure FW
3066 * notify others function about the change
3067 */
3068 static inline void bnx2x_config_mf_bw(struct bnx2x *bp)
3069 {
3070 if (bp->link_vars.link_up) {
3071 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3072 bnx2x_link_sync_notify(bp);
3073 }
3074 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3075 }
3076
3077 static inline void bnx2x_set_mf_bw(struct bnx2x *bp)
3078 {
3079 bnx2x_config_mf_bw(bp);
3080 bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3081 }
3082
3083 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3084 {
3085 enum drv_info_opcode op_code;
3086 u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3087
3088 /* if drv_info version supported by MFW doesn't match - send NACK */
3089 if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3090 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3091 return;
3092 }
3093
3094 op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3095 DRV_INFO_CONTROL_OP_CODE_SHIFT;
3096
3097 memset(&bp->slowpath->drv_info_to_mcp, 0,
3098 sizeof(union drv_info_to_mcp));
3099
3100 switch (op_code) {
3101 case ETH_STATS_OPCODE:
3102 bnx2x_drv_info_ether_stat(bp);
3103 break;
3104 case FCOE_STATS_OPCODE:
3105 bnx2x_drv_info_fcoe_stat(bp);
3106 break;
3107 case ISCSI_STATS_OPCODE:
3108 bnx2x_drv_info_iscsi_stat(bp);
3109 break;
3110 default:
3111 /* if op code isn't supported - send NACK */
3112 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3113 return;
3114 }
3115
3116 /* if we got drv_info attn from MFW then these fields are defined in
3117 * shmem2 for sure
3118 */
3119 SHMEM2_WR(bp, drv_info_host_addr_lo,
3120 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3121 SHMEM2_WR(bp, drv_info_host_addr_hi,
3122 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3123
3124 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3125 }
3126
3127 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3128 {
3129 DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3130
3131 if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3132
3133 /*
3134 * This is the only place besides the function initialization
3135 * where the bp->flags can change so it is done without any
3136 * locks
3137 */
3138 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3139 DP(NETIF_MSG_IFDOWN, "mf_cfg function disabled\n");
3140 bp->flags |= MF_FUNC_DIS;
3141
3142 bnx2x_e1h_disable(bp);
3143 } else {
3144 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
3145 bp->flags &= ~MF_FUNC_DIS;
3146
3147 bnx2x_e1h_enable(bp);
3148 }
3149 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3150 }
3151 if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3152 bnx2x_config_mf_bw(bp);
3153 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3154 }
3155
3156 /* Report results to MCP */
3157 if (dcc_event)
3158 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3159 else
3160 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3161 }
3162
3163 /* must be called under the spq lock */
3164 static inline struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3165 {
3166 struct eth_spe *next_spe = bp->spq_prod_bd;
3167
3168 if (bp->spq_prod_bd == bp->spq_last_bd) {
3169 bp->spq_prod_bd = bp->spq;
3170 bp->spq_prod_idx = 0;
3171 DP(NETIF_MSG_TIMER, "end of spq\n");
3172 } else {
3173 bp->spq_prod_bd++;
3174 bp->spq_prod_idx++;
3175 }
3176 return next_spe;
3177 }
3178
3179 /* must be called under the spq lock */
3180 static inline void bnx2x_sp_prod_update(struct bnx2x *bp)
3181 {
3182 int func = BP_FUNC(bp);
3183
3184 /*
3185 * Make sure that BD data is updated before writing the producer:
3186 * BD data is written to the memory, the producer is read from the
3187 * memory, thus we need a full memory barrier to ensure the ordering.
3188 */
3189 mb();
3190
3191 REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3192 bp->spq_prod_idx);
3193 mmiowb();
3194 }
3195
3196 /**
3197 * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3198 *
3199 * @cmd: command to check
3200 * @cmd_type: command type
3201 */
3202 static inline bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3203 {
3204 if ((cmd_type == NONE_CONNECTION_TYPE) ||
3205 (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3206 (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3207 (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3208 (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3209 (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3210 (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3211 return true;
3212 else
3213 return false;
3214
3215 }
3216
3217
3218 /**
3219 * bnx2x_sp_post - place a single command on an SP ring
3220 *
3221 * @bp: driver handle
3222 * @command: command to place (e.g. SETUP, FILTER_RULES, etc.)
3223 * @cid: SW CID the command is related to
3224 * @data_hi: command private data address (high 32 bits)
3225 * @data_lo: command private data address (low 32 bits)
3226 * @cmd_type: command type (e.g. NONE, ETH)
3227 *
3228 * SP data is handled as if it's always an address pair, thus data fields are
3229 * not swapped to little endian in upper functions. Instead this function swaps
3230 * data as if it's two u32 fields.
3231 */
3232 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3233 u32 data_hi, u32 data_lo, int cmd_type)
3234 {
3235 struct eth_spe *spe;
3236 u16 type;
3237 bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3238
3239 #ifdef BNX2X_STOP_ON_ERROR
3240 if (unlikely(bp->panic))
3241 return -EIO;
3242 #endif
3243
3244 spin_lock_bh(&bp->spq_lock);
3245
3246 if (common) {
3247 if (!atomic_read(&bp->eq_spq_left)) {
3248 BNX2X_ERR("BUG! EQ ring full!\n");
3249 spin_unlock_bh(&bp->spq_lock);
3250 bnx2x_panic();
3251 return -EBUSY;
3252 }
3253 } else if (!atomic_read(&bp->cq_spq_left)) {
3254 BNX2X_ERR("BUG! SPQ ring full!\n");
3255 spin_unlock_bh(&bp->spq_lock);
3256 bnx2x_panic();
3257 return -EBUSY;
3258 }
3259
3260 spe = bnx2x_sp_get_next(bp);
3261
3262 /* CID needs port number to be encoded int it */
3263 spe->hdr.conn_and_cmd_data =
3264 cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3265 HW_CID(bp, cid));
3266
3267 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) & SPE_HDR_CONN_TYPE;
3268
3269 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3270 SPE_HDR_FUNCTION_ID);
3271
3272 spe->hdr.type = cpu_to_le16(type);
3273
3274 spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3275 spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3276
3277 /*
3278 * It's ok if the actual decrement is issued towards the memory
3279 * somewhere between the spin_lock and spin_unlock. Thus no
3280 * more explict memory barrier is needed.
3281 */
3282 if (common)
3283 atomic_dec(&bp->eq_spq_left);
3284 else
3285 atomic_dec(&bp->cq_spq_left);
3286
3287
3288 DP(BNX2X_MSG_SP/*NETIF_MSG_TIMER*/,
3289 "SPQE[%x] (%x:%x) (cmd, common?) (%d,%d) hw_cid %x data (%x:%x) "
3290 "type(0x%x) left (CQ, EQ) (%x,%x)\n",
3291 bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3292 (u32)(U64_LO(bp->spq_mapping) +
3293 (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3294 HW_CID(bp, cid), data_hi, data_lo, type,
3295 atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3296
3297 bnx2x_sp_prod_update(bp);
3298 spin_unlock_bh(&bp->spq_lock);
3299 return 0;
3300 }
3301
3302 /* acquire split MCP access lock register */
3303 static int bnx2x_acquire_alr(struct bnx2x *bp)
3304 {
3305 u32 j, val;
3306 int rc = 0;
3307
3308 might_sleep();
3309 for (j = 0; j < 1000; j++) {
3310 val = (1UL << 31);
3311 REG_WR(bp, GRCBASE_MCP + 0x9c, val);
3312 val = REG_RD(bp, GRCBASE_MCP + 0x9c);
3313 if (val & (1L << 31))
3314 break;
3315
3316 msleep(5);
3317 }
3318 if (!(val & (1L << 31))) {
3319 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3320 rc = -EBUSY;
3321 }
3322
3323 return rc;
3324 }
3325
3326 /* release split MCP access lock register */
3327 static void bnx2x_release_alr(struct bnx2x *bp)
3328 {
3329 REG_WR(bp, GRCBASE_MCP + 0x9c, 0);
3330 }
3331
3332 #define BNX2X_DEF_SB_ATT_IDX 0x0001
3333 #define BNX2X_DEF_SB_IDX 0x0002
3334
3335 static inline u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3336 {
3337 struct host_sp_status_block *def_sb = bp->def_status_blk;
3338 u16 rc = 0;
3339
3340 barrier(); /* status block is written to by the chip */
3341 if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3342 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3343 rc |= BNX2X_DEF_SB_ATT_IDX;
3344 }
3345
3346 if (bp->def_idx != def_sb->sp_sb.running_index) {
3347 bp->def_idx = def_sb->sp_sb.running_index;
3348 rc |= BNX2X_DEF_SB_IDX;
3349 }
3350
3351 /* Do not reorder: indecies reading should complete before handling */
3352 barrier();
3353 return rc;
3354 }
3355
3356 /*
3357 * slow path service functions
3358 */
3359
3360 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3361 {
3362 int port = BP_PORT(bp);
3363 u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3364 MISC_REG_AEU_MASK_ATTN_FUNC_0;
3365 u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3366 NIG_REG_MASK_INTERRUPT_PORT0;
3367 u32 aeu_mask;
3368 u32 nig_mask = 0;
3369 u32 reg_addr;
3370
3371 if (bp->attn_state & asserted)
3372 BNX2X_ERR("IGU ERROR\n");
3373
3374 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3375 aeu_mask = REG_RD(bp, aeu_addr);
3376
3377 DP(NETIF_MSG_HW, "aeu_mask %x newly asserted %x\n",
3378 aeu_mask, asserted);
3379 aeu_mask &= ~(asserted & 0x3ff);
3380 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3381
3382 REG_WR(bp, aeu_addr, aeu_mask);
3383 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3384
3385 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3386 bp->attn_state |= asserted;
3387 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3388
3389 if (asserted & ATTN_HARD_WIRED_MASK) {
3390 if (asserted & ATTN_NIG_FOR_FUNC) {
3391
3392 bnx2x_acquire_phy_lock(bp);
3393
3394 /* save nig interrupt mask */
3395 nig_mask = REG_RD(bp, nig_int_mask_addr);
3396
3397 /* If nig_mask is not set, no need to call the update
3398 * function.
3399 */
3400 if (nig_mask) {
3401 REG_WR(bp, nig_int_mask_addr, 0);
3402
3403 bnx2x_link_attn(bp);
3404 }
3405
3406 /* handle unicore attn? */
3407 }
3408 if (asserted & ATTN_SW_TIMER_4_FUNC)
3409 DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3410
3411 if (asserted & GPIO_2_FUNC)
3412 DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3413
3414 if (asserted & GPIO_3_FUNC)
3415 DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3416
3417 if (asserted & GPIO_4_FUNC)
3418 DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3419
3420 if (port == 0) {
3421 if (asserted & ATTN_GENERAL_ATTN_1) {
3422 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3423 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3424 }
3425 if (asserted & ATTN_GENERAL_ATTN_2) {
3426 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3427 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3428 }
3429 if (asserted & ATTN_GENERAL_ATTN_3) {
3430 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3431 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3432 }
3433 } else {
3434 if (asserted & ATTN_GENERAL_ATTN_4) {
3435 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3436 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3437 }
3438 if (asserted & ATTN_GENERAL_ATTN_5) {
3439 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3440 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3441 }
3442 if (asserted & ATTN_GENERAL_ATTN_6) {
3443 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3444 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3445 }
3446 }
3447
3448 } /* if hardwired */
3449
3450 if (bp->common.int_block == INT_BLOCK_HC)
3451 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3452 COMMAND_REG_ATTN_BITS_SET);
3453 else
3454 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3455
3456 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3457 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3458 REG_WR(bp, reg_addr, asserted);
3459
3460 /* now set back the mask */
3461 if (asserted & ATTN_NIG_FOR_FUNC) {
3462 REG_WR(bp, nig_int_mask_addr, nig_mask);
3463 bnx2x_release_phy_lock(bp);
3464 }
3465 }
3466
3467 static inline void bnx2x_fan_failure(struct bnx2x *bp)
3468 {
3469 int port = BP_PORT(bp);
3470 u32 ext_phy_config;
3471 /* mark the failure */
3472 ext_phy_config =
3473 SHMEM_RD(bp,
3474 dev_info.port_hw_config[port].external_phy_config);
3475
3476 ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
3477 ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
3478 SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
3479 ext_phy_config);
3480
3481 /* log the failure */
3482 netdev_err(bp->dev, "Fan Failure on Network Controller has caused"
3483 " the driver to shutdown the card to prevent permanent"
3484 " damage. Please contact OEM Support for assistance\n");
3485
3486 /*
3487 * Scheudle device reset (unload)
3488 * This is due to some boards consuming sufficient power when driver is
3489 * up to overheat if fan fails.
3490 */
3491 smp_mb__before_clear_bit();
3492 set_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state);
3493 smp_mb__after_clear_bit();
3494 schedule_delayed_work(&bp->sp_rtnl_task, 0);
3495
3496 }
3497
3498 static inline void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
3499 {
3500 int port = BP_PORT(bp);
3501 int reg_offset;
3502 u32 val;
3503
3504 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
3505 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
3506
3507 if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
3508
3509 val = REG_RD(bp, reg_offset);
3510 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
3511 REG_WR(bp, reg_offset, val);
3512
3513 BNX2X_ERR("SPIO5 hw attention\n");
3514
3515 /* Fan failure attention */
3516 bnx2x_hw_reset_phy(&bp->link_params);
3517 bnx2x_fan_failure(bp);
3518 }
3519
3520 if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
3521 bnx2x_acquire_phy_lock(bp);
3522 bnx2x_handle_module_detect_int(&bp->link_params);
3523 bnx2x_release_phy_lock(bp);
3524 }
3525
3526 if (attn & HW_INTERRUT_ASSERT_SET_0) {
3527
3528 val = REG_RD(bp, reg_offset);
3529 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
3530 REG_WR(bp, reg_offset, val);
3531
3532 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
3533 (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
3534 bnx2x_panic();
3535 }
3536 }
3537
3538 static inline void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
3539 {
3540 u32 val;
3541
3542 if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
3543
3544 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
3545 BNX2X_ERR("DB hw attention 0x%x\n", val);
3546 /* DORQ discard attention */
3547 if (val & 0x2)
3548 BNX2X_ERR("FATAL error from DORQ\n");
3549 }
3550
3551 if (attn & HW_INTERRUT_ASSERT_SET_1) {
3552
3553 int port = BP_PORT(bp);
3554 int reg_offset;
3555
3556 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
3557 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
3558
3559 val = REG_RD(bp, reg_offset);
3560 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
3561 REG_WR(bp, reg_offset, val);
3562
3563 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
3564 (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
3565 bnx2x_panic();
3566 }
3567 }
3568
3569 static inline void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
3570 {
3571 u32 val;
3572
3573 if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
3574
3575 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
3576 BNX2X_ERR("CFC hw attention 0x%x\n", val);
3577 /* CFC error attention */
3578 if (val & 0x2)
3579 BNX2X_ERR("FATAL error from CFC\n");
3580 }
3581
3582 if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
3583 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
3584 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
3585 /* RQ_USDMDP_FIFO_OVERFLOW */
3586 if (val & 0x18000)
3587 BNX2X_ERR("FATAL error from PXP\n");
3588
3589 if (!CHIP_IS_E1x(bp)) {
3590 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
3591 BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
3592 }
3593 }
3594
3595 if (attn & HW_INTERRUT_ASSERT_SET_2) {
3596
3597 int port = BP_PORT(bp);
3598 int reg_offset;
3599
3600 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
3601 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
3602
3603 val = REG_RD(bp, reg_offset);
3604 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
3605 REG_WR(bp, reg_offset, val);
3606
3607 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
3608 (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
3609 bnx2x_panic();
3610 }
3611 }
3612
3613 static inline void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
3614 {
3615 u32 val;
3616
3617 if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
3618
3619 if (attn & BNX2X_PMF_LINK_ASSERT) {
3620 int func = BP_FUNC(bp);
3621
3622 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
3623 bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
3624 func_mf_config[BP_ABS_FUNC(bp)].config);
3625 val = SHMEM_RD(bp,
3626 func_mb[BP_FW_MB_IDX(bp)].drv_status);
3627 if (val & DRV_STATUS_DCC_EVENT_MASK)
3628 bnx2x_dcc_event(bp,
3629 (val & DRV_STATUS_DCC_EVENT_MASK));
3630
3631 if (val & DRV_STATUS_SET_MF_BW)
3632 bnx2x_set_mf_bw(bp);
3633
3634 if (val & DRV_STATUS_DRV_INFO_REQ)
3635 bnx2x_handle_drv_info_req(bp);
3636 if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
3637 bnx2x_pmf_update(bp);
3638
3639 if (bp->port.pmf &&
3640 (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
3641 bp->dcbx_enabled > 0)
3642 /* start dcbx state machine */
3643 bnx2x_dcbx_set_params(bp,
3644 BNX2X_DCBX_STATE_NEG_RECEIVED);
3645 if (bp->link_vars.periodic_flags &
3646 PERIODIC_FLAGS_LINK_EVENT) {
3647 /* sync with link */
3648 bnx2x_acquire_phy_lock(bp);
3649 bp->link_vars.periodic_flags &=
3650 ~PERIODIC_FLAGS_LINK_EVENT;
3651 bnx2x_release_phy_lock(bp);
3652 if (IS_MF(bp))
3653 bnx2x_link_sync_notify(bp);
3654 bnx2x_link_report(bp);
3655 }
3656 /* Always call it here: bnx2x_link_report() will
3657 * prevent the link indication duplication.
3658 */
3659 bnx2x__link_status_update(bp);
3660 } else if (attn & BNX2X_MC_ASSERT_BITS) {
3661
3662 BNX2X_ERR("MC assert!\n");
3663 bnx2x_mc_assert(bp);
3664 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
3665 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
3666 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
3667 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
3668 bnx2x_panic();
3669
3670 } else if (attn & BNX2X_MCP_ASSERT) {
3671
3672 BNX2X_ERR("MCP assert!\n");
3673 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
3674 bnx2x_fw_dump(bp);
3675
3676 } else
3677 BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
3678 }
3679
3680 if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
3681 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
3682 if (attn & BNX2X_GRC_TIMEOUT) {
3683 val = CHIP_IS_E1(bp) ? 0 :
3684 REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
3685 BNX2X_ERR("GRC time-out 0x%08x\n", val);
3686 }
3687 if (attn & BNX2X_GRC_RSV) {
3688 val = CHIP_IS_E1(bp) ? 0 :
3689 REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
3690 BNX2X_ERR("GRC reserved 0x%08x\n", val);
3691 }
3692 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
3693 }
3694 }
3695
3696 /*
3697 * Bits map:
3698 * 0-7 - Engine0 load counter.
3699 * 8-15 - Engine1 load counter.
3700 * 16 - Engine0 RESET_IN_PROGRESS bit.
3701 * 17 - Engine1 RESET_IN_PROGRESS bit.
3702 * 18 - Engine0 ONE_IS_LOADED. Set when there is at least one active function
3703 * on the engine
3704 * 19 - Engine1 ONE_IS_LOADED.
3705 * 20 - Chip reset flow bit. When set none-leader must wait for both engines
3706 * leader to complete (check for both RESET_IN_PROGRESS bits and not for
3707 * just the one belonging to its engine).
3708 *
3709 */
3710 #define BNX2X_RECOVERY_GLOB_REG MISC_REG_GENERIC_POR_1
3711
3712 #define BNX2X_PATH0_LOAD_CNT_MASK 0x000000ff
3713 #define BNX2X_PATH0_LOAD_CNT_SHIFT 0
3714 #define BNX2X_PATH1_LOAD_CNT_MASK 0x0000ff00
3715 #define BNX2X_PATH1_LOAD_CNT_SHIFT 8
3716 #define BNX2X_PATH0_RST_IN_PROG_BIT 0x00010000
3717 #define BNX2X_PATH1_RST_IN_PROG_BIT 0x00020000
3718 #define BNX2X_GLOBAL_RESET_BIT 0x00040000
3719
3720 /*
3721 * Set the GLOBAL_RESET bit.
3722 *
3723 * Should be run under rtnl lock
3724 */
3725 void bnx2x_set_reset_global(struct bnx2x *bp)
3726 {
3727 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3728
3729 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
3730 barrier();
3731 mmiowb();
3732 }
3733
3734 /*
3735 * Clear the GLOBAL_RESET bit.
3736 *
3737 * Should be run under rtnl lock
3738 */
3739 static inline void bnx2x_clear_reset_global(struct bnx2x *bp)
3740 {
3741 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3742
3743 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
3744 barrier();
3745 mmiowb();
3746 }
3747
3748 /*
3749 * Checks the GLOBAL_RESET bit.
3750 *
3751 * should be run under rtnl lock
3752 */
3753 static inline bool bnx2x_reset_is_global(struct bnx2x *bp)
3754 {
3755 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3756
3757 DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
3758 return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
3759 }
3760
3761 /*
3762 * Clear RESET_IN_PROGRESS bit for the current engine.
3763 *
3764 * Should be run under rtnl lock
3765 */
3766 static inline void bnx2x_set_reset_done(struct bnx2x *bp)
3767 {
3768 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3769 u32 bit = BP_PATH(bp) ?
3770 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3771
3772 /* Clear the bit */
3773 val &= ~bit;
3774 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3775 barrier();
3776 mmiowb();
3777 }
3778
3779 /*
3780 * Set RESET_IN_PROGRESS for the current engine.
3781 *
3782 * should be run under rtnl lock
3783 */
3784 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
3785 {
3786 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3787 u32 bit = BP_PATH(bp) ?
3788 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3789
3790 /* Set the bit */
3791 val |= bit;
3792 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3793 barrier();
3794 mmiowb();
3795 }
3796
3797 /*
3798 * Checks the RESET_IN_PROGRESS bit for the given engine.
3799 * should be run under rtnl lock
3800 */
3801 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
3802 {
3803 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3804 u32 bit = engine ?
3805 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
3806
3807 /* return false if bit is set */
3808 return (val & bit) ? false : true;
3809 }
3810
3811 /*
3812 * Increment the load counter for the current engine.
3813 *
3814 * should be run under rtnl lock
3815 */
3816 void bnx2x_inc_load_cnt(struct bnx2x *bp)
3817 {
3818 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3819 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3820 BNX2X_PATH0_LOAD_CNT_MASK;
3821 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3822 BNX2X_PATH0_LOAD_CNT_SHIFT;
3823
3824 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3825
3826 /* get the current counter value */
3827 val1 = (val & mask) >> shift;
3828
3829 /* increment... */
3830 val1++;
3831
3832 /* clear the old value */
3833 val &= ~mask;
3834
3835 /* set the new one */
3836 val |= ((val1 << shift) & mask);
3837
3838 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3839 barrier();
3840 mmiowb();
3841 }
3842
3843 /**
3844 * bnx2x_dec_load_cnt - decrement the load counter
3845 *
3846 * @bp: driver handle
3847 *
3848 * Should be run under rtnl lock.
3849 * Decrements the load counter for the current engine. Returns
3850 * the new counter value.
3851 */
3852 u32 bnx2x_dec_load_cnt(struct bnx2x *bp)
3853 {
3854 u32 val1, val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3855 u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3856 BNX2X_PATH0_LOAD_CNT_MASK;
3857 u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3858 BNX2X_PATH0_LOAD_CNT_SHIFT;
3859
3860 DP(NETIF_MSG_HW, "Old GEN_REG_VAL=0x%08x\n", val);
3861
3862 /* get the current counter value */
3863 val1 = (val & mask) >> shift;
3864
3865 /* decrement... */
3866 val1--;
3867
3868 /* clear the old value */
3869 val &= ~mask;
3870
3871 /* set the new one */
3872 val |= ((val1 << shift) & mask);
3873
3874 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
3875 barrier();
3876 mmiowb();
3877
3878 return val1;
3879 }
3880
3881 /*
3882 * Read the load counter for the current engine.
3883 *
3884 * should be run under rtnl lock
3885 */
3886 static inline u32 bnx2x_get_load_cnt(struct bnx2x *bp, int engine)
3887 {
3888 u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
3889 BNX2X_PATH0_LOAD_CNT_MASK);
3890 u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
3891 BNX2X_PATH0_LOAD_CNT_SHIFT);
3892 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3893
3894 DP(NETIF_MSG_HW, "GLOB_REG=0x%08x\n", val);
3895
3896 val = (val & mask) >> shift;
3897
3898 DP(NETIF_MSG_HW, "load_cnt for engine %d = %d\n", engine, val);
3899
3900 return val;
3901 }
3902
3903 /*
3904 * Reset the load counter for the current engine.
3905 *
3906 * should be run under rtnl lock
3907 */
3908 static inline void bnx2x_clear_load_cnt(struct bnx2x *bp)
3909 {
3910 u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
3911 u32 mask = (BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
3912 BNX2X_PATH0_LOAD_CNT_MASK);
3913
3914 REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~mask));
3915 }
3916
3917 static inline void _print_next_block(int idx, const char *blk)
3918 {
3919 pr_cont("%s%s", idx ? ", " : "", blk);
3920 }
3921
3922 static inline int bnx2x_check_blocks_with_parity0(u32 sig, int par_num,
3923 bool print)
3924 {
3925 int i = 0;
3926 u32 cur_bit = 0;
3927 for (i = 0; sig; i++) {
3928 cur_bit = ((u32)0x1 << i);
3929 if (sig & cur_bit) {
3930 switch (cur_bit) {
3931 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
3932 if (print)
3933 _print_next_block(par_num++, "BRB");
3934 break;
3935 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
3936 if (print)
3937 _print_next_block(par_num++, "PARSER");
3938 break;
3939 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
3940 if (print)
3941 _print_next_block(par_num++, "TSDM");
3942 break;
3943 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
3944 if (print)
3945 _print_next_block(par_num++,
3946 "SEARCHER");
3947 break;
3948 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
3949 if (print)
3950 _print_next_block(par_num++, "TCM");
3951 break;
3952 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
3953 if (print)
3954 _print_next_block(par_num++, "TSEMI");
3955 break;
3956 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
3957 if (print)
3958 _print_next_block(par_num++, "XPB");
3959 break;
3960 }
3961
3962 /* Clear the bit */
3963 sig &= ~cur_bit;
3964 }
3965 }
3966
3967 return par_num;
3968 }
3969
3970 static inline int bnx2x_check_blocks_with_parity1(u32 sig, int par_num,
3971 bool *global, bool print)
3972 {
3973 int i = 0;
3974 u32 cur_bit = 0;
3975 for (i = 0; sig; i++) {
3976 cur_bit = ((u32)0x1 << i);
3977 if (sig & cur_bit) {
3978 switch (cur_bit) {
3979 case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
3980 if (print)
3981 _print_next_block(par_num++, "PBF");
3982 break;
3983 case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
3984 if (print)
3985 _print_next_block(par_num++, "QM");
3986 break;
3987 case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
3988 if (print)
3989 _print_next_block(par_num++, "TM");
3990 break;
3991 case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
3992 if (print)
3993 _print_next_block(par_num++, "XSDM");
3994 break;
3995 case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
3996 if (print)
3997 _print_next_block(par_num++, "XCM");
3998 break;
3999 case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4000 if (print)
4001 _print_next_block(par_num++, "XSEMI");
4002 break;
4003 case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4004 if (print)
4005 _print_next_block(par_num++,
4006 "DOORBELLQ");
4007 break;
4008 case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4009 if (print)
4010 _print_next_block(par_num++, "NIG");
4011 break;
4012 case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4013 if (print)
4014 _print_next_block(par_num++,
4015 "VAUX PCI CORE");
4016 *global = true;
4017 break;
4018 case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4019 if (print)
4020 _print_next_block(par_num++, "DEBUG");
4021 break;
4022 case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4023 if (print)
4024 _print_next_block(par_num++, "USDM");
4025 break;
4026 case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4027 if (print)
4028 _print_next_block(par_num++, "UCM");
4029 break;
4030 case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4031 if (print)
4032 _print_next_block(par_num++, "USEMI");
4033 break;
4034 case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4035 if (print)
4036 _print_next_block(par_num++, "UPB");
4037 break;
4038 case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4039 if (print)
4040 _print_next_block(par_num++, "CSDM");
4041 break;
4042 case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4043 if (print)
4044 _print_next_block(par_num++, "CCM");
4045 break;
4046 }
4047
4048 /* Clear the bit */
4049 sig &= ~cur_bit;
4050 }
4051 }
4052
4053 return par_num;
4054 }
4055
4056 static inline int bnx2x_check_blocks_with_parity2(u32 sig, int par_num,
4057 bool print)
4058 {
4059 int i = 0;
4060 u32 cur_bit = 0;
4061 for (i = 0; sig; i++) {
4062 cur_bit = ((u32)0x1 << i);
4063 if (sig & cur_bit) {
4064 switch (cur_bit) {
4065 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4066 if (print)
4067 _print_next_block(par_num++, "CSEMI");
4068 break;
4069 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4070 if (print)
4071 _print_next_block(par_num++, "PXP");
4072 break;
4073 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4074 if (print)
4075 _print_next_block(par_num++,
4076 "PXPPCICLOCKCLIENT");
4077 break;
4078 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4079 if (print)
4080 _print_next_block(par_num++, "CFC");
4081 break;
4082 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4083 if (print)
4084 _print_next_block(par_num++, "CDU");
4085 break;
4086 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4087 if (print)
4088 _print_next_block(par_num++, "DMAE");
4089 break;
4090 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4091 if (print)
4092 _print_next_block(par_num++, "IGU");
4093 break;
4094 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4095 if (print)
4096 _print_next_block(par_num++, "MISC");
4097 break;
4098 }
4099
4100 /* Clear the bit */
4101 sig &= ~cur_bit;
4102 }
4103 }
4104
4105 return par_num;
4106 }
4107
4108 static inline int bnx2x_check_blocks_with_parity3(u32 sig, int par_num,
4109 bool *global, bool print)
4110 {
4111 int i = 0;
4112 u32 cur_bit = 0;
4113 for (i = 0; sig; i++) {
4114 cur_bit = ((u32)0x1 << i);
4115 if (sig & cur_bit) {
4116 switch (cur_bit) {
4117 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4118 if (print)
4119 _print_next_block(par_num++, "MCP ROM");
4120 *global = true;
4121 break;
4122 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4123 if (print)
4124 _print_next_block(par_num++,
4125 "MCP UMP RX");
4126 *global = true;
4127 break;
4128 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4129 if (print)
4130 _print_next_block(par_num++,
4131 "MCP UMP TX");
4132 *global = true;
4133 break;
4134 case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4135 if (print)
4136 _print_next_block(par_num++,
4137 "MCP SCPAD");
4138 *global = true;
4139 break;
4140 }
4141
4142 /* Clear the bit */
4143 sig &= ~cur_bit;
4144 }
4145 }
4146
4147 return par_num;
4148 }
4149
4150 static inline int bnx2x_check_blocks_with_parity4(u32 sig, int par_num,
4151 bool print)
4152 {
4153 int i = 0;
4154 u32 cur_bit = 0;
4155 for (i = 0; sig; i++) {
4156 cur_bit = ((u32)0x1 << i);
4157 if (sig & cur_bit) {
4158 switch (cur_bit) {
4159 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4160 if (print)
4161 _print_next_block(par_num++, "PGLUE_B");
4162 break;
4163 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4164 if (print)
4165 _print_next_block(par_num++, "ATC");
4166 break;
4167 }
4168
4169 /* Clear the bit */
4170 sig &= ~cur_bit;
4171 }
4172 }
4173
4174 return par_num;
4175 }
4176
4177 static inline bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4178 u32 *sig)
4179 {
4180 if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4181 (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4182 (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4183 (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4184 (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4185 int par_num = 0;
4186 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention: "
4187 "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x "
4188 "[4]:0x%08x\n",
4189 sig[0] & HW_PRTY_ASSERT_SET_0,
4190 sig[1] & HW_PRTY_ASSERT_SET_1,
4191 sig[2] & HW_PRTY_ASSERT_SET_2,
4192 sig[3] & HW_PRTY_ASSERT_SET_3,
4193 sig[4] & HW_PRTY_ASSERT_SET_4);
4194 if (print)
4195 netdev_err(bp->dev,
4196 "Parity errors detected in blocks: ");
4197 par_num = bnx2x_check_blocks_with_parity0(
4198 sig[0] & HW_PRTY_ASSERT_SET_0, par_num, print);
4199 par_num = bnx2x_check_blocks_with_parity1(
4200 sig[1] & HW_PRTY_ASSERT_SET_1, par_num, global, print);
4201 par_num = bnx2x_check_blocks_with_parity2(
4202 sig[2] & HW_PRTY_ASSERT_SET_2, par_num, print);
4203 par_num = bnx2x_check_blocks_with_parity3(
4204 sig[3] & HW_PRTY_ASSERT_SET_3, par_num, global, print);
4205 par_num = bnx2x_check_blocks_with_parity4(
4206 sig[4] & HW_PRTY_ASSERT_SET_4, par_num, print);
4207
4208 if (print)
4209 pr_cont("\n");
4210
4211 return true;
4212 } else
4213 return false;
4214 }
4215
4216 /**
4217 * bnx2x_chk_parity_attn - checks for parity attentions.
4218 *
4219 * @bp: driver handle
4220 * @global: true if there was a global attention
4221 * @print: show parity attention in syslog
4222 */
4223 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4224 {
4225 struct attn_route attn = { {0} };
4226 int port = BP_PORT(bp);
4227
4228 attn.sig[0] = REG_RD(bp,
4229 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4230 port*4);
4231 attn.sig[1] = REG_RD(bp,
4232 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4233 port*4);
4234 attn.sig[2] = REG_RD(bp,
4235 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4236 port*4);
4237 attn.sig[3] = REG_RD(bp,
4238 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4239 port*4);
4240
4241 if (!CHIP_IS_E1x(bp))
4242 attn.sig[4] = REG_RD(bp,
4243 MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4244 port*4);
4245
4246 return bnx2x_parity_attn(bp, global, print, attn.sig);
4247 }
4248
4249
4250 static inline void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4251 {
4252 u32 val;
4253 if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4254
4255 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4256 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4257 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4258 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4259 "ADDRESS_ERROR\n");
4260 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4261 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4262 "INCORRECT_RCV_BEHAVIOR\n");
4263 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4264 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4265 "WAS_ERROR_ATTN\n");
4266 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4267 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4268 "VF_LENGTH_VIOLATION_ATTN\n");
4269 if (val &
4270 PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4271 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4272 "VF_GRC_SPACE_VIOLATION_ATTN\n");
4273 if (val &
4274 PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4275 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4276 "VF_MSIX_BAR_VIOLATION_ATTN\n");
4277 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4278 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4279 "TCPL_ERROR_ATTN\n");
4280 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4281 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4282 "TCPL_IN_TWO_RCBS_ATTN\n");
4283 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4284 BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_"
4285 "CSSNOOP_FIFO_OVERFLOW\n");
4286 }
4287 if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4288 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4289 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4290 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4291 BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4292 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4293 BNX2X_ERR("ATC_ATC_INT_STS_REG"
4294 "_ATC_TCPL_TO_NOT_PEND\n");
4295 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4296 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4297 "ATC_GPA_MULTIPLE_HITS\n");
4298 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4299 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4300 "ATC_RCPL_TO_EMPTY_CNT\n");
4301 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4302 BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4303 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4304 BNX2X_ERR("ATC_ATC_INT_STS_REG_"
4305 "ATC_IREQ_LESS_THAN_STU\n");
4306 }
4307
4308 if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4309 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4310 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4311 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4312 AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4313 }
4314
4315 }
4316
4317 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4318 {
4319 struct attn_route attn, *group_mask;
4320 int port = BP_PORT(bp);
4321 int index;
4322 u32 reg_addr;
4323 u32 val;
4324 u32 aeu_mask;
4325 bool global = false;
4326
4327 /* need to take HW lock because MCP or other port might also
4328 try to handle this event */
4329 bnx2x_acquire_alr(bp);
4330
4331 if (bnx2x_chk_parity_attn(bp, &global, true)) {
4332 #ifndef BNX2X_STOP_ON_ERROR
4333 bp->recovery_state = BNX2X_RECOVERY_INIT;
4334 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4335 /* Disable HW interrupts */
4336 bnx2x_int_disable(bp);
4337 /* In case of parity errors don't handle attentions so that
4338 * other function would "see" parity errors.
