Merge branch 'work.iov_iter' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2016 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57314,
82 BCM57304_VF,
83 BCM57404_VF,
84 };
85
86 /* indexed by enum above */
87 static const struct {
88 char *name;
89 } board_info[] = {
90 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
91 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
92 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
93 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
94 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
95 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
96 { "Broadcom BCM57314 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
97 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
98 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
99 };
100
101 static const struct pci_device_id bnxt_pci_tbl[] = {
102 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
103 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
104 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
105 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
106 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
107 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
108 { PCI_VDEVICE(BROADCOM, 0x16df), .driver_data = BCM57314 },
109 #ifdef CONFIG_BNXT_SRIOV
110 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
111 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
112 #endif
113 { 0 }
114 };
115
116 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
117
118 static const u16 bnxt_vf_req_snif[] = {
119 HWRM_FUNC_CFG,
120 HWRM_PORT_PHY_QCFG,
121 HWRM_CFA_L2_FILTER_ALLOC,
122 };
123
124 static const u16 bnxt_async_events_arr[] = {
125 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE,
126 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD,
127 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED,
128 HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE,
129 };
130
131 static bool bnxt_vf_pciid(enum board_idx idx)
132 {
133 return (idx == BCM57304_VF || idx == BCM57404_VF);
134 }
135
136 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
137 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
138 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
139
140 #define BNXT_CP_DB_REARM(db, raw_cons) \
141 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
142
143 #define BNXT_CP_DB(db, raw_cons) \
144 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
145
146 #define BNXT_CP_DB_IRQ_DIS(db) \
147 writel(DB_CP_IRQ_DIS_FLAGS, db)
148
149 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
150 {
151 /* Tell compiler to fetch tx indices from memory. */
152 barrier();
153
154 return bp->tx_ring_size -
155 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
156 }
157
158 static const u16 bnxt_lhint_arr[] = {
159 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
160 TX_BD_FLAGS_LHINT_512_TO_1023,
161 TX_BD_FLAGS_LHINT_1024_TO_2047,
162 TX_BD_FLAGS_LHINT_1024_TO_2047,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
169 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
170 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
171 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
172 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
173 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
174 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
175 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
176 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
177 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
178 };
179
180 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
181 {
182 struct bnxt *bp = netdev_priv(dev);
183 struct tx_bd *txbd;
184 struct tx_bd_ext *txbd1;
185 struct netdev_queue *txq;
186 int i;
187 dma_addr_t mapping;
188 unsigned int length, pad = 0;
189 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
190 u16 prod, last_frag;
191 struct pci_dev *pdev = bp->pdev;
192 struct bnxt_tx_ring_info *txr;
193 struct bnxt_sw_tx_bd *tx_buf;
194
195 i = skb_get_queue_mapping(skb);
196 if (unlikely(i >= bp->tx_nr_rings)) {
197 dev_kfree_skb_any(skb);
198 return NETDEV_TX_OK;
199 }
200
201 txr = &bp->tx_ring[i];
202 txq = netdev_get_tx_queue(dev, i);
203 prod = txr->tx_prod;
204
205 free_size = bnxt_tx_avail(bp, txr);
206 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
207 netif_tx_stop_queue(txq);
208 return NETDEV_TX_BUSY;
209 }
210
211 length = skb->len;
212 len = skb_headlen(skb);
213 last_frag = skb_shinfo(skb)->nr_frags;
214
215 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
216
217 txbd->tx_bd_opaque = prod;
218
219 tx_buf = &txr->tx_buf_ring[prod];
220 tx_buf->skb = skb;
221 tx_buf->nr_frags = last_frag;
222
223 vlan_tag_flags = 0;
224 cfa_action = 0;
225 if (skb_vlan_tag_present(skb)) {
226 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
227 skb_vlan_tag_get(skb);
228 /* Currently supports 8021Q, 8021AD vlan offloads
229 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
230 */
231 if (skb->vlan_proto == htons(ETH_P_8021Q))
232 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
233 }
234
235 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
236 struct tx_push_buffer *tx_push_buf = txr->tx_push;
237 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
238 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
239 void *pdata = tx_push_buf->data;
240 u64 *end;
241 int j, push_len;
242
243 /* Set COAL_NOW to be ready quickly for the next push */
244 tx_push->tx_bd_len_flags_type =
245 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
246 TX_BD_TYPE_LONG_TX_BD |
247 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
248 TX_BD_FLAGS_COAL_NOW |
249 TX_BD_FLAGS_PACKET_END |
250 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
251
252 if (skb->ip_summed == CHECKSUM_PARTIAL)
253 tx_push1->tx_bd_hsize_lflags =
254 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
255 else
256 tx_push1->tx_bd_hsize_lflags = 0;
257
258 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
259 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
260
261 end = pdata + length;
262 end = PTR_ALIGN(end, 8) - 1;
263 *end = 0;
264
265 skb_copy_from_linear_data(skb, pdata, len);
266 pdata += len;
267 for (j = 0; j < last_frag; j++) {
268 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
269 void *fptr;
270