4339 */
4340 #else
4341 bnx2x_panic();
4342 #endif
4343 bnx2x_release_alr(bp);
4344 return;
4345 }
4346
4347 attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4348 attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4349 attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4350 attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4351 if (!CHIP_IS_E1x(bp))
4352 attn.sig[4] =
4353 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4354 else
4355 attn.sig[4] = 0;
4356
4357 DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4358 attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4359
4360 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4361 if (deasserted & (1 << index)) {
4362 group_mask = &bp->attn_group[index];
4363
4364 DP(NETIF_MSG_HW, "group[%d]: %08x %08x "
4365 "%08x %08x %08x\n",
4366 index,
4367 group_mask->sig[0], group_mask->sig[1],
4368 group_mask->sig[2], group_mask->sig[3],
4369 group_mask->sig[4]);
4370
4371 bnx2x_attn_int_deasserted4(bp,
4372 attn.sig[4] & group_mask->sig[4]);
4373 bnx2x_attn_int_deasserted3(bp,
4374 attn.sig[3] & group_mask->sig[3]);
4375 bnx2x_attn_int_deasserted1(bp,
4376 attn.sig[1] & group_mask->sig[1]);
4377 bnx2x_attn_int_deasserted2(bp,
4378 attn.sig[2] & group_mask->sig[2]);
4379 bnx2x_attn_int_deasserted0(bp,
4380 attn.sig[0] & group_mask->sig[0]);
4381 }
4382 }
4383
4384 bnx2x_release_alr(bp);
4385
4386 if (bp->common.int_block == INT_BLOCK_HC)
4387 reg_addr = (HC_REG_COMMAND_REG + port*32 +
4388 COMMAND_REG_ATTN_BITS_CLR);
4389 else
4390 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
4391
4392 val = ~deasserted;
4393 DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
4394 (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
4395 REG_WR(bp, reg_addr, val);
4396
4397 if (~bp->attn_state & deasserted)
4398 BNX2X_ERR("IGU ERROR\n");
4399
4400 reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
4401 MISC_REG_AEU_MASK_ATTN_FUNC_0;
4402
4403 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4404 aeu_mask = REG_RD(bp, reg_addr);
4405
4406 DP(NETIF_MSG_HW, "aeu_mask %x newly deasserted %x\n",
4407 aeu_mask, deasserted);
4408 aeu_mask |= (deasserted & 0x3ff);
4409 DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
4410
4411 REG_WR(bp, reg_addr, aeu_mask);
4412 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
4413
4414 DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
4415 bp->attn_state &= ~deasserted;
4416 DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
4417 }
4418
4419 static void bnx2x_attn_int(struct bnx2x *bp)
4420 {
4421 /* read local copy of bits */
4422 u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
4423 attn_bits);
4424 u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
4425 attn_bits_ack);
4426 u32 attn_state = bp->attn_state;
4427
4428 /* look for changed bits */
4429 u32 asserted = attn_bits & ~attn_ack & ~attn_state;
4430 u32 deasserted = ~attn_bits & attn_ack & attn_state;
4431
4432 DP(NETIF_MSG_HW,
4433 "attn_bits %x attn_ack %x asserted %x deasserted %x\n",
4434 attn_bits, attn_ack, asserted, deasserted);
4435
4436 if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
4437 BNX2X_ERR("BAD attention state\n");
4438
4439 /* handle bits that were raised */
4440 if (asserted)
4441 bnx2x_attn_int_asserted(bp, asserted);
4442
4443 if (deasserted)
4444 bnx2x_attn_int_deasserted(bp, deasserted);
4445 }
4446
4447 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
4448 u16 index, u8 op, u8 update)
4449 {
4450 u32 igu_addr = BAR_IGU_INTMEM + (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
4451
4452 bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
4453 igu_addr);
4454 }
4455
4456 static inline void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
4457 {
4458 /* No memory barriers */
4459 storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
4460 mmiowb(); /* keep prod updates ordered */
4461 }
4462
4463 #ifdef BCM_CNIC
4464 static int bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
4465 union event_ring_elem *elem)
4466 {
4467 u8 err = elem->message.error;
4468
4469 if (!bp->cnic_eth_dev.starting_cid ||
4470 (cid < bp->cnic_eth_dev.starting_cid &&
4471 cid != bp->cnic_eth_dev.iscsi_l2_cid))
4472 return 1;
4473
4474 DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
4475
4476 if (unlikely(err)) {
4477
4478 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
4479 cid);
4480 bnx2x_panic_dump(bp);
4481 }
4482 bnx2x_cnic_cfc_comp(bp, cid, err);
4483 return 0;
4484 }
4485 #endif
4486
4487 static inline void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
4488 {
4489 struct bnx2x_mcast_ramrod_params rparam;
4490 int rc;
4491
4492 memset(&rparam, 0, sizeof(rparam));
4493
4494 rparam.mcast_obj = &bp->mcast_obj;
4495
4496 netif_addr_lock_bh(bp->dev);
4497
4498 /* Clear pending state for the last command */
4499 bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
4500
4501 /* If there are pending mcast commands - send them */
4502 if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
4503 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
4504 if (rc < 0)
4505 BNX2X_ERR("Failed to send pending mcast commands: %d\n",
4506 rc);
4507 }
4508
4509 netif_addr_unlock_bh(bp->dev);
4510 }
4511
4512 static inline void bnx2x_handle_classification_eqe(struct bnx2x *bp,
4513 union event_ring_elem *elem)
4514 {
4515 unsigned long ramrod_flags = 0;
4516 int rc = 0;
4517 u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
4518 struct bnx2x_vlan_mac_obj *vlan_mac_obj;
4519
4520 /* Always push next commands out, don't wait here */
4521 __set_bit(RAMROD_CONT, &ramrod_flags);
4522
4523 switch (elem->message.data.eth_event.echo >> BNX2X_SWCID_SHIFT) {
4524 case BNX2X_FILTER_MAC_PENDING:
4525 #ifdef BCM_CNIC
4526 if (cid == BNX2X_ISCSI_ETH_CID)
4527 vlan_mac_obj = &bp->iscsi_l2_mac_obj;
4528 else
4529 #endif
4530 vlan_mac_obj = &bp->fp[cid].mac_obj;
4531
4532 break;
4533 case BNX2X_FILTER_MCAST_PENDING:
4534 /* This is only relevant for 57710 where multicast MACs are
4535 * configured as unicast MACs using the same ramrod.
4536 */
4537 bnx2x_handle_mcast_eqe(bp);
4538 return;
4539 default:
4540 BNX2X_ERR("Unsupported classification command: %d\n",
4541 elem->message.data.eth_event.echo);
4542 return;
4543 }
4544
4545 rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
4546
4547 if (rc < 0)
4548 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
4549 else if (rc > 0)
4550 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
4551
4552 }
4553
4554 #ifdef BCM_CNIC
4555 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
4556 #endif
4557
4558 static inline void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
4559 {
4560 netif_addr_lock_bh(bp->dev);
4561
4562 clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
4563
4564 /* Send rx_mode command again if was requested */
4565 if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
4566 bnx2x_set_storm_rx_mode(bp);
4567 #ifdef BCM_CNIC
4568 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
4569 &bp->sp_state))
4570 bnx2x_set_iscsi_eth_rx_mode(bp, true);
4571 else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
4572 &bp->sp_state))
4573 bnx2x_set_iscsi_eth_rx_mode(bp, false);
4574 #endif
4575
4576 netif_addr_unlock_bh(bp->dev);
4577 }
4578
4579 static inline struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
4580 struct bnx2x *bp, u32 cid)
4581 {
4582 DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
4583 #ifdef BCM_CNIC
4584 if (cid == BNX2X_FCOE_ETH_CID)
4585 return &bnx2x_fcoe(bp, q_obj);
4586 else
4587 #endif
4588 return &bnx2x_fp(bp, CID_TO_FP(cid), q_obj);
4589 }
4590
4591 static void bnx2x_eq_int(struct bnx2x *bp)
4592 {
4593 u16 hw_cons, sw_cons, sw_prod;
4594 union event_ring_elem *elem;
4595 u32 cid;
4596 u8 opcode;
4597 int spqe_cnt = 0;
4598 struct bnx2x_queue_sp_obj *q_obj;
4599 struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
4600 struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
4601
4602 hw_cons = le16_to_cpu(*bp->eq_cons_sb);
4603
4604 /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
4605 * when we get the the next-page we nned to adjust so the loop
4606 * condition below will be met. The next element is the size of a
4607 * regular element and hence incrementing by 1
4608 */
4609 if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
4610 hw_cons++;
4611
4612 /* This function may never run in parallel with itself for a
4613 * specific bp, thus there is no need in "paired" read memory
4614 * barrier here.
4615 */
4616 sw_cons = bp->eq_cons;
4617 sw_prod = bp->eq_prod;
4618
4619 DP(BNX2X_MSG_SP, "EQ: hw_cons %u sw_cons %u bp->eq_spq_left %x\n",
4620 hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
4621
4622 for (; sw_cons != hw_cons;
4623 sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
4624
4625
4626 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
4627
4628 cid = SW_CID(elem->message.data.cfc_del_event.cid);
4629 opcode = elem->message.opcode;
4630
4631
4632 /* handle eq element */
4633 switch (opcode) {
4634 case EVENT_RING_OPCODE_STAT_QUERY:
4635 DP(NETIF_MSG_TIMER, "got statistics comp event %d\n",
4636 bp->stats_comp++);
4637 /* nothing to do with stats comp */
4638 goto next_spqe;
4639
4640 case EVENT_RING_OPCODE_CFC_DEL:
4641 /* handle according to cid range */
4642 /*
4643 * we may want to verify here that the bp state is
4644 * HALTING
4645 */
4646 DP(BNX2X_MSG_SP,
4647 "got delete ramrod for MULTI[%d]\n", cid);
4648 #ifdef BCM_CNIC
4649 if (!bnx2x_cnic_handle_cfc_del(bp, cid, elem))
4650 goto next_spqe;
4651 #endif
4652 q_obj = bnx2x_cid_to_q_obj(bp, cid);
4653
4654 if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
4655 break;
4656
4657
4658
4659 goto next_spqe;
4660
4661 case EVENT_RING_OPCODE_STOP_TRAFFIC:
4662 DP(BNX2X_MSG_SP, "got STOP TRAFFIC\n");
4663 if (f_obj->complete_cmd(bp, f_obj,
4664 BNX2X_F_CMD_TX_STOP))
4665 break;
4666 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
4667 goto next_spqe;
4668
4669 case EVENT_RING_OPCODE_START_TRAFFIC:
4670 DP(BNX2X_MSG_SP, "got START TRAFFIC\n");
4671 if (f_obj->complete_cmd(bp, f_obj,
4672 BNX2X_F_CMD_TX_START))
4673 break;
4674 bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
4675 goto next_spqe;
4676 case EVENT_RING_OPCODE_FUNCTION_START:
4677 DP(BNX2X_MSG_SP, "got FUNC_START ramrod\n");
4678 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
4679 break;
4680
4681 goto next_spqe;
4682
4683 case EVENT_RING_OPCODE_FUNCTION_STOP:
4684 DP(BNX2X_MSG_SP, "got FUNC_STOP ramrod\n");
4685 if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
4686 break;
4687
4688 goto next_spqe;
4689 }
4690
4691 switch (opcode | bp->state) {
4692 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4693 BNX2X_STATE_OPEN):
4694 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
4695 BNX2X_STATE_OPENING_WAIT4_PORT):
4696 cid = elem->message.data.eth_event.echo &
4697 BNX2X_SWCID_MASK;
4698 DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
4699 cid);
4700 rss_raw->clear_pending(rss_raw);
4701 break;
4702
4703 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
4704 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
4705 case (EVENT_RING_OPCODE_SET_MAC |
4706 BNX2X_STATE_CLOSING_WAIT4_HALT):
4707 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4708 BNX2X_STATE_OPEN):
4709 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4710 BNX2X_STATE_DIAG):
4711 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
4712 BNX2X_STATE_CLOSING_WAIT4_HALT):
4713 DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
4714 bnx2x_handle_classification_eqe(bp, elem);
4715 break;
4716
4717 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4718 BNX2X_STATE_OPEN):
4719 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4720 BNX2X_STATE_DIAG):
4721 case (EVENT_RING_OPCODE_MULTICAST_RULES |
4722 BNX2X_STATE_CLOSING_WAIT4_HALT):
4723 DP(BNX2X_MSG_SP, "got mcast ramrod\n");
4724 bnx2x_handle_mcast_eqe(bp);
4725 break;
4726
4727 case (EVENT_RING_OPCODE_FILTERS_RULES |
4728 BNX2X_STATE_OPEN):
4729 case (EVENT_RING_OPCODE_FILTERS_RULES |
4730 BNX2X_STATE_DIAG):
4731 case (EVENT_RING_OPCODE_FILTERS_RULES |
4732 BNX2X_STATE_CLOSING_WAIT4_HALT):
4733 DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
4734 bnx2x_handle_rx_mode_eqe(bp);
4735 break;
4736 default:
4737 /* unknown event log error and continue */
4738 BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
4739 elem->message.opcode, bp->state);
4740 }
4741 next_spqe:
4742 spqe_cnt++;
4743 } /* for */
4744
4745 smp_mb__before_atomic_inc();
4746 atomic_add(spqe_cnt, &bp->eq_spq_left);
4747
4748 bp->eq_cons = sw_cons;
4749 bp->eq_prod = sw_prod;
4750 /* Make sure that above mem writes were issued towards the memory */
4751 smp_wmb();
4752
4753 /* update producer */
4754 bnx2x_update_eq_prod(bp, bp->eq_prod);
4755 }
4756
4757 static void bnx2x_sp_task(struct work_struct *work)
4758 {
4759 struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
4760 u16 status;
4761
4762 status = bnx2x_update_dsb_idx(bp);
4763 /* if (status == 0) */
4764 /* BNX2X_ERR("spurious slowpath interrupt!\n"); */
4765
4766 DP(NETIF_MSG_INTR, "got a slowpath interrupt (status 0x%x)\n", status);
4767
4768 /* HW attentions */
4769 if (status & BNX2X_DEF_SB_ATT_IDX) {
4770 bnx2x_attn_int(bp);
4771 status &= ~BNX2X_DEF_SB_ATT_IDX;
4772 }
4773
4774 /* SP events: STAT_QUERY and others */
4775 if (status & BNX2X_DEF_SB_IDX) {
4776 #ifdef BCM_CNIC
4777 struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
4778
4779 if ((!NO_FCOE(bp)) &&
4780 (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
4781 /*
4782 * Prevent local bottom-halves from running as
4783 * we are going to change the local NAPI list.
4784 */
4785 local_bh_disable();
4786 napi_schedule(&bnx2x_fcoe(bp, napi));
4787 local_bh_enable();
4788 }
4789 #endif
4790 /* Handle EQ completions */
4791 bnx2x_eq_int(bp);
4792
4793 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
4794 le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
4795
4796 status &= ~BNX2X_DEF_SB_IDX;
4797 }
4798
4799 if (unlikely(status))
4800 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
4801 status);
4802
4803 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
4804 le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
4805 }
4806
4807 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
4808 {
4809 struct net_device *dev = dev_instance;
4810 struct bnx2x *bp = netdev_priv(dev);
4811
4812 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
4813 IGU_INT_DISABLE, 0);
4814
4815 #ifdef BNX2X_STOP_ON_ERROR
4816 if (unlikely(bp->panic))
4817 return IRQ_HANDLED;
4818 #endif
4819
4820 #ifdef BCM_CNIC
4821 {
4822 struct cnic_ops *c_ops;
4823
4824 rcu_read_lock();
4825 c_ops = rcu_dereference(bp->cnic_ops);
4826 if (c_ops)
4827 c_ops->cnic_handler(bp->cnic_data, NULL);
4828 rcu_read_unlock();
4829 }
4830 #endif
4831 queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
4832
4833 return IRQ_HANDLED;
4834 }
4835
4836 /* end of slow path */
4837
4838
4839 void bnx2x_drv_pulse(struct bnx2x *bp)
4840 {
4841 SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
4842 bp->fw_drv_pulse_wr_seq);
4843 }
4844
4845
4846 static void bnx2x_timer(unsigned long data)
4847 {
4848 u8 cos;
4849 struct bnx2x *bp = (struct bnx2x *) data;
4850
4851 if (!netif_running(bp->dev))
4852 return;
4853
4854 if (poll) {
4855 struct bnx2x_fastpath *fp = &bp->fp[0];
4856
4857 for_each_cos_in_tx_queue(fp, cos)
4858 bnx2x_tx_int(bp, &fp->txdata[cos]);
4859 bnx2x_rx_int(fp, 1000);
4860 }
4861
4862 if (!BP_NOMCP(bp)) {
4863 int mb_idx = BP_FW_MB_IDX(bp);
4864 u32 drv_pulse;
4865 u32 mcp_pulse;
4866
4867 ++bp->fw_drv_pulse_wr_seq;
4868 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
4869 /* TBD - add SYSTEM_TIME */
4870 drv_pulse = bp->fw_drv_pulse_wr_seq;
4871 bnx2x_drv_pulse(bp);
4872
4873 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
4874 MCP_PULSE_SEQ_MASK);
4875 /* The delta between driver pulse and mcp response
4876 * should be 1 (before mcp response) or 0 (after mcp response)
4877 */
4878 if ((drv_pulse != mcp_pulse) &&
4879 (drv_pulse != ((mcp_pulse + 1) & MCP_PULSE_SEQ_MASK))) {
4880 /* someone lost a heartbeat... */
4881 BNX2X_ERR("drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
4882 drv_pulse, mcp_pulse);
4883 }
4884 }
4885
4886 if (bp->state == BNX2X_STATE_OPEN)
4887 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
4888
4889 mod_timer(&bp->timer, jiffies + bp->current_interval);
4890 }
4891
4892 /* end of Statistics */
4893
4894 /* nic init */
4895
4896 /*
4897 * nic init service functions
4898 */
4899
4900 static inline void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
4901 {
4902 u32 i;
4903 if (!(len%4) && !(addr%4))
4904 for (i = 0; i < len; i += 4)
4905 REG_WR(bp, addr + i, fill);
4906 else
4907 for (i = 0; i < len; i++)
4908 REG_WR8(bp, addr + i, fill);
4909
4910 }
4911
4912 /* helper: writes FP SP data to FW - data_size in dwords */
4913 static inline void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
4914 int fw_sb_id,
4915 u32 *sb_data_p,
4916 u32 data_size)
4917 {
4918 int index;
4919 for (index = 0; index < data_size; index++)
4920 REG_WR(bp, BAR_CSTRORM_INTMEM +
4921 CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
4922 sizeof(u32)*index,
4923 *(sb_data_p + index));
4924 }
4925
4926 static inline void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
4927 {
4928 u32 *sb_data_p;
4929 u32 data_size = 0;
4930 struct hc_status_block_data_e2 sb_data_e2;
4931 struct hc_status_block_data_e1x sb_data_e1x;
4932
4933 /* disable the function first */
4934 if (!CHIP_IS_E1x(bp)) {
4935 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
4936 sb_data_e2.common.state = SB_DISABLED;
4937 sb_data_e2.common.p_func.vf_valid = false;
4938 sb_data_p = (u32 *)&sb_data_e2;
4939 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
4940 } else {
4941 memset(&sb_data_e1x, 0,
4942 sizeof(struct hc_status_block_data_e1x));
4943 sb_data_e1x.common.state = SB_DISABLED;
4944 sb_data_e1x.common.p_func.vf_valid = false;
4945 sb_data_p = (u32 *)&sb_data_e1x;
4946 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
4947 }
4948 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
4949
4950 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4951 CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
4952 CSTORM_STATUS_BLOCK_SIZE);
4953 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4954 CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
4955 CSTORM_SYNC_BLOCK_SIZE);
4956 }
4957
4958 /* helper: writes SP SB data to FW */
4959 static inline void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
4960 struct hc_sp_status_block_data *sp_sb_data)
4961 {
4962 int func = BP_FUNC(bp);
4963 int i;
4964 for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
4965 REG_WR(bp, BAR_CSTRORM_INTMEM +
4966 CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
4967 i*sizeof(u32),
4968 *((u32 *)sp_sb_data + i));
4969 }
4970
4971 static inline void bnx2x_zero_sp_sb(struct bnx2x *bp)
4972 {
4973 int func = BP_FUNC(bp);
4974 struct hc_sp_status_block_data sp_sb_data;
4975 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
4976
4977 sp_sb_data.state = SB_DISABLED;
4978 sp_sb_data.p_func.vf_valid = false;
4979
4980 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
4981
4982 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4983 CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
4984 CSTORM_SP_STATUS_BLOCK_SIZE);
4985 bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
4986 CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
4987 CSTORM_SP_SYNC_BLOCK_SIZE);
4988
4989 }
4990
4991
4992 static inline
4993 void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
4994 int igu_sb_id, int igu_seg_id)
4995 {
4996 hc_sm->igu_sb_id = igu_sb_id;
4997 hc_sm->igu_seg_id = igu_seg_id;
4998 hc_sm->timer_value = 0xFF;
4999 hc_sm->time_to_expire = 0xFFFFFFFF;
5000 }
5001
5002
5003 /* allocates state machine ids. */
5004 static inline
5005 void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5006 {
5007 /* zero out state machine indices */
5008 /* rx indices */
5009 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5010
5011 /* tx indices */
5012 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5013 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5014 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5015 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5016
5017 /* map indices */
5018 /* rx indices */
5019 index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5020 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5021
5022 /* tx indices */
5023 index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5024 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5025 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5026 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5027 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5028 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5029 index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5030 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5031 }
5032
5033 static void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5034 u8 vf_valid, int fw_sb_id, int igu_sb_id)
5035 {
5036 int igu_seg_id;
5037
5038 struct hc_status_block_data_e2 sb_data_e2;
5039 struct hc_status_block_data_e1x sb_data_e1x;
5040 struct hc_status_block_sm *hc_sm_p;
5041 int data_size;
5042 u32 *sb_data_p;
5043
5044 if (CHIP_INT_MODE_IS_BC(bp))
5045 igu_seg_id = HC_SEG_ACCESS_NORM;
5046 else
5047 igu_seg_id = IGU_SEG_ACCESS_NORM;
5048
5049 bnx2x_zero_fp_sb(bp, fw_sb_id);
5050
5051 if (!CHIP_IS_E1x(bp)) {
5052 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5053 sb_data_e2.common.state = SB_ENABLED;
5054 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5055 sb_data_e2.common.p_func.vf_id = vfid;
5056 sb_data_e2.common.p_func.vf_valid = vf_valid;
5057 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5058 sb_data_e2.common.same_igu_sb_1b = true;
5059 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5060 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5061 hc_sm_p = sb_data_e2.common.state_machine;
5062 sb_data_p = (u32 *)&sb_data_e2;
5063 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5064 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5065 } else {
5066 memset(&sb_data_e1x, 0,
5067 sizeof(struct hc_status_block_data_e1x));
5068 sb_data_e1x.common.state = SB_ENABLED;
5069 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5070 sb_data_e1x.common.p_func.vf_id = 0xff;
5071 sb_data_e1x.common.p_func.vf_valid = false;
5072 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5073 sb_data_e1x.common.same_igu_sb_1b = true;
5074 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5075 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5076 hc_sm_p = sb_data_e1x.common.state_machine;
5077 sb_data_p = (u32 *)&sb_data_e1x;
5078 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5079 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5080 }
5081
5082 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5083 igu_sb_id, igu_seg_id);
5084 bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5085 igu_sb_id, igu_seg_id);
5086
5087 DP(NETIF_MSG_HW, "Init FW SB %d\n", fw_sb_id);
5088
5089 /* write indecies to HW */
5090 bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5091 }
5092
5093 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5094 u16 tx_usec, u16 rx_usec)
5095 {
5096 bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5097 false, rx_usec);
5098 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5099 HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5100 tx_usec);
5101 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5102 HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5103 tx_usec);
5104 bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5105 HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5106 tx_usec);
5107 }
5108
5109 static void bnx2x_init_def_sb(struct bnx2x *bp)
5110 {
5111 struct host_sp_status_block *def_sb = bp->def_status_blk;
5112 dma_addr_t mapping = bp->def_status_blk_mapping;
5113 int igu_sp_sb_index;
5114 int igu_seg_id;
5115 int port = BP_PORT(bp);
5116 int func = BP_FUNC(bp);
5117 int reg_offset, reg_offset_en5;
5118 u64 section;
5119 int index;
5120 struct hc_sp_status_block_data sp_sb_data;
5121 memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5122
5123 if (CHIP_INT_MODE_IS_BC(bp)) {
5124 igu_sp_sb_index = DEF_SB_IGU_ID;
5125 igu_seg_id = HC_SEG_ACCESS_DEF;
5126 } else {
5127 igu_sp_sb_index = bp->igu_dsb_id;
5128 igu_seg_id = IGU_SEG_ACCESS_DEF;
5129 }
5130
5131 /* ATTN */
5132 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5133 atten_status_block);
5134 def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5135
5136 bp->attn_state = 0;
5137
5138 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5139 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5140 reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5141 MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5142 for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5143 int sindex;
5144 /* take care of sig[0]..sig[4] */
5145 for (sindex = 0; sindex < 4; sindex++)
5146 bp->attn_group[index].sig[sindex] =
5147 REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5148
5149 if (!CHIP_IS_E1x(bp))
5150 /*
5151 * enable5 is separate from the rest of the registers,
5152 * and therefore the address skip is 4
5153 * and not 16 between the different groups
5154 */
5155 bp->attn_group[index].sig[4] = REG_RD(bp,
5156 reg_offset_en5 + 0x4*index);
5157 else
5158 bp->attn_group[index].sig[4] = 0;
5159 }
5160
5161 if (bp->common.int_block == INT_BLOCK_HC) {
5162 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5163 HC_REG_ATTN_MSG0_ADDR_L);
5164
5165 REG_WR(bp, reg_offset, U64_LO(section));
5166 REG_WR(bp, reg_offset + 4, U64_HI(section));
5167 } else if (!CHIP_IS_E1x(bp)) {
5168 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5169 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5170 }
5171
5172 section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5173 sp_sb);
5174
5175 bnx2x_zero_sp_sb(bp);
5176
5177 sp_sb_data.state = SB_ENABLED;
5178 sp_sb_data.host_sb_addr.lo = U64_LO(section);
5179 sp_sb_data.host_sb_addr.hi = U64_HI(section);
5180 sp_sb_data.igu_sb_id = igu_sp_sb_index;
5181 sp_sb_data.igu_seg_id = igu_seg_id;
5182 sp_sb_data.p_func.pf_id = func;
5183 sp_sb_data.p_func.vnic_id = BP_VN(bp);
5184 sp_sb_data.p_func.vf_id = 0xff;
5185
5186 bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5187
5188 bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5189 }
5190
5191 void bnx2x_update_coalesce(struct bnx2x *bp)
5192 {
5193 int i;
5194
5195 for_each_eth_queue(bp, i)
5196 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5197 bp->tx_ticks, bp->rx_ticks);
5198 }
5199
5200 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5201 {
5202 spin_lock_init(&bp->spq_lock);
5203 atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5204
5205 bp->spq_prod_idx = 0;
5206 bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5207 bp->spq_prod_bd = bp->spq;
5208 bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5209 }
5210
5211 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5212 {
5213 int i;
5214 for (i = 1; i <= NUM_EQ_PAGES; i++) {
5215 union event_ring_elem *elem =
5216 &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5217
5218 elem->next_page.addr.hi =
5219 cpu_to_le32(U64_HI(bp->eq_mapping +
5220 BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5221 elem->next_page.addr.lo =
5222 cpu_to_le32(U64_LO(bp->eq_mapping +
5223 BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5224 }
5225 bp->eq_cons = 0;
5226 bp->eq_prod = NUM_EQ_DESC;
5227 bp->eq_cons_sb = BNX2X_EQ_INDEX;
5228 /* we want a warning message before it gets rought... */
5229 atomic_set(&bp->eq_spq_left,
5230 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5231 }
5232
5233
5234 /* called with netif_addr_lock_bh() */
5235 void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5236 unsigned long rx_mode_flags,
5237 unsigned long rx_accept_flags,
5238 unsigned long tx_accept_flags,
5239 unsigned long ramrod_flags)
5240 {
5241 struct bnx2x_rx_mode_ramrod_params ramrod_param;
5242 int rc;
5243
5244 memset(&ramrod_param, 0, sizeof(ramrod_param));
5245
5246 /* Prepare ramrod parameters */
5247 ramrod_param.cid = 0;
5248 ramrod_param.cl_id = cl_id;
5249 ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
5250 ramrod_param.func_id = BP_FUNC(bp);
5251
5252 ramrod_param.pstate = &bp->sp_state;
5253 ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
5254
5255 ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
5256 ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
5257
5258 set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5259
5260 ramrod_param.ramrod_flags = ramrod_flags;
5261 ramrod_param.rx_mode_flags = rx_mode_flags;
5262
5263 ramrod_param.rx_accept_flags = rx_accept_flags;
5264 ramrod_param.tx_accept_flags = tx_accept_flags;
5265
5266 rc = bnx2x_config_rx_mode(bp, &ramrod_param);
5267 if (rc < 0) {
5268 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
5269 return;
5270 }
5271 }
5272
5273 /* called with netif_addr_lock_bh() */
5274 void bnx2x_set_storm_rx_mode(struct bnx2x *bp)
5275 {
5276 unsigned long rx_mode_flags = 0, ramrod_flags = 0;
5277 unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
5278
5279 #ifdef BCM_CNIC
5280 if (!NO_FCOE(bp))
5281
5282 /* Configure rx_mode of FCoE Queue */
5283 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
5284 #endif
5285
5286 switch (bp->rx_mode) {
5287 case BNX2X_RX_MODE_NONE:
5288 /*
5289 * 'drop all' supersedes any accept flags that may have been
5290 * passed to the function.
5291 */
5292 break;
5293 case BNX2X_RX_MODE_NORMAL:
5294 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5295 __set_bit(BNX2X_ACCEPT_MULTICAST, &rx_accept_flags);
5296 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5297
5298 /* internal switching mode */
5299 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5300 __set_bit(BNX2X_ACCEPT_MULTICAST, &tx_accept_flags);
5301 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5302
5303 break;
5304 case BNX2X_RX_MODE_ALLMULTI:
5305 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5306 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5307 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5308
5309 /* internal switching mode */
5310 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5311 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5312 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5313
5314 break;
5315 case BNX2X_RX_MODE_PROMISC:
5316 /* According to deffinition of SI mode, iface in promisc mode
5317 * should receive matched and unmatched (in resolution of port)
5318 * unicast packets.
5319 */
5320 __set_bit(BNX2X_ACCEPT_UNMATCHED, &rx_accept_flags);
5321 __set_bit(BNX2X_ACCEPT_UNICAST, &rx_accept_flags);
5322 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &rx_accept_flags);
5323 __set_bit(BNX2X_ACCEPT_BROADCAST, &rx_accept_flags);
5324
5325 /* internal switching mode */
5326 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &tx_accept_flags);
5327 __set_bit(BNX2X_ACCEPT_BROADCAST, &tx_accept_flags);
5328
5329 if (IS_MF_SI(bp))
5330 __set_bit(BNX2X_ACCEPT_ALL_UNICAST, &tx_accept_flags);
5331 else
5332 __set_bit(BNX2X_ACCEPT_UNICAST, &tx_accept_flags);
5333
5334 break;
5335 default:
5336 BNX2X_ERR("Unknown rx_mode: %d\n", bp->rx_mode);
5337 return;
5338 }
5339
5340 if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
5341 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &rx_accept_flags);
5342 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &tx_accept_flags);
5343 }
5344
5345 __set_bit(RAMROD_RX, &ramrod_flags);
5346 __set_bit(RAMROD_TX, &ramrod_flags);
5347
5348 bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags, rx_accept_flags,
5349 tx_accept_flags, ramrod_flags);
5350 }
5351
5352 static void bnx2x_init_internal_common(struct bnx2x *bp)
5353 {
5354 int i;
5355
5356 if (IS_MF_SI(bp))
5357 /*
5358 * In switch independent mode, the TSTORM needs to accept
5359 * packets that failed classification, since approximate match
5360 * mac addresses aren't written to NIG LLH
5361 */
5362 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5363 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 2);
5364 else if (!CHIP_IS_E1(bp)) /* 57710 doesn't support MF */
5365 REG_WR8(bp, BAR_TSTRORM_INTMEM +
5366 TSTORM_ACCEPT_CLASSIFY_FAILED_OFFSET, 0);
5367
5368 /* Zero this manually as its initialization is
5369 currently missing in the initTool */
5370 for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
5371 REG_WR(bp, BAR_USTRORM_INTMEM +
5372 USTORM_AGG_DATA_OFFSET + i * 4, 0);
5373 if (!CHIP_IS_E1x(bp)) {
5374 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
5375 CHIP_INT_MODE_IS_BC(bp) ?
5376 HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
5377 }
5378 }
5379
5380 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
5381 {
5382 switch (load_code) {
5383 case FW_MSG_CODE_DRV_LOAD_COMMON:
5384 case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
5385 bnx2x_init_internal_common(bp);
5386 /* no break */
5387
5388 case FW_MSG_CODE_DRV_LOAD_PORT:
5389 /* nothing to do */
5390 /* no break */
5391
5392 case FW_MSG_CODE_DRV_LOAD_FUNCTION:
5393 /* internal memory per function is
5394 initialized inside bnx2x_pf_init */
5395 break;
5396
5397 default:
5398 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
5399 break;
5400 }
5401 }
5402
5403 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
5404 {
5405 return fp->bp->igu_base_sb + fp->index + CNIC_PRESENT;
5406 }
5407
5408 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
5409 {
5410 return fp->bp->base_fw_ndsb + fp->index + CNIC_PRESENT;
5411 }
5412
5413 static inline u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
5414 {
5415 if (CHIP_IS_E1x(fp->bp))
5416 return BP_L_ID(fp->bp) + fp->index;
5417 else /* We want Client ID to be the same as IGU SB ID for 57712 */
5418 return bnx2x_fp_igu_sb_id(fp);
5419 }
5420
5421 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
5422 {
5423 struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
5424 u8 cos;
5425 unsigned long q_type = 0;
5426 u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
5427 fp->rx_queue = fp_idx;
5428 fp->cid = fp_idx;
5429 fp->cl_id = bnx2x_fp_cl_id(fp);
5430 fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
5431 fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
5432 /* qZone id equals to FW (per path) client id */
5433 fp->cl_qzone_id = bnx2x_fp_qzone_id(fp);
5434
5435 /* init shortcut */
5436 fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
5437 /* Setup SB indicies */
5438 fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
5439
5440 /* Configure Queue State object */
5441 __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
5442 __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
5443
5444 BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
5445
5446 /* init tx data */
5447 for_each_cos_in_tx_queue(fp, cos) {
5448 bnx2x_init_txdata(bp, &fp->txdata[cos],
5449 CID_COS_TO_TX_ONLY_CID(fp->cid, cos),
5450 FP_COS_TO_TXQ(fp, cos),
5451 BNX2X_TX_SB_INDEX_BASE + cos);
5452 cids[cos] = fp->txdata[cos].cid;
5453 }
5454
5455 bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, cids, fp->max_cos,
5456 BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
5457 bnx2x_sp_mapping(bp, q_rdata), q_type);
5458
5459 /**
5460 * Configure classification DBs: Always enable Tx switching
5461 */
5462 bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
5463
5464 DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) "
5465 "cl_id %d fw_sb %d igu_sb %d\n",
5466 fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
5467 fp->igu_sb_id);
5468 bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
5469 fp->fw_sb_id, fp->igu_sb_id);
5470
5471 bnx2x_update_fpsb_idx(fp);
5472 }
5473
5474 void bnx2x_nic_init(struct bnx2x *bp, u32 load_code)
5475 {
5476 int i;
5477
5478 for_each_eth_queue(bp, i)
5479 bnx2x_init_eth_fp(bp, i);
5480 #ifdef BCM_CNIC
5481 if (!NO_FCOE(bp))
5482 bnx2x_init_fcoe_fp(bp);
5483
5484 bnx2x_init_sb(bp, bp->cnic_sb_mapping,
5485 BNX2X_VF_ID_INVALID, false,
5486 bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
5487
5488 #endif
5489
5490 /* Initialize MOD_ABS interrupts */
5491 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
5492 bp->common.shmem_base, bp->common.shmem2_base,
5493 BP_PORT(bp));
5494 /* ensure status block indices were read */
5495 rmb();
5496
5497 bnx2x_init_def_sb(bp);
5498 bnx2x_update_dsb_idx(bp);
5499 bnx2x_init_rx_rings(bp);
5500 bnx2x_init_tx_rings(bp);
5501 bnx2x_init_sp_ring(bp);
5502 bnx2x_init_eq_ring(bp);
5503 bnx2x_init_internal(bp, load_code);
5504 bnx2x_pf_init(bp);
5505 bnx2x_stats_init(bp);
5506
5507 /* flush all before enabling interrupts */
5508 mb();
5509 mmiowb();
5510
5511 bnx2x_int_enable(bp);
5512
5513 /* Check for SPIO5 */
5514 bnx2x_attn_int_deasserted0(bp,
5515 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
5516 AEU_INPUTS_ATTN_BITS_SPIO5);
5517 }
5518
5519 /* end of nic init */
5520
5521 /*
5522 * gzip service functions
5523 */
5524
5525 static int bnx2x_gunzip_init(struct bnx2x *bp)
5526 {
5527 bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
5528 &bp->gunzip_mapping, GFP_KERNEL);
5529 if (bp->gunzip_buf == NULL)
5530 goto gunzip_nomem1;
5531
5532 bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
5533 if (bp->strm == NULL)
5534 goto gunzip_nomem2;
5535
5536 bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
5537 if (bp->strm->workspace == NULL)
5538 goto gunzip_nomem3;
5539
5540 return 0;
5541
5542 gunzip_nomem3:
5543 kfree(bp->strm);
5544 bp->strm = NULL;
5545
5546 gunzip_nomem2:
5547 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5548 bp->gunzip_mapping);
5549 bp->gunzip_buf = NULL;
5550
5551 gunzip_nomem1:
5552 netdev_err(bp->dev, "Cannot allocate firmware buffer for"
5553 " un-compression\n");
5554 return -ENOMEM;
5555 }
5556
5557 static void bnx2x_gunzip_end(struct bnx2x *bp)
5558 {
5559 if (bp->strm) {
5560 vfree(bp->strm->workspace);
5561 kfree(bp->strm);
5562 bp->strm = NULL;
5563 }
5564
5565 if (bp->gunzip_buf) {
5566 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
5567 bp->gunzip_mapping);
5568 bp->gunzip_buf = NULL;
5569 }
5570 }
5571
5572 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
5573 {
5574 int n, rc;
5575
5576 /* check gzip header */
5577 if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
5578 BNX2X_ERR("Bad gzip header\n");
5579 return -EINVAL;
5580 }
5581
5582 n = 10;
5583
5584 #define FNAME 0x8
5585
5586 if (zbuf[3] & FNAME)
5587 while ((zbuf[n++] != 0) && (n < len));
5588
5589 bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
5590 bp->strm->avail_in = len - n;
5591 bp->strm->next_out = bp->gunzip_buf;
5592 bp->strm->avail_out = FW_BUF_SIZE;
5593
5594 rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
5595 if (rc != Z_OK)
5596 return rc;
5597
5598 rc = zlib_inflate(bp->strm, Z_FINISH);
5599 if ((rc != Z_OK) && (rc != Z_STREAM_END))
5600 netdev_err(bp->dev, "Firmware decompression error: %s\n",
5601 bp->strm->msg);
5602
5603 bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
5604 if (bp->gunzip_outlen & 0x3)
5605 netdev_err(bp->dev, "Firmware decompression error:"
5606 " gunzip_outlen (%d) not aligned\n",
5607 bp->gunzip_outlen);
5608 bp->gunzip_outlen >>= 2;
5609
5610 zlib_inflateEnd(bp->strm);
5611
5612 if (rc == Z_STREAM_END)
5613 return 0;
5614
5615 return rc;
5616 }
5617
5618 /* nic load/unload */
5619
5620 /*
5621 * General service functions
5622 */
5623
5624 /* send a NIG loopback debug packet */
5625 static void bnx2x_lb_pckt(struct bnx2x *bp)
5626 {
5627 u32 wb_write[3];
5628
5629 /* Ethernet source and destination addresses */
5630 wb_write[0] = 0x55555555;
5631 wb_write[1] = 0x55555555;
5632 wb_write[2] = 0x20; /* SOP */
5633 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5634
5635 /* NON-IP protocol */
5636 wb_write[0] = 0x09000000;
5637 wb_write[1] = 0x55555555;
5638 wb_write[2] = 0x10; /* EOP, eop_bvalid = 0 */
5639 REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
5640 }
5641
5642 /* some of the internal memories
5643 * are not directly readable from the driver
5644 * to test them we send debug packets
5645 */
5646 static int bnx2x_int_mem_test(struct bnx2x *bp)
5647 {
5648 int factor;
5649 int count, i;
5650 u32 val = 0;
5651
5652 if (CHIP_REV_IS_FPGA(bp))
5653 factor = 120;
5654 else if (CHIP_REV_IS_EMUL(bp))
5655 factor = 200;
5656 else
5657 factor = 1;
5658
5659 /* Disable inputs of parser neighbor blocks */
5660 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5661 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5662 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5663 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5664
5665 /* Write 0 to parser credits for CFC search request */
5666 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5667
5668 /* send Ethernet packet */
5669 bnx2x_lb_pckt(bp);
5670
5671 /* TODO do i reset NIG statistic? */
5672 /* Wait until NIG register shows 1 packet of size 0x10 */
5673 count = 1000 * factor;
5674 while (count) {
5675
5676 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5677 val = *bnx2x_sp(bp, wb_data[0]);
5678 if (val == 0x10)
5679 break;
5680
5681 msleep(10);
5682 count--;
5683 }
5684 if (val != 0x10) {
5685 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5686 return -1;
5687 }
5688
5689 /* Wait until PRS register shows 1 packet */
5690 count = 1000 * factor;
5691 while (count) {
5692 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5693 if (val == 1)
5694 break;
5695
5696 msleep(10);
5697 count--;
5698 }
5699 if (val != 0x1) {
5700 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5701 return -2;
5702 }
5703
5704 /* Reset and init BRB, PRS */
5705 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5706 msleep(50);
5707 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5708 msleep(50);
5709 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5710 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5711
5712 DP(NETIF_MSG_HW, "part2\n");
5713
5714 /* Disable inputs of parser neighbor blocks */
5715 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
5716 REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
5717 REG_WR(bp, CFC_REG_DEBUG0, 0x1);
5718 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
5719
5720 /* Write 0 to parser credits for CFC search request */
5721 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
5722
5723 /* send 10 Ethernet packets */
5724 for (i = 0; i < 10; i++)
5725 bnx2x_lb_pckt(bp);
5726
5727 /* Wait until NIG register shows 10 + 1
5728 packets of size 11*0x10 = 0xb0 */
5729 count = 1000 * factor;
5730 while (count) {
5731
5732 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
5733 val = *bnx2x_sp(bp, wb_data[0]);
5734 if (val == 0xb0)
5735 break;
5736
5737 msleep(10);
5738 count--;
5739 }
5740 if (val != 0xb0) {
5741 BNX2X_ERR("NIG timeout val = 0x%x\n", val);
5742 return -3;
5743 }
5744
5745 /* Wait until PRS register shows 2 packets */
5746 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5747 if (val != 2)
5748 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5749
5750 /* Write 1 to parser credits for CFC search request */
5751 REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
5752
5753 /* Wait until PRS register shows 3 packets */
5754 msleep(10 * factor);
5755 /* Wait until NIG register shows 1 packet of size 0x10 */
5756 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
5757 if (val != 3)
5758 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
5759
5760 /* clear NIG EOP FIFO */
5761 for (i = 0; i < 11; i++)
5762 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
5763 val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
5764 if (val != 1) {
5765 BNX2X_ERR("clear of NIG failed\n");
5766 return -4;
5767 }
5768
5769 /* Reset and init BRB, PRS, NIG */
5770 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
5771 msleep(50);
5772 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
5773 msleep(50);
5774 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
5775 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
5776 #ifndef BCM_CNIC
5777 /* set NIC mode */
5778 REG_WR(bp, PRS_REG_NIC_MODE, 1);
5779 #endif
5780
5781 /* Enable inputs of parser neighbor blocks */
5782 REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
5783 REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
5784 REG_WR(bp, CFC_REG_DEBUG0, 0x0);
5785 REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
5786
5787 DP(NETIF_MSG_HW, "done\n");
5788
5789 return 0; /* OK */
5790 }
5791
5792 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
5793 {
5794 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
5795 if (!CHIP_IS_E1x(bp))
5796 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
5797 else
5798 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
5799 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
5800 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
5801 /*
5802 * mask read length error interrupts in brb for parser
5803 * (parsing unit and 'checksum and crc' unit)
5804 * these errors are legal (PU reads fixed length and CAC can cause
5805 * read length error on truncated packets)
5806 */
5807 REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
5808 REG_WR(bp, QM_REG_QM_INT_MASK, 0);
5809 REG_WR(bp, TM_REG_TM_INT_MASK, 0);
5810 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
5811 REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
5812 REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
5813 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
5814 /* REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
5815 REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
5816 REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
5817 REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
5818 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
5819 /* REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
5820 REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
5821 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
5822 REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
5823 REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
5824 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
5825 /* REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
5826
5827 if (CHIP_REV_IS_FPGA(bp))
5828 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x580000);
5829 else if (!CHIP_IS_E1x(bp))
5830 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0,
5831 (PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF
5832 | PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT
5833 | PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN
5834 | PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED
5835 | PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED));
5836 else
5837 REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, 0x480000);
5838 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
5839 REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
5840 REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
5841 /* REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
5842
5843 if (!CHIP_IS_E1x(bp))
5844 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
5845 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
5846
5847 REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
5848 REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
5849 /* REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
5850 REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18); /* bit 3,4 masked */
5851 }
5852
5853 static void bnx2x_reset_common(struct bnx2x *bp)
5854 {
5855 u32 val = 0x1400;
5856
5857 /* reset_common */
5858 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
5859 0xd3ffff7f);
5860
5861 if (CHIP_IS_E3(bp)) {
5862 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
5863 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
5864 }
5865
5866 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
5867 }
5868
5869 static void bnx2x_setup_dmae(struct bnx2x *bp)
5870 {
5871 bp->dmae_ready = 0;
5872 spin_lock_init(&bp->dmae_lock);
5873 }
5874
5875 static void bnx2x_init_pxp(struct bnx2x *bp)
5876 {
5877 u16 devctl;
5878 int r_order, w_order;
5879
5880 pci_read_config_word(bp->pdev,
5881 pci_pcie_cap(bp->pdev) + PCI_EXP_DEVCTL, &devctl);
5882 DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
5883 w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
5884 if (bp->mrrs == -1)
5885 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
5886 else {
5887 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
5888 r_order = bp->mrrs;
5889 }
5890
5891 bnx2x_init_pxp_arb(bp, r_order, w_order);
5892 }
5893
5894 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
5895 {
5896 int is_required;
5897 u32 val;
5898 int port;
5899
5900 if (BP_NOMCP(bp))
5901 return;
5902
5903 is_required = 0;
5904 val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
5905 SHARED_HW_CFG_FAN_FAILURE_MASK;
5906
5907 if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
5908 is_required = 1;
5909
5910 /*
5911 * The fan failure mechanism is usually related to the PHY type since
5912 * the power consumption of the board is affected by the PHY. Currently,
5913 * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
5914 */
5915 else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
5916 for (port = PORT_0; port < PORT_MAX; port++) {
5917 is_required |=
5918 bnx2x_fan_failure_det_req(
5919 bp,
5920 bp->common.shmem_base,
5921 bp->common.shmem2_base,
5922 port);
5923 }
5924
5925 DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
5926
5927 if (is_required == 0)
5928 return;
5929
5930 /* Fan failure is indicated by SPIO 5 */
5931 bnx2x_set_spio(bp, MISC_REGISTERS_SPIO_5,
5932 MISC_REGISTERS_SPIO_INPUT_HI_Z);
5933
5934 /* set to active low mode */
5935 val = REG_RD(bp, MISC_REG_SPIO_INT);
5936 val |= ((1 << MISC_REGISTERS_SPIO_5) <<
5937 MISC_REGISTERS_SPIO_INT_OLD_SET_POS);
5938 REG_WR(bp, MISC_REG_SPIO_INT, val);
5939
5940 /* enable interrupt to signal the IGU */
5941 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
5942 val |= (1 << MISC_REGISTERS_SPIO_5);
5943 REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
5944 }
5945
5946 static void bnx2x_pretend_func(struct bnx2x *bp, u8 pretend_func_num)
5947 {
5948 u32 offset = 0;
5949
5950 if (CHIP_IS_E1(bp))
5951 return;
5952 if (CHIP_IS_E1H(bp) && (pretend_func_num >= E1H_FUNC_MAX))
5953 return;
5954
5955 switch (BP_ABS_FUNC(bp)) {
5956 case 0:
5957 offset = PXP2_REG_PGL_PRETEND_FUNC_F0;
5958 break;
5959 case 1:
5960 offset = PXP2_REG_PGL_PRETEND_FUNC_F1;
5961 break;
5962 case 2:
5963 offset = PXP2_REG_PGL_PRETEND_FUNC_F2;
5964 break;
5965 case 3:
5966 offset = PXP2_REG_PGL_PRETEND_FUNC_F3;
5967 break;
5968 case 4:
5969 offset = PXP2_REG_PGL_PRETEND_FUNC_F4;
5970 break;
5971 case 5:
5972 offset = PXP2_REG_PGL_PRETEND_FUNC_F5;
5973 break;
5974 case 6:
5975 offset = PXP2_REG_PGL_PRETEND_FUNC_F6;
5976 break;
5977 case 7:
5978 offset = PXP2_REG_PGL_PRETEND_FUNC_F7;
5979 break;
5980 default:
5981 return;
5982 }
5983
5984 REG_WR(bp, offset, pretend_func_num);
5985 REG_RD(bp, offset);
5986 DP(NETIF_MSG_HW, "Pretending to func %d\n", pretend_func_num);
5987 }
5988
5989 void bnx2x_pf_disable(struct bnx2x *bp)
5990 {
5991 u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
5992 val &= ~IGU_PF_CONF_FUNC_EN;
5993
5994 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
5995 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
5996 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
5997 }
5998
5999 static inline void bnx2x__common_init_phy(struct bnx2x *bp)
6000 {
6001 u32 shmem_base[2], shmem2_base[2];
6002 shmem_base[0] = bp->common.shmem_base;
6003 shmem2_base[0] = bp->common.shmem2_base;
6004 if (!CHIP_IS_E1x(bp)) {
6005 shmem_base[1] =
6006 SHMEM2_RD(bp, other_shmem_base_addr);
6007 shmem2_base[1] =
6008 SHMEM2_RD(bp, other_shmem2_base_addr);
6009 }
6010 bnx2x_acquire_phy_lock(bp);
6011 bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6012 bp->common.chip_id);
6013 bnx2x_release_phy_lock(bp);
6014 }
6015
6016 /**
6017 * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6018 *
6019 * @bp: driver handle
6020 */
6021 static int bnx2x_init_hw_common(struct bnx2x *bp)
6022 {
6023 u32 val;
6024
6025 DP(BNX2X_MSG_MCP, "starting common init func %d\n", BP_ABS_FUNC(bp));
6026
6027 /*
6028 * take the UNDI lock to protect undi_unload flow from accessing
6029 * registers while we're resetting the chip
6030 */
6031 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6032
6033 bnx2x_reset_common(bp);
6034 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6035
6036 val = 0xfffc;
6037 if (CHIP_IS_E3(bp)) {
6038 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6039 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6040 }
6041 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6042
6043 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6044
6045 bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6046
6047 if (!CHIP_IS_E1x(bp)) {
6048 u8 abs_func_id;
6049
6050 /**
6051 * 4-port mode or 2-port mode we need to turn of master-enable
6052 * for everyone, after that, turn it back on for self.
6053 * so, we disregard multi-function or not, and always disable
6054 * for all functions on the given path, this means 0,2,4,6 for
6055 * path 0 and 1,3,5,7 for path 1
6056 */
6057 for (abs_func_id = BP_PATH(bp);
6058 abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6059 if (abs_func_id == BP_ABS_FUNC(bp)) {
6060 REG_WR(bp,
6061 PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6062 1);
6063 continue;
6064 }
6065
6066 bnx2x_pretend_func(bp, abs_func_id);
6067 /* clear pf enable */
6068 bnx2x_pf_disable(bp);
6069 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6070 }
6071 }
6072
6073 bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6074 if (CHIP_IS_E1(bp)) {
6075 /* enable HW interrupt from PXP on USDM overflow
6076 bit 16 on INT_MASK_0 */
6077 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6078 }
6079
6080 bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6081 bnx2x_init_pxp(bp);
6082
6083 #ifdef __BIG_ENDIAN
6084 REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6085 REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6086 REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6087 REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6088 REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6089 /* make sure this value is 0 */
6090 REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6091
6092 /* REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6093 REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6094 REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6095 REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6096 REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6097 #endif
6098
6099 bnx2x_ilt_init_page_size(bp, INITOP_SET);
6100
6101 if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6102 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6103
6104 /* let the HW do it's magic ... */
6105 msleep(100);
6106 /* finish PXP init */
6107 val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6108 if (val != 1) {
6109 BNX2X_ERR("PXP2 CFG failed\n");
6110 return -EBUSY;
6111 }
6112 val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6113 if (val != 1) {
6114 BNX2X_ERR("PXP2 RD_INIT failed\n");
6115 return -EBUSY;
6116 }
6117
6118 /* Timers bug workaround E2 only. We need to set the entire ILT to
6119 * have entries with value "0" and valid bit on.
6120 * This needs to be done by the first PF that is loaded in a path
6121 * (i.e. common phase)
6122 */
6123 if (!CHIP_IS_E1x(bp)) {
6124 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6125 * (i.e. vnic3) to start even if it is marked as "scan-off".
6126 * This occurs when a different function (func2,3) is being marked
6127 * as "scan-off". Real-life scenario for example: if a driver is being
6128 * load-unloaded while func6,7 are down. This will cause the timer to access
6129 * the ilt, translate to a logical address and send a request to read/write.
6130 * Since the ilt for the function that is down is not valid, this will cause
6131 * a translation error which is unrecoverable.
6132 * The Workaround is intended to make sure that when this happens nothing fatal
6133 * will occur. The workaround:
6134 * 1. First PF driver which loads on a path will:
6135 * a. After taking the chip out of reset, by using pretend,
6136 * it will write "0" to the following registers of
6137 * the other vnics.
6138 * REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6139 * REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6140 * REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6141 * And for itself it will write '1' to
6142 * PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6143 * dmae-operations (writing to pram for example.)
6144 * note: can be done for only function 6,7 but cleaner this
6145 * way.
6146 * b. Write zero+valid to the entire ILT.
6147 * c. Init the first_timers_ilt_entry, last_timers_ilt_entry of
6148 * VNIC3 (of that port). The range allocated will be the
6149 * entire ILT. This is needed to prevent ILT range error.
6150 * 2. Any PF driver load flow:
6151 * a. ILT update with the physical addresses of the allocated
6152 * logical pages.
6153 * b. Wait 20msec. - note that this timeout is needed to make
6154 * sure there are no requests in one of the PXP internal
6155 * queues with "old" ILT addresses.
6156 * c. PF enable in the PGLC.
6157 * d. Clear the was_error of the PF in the PGLC. (could have
6158 * occured while driver was down)
6159 * e. PF enable in the CFC (WEAK + STRONG)
6160 * f. Timers scan enable
6161 * 3. PF driver unload flow:
6162 * a. Clear the Timers scan_en.
6163 * b. Polling for scan_on=0 for that PF.
6164 * c. Clear the PF enable bit in the PXP.
6165 * d. Clear the PF enable in the CFC (WEAK + STRONG)
6166 * e. Write zero+valid to all ILT entries (The valid bit must
6167 * stay set)
6168 * f. If this is VNIC 3 of a port then also init
6169 * first_timers_ilt_entry to zero and last_timers_ilt_entry
6170 * to the last enrty in the ILT.
6171 *
6172 * Notes:
6173 * Currently the PF error in the PGLC is non recoverable.
6174 * In the future the there will be a recovery routine for this error.
6175 * Currently attention is masked.
6176 * Having an MCP lock on the load/unload process does not guarantee that
6177 * there is no Timer disable during Func6/7 enable. This is because the
6178 * Timers scan is currently being cleared by the MCP on FLR.
6179 * Step 2.d can be done only for PF6/7 and the driver can also check if
6180 * there is error before clearing it. But the flow above is simpler and
6181 * more general.
6182 * All ILT entries are written by zero+valid and not just PF6/7
6183 * ILT entries since in the future the ILT entries allocation for
6184 * PF-s might be dynamic.
6185 */
6186 struct ilt_client_info ilt_cli;
6187 struct bnx2x_ilt ilt;
6188 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
6189 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
6190
6191 /* initialize dummy TM client */
6192 ilt_cli.start = 0;
6193 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
6194 ilt_cli.client_num = ILT_CLIENT_TM;
6195
6196 /* Step 1: set zeroes to all ilt page entries with valid bit on
6197 * Step 2: set the timers first/last ilt entry to point
6198 * to the entire range to prevent ILT range error for 3rd/4th
6199 * vnic (this code assumes existance of the vnic)
6200 *
6201 * both steps performed by call to bnx2x_ilt_client_init_op()
6202 * with dummy TM client
6203 *
6204 * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
6205 * and his brother are split registers
6206 */
6207 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
6208 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
6209 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6210
6211 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
6212 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
6213 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
6214 }
6215
6216
6217 REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
6218 REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
6219
6220 if (!CHIP_IS_E1x(bp)) {
6221 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
6222 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
6223 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
6224
6225 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
6226
6227 /* let the HW do it's magic ... */
6228 do {
6229 msleep(200);
6230 val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
6231 } while (factor-- && (val != 1));
6232
6233 if (val != 1) {
6234 BNX2X_ERR("ATC_INIT failed\n");
6235 return -EBUSY;
6236 }
6237 }
6238
6239 bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
6240
6241 /* clean the DMAE memory */
6242 bp->dmae_ready = 1;
6243 bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
6244
6245 bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
6246
6247 bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
6248
6249 bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
6250
6251 bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
6252
6253 bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
6254 bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
6255 bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
6256 bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
6257
6258 bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
6259
6260
6261 /* QM queues pointers table */
6262 bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
6263
6264 /* soft reset pulse */
6265 REG_WR(bp, QM_REG_SOFT_RESET, 1);
6266 REG_WR(bp, QM_REG_SOFT_RESET, 0);
6267
6268 #ifdef BCM_CNIC
6269 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
6270 #endif
6271
6272 bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
6273 REG_WR(bp, DORQ_REG_DPM_CID_OFST, BNX2X_DB_SHIFT);
6274 if (!CHIP_REV_IS_SLOW(bp))
6275 /* enable hw interrupt from doorbell Q */
6276 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6277
6278 bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6279
6280 bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6281 REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
6282
6283 if (!CHIP_IS_E1(bp))
6284 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
6285
6286 if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp))
6287 /* Bit-map indicating which L2 hdrs may appear
6288 * after the basic Ethernet header
6289 */
6290 REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
6291 bp->path_has_ovlan ? 7 : 6);
6292
6293 bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
6294 bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
6295 bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
6296 bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
6297
6298 if (!CHIP_IS_E1x(bp)) {
6299 /* reset VFC memories */
6300 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6301 VFC_MEMORIES_RST_REG_CAM_RST |
6302 VFC_MEMORIES_RST_REG_RAM_RST);
6303 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
6304 VFC_MEMORIES_RST_REG_CAM_RST |
6305 VFC_MEMORIES_RST_REG_RAM_RST);
6306
6307 msleep(20);
6308 }
6309
6310 bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
6311 bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
6312 bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
6313 bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
6314
6315 /* sync semi rtc */
6316 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6317 0x80000000);
6318 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
6319 0x80000000);
6320
6321 bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
6322 bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
6323 bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
6324
6325 if (!CHIP_IS_E1x(bp))
6326 REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
6327 bp->path_has_ovlan ? 7 : 6);
6328
6329 REG_WR(bp, SRC_REG_SOFT_RST, 1);
6330
6331 bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
6332
6333 #ifdef BCM_CNIC
6334 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
6335 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
6336 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
6337 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
6338 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
6339 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
6340 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
6341 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
6342 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
6343 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
6344 #endif
6345 REG_WR(bp, SRC_REG_SOFT_RST, 0);
6346
6347 if (sizeof(union cdu_context) != 1024)
6348 /* we currently assume that a context is 1024 bytes */
6349 dev_alert(&bp->pdev->dev, "please adjust the size "
6350 "of cdu_context(%ld)\n",
6351 (long)sizeof(union cdu_context));
6352
6353 bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
6354 val = (4 << 24) + (0 << 12) + 1024;
6355 REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
6356
6357 bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
6358 REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
6359 /* enable context validation interrupt from CFC */
6360 REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6361
6362 /* set the thresholds to prevent CFC/CDU race */
6363 REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
6364
6365 bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
6366
6367 if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
6368 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
6369
6370 bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
6371 bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
6372
6373 /* Reset PCIE errors for debug */
6374 REG_WR(bp, 0x2814, 0xffffffff);
6375 REG_WR(bp, 0x3820, 0xffffffff);
6376
6377 if (!CHIP_IS_E1x(bp)) {
6378 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
6379 (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
6380 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
6381 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
6382 (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
6383 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
6384 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
6385 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
6386 (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
6387 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
6388 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
6389 }
6390
6391 bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
6392 if (!CHIP_IS_E1(bp)) {
6393 /* in E3 this done in per-port section */
6394 if (!CHIP_IS_E3(bp))
6395 REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
6396 }
6397 if (CHIP_IS_E1H(bp))
6398 /* not applicable for E2 (and above ...) */
6399 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
6400
6401 if (CHIP_REV_IS_SLOW(bp))
6402 msleep(200);
6403
6404 /* finish CFC init */
6405 val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
6406 if (val != 1) {
6407 BNX2X_ERR("CFC LL_INIT failed\n");
6408 return -EBUSY;
6409 }
6410 val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
6411 if (val != 1) {
6412 BNX2X_ERR("CFC AC_INIT failed\n");
6413 return -EBUSY;
6414 }
6415 val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
6416 if (val != 1) {
6417 BNX2X_ERR("CFC CAM_INIT failed\n");
6418 return -EBUSY;
6419 }
6420 REG_WR(bp, CFC_REG_DEBUG0, 0);
6421
6422 if (CHIP_IS_E1(bp)) {
6423 /* read NIG statistic
6424 to see if this is our first up since powerup */
6425 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6426 val = *bnx2x_sp(bp, wb_data[0]);
6427
6428 /* do internal memory self test */
6429 if ((val == 0) && bnx2x_int_mem_test(bp)) {
6430 BNX2X_ERR("internal mem self test failed\n");
6431 return -EBUSY;
6432 }
6433 }
6434
6435 bnx2x_setup_fan_failure_detection(bp);
6436
6437 /* clear PXP2 attentions */
6438 REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
6439
6440 bnx2x_enable_blocks_attention(bp);
6441 bnx2x_enable_blocks_parity(bp);
6442
6443 if (!BP_NOMCP(bp)) {
6444 if (CHIP_IS_E1x(bp))
6445 bnx2x__common_init_phy(bp);
6446 } else
6447 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
6448
6449 return 0;
6450 }
6451
6452 /**
6453 * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
6454 *
6455 * @bp: driver handle
6456 */
6457 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
6458 {
6459 int rc = bnx2x_init_hw_common(bp);
6460
6461 if (rc)
6462 return rc;
6463
6464 /* In E2 2-PORT mode, same ext phy is used for the two paths */
6465 if (!BP_NOMCP(bp))
6466 bnx2x__common_init_phy(bp);
6467
6468 return 0;
6469 }
6470
6471 static int bnx2x_init_hw_port(struct bnx2x *bp)
6472 {
6473 int port = BP_PORT(bp);
6474 int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
6475 u32 low, high;
6476 u32 val;
6477
6478 bnx2x__link_reset(bp);
6479
6480 DP(BNX2X_MSG_MCP, "starting port init port %d\n", port);
6481
6482 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
6483
6484 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6485 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6486 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6487
6488 /* Timers bug workaround: disables the pf_master bit in pglue at
6489 * common phase, we need to enable it here before any dmae access are
6490 * attempted. Therefore we manually added the enable-master to the
6491 * port phase (it also happens in the function phase)
6492 */
6493 if (!CHIP_IS_E1x(bp))
6494 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6495
6496 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6497 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6498 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6499 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6500
6501 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6502 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6503 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6504 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6505
6506 /* QM cid (connection) count */
6507 bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
6508
6509 #ifdef BCM_CNIC
6510 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6511 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
6512 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
6513 #endif
6514
6515 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6516
6517 if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
6518 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6519
6520 if (IS_MF(bp))
6521 low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
6522 else if (bp->dev->mtu > 4096) {
6523 if (bp->flags & ONE_PORT_FLAG)
6524 low = 160;
6525 else {
6526 val = bp->dev->mtu;
6527 /* (24*1024 + val*4)/256 */
6528 low = 96 + (val/64) +
6529 ((val % 64) ? 1 : 0);
6530 }
6531 } else
6532 low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
6533 high = low + 56; /* 14*1024/256 */
6534 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
6535 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
6536 }
6537
6538 if (CHIP_MODE_IS_4_PORT(bp))
6539 REG_WR(bp, (BP_PORT(bp) ?
6540 BRB1_REG_MAC_GUARANTIED_1 :
6541 BRB1_REG_MAC_GUARANTIED_0), 40);
6542
6543
6544 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6545 if (CHIP_IS_E3B0(bp))
6546 /* Ovlan exists only if we are in multi-function +
6547 * switch-dependent mode, in switch-independent there
6548 * is no ovlan headers
6549 */
6550 REG_WR(bp, BP_PORT(bp) ?
6551 PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
6552 PRS_REG_HDRS_AFTER_BASIC_PORT_0,
6553 (bp->path_has_ovlan ? 7 : 6));
6554
6555 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6556 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6557 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6558 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6559
6560 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6561 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6562 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6563 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6564
6565 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6566 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6567
6568 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6569
6570 if (CHIP_IS_E1x(bp)) {
6571 /* configure PBF to work without PAUSE mtu 9000 */
6572 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
6573
6574 /* update threshold */
6575 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
6576 /* update init credit */
6577 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
6578
6579 /* probe changes */
6580 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
6581 udelay(50);
6582 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
6583 }
6584
6585 #ifdef BCM_CNIC
6586 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6587 #endif
6588 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6589 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6590
6591 if (CHIP_IS_E1(bp)) {
6592 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6593 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6594 }
6595 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6596
6597 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6598
6599 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6600 /* init aeu_mask_attn_func_0/1:
6601 * - SF mode: bits 3-7 are masked. only bits 0-2 are in use
6602 * - MF mode: bit 3 is masked. bits 0-2 are in use as in SF
6603 * bits 4-7 are used for "per vn group attention" */
6604 val = IS_MF(bp) ? 0xF7 : 0x7;
6605 /* Enable DCBX attention for all but E1 */
6606 val |= CHIP_IS_E1(bp) ? 0 : 0x10;
6607 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
6608
6609 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6610
6611 if (!CHIP_IS_E1x(bp)) {
6612 /* Bit-map indicating which L2 hdrs may appear after the
6613 * basic Ethernet header
6614 */
6615 REG_WR(bp, BP_PORT(bp) ?
6616 NIG_REG_P1_HDRS_AFTER_BASIC :
6617 NIG_REG_P0_HDRS_AFTER_BASIC,
6618 IS_MF_SD(bp) ? 7 : 6);
6619
6620 if (CHIP_IS_E3(bp))
6621 REG_WR(bp, BP_PORT(bp) ?
6622 NIG_REG_LLH1_MF_MODE :
6623 NIG_REG_LLH_MF_MODE, IS_MF(bp));
6624 }
6625 if (!CHIP_IS_E3(bp))
6626 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
6627
6628 if (!CHIP_IS_E1(bp)) {
6629 /* 0x2 disable mf_ov, 0x1 enable */
6630 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
6631 (IS_MF_SD(bp) ? 0x1 : 0x2));
6632
6633 if (!CHIP_IS_E1x(bp)) {
6634 val = 0;
6635 switch (bp->mf_mode) {
6636 case MULTI_FUNCTION_SD:
6637 val = 1;
6638 break;
6639 case MULTI_FUNCTION_SI:
6640 val = 2;
6641 break;
6642 }
6643
6644 REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
6645 NIG_REG_LLH0_CLS_TYPE), val);
6646 }
6647 {
6648 REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
6649 REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
6650 REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
6651 }
6652 }
6653
6654
6655 /* If SPIO5 is set to generate interrupts, enable it for this port */
6656 val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6657 if (val & (1 << MISC_REGISTERS_SPIO_5)) {
6658 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
6659 MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
6660 val = REG_RD(bp, reg_addr);
6661 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
6662 REG_WR(bp, reg_addr, val);
6663 }
6664
6665 return 0;
6666 }
6667
6668 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
6669 {
6670 int reg;
6671
6672 if (CHIP_IS_E1(bp))
6673 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
6674 else
6675 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
6676
6677 bnx2x_wb_wr(bp, reg, ONCHIP_ADDR1(addr), ONCHIP_ADDR2(addr));
6678 }
6679
6680 static inline void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
6681 {
6682 bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
6683 }
6684
6685 static inline void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
6686 {
6687 u32 i, base = FUNC_ILT_BASE(func);
6688 for (i = base; i < base + ILT_PER_FUNC; i++)
6689 bnx2x_ilt_wr(bp, i, 0);
6690 }
6691
6692 static int bnx2x_init_hw_func(struct bnx2x *bp)
6693 {
6694 int port = BP_PORT(bp);
6695 int func = BP_FUNC(bp);
6696 int init_phase = PHASE_PF0 + func;
6697 struct bnx2x_ilt *ilt = BP_ILT(bp);
6698 u16 cdu_ilt_start;
6699 u32 addr, val;
6700 u32 main_mem_base, main_mem_size, main_mem_prty_clr;
6701 int i, main_mem_width, rc;
6702
6703 DP(BNX2X_MSG_MCP, "starting func init func %d\n", func);
6704
6705 /* FLR cleanup - hmmm */
6706 if (!CHIP_IS_E1x(bp)) {
6707 rc = bnx2x_pf_flr_clnup(bp);
6708 if (rc)
6709 return rc;
6710 }
6711
6712 /* set MSI reconfigure capability */
6713 if (bp->common.int_block == INT_BLOCK_HC) {
6714 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
6715 val = REG_RD(bp, addr);
6716 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
6717 REG_WR(bp, addr, val);
6718 }
6719
6720 bnx2x_init_block(bp, BLOCK_PXP, init_phase);
6721 bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
6722
6723 ilt = BP_ILT(bp);
6724 cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
6725
6726 for (i = 0; i < L2_ILT_LINES(bp); i++) {
6727 ilt->lines[cdu_ilt_start + i].page =
6728 bp->context.vcxt + (ILT_PAGE_CIDS * i);
6729 ilt->lines[cdu_ilt_start + i].page_mapping =
6730 bp->context.cxt_mapping + (CDU_ILT_PAGE_SZ * i);
6731 /* cdu ilt pages are allocated manually so there's no need to
6732 set the size */
6733 }
6734 bnx2x_ilt_init_op(bp, INITOP_SET);
6735
6736 #ifdef BCM_CNIC
6737 bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
6738
6739 /* T1 hash bits value determines the T1 number of entries */
6740 REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
6741 #endif
6742
6743 #ifndef BCM_CNIC
6744 /* set NIC mode */
6745 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6746 #endif /* BCM_CNIC */
6747
6748 if (!CHIP_IS_E1x(bp)) {
6749 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
6750
6751 /* Turn on a single ISR mode in IGU if driver is going to use
6752 * INT#x or MSI
6753 */
6754 if (!(bp->flags & USING_MSIX_FLAG))
6755 pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
6756 /*
6757 * Timers workaround bug: function init part.