271 fptr = skb_frag_address_safe(frag);
272 if (!fptr)
273 goto normal_tx;
274
275 memcpy(pdata, fptr, skb_frag_size(frag));
276 pdata += skb_frag_size(frag);
277 }
278
279 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
280 txbd->tx_bd_haddr = txr->data_mapping;
281 prod = NEXT_TX(prod);
282 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
283 memcpy(txbd, tx_push1, sizeof(*txbd));
284 prod = NEXT_TX(prod);
285 tx_push->doorbell =
286 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
287 txr->tx_prod = prod;
288
289 netdev_tx_sent_queue(txq, skb->len);
290
291 push_len = (length + sizeof(*tx_push) + 7) / 8;
292 if (push_len > 16) {
293 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
294 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
295 push_len - 16);
296 } else {
297 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
298 push_len);
299 }
300
301 tx_buf->is_push = 1;
302 goto tx_done;
303 }
304
305 normal_tx:
306 if (length < BNXT_MIN_PKT_SIZE) {
307 pad = BNXT_MIN_PKT_SIZE - length;
308 if (skb_pad(skb, pad)) {
309 /* SKB already freed. */
310 tx_buf->skb = NULL;
311 return NETDEV_TX_OK;
312 }
313 length = BNXT_MIN_PKT_SIZE;
314 }
315
316 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
317
318 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
319 dev_kfree_skb_any(skb);
320 tx_buf->skb = NULL;
321 return NETDEV_TX_OK;
322 }
323
324 dma_unmap_addr_set(tx_buf, mapping, mapping);
325 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
326 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
327
328 txbd->tx_bd_haddr = cpu_to_le64(mapping);
329
330 prod = NEXT_TX(prod);
331 txbd1 = (struct tx_bd_ext *)
332 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
333
334 txbd1->tx_bd_hsize_lflags = 0;
335 if (skb_is_gso(skb)) {
336 u32 hdr_len;
337
338 if (skb->encapsulation)
339 hdr_len = skb_inner_network_offset(skb) +
340 skb_inner_network_header_len(skb) +
341 inner_tcp_hdrlen(skb);
342 else
343 hdr_len = skb_transport_offset(skb) +
344 tcp_hdrlen(skb);
345
346 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
347 TX_BD_FLAGS_T_IPID |
348 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
349 length = skb_shinfo(skb)->gso_size;
350 txbd1->tx_bd_mss = cpu_to_le32(length);
351 length += hdr_len;
352 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
353 txbd1->tx_bd_hsize_lflags =
354 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
355 txbd1->tx_bd_mss = 0;
356 }
357
358 length >>= 9;
359 flags |= bnxt_lhint_arr[length];
360 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
361
362 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
363 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
364 for (i = 0; i < last_frag; i++) {
365 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
366
367 prod = NEXT_TX(prod);
368 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
369
370 len = skb_frag_size(frag);
371 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
372 DMA_TO_DEVICE);
373
374 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
375 goto tx_dma_error;
376
377 tx_buf = &txr->tx_buf_ring[prod];
378 dma_unmap_addr_set(tx_buf, mapping, mapping);
379
380 txbd->tx_bd_haddr = cpu_to_le64(mapping);
381
382 flags = len << TX_BD_LEN_SHIFT;
383 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
384 }
385
386 flags &= ~TX_BD_LEN;
387 txbd->tx_bd_len_flags_type =
388 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
389 TX_BD_FLAGS_PACKET_END);
390
391 netdev_tx_sent_queue(txq, skb->len);
392
393 /* Sync BD data before updating doorbell */
394 wmb();
395
396 prod = NEXT_TX(prod);
397 txr->tx_prod = prod;
398
399 writel(DB_KEY_TX | prod, txr->tx_doorbell);
400 writel(DB_KEY_TX | prod, txr->tx_doorbell);
401
402 tx_done:
403
404 mmiowb();
405
406 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
407 netif_tx_stop_queue(txq);
408
409 /* netif_tx_stop_queue() must be done before checking
410 * tx index in bnxt_tx_avail() below, because in
411 * bnxt_tx_int(), we update tx index before checking for
412 * netif_tx_queue_stopped().
413 */
414 smp_mb();
415 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
416 netif_tx_wake_queue(txq);
417 }
418 return NETDEV_TX_OK;
419
420 tx_dma_error:
421 last_frag = i;
422
423 /* start back at beginning and unmap skb */
424 prod = txr->tx_prod;
425 tx_buf = &txr->tx_buf_ring[prod];
426 tx_buf->skb = NULL;
427 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
428 skb_headlen(skb), PCI_DMA_TODEVICE);
429 prod = NEXT_TX(prod);
430
431 /* unmap remaining mapped pages */
432 for (i = 0; i < last_frag; i++) {
433 prod = NEXT_TX(prod);
434 tx_buf = &txr->tx_buf_ring[prod];
435 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
436 skb_frag_size(&skb_shinfo(skb)->frags[i]),
437 PCI_DMA_TODEVICE);
438 }
439
440 dev_kfree_skb_any(skb);
441 return NETDEV_TX_OK;
442 }
443
444 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
445 {
446 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
447 int index = txr - &bp->tx_ring[0];
448 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
449 u16 cons = txr->tx_cons;
450 struct pci_dev *pdev = bp->pdev;
451 int i;
452 unsigned int tx_bytes = 0;
453
454 for (i = 0; i < nr_pkts; i++) {
455 struct bnxt_sw_tx_bd *tx_buf;
456 struct sk_buff *skb;
457 int j, last;
458
459 tx_buf = &txr->tx_buf_ring[cons];
460 cons = NEXT_TX(cons);
461 skb = tx_buf->skb;
462 tx_buf->skb = NULL;
463
464 if (tx_buf->is_push) {
465 tx_buf->is_push = 0;
466 goto next_tx_int;
467 }
468
469 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
470 skb_headlen(skb), PCI_DMA_TODEVICE);
471 last = tx_buf->nr_frags;
472
473 for (j = 0; j < last; j++) {
474 cons = NEXT_TX(cons);
475 tx_buf = &txr->tx_buf_ring[cons];
476 dma_unmap_page(
477 &pdev->dev,
478 dma_unmap_addr(tx_buf, mapping),
479 skb_frag_size(&skb_shinfo(skb)->frags[j]),
480 PCI_DMA_TODEVICE);
481 }
482
483 next_tx_int:
484 cons = NEXT_TX(cons);
485
486 tx_bytes += skb->len;
487 dev_kfree_skb_any(skb);
488 }
489
490 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
491 txr->tx_cons = cons;
492
493 /* Need to make the tx_cons update visible to bnxt_start_xmit()
494 * before checking for netif_tx_queue_stopped(). Without the
495 * memory barrier, there is a small possibility that bnxt_start_xmit()
496 * will miss it and cause the queue to be stopped forever.