6758 * Need to wait 20msec after initializing ILT,
6759 * needed to make sure there are no requests in
6760 * one of the PXP internal queues with "old" ILT addresses
6761 */
6762 msleep(20);
6763 /*
6764 * Master enable - Due to WB DMAE writes performed before this
6765 * register is re-initialized as part of the regular function
6766 * init
6767 */
6768 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
6769 /* Enable the function in IGU */
6770 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
6771 }
6772
6773 bp->dmae_ready = 1;
6774
6775 bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
6776
6777 if (!CHIP_IS_E1x(bp))
6778 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
6779
6780 bnx2x_init_block(bp, BLOCK_ATC, init_phase);
6781 bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
6782 bnx2x_init_block(bp, BLOCK_NIG, init_phase);
6783 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
6784 bnx2x_init_block(bp, BLOCK_MISC, init_phase);
6785 bnx2x_init_block(bp, BLOCK_TCM, init_phase);
6786 bnx2x_init_block(bp, BLOCK_UCM, init_phase);
6787 bnx2x_init_block(bp, BLOCK_CCM, init_phase);
6788 bnx2x_init_block(bp, BLOCK_XCM, init_phase);
6789 bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
6790 bnx2x_init_block(bp, BLOCK_USEM, init_phase);
6791 bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
6792 bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
6793
6794 if (!CHIP_IS_E1x(bp))
6795 REG_WR(bp, QM_REG_PF_EN, 1);
6796
6797 if (!CHIP_IS_E1x(bp)) {
6798 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6799 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6800 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6801 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
6802 }
6803 bnx2x_init_block(bp, BLOCK_QM, init_phase);
6804
6805 bnx2x_init_block(bp, BLOCK_TM, init_phase);
6806 bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
6807 bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
6808 bnx2x_init_block(bp, BLOCK_PRS, init_phase);
6809 bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
6810 bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
6811 bnx2x_init_block(bp, BLOCK_USDM, init_phase);
6812 bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
6813 bnx2x_init_block(bp, BLOCK_UPB, init_phase);
6814 bnx2x_init_block(bp, BLOCK_XPB, init_phase);
6815 bnx2x_init_block(bp, BLOCK_PBF, init_phase);
6816 if (!CHIP_IS_E1x(bp))
6817 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
6818
6819 bnx2x_init_block(bp, BLOCK_CDU, init_phase);
6820
6821 bnx2x_init_block(bp, BLOCK_CFC, init_phase);
6822
6823 if (!CHIP_IS_E1x(bp))
6824 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
6825
6826 if (IS_MF(bp)) {
6827 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
6828 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
6829 }
6830
6831 bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
6832
6833 /* HC init per function */
6834 if (bp->common.int_block == INT_BLOCK_HC) {
6835 if (CHIP_IS_E1H(bp)) {
6836 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6837
6838 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
6839 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
6840 }
6841 bnx2x_init_block(bp, BLOCK_HC, init_phase);
6842
6843 } else {
6844 int num_segs, sb_idx, prod_offset;
6845
6846 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
6847
6848 if (!CHIP_IS_E1x(bp)) {
6849 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
6850 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
6851 }
6852
6853 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
6854
6855 if (!CHIP_IS_E1x(bp)) {
6856 int dsb_idx = 0;
6857 /**
6858 * Producer memory:
6859 * E2 mode: address 0-135 match to the mapping memory;
6860 * 136 - PF0 default prod; 137 - PF1 default prod;
6861 * 138 - PF2 default prod; 139 - PF3 default prod;
6862 * 140 - PF0 attn prod; 141 - PF1 attn prod;
6863 * 142 - PF2 attn prod; 143 - PF3 attn prod;
6864 * 144-147 reserved.
6865 *
6866 * E1.5 mode - In backward compatible mode;
6867 * for non default SB; each even line in the memory
6868 * holds the U producer and each odd line hold
6869 * the C producer. The first 128 producers are for
6870 * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
6871 * producers are for the DSB for each PF.
6872 * Each PF has five segments: (the order inside each
6873 * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
6874 * 132-135 C prods; 136-139 X prods; 140-143 T prods;
6875 * 144-147 attn prods;
6876 */
6877 /* non-default-status-blocks */
6878 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6879 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
6880 for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
6881 prod_offset = (bp->igu_base_sb + sb_idx) *
6882 num_segs;
6883
6884 for (i = 0; i < num_segs; i++) {
6885 addr = IGU_REG_PROD_CONS_MEMORY +
6886 (prod_offset + i) * 4;
6887 REG_WR(bp, addr, 0);
6888 }
6889 /* send consumer update with value 0 */
6890 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
6891 USTORM_ID, 0, IGU_INT_NOP, 1);
6892 bnx2x_igu_clear_sb(bp,
6893 bp->igu_base_sb + sb_idx);
6894 }
6895
6896 /* default-status-blocks */
6897 num_segs = CHIP_INT_MODE_IS_BC(bp) ?
6898 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
6899
6900 if (CHIP_MODE_IS_4_PORT(bp))
6901 dsb_idx = BP_FUNC(bp);
6902 else
6903 dsb_idx = BP_VN(bp);
6904
6905 prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
6906 IGU_BC_BASE_DSB_PROD + dsb_idx :
6907 IGU_NORM_BASE_DSB_PROD + dsb_idx);
6908
6909 /*
6910 * igu prods come in chunks of E1HVN_MAX (4) -
6911 * does not matters what is the current chip mode
6912 */
6913 for (i = 0; i < (num_segs * E1HVN_MAX);
6914 i += E1HVN_MAX) {
6915 addr = IGU_REG_PROD_CONS_MEMORY +
6916 (prod_offset + i)*4;
6917 REG_WR(bp, addr, 0);
6918 }
6919 /* send consumer update with 0 */
6920 if (CHIP_INT_MODE_IS_BC(bp)) {
6921 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6922 USTORM_ID, 0, IGU_INT_NOP, 1);
6923 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6924 CSTORM_ID, 0, IGU_INT_NOP, 1);
6925 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6926 XSTORM_ID, 0, IGU_INT_NOP, 1);
6927 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6928 TSTORM_ID, 0, IGU_INT_NOP, 1);
6929 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6930 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6931 } else {
6932 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6933 USTORM_ID, 0, IGU_INT_NOP, 1);
6934 bnx2x_ack_sb(bp, bp->igu_dsb_id,
6935 ATTENTION_ID, 0, IGU_INT_NOP, 1);
6936 }
6937 bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
6938
6939 /* !!! these should become driver const once
6940 rf-tool supports split-68 const */
6941 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
6942 REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
6943 REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
6944 REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
6945 REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
6946 REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
6947 }
6948 }
6949
6950 /* Reset PCIE errors for debug */
6951 REG_WR(bp, 0x2114, 0xffffffff);
6952 REG_WR(bp, 0x2120, 0xffffffff);
6953
6954 if (CHIP_IS_E1x(bp)) {
6955 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
6956 main_mem_base = HC_REG_MAIN_MEMORY +
6957 BP_PORT(bp) * (main_mem_size * 4);
6958 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
6959 main_mem_width = 8;
6960
6961 val = REG_RD(bp, main_mem_prty_clr);
6962 if (val)
6963 DP(BNX2X_MSG_MCP, "Hmmm... Parity errors in HC "
6964 "block during "
6965 "function init (0x%x)!\n", val);
6966
6967 /* Clear "false" parity errors in MSI-X table */
6968 for (i = main_mem_base;
6969 i < main_mem_base + main_mem_size * 4;
6970 i += main_mem_width) {
6971 bnx2x_read_dmae(bp, i, main_mem_width / 4);
6972 bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
6973 i, main_mem_width / 4);
6974 }
6975 /* Clear HC parity attention */
6976 REG_RD(bp, main_mem_prty_clr);
6977 }
6978
6979 #ifdef BNX2X_STOP_ON_ERROR
6980 /* Enable STORMs SP logging */
6981 REG_WR8(bp, BAR_USTRORM_INTMEM +
6982 USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6983 REG_WR8(bp, BAR_TSTRORM_INTMEM +
6984 TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6985 REG_WR8(bp, BAR_CSTRORM_INTMEM +
6986 CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6987 REG_WR8(bp, BAR_XSTRORM_INTMEM +
6988 XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
6989 #endif
6990
6991 bnx2x_phy_probe(&bp->link_params);
6992
6993 return 0;
6994 }
6995
6996
6997 void bnx2x_free_mem(struct bnx2x *bp)
6998 {
6999 /* fastpath */
7000 bnx2x_free_fp_mem(bp);
7001 /* end of fastpath */
7002
7003 BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
7004 sizeof(struct host_sp_status_block));
7005
7006 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7007 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7008
7009 BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
7010 sizeof(struct bnx2x_slowpath));
7011
7012 BNX2X_PCI_FREE(bp->context.vcxt, bp->context.cxt_mapping,
7013 bp->context.size);
7014
7015 bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
7016
7017 BNX2X_FREE(bp->ilt->lines);
7018
7019 #ifdef BCM_CNIC
7020 if (!CHIP_IS_E1x(bp))
7021 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
7022 sizeof(struct host_hc_status_block_e2));
7023 else
7024 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
7025 sizeof(struct host_hc_status_block_e1x));
7026
7027 BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
7028 #endif
7029
7030 BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
7031
7032 BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
7033 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7034 }
7035
7036 static inline int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
7037 {
7038 int num_groups;
7039 int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
7040
7041 /* number of queues for statistics is number of eth queues + FCoE */
7042 u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
7043
7044 /* Total number of FW statistics requests =
7045 * 1 for port stats + 1 for PF stats + potential 1 for FCoE stats +
7046 * num of queues
7047 */
7048 bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
7049
7050
7051 /* Request is built from stats_query_header and an array of
7052 * stats_query_cmd_group each of which contains
7053 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
7054 * configured in the stats_query_header.
7055 */
7056 num_groups = ((bp->fw_stats_num) / STATS_QUERY_CMD_COUNT) +
7057 (((bp->fw_stats_num) % STATS_QUERY_CMD_COUNT) ? 1 : 0);
7058
7059 bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
7060 num_groups * sizeof(struct stats_query_cmd_group);
7061
7062 /* Data for statistics requests + stats_conter
7063 *
7064 * stats_counter holds per-STORM counters that are incremented
7065 * when STORM has finished with the current request.
7066 *
7067 * memory for FCoE offloaded statistics are counted anyway,
7068 * even if they will not be sent.
7069 */
7070 bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
7071 sizeof(struct per_pf_stats) +
7072 sizeof(struct fcoe_statistics_params) +
7073 sizeof(struct per_queue_stats) * num_queue_stats +
7074 sizeof(struct stats_counter);
7075
7076 BNX2X_PCI_ALLOC(bp->fw_stats, &bp->fw_stats_mapping,
7077 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7078
7079 /* Set shortcuts */
7080 bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
7081 bp->fw_stats_req_mapping = bp->fw_stats_mapping;
7082
7083 bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
7084 ((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
7085
7086 bp->fw_stats_data_mapping = bp->fw_stats_mapping +
7087 bp->fw_stats_req_sz;
7088 return 0;
7089
7090 alloc_mem_err:
7091 BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
7092 bp->fw_stats_data_sz + bp->fw_stats_req_sz);
7093 return -ENOMEM;
7094 }
7095
7096
7097 int bnx2x_alloc_mem(struct bnx2x *bp)
7098 {
7099 #ifdef BCM_CNIC
7100 if (!CHIP_IS_E1x(bp))
7101 /* size = the status block + ramrod buffers */
7102 BNX2X_PCI_ALLOC(bp->cnic_sb.e2_sb, &bp->cnic_sb_mapping,
7103 sizeof(struct host_hc_status_block_e2));
7104 else
7105 BNX2X_PCI_ALLOC(bp->cnic_sb.e1x_sb, &bp->cnic_sb_mapping,
7106 sizeof(struct host_hc_status_block_e1x));
7107
7108 /* allocate searcher T2 table */
7109 BNX2X_PCI_ALLOC(bp->t2, &bp->t2_mapping, SRC_T2_SZ);
7110 #endif
7111
7112
7113 BNX2X_PCI_ALLOC(bp->def_status_blk, &bp->def_status_blk_mapping,
7114 sizeof(struct host_sp_status_block));
7115
7116 BNX2X_PCI_ALLOC(bp->slowpath, &bp->slowpath_mapping,
7117 sizeof(struct bnx2x_slowpath));
7118
7119 /* Allocated memory for FW statistics */
7120 if (bnx2x_alloc_fw_stats_mem(bp))
7121 goto alloc_mem_err;
7122
7123 bp->context.size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
7124
7125 BNX2X_PCI_ALLOC(bp->context.vcxt, &bp->context.cxt_mapping,
7126 bp->context.size);
7127
7128 BNX2X_ALLOC(bp->ilt->lines, sizeof(struct ilt_line) * ILT_MAX_LINES);
7129
7130 if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
7131 goto alloc_mem_err;
7132
7133 /* Slow path ring */
7134 BNX2X_PCI_ALLOC(bp->spq, &bp->spq_mapping, BCM_PAGE_SIZE);
7135
7136 /* EQ */
7137 BNX2X_PCI_ALLOC(bp->eq_ring, &bp->eq_mapping,
7138 BCM_PAGE_SIZE * NUM_EQ_PAGES);
7139
7140
7141 /* fastpath */
7142 /* need to be done at the end, since it's self adjusting to amount
7143 * of memory available for RSS queues
7144 */
7145 if (bnx2x_alloc_fp_mem(bp))
7146 goto alloc_mem_err;
7147 return 0;
7148
7149 alloc_mem_err:
7150 bnx2x_free_mem(bp);
7151 return -ENOMEM;
7152 }
7153
7154 /*
7155 * Init service functions
7156 */
7157
7158 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
7159 struct bnx2x_vlan_mac_obj *obj, bool set,
7160 int mac_type, unsigned long *ramrod_flags)
7161 {
7162 int rc;
7163 struct bnx2x_vlan_mac_ramrod_params ramrod_param;
7164
7165 memset(&ramrod_param, 0, sizeof(ramrod_param));
7166
7167 /* Fill general parameters */
7168 ramrod_param.vlan_mac_obj = obj;
7169 ramrod_param.ramrod_flags = *ramrod_flags;
7170
7171 /* Fill a user request section if needed */
7172 if (!test_bit(RAMROD_CONT, ramrod_flags)) {
7173 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
7174
7175 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
7176
7177 /* Set the command: ADD or DEL */
7178 if (set)
7179 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
7180 else
7181 ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
7182 }
7183
7184 rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
7185 if (rc < 0)
7186 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
7187 return rc;
7188 }
7189
7190 int bnx2x_del_all_macs(struct bnx2x *bp,
7191 struct bnx2x_vlan_mac_obj *mac_obj,
7192 int mac_type, bool wait_for_comp)
7193 {
7194 int rc;
7195 unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
7196
7197 /* Wait for completion of requested */
7198 if (wait_for_comp)
7199 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7200
7201 /* Set the mac type of addresses we want to clear */
7202 __set_bit(mac_type, &vlan_mac_flags);
7203
7204 rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
7205 if (rc < 0)
7206 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
7207
7208 return rc;
7209 }
7210
7211 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
7212 {
7213 unsigned long ramrod_flags = 0;
7214
7215 #ifdef BCM_CNIC
7216 if (is_zero_ether_addr(bp->dev->dev_addr) && IS_MF_ISCSI_SD(bp)) {
7217 DP(NETIF_MSG_IFUP, "Ignoring Zero MAC for iSCSI SD mode\n");
7218 return 0;
7219 }
7220 #endif
7221
7222 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
7223
7224 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
7225 /* Eth MAC is set on RSS leading client (fp[0]) */
7226 return bnx2x_set_mac_one(bp, bp->dev->dev_addr, &bp->fp->mac_obj, set,
7227 BNX2X_ETH_MAC, &ramrod_flags);
7228 }
7229
7230 int bnx2x_setup_leading(struct bnx2x *bp)
7231 {
7232 return bnx2x_setup_queue(bp, &bp->fp[0], 1);
7233 }
7234
7235 /**
7236 * bnx2x_set_int_mode - configure interrupt mode
7237 *
7238 * @bp: driver handle
7239 *
7240 * In case of MSI-X it will also try to enable MSI-X.
7241 */
7242 static void __devinit bnx2x_set_int_mode(struct bnx2x *bp)
7243 {
7244 switch (int_mode) {
7245 case INT_MODE_MSI:
7246 bnx2x_enable_msi(bp);
7247 /* falling through... */
7248 case INT_MODE_INTx:
7249 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7250 DP(NETIF_MSG_IFUP, "set number of queues to 1\n");
7251 break;
7252 default:
7253 /* Set number of queues according to bp->multi_mode value */
7254 bnx2x_set_num_queues(bp);
7255
7256 DP(NETIF_MSG_IFUP, "set number of queues to %d\n",
7257 bp->num_queues);
7258
7259 /* if we can't use MSI-X we only need one fp,
7260 * so try to enable MSI-X with the requested number of fp's
7261 * and fallback to MSI or legacy INTx with one fp
7262 */
7263 if (bnx2x_enable_msix(bp)) {
7264 /* failed to enable MSI-X */
7265 if (bp->multi_mode)
7266 DP(NETIF_MSG_IFUP,
7267 "Multi requested but failed to "
7268 "enable MSI-X (%d), "
7269 "set number of queues to %d\n",
7270 bp->num_queues,
7271 1 + NON_ETH_CONTEXT_USE);
7272 bp->num_queues = 1 + NON_ETH_CONTEXT_USE;
7273
7274 /* Try to enable MSI */
7275 if (!(bp->flags & DISABLE_MSI_FLAG))
7276 bnx2x_enable_msi(bp);
7277 }
7278 break;
7279 }
7280 }
7281
7282 /* must be called prioir to any HW initializations */
7283 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
7284 {
7285 return L2_ILT_LINES(bp);
7286 }
7287
7288 void bnx2x_ilt_set_info(struct bnx2x *bp)
7289 {
7290 struct ilt_client_info *ilt_client;
7291 struct bnx2x_ilt *ilt = BP_ILT(bp);
7292 u16 line = 0;
7293
7294 ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
7295 DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
7296
7297 /* CDU */
7298 ilt_client = &ilt->clients[ILT_CLIENT_CDU];
7299 ilt_client->client_num = ILT_CLIENT_CDU;
7300 ilt_client->page_size = CDU_ILT_PAGE_SZ;
7301 ilt_client->flags = ILT_CLIENT_SKIP_MEM;
7302 ilt_client->start = line;
7303 line += bnx2x_cid_ilt_lines(bp);
7304 #ifdef BCM_CNIC
7305 line += CNIC_ILT_LINES;
7306 #endif
7307 ilt_client->end = line - 1;
7308
7309 DP(BNX2X_MSG_SP, "ilt client[CDU]: start %d, end %d, psz 0x%x, "
7310 "flags 0x%x, hw psz %d\n",
7311 ilt_client->start,
7312 ilt_client->end,
7313 ilt_client->page_size,
7314 ilt_client->flags,
7315 ilog2(ilt_client->page_size >> 12));
7316
7317 /* QM */
7318 if (QM_INIT(bp->qm_cid_count)) {
7319 ilt_client = &ilt->clients[ILT_CLIENT_QM];
7320 ilt_client->client_num = ILT_CLIENT_QM;
7321 ilt_client->page_size = QM_ILT_PAGE_SZ;
7322 ilt_client->flags = 0;
7323 ilt_client->start = line;
7324
7325 /* 4 bytes for each cid */
7326 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
7327 QM_ILT_PAGE_SZ);
7328
7329 ilt_client->end = line - 1;
7330
7331 DP(BNX2X_MSG_SP, "ilt client[QM]: start %d, end %d, psz 0x%x, "
7332 "flags 0x%x, hw psz %d\n",
7333 ilt_client->start,
7334 ilt_client->end,
7335 ilt_client->page_size,
7336 ilt_client->flags,
7337 ilog2(ilt_client->page_size >> 12));
7338
7339 }
7340 /* SRC */
7341 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
7342 #ifdef BCM_CNIC
7343 ilt_client->client_num = ILT_CLIENT_SRC;
7344 ilt_client->page_size = SRC_ILT_PAGE_SZ;
7345 ilt_client->flags = 0;
7346 ilt_client->start = line;
7347 line += SRC_ILT_LINES;
7348 ilt_client->end = line - 1;
7349
7350 DP(BNX2X_MSG_SP, "ilt client[SRC]: start %d, end %d, psz 0x%x, "
7351 "flags 0x%x, hw psz %d\n",
7352 ilt_client->start,
7353 ilt_client->end,
7354 ilt_client->page_size,
7355 ilt_client->flags,
7356 ilog2(ilt_client->page_size >> 12));
7357
7358 #else
7359 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7360 #endif
7361
7362 /* TM */
7363 ilt_client = &ilt->clients[ILT_CLIENT_TM];
7364 #ifdef BCM_CNIC
7365 ilt_client->client_num = ILT_CLIENT_TM;
7366 ilt_client->page_size = TM_ILT_PAGE_SZ;
7367 ilt_client->flags = 0;
7368 ilt_client->start = line;
7369 line += TM_ILT_LINES;
7370 ilt_client->end = line - 1;
7371
7372 DP(BNX2X_MSG_SP, "ilt client[TM]: start %d, end %d, psz 0x%x, "
7373 "flags 0x%x, hw psz %d\n",
7374 ilt_client->start,
7375 ilt_client->end,
7376 ilt_client->page_size,
7377 ilt_client->flags,
7378 ilog2(ilt_client->page_size >> 12));
7379
7380 #else
7381 ilt_client->flags = (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM);
7382 #endif
7383 BUG_ON(line > ILT_MAX_LINES);
7384 }
7385
7386 /**
7387 * bnx2x_pf_q_prep_init - prepare INIT transition parameters
7388 *
7389 * @bp: driver handle
7390 * @fp: pointer to fastpath
7391 * @init_params: pointer to parameters structure
7392 *
7393 * parameters configured:
7394 * - HC configuration
7395 * - Queue's CDU context
7396 */
7397 static inline void bnx2x_pf_q_prep_init(struct bnx2x *bp,
7398 struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
7399 {
7400
7401 u8 cos;
7402 /* FCoE Queue uses Default SB, thus has no HC capabilities */
7403 if (!IS_FCOE_FP(fp)) {
7404 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
7405 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
7406
7407 /* If HC is supporterd, enable host coalescing in the transition
7408 * to INIT state.
7409 */
7410 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
7411 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
7412
7413 /* HC rate */
7414 init_params->rx.hc_rate = bp->rx_ticks ?
7415 (1000000 / bp->rx_ticks) : 0;
7416 init_params->tx.hc_rate = bp->tx_ticks ?
7417 (1000000 / bp->tx_ticks) : 0;
7418
7419 /* FW SB ID */
7420 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
7421 fp->fw_sb_id;
7422
7423 /*
7424 * CQ index among the SB indices: FCoE clients uses the default
7425 * SB, therefore it's different.
7426 */
7427 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
7428 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
7429 }
7430
7431 /* set maximum number of COSs supported by this queue */
7432 init_params->max_cos = fp->max_cos;
7433
7434 DP(BNX2X_MSG_SP, "fp: %d setting queue params max cos to: %d\n",
7435 fp->index, init_params->max_cos);
7436
7437 /* set the context pointers queue object */
7438 for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++)
7439 init_params->cxts[cos] =
7440 &bp->context.vcxt[fp->txdata[cos].cid].eth;
7441 }
7442
7443 int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7444 struct bnx2x_queue_state_params *q_params,
7445 struct bnx2x_queue_setup_tx_only_params *tx_only_params,
7446 int tx_index, bool leading)
7447 {
7448 memset(tx_only_params, 0, sizeof(*tx_only_params));
7449
7450 /* Set the command */
7451 q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
7452
7453 /* Set tx-only QUEUE flags: don't zero statistics */
7454 tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
7455
7456 /* choose the index of the cid to send the slow path on */
7457 tx_only_params->cid_index = tx_index;
7458
7459 /* Set general TX_ONLY_SETUP parameters */
7460 bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
7461
7462 /* Set Tx TX_ONLY_SETUP parameters */
7463 bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
7464
7465 DP(BNX2X_MSG_SP, "preparing to send tx-only ramrod for connection:"
7466 "cos %d, primary cid %d, cid %d, "
7467 "client id %d, sp-client id %d, flags %lx\n",
7468 tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
7469 q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
7470 tx_only_params->gen_params.spcl_id, tx_only_params->flags);
7471
7472 /* send the ramrod */
7473 return bnx2x_queue_state_change(bp, q_params);
7474 }
7475
7476
7477 /**
7478 * bnx2x_setup_queue - setup queue
7479 *
7480 * @bp: driver handle
7481 * @fp: pointer to fastpath
7482 * @leading: is leading
7483 *
7484 * This function performs 2 steps in a Queue state machine
7485 * actually: 1) RESET->INIT 2) INIT->SETUP
7486 */
7487
7488 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
7489 bool leading)
7490 {
7491 struct bnx2x_queue_state_params q_params = {0};
7492 struct bnx2x_queue_setup_params *setup_params =
7493 &q_params.params.setup;
7494 struct bnx2x_queue_setup_tx_only_params *tx_only_params =
7495 &q_params.params.tx_only;
7496 int rc;
7497 u8 tx_index;
7498
7499 DP(BNX2X_MSG_SP, "setting up queue %d\n", fp->index);
7500
7501 /* reset IGU state skip FCoE L2 queue */
7502 if (!IS_FCOE_FP(fp))
7503 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
7504 IGU_INT_ENABLE, 0);
7505
7506 q_params.q_obj = &fp->q_obj;
7507 /* We want to wait for completion in this context */
7508 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7509
7510 /* Prepare the INIT parameters */
7511 bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
7512
7513 /* Set the command */
7514 q_params.cmd = BNX2X_Q_CMD_INIT;
7515
7516 /* Change the state to INIT */
7517 rc = bnx2x_queue_state_change(bp, &q_params);
7518 if (rc) {
7519 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
7520 return rc;
7521 }
7522
7523 DP(BNX2X_MSG_SP, "init complete\n");
7524
7525
7526 /* Now move the Queue to the SETUP state... */
7527 memset(setup_params, 0, sizeof(*setup_params));
7528
7529 /* Set QUEUE flags */
7530 setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
7531
7532 /* Set general SETUP parameters */
7533 bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
7534 FIRST_TX_COS_INDEX);
7535
7536 bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
7537 &setup_params->rxq_params);
7538
7539 bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
7540 FIRST_TX_COS_INDEX);
7541
7542 /* Set the command */
7543 q_params.cmd = BNX2X_Q_CMD_SETUP;
7544
7545 /* Change the state to SETUP */
7546 rc = bnx2x_queue_state_change(bp, &q_params);
7547 if (rc) {
7548 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
7549 return rc;
7550 }
7551
7552 /* loop through the relevant tx-only indices */
7553 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7554 tx_index < fp->max_cos;
7555 tx_index++) {
7556
7557 /* prepare and send tx-only ramrod*/
7558 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
7559 tx_only_params, tx_index, leading);
7560 if (rc) {
7561 BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
7562 fp->index, tx_index);
7563 return rc;
7564 }
7565 }
7566
7567 return rc;
7568 }
7569
7570 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
7571 {
7572 struct bnx2x_fastpath *fp = &bp->fp[index];
7573 struct bnx2x_fp_txdata *txdata;
7574 struct bnx2x_queue_state_params q_params = {0};
7575 int rc, tx_index;
7576
7577 DP(BNX2X_MSG_SP, "stopping queue %d cid %d\n", index, fp->cid);
7578
7579 q_params.q_obj = &fp->q_obj;
7580 /* We want to wait for completion in this context */
7581 __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
7582
7583
7584 /* close tx-only connections */
7585 for (tx_index = FIRST_TX_ONLY_COS_INDEX;
7586 tx_index < fp->max_cos;
7587 tx_index++){
7588
7589 /* ascertain this is a normal queue*/
7590 txdata = &fp->txdata[tx_index];
7591
7592 DP(BNX2X_MSG_SP, "stopping tx-only queue %d\n",
7593 txdata->txq_index);
7594
7595 /* send halt terminate on tx-only connection */
7596 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7597 memset(&q_params.params.terminate, 0,
7598 sizeof(q_params.params.terminate));
7599 q_params.params.terminate.cid_index = tx_index;
7600
7601 rc = bnx2x_queue_state_change(bp, &q_params);
7602 if (rc)
7603 return rc;
7604
7605 /* send halt terminate on tx-only connection */
7606 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7607 memset(&q_params.params.cfc_del, 0,
7608 sizeof(q_params.params.cfc_del));
7609 q_params.params.cfc_del.cid_index = tx_index;
7610 rc = bnx2x_queue_state_change(bp, &q_params);
7611 if (rc)
7612 return rc;
7613 }
7614 /* Stop the primary connection: */
7615 /* ...halt the connection */
7616 q_params.cmd = BNX2X_Q_CMD_HALT;
7617 rc = bnx2x_queue_state_change(bp, &q_params);
7618 if (rc)
7619 return rc;
7620
7621 /* ...terminate the connection */
7622 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
7623 memset(&q_params.params.terminate, 0,
7624 sizeof(q_params.params.terminate));
7625 q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
7626 rc = bnx2x_queue_state_change(bp, &q_params);
7627 if (rc)
7628 return rc;
7629 /* ...delete cfc entry */
7630 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
7631 memset(&q_params.params.cfc_del, 0,
7632 sizeof(q_params.params.cfc_del));
7633 q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
7634 return bnx2x_queue_state_change(bp, &q_params);
7635 }
7636
7637
7638 static void bnx2x_reset_func(struct bnx2x *bp)
7639 {
7640 int port = BP_PORT(bp);
7641 int func = BP_FUNC(bp);
7642 int i;
7643
7644 /* Disable the function in the FW */
7645 REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
7646 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
7647 REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
7648 REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
7649
7650 /* FP SBs */
7651 for_each_eth_queue(bp, i) {
7652 struct bnx2x_fastpath *fp = &bp->fp[i];
7653 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7654 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
7655 SB_DISABLED);
7656 }
7657
7658 #ifdef BCM_CNIC
7659 /* CNIC SB */
7660 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7661 CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(bnx2x_cnic_fw_sb_id(bp)),
7662 SB_DISABLED);
7663 #endif
7664 /* SP SB */
7665 REG_WR8(bp, BAR_CSTRORM_INTMEM +
7666 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
7667 SB_DISABLED);
7668
7669 for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
7670 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
7671 0);
7672
7673 /* Configure IGU */
7674 if (bp->common.int_block == INT_BLOCK_HC) {
7675 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7676 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7677 } else {
7678 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7679 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7680 }
7681
7682 #ifdef BCM_CNIC
7683 /* Disable Timer scan */
7684 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
7685 /*
7686 * Wait for at least 10ms and up to 2 second for the timers scan to
7687 * complete
7688 */
7689 for (i = 0; i < 200; i++) {
7690 msleep(10);
7691 if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
7692 break;
7693 }
7694 #endif
7695 /* Clear ILT */
7696 bnx2x_clear_func_ilt(bp, func);
7697
7698 /* Timers workaround bug for E2: if this is vnic-3,
7699 * we need to set the entire ilt range for this timers.
7700 */
7701 if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
7702 struct ilt_client_info ilt_cli;
7703 /* use dummy TM client */
7704 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7705 ilt_cli.start = 0;
7706 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7707 ilt_cli.client_num = ILT_CLIENT_TM;
7708
7709 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
7710 }
7711
7712 /* this assumes that reset_port() called before reset_func()*/
7713 if (!CHIP_IS_E1x(bp))
7714 bnx2x_pf_disable(bp);
7715
7716 bp->dmae_ready = 0;
7717 }
7718
7719 static void bnx2x_reset_port(struct bnx2x *bp)
7720 {
7721 int port = BP_PORT(bp);
7722 u32 val;
7723
7724 /* Reset physical Link */
7725 bnx2x__link_reset(bp);
7726
7727 REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7728
7729 /* Do not rcv packets to BRB */
7730 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
7731 /* Do not direct rcv packets that are not for MCP to the BRB */
7732 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
7733 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
7734
7735 /* Configure AEU */
7736 REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
7737
7738 msleep(100);
7739 /* Check for BRB port occupancy */
7740 val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
7741 if (val)
7742 DP(NETIF_MSG_IFDOWN,
7743 "BRB1 is not empty %d blocks are occupied\n", val);
7744
7745 /* TODO: Close Doorbell port? */
7746 }
7747
7748 static inline int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
7749 {
7750 struct bnx2x_func_state_params func_params = {0};
7751
7752 /* Prepare parameters for function state transitions */
7753 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7754
7755 func_params.f_obj = &bp->func_obj;
7756 func_params.cmd = BNX2X_F_CMD_HW_RESET;
7757
7758 func_params.params.hw_init.load_phase = load_code;
7759
7760 return bnx2x_func_state_change(bp, &func_params);
7761 }
7762
7763 static inline int bnx2x_func_stop(struct bnx2x *bp)
7764 {
7765 struct bnx2x_func_state_params func_params = {0};
7766 int rc;
7767
7768 /* Prepare parameters for function state transitions */
7769 __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7770 func_params.f_obj = &bp->func_obj;
7771 func_params.cmd = BNX2X_F_CMD_STOP;
7772
7773 /*
7774 * Try to stop the function the 'good way'. If fails (in case
7775 * of a parity error during bnx2x_chip_cleanup()) and we are
7776 * not in a debug mode, perform a state transaction in order to
7777 * enable further HW_RESET transaction.
7778 */
7779 rc = bnx2x_func_state_change(bp, &func_params);
7780 if (rc) {
7781 #ifdef BNX2X_STOP_ON_ERROR
7782 return rc;
7783 #else
7784 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry "
7785 "transaction\n");
7786 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
7787 return bnx2x_func_state_change(bp, &func_params);
7788 #endif
7789 }
7790
7791 return 0;
7792 }
7793
7794 /**
7795 * bnx2x_send_unload_req - request unload mode from the MCP.
7796 *
7797 * @bp: driver handle
7798 * @unload_mode: requested function's unload mode
7799 *
7800 * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
7801 */
7802 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
7803 {
7804 u32 reset_code = 0;
7805 int port = BP_PORT(bp);
7806
7807 /* Select the UNLOAD request mode */
7808 if (unload_mode == UNLOAD_NORMAL)
7809 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7810
7811 else if (bp->flags & NO_WOL_FLAG)
7812 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
7813
7814 else if (bp->wol) {
7815 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
7816 u8 *mac_addr = bp->dev->dev_addr;
7817 u32 val;
7818 u16 pmc;
7819
7820 /* The mac address is written to entries 1-4 to
7821 * preserve entry 0 which is used by the PMF
7822 */
7823 u8 entry = (BP_VN(bp) + 1)*8;
7824
7825 val = (mac_addr[0] << 8) | mac_addr[1];
7826 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
7827
7828 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
7829 (mac_addr[4] << 8) | mac_addr[5];
7830 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
7831
7832 /* Enable the PME and clear the status */
7833 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmc);
7834 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
7835 pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, pmc);
7836
7837 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
7838
7839 } else
7840 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
7841
7842 /* Send the request to the MCP */
7843 if (!BP_NOMCP(bp))
7844 reset_code = bnx2x_fw_command(bp, reset_code, 0);
7845 else {
7846 int path = BP_PATH(bp);
7847
7848 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d] "
7849 "%d, %d, %d\n",
7850 path, load_count[path][0], load_count[path][1],
7851 load_count[path][2]);
7852 load_count[path][0]--;
7853 load_count[path][1 + port]--;
7854 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d] "
7855 "%d, %d, %d\n",
7856 path, load_count[path][0], load_count[path][1],
7857 load_count[path][2]);
7858 if (load_count[path][0] == 0)
7859 reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
7860 else if (load_count[path][1 + port] == 0)
7861 reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
7862 else
7863 reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
7864 }
7865
7866 return reset_code;
7867 }
7868
7869 /**
7870 * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
7871 *
7872 * @bp: driver handle
7873 */
7874 void bnx2x_send_unload_done(struct bnx2x *bp)
7875 {
7876 /* Report UNLOAD_DONE to MCP */
7877 if (!BP_NOMCP(bp))
7878 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
7879 }
7880
7881 static inline int bnx2x_func_wait_started(struct bnx2x *bp)
7882 {
7883 int tout = 50;
7884 int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
7885
7886 if (!bp->port.pmf)
7887 return 0;
7888
7889 /*
7890 * (assumption: No Attention from MCP at this stage)
7891 * PMF probably in the middle of TXdisable/enable transaction
7892 * 1. Sync IRS for default SB
7893 * 2. Sync SP queue - this guarantes us that attention handling started
7894 * 3. Wait, that TXdisable/enable transaction completes
7895 *
7896 * 1+2 guranty that if DCBx attention was scheduled it already changed
7897 * pending bit of transaction from STARTED-->TX_STOPPED, if we alredy
7898 * received complettion for the transaction the state is TX_STOPPED.
7899 * State will return to STARTED after completion of TX_STOPPED-->STARTED
7900 * transaction.
7901 */
7902
7903 /* make sure default SB ISR is done */
7904 if (msix)
7905 synchronize_irq(bp->msix_table[0].vector);
7906 else
7907 synchronize_irq(bp->pdev->irq);
7908
7909 flush_workqueue(bnx2x_wq);
7910
7911 while (bnx2x_func_get_state(bp, &bp->func_obj) !=
7912 BNX2X_F_STATE_STARTED && tout--)
7913 msleep(20);
7914
7915 if (bnx2x_func_get_state(bp, &bp->func_obj) !=
7916 BNX2X_F_STATE_STARTED) {
7917 #ifdef BNX2X_STOP_ON_ERROR
7918 return -EBUSY;
7919 #else
7920 /*
7921 * Failed to complete the transaction in a "good way"
7922 * Force both transactions with CLR bit
7923 */
7924 struct bnx2x_func_state_params func_params = {0};
7925
7926 DP(BNX2X_MSG_SP, "Hmmm... unexpected function state! "
7927 "Forcing STARTED-->TX_ST0PPED-->STARTED\n");
7928
7929 func_params.f_obj = &bp->func_obj;
7930 __set_bit(RAMROD_DRV_CLR_ONLY,
7931 &func_params.ramrod_flags);
7932
7933 /* STARTED-->TX_ST0PPED */
7934 func_params.cmd = BNX2X_F_CMD_TX_STOP;
7935 bnx2x_func_state_change(bp, &func_params);
7936
7937 /* TX_ST0PPED-->STARTED */
7938 func_params.cmd = BNX2X_F_CMD_TX_START;
7939 return bnx2x_func_state_change(bp, &func_params);
7940 #endif
7941 }
7942
7943 return 0;
7944 }
7945
7946 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode)
7947 {
7948 int port = BP_PORT(bp);
7949 int i, rc = 0;
7950 u8 cos;
7951 struct bnx2x_mcast_ramrod_params rparam = {0};
7952 u32 reset_code;
7953
7954 /* Wait until tx fastpath tasks complete */
7955 for_each_tx_queue(bp, i) {
7956 struct bnx2x_fastpath *fp = &bp->fp[i];
7957
7958 for_each_cos_in_tx_queue(fp, cos)
7959 rc = bnx2x_clean_tx_queue(bp, &fp->txdata[cos]);
7960 #ifdef BNX2X_STOP_ON_ERROR
7961 if (rc)
7962 return;
7963 #endif
7964 }
7965
7966 /* Give HW time to discard old tx messages */
7967 usleep_range(1000, 1000);
7968
7969 /* Clean all ETH MACs */
7970 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_ETH_MAC, false);
7971 if (rc < 0)
7972 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
7973
7974 /* Clean up UC list */
7975 rc = bnx2x_del_all_macs(bp, &bp->fp[0].mac_obj, BNX2X_UC_LIST_MAC,
7976 true);
7977 if (rc < 0)
7978 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: "
7979 "%d\n", rc);
7980
7981 /* Disable LLH */
7982 if (!CHIP_IS_E1(bp))
7983 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
7984
7985 /* Set "drop all" (stop Rx).
7986 * We need to take a netif_addr_lock() here in order to prevent
7987 * a race between the completion code and this code.
7988 */
7989 netif_addr_lock_bh(bp->dev);
7990 /* Schedule the rx_mode command */
7991 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
7992 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
7993 else
7994 bnx2x_set_storm_rx_mode(bp);
7995
7996 /* Cleanup multicast configuration */
7997 rparam.mcast_obj = &bp->mcast_obj;
7998 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
7999 if (rc < 0)
8000 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
8001
8002 netif_addr_unlock_bh(bp->dev);
8003
8004
8005
8006 /*
8007 * Send the UNLOAD_REQUEST to the MCP. This will return if
8008 * this function should perform FUNC, PORT or COMMON HW
8009 * reset.
8010 */
8011 reset_code = bnx2x_send_unload_req(bp, unload_mode);
8012
8013 /*
8014 * (assumption: No Attention from MCP at this stage)
8015 * PMF probably in the middle of TXdisable/enable transaction
8016 */
8017 rc = bnx2x_func_wait_started(bp);
8018 if (rc) {
8019 BNX2X_ERR("bnx2x_func_wait_started failed\n");
8020 #ifdef BNX2X_STOP_ON_ERROR
8021 return;
8022 #endif
8023 }
8024
8025 /* Close multi and leading connections
8026 * Completions for ramrods are collected in a synchronous way
8027 */
8028 for_each_queue(bp, i)
8029 if (bnx2x_stop_queue(bp, i))
8030 #ifdef BNX2X_STOP_ON_ERROR
8031 return;
8032 #else
8033 goto unload_error;
8034 #endif
8035 /* If SP settings didn't get completed so far - something
8036 * very wrong has happen.
8037 */
8038 if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
8039 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
8040
8041 #ifndef BNX2X_STOP_ON_ERROR
8042 unload_error:
8043 #endif
8044 rc = bnx2x_func_stop(bp);
8045 if (rc) {
8046 BNX2X_ERR("Function stop failed!\n");
8047 #ifdef BNX2X_STOP_ON_ERROR
8048 return;
8049 #endif
8050 }
8051
8052 /* Disable HW interrupts, NAPI */
8053 bnx2x_netif_stop(bp, 1);
8054
8055 /* Release IRQs */
8056 bnx2x_free_irq(bp);
8057
8058 /* Reset the chip */
8059 rc = bnx2x_reset_hw(bp, reset_code);
8060 if (rc)
8061 BNX2X_ERR("HW_RESET failed\n");
8062
8063
8064 /* Report UNLOAD_DONE to MCP */
8065 bnx2x_send_unload_done(bp);
8066 }
8067
8068 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
8069 {
8070 u32 val;
8071
8072 DP(NETIF_MSG_HW, "Disabling \"close the gates\"\n");
8073
8074 if (CHIP_IS_E1(bp)) {
8075 int port = BP_PORT(bp);
8076 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8077 MISC_REG_AEU_MASK_ATTN_FUNC_0;
8078
8079 val = REG_RD(bp, addr);
8080 val &= ~(0x300);
8081 REG_WR(bp, addr, val);
8082 } else {
8083 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
8084 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
8085 MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
8086 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
8087 }
8088 }
8089
8090 /* Close gates #2, #3 and #4: */
8091 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
8092 {
8093 u32 val;
8094
8095 /* Gates #2 and #4a are closed/opened for "not E1" only */
8096 if (!CHIP_IS_E1(bp)) {
8097 /* #4 */
8098 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
8099 /* #2 */
8100 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
8101 }
8102
8103 /* #3 */
8104 if (CHIP_IS_E1x(bp)) {
8105 /* Prevent interrupts from HC on both ports */
8106 val = REG_RD(bp, HC_REG_CONFIG_1);
8107 REG_WR(bp, HC_REG_CONFIG_1,
8108 (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
8109 (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
8110
8111 val = REG_RD(bp, HC_REG_CONFIG_0);
8112 REG_WR(bp, HC_REG_CONFIG_0,
8113 (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
8114 (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
8115 } else {
8116 /* Prevent incomming interrupts in IGU */
8117 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
8118
8119 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
8120 (!close) ?
8121 (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
8122 (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
8123 }
8124
8125 DP(NETIF_MSG_HW, "%s gates #2, #3 and #4\n",
8126 close ? "closing" : "opening");
8127 mmiowb();
8128 }
8129
8130 #define SHARED_MF_CLP_MAGIC 0x80000000 /* `magic' bit */
8131
8132 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
8133 {
8134 /* Do some magic... */
8135 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8136 *magic_val = val & SHARED_MF_CLP_MAGIC;
8137 MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
8138 }
8139
8140 /**
8141 * bnx2x_clp_reset_done - restore the value of the `magic' bit.
8142 *
8143 * @bp: driver handle
8144 * @magic_val: old value of the `magic' bit.
8145 */
8146 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
8147 {
8148 /* Restore the `magic' bit value... */
8149 u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
8150 MF_CFG_WR(bp, shared_mf_config.clp_mb,
8151 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
8152 }
8153
8154 /**
8155 * bnx2x_reset_mcp_prep - prepare for MCP reset.
8156 *
8157 * @bp: driver handle
8158 * @magic_val: old value of 'magic' bit.
8159 *
8160 * Takes care of CLP configurations.
8161 */
8162 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
8163 {
8164 u32 shmem;
8165 u32 validity_offset;
8166
8167 DP(NETIF_MSG_HW, "Starting\n");
8168
8169 /* Set `magic' bit in order to save MF config */
8170 if (!CHIP_IS_E1(bp))
8171 bnx2x_clp_reset_prep(bp, magic_val);
8172
8173 /* Get shmem offset */
8174 shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8175 validity_offset = offsetof(struct shmem_region, validity_map[0]);
8176
8177 /* Clear validity map flags */
8178 if (shmem > 0)
8179 REG_WR(bp, shmem + validity_offset, 0);
8180 }
8181
8182 #define MCP_TIMEOUT 5000 /* 5 seconds (in ms) */
8183 #define MCP_ONE_TIMEOUT 100 /* 100 ms */
8184
8185 /**
8186 * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
8187 *
8188 * @bp: driver handle
8189 */
8190 static inline void bnx2x_mcp_wait_one(struct bnx2x *bp)
8191 {
8192 /* special handling for emulation and FPGA,
8193 wait 10 times longer */
8194 if (CHIP_REV_IS_SLOW(bp))
8195 msleep(MCP_ONE_TIMEOUT*10);
8196 else
8197 msleep(MCP_ONE_TIMEOUT);
8198 }
8199
8200 /*
8201 * initializes bp->common.shmem_base and waits for validity signature to appear
8202 */
8203 static int bnx2x_init_shmem(struct bnx2x *bp)
8204 {
8205 int cnt = 0;
8206 u32 val = 0;
8207
8208 do {
8209 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
8210 if (bp->common.shmem_base) {
8211 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
8212 if (val & SHR_MEM_VALIDITY_MB)
8213 return 0;
8214 }
8215
8216 bnx2x_mcp_wait_one(bp);
8217
8218 } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
8219
8220 BNX2X_ERR("BAD MCP validity signature\n");
8221
8222 return -ENODEV;
8223 }
8224
8225 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
8226 {
8227 int rc = bnx2x_init_shmem(bp);
8228
8229 /* Restore the `magic' bit value */
8230 if (!CHIP_IS_E1(bp))
8231 bnx2x_clp_reset_done(bp, magic_val);
8232
8233 return rc;
8234 }
8235
8236 static void bnx2x_pxp_prep(struct bnx2x *bp)
8237 {
8238 if (!CHIP_IS_E1(bp)) {
8239 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
8240 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
8241 mmiowb();
8242 }
8243 }
8244
8245 /*
8246 * Reset the whole chip except for:
8247 * - PCIE core
8248 * - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
8249 * one reset bit)
8250 * - IGU
8251 * - MISC (including AEU)
8252 * - GRC
8253 * - RBCN, RBCP
8254 */
8255 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
8256 {
8257 u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
8258 u32 global_bits2, stay_reset2;
8259
8260 /*
8261 * Bits that have to be set in reset_mask2 if we want to reset 'global'
8262 * (per chip) blocks.
8263 */
8264 global_bits2 =
8265 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
8266 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
8267
8268 /* Don't reset the following blocks */
8269 not_reset_mask1 =
8270 MISC_REGISTERS_RESET_REG_1_RST_HC |
8271 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
8272 MISC_REGISTERS_RESET_REG_1_RST_PXP;
8273
8274 not_reset_mask2 =
8275 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
8276 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
8277 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
8278 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
8279 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
8280 MISC_REGISTERS_RESET_REG_2_RST_GRC |
8281 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
8282 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
8283 MISC_REGISTERS_RESET_REG_2_RST_ATC |
8284 MISC_REGISTERS_RESET_REG_2_PGLC;
8285
8286 /*
8287 * Keep the following blocks in reset:
8288 * - all xxMACs are handled by the bnx2x_link code.
8289 */
8290 stay_reset2 =
8291 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
8292 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
8293 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
8294 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
8295 MISC_REGISTERS_RESET_REG_2_UMAC0 |
8296 MISC_REGISTERS_RESET_REG_2_UMAC1 |
8297 MISC_REGISTERS_RESET_REG_2_XMAC |
8298 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
8299
8300 /* Full reset masks according to the chip */
8301 reset_mask1 = 0xffffffff;
8302
8303 if (CHIP_IS_E1(bp))
8304 reset_mask2 = 0xffff;
8305 else if (CHIP_IS_E1H(bp))
8306 reset_mask2 = 0x1ffff;
8307 else if (CHIP_IS_E2(bp))
8308 reset_mask2 = 0xfffff;
8309 else /* CHIP_IS_E3 */
8310 reset_mask2 = 0x3ffffff;
8311
8312 /* Don't reset global blocks unless we need to */
8313 if (!global)
8314 reset_mask2 &= ~global_bits2;
8315
8316 /*
8317 * In case of attention in the QM, we need to reset PXP
8318 * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
8319 * because otherwise QM reset would release 'close the gates' shortly
8320 * before resetting the PXP, then the PSWRQ would send a write
8321 * request to PGLUE. Then when PXP is reset, PGLUE would try to
8322 * read the payload data from PSWWR, but PSWWR would not
8323 * respond. The write queue in PGLUE would stuck, dmae commands
8324 * would not return. Therefore it's important to reset the second
8325 * reset register (containing the
8326 * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
8327 * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
8328 * bit).
8329 */
8330 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8331 reset_mask2 & (~not_reset_mask2));
8332
8333 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8334 reset_mask1 & (~not_reset_mask1));
8335
8336 barrier();
8337 mmiowb();
8338
8339 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
8340 reset_mask2 & (~stay_reset2));
8341
8342 barrier();
8343 mmiowb();
8344
8345 REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
8346 mmiowb();
8347 }
8348
8349 /**
8350 * bnx2x_er_poll_igu_vq - poll for pending writes bit.
8351 * It should get cleared in no more than 1s.
8352 *
8353 * @bp: driver handle
8354 *
8355 * It should get cleared in no more than 1s. Returns 0 if
8356 * pending writes bit gets cleared.
8357 */
8358 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
8359 {
8360 u32 cnt = 1000;
8361 u32 pend_bits = 0;
8362
8363 do {
8364 pend_bits = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
8365
8366 if (pend_bits == 0)
8367 break;
8368
8369 usleep_range(1000, 1000);
8370 } while (cnt-- > 0);
8371
8372 if (cnt <= 0) {
8373 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
8374 pend_bits);
8375 return -EBUSY;
8376 }
8377
8378 return 0;
8379 }
8380
8381 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
8382 {
8383 int cnt = 1000;
8384 u32 val = 0;
8385 u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
8386
8387
8388 /* Empty the Tetris buffer, wait for 1s */
8389 do {
8390 sr_cnt = REG_RD(bp, PXP2_REG_RD_SR_CNT);
8391 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
8392 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
8393 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
8394 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
8395 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
8396 ((port_is_idle_0 & 0x1) == 0x1) &&
8397 ((port_is_idle_1 & 0x1) == 0x1) &&
8398 (pgl_exp_rom2 == 0xffffffff))
8399 break;
8400 usleep_range(1000, 1000);
8401 } while (cnt-- > 0);
8402
8403 if (cnt <= 0) {
8404 DP(NETIF_MSG_HW, "Tetris buffer didn't get empty or there"
8405 " are still"
8406 " outstanding read requests after 1s!\n");
8407 DP(NETIF_MSG_HW, "sr_cnt=0x%08x, blk_cnt=0x%08x,"
8408 " port_is_idle_0=0x%08x,"
8409 " port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
8410 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
8411 pgl_exp_rom2);
8412 return -EAGAIN;
8413 }
8414
8415 barrier();
8416
8417 /* Close gates #2, #3 and #4 */
8418 bnx2x_set_234_gates(bp, true);
8419
8420 /* Poll for IGU VQs for 57712 and newer chips */
8421 if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
8422 return -EAGAIN;
8423
8424
8425 /* TBD: Indicate that "process kill" is in progress to MCP */
8426
8427 /* Clear "unprepared" bit */
8428 REG_WR(bp, MISC_REG_UNPREPARED, 0);
8429 barrier();
8430
8431 /* Make sure all is written to the chip before the reset */
8432 mmiowb();
8433
8434 /* Wait for 1ms to empty GLUE and PCI-E core queues,
8435 * PSWHST, GRC and PSWRD Tetris buffer.
8436 */
8437 usleep_range(1000, 1000);
8438
8439 /* Prepare to chip reset: */
8440 /* MCP */
8441 if (global)
8442 bnx2x_reset_mcp_prep(bp, &val);
8443
8444 /* PXP */
8445 bnx2x_pxp_prep(bp);
8446 barrier();
8447
8448 /* reset the chip */
8449 bnx2x_process_kill_chip_reset(bp, global);
8450 barrier();
8451
8452 /* Recover after reset: */
8453 /* MCP */
8454 if (global && bnx2x_reset_mcp_comp(bp, val))
8455 return -EAGAIN;
8456
8457 /* TBD: Add resetting the NO_MCP mode DB here */
8458
8459 /* PXP */
8460 bnx2x_pxp_prep(bp);
8461
8462 /* Open the gates #2, #3 and #4 */
8463 bnx2x_set_234_gates(bp, false);
8464
8465 /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
8466 * reset state, re-enable attentions. */
8467
8468 return 0;
8469 }
8470
8471 int bnx2x_leader_reset(struct bnx2x *bp)
8472 {
8473 int rc = 0;
8474 bool global = bnx2x_reset_is_global(bp);
8475
8476 /* Try to recover after the failure */
8477 if (bnx2x_process_kill(bp, global)) {
8478 netdev_err(bp->dev, "Something bad had happen on engine %d! "
8479 "Aii!\n", BP_PATH(bp));
8480 rc = -EAGAIN;
8481 goto exit_leader_reset;
8482 }
8483
8484 /*
8485 * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
8486 * state.
8487 */
8488 bnx2x_set_reset_done(bp);
8489 if (global)
8490 bnx2x_clear_reset_global(bp);
8491
8492 exit_leader_reset:
8493 bp->is_leader = 0;
8494 bnx2x_release_leader_lock(bp);
8495 smp_mb();
8496 return rc;
8497 }
8498
8499 static inline void bnx2x_recovery_failed(struct bnx2x *bp)
8500 {
8501 netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
8502
8503 /* Disconnect this device */
8504 netif_device_detach(bp->dev);
8505
8506 /*
8507 * Block ifup for all function on this engine until "process kill"
8508 * or power cycle.
8509 */
8510 bnx2x_set_reset_in_progress(bp);
8511
8512 /* Shut down the power */
8513 bnx2x_set_power_state(bp, PCI_D3hot);
8514
8515 bp->recovery_state = BNX2X_RECOVERY_FAILED;
8516
8517 smp_mb();
8518 }
8519
8520 /*
8521 * Assumption: runs under rtnl lock. This together with the fact
8522 * that it's called only from bnx2x_sp_rtnl() ensure that it
8523 * will never be called when netif_running(bp->dev) is false.
8524 */
8525 static void bnx2x_parity_recover(struct bnx2x *bp)
8526 {
8527 bool global = false;
8528
8529 DP(NETIF_MSG_HW, "Handling parity\n");
8530 while (1) {
8531 switch (bp->recovery_state) {
8532 case BNX2X_RECOVERY_INIT:
8533 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
8534 bnx2x_chk_parity_attn(bp, &global, false);
8535
8536 /* Try to get a LEADER_LOCK HW lock */
8537 if (bnx2x_trylock_leader_lock(bp)) {
8538 bnx2x_set_reset_in_progress(bp);
8539 /*
8540 * Check if there is a global attention and if
8541 * there was a global attention, set the global
8542 * reset bit.
8543 */
8544
8545 if (global)
8546 bnx2x_set_reset_global(bp);
8547
8548 bp->is_leader = 1;
8549 }
8550
8551 /* Stop the driver */
8552 /* If interface has been removed - break */
8553 if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY))
8554 return;
8555
8556 bp->recovery_state = BNX2X_RECOVERY_WAIT;
8557
8558 /*
8559 * Reset MCP command sequence number and MCP mail box
8560 * sequence as we are going to reset the MCP.
8561 */
8562 if (global) {
8563 bp->fw_seq = 0;
8564 bp->fw_drv_pulse_wr_seq = 0;
8565 }
8566
8567 /* Ensure "is_leader", MCP command sequence and
8568 * "recovery_state" update values are seen on other
8569 * CPUs.
8570 */
8571 smp_mb();
8572 break;
8573
8574 case BNX2X_RECOVERY_WAIT:
8575 DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
8576 if (bp->is_leader) {
8577 int other_engine = BP_PATH(bp) ? 0 : 1;
8578 u32 other_load_counter =
8579 bnx2x_get_load_cnt(bp, other_engine);
8580 u32 load_counter =
8581 bnx2x_get_load_cnt(bp, BP_PATH(bp));
8582 global = bnx2x_reset_is_global(bp);
8583
8584 /*
8585 * In case of a parity in a global block, let
8586 * the first leader that performs a
8587 * leader_reset() reset the global blocks in
8588 * order to clear global attentions. Otherwise
8589 * the the gates will remain closed for that
8590 * engine.
8591 */
8592 if (load_counter ||
8593 (global && other_load_counter)) {
8594 /* Wait until all other functions get
8595 * down.
8596 */
8597 schedule_delayed_work(&bp->sp_rtnl_task,
8598 HZ/10);
8599 return;
8600 } else {
8601 /* If all other functions got down -
8602 * try to bring the chip back to
8603 * normal. In any case it's an exit
8604 * point for a leader.
8605 */
8606 if (bnx2x_leader_reset(bp)) {
8607 bnx2x_recovery_failed(bp);
8608 return;
8609 }
8610
8611 /* If we are here, means that the
8612 * leader has succeeded and doesn't
8613 * want to be a leader any more. Try
8614 * to continue as a none-leader.
8615 */
8616 break;
8617 }
8618 } else { /* non-leader */
8619 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
8620 /* Try to get a LEADER_LOCK HW lock as
8621 * long as a former leader may have
8622 * been unloaded by the user or
8623 * released a leadership by another
8624 * reason.
8625 */
8626 if (bnx2x_trylock_leader_lock(bp)) {
8627 /* I'm a leader now! Restart a
8628 * switch case.
8629 */
8630 bp->is_leader = 1;
8631 break;
8632 }
8633
8634 schedule_delayed_work(&bp->sp_rtnl_task,
8635 HZ/10);
8636 return;
8637
8638 } else {
8639 /*
8640 * If there was a global attention, wait
8641 * for it to be cleared.
8642 */
8643 if (bnx2x_reset_is_global(bp)) {
8644 schedule_delayed_work(
8645 &bp->sp_rtnl_task,
8646 HZ/10);
8647 return;
8648 }
8649
8650 if (bnx2x_nic_load(bp, LOAD_NORMAL))
8651 bnx2x_recovery_failed(bp);
8652 else {
8653 bp->recovery_state =
8654 BNX2X_RECOVERY_DONE;
8655 smp_mb();
8656 }
8657
8658 return;
8659 }
8660 }
8661 default:
8662 return;
8663 }
8664 }
8665 }
8666
8667 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
8668 * scheduled on a general queue in order to prevent a dead lock.
8669 */
8670 static void bnx2x_sp_rtnl_task(struct work_struct *work)
8671 {
8672 struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
8673
8674 rtnl_lock();
8675
8676 if (!netif_running(bp->dev))
8677 goto sp_rtnl_exit;
8678
8679 /* if stop on error is defined no recovery flows should be executed */
8680 #ifdef BNX2X_STOP_ON_ERROR
8681 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined "
8682 "so reset not done to allow debug dump,\n"
8683 "you will need to reboot when done\n");
8684 goto sp_rtnl_not_reset;
8685 #endif
8686
8687 if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
8688 /*
8689 * Clear all pending SP commands as we are going to reset the
8690 * function anyway.
8691 */
8692 bp->sp_rtnl_state = 0;
8693 smp_mb();
8694
8695 bnx2x_parity_recover(bp);
8696
8697 goto sp_rtnl_exit;
8698 }
8699
8700 if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
8701 /*
8702 * Clear all pending SP commands as we are going to reset the
8703 * function anyway.
8704 */
8705 bp->sp_rtnl_state = 0;
8706 smp_mb();
8707
8708 bnx2x_nic_unload(bp, UNLOAD_NORMAL);
8709 bnx2x_nic_load(bp, LOAD_NORMAL);
8710
8711 goto sp_rtnl_exit;
8712 }
8713 #ifdef BNX2X_STOP_ON_ERROR
8714 sp_rtnl_not_reset:
8715 #endif
8716 if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
8717 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
8718
8719 /*
8720 * in case of fan failure we need to reset id if the "stop on error"
8721 * debug flag is set, since we trying to prevent permanent overheating
8722 * damage
8723 */
8724 if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
8725 DP(BNX2X_MSG_SP, "fan failure detected. Unloading driver\n");
8726 netif_device_detach(bp->dev);
8727 bnx2x_close(bp->dev);
8728 }
8729
8730 sp_rtnl_exit:
8731 rtnl_unlock();
8732 }
8733
8734 /* end of nic load/unload */
8735
8736 static void bnx2x_period_task(struct work_struct *work)
8737 {
8738 struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
8739
8740 if (!netif_running(bp->dev))
8741 goto period_task_exit;
8742
8743 if (CHIP_REV_IS_SLOW(bp)) {
8744 BNX2X_ERR("period task called on emulation, ignoring\n");
8745 goto period_task_exit;
8746 }
8747
8748 bnx2x_acquire_phy_lock(bp);
8749 /*
8750 * The barrier is needed to ensure the ordering between the writing to
8751 * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
8752 * the reading here.