497 */
498 smp_mb();
499
500 if (unlikely(netif_tx_queue_stopped(txq)) &&
501 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
502 __netif_tx_lock(txq, smp_processor_id());
503 if (netif_tx_queue_stopped(txq) &&
504 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
505 txr->dev_state != BNXT_DEV_STATE_CLOSING)
506 netif_tx_wake_queue(txq);
507 __netif_tx_unlock(txq);
508 }
509 }
510
511 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
512 gfp_t gfp)
513 {
514 u8 *data;
515 struct pci_dev *pdev = bp->pdev;
516
517 data = kmalloc(bp->rx_buf_size, gfp);
518 if (!data)
519 return NULL;
520
521 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
522 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
523
524 if (dma_mapping_error(&pdev->dev, *mapping)) {
525 kfree(data);
526 data = NULL;
527 }
528 return data;
529 }
530
531 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
532 struct bnxt_rx_ring_info *rxr,
533 u16 prod, gfp_t gfp)
534 {
535 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
536 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
537 u8 *data;
538 dma_addr_t mapping;
539
540 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
541 if (!data)
542 return -ENOMEM;
543
544 rx_buf->data = data;
545 dma_unmap_addr_set(rx_buf, mapping, mapping);
546
547 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
548
549 return 0;
550 }
551
552 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
553 u8 *data)
554 {
555 u16 prod = rxr->rx_prod;
556 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
557 struct rx_bd *cons_bd, *prod_bd;
558
559 prod_rx_buf = &rxr->rx_buf_ring[prod];
560 cons_rx_buf = &rxr->rx_buf_ring[cons];
561
562 prod_rx_buf->data = data;
563
564 dma_unmap_addr_set(prod_rx_buf, mapping,
565 dma_unmap_addr(cons_rx_buf, mapping));
566
567 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
568 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
569
570 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
571 }
572
573 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
574 {
575 u16 next, max = rxr->rx_agg_bmap_size;
576
577 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
578 if (next >= max)
579 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
580 return next;
581 }
582
583 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
584 struct bnxt_rx_ring_info *rxr,
585 u16 prod, gfp_t gfp)
586 {
587 struct rx_bd *rxbd =
588 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
589 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
590 struct pci_dev *pdev = bp->pdev;
591 struct page *page;
592 dma_addr_t mapping;
593 u16 sw_prod = rxr->rx_sw_agg_prod;
594 unsigned int offset = 0;
595
596 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
597 page = rxr->rx_page;
598 if (!page) {
599 page = alloc_page(gfp);
600 if (!page)
601 return -ENOMEM;
602 rxr->rx_page = page;
603 rxr->rx_page_offset = 0;
604 }
605 offset = rxr->rx_page_offset;
606 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
607 if (rxr->rx_page_offset == PAGE_SIZE)
608 rxr->rx_page = NULL;
609 else
610 get_page(page);
611 } else {
612 page = alloc_page(gfp);
613 if (!page)
614 return -ENOMEM;
615 }
616
617 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
618 PCI_DMA_FROMDEVICE);
619 if (dma_mapping_error(&pdev->dev, mapping)) {
620 __free_page(page);
621 return -EIO;
622 }
623
624 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
625 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
626
627 __set_bit(sw_prod, rxr->rx_agg_bmap);
628 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
629 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
630
631 rx_agg_buf->page = page;
632 rx_agg_buf->offset = offset;
633 rx_agg_buf->mapping = mapping;
634 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
635 rxbd->rx_bd_opaque = sw_prod;
636 return 0;
637 }
638
639 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
640 u32 agg_bufs)
641 {
642 struct bnxt *bp = bnapi->bp;
643 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
644 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
645 u16 prod = rxr->rx_agg_prod;
646 u16 sw_prod = rxr->rx_sw_agg_prod;
647 u32 i;
648
649 for (i = 0; i < agg_bufs; i++) {
650 u16 cons;
651 struct rx_agg_cmp *agg;
652 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
653 struct rx_bd *prod_bd;
654 struct page *page;
655
656 agg = (struct rx_agg_cmp *)
657 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
658 cons = agg->rx_agg_cmp_opaque;
659 __clear_bit(cons, rxr->rx_agg_bmap);
660
661 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
662 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
663
664 __set_bit(sw_prod, rxr->rx_agg_bmap);
665 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
666 cons_rx_buf = &rxr->rx_agg_ring[cons];
667
668 /* It is possible for sw_prod to be equal to cons, so
669 * set cons_rx_buf->page to NULL first.