8753 */
8754 smp_mb();
8755 if (bp->port.pmf) {
8756 bnx2x_period_func(&bp->link_params, &bp->link_vars);
8757
8758 /* Re-queue task in 1 sec */
8759 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
8760 }
8761
8762 bnx2x_release_phy_lock(bp);
8763 period_task_exit:
8764 return;
8765 }
8766
8767 /*
8768 * Init service functions
8769 */
8770
8771 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
8772 {
8773 u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
8774 u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
8775 return base + (BP_ABS_FUNC(bp)) * stride;
8776 }
8777
8778 static void bnx2x_undi_int_disable_e1h(struct bnx2x *bp)
8779 {
8780 u32 reg = bnx2x_get_pretend_reg(bp);
8781
8782 /* Flush all outstanding writes */
8783 mmiowb();
8784
8785 /* Pretend to be function 0 */
8786 REG_WR(bp, reg, 0);
8787 REG_RD(bp, reg); /* Flush the GRC transaction (in the chip) */
8788
8789 /* From now we are in the "like-E1" mode */
8790 bnx2x_int_disable(bp);
8791
8792 /* Flush all outstanding writes */
8793 mmiowb();
8794
8795 /* Restore the original function */
8796 REG_WR(bp, reg, BP_ABS_FUNC(bp));
8797 REG_RD(bp, reg);
8798 }
8799
8800 static inline void bnx2x_undi_int_disable(struct bnx2x *bp)
8801 {
8802 if (CHIP_IS_E1(bp))
8803 bnx2x_int_disable(bp);
8804 else
8805 bnx2x_undi_int_disable_e1h(bp);
8806 }
8807
8808 static void __devinit bnx2x_undi_unload(struct bnx2x *bp)
8809 {
8810 u32 val;
8811
8812 /* Check if there is any driver already loaded */
8813 val = REG_RD(bp, MISC_REG_UNPREPARED);
8814 if (val == 0x1) {
8815
8816 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8817 /*
8818 * Check if it is the UNDI driver
8819 * UNDI driver initializes CID offset for normal bell to 0x7
8820 */
8821 val = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
8822 if (val == 0x7) {
8823 u32 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8824 /* save our pf_num */
8825 int orig_pf_num = bp->pf_num;
8826 int port;
8827 u32 swap_en, swap_val, value;
8828
8829 /* clear the UNDI indication */
8830 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
8831
8832 BNX2X_DEV_INFO("UNDI is active! reset device\n");
8833
8834 /* try unload UNDI on port 0 */
8835 bp->pf_num = 0;
8836 bp->fw_seq =
8837 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8838 DRV_MSG_SEQ_NUMBER_MASK);
8839 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8840
8841 /* if UNDI is loaded on the other port */
8842 if (reset_code != FW_MSG_CODE_DRV_UNLOAD_COMMON) {
8843
8844 /* send "DONE" for previous unload */
8845 bnx2x_fw_command(bp,
8846 DRV_MSG_CODE_UNLOAD_DONE, 0);
8847
8848 /* unload UNDI on port 1 */
8849 bp->pf_num = 1;
8850 bp->fw_seq =
8851 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8852 DRV_MSG_SEQ_NUMBER_MASK);
8853 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8854
8855 bnx2x_fw_command(bp, reset_code, 0);
8856 }
8857
8858 bnx2x_undi_int_disable(bp);
8859 port = BP_PORT(bp);
8860
8861 /* close input traffic and wait for it */
8862 /* Do not rcv packets to BRB */
8863 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_DRV_MASK :
8864 NIG_REG_LLH0_BRB1_DRV_MASK), 0x0);
8865 /* Do not direct rcv packets that are not for MCP to
8866 * the BRB */
8867 REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8868 NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8869 /* clear AEU */
8870 REG_WR(bp, (port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
8871 MISC_REG_AEU_MASK_ATTN_FUNC_0), 0);
8872 msleep(10);
8873
8874 /* save NIG port swap info */
8875 swap_val = REG_RD(bp, NIG_REG_PORT_SWAP);
8876 swap_en = REG_RD(bp, NIG_REG_STRAP_OVERRIDE);
8877 /* reset device */
8878 REG_WR(bp,
8879 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
8880 0xd3ffffff);
8881
8882 value = 0x1400;
8883 if (CHIP_IS_E3(bp)) {
8884 value |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
8885 value |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
8886 }
8887
8888 REG_WR(bp,
8889 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
8890 value);
8891
8892 /* take the NIG out of reset and restore swap values */
8893 REG_WR(bp,
8894 GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
8895 MISC_REGISTERS_RESET_REG_1_RST_NIG);
8896 REG_WR(bp, NIG_REG_PORT_SWAP, swap_val);
8897 REG_WR(bp, NIG_REG_STRAP_OVERRIDE, swap_en);
8898
8899 /* send unload done to the MCP */
8900 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
8901
8902 /* restore our func and fw_seq */
8903 bp->pf_num = orig_pf_num;
8904 bp->fw_seq =
8905 (SHMEM_RD(bp, func_mb[bp->pf_num].drv_mb_header) &
8906 DRV_MSG_SEQ_NUMBER_MASK);
8907 }
8908
8909 /* now it's safe to release the lock */
8910 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
8911 }
8912 }
8913
8914 static void __devinit bnx2x_get_common_hwinfo(struct bnx2x *bp)
8915 {
8916 u32 val, val2, val3, val4, id, boot_mode;
8917 u16 pmc;
8918
8919 /* Get the chip revision id and number. */
8920 /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
8921 val = REG_RD(bp, MISC_REG_CHIP_NUM);
8922 id = ((val & 0xffff) << 16);
8923 val = REG_RD(bp, MISC_REG_CHIP_REV);
8924 id |= ((val & 0xf) << 12);
8925 val = REG_RD(bp, MISC_REG_CHIP_METAL);
8926 id |= ((val & 0xff) << 4);
8927 val = REG_RD(bp, MISC_REG_BOND_ID);
8928 id |= (val & 0xf);
8929 bp->common.chip_id = id;
8930
8931 /* Set doorbell size */
8932 bp->db_size = (1 << BNX2X_DB_SHIFT);
8933
8934 if (!CHIP_IS_E1x(bp)) {
8935 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
8936 if ((val & 1) == 0)
8937 val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
8938 else
8939 val = (val >> 1) & 1;
8940 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
8941 "2_PORT_MODE");
8942 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
8943 CHIP_2_PORT_MODE;
8944
8945 if (CHIP_MODE_IS_4_PORT(bp))
8946 bp->pfid = (bp->pf_num >> 1); /* 0..3 */
8947 else
8948 bp->pfid = (bp->pf_num & 0x6); /* 0, 2, 4, 6 */
8949 } else {
8950 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
8951 bp->pfid = bp->pf_num; /* 0..7 */
8952 }
8953
8954 bp->link_params.chip_id = bp->common.chip_id;
8955 BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
8956
8957 val = (REG_RD(bp, 0x2874) & 0x55);
8958 if ((bp->common.chip_id & 0x1) ||
8959 (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
8960 bp->flags |= ONE_PORT_FLAG;
8961 BNX2X_DEV_INFO("single port device\n");
8962 }
8963
8964 val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
8965 bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
8966 (val & MCPR_NVM_CFG4_FLASH_SIZE));
8967 BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
8968 bp->common.flash_size, bp->common.flash_size);
8969
8970 bnx2x_init_shmem(bp);
8971
8972
8973
8974 bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
8975 MISC_REG_GENERIC_CR_1 :
8976 MISC_REG_GENERIC_CR_0));
8977
8978 bp->link_params.shmem_base = bp->common.shmem_base;
8979 bp->link_params.shmem2_base = bp->common.shmem2_base;
8980 BNX2X_DEV_INFO("shmem offset 0x%x shmem2 offset 0x%x\n",
8981 bp->common.shmem_base, bp->common.shmem2_base);
8982
8983 if (!bp->common.shmem_base) {
8984 BNX2X_DEV_INFO("MCP not active\n");
8985 bp->flags |= NO_MCP_FLAG;
8986 return;
8987 }
8988
8989 bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
8990 BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
8991
8992 bp->link_params.hw_led_mode = ((bp->common.hw_config &
8993 SHARED_HW_CFG_LED_MODE_MASK) >>
8994 SHARED_HW_CFG_LED_MODE_SHIFT);
8995
8996 bp->link_params.feature_config_flags = 0;
8997 val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
8998 if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
8999 bp->link_params.feature_config_flags |=
9000 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9001 else
9002 bp->link_params.feature_config_flags &=
9003 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
9004
9005 val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
9006 bp->common.bc_ver = val;
9007 BNX2X_DEV_INFO("bc_ver %X\n", val);
9008 if (val < BNX2X_BC_VER) {
9009 /* for now only warn
9010 * later we might need to enforce this */
9011 BNX2X_ERR("This driver needs bc_ver %X but found %X, "
9012 "please upgrade BC\n", BNX2X_BC_VER, val);
9013 }
9014 bp->link_params.feature_config_flags |=
9015 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
9016 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
9017
9018 bp->link_params.feature_config_flags |=
9019 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
9020 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
9021
9022 bp->link_params.feature_config_flags |=
9023 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
9024 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
9025 bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
9026 BC_SUPPORTS_PFC_STATS : 0;
9027
9028 boot_mode = SHMEM_RD(bp,
9029 dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
9030 PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
9031 switch (boot_mode) {
9032 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
9033 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
9034 break;
9035 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
9036 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
9037 break;
9038 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
9039 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
9040 break;
9041 case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
9042 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
9043 break;
9044 }
9045
9046 pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_PMC, &pmc);
9047 bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
9048
9049 BNX2X_DEV_INFO("%sWoL capable\n",
9050 (bp->flags & NO_WOL_FLAG) ? "not " : "");
9051
9052 val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
9053 val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
9054 val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
9055 val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
9056
9057 dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
9058 val, val2, val3, val4);
9059 }
9060
9061 #define IGU_FID(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
9062 #define IGU_VEC(val) GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
9063
9064 static void __devinit bnx2x_get_igu_cam_info(struct bnx2x *bp)
9065 {
9066 int pfid = BP_FUNC(bp);
9067 int igu_sb_id;
9068 u32 val;
9069 u8 fid, igu_sb_cnt = 0;
9070
9071 bp->igu_base_sb = 0xff;
9072 if (CHIP_INT_MODE_IS_BC(bp)) {
9073 int vn = BP_VN(bp);
9074 igu_sb_cnt = bp->igu_sb_cnt;
9075 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
9076 FP_SB_MAX_E1x;
9077
9078 bp->igu_dsb_id = E1HVN_MAX * FP_SB_MAX_E1x +
9079 (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
9080
9081 return;
9082 }
9083
9084 /* IGU in normal mode - read CAM */
9085 for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
9086 igu_sb_id++) {
9087 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
9088 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
9089 continue;
9090 fid = IGU_FID(val);
9091 if ((fid & IGU_FID_ENCODE_IS_PF)) {
9092 if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
9093 continue;
9094 if (IGU_VEC(val) == 0)
9095 /* default status block */
9096 bp->igu_dsb_id = igu_sb_id;
9097 else {
9098 if (bp->igu_base_sb == 0xff)
9099 bp->igu_base_sb = igu_sb_id;
9100 igu_sb_cnt++;
9101 }
9102 }
9103 }
9104
9105 #ifdef CONFIG_PCI_MSI
9106 /*
9107 * It's expected that number of CAM entries for this functions is equal
9108 * to the number evaluated based on the MSI-X table size. We want a
9109 * harsh warning if these values are different!
9110 */
9111 WARN_ON(bp->igu_sb_cnt != igu_sb_cnt);
9112 #endif
9113
9114 if (igu_sb_cnt == 0)
9115 BNX2X_ERR("CAM configuration error\n");
9116 }
9117
9118 static void __devinit bnx2x_link_settings_supported(struct bnx2x *bp,
9119 u32 switch_cfg)
9120 {
9121 int cfg_size = 0, idx, port = BP_PORT(bp);
9122
9123 /* Aggregation of supported attributes of all external phys */
9124 bp->port.supported[0] = 0;
9125 bp->port.supported[1] = 0;
9126 switch (bp->link_params.num_phys) {
9127 case 1:
9128 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
9129 cfg_size = 1;
9130 break;
9131 case 2:
9132 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
9133 cfg_size = 1;
9134 break;
9135 case 3:
9136 if (bp->link_params.multi_phy_config &
9137 PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
9138 bp->port.supported[1] =
9139 bp->link_params.phy[EXT_PHY1].supported;
9140 bp->port.supported[0] =
9141 bp->link_params.phy[EXT_PHY2].supported;
9142 } else {
9143 bp->port.supported[0] =
9144 bp->link_params.phy[EXT_PHY1].supported;
9145 bp->port.supported[1] =
9146 bp->link_params.phy[EXT_PHY2].supported;
9147 }
9148 cfg_size = 2;
9149 break;
9150 }
9151
9152 if (!(bp->port.supported[0] || bp->port.supported[1])) {
9153 BNX2X_ERR("NVRAM config error. BAD phy config."
9154 "PHY1 config 0x%x, PHY2 config 0x%x\n",
9155 SHMEM_RD(bp,
9156 dev_info.port_hw_config[port].external_phy_config),
9157 SHMEM_RD(bp,
9158 dev_info.port_hw_config[port].external_phy_config2));
9159 return;
9160 }
9161
9162 if (CHIP_IS_E3(bp))
9163 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
9164 else {
9165 switch (switch_cfg) {
9166 case SWITCH_CFG_1G:
9167 bp->port.phy_addr = REG_RD(
9168 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
9169 break;
9170 case SWITCH_CFG_10G:
9171 bp->port.phy_addr = REG_RD(
9172 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
9173 break;
9174 default:
9175 BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
9176 bp->port.link_config[0]);
9177 return;
9178 }
9179 }
9180 BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
9181 /* mask what we support according to speed_cap_mask per configuration */
9182 for (idx = 0; idx < cfg_size; idx++) {
9183 if (!(bp->link_params.speed_cap_mask[idx] &
9184 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
9185 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
9186
9187 if (!(bp->link_params.speed_cap_mask[idx] &
9188 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
9189 bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
9190
9191 if (!(bp->link_params.speed_cap_mask[idx] &
9192 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
9193 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
9194
9195 if (!(bp->link_params.speed_cap_mask[idx] &
9196 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
9197 bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
9198
9199 if (!(bp->link_params.speed_cap_mask[idx] &
9200 PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
9201 bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
9202 SUPPORTED_1000baseT_Full);
9203
9204 if (!(bp->link_params.speed_cap_mask[idx] &
9205 PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
9206 bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
9207
9208 if (!(bp->link_params.speed_cap_mask[idx] &
9209 PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
9210 bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
9211
9212 }
9213
9214 BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
9215 bp->port.supported[1]);
9216 }
9217
9218 static void __devinit bnx2x_link_settings_requested(struct bnx2x *bp)
9219 {
9220 u32 link_config, idx, cfg_size = 0;
9221 bp->port.advertising[0] = 0;
9222 bp->port.advertising[1] = 0;
9223 switch (bp->link_params.num_phys) {
9224 case 1:
9225 case 2:
9226 cfg_size = 1;
9227 break;
9228 case 3:
9229 cfg_size = 2;
9230 break;
9231 }
9232 for (idx = 0; idx < cfg_size; idx++) {
9233 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
9234 link_config = bp->port.link_config[idx];
9235 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
9236 case PORT_FEATURE_LINK_SPEED_AUTO:
9237 if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
9238 bp->link_params.req_line_speed[idx] =
9239 SPEED_AUTO_NEG;
9240 bp->port.advertising[idx] |=
9241 bp->port.supported[idx];
9242 } else {
9243 /* force 10G, no AN */
9244 bp->link_params.req_line_speed[idx] =
9245 SPEED_10000;
9246 bp->port.advertising[idx] |=
9247 (ADVERTISED_10000baseT_Full |
9248 ADVERTISED_FIBRE);
9249 continue;
9250 }
9251 break;
9252
9253 case PORT_FEATURE_LINK_SPEED_10M_FULL:
9254 if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
9255 bp->link_params.req_line_speed[idx] =
9256 SPEED_10;
9257 bp->port.advertising[idx] |=
9258 (ADVERTISED_10baseT_Full |
9259 ADVERTISED_TP);
9260 } else {
9261 BNX2X_ERR("NVRAM config error. "
9262 "Invalid link_config 0x%x"
9263 " speed_cap_mask 0x%x\n",
9264 link_config,
9265 bp->link_params.speed_cap_mask[idx]);
9266 return;
9267 }
9268 break;
9269
9270 case PORT_FEATURE_LINK_SPEED_10M_HALF:
9271 if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
9272 bp->link_params.req_line_speed[idx] =
9273 SPEED_10;
9274 bp->link_params.req_duplex[idx] =
9275 DUPLEX_HALF;
9276 bp->port.advertising[idx] |=
9277 (ADVERTISED_10baseT_Half |
9278 ADVERTISED_TP);
9279 } else {
9280 BNX2X_ERR("NVRAM config error. "
9281 "Invalid link_config 0x%x"
9282 " speed_cap_mask 0x%x\n",
9283 link_config,
9284 bp->link_params.speed_cap_mask[idx]);
9285 return;
9286 }
9287 break;
9288
9289 case PORT_FEATURE_LINK_SPEED_100M_FULL:
9290 if (bp->port.supported[idx] &
9291 SUPPORTED_100baseT_Full) {
9292 bp->link_params.req_line_speed[idx] =
9293 SPEED_100;
9294 bp->port.advertising[idx] |=
9295 (ADVERTISED_100baseT_Full |
9296 ADVERTISED_TP);
9297 } else {
9298 BNX2X_ERR("NVRAM config error. "
9299 "Invalid link_config 0x%x"
9300 " speed_cap_mask 0x%x\n",
9301 link_config,
9302 bp->link_params.speed_cap_mask[idx]);
9303 return;
9304 }
9305 break;
9306
9307 case PORT_FEATURE_LINK_SPEED_100M_HALF:
9308 if (bp->port.supported[idx] &
9309 SUPPORTED_100baseT_Half) {
9310 bp->link_params.req_line_speed[idx] =
9311 SPEED_100;
9312 bp->link_params.req_duplex[idx] =
9313 DUPLEX_HALF;
9314 bp->port.advertising[idx] |=
9315 (ADVERTISED_100baseT_Half |
9316 ADVERTISED_TP);
9317 } else {
9318 BNX2X_ERR("NVRAM config error. "
9319 "Invalid link_config 0x%x"
9320 " speed_cap_mask 0x%x\n",
9321 link_config,
9322 bp->link_params.speed_cap_mask[idx]);
9323 return;
9324 }
9325 break;
9326
9327 case PORT_FEATURE_LINK_SPEED_1G:
9328 if (bp->port.supported[idx] &
9329 SUPPORTED_1000baseT_Full) {
9330 bp->link_params.req_line_speed[idx] =
9331 SPEED_1000;
9332 bp->port.advertising[idx] |=
9333 (ADVERTISED_1000baseT_Full |
9334 ADVERTISED_TP);
9335 } else {
9336 BNX2X_ERR("NVRAM config error. "
9337 "Invalid link_config 0x%x"
9338 " speed_cap_mask 0x%x\n",
9339 link_config,
9340 bp->link_params.speed_cap_mask[idx]);
9341 return;
9342 }
9343 break;
9344
9345 case PORT_FEATURE_LINK_SPEED_2_5G:
9346 if (bp->port.supported[idx] &
9347 SUPPORTED_2500baseX_Full) {
9348 bp->link_params.req_line_speed[idx] =
9349 SPEED_2500;
9350 bp->port.advertising[idx] |=
9351 (ADVERTISED_2500baseX_Full |
9352 ADVERTISED_TP);
9353 } else {
9354 BNX2X_ERR("NVRAM config error. "
9355 "Invalid link_config 0x%x"
9356 " speed_cap_mask 0x%x\n",
9357 link_config,
9358 bp->link_params.speed_cap_mask[idx]);
9359 return;
9360 }
9361 break;
9362
9363 case PORT_FEATURE_LINK_SPEED_10G_CX4:
9364 if (bp->port.supported[idx] &
9365 SUPPORTED_10000baseT_Full) {
9366 bp->link_params.req_line_speed[idx] =
9367 SPEED_10000;
9368 bp->port.advertising[idx] |=
9369 (ADVERTISED_10000baseT_Full |
9370 ADVERTISED_FIBRE);
9371 } else {
9372 BNX2X_ERR("NVRAM config error. "
9373 "Invalid link_config 0x%x"
9374 " speed_cap_mask 0x%x\n",
9375 link_config,
9376 bp->link_params.speed_cap_mask[idx]);
9377 return;
9378 }
9379 break;
9380 case PORT_FEATURE_LINK_SPEED_20G:
9381 bp->link_params.req_line_speed[idx] = SPEED_20000;
9382
9383 break;
9384 default:
9385 BNX2X_ERR("NVRAM config error. "
9386 "BAD link speed link_config 0x%x\n",
9387 link_config);
9388 bp->link_params.req_line_speed[idx] =
9389 SPEED_AUTO_NEG;
9390 bp->port.advertising[idx] =
9391 bp->port.supported[idx];
9392 break;
9393 }
9394
9395 bp->link_params.req_flow_ctrl[idx] = (link_config &
9396 PORT_FEATURE_FLOW_CONTROL_MASK);
9397 if ((bp->link_params.req_flow_ctrl[idx] ==
9398 BNX2X_FLOW_CTRL_AUTO) &&
9399 !(bp->port.supported[idx] & SUPPORTED_Autoneg)) {
9400 bp->link_params.req_flow_ctrl[idx] =
9401 BNX2X_FLOW_CTRL_NONE;
9402 }
9403
9404 BNX2X_DEV_INFO("req_line_speed %d req_duplex %d req_flow_ctrl"
9405 " 0x%x advertising 0x%x\n",
9406 bp->link_params.req_line_speed[idx],
9407 bp->link_params.req_duplex[idx],
9408 bp->link_params.req_flow_ctrl[idx],
9409 bp->port.advertising[idx]);
9410 }
9411 }
9412
9413 static void __devinit bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
9414 {
9415 mac_hi = cpu_to_be16(mac_hi);
9416 mac_lo = cpu_to_be32(mac_lo);
9417 memcpy(mac_buf, &mac_hi, sizeof(mac_hi));
9418 memcpy(mac_buf + sizeof(mac_hi), &mac_lo, sizeof(mac_lo));
9419 }
9420
9421 static void __devinit bnx2x_get_port_hwinfo(struct bnx2x *bp)
9422 {
9423 int port = BP_PORT(bp);
9424 u32 config;
9425 u32 ext_phy_type, ext_phy_config;
9426
9427 bp->link_params.bp = bp;
9428 bp->link_params.port = port;
9429
9430 bp->link_params.lane_config =
9431 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
9432
9433 bp->link_params.speed_cap_mask[0] =
9434 SHMEM_RD(bp,
9435 dev_info.port_hw_config[port].speed_capability_mask);
9436 bp->link_params.speed_cap_mask[1] =
9437 SHMEM_RD(bp,
9438 dev_info.port_hw_config[port].speed_capability_mask2);
9439 bp->port.link_config[0] =
9440 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
9441
9442 bp->port.link_config[1] =
9443 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
9444
9445 bp->link_params.multi_phy_config =
9446 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
9447 /* If the device is capable of WoL, set the default state according
9448 * to the HW
9449 */
9450 config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
9451 bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
9452 (config & PORT_FEATURE_WOL_ENABLED));
9453
9454 BNX2X_DEV_INFO("lane_config 0x%08x "
9455 "speed_cap_mask0 0x%08x link_config0 0x%08x\n",
9456 bp->link_params.lane_config,
9457 bp->link_params.speed_cap_mask[0],
9458 bp->port.link_config[0]);
9459
9460 bp->link_params.switch_cfg = (bp->port.link_config[0] &
9461 PORT_FEATURE_CONNECTED_SWITCH_MASK);
9462 bnx2x_phy_probe(&bp->link_params);
9463 bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
9464
9465 bnx2x_link_settings_requested(bp);
9466
9467 /*
9468 * If connected directly, work with the internal PHY, otherwise, work
9469 * with the external PHY
9470 */
9471 ext_phy_config =
9472 SHMEM_RD(bp,
9473 dev_info.port_hw_config[port].external_phy_config);
9474 ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
9475 if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
9476 bp->mdio.prtad = bp->port.phy_addr;
9477
9478 else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
9479 (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
9480 bp->mdio.prtad =
9481 XGXS_EXT_PHY_ADDR(ext_phy_config);
9482
9483 /*
9484 * Check if hw lock is required to access MDC/MDIO bus to the PHY(s)
9485 * In MF mode, it is set to cover self test cases
9486 */
9487 if (IS_MF(bp))
9488 bp->port.need_hw_lock = 1;
9489 else
9490 bp->port.need_hw_lock = bnx2x_hw_lock_required(bp,
9491 bp->common.shmem_base,
9492 bp->common.shmem2_base);
9493 }
9494
9495 void bnx2x_get_iscsi_info(struct bnx2x *bp)
9496 {
9497 #ifdef BCM_CNIC
9498 int port = BP_PORT(bp);
9499
9500 u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9501 drv_lic_key[port].max_iscsi_conn);
9502
9503 /* Get the number of maximum allowed iSCSI connections */
9504 bp->cnic_eth_dev.max_iscsi_conn =
9505 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
9506 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
9507
9508 BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
9509 bp->cnic_eth_dev.max_iscsi_conn);
9510
9511 /*
9512 * If maximum allowed number of connections is zero -
9513 * disable the feature.
9514 */
9515 if (!bp->cnic_eth_dev.max_iscsi_conn)
9516 bp->flags |= NO_ISCSI_FLAG;
9517 #else
9518 bp->flags |= NO_ISCSI_FLAG;
9519 #endif
9520 }
9521
9522 static void __devinit bnx2x_get_fcoe_info(struct bnx2x *bp)
9523 {
9524 #ifdef BCM_CNIC
9525 int port = BP_PORT(bp);
9526 int func = BP_ABS_FUNC(bp);
9527
9528 u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
9529 drv_lic_key[port].max_fcoe_conn);
9530
9531 /* Get the number of maximum allowed FCoE connections */
9532 bp->cnic_eth_dev.max_fcoe_conn =
9533 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
9534 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
9535
9536 /* Read the WWN: */
9537 if (!IS_MF(bp)) {
9538 /* Port info */
9539 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9540 SHMEM_RD(bp,
9541 dev_info.port_hw_config[port].
9542 fcoe_wwn_port_name_upper);
9543 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9544 SHMEM_RD(bp,
9545 dev_info.port_hw_config[port].
9546 fcoe_wwn_port_name_lower);
9547
9548 /* Node info */
9549 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9550 SHMEM_RD(bp,
9551 dev_info.port_hw_config[port].
9552 fcoe_wwn_node_name_upper);
9553 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9554 SHMEM_RD(bp,
9555 dev_info.port_hw_config[port].
9556 fcoe_wwn_node_name_lower);
9557 } else if (!IS_MF_SD(bp)) {
9558 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9559
9560 /*
9561 * Read the WWN info only if the FCoE feature is enabled for
9562 * this function.
9563 */
9564 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9565 /* Port info */
9566 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
9567 MF_CFG_RD(bp, func_ext_config[func].
9568 fcoe_wwn_port_name_upper);
9569 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
9570 MF_CFG_RD(bp, func_ext_config[func].
9571 fcoe_wwn_port_name_lower);
9572
9573 /* Node info */
9574 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
9575 MF_CFG_RD(bp, func_ext_config[func].
9576 fcoe_wwn_node_name_upper);
9577 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
9578 MF_CFG_RD(bp, func_ext_config[func].
9579 fcoe_wwn_node_name_lower);
9580 }
9581 }
9582
9583 BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
9584
9585 /*
9586 * If maximum allowed number of connections is zero -
9587 * disable the feature.
9588 */
9589 if (!bp->cnic_eth_dev.max_fcoe_conn)
9590 bp->flags |= NO_FCOE_FLAG;
9591 #else
9592 bp->flags |= NO_FCOE_FLAG;
9593 #endif
9594 }
9595
9596 static void __devinit bnx2x_get_cnic_info(struct bnx2x *bp)
9597 {
9598 /*
9599 * iSCSI may be dynamically disabled but reading
9600 * info here we will decrease memory usage by driver
9601 * if the feature is disabled for good
9602 */
9603 bnx2x_get_iscsi_info(bp);
9604 bnx2x_get_fcoe_info(bp);
9605 }
9606
9607 static void __devinit bnx2x_get_mac_hwinfo(struct bnx2x *bp)
9608 {
9609 u32 val, val2;
9610 int func = BP_ABS_FUNC(bp);
9611 int port = BP_PORT(bp);
9612 #ifdef BCM_CNIC
9613 u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
9614 u8 *fip_mac = bp->fip_mac;
9615 #endif
9616
9617 /* Zero primary MAC configuration */
9618 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9619
9620 if (BP_NOMCP(bp)) {
9621 BNX2X_ERROR("warning: random MAC workaround active\n");
9622 random_ether_addr(bp->dev->dev_addr);
9623 } else if (IS_MF(bp)) {
9624 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
9625 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
9626 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
9627 (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
9628 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9629
9630 #ifdef BCM_CNIC
9631 /*
9632 * iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
9633 * FCoE MAC then the appropriate feature should be disabled.
9634 */
9635 if (IS_MF_SI(bp)) {
9636 u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
9637 if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
9638 val2 = MF_CFG_RD(bp, func_ext_config[func].
9639 iscsi_mac_addr_upper);
9640 val = MF_CFG_RD(bp, func_ext_config[func].
9641 iscsi_mac_addr_lower);
9642 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9643 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9644 iscsi_mac);
9645 } else
9646 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
9647
9648 if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
9649 val2 = MF_CFG_RD(bp, func_ext_config[func].
9650 fcoe_mac_addr_upper);
9651 val = MF_CFG_RD(bp, func_ext_config[func].
9652 fcoe_mac_addr_lower);
9653 bnx2x_set_mac_buf(fip_mac, val, val2);
9654 BNX2X_DEV_INFO("Read FCoE L2 MAC: %pM\n",
9655 fip_mac);
9656
9657 } else
9658 bp->flags |= NO_FCOE_FLAG;
9659 } else { /* SD mode */
9660 if (BNX2X_IS_MF_PROTOCOL_ISCSI(bp)) {
9661 /* use primary mac as iscsi mac */
9662 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
9663 /* Zero primary MAC configuration */
9664 memset(bp->dev->dev_addr, 0, ETH_ALEN);
9665
9666 BNX2X_DEV_INFO("SD ISCSI MODE\n");
9667 BNX2X_DEV_INFO("Read iSCSI MAC: %pM\n",
9668 iscsi_mac);
9669 }
9670 }
9671 #endif
9672 } else {
9673 /* in SF read MACs from port configuration */
9674 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
9675 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
9676 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
9677
9678 #ifdef BCM_CNIC
9679 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9680 iscsi_mac_upper);
9681 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9682 iscsi_mac_lower);
9683 bnx2x_set_mac_buf(iscsi_mac, val, val2);
9684
9685 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
9686 fcoe_fip_mac_upper);
9687 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
9688 fcoe_fip_mac_lower);
9689 bnx2x_set_mac_buf(fip_mac, val, val2);
9690 #endif
9691 }
9692
9693 memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
9694 memcpy(bp->dev->perm_addr, bp->dev->dev_addr, ETH_ALEN);
9695
9696 #ifdef BCM_CNIC
9697 /* Set the FCoE MAC in MF_SD mode */
9698 if (!CHIP_IS_E1x(bp) && IS_MF_SD(bp))
9699 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
9700
9701 /* Disable iSCSI if MAC configuration is
9702 * invalid.
9703 */
9704 if (!is_valid_ether_addr(iscsi_mac)) {
9705 bp->flags |= NO_ISCSI_FLAG;
9706 memset(iscsi_mac, 0, ETH_ALEN);
9707 }
9708
9709 /* Disable FCoE if MAC configuration is
9710 * invalid.
9711 */
9712 if (!is_valid_ether_addr(fip_mac)) {
9713 bp->flags |= NO_FCOE_FLAG;
9714 memset(bp->fip_mac, 0, ETH_ALEN);
9715 }
9716 #endif
9717
9718 if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
9719 dev_err(&bp->pdev->dev,
9720 "bad Ethernet MAC address configuration: "
9721 "%pM, change it manually before bringing up "
9722 "the appropriate network interface\n",
9723 bp->dev->dev_addr);
9724 }
9725
9726 static int __devinit bnx2x_get_hwinfo(struct bnx2x *bp)
9727 {
9728 int /*abs*/func = BP_ABS_FUNC(bp);
9729 int vn;
9730 u32 val = 0;
9731 int rc = 0;
9732
9733 bnx2x_get_common_hwinfo(bp);
9734
9735 /*
9736 * initialize IGU parameters
9737 */
9738 if (CHIP_IS_E1x(bp)) {
9739 bp->common.int_block = INT_BLOCK_HC;
9740
9741 bp->igu_dsb_id = DEF_SB_IGU_ID;
9742 bp->igu_base_sb = 0;
9743 } else {
9744 bp->common.int_block = INT_BLOCK_IGU;
9745
9746 /* do not allow device reset during IGU info preocessing */
9747 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9748
9749 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9750
9751 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9752 int tout = 5000;
9753
9754 BNX2X_DEV_INFO("FORCING Normal Mode\n");
9755
9756 val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
9757 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
9758 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
9759
9760 while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9761 tout--;
9762 usleep_range(1000, 1000);
9763 }
9764
9765 if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
9766 dev_err(&bp->pdev->dev,
9767 "FORCING Normal Mode failed!!!\n");
9768 return -EPERM;
9769 }
9770 }
9771
9772 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
9773 BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
9774 bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
9775 } else
9776 BNX2X_DEV_INFO("IGU Normal Mode\n");
9777
9778 bnx2x_get_igu_cam_info(bp);
9779
9780 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
9781 }
9782
9783 /*
9784 * set base FW non-default (fast path) status block id, this value is
9785 * used to initialize the fw_sb_id saved on the fp/queue structure to
9786 * determine the id used by the FW.
9787 */
9788 if (CHIP_IS_E1x(bp))
9789 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
9790 else /*
9791 * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
9792 * the same queue are indicated on the same IGU SB). So we prefer
9793 * FW and IGU SBs to be the same value.
9794 */
9795 bp->base_fw_ndsb = bp->igu_base_sb;
9796
9797 BNX2X_DEV_INFO("igu_dsb_id %d igu_base_sb %d igu_sb_cnt %d\n"
9798 "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
9799 bp->igu_sb_cnt, bp->base_fw_ndsb);
9800
9801 /*
9802 * Initialize MF configuration
9803 */
9804
9805 bp->mf_ov = 0;
9806 bp->mf_mode = 0;
9807 vn = BP_VN(bp);
9808
9809 if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
9810 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
9811 bp->common.shmem2_base, SHMEM2_RD(bp, size),
9812 (u32)offsetof(struct shmem2_region, mf_cfg_addr));
9813
9814 if (SHMEM2_HAS(bp, mf_cfg_addr))
9815 bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
9816 else
9817 bp->common.mf_cfg_base = bp->common.shmem_base +
9818 offsetof(struct shmem_region, func_mb) +
9819 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
9820 /*
9821 * get mf configuration:
9822 * 1. existence of MF configuration
9823 * 2. MAC address must be legal (check only upper bytes)
9824 * for Switch-Independent mode;
9825 * OVLAN must be legal for Switch-Dependent mode
9826 * 3. SF_MODE configures specific MF mode
9827 */
9828 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9829 /* get mf configuration */
9830 val = SHMEM_RD(bp,
9831 dev_info.shared_feature_config.config);
9832 val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
9833
9834 switch (val) {
9835 case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
9836 val = MF_CFG_RD(bp, func_mf_config[func].
9837 mac_upper);
9838 /* check for legal mac (upper bytes)*/
9839 if (val != 0xffff) {
9840 bp->mf_mode = MULTI_FUNCTION_SI;
9841 bp->mf_config[vn] = MF_CFG_RD(bp,
9842 func_mf_config[func].config);
9843 } else
9844 BNX2X_DEV_INFO("illegal MAC address "
9845 "for SI\n");
9846 break;
9847 case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
9848 /* get OV configuration */
9849 val = MF_CFG_RD(bp,
9850 func_mf_config[FUNC_0].e1hov_tag);
9851 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
9852
9853 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9854 bp->mf_mode = MULTI_FUNCTION_SD;
9855 bp->mf_config[vn] = MF_CFG_RD(bp,
9856 func_mf_config[func].config);
9857 } else
9858 BNX2X_DEV_INFO("illegal OV for SD\n");
9859 break;
9860 default:
9861 /* Unknown configuration: reset mf_config */
9862 bp->mf_config[vn] = 0;
9863 BNX2X_DEV_INFO("unkown MF mode 0x%x\n", val);
9864 }
9865 }
9866
9867 BNX2X_DEV_INFO("%s function mode\n",
9868 IS_MF(bp) ? "multi" : "single");
9869
9870 switch (bp->mf_mode) {
9871 case MULTI_FUNCTION_SD:
9872 val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
9873 FUNC_MF_CFG_E1HOV_TAG_MASK;
9874 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
9875 bp->mf_ov = val;
9876 bp->path_has_ovlan = true;
9877
9878 BNX2X_DEV_INFO("MF OV for func %d is %d "
9879 "(0x%04x)\n", func, bp->mf_ov,
9880 bp->mf_ov);
9881 } else {
9882 dev_err(&bp->pdev->dev,
9883 "No valid MF OV for func %d, "
9884 "aborting\n", func);
9885 return -EPERM;
9886 }
9887 break;
9888 case MULTI_FUNCTION_SI:
9889 BNX2X_DEV_INFO("func %d is in MF "
9890 "switch-independent mode\n", func);
9891 break;
9892 default:
9893 if (vn) {
9894 dev_err(&bp->pdev->dev,
9895 "VN %d is in a single function mode, "
9896 "aborting\n", vn);
9897 return -EPERM;
9898 }
9899 break;
9900 }
9901
9902 /* check if other port on the path needs ovlan:
9903 * Since MF configuration is shared between ports
9904 * Possible mixed modes are only
9905 * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
9906 */
9907 if (CHIP_MODE_IS_4_PORT(bp) &&
9908 !bp->path_has_ovlan &&
9909 !IS_MF(bp) &&
9910 bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
9911 u8 other_port = !BP_PORT(bp);
9912 u8 other_func = BP_PATH(bp) + 2*other_port;
9913 val = MF_CFG_RD(bp,
9914 func_mf_config[other_func].e1hov_tag);
9915 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
9916 bp->path_has_ovlan = true;
9917 }
9918 }
9919
9920 /* adjust igu_sb_cnt to MF for E1x */
9921 if (CHIP_IS_E1x(bp) && IS_MF(bp))
9922 bp->igu_sb_cnt /= E1HVN_MAX;
9923
9924 /* port info */
9925 bnx2x_get_port_hwinfo(bp);
9926
9927 /* Get MAC addresses */
9928 bnx2x_get_mac_hwinfo(bp);
9929
9930 bnx2x_get_cnic_info(bp);
9931
9932 /* Get current FW pulse sequence */
9933 if (!BP_NOMCP(bp)) {
9934 int mb_idx = BP_FW_MB_IDX(bp);
9935
9936 bp->fw_drv_pulse_wr_seq =
9937 (SHMEM_RD(bp, func_mb[mb_idx].drv_pulse_mb) &
9938 DRV_PULSE_SEQ_MASK);
9939 BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
9940 }
9941
9942 return rc;
9943 }
9944
9945 static void __devinit bnx2x_read_fwinfo(struct bnx2x *bp)
9946 {
9947 int cnt, i, block_end, rodi;
9948 char vpd_start[BNX2X_VPD_LEN+1];
9949 char str_id_reg[VENDOR_ID_LEN+1];
9950 char str_id_cap[VENDOR_ID_LEN+1];
9951 char *vpd_data;
9952 char *vpd_extended_data = NULL;
9953 u8 len;
9954
9955 cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
9956 memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
9957
9958 if (cnt < BNX2X_VPD_LEN)
9959 goto out_not_found;
9960
9961 /* VPD RO tag should be first tag after identifier string, hence
9962 * we should be able to find it in first BNX2X_VPD_LEN chars
9963 */
9964 i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
9965 PCI_VPD_LRDT_RO_DATA);
9966 if (i < 0)
9967 goto out_not_found;
9968
9969 block_end = i + PCI_VPD_LRDT_TAG_SIZE +
9970 pci_vpd_lrdt_size(&vpd_start[i]);
9971
9972 i += PCI_VPD_LRDT_TAG_SIZE;
9973
9974 if (block_end > BNX2X_VPD_LEN) {
9975 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
9976 if (vpd_extended_data == NULL)
9977 goto out_not_found;
9978
9979 /* read rest of vpd image into vpd_extended_data */
9980 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
9981 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
9982 block_end - BNX2X_VPD_LEN,
9983 vpd_extended_data + BNX2X_VPD_LEN);
9984 if (cnt < (block_end - BNX2X_VPD_LEN))
9985 goto out_not_found;
9986 vpd_data = vpd_extended_data;
9987 } else
9988 vpd_data = vpd_start;
9989
9990 /* now vpd_data holds full vpd content in both cases */
9991
9992 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
9993 PCI_VPD_RO_KEYWORD_MFR_ID);
9994 if (rodi < 0)
9995 goto out_not_found;
9996
9997 len = pci_vpd_info_field_size(&vpd_data[rodi]);
9998
9999 if (len != VENDOR_ID_LEN)
10000 goto out_not_found;
10001
10002 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10003
10004 /* vendor specific info */
10005 snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
10006 snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
10007 if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
10008 !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
10009
10010 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
10011 PCI_VPD_RO_KEYWORD_VENDOR0);
10012 if (rodi >= 0) {
10013 len = pci_vpd_info_field_size(&vpd_data[rodi]);
10014
10015 rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
10016
10017 if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
10018 memcpy(bp->fw_ver, &vpd_data[rodi], len);
10019 bp->fw_ver[len] = ' ';
10020 }
10021 }
10022 kfree(vpd_extended_data);
10023 return;
10024 }
10025 out_not_found:
10026 kfree(vpd_extended_data);
10027 return;
10028 }
10029
10030 static void __devinit bnx2x_set_modes_bitmap(struct bnx2x *bp)
10031 {
10032 u32 flags = 0;
10033
10034 if (CHIP_REV_IS_FPGA(bp))
10035 SET_FLAGS(flags, MODE_FPGA);
10036 else if (CHIP_REV_IS_EMUL(bp))
10037 SET_FLAGS(flags, MODE_EMUL);
10038 else
10039 SET_FLAGS(flags, MODE_ASIC);
10040
10041 if (CHIP_MODE_IS_4_PORT(bp))
10042 SET_FLAGS(flags, MODE_PORT4);
10043 else
10044 SET_FLAGS(flags, MODE_PORT2);
10045
10046 if (CHIP_IS_E2(bp))
10047 SET_FLAGS(flags, MODE_E2);
10048 else if (CHIP_IS_E3(bp)) {
10049 SET_FLAGS(flags, MODE_E3);
10050 if (CHIP_REV(bp) == CHIP_REV_Ax)
10051 SET_FLAGS(flags, MODE_E3_A0);
10052 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
10053 SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
10054 }
10055
10056 if (IS_MF(bp)) {
10057 SET_FLAGS(flags, MODE_MF);
10058 switch (bp->mf_mode) {
10059 case MULTI_FUNCTION_SD:
10060 SET_FLAGS(flags, MODE_MF_SD);
10061 break;
10062 case MULTI_FUNCTION_SI:
10063 SET_FLAGS(flags, MODE_MF_SI);
10064 break;
10065 }
10066 } else
10067 SET_FLAGS(flags, MODE_SF);
10068
10069 #if defined(__LITTLE_ENDIAN)
10070 SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
10071 #else /*(__BIG_ENDIAN)*/
10072 SET_FLAGS(flags, MODE_BIG_ENDIAN);
10073 #endif
10074 INIT_MODE_FLAGS(bp) = flags;
10075 }
10076
10077 static int __devinit bnx2x_init_bp(struct bnx2x *bp)
10078 {
10079 int func;
10080 int timer_interval;
10081 int rc;
10082
10083 mutex_init(&bp->port.phy_mutex);
10084 mutex_init(&bp->fw_mb_mutex);
10085 spin_lock_init(&bp->stats_lock);
10086 #ifdef BCM_CNIC
10087 mutex_init(&bp->cnic_mutex);
10088 #endif
10089
10090 INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
10091 INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
10092 INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
10093 rc = bnx2x_get_hwinfo(bp);
10094 if (rc)
10095 return rc;
10096
10097 bnx2x_set_modes_bitmap(bp);
10098
10099 rc = bnx2x_alloc_mem_bp(bp);
10100 if (rc)
10101 return rc;
10102
10103 bnx2x_read_fwinfo(bp);
10104
10105 func = BP_FUNC(bp);
10106
10107 /* need to reset chip if undi was active */
10108 if (!BP_NOMCP(bp))
10109 bnx2x_undi_unload(bp);
10110
10111 /* init fw_seq after undi_unload! */
10112 if (!BP_NOMCP(bp)) {
10113 bp->fw_seq =
10114 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
10115 DRV_MSG_SEQ_NUMBER_MASK);
10116 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
10117 }
10118
10119 if (CHIP_REV_IS_FPGA(bp))
10120 dev_err(&bp->pdev->dev, "FPGA detected\n");
10121
10122 if (BP_NOMCP(bp) && (func == 0))
10123 dev_err(&bp->pdev->dev, "MCP disabled, "
10124 "must load devices in order!\n");
10125
10126 bp->multi_mode = multi_mode;
10127
10128 bp->disable_tpa = disable_tpa;
10129
10130 #ifdef BCM_CNIC
10131 bp->disable_tpa |= IS_MF_ISCSI_SD(bp);
10132 #endif
10133
10134 /* Set TPA flags */
10135 if (bp->disable_tpa) {
10136 bp->flags &= ~TPA_ENABLE_FLAG;
10137 bp->dev->features &= ~NETIF_F_LRO;
10138 } else {
10139 bp->flags |= TPA_ENABLE_FLAG;
10140 bp->dev->features |= NETIF_F_LRO;
10141 }
10142
10143 if (CHIP_IS_E1(bp))
10144 bp->dropless_fc = 0;
10145 else
10146 bp->dropless_fc = dropless_fc;
10147
10148 bp->mrrs = mrrs;
10149
10150 bp->tx_ring_size = MAX_TX_AVAIL;
10151
10152 /* make sure that the numbers are in the right granularity */
10153 bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
10154 bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
10155
10156 timer_interval = (CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ);
10157 bp->current_interval = (poll ? poll : timer_interval);
10158
10159 init_timer(&bp->timer);
10160 bp->timer.expires = jiffies + bp->current_interval;
10161 bp->timer.data = (unsigned long) bp;
10162 bp->timer.function = bnx2x_timer;
10163
10164 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
10165 bnx2x_dcbx_init_params(bp);
10166
10167 #ifdef BCM_CNIC
10168 if (CHIP_IS_E1x(bp))
10169 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
10170 else
10171 bp->cnic_base_cl_id = FP_SB_MAX_E2;
10172 #endif
10173
10174 /* multiple tx priority */
10175 if (CHIP_IS_E1x(bp))
10176 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
10177 if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
10178 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
10179 if (CHIP_IS_E3B0(bp))
10180 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
10181
10182 return rc;
10183 }
10184
10185
10186 /****************************************************************************
10187 * General service functions
10188 ****************************************************************************/
10189
10190 /*
10191 * net_device service functions
10192 */
10193
10194 /* called with rtnl_lock */
10195 static int bnx2x_open(struct net_device *dev)
10196 {
10197 struct bnx2x *bp = netdev_priv(dev);
10198 bool global = false;
10199 int other_engine = BP_PATH(bp) ? 0 : 1;
10200 u32 other_load_counter, load_counter;
10201
10202 netif_carrier_off(dev);
10203
10204 bnx2x_set_power_state(bp, PCI_D0);
10205
10206 other_load_counter = bnx2x_get_load_cnt(bp, other_engine);
10207 load_counter = bnx2x_get_load_cnt(bp, BP_PATH(bp));
10208
10209 /*
10210 * If parity had happen during the unload, then attentions
10211 * and/or RECOVERY_IN_PROGRES may still be set. In this case we
10212 * want the first function loaded on the current engine to
10213 * complete the recovery.
10214 */
10215 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
10216 bnx2x_chk_parity_attn(bp, &global, true))
10217 do {
10218 /*
10219 * If there are attentions and they are in a global
10220 * blocks, set the GLOBAL_RESET bit regardless whether
10221 * it will be this function that will complete the
10222 * recovery or not.
10223 */
10224 if (global)
10225 bnx2x_set_reset_global(bp);
10226
10227 /*
10228 * Only the first function on the current engine should
10229 * try to recover in open. In case of attentions in
10230 * global blocks only the first in the chip should try
10231 * to recover.
10232 */
10233 if ((!load_counter &&
10234 (!global || !other_load_counter)) &&
10235 bnx2x_trylock_leader_lock(bp) &&
10236 !bnx2x_leader_reset(bp)) {
10237 netdev_info(bp->dev, "Recovered in open\n");
10238 break;
10239 }
10240
10241 /* recovery has failed... */
10242 bnx2x_set_power_state(bp, PCI_D3hot);
10243 bp->recovery_state = BNX2X_RECOVERY_FAILED;
10244
10245 netdev_err(bp->dev, "Recovery flow hasn't been properly"
10246 " completed yet. Try again later. If u still see this"
10247 " message after a few retries then power cycle is"
10248 " required.\n");
10249
10250 return -EAGAIN;
10251 } while (0);
10252
10253 bp->recovery_state = BNX2X_RECOVERY_DONE;
10254 return bnx2x_nic_load(bp, LOAD_OPEN);
10255 }
10256
10257 /* called with rtnl_lock */
10258 int bnx2x_close(struct net_device *dev)
10259 {
10260 struct bnx2x *bp = netdev_priv(dev);
10261
10262 /* Unload the driver, release IRQs */
10263 bnx2x_nic_unload(bp, UNLOAD_CLOSE);
10264
10265 /* Power off */
10266 bnx2x_set_power_state(bp, PCI_D3hot);
10267
10268 return 0;
10269 }
10270
10271 static inline int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
10272 struct bnx2x_mcast_ramrod_params *p)
10273 {
10274 int mc_count = netdev_mc_count(bp->dev);
10275 struct bnx2x_mcast_list_elem *mc_mac =
10276 kzalloc(sizeof(*mc_mac) * mc_count, GFP_ATOMIC);
10277 struct netdev_hw_addr *ha;
10278
10279 if (!mc_mac)
10280 return -ENOMEM;
10281
10282 INIT_LIST_HEAD(&p->mcast_list);
10283
10284 netdev_for_each_mc_addr(ha, bp->dev) {
10285 mc_mac->mac = bnx2x_mc_addr(ha);
10286 list_add_tail(&mc_mac->link, &p->mcast_list);
10287 mc_mac++;
10288 }
10289
10290 p->mcast_list_len = mc_count;
10291
10292 return 0;
10293 }
10294
10295 static inline void bnx2x_free_mcast_macs_list(
10296 struct bnx2x_mcast_ramrod_params *p)
10297 {
10298 struct bnx2x_mcast_list_elem *mc_mac =
10299 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
10300 link);
10301
10302 WARN_ON(!mc_mac);
10303 kfree(mc_mac);
10304 }
10305
10306 /**
10307 * bnx2x_set_uc_list - configure a new unicast MACs list.
10308 *
10309 * @bp: driver handle
10310 *
10311 * We will use zero (0) as a MAC type for these MACs.
10312 */
10313 static inline int bnx2x_set_uc_list(struct bnx2x *bp)
10314 {
10315 int rc;
10316 struct net_device *dev = bp->dev;
10317 struct netdev_hw_addr *ha;
10318 struct bnx2x_vlan_mac_obj *mac_obj = &bp->fp->mac_obj;
10319 unsigned long ramrod_flags = 0;
10320
10321 /* First schedule a cleanup up of old configuration */
10322 rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
10323 if (rc < 0) {
10324 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
10325 return rc;
10326 }
10327
10328 netdev_for_each_uc_addr(ha, dev) {
10329 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
10330 BNX2X_UC_LIST_MAC, &ramrod_flags);
10331 if (rc < 0) {
10332 BNX2X_ERR("Failed to schedule ADD operations: %d\n",
10333 rc);
10334 return rc;
10335 }
10336 }
10337
10338 /* Execute the pending commands */
10339 __set_bit(RAMROD_CONT, &ramrod_flags);
10340 return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
10341 BNX2X_UC_LIST_MAC, &ramrod_flags);
10342 }
10343
10344 static inline int bnx2x_set_mc_list(struct bnx2x *bp)
10345 {
10346 struct net_device *dev = bp->dev;
10347 struct bnx2x_mcast_ramrod_params rparam = {0};
10348 int rc = 0;
10349
10350 rparam.mcast_obj = &bp->mcast_obj;
10351
10352 /* first, clear all configured multicast MACs */
10353 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
10354 if (rc < 0) {
10355 BNX2X_ERR("Failed to clear multicast "
10356 "configuration: %d\n", rc);
10357 return rc;
10358 }
10359
10360 /* then, configure a new MACs list */
10361 if (netdev_mc_count(dev)) {
10362 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
10363 if (rc) {
10364 BNX2X_ERR("Failed to create multicast MACs "
10365 "list: %d\n", rc);
10366 return rc;
10367 }
10368
10369 /* Now add the new MACs */
10370 rc = bnx2x_config_mcast(bp, &rparam,
10371 BNX2X_MCAST_CMD_ADD);
10372 if (rc < 0)
10373 BNX2X_ERR("Failed to set a new multicast "
10374 "configuration: %d\n", rc);
10375
10376 bnx2x_free_mcast_macs_list(&rparam);
10377 }
10378
10379 return rc;
10380 }
10381
10382
10383 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
10384 void bnx2x_set_rx_mode(struct net_device *dev)
10385 {
10386 struct bnx2x *bp = netdev_priv(dev);
10387 u32 rx_mode = BNX2X_RX_MODE_NORMAL;
10388
10389 if (bp->state != BNX2X_STATE_OPEN) {
10390 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
10391 return;
10392 }
10393
10394 DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
10395
10396 if (dev->flags & IFF_PROMISC)
10397 rx_mode = BNX2X_RX_MODE_PROMISC;
10398 else if ((dev->flags & IFF_ALLMULTI) ||
10399 ((netdev_mc_count(dev) > BNX2X_MAX_MULTICAST) &&
10400 CHIP_IS_E1(bp)))
10401 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10402 else {
10403 /* some multicasts */
10404 if (bnx2x_set_mc_list(bp) < 0)
10405 rx_mode = BNX2X_RX_MODE_ALLMULTI;
10406
10407 if (bnx2x_set_uc_list(bp) < 0)
10408 rx_mode = BNX2X_RX_MODE_PROMISC;
10409 }
10410
10411 bp->rx_mode = rx_mode;
10412 #ifdef BCM_CNIC
10413 /* handle ISCSI SD mode */
10414 if (IS_MF_ISCSI_SD(bp))
10415 bp->rx_mode = BNX2X_RX_MODE_NONE;
10416 #endif
10417
10418 /* Schedule the rx_mode command */
10419 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
10420 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
10421 return;
10422 }
10423
10424 bnx2x_set_storm_rx_mode(bp);
10425 }
10426
10427 /* called with rtnl_lock */
10428 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
10429 int devad, u16 addr)
10430 {
10431 struct bnx2x *bp = netdev_priv(netdev);
10432 u16 value;
10433 int rc;
10434
10435 DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
10436 prtad, devad, addr);
10437
10438 /* The HW expects different devad if CL22 is used */
10439 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10440
10441 bnx2x_acquire_phy_lock(bp);
10442 rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
10443 bnx2x_release_phy_lock(bp);
10444 DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
10445
10446 if (!rc)
10447 rc = value;
10448 return rc;
10449 }
10450
10451 /* called with rtnl_lock */
10452 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
10453 u16 addr, u16 value)
10454 {
10455 struct bnx2x *bp = netdev_priv(netdev);
10456 int rc;
10457
10458 DP(NETIF_MSG_LINK, "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x,"
10459 " value 0x%x\n", prtad, devad, addr, value);
10460
10461 /* The HW expects different devad if CL22 is used */
10462 devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
10463
10464 bnx2x_acquire_phy_lock(bp);
10465 rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
10466 bnx2x_release_phy_lock(bp);
10467 return rc;
10468 }
10469
10470 /* called with rtnl_lock */
10471 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
10472 {
10473 struct bnx2x *bp = netdev_priv(dev);
10474 struct mii_ioctl_data *mdio = if_mii(ifr);
10475
10476 DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
10477 mdio->phy_id, mdio->reg_num, mdio->val_in);
10478
10479 if (!netif_running(dev))
10480 return -EAGAIN;
10481
10482 return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
10483 }
10484
10485 #ifdef CONFIG_NET_POLL_CONTROLLER
10486 static void poll_bnx2x(struct net_device *dev)
10487 {
10488 struct bnx2x *bp = netdev_priv(dev);
10489
10490 disable_irq(bp->pdev->irq);
10491 bnx2x_interrupt(bp->pdev->irq, dev);
10492 enable_irq(bp->pdev->irq);
10493 }
10494 #endif
10495
10496 static int bnx2x_validate_addr(struct net_device *dev)
10497 {
10498 struct bnx2x *bp = netdev_priv(dev);
10499
10500 if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr))
10501 return -EADDRNOTAVAIL;
10502 return 0;
10503 }
10504
10505 static const struct net_device_ops bnx2x_netdev_ops = {
10506 .ndo_open = bnx2x_open,
10507 .ndo_stop = bnx2x_close,
10508 .ndo_start_xmit = bnx2x_start_xmit,
10509 .ndo_select_queue = bnx2x_select_queue,
10510 .ndo_set_rx_mode = bnx2x_set_rx_mode,
10511 .ndo_set_mac_address = bnx2x_change_mac_addr,
10512 .ndo_validate_addr = bnx2x_validate_addr,
10513 .ndo_do_ioctl = bnx2x_ioctl,
10514 .ndo_change_mtu = bnx2x_change_mtu,
10515 .ndo_fix_features = bnx2x_fix_features,
10516 .ndo_set_features = bnx2x_set_features,
10517 .ndo_tx_timeout = bnx2x_tx_timeout,
10518 #ifdef CONFIG_NET_POLL_CONTROLLER
10519 .ndo_poll_controller = poll_bnx2x,
10520 #endif
10521 .ndo_setup_tc = bnx2x_setup_tc,
10522
10523 #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC)
10524 .ndo_fcoe_get_wwn = bnx2x_fcoe_get_wwn,
10525 #endif
10526 };
10527
10528 static inline int bnx2x_set_coherency_mask(struct bnx2x *bp)
10529 {
10530 struct device *dev = &bp->pdev->dev;
10531
10532 if (dma_set_mask(dev, DMA_BIT_MASK(64)) == 0) {
10533 bp->flags |= USING_DAC_FLAG;
10534 if (dma_set_coherent_mask(dev, DMA_BIT_MASK(64)) != 0) {
10535 dev_err(dev, "dma_set_coherent_mask failed, "
10536 "aborting\n");
10537 return -EIO;
10538 }
10539 } else if (dma_set_mask(dev, DMA_BIT_MASK(32)) != 0) {
10540 dev_err(dev, "System does not support DMA, aborting\n");
10541 return -EIO;
10542 }
10543
10544 return 0;
10545 }
10546
10547 static int __devinit bnx2x_init_dev(struct pci_dev *pdev,
10548 struct net_device *dev,
10549 unsigned long board_type)
10550 {
10551 struct bnx2x *bp;
10552 int rc;
10553 u32 pci_cfg_dword;
10554 bool chip_is_e1x = (board_type == BCM57710 ||
10555 board_type == BCM57711 ||
10556 board_type == BCM57711E);
10557
10558 SET_NETDEV_DEV(dev, &pdev->dev);
10559 bp = netdev_priv(dev);
10560
10561 bp->dev = dev;
10562 bp->pdev = pdev;
10563 bp->flags = 0;
10564
10565 rc = pci_enable_device(pdev);
10566 if (rc) {
10567 dev_err(&bp->pdev->dev,
10568 "Cannot enable PCI device, aborting\n");
10569 goto err_out;
10570 }
10571
10572 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
10573 dev_err(&bp->pdev->dev,
10574 "Cannot find PCI device base address, aborting\n");
10575 rc = -ENODEV;
10576 goto err_out_disable;
10577 }
10578
10579 if (!(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
10580 dev_err(&bp->pdev->dev, "Cannot find second PCI device"
10581 " base address, aborting\n");
10582 rc = -ENODEV;
10583 goto err_out_disable;
10584 }
10585
10586 if (atomic_read(&pdev->enable_cnt) == 1) {
10587 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
10588 if (rc) {
10589 dev_err(&bp->pdev->dev,
10590 "Cannot obtain PCI resources, aborting\n");
10591 goto err_out_disable;
10592 }
10593
10594 pci_set_master(pdev);
10595 pci_save_state(pdev);
10596 }
10597
10598 bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
10599 if (bp->pm_cap == 0) {
10600 dev_err(&bp->pdev->dev,
10601 "Cannot find power management capability, aborting\n");
10602 rc = -EIO;
10603 goto err_out_release;
10604 }
10605
10606 if (!pci_is_pcie(pdev)) {
10607 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
10608 rc = -EIO;
10609 goto err_out_release;
10610 }
10611
10612 rc = bnx2x_set_coherency_mask(bp);
10613 if (rc)
10614 goto err_out_release;
10615
10616 dev->mem_start = pci_resource_start(pdev, 0);
10617 dev->base_addr = dev->mem_start;
10618 dev->mem_end = pci_resource_end(pdev, 0);
10619
10620 dev->irq = pdev->irq;
10621
10622 bp->regview = pci_ioremap_bar(pdev, 0);
10623 if (!bp->regview) {
10624 dev_err(&bp->pdev->dev,
10625 "Cannot map register space, aborting\n");
10626 rc = -ENOMEM;
10627 goto err_out_release;
10628 }
10629
10630 /* In E1/E1H use pci device function given by kernel.
10631 * In E2/E3 read physical function from ME register since these chips
10632 * support Physical Device Assignment where kernel BDF maybe arbitrary
10633 * (depending on hypervisor).
10634 */
10635 if (chip_is_e1x)
10636 bp->pf_num = PCI_FUNC(pdev->devfn);
10637 else {/* chip is E2/3*/
10638 pci_read_config_dword(bp->pdev,
10639 PCICFG_ME_REGISTER, &pci_cfg_dword);
10640 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
10641 ME_REG_ABS_PF_NUM_SHIFT);
10642 }
10643 DP(BNX2X_MSG_SP, "me reg PF num: %d\n", bp->pf_num);
10644
10645 bnx2x_set_power_state(bp, PCI_D0);
10646
10647 /* clean indirect addresses */
10648 pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
10649 PCICFG_VENDOR_ID_OFFSET);
10650 /*
10651 * Clean the following indirect addresses for all functions since it
10652 * is not used by the driver.
10653 */
10654 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
10655 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
10656 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
10657 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
10658
10659 if (chip_is_e1x) {
10660 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
10661 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
10662 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
10663 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
10664 }
10665
10666 /*
10667 * Enable internal target-read (in case we are probed after PF FLR).
10668 * Must be done prior to any BAR read access. Only for 57712 and up
10669 */
10670 if (!chip_is_e1x)
10671 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
10672
10673 /* Reset the load counter */
10674 bnx2x_clear_load_cnt(bp);
10675
10676 dev->watchdog_timeo = TX_TIMEOUT;
10677
10678 dev->netdev_ops = &bnx2x_netdev_ops;
10679 bnx2x_set_ethtool_ops(dev);
10680
10681 dev->priv_flags |= IFF_UNICAST_FLT;
10682
10683 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10684 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_LRO |
10685 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_HW_VLAN_TX;
10686
10687 dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
10688 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
10689
10690 dev->features |= dev->hw_features | NETIF_F_HW_VLAN_RX;
10691 if (bp->flags & USING_DAC_FLAG)
10692 dev->features |= NETIF_F_HIGHDMA;
10693
10694 /* Add Loopback capability to the device */
10695 dev->hw_features |= NETIF_F_LOOPBACK;
10696
10697 #ifdef BCM_DCBNL
10698 dev->dcbnl_ops = &bnx2x_dcbnl_ops;
10699 #endif
10700
10701 /* get_port_hwinfo() will set prtad and mmds properly */
10702 bp->mdio.prtad = MDIO_PRTAD_NONE;
10703 bp->mdio.mmds = 0;
10704 bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
10705 bp->mdio.dev = dev;
10706 bp->mdio.mdio_read = bnx2x_mdio_read;
10707 bp->mdio.mdio_write = bnx2x_mdio_write;
10708
10709 return 0;
10710
10711 err_out_release:
10712 if (atomic_read(&pdev->enable_cnt) == 1)
10713 pci_release_regions(pdev);
10714
10715 err_out_disable:
10716 pci_disable_device(pdev);
10717 pci_set_drvdata(pdev, NULL);
10718
10719 err_out:
10720 return rc;
10721 }
10722
10723 static void __devinit bnx2x_get_pcie_width_speed(struct bnx2x *bp,
10724 int *width, int *speed)
10725 {
10726 u32 val = REG_RD(bp, PCICFG_OFFSET + PCICFG_LINK_CONTROL);
10727
10728 *width = (val & PCICFG_LINK_WIDTH) >> PCICFG_LINK_WIDTH_SHIFT;
10729
10730 /* return value of 1=2.5GHz 2=5GHz */
10731 *speed = (val & PCICFG_LINK_SPEED) >> PCICFG_LINK_SPEED_SHIFT;
10732 }
10733
10734 static int bnx2x_check_firmware(struct bnx2x *bp)
10735 {
10736 const struct firmware *firmware = bp->firmware;
10737 struct bnx2x_fw_file_hdr *fw_hdr;
10738 struct bnx2x_fw_file_section *sections;
10739 u32 offset, len, num_ops;
10740 u16 *ops_offsets;
10741 int i;
10742 const u8 *fw_ver;
10743
10744 if (firmware->size < sizeof(struct bnx2x_fw_file_hdr))
10745 return -EINVAL;
10746
10747 fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
10748 sections = (struct bnx2x_fw_file_section *)fw_hdr;
10749
10750 /* Make sure none of the offsets and sizes make us read beyond
10751 * the end of the firmware data */
10752 for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
10753 offset = be32_to_cpu(sections[i].offset);
10754 len = be32_to_cpu(sections[i].len);
10755 if (offset + len > firmware->size) {
10756 dev_err(&bp->pdev->dev,
10757 "Section %d length is out of bounds\n", i);
10758 return -EINVAL;
10759 }
10760 }
10761
10762 /* Likewise for the init_ops offsets */
10763 offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
10764 ops_offsets = (u16 *)(firmware->data + offset);
10765 num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
10766
10767 for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
10768 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
10769 dev_err(&bp->pdev->dev,
10770 "Section offset %d is out of bounds\n", i);
10771 return -EINVAL;
10772 }
10773 }
10774
10775 /* Check FW version */
10776 offset = be32_to_cpu(fw_hdr->fw_version.offset);
10777 fw_ver = firmware->data + offset;
10778 if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
10779 (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
10780 (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
10781 (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
10782 dev_err(&bp->pdev->dev,
10783 "Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
10784 fw_ver[0], fw_ver[1], fw_ver[2],
10785 fw_ver[3], BCM_5710_FW_MAJOR_VERSION,
10786 BCM_5710_FW_MINOR_VERSION,
10787 BCM_5710_FW_REVISION_VERSION,
10788 BCM_5710_FW_ENGINEERING_VERSION);
10789 return -EINVAL;
10790 }
10791
10792 return 0;
10793 }
10794
10795 static inline void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10796 {
10797 const __be32 *source = (const __be32 *)_source;
10798 u32 *target = (u32 *)_target;
10799 u32 i;
10800
10801 for (i = 0; i < n/4; i++)
10802 target[i] = be32_to_cpu(source[i]);
10803 }
10804
10805 /*
10806 Ops array is stored in the following format:
10807 {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
10808 */
10809 static inline void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
10810 {
10811 const __be32 *source = (const __be32 *)_source;
10812 struct raw_op *target = (struct raw_op *)_target;
10813 u32 i, j, tmp;
10814
10815 for (i = 0, j = 0; i < n/8; i++, j += 2) {
10816 tmp = be32_to_cpu(source[j]);
10817 target[i].op = (tmp >> 24) & 0xff;
10818 target[i].offset = tmp & 0xffffff;
10819 target[i].raw_data = be32_to_cpu(source[j + 1]);
10820 }
10821 }
10822
10823 /**
10824 * IRO array is stored in the following format:
10825 * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
10826 */
10827 static inline void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
10828 {
10829 const __be32 *source = (const __be32 *)_source;
10830 struct iro *target = (struct iro *)_target;
10831 u32 i, j, tmp;
10832
10833 for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
10834 target[i].base = be32_to_cpu(source[j]);
10835 j++;
10836 tmp = be32_to_cpu(source[j]);
10837 target[i].m1 = (tmp >> 16) & 0xffff;
10838 target[i].m2 = tmp & 0xffff;
10839 j++;
10840 tmp = be32_to_cpu(source[j]);
10841 target[i].m3 = (tmp >> 16) & 0xffff;
10842 target[i].size = tmp & 0xffff;
10843 j++;
10844 }
10845 }
10846
10847 static inline void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
10848 {
10849 const __be16 *source = (const __be16 *)_source;
10850 u16 *target = (u16 *)_target;
10851 u32 i;
10852
10853 for (i = 0; i < n/2; i++)
10854 target[i] = be16_to_cpu(source[i]);
10855 }
10856
10857 #define BNX2X_ALLOC_AND_SET(arr, lbl, func) \
10858 do { \
10859 u32 len = be32_to_cpu(fw_hdr->arr.len); \
10860 bp->arr = kmalloc(len, GFP_KERNEL); \
10861 if (!bp->arr) { \
10862 pr_err("Failed to allocate %d bytes for "#arr"\n", len); \
10863 goto lbl; \
10864 } \
10865 func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset), \
10866 (u8 *)bp->arr, len); \
10867 } while (0)
10868
10869 int bnx2x_init_firmware(struct bnx2x *bp)
10870 {
10871 struct bnx2x_fw_file_hdr *fw_hdr;
10872 int rc;
10873
10874
10875 if (!bp->firmware) {
10876 const char *fw_file_name;
10877
10878 if (CHIP_IS_E1(bp))
10879 fw_file_name = FW_FILE_NAME_E1;
10880 else if (CHIP_IS_E1H(bp))
10881 fw_file_name = FW_FILE_NAME_E1H;
10882 else if (!CHIP_IS_E1x(bp))
10883 fw_file_name = FW_FILE_NAME_E2;
10884 else {
10885 BNX2X_ERR("Unsupported chip revision\n");
10886 return -EINVAL;
10887 }
10888 BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
10889
10890 rc = request_firmware(&bp->firmware, fw_file_name,
10891 &bp->pdev->dev);
10892 if (rc) {
10893 BNX2X_ERR("Can't load firmware file %s\n",
10894 fw_file_name);
10895 goto request_firmware_exit;
10896 }
10897
10898 rc = bnx2x_check_firmware(bp);
10899 if (rc) {
10900 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
10901 goto request_firmware_exit;
10902 }
10903 }
10904
10905 fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
10906
10907 /* Initialize the pointers to the init arrays */
10908 /* Blob */
10909 BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
10910
10911 /* Opcodes */
10912 BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
10913
10914 /* Offsets */
10915 BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
10916 be16_to_cpu_n);
10917
10918 /* STORMs firmware */
10919 INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10920 be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
10921 INIT_TSEM_PRAM_DATA(bp) = bp->firmware->data +
10922 be32_to_cpu(fw_hdr->tsem_pram_data.offset);
10923 INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10924 be32_to_cpu(fw_hdr->usem_int_table_data.offset);
10925 INIT_USEM_PRAM_DATA(bp) = bp->firmware->data +
10926 be32_to_cpu(fw_hdr->usem_pram_data.offset);
10927 INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10928 be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
10929 INIT_XSEM_PRAM_DATA(bp) = bp->firmware->data +
10930 be32_to_cpu(fw_hdr->xsem_pram_data.offset);
10931 INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
10932 be32_to_cpu(fw_hdr->csem_int_table_data.offset);
10933 INIT_CSEM_PRAM_DATA(bp) = bp->firmware->data +
10934 be32_to_cpu(fw_hdr->csem_pram_data.offset);
10935 /* IRO */
10936 BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
10937
10938 return 0;
10939
10940 iro_alloc_err:
10941 kfree(bp->init_ops_offsets);
10942 init_offsets_alloc_err:
10943 kfree(bp->init_ops);
10944 init_ops_alloc_err:
10945 kfree(bp->init_data);
10946 request_firmware_exit:
10947 release_firmware(bp->firmware);
10948
10949 return rc;
10950 }
10951
10952 static void bnx2x_release_firmware(struct bnx2x *bp)
10953 {
10954 kfree(bp->init_ops_offsets);
10955 kfree(bp->init_ops);
10956 kfree(bp->init_data);
10957 release_firmware(bp->firmware);
10958 bp->firmware = NULL;
10959 }
10960
10961
10962 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
10963 .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
10964 .init_hw_cmn = bnx2x_init_hw_common,
10965 .init_hw_port = bnx2x_init_hw_port,
10966 .init_hw_func = bnx2x_init_hw_func,
10967
10968 .reset_hw_cmn = bnx2x_reset_common,
10969 .reset_hw_port = bnx2x_reset_port,
10970 .reset_hw_func = bnx2x_reset_func,
10971
10972 .gunzip_init = bnx2x_gunzip_init,
10973 .gunzip_end = bnx2x_gunzip_end,
10974
10975 .init_fw = bnx2x_init_firmware,
10976 .release_fw = bnx2x_release_firmware,
10977 };
10978
10979 void bnx2x__init_func_obj(struct bnx2x *bp)
10980 {
10981 /* Prepare DMAE related driver resources */
10982 bnx2x_setup_dmae(bp);
10983
10984 bnx2x_init_func_obj(bp, &bp->func_obj,
10985 bnx2x_sp(bp, func_rdata),
10986 bnx2x_sp_mapping(bp, func_rdata),
10987 &bnx2x_func_sp_drv);
10988 }
10989
10990 /* must be called after sriov-enable */
10991 static inline int bnx2x_set_qm_cid_count(struct bnx2x *bp)
10992 {
10993 int cid_count = BNX2X_L2_CID_COUNT(bp);
10994
10995 #ifdef BCM_CNIC
10996 cid_count += CNIC_CID_MAX;
10997 #endif
10998 return roundup(cid_count, QM_CID_ROUND);
10999 }
11000
11001 /**
11002 * bnx2x_get_num_none_def_sbs - return the number of none default SBs
11003 *
11004 * @dev: pci device
11005 *
11006 */
11007 static inline int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev)
11008 {
11009 int pos;
11010 u16 control;
11011
11012 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
11013
11014 /*
11015 * If MSI-X is not supported - return number of SBs needed to support
11016 * one fast path queue: one FP queue + SB for CNIC
11017 */
11018 if (!pos)
11019 return 1 + CNIC_PRESENT;
11020
11021 /*
11022 * The value in the PCI configuration space is the index of the last
11023 * entry, namely one less than the actual size of the table, which is
11024 * exactly what we want to return from this function: number of all SBs
11025 * without the default SB.