670 */
671 page = cons_rx_buf->page;
672 cons_rx_buf->page = NULL;
673 prod_rx_buf->page = page;
674 prod_rx_buf->offset = cons_rx_buf->offset;
675
676 prod_rx_buf->mapping = cons_rx_buf->mapping;
677
678 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
679
680 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
681 prod_bd->rx_bd_opaque = sw_prod;
682
683 prod = NEXT_RX_AGG(prod);
684 sw_prod = NEXT_RX_AGG(sw_prod);
685 cp_cons = NEXT_CMP(cp_cons);
686 }
687 rxr->rx_agg_prod = prod;
688 rxr->rx_sw_agg_prod = sw_prod;
689 }
690
691 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
692 struct bnxt_rx_ring_info *rxr, u16 cons,
693 u16 prod, u8 *data, dma_addr_t dma_addr,
694 unsigned int len)
695 {
696 int err;
697 struct sk_buff *skb;
698
699 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
700 if (unlikely(err)) {
701 bnxt_reuse_rx_data(rxr, cons, data);
702 return NULL;
703 }
704
705 skb = build_skb(data, 0);
706 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
707 PCI_DMA_FROMDEVICE);
708 if (!skb) {
709 kfree(data);
710 return NULL;
711 }
712
713 skb_reserve(skb, BNXT_RX_OFFSET);
714 skb_put(skb, len);
715 return skb;
716 }
717
718 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
719 struct sk_buff *skb, u16 cp_cons,
720 u32 agg_bufs)
721 {
722 struct pci_dev *pdev = bp->pdev;
723 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
724 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
725 u16 prod = rxr->rx_agg_prod;
726 u32 i;
727
728 for (i = 0; i < agg_bufs; i++) {
729 u16 cons, frag_len;
730 struct rx_agg_cmp *agg;
731 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
732 struct page *page;
733 dma_addr_t mapping;
734
735 agg = (struct rx_agg_cmp *)
736 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
737 cons = agg->rx_agg_cmp_opaque;
738 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
739 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
740
741 cons_rx_buf = &rxr->rx_agg_ring[cons];
742 skb_fill_page_desc(skb, i, cons_rx_buf->page,
743 cons_rx_buf->offset, frag_len);
744 __clear_bit(cons, rxr->rx_agg_bmap);
745
746 /* It is possible for bnxt_alloc_rx_page() to allocate
747 * a sw_prod index that equals the cons index, so we
748 * need to clear the cons entry now.
749 */
750 mapping = dma_unmap_addr(cons_rx_buf, mapping);
751 page = cons_rx_buf->page;
752 cons_rx_buf->page = NULL;
753
754 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
755 struct skb_shared_info *shinfo;
756 unsigned int nr_frags;
757
758 shinfo = skb_shinfo(skb);
759 nr_frags = --shinfo->nr_frags;
760 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
761
762 dev_kfree_skb(skb);
763
764 cons_rx_buf->page = page;
765
766 /* Update prod since possibly some pages have been
767 * allocated already.
768 */
769 rxr->rx_agg_prod = prod;
770 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
771 return NULL;
772 }
773
774 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
775 PCI_DMA_FROMDEVICE);
776
777 skb->data_len += frag_len;
778 skb->len += frag_len;
779 skb->truesize += PAGE_SIZE;
780
781 prod = NEXT_RX_AGG(prod);
782 cp_cons = NEXT_CMP(cp_cons);
783 }
784 rxr->rx_agg_prod = prod;
785 return skb;
786 }
787
788 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
789 u8 agg_bufs, u32 *raw_cons)
790 {
791 u16 last;
792 struct rx_agg_cmp *agg;
793
794 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
795 last = RING_CMP(*raw_cons);
796 agg = (struct rx_agg_cmp *)
797 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
798 return RX_AGG_CMP_VALID(agg, *raw_cons);
799 }
800
801 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
802 unsigned int len,
803 dma_addr_t mapping)
804 {
805 struct bnxt *bp = bnapi->bp;
806 struct pci_dev *pdev = bp->pdev;
807 struct sk_buff *skb;
808
809 skb = napi_alloc_skb(&bnapi->napi, len);
810 if (!skb)
811 return NULL;
812
813 dma_sync_single_for_cpu(&pdev->dev, mapping,
814 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
815
816 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
817
818 dma_sync_single_for_device(&pdev->dev, mapping,
819 bp->rx_copy_thresh,
820 PCI_DMA_FROMDEVICE);
821
822 skb_put(skb, len);
823 return skb;
824 }
825
826 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
827 u32 *raw_cons, void *cmp)
828 {
829 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
830 struct rx_cmp *rxcmp = cmp;
831 u32 tmp_raw_cons = *raw_cons;
832 u8 cmp_type, agg_bufs = 0;
833
834 cmp_type = RX_CMP_TYPE(rxcmp);
835
836 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
837 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
838 RX_CMP_AGG_BUFS) >>
839 RX_CMP_AGG_BUFS_SHIFT;
840 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
841 struct rx_tpa_end_cmp *tpa_end = cmp;
842
843 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
844 RX_TPA_END_CMP_AGG_BUFS) >>
845 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
846 }
847
848 if (agg_bufs) {
849 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
850 return -EBUSY;
851 }
852 *raw_cons = tmp_raw_cons;
853 return 0;
854 }
855
856 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
857 {
858 if (!rxr->bnapi->in_reset) {
859 rxr->bnapi->in_reset = true;
860 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
861 schedule_work(&bp->sp_task);
862 }
863 rxr->rx_next_cons = 0xffff;
864 }
865
866 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
867 struct rx_tpa_start_cmp *tpa_start,
868 struct rx_tpa_start_cmp_ext *tpa_start1)
869 {
870 u8 agg_id = TPA_START_AGG_ID(tpa_start);
871 u16 cons, prod;
872 struct bnxt_tpa_info *tpa_info;
873 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
874 struct rx_bd *prod_bd;
875 dma_addr_t mapping;
876
877 cons = tpa_start->rx_tpa_start_cmp_opaque;
878 prod = rxr->rx_prod;
879 cons_rx_buf = &rxr->rx_buf_ring[cons];
880 prod_rx_buf = &rxr->rx_buf_ring[prod];
881 tpa_info = &rxr->rx_tpa[agg_id];
882
883 if (unlikely(cons != rxr->rx_next_cons)) {
884 bnxt_sched_reset(bp, rxr);
885 return;
886 }
887
888 prod_rx_buf->data = tpa_info->data;
889
890 mapping = tpa_info->mapping;
891 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
892
893 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
894
895 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
896
897 tpa_info->data = cons_rx_buf->data;
898 cons_rx_buf->data = NULL;
899 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
900
901 tpa_info->len =
902 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
903 RX_TPA_START_CMP_LEN_SHIFT;
904 if (likely(TPA_START_HASH_VALID(tpa_start))) {
905 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
906
907 tpa_info->hash_type = PKT_HASH_TYPE_L4;
908 tpa_info->gso_type = SKB_GSO_TCPV4;
909 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
910 if (hash_type == 3)
911 tpa_info->gso_type = SKB_GSO_TCPV6;
912 tpa_info->rss_hash =
913 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
914 } else {
915 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
916 tpa_info->gso_type = 0;
917 if (netif_msg_rx_err(bp))
918 netdev_warn(bp->dev, "TPA packet without valid hash\n");
919 }
920 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
921 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
922
923 rxr->rx_prod = NEXT_RX(prod);
924 cons = NEXT_RX(cons);
925 rxr->rx_next_cons = NEXT_RX(cons);
926 cons_rx_buf = &rxr->rx_buf_ring[cons];
927
928 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
929 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
930 cons_rx_buf->data = NULL;
931 }
932
933 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
934 u16 cp_cons, u32 agg_bufs)
935 {
936 if (agg_bufs)
937 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
938 }
939
940 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
941 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
942
943 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
944 struct rx_tpa_end_cmp *tpa_end,
945 struct rx_tpa_end_cmp_ext *tpa_end1,
946 struct sk_buff *skb)
947 {
948 #ifdef CONFIG_INET
949 struct tcphdr *th;
950 int payload_off, tcp_opt_len = 0;
951 int len, nw_off;
952 u16 segs;
953
954 segs = TPA_END_TPA_SEGS(tpa_end);
955 if (segs == 1)
956 return skb;
957
958 NAPI_GRO_CB(skb)->count = segs;
959 skb_shinfo(skb)->gso_size =
960 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
961 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
962 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
963 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
964 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
965 if (TPA_END_GRO_TS(tpa_end))
966 tcp_opt_len = 12;
967
968 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
969 struct iphdr *iph;
970
971 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
972 ETH_HLEN;
973 skb_set_network_header(skb, nw_off);
974 iph = ip_hdr(skb);
975 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
976 len = skb->len - skb_transport_offset(skb);
977 th = tcp_hdr(skb);
978 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
979 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
980 struct ipv6hdr *iph;
981
982 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
983 ETH_HLEN;
984 skb_set_network_header(skb, nw_off);
985 iph = ipv6_hdr(skb);
986 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
987 len = skb->len - skb_transport_offset(skb);
988 th = tcp_hdr(skb);
989 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
990 } else {
991 dev_kfree_skb_any(skb);
992 return NULL;
993 }
994 tcp_gro_complete(skb);
995
996 if (nw_off) { /* tunnel */
997 struct udphdr *uh = NULL;
998
999 if (skb->protocol == htons(ETH_P_IP)) {
1000 struct iphdr *iph = (struct iphdr *)skb->data;
1001
1002 if (iph->protocol == IPPROTO_UDP)
1003 uh = (struct udphdr *)(iph + 1);
1004 } else {
1005 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
1006
1007 if (iph->nexthdr == IPPROTO_UDP)
1008 uh = (struct udphdr *)(iph + 1);
1009 }
1010 if (uh) {
1011 if (uh->check)
1012 skb_shinfo(skb)->gso_type |=
1013 SKB_GSO_UDP_TUNNEL_CSUM;
1014 else
1015 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1016 }
1017 }
1018 #endif
1019 return skb;
1020 }
1021
1022 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1023 struct bnxt_napi *bnapi,
1024 u32 *raw_cons,
1025 struct rx_tpa_end_cmp *tpa_end,
1026 struct rx_tpa_end_cmp_ext *tpa_end1,
1027 bool *agg_event)
1028 {
1029 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1030 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1031 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1032 u8 *data, agg_bufs;
1033 u16 cp_cons = RING_CMP(*raw_cons);
1034 unsigned int len;
1035 struct bnxt_tpa_info *tpa_info;
1036 dma_addr_t mapping;
1037 struct sk_buff *skb;
1038
1039 if (unlikely(bnapi->in_reset)) {
1040 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1041
1042 if (rc < 0)
1043 return ERR_PTR(-EBUSY);
1044 return NULL;
1045 }
1046
1047 tpa_info = &rxr->rx_tpa[agg_id];
1048 data = tpa_info->data;
1049 prefetch(data);
1050 len = tpa_info->len;
1051 mapping = tpa_info->mapping;
1052
1053 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1054 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1055
1056 if (agg_bufs) {
1057 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1058 return ERR_PTR(-EBUSY);
1059
1060 *agg_event = true;
1061 cp_cons = NEXT_CMP(cp_cons);
1062 }
1063
1064 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1065 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1066 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1067 agg_bufs, (int)MAX_SKB_FRAGS);
1068 return NULL;
1069 }
1070
1071 if (len <= bp->rx_copy_thresh) {
1072 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1073 if (!skb) {
1074 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1075 return NULL;
1076 }
1077 } else {
1078 u8 *new_data;
1079 dma_addr_t new_mapping;
1080
1081 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1082 if (!new_data) {
1083 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1084 return NULL;
1085 }
1086
1087 tpa_info->data = new_data;
1088 tpa_info->mapping = new_mapping;
1089
1090 skb = build_skb(data, 0);
1091 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1092 PCI_DMA_FROMDEVICE);
1093
1094 if (!skb) {
1095 kfree(data);
1096 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1097 return NULL;
1098 }
1099 skb_reserve(skb, BNXT_RX_OFFSET);
1100 skb_put(skb, len);
1101 }
1102
1103 if (agg_bufs) {
1104 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1105 if (!skb) {
1106 /* Page reuse already handled by bnxt_rx_pages(). */
1107 return NULL;
1108 }
1109 }
1110 skb->protocol = eth_type_trans(skb, bp->dev);
1111
1112 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1113 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1114
1115 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1116 netdev_features_t features = skb->dev->features;
1117 u16 vlan_proto = tpa_info->metadata >>
1118 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1119
1120 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1121 vlan_proto == ETH_P_8021Q) ||
1122 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1123 vlan_proto == ETH_P_8021AD)) {
1124 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1125 tpa_info->metadata &
1126 RX_CMP_FLAGS2_METADATA_VID_MASK);
1127 }
1128 }
1129
1130 skb_checksum_none_assert(skb);
1131 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1132 skb->ip_summed = CHECKSUM_UNNECESSARY;
1133 skb->csum_level =
1134 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1135 }
1136
1137 if (TPA_END_GRO(tpa_end))
1138 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1139
1140 return skb;
1141 }
1142
1143 /* returns the following:
1144 * 1 - 1 packet successfully received
1145 * 0 - successful TPA_START, packet not completed yet
1146 * -EBUSY - completion ring does not have all the agg buffers yet
1147 * -ENOMEM - packet aborted due to out of memory
1148 * -EIO - packet aborted due to hw error indicated in BD
1149 */
1150 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1151 bool *agg_event)
1152 {
1153 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1154 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1155 struct net_device *dev = bp->dev;
1156 struct rx_cmp *rxcmp;
1157 struct rx_cmp_ext *rxcmp1;
1158 u32 tmp_raw_cons = *raw_cons;
1159 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1160 struct bnxt_sw_rx_bd *rx_buf;
1161 unsigned int len;
1162 u8 *data, agg_bufs, cmp_type;
1163 dma_addr_t dma_addr;
1164 struct sk_buff *skb;
1165 int rc = 0;
1166
1167 rxcmp = (struct rx_cmp *)
1168 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1169
1170 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1171 cp_cons = RING_CMP(tmp_raw_cons);
1172 rxcmp1 = (struct rx_cmp_ext *)
1173 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1174
1175 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1176 return -EBUSY;
1177
1178 cmp_type = RX_CMP_TYPE(rxcmp);
1179
1180 prod = rxr->rx_prod;
1181
1182 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1183 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1184 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1185
1186 goto next_rx_no_prod;
1187
1188 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1189 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1190 (struct rx_tpa_end_cmp *)rxcmp,
1191 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1192 agg_event);
1193
1194 if (unlikely(IS_ERR(skb)))
1195 return -EBUSY;
1196
1197 rc = -ENOMEM;
1198 if (likely(skb)) {
1199 skb_record_rx_queue(skb, bnapi->index);
1200 skb_mark_napi_id(skb, &bnapi->napi);
1201 if (bnxt_busy_polling(bnapi))
1202 netif_receive_skb(skb);
1203 else
1204 napi_gro_receive(&bnapi->napi, skb);
1205 rc = 1;
1206 }
1207 goto next_rx_no_prod;
1208 }
1209
1210 cons = rxcmp->rx_cmp_opaque;
1211 rx_buf = &rxr->rx_buf_ring[cons];
1212 data = rx_buf->data;
1213 if (unlikely(cons != rxr->rx_next_cons)) {
1214 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1215
1216 bnxt_sched_reset(bp, rxr);
1217 return rc1;
1218 }
1219 prefetch(data);
1220
1221 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1222 RX_CMP_AGG_BUFS_SHIFT;
1223
1224 if (agg_bufs) {
1225 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1226 return -EBUSY;
1227
1228 cp_cons = NEXT_CMP(cp_cons);
1229 *agg_event = true;
1230 }
1231
1232 rx_buf->data = NULL;
1233 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1234 bnxt_reuse_rx_data(rxr, cons, data);
1235 if (agg_bufs)
1236 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1237
1238 rc = -EIO;
1239 goto next_rx;
1240 }
1241
1242 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1243 dma_addr = dma_unmap_addr(rx_buf, mapping);
1244
1245 if (len <= bp->rx_copy_thresh) {
1246 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1247 bnxt_reuse_rx_data(rxr, cons, data);
1248 if (!skb) {
1249 rc = -ENOMEM;
1250 goto next_rx;
1251 }
1252 } else {
1253 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1254 if (!skb) {
1255 rc = -ENOMEM;
1256 goto next_rx;
1257 }
1258 }
1259
1260 if (agg_bufs) {
1261 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1262 if (!skb) {
1263 rc = -ENOMEM;
1264 goto next_rx;
1265 }
1266 }
1267
1268 if (RX_CMP_HASH_VALID(rxcmp)) {
1269 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1270 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1271
1272 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1273 if (hash_type != 1 && hash_type != 3)
1274 type = PKT_HASH_TYPE_L3;
1275 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1276 }
1277
1278 skb->protocol = eth_type_trans(skb, dev);
1279
1280 if (rxcmp1->rx_cmp_flags2 &
1281 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1282 netdev_features_t features = skb->dev->features;
1283 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1284 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1285
1286 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1287 vlan_proto == ETH_P_8021Q) ||
1288 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1289 vlan_proto == ETH_P_8021AD))
1290 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1291 meta_data &
1292 RX_CMP_FLAGS2_METADATA_VID_MASK);
1293 }
1294
1295 skb_checksum_none_assert(skb);
1296 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1297 if (dev->features & NETIF_F_RXCSUM) {
1298 skb->ip_summed = CHECKSUM_UNNECESSARY;
1299 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1300 }
1301 } else {
1302 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1303 if (dev->features & NETIF_F_RXCSUM)
1304 cpr->rx_l4_csum_errors++;
1305 }
1306 }
1307
1308 skb_record_rx_queue(skb, bnapi->index);
1309 skb_mark_napi_id(skb, &bnapi->napi);
1310 if (bnxt_busy_polling(bnapi))
1311 netif_receive_skb(skb);
1312 else
1313 napi_gro_receive(&bnapi->napi, skb);
1314 rc = 1;
1315
1316 next_rx:
1317 rxr->rx_prod = NEXT_RX(prod);
1318 rxr->rx_next_cons = NEXT_RX(cons);
1319
1320 next_rx_no_prod:
1321 *raw_cons = tmp_raw_cons;
1322
1323 return rc;
1324 }
1325
1326 #define BNXT_GET_EVENT_PORT(data) \
1327 ((data) & \
1328 HWRM_ASYNC_EVENT_CMPL_PORT_CONN_NOT_ALLOWED_EVENT_DATA1_PORT_ID_MASK)
1329
1330 static int bnxt_async_event_process(struct bnxt *bp,
1331 struct hwrm_async_event_cmpl *cmpl)
1332 {
1333 u16 event_id = le16_to_cpu(cmpl->event_id);
1334
1335 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1336 switch (event_id) {
1337 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_SPEED_CFG_CHANGE: {
1338 u32 data1 = le32_to_cpu(cmpl->event_data1);
1339 struct bnxt_link_info *link_info = &bp->link_info;
1340
1341 if (BNXT_VF(bp))
1342 goto async_event_process_exit;
1343 if (data1 & 0x20000) {
1344 u16 fw_speed = link_info->force_link_speed;
1345 u32 speed = bnxt_fw_to_ethtool_speed(fw_speed);
1346
1347 netdev_warn(bp->dev, "Link speed %d no longer supported\n",
1348 speed);
1349 }
1350 /* fall thru */
1351 }
1352 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1353 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1354 break;
1355 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1356 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1357 break;
1358 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PORT_CONN_NOT_ALLOWED: {
1359 u32 data1 = le32_to_cpu(cmpl->event_data1);
1360 u16 port_id = BNXT_GET_EVENT_PORT(data1);
1361
1362 if (BNXT_VF(bp))
1363 break;
1364
1365 if (bp->pf.port_id != port_id)
1366 break;
1367
1368 set_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event);
1369 break;
1370 }
1371 default:
1372 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1373 event_id);
1374 goto async_event_process_exit;
1375 }
1376 schedule_work(&bp->sp_task);
1377 async_event_process_exit:
1378 return 0;
1379 }
1380
1381 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1382 {
1383 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1384 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1385 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1386 (struct hwrm_fwd_req_cmpl *)txcmp;
1387
1388 switch (cmpl_type) {
1389 case CMPL_BASE_TYPE_HWRM_DONE:
1390 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1391 if (seq_id == bp->hwrm_intr_seq_id)
1392 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1393 else
1394 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1395 break;
1396
1397 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1398 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1399
1400 if ((vf_id < bp->pf.first_vf_id) ||
1401 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1402 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1403 vf_id);
1404 return -EINVAL;
1405 }
1406
1407 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1408 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1409 schedule_work(&bp->sp_task);
1410 break;
1411
1412 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1413 bnxt_async_event_process(bp,
1414 (struct hwrm_async_event_cmpl *)txcmp);
1415
1416 default:
1417 break;
1418 }
1419
1420 return 0;
1421 }
1422
1423 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1424 {
1425 struct bnxt_napi *bnapi = dev_instance;
1426 struct bnxt *bp = bnapi->bp;
1427 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1428 u32 cons = RING_CMP(cpr->cp_raw_cons);
1429
1430 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1431 napi_schedule(&bnapi->napi);
1432 return IRQ_HANDLED;
1433 }
1434
1435 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1436 {
1437 u32 raw_cons = cpr->cp_raw_cons;
1438 u16 cons = RING_CMP(raw_cons);
1439 struct tx_cmp *txcmp;
1440
1441 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1442
1443 return TX_CMP_VALID(txcmp, raw_cons);
1444 }
1445
1446 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1447 {
1448 struct bnxt_napi *bnapi = dev_instance;
1449 struct bnxt *bp = bnapi->bp;
1450 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1451 u32 cons = RING_CMP(cpr->cp_raw_cons);
1452 u32 int_status;
1453
1454 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1455
1456 if (!bnxt_has_work(bp, cpr)) {
1457 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1458 /* return if erroneous interrupt */
1459 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1460 return IRQ_NONE;
1461 }
1462
1463 /* disable ring IRQ */
1464 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1465
1466 /* Return here if interrupt is shared and is disabled. */
1467 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1468 return IRQ_HANDLED;
1469
1470 napi_schedule(&bnapi->napi);
1471 return IRQ_HANDLED;
1472 }
1473
1474 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1475 {
1476 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1477 u32 raw_cons = cpr->cp_raw_cons;
1478 u32 cons;
1479 int tx_pkts = 0;
1480 int rx_pkts = 0;
1481 bool rx_event = false;
1482 bool agg_event = false;
1483 struct tx_cmp *txcmp;
1484
1485 while (1) {
1486 int rc;
1487
1488 cons = RING_CMP(raw_cons);
1489 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1490
1491 if (!TX_CMP_VALID(txcmp, raw_cons))
1492 break;
1493
1494 /* The valid test of the entry must be done first before
1495 * reading any further.
1496 */
1497 dma_rmb();
1498 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1499 tx_pkts++;
1500 /* return full budget so NAPI will complete. */
1501 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1502 rx_pkts = budget;
1503 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1504 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1505 if (likely(rc >= 0))
1506 rx_pkts += rc;
1507 else if (rc == -EBUSY) /* partial completion */
1508 break;
1509 rx_event = true;
1510 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1511 CMPL_BASE_TYPE_HWRM_DONE) ||
1512 (TX_CMP_TYPE(txcmp) ==
1513 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1514 (TX_CMP_TYPE(txcmp) ==
1515 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1516 bnxt_hwrm_handler(bp, txcmp);
1517 }
1518 raw_cons = NEXT_RAW_CMP(raw_cons);
1519
1520 if (rx_pkts == budget)
1521 break;
1522 }
1523
1524 cpr->cp_raw_cons = raw_cons;
1525 /* ACK completion ring before freeing tx ring and producing new
1526 * buffers in rx/agg rings to prevent overflowing the completion
1527 * ring.
1528 */
1529 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1530
1531 if (tx_pkts)
1532 bnxt_tx_int(bp, bnapi, tx_pkts);
1533
1534 if (rx_event) {
1535 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1536
1537 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1538 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1539 if (agg_event) {
1540 writel(DB_KEY_RX | rxr->rx_agg_prod,
1541 rxr->rx_agg_doorbell);
1542 writel(DB_KEY_RX | rxr->rx_agg_prod,
1543 rxr->rx_agg_doorbell);
1544 }
1545 }
1546 return rx_pkts;
1547 }
1548
1549 static int bnxt_poll(struct napi_struct *napi, int budget)
1550 {
1551 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1552 struct bnxt *bp = bnapi->bp;
1553 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1554 int work_done = 0;
1555
1556 if (!bnxt_lock_napi(bnapi))
1557 return budget;
1558
1559 while (1) {
1560 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1561
1562 if (work_done >= budget)
1563 break;
1564
1565 if (!bnxt_has_work(bp, cpr)) {
1566 napi_complete(napi);
1567 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1568 break;
1569 }
1570 }
1571 mmiowb();
1572 bnxt_unlock_napi(bnapi);
1573 return work_done;
1574 }
1575
1576 #ifdef CONFIG_NET_RX_BUSY_POLL
1577 static int bnxt_busy_poll(struct napi_struct *napi)
1578 {
1579 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1580 struct bnxt *bp = bnapi->bp;
1581 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1582 int rx_work, budget = 4;
1583
1584 if (atomic_read(&bp->intr_sem) != 0)
1585 return LL_FLUSH_FAILED;
1586
1587 if (!bnxt_lock_poll(bnapi))
1588 return LL_FLUSH_BUSY;
1589
1590 rx_work = bnxt_poll_work(bp, bnapi, budget);
1591
1592 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1593
1594 bnxt_unlock_poll(bnapi);
1595 return rx_work;
1596 }
1597 #endif
1598
1599 static void bnxt_free_tx_skbs(struct bnxt *bp)
1600 {
1601 int i, max_idx;
1602 struct pci_dev *pdev = bp->pdev;
1603
1604 if (!bp->tx_ring)
1605 return;
1606
1607 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1608 for (i = 0; i < bp->tx_nr_rings; i++) {
1609 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1610 int j;
1611
1612 for (j = 0; j < max_idx;) {
1613 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1614 struct sk_buff *skb = tx_buf->skb;
1615 int k, last;
1616
1617 if (!skb) {
1618 j++;
1619 continue;
1620 }
1621
1622 tx_buf->skb = NULL;
1623
1624 if (tx_buf->is_push) {
1625 dev_kfree_skb(skb);
1626 j += 2;
1627 continue;
1628 }
1629
1630 dma_unmap_single(&pdev->dev,
1631 dma_unmap_addr(tx_buf, mapping),
1632 skb_headlen(skb),
1633 PCI_DMA_TODEVICE);
1634
1635 last = tx_buf->nr_frags