11026 */
11027 pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &control);
11028 return control & PCI_MSIX_FLAGS_QSIZE;
11029 }
11030
11031 static int __devinit bnx2x_init_one(struct pci_dev *pdev,
11032 const struct pci_device_id *ent)
11033 {
11034 struct net_device *dev = NULL;
11035 struct bnx2x *bp;
11036 int pcie_width, pcie_speed;
11037 int rc, max_non_def_sbs;
11038 int rx_count, tx_count, rss_count;
11039 /*
11040 * An estimated maximum supported CoS number according to the chip
11041 * version.
11042 * We will try to roughly estimate the maximum number of CoSes this chip
11043 * may support in order to minimize the memory allocated for Tx
11044 * netdev_queue's. This number will be accurately calculated during the
11045 * initialization of bp->max_cos based on the chip versions AND chip
11046 * revision in the bnx2x_init_bp().
11047 */
11048 u8 max_cos_est = 0;
11049
11050 switch (ent->driver_data) {
11051 case BCM57710:
11052 case BCM57711:
11053 case BCM57711E:
11054 max_cos_est = BNX2X_MULTI_TX_COS_E1X;
11055 break;
11056
11057 case BCM57712:
11058 case BCM57712_MF:
11059 max_cos_est = BNX2X_MULTI_TX_COS_E2_E3A0;
11060 break;
11061
11062 case BCM57800:
11063 case BCM57800_MF:
11064 case BCM57810:
11065 case BCM57810_MF:
11066 case BCM57840:
11067 case BCM57840_MF:
11068 max_cos_est = BNX2X_MULTI_TX_COS_E3B0;
11069 break;
11070
11071 default:
11072 pr_err("Unknown board_type (%ld), aborting\n",
11073 ent->driver_data);
11074 return -ENODEV;
11075 }
11076
11077 max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev);
11078
11079 /* !!! FIXME !!!
11080 * Do not allow the maximum SB count to grow above 16
11081 * since Special CIDs starts from 16*BNX2X_MULTI_TX_COS=48.
11082 * We will use the FP_SB_MAX_E1x macro for this matter.
11083 */
11084 max_non_def_sbs = min_t(int, FP_SB_MAX_E1x, max_non_def_sbs);
11085
11086 WARN_ON(!max_non_def_sbs);
11087
11088 /* Maximum number of RSS queues: one IGU SB goes to CNIC */
11089 rss_count = max_non_def_sbs - CNIC_PRESENT;
11090
11091 /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
11092 rx_count = rss_count + FCOE_PRESENT;
11093
11094 /*
11095 * Maximum number of netdev Tx queues:
11096 * Maximum TSS queues * Maximum supported number of CoS + FCoE L2
11097 */
11098 tx_count = MAX_TXQS_PER_COS * max_cos_est + FCOE_PRESENT;
11099
11100 /* dev zeroed in init_etherdev */
11101 dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
11102 if (!dev) {
11103 dev_err(&pdev->dev, "Cannot allocate net device\n");
11104 return -ENOMEM;
11105 }
11106
11107 bp = netdev_priv(dev);
11108
11109 DP(NETIF_MSG_DRV, "Allocated netdev with %d tx and %d rx queues\n",
11110 tx_count, rx_count);
11111
11112 bp->igu_sb_cnt = max_non_def_sbs;
11113 bp->msg_enable = debug;
11114 pci_set_drvdata(pdev, dev);
11115
11116 rc = bnx2x_init_dev(pdev, dev, ent->driver_data);
11117 if (rc < 0) {
11118 free_netdev(dev);
11119 return rc;
11120 }
11121
11122 DP(NETIF_MSG_DRV, "max_non_def_sbs %d\n", max_non_def_sbs);
11123
11124 rc = bnx2x_init_bp(bp);
11125 if (rc)
11126 goto init_one_exit;
11127
11128 /*
11129 * Map doorbels here as we need the real value of bp->max_cos which
11130 * is initialized in bnx2x_init_bp().
11131 */
11132 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
11133 min_t(u64, BNX2X_DB_SIZE(bp),
11134 pci_resource_len(pdev, 2)));
11135 if (!bp->doorbells) {
11136 dev_err(&bp->pdev->dev,
11137 "Cannot map doorbell space, aborting\n");
11138 rc = -ENOMEM;
11139 goto init_one_exit;
11140 }
11141
11142 /* calc qm_cid_count */
11143 bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
11144
11145 #ifdef BCM_CNIC
11146 /* disable FCOE L2 queue for E1x */
11147 if (CHIP_IS_E1x(bp))
11148 bp->flags |= NO_FCOE_FLAG;
11149
11150 #endif
11151
11152 /* Configure interrupt mode: try to enable MSI-X/MSI if
11153 * needed, set bp->num_queues appropriately.
11154 */
11155 bnx2x_set_int_mode(bp);
11156
11157 /* Add all NAPI objects */
11158 bnx2x_add_all_napi(bp);
11159
11160 rc = register_netdev(dev);
11161 if (rc) {
11162 dev_err(&pdev->dev, "Cannot register net device\n");
11163 goto init_one_exit;
11164 }
11165
11166 #ifdef BCM_CNIC
11167 if (!NO_FCOE(bp)) {
11168 /* Add storage MAC address */
11169 rtnl_lock();
11170 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11171 rtnl_unlock();
11172 }
11173 #endif
11174
11175 bnx2x_get_pcie_width_speed(bp, &pcie_width, &pcie_speed);
11176
11177 netdev_info(dev, "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
11178 board_info[ent->driver_data].name,
11179 (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
11180 pcie_width,
11181 ((!CHIP_IS_E2(bp) && pcie_speed == 2) ||
11182 (CHIP_IS_E2(bp) && pcie_speed == 1)) ?
11183 "5GHz (Gen2)" : "2.5GHz",
11184 dev->base_addr, bp->pdev->irq, dev->dev_addr);
11185
11186 return 0;
11187
11188 init_one_exit:
11189 if (bp->regview)
11190 iounmap(bp->regview);
11191
11192 if (bp->doorbells)
11193 iounmap(bp->doorbells);
11194
11195 free_netdev(dev);
11196
11197 if (atomic_read(&pdev->enable_cnt) == 1)
11198 pci_release_regions(pdev);
11199
11200 pci_disable_device(pdev);
11201 pci_set_drvdata(pdev, NULL);
11202
11203 return rc;
11204 }
11205
11206 static void __devexit bnx2x_remove_one(struct pci_dev *pdev)
11207 {
11208 struct net_device *dev = pci_get_drvdata(pdev);
11209 struct bnx2x *bp;
11210
11211 if (!dev) {
11212 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
11213 return;
11214 }
11215 bp = netdev_priv(dev);
11216
11217 #ifdef BCM_CNIC
11218 /* Delete storage MAC address */
11219 if (!NO_FCOE(bp)) {
11220 rtnl_lock();
11221 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
11222 rtnl_unlock();
11223 }
11224 #endif
11225
11226 #ifdef BCM_DCBNL
11227 /* Delete app tlvs from dcbnl */
11228 bnx2x_dcbnl_update_applist(bp, true);
11229 #endif
11230
11231 unregister_netdev(dev);
11232
11233 /* Delete all NAPI objects */
11234 bnx2x_del_all_napi(bp);
11235
11236 /* Power on: we can't let PCI layer write to us while we are in D3 */
11237 bnx2x_set_power_state(bp, PCI_D0);
11238
11239 /* Disable MSI/MSI-X */
11240 bnx2x_disable_msi(bp);
11241
11242 /* Power off */
11243 bnx2x_set_power_state(bp, PCI_D3hot);
11244
11245 /* Make sure RESET task is not scheduled before continuing */
11246 cancel_delayed_work_sync(&bp->sp_rtnl_task);
11247
11248 if (bp->regview)
11249 iounmap(bp->regview);
11250
11251 if (bp->doorbells)
11252 iounmap(bp->doorbells);
11253
11254 bnx2x_release_firmware(bp);
11255
11256 bnx2x_free_mem_bp(bp);
11257
11258 free_netdev(dev);
11259
11260 if (atomic_read(&pdev->enable_cnt) == 1)
11261 pci_release_regions(pdev);
11262
11263 pci_disable_device(pdev);
11264 pci_set_drvdata(pdev, NULL);
11265 }
11266
11267 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
11268 {
11269 int i;
11270
11271 bp->state = BNX2X_STATE_ERROR;
11272
11273 bp->rx_mode = BNX2X_RX_MODE_NONE;
11274
11275 #ifdef BCM_CNIC
11276 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
11277 #endif
11278 /* Stop Tx */
11279 bnx2x_tx_disable(bp);
11280
11281 bnx2x_netif_stop(bp, 0);
11282
11283 del_timer_sync(&bp->timer);
11284
11285 bnx2x_stats_handle(bp, STATS_EVENT_STOP);
11286
11287 /* Release IRQs */
11288 bnx2x_free_irq(bp);
11289
11290 /* Free SKBs, SGEs, TPA pool and driver internals */
11291 bnx2x_free_skbs(bp);
11292
11293 for_each_rx_queue(bp, i)
11294 bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
11295
11296 bnx2x_free_mem(bp);
11297
11298 bp->state = BNX2X_STATE_CLOSED;
11299
11300 netif_carrier_off(bp->dev);
11301
11302 return 0;
11303 }
11304
11305 static void bnx2x_eeh_recover(struct bnx2x *bp)
11306 {
11307 u32 val;
11308
11309 mutex_init(&bp->port.phy_mutex);
11310
11311 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
11312 bp->link_params.shmem_base = bp->common.shmem_base;
11313 BNX2X_DEV_INFO("shmem offset is 0x%x\n", bp->common.shmem_base);
11314
11315 if (!bp->common.shmem_base ||
11316 (bp->common.shmem_base < 0xA0000) ||
11317 (bp->common.shmem_base >= 0xC0000)) {
11318 BNX2X_DEV_INFO("MCP not active\n");
11319 bp->flags |= NO_MCP_FLAG;
11320 return;
11321 }
11322
11323 val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
11324 if ((val & (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11325 != (SHR_MEM_VALIDITY_DEV_INFO | SHR_MEM_VALIDITY_MB))
11326 BNX2X_ERR("BAD MCP validity signature\n");
11327
11328 if (!BP_NOMCP(bp)) {
11329 bp->fw_seq =
11330 (SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11331 DRV_MSG_SEQ_NUMBER_MASK);
11332 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11333 }
11334 }
11335
11336 /**
11337 * bnx2x_io_error_detected - called when PCI error is detected
11338 * @pdev: Pointer to PCI device
11339 * @state: The current pci connection state
11340 *
11341 * This function is called after a PCI bus error affecting
11342 * this device has been detected.
11343 */
11344 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
11345 pci_channel_state_t state)
11346 {
11347 struct net_device *dev = pci_get_drvdata(pdev);
11348 struct bnx2x *bp = netdev_priv(dev);
11349
11350 rtnl_lock();
11351
11352 netif_device_detach(dev);
11353
11354 if (state == pci_channel_io_perm_failure) {
11355 rtnl_unlock();
11356 return PCI_ERS_RESULT_DISCONNECT;
11357 }
11358
11359 if (netif_running(dev))
11360 bnx2x_eeh_nic_unload(bp);
11361
11362 pci_disable_device(pdev);
11363
11364 rtnl_unlock();
11365
11366 /* Request a slot reset */
11367 return PCI_ERS_RESULT_NEED_RESET;
11368 }
11369
11370 /**
11371 * bnx2x_io_slot_reset - called after the PCI bus has been reset
11372 * @pdev: Pointer to PCI device
11373 *
11374 * Restart the card from scratch, as if from a cold-boot.
11375 */
11376 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
11377 {
11378 struct net_device *dev = pci_get_drvdata(pdev);
11379 struct bnx2x *bp = netdev_priv(dev);
11380
11381 rtnl_lock();
11382
11383 if (pci_enable_device(pdev)) {
11384 dev_err(&pdev->dev,
11385 "Cannot re-enable PCI device after reset\n");
11386 rtnl_unlock();
11387 return PCI_ERS_RESULT_DISCONNECT;
11388 }
11389
11390 pci_set_master(pdev);
11391 pci_restore_state(pdev);
11392
11393 if (netif_running(dev))
11394 bnx2x_set_power_state(bp, PCI_D0);
11395
11396 rtnl_unlock();
11397
11398 return PCI_ERS_RESULT_RECOVERED;
11399 }
11400
11401 /**
11402 * bnx2x_io_resume - called when traffic can start flowing again
11403 * @pdev: Pointer to PCI device
11404 *
11405 * This callback is called when the error recovery driver tells us that
11406 * its OK to resume normal operation.
11407 */
11408 static void bnx2x_io_resume(struct pci_dev *pdev)
11409 {
11410 struct net_device *dev = pci_get_drvdata(pdev);
11411 struct bnx2x *bp = netdev_priv(dev);
11412
11413 if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
11414 netdev_err(bp->dev, "Handling parity error recovery. "
11415 "Try again later\n");
11416 return;
11417 }
11418
11419 rtnl_lock();
11420
11421 bnx2x_eeh_recover(bp);
11422
11423 if (netif_running(dev))
11424 bnx2x_nic_load(bp, LOAD_NORMAL);
11425
11426 netif_device_attach(dev);
11427
11428 rtnl_unlock();
11429 }
11430
11431 static struct pci_error_handlers bnx2x_err_handler = {
11432 .error_detected = bnx2x_io_error_detected,
11433 .slot_reset = bnx2x_io_slot_reset,
11434 .resume = bnx2x_io_resume,
11435 };
11436
11437 static struct pci_driver bnx2x_pci_driver = {
11438 .name = DRV_MODULE_NAME,
11439 .id_table = bnx2x_pci_tbl,
11440 .probe = bnx2x_init_one,
11441 .remove = __devexit_p(bnx2x_remove_one),
11442 .suspend = bnx2x_suspend,
11443 .resume = bnx2x_resume,
11444 .err_handler = &bnx2x_err_handler,
11445 };
11446
11447 static int __init bnx2x_init(void)
11448 {
11449 int ret;
11450
11451 pr_info("%s", version);
11452
11453 bnx2x_wq = create_singlethread_workqueue("bnx2x");
11454 if (bnx2x_wq == NULL) {
11455 pr_err("Cannot create workqueue\n");
11456 return -ENOMEM;
11457 }
11458
11459 ret = pci_register_driver(&bnx2x_pci_driver);
11460 if (ret) {
11461 pr_err("Cannot register driver\n");
11462 destroy_workqueue(bnx2x_wq);
11463 }
11464 return ret;
11465 }
11466
11467 static void __exit bnx2x_cleanup(void)
11468 {
11469 pci_unregister_driver(&bnx2x_pci_driver);
11470
11471 destroy_workqueue(bnx2x_wq);
11472 }
11473
11474 void bnx2x_notify_link_changed(struct bnx2x *bp)
11475 {
11476 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
11477 }
11478
11479 module_init(bnx2x_init);
11480 module_exit(bnx2x_cleanup);
11481
11482 #ifdef BCM_CNIC
11483 /**
11484 * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
11485 *
11486 * @bp: driver handle
11487 * @set: set or clear the CAM entry
11488 *
11489 * This function will wait until the ramdord completion returns.
11490 * Return 0 if success, -ENODEV if ramrod doesn't return.
11491 */
11492 static inline int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
11493 {
11494 unsigned long ramrod_flags = 0;
11495
11496 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
11497 return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
11498 &bp->iscsi_l2_mac_obj, true,
11499 BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
11500 }
11501
11502 /* count denotes the number of new completions we have seen */
11503 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
11504 {
11505 struct eth_spe *spe;
11506
11507 #ifdef BNX2X_STOP_ON_ERROR
11508 if (unlikely(bp->panic))
11509 return;
11510 #endif
11511
11512 spin_lock_bh(&bp->spq_lock);
11513 BUG_ON(bp->cnic_spq_pending < count);
11514 bp->cnic_spq_pending -= count;
11515
11516
11517 for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
11518 u16 type = (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
11519 & SPE_HDR_CONN_TYPE) >>
11520 SPE_HDR_CONN_TYPE_SHIFT;
11521 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
11522 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
11523
11524 /* Set validation for iSCSI L2 client before sending SETUP
11525 * ramrod
11526 */
11527 if (type == ETH_CONNECTION_TYPE) {
11528 if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP)
11529 bnx2x_set_ctx_validation(bp, &bp->context.
11530 vcxt[BNX2X_ISCSI_ETH_CID].eth,
11531 BNX2X_ISCSI_ETH_CID);
11532 }
11533
11534 /*
11535 * There may be not more than 8 L2, not more than 8 L5 SPEs
11536 * and in the air. We also check that number of outstanding
11537 * COMMON ramrods is not more than the EQ and SPQ can
11538 * accommodate.
11539 */
11540 if (type == ETH_CONNECTION_TYPE) {
11541 if (!atomic_read(&bp->cq_spq_left))
11542 break;
11543 else
11544 atomic_dec(&bp->cq_spq_left);
11545 } else if (type == NONE_CONNECTION_TYPE) {
11546 if (!atomic_read(&bp->eq_spq_left))
11547 break;
11548 else
11549 atomic_dec(&bp->eq_spq_left);
11550 } else if ((type == ISCSI_CONNECTION_TYPE) ||
11551 (type == FCOE_CONNECTION_TYPE)) {
11552 if (bp->cnic_spq_pending >=
11553 bp->cnic_eth_dev.max_kwqe_pending)
11554 break;
11555 else
11556 bp->cnic_spq_pending++;
11557 } else {
11558 BNX2X_ERR("Unknown SPE type: %d\n", type);
11559 bnx2x_panic();
11560 break;
11561 }
11562
11563 spe = bnx2x_sp_get_next(bp);
11564 *spe = *bp->cnic_kwq_cons;
11565
11566 DP(NETIF_MSG_TIMER, "pending on SPQ %d, on KWQ %d count %d\n",
11567 bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
11568
11569 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
11570 bp->cnic_kwq_cons = bp->cnic_kwq;
11571 else
11572 bp->cnic_kwq_cons++;
11573 }
11574 bnx2x_sp_prod_update(bp);
11575 spin_unlock_bh(&bp->spq_lock);
11576 }
11577
11578 static int bnx2x_cnic_sp_queue(struct net_device *dev,
11579 struct kwqe_16 *kwqes[], u32 count)
11580 {
11581 struct bnx2x *bp = netdev_priv(dev);
11582 int i;
11583
11584 #ifdef BNX2X_STOP_ON_ERROR
11585 if (unlikely(bp->panic))
11586 return -EIO;
11587 #endif
11588
11589 spin_lock_bh(&bp->spq_lock);
11590
11591 for (i = 0; i < count; i++) {
11592 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
11593
11594 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
11595 break;
11596
11597 *bp->cnic_kwq_prod = *spe;
11598
11599 bp->cnic_kwq_pending++;
11600
11601 DP(NETIF_MSG_TIMER, "L5 SPQE %x %x %x:%x pos %d\n",
11602 spe->hdr.conn_and_cmd_data, spe->hdr.type,
11603 spe->data.update_data_addr.hi,
11604 spe->data.update_data_addr.lo,
11605 bp->cnic_kwq_pending);
11606
11607 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
11608 bp->cnic_kwq_prod = bp->cnic_kwq;
11609 else
11610 bp->cnic_kwq_prod++;
11611 }
11612
11613 spin_unlock_bh(&bp->spq_lock);
11614
11615 if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
11616 bnx2x_cnic_sp_post(bp, 0);
11617
11618 return i;
11619 }
11620
11621 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11622 {
11623 struct cnic_ops *c_ops;
11624 int rc = 0;
11625
11626 mutex_lock(&bp->cnic_mutex);
11627 c_ops = rcu_dereference_protected(bp->cnic_ops,
11628 lockdep_is_held(&bp->cnic_mutex));
11629 if (c_ops)
11630 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11631 mutex_unlock(&bp->cnic_mutex);
11632
11633 return rc;
11634 }
11635
11636 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
11637 {
11638 struct cnic_ops *c_ops;
11639 int rc = 0;
11640
11641 rcu_read_lock();
11642 c_ops = rcu_dereference(bp->cnic_ops);
11643 if (c_ops)
11644 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
11645 rcu_read_unlock();
11646
11647 return rc;
11648 }
11649
11650 /*
11651 * for commands that have no data
11652 */
11653 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
11654 {
11655 struct cnic_ctl_info ctl = {0};
11656
11657 ctl.cmd = cmd;
11658
11659 return bnx2x_cnic_ctl_send(bp, &ctl);
11660 }
11661
11662 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
11663 {
11664 struct cnic_ctl_info ctl = {0};
11665
11666 /* first we tell CNIC and only then we count this as a completion */
11667 ctl.cmd = CNIC_CTL_COMPLETION_CMD;
11668 ctl.data.comp.cid = cid;
11669 ctl.data.comp.error = err;
11670
11671 bnx2x_cnic_ctl_send_bh(bp, &ctl);
11672 bnx2x_cnic_sp_post(bp, 0);
11673 }
11674
11675
11676 /* Called with netif_addr_lock_bh() taken.
11677 * Sets an rx_mode config for an iSCSI ETH client.
11678 * Doesn't block.
11679 * Completion should be checked outside.
11680 */
11681 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
11682 {
11683 unsigned long accept_flags = 0, ramrod_flags = 0;
11684 u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11685 int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
11686
11687 if (start) {
11688 /* Start accepting on iSCSI L2 ring. Accept all multicasts
11689 * because it's the only way for UIO Queue to accept
11690 * multicasts (in non-promiscuous mode only one Queue per
11691 * function will receive multicast packets (leading in our
11692 * case).
11693 */
11694 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
11695 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
11696 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
11697 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
11698
11699 /* Clear STOP_PENDING bit if START is requested */
11700 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
11701
11702 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
11703 } else
11704 /* Clear START_PENDING bit if STOP is requested */
11705 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
11706
11707 if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
11708 set_bit(sched_state, &bp->sp_state);
11709 else {
11710 __set_bit(RAMROD_RX, &ramrod_flags);
11711 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
11712 ramrod_flags);
11713 }
11714 }
11715
11716
11717 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
11718 {
11719 struct bnx2x *bp = netdev_priv(dev);
11720 int rc = 0;
11721
11722 switch (ctl->cmd) {
11723 case DRV_CTL_CTXTBL_WR_CMD: {
11724 u32 index = ctl->data.io.offset;
11725 dma_addr_t addr = ctl->data.io.dma_addr;
11726
11727 bnx2x_ilt_wr(bp, index, addr);
11728 break;
11729 }
11730
11731 case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
11732 int count = ctl->data.credit.credit_count;
11733
11734 bnx2x_cnic_sp_post(bp, count);
11735 break;
11736 }
11737
11738 /* rtnl_lock is held. */
11739 case DRV_CTL_START_L2_CMD: {
11740 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11741 unsigned long sp_bits = 0;
11742
11743 /* Configure the iSCSI classification object */
11744 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
11745 cp->iscsi_l2_client_id,
11746 cp->iscsi_l2_cid, BP_FUNC(bp),
11747 bnx2x_sp(bp, mac_rdata),
11748 bnx2x_sp_mapping(bp, mac_rdata),
11749 BNX2X_FILTER_MAC_PENDING,
11750 &bp->sp_state, BNX2X_OBJ_TYPE_RX,
11751 &bp->macs_pool);
11752
11753 /* Set iSCSI MAC address */
11754 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
11755 if (rc)
11756 break;
11757
11758 mmiowb();
11759 barrier();
11760
11761 /* Start accepting on iSCSI L2 ring */
11762
11763 netif_addr_lock_bh(dev);
11764 bnx2x_set_iscsi_eth_rx_mode(bp, true);
11765 netif_addr_unlock_bh(dev);
11766
11767 /* bits to wait on */
11768 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11769 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
11770
11771 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11772 BNX2X_ERR("rx_mode completion timed out!\n");
11773
11774 break;
11775 }
11776
11777 /* rtnl_lock is held. */
11778 case DRV_CTL_STOP_L2_CMD: {
11779 unsigned long sp_bits = 0;
11780
11781 /* Stop accepting on iSCSI L2 ring */
11782 netif_addr_lock_bh(dev);
11783 bnx2x_set_iscsi_eth_rx_mode(bp, false);
11784 netif_addr_unlock_bh(dev);
11785
11786 /* bits to wait on */
11787 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
11788 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
11789
11790 if (!bnx2x_wait_sp_comp(bp, sp_bits))
11791 BNX2X_ERR("rx_mode completion timed out!\n");
11792
11793 mmiowb();
11794 barrier();
11795
11796 /* Unset iSCSI L2 MAC */
11797 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
11798 BNX2X_ISCSI_ETH_MAC, true);
11799 break;
11800 }
11801 case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
11802 int count = ctl->data.credit.credit_count;
11803
11804 smp_mb__before_atomic_inc();
11805 atomic_add(count, &bp->cq_spq_left);
11806 smp_mb__after_atomic_inc();
11807 break;
11808 }
11809 case DRV_CTL_ULP_REGISTER_CMD: {
11810 int ulp_type = ctl->data.ulp_type;
11811
11812 if (CHIP_IS_E3(bp)) {
11813 int idx = BP_FW_MB_IDX(bp);
11814 u32 cap;
11815
11816 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11817 if (ulp_type == CNIC_ULP_ISCSI)
11818 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11819 else if (ulp_type == CNIC_ULP_FCOE)
11820 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11821 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11822 }
11823 break;
11824 }
11825 case DRV_CTL_ULP_UNREGISTER_CMD: {
11826 int ulp_type = ctl->data.ulp_type;
11827
11828 if (CHIP_IS_E3(bp)) {
11829 int idx = BP_FW_MB_IDX(bp);
11830 u32 cap;
11831
11832 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
11833 if (ulp_type == CNIC_ULP_ISCSI)
11834 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
11835 else if (ulp_type == CNIC_ULP_FCOE)
11836 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
11837 SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
11838 }
11839 break;
11840 }
11841
11842 default:
11843 BNX2X_ERR("unknown command %x\n", ctl->cmd);
11844 rc = -EINVAL;
11845 }
11846
11847 return rc;
11848 }
11849
11850 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
11851 {
11852 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11853
11854 if (bp->flags & USING_MSIX_FLAG) {
11855 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
11856 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
11857 cp->irq_arr[0].vector = bp->msix_table[1].vector;
11858 } else {
11859 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
11860 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
11861 }
11862 if (!CHIP_IS_E1x(bp))
11863 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
11864 else
11865 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
11866
11867 cp->irq_arr[0].status_blk_num = bnx2x_cnic_fw_sb_id(bp);
11868 cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
11869 cp->irq_arr[1].status_blk = bp->def_status_blk;
11870 cp->irq_arr[1].status_blk_num = DEF_SB_ID;
11871 cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
11872
11873 cp->num_irq = 2;
11874 }
11875
11876 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
11877 void *data)
11878 {
11879 struct bnx2x *bp = netdev_priv(dev);
11880 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11881
11882 if (ops == NULL)
11883 return -EINVAL;
11884
11885 bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
11886 if (!bp->cnic_kwq)
11887 return -ENOMEM;
11888
11889 bp->cnic_kwq_cons = bp->cnic_kwq;
11890 bp->cnic_kwq_prod = bp->cnic_kwq;
11891 bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
11892
11893 bp->cnic_spq_pending = 0;
11894 bp->cnic_kwq_pending = 0;
11895
11896 bp->cnic_data = data;
11897
11898 cp->num_irq = 0;
11899 cp->drv_state |= CNIC_DRV_STATE_REGD;
11900 cp->iro_arr = bp->iro_arr;
11901
11902 bnx2x_setup_cnic_irq_info(bp);
11903
11904 rcu_assign_pointer(bp->cnic_ops, ops);
11905
11906 return 0;
11907 }
11908
11909 static int bnx2x_unregister_cnic(struct net_device *dev)
11910 {
11911 struct bnx2x *bp = netdev_priv(dev);
11912 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11913
11914 mutex_lock(&bp->cnic_mutex);
11915 cp->drv_state = 0;
11916 RCU_INIT_POINTER(bp->cnic_ops, NULL);
11917 mutex_unlock(&bp->cnic_mutex);
11918 synchronize_rcu();
11919 kfree(bp->cnic_kwq);
11920 bp->cnic_kwq = NULL;
11921
11922 return 0;
11923 }
11924
11925 struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
11926 {
11927 struct bnx2x *bp = netdev_priv(dev);
11928 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
11929
11930 /* If both iSCSI and FCoE are disabled - return NULL in
11931 * order to indicate CNIC that it should not try to work
11932 * with this device.
11933 */
11934 if (NO_ISCSI(bp) && NO_FCOE(bp))
11935 return NULL;
11936
11937 cp->drv_owner = THIS_MODULE;
11938 cp->chip_id = CHIP_ID(bp);
11939 cp->pdev = bp->pdev;
11940 cp->io_base = bp->regview;
11941 cp->io_base2 = bp->doorbells;
11942 cp->max_kwqe_pending = 8;
11943 cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
11944 cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
11945 bnx2x_cid_ilt_lines(bp);
11946 cp->ctx_tbl_len = CNIC_ILT_LINES;
11947 cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
11948 cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
11949 cp->drv_ctl = bnx2x_drv_ctl;
11950 cp->drv_register_cnic = bnx2x_register_cnic;
11951 cp->drv_unregister_cnic = bnx2x_unregister_cnic;
11952 cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID;
11953 cp->iscsi_l2_client_id =
11954 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
11955 cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID;
11956
11957 if (NO_ISCSI_OOO(bp))
11958 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
11959
11960 if (NO_ISCSI(bp))
11961 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
11962
11963 if (NO_FCOE(bp))
11964 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
11965
11966 DP(BNX2X_MSG_SP, "page_size %d, tbl_offset %d, tbl_lines %d, "
11967 "starting cid %d\n",
11968 cp->ctx_blk_size,
11969 cp->ctx_tbl_offset,
11970 cp->ctx_tbl_len,
11971 cp->starting_cid);
11972 return cp;
11973 }
11974 EXPORT_SYMBOL(bnx2x_cnic_probe);
11975
11976 #endif /* BCM_CNIC */
11977
This page took 0.308292 seconds and 6 git commands to generate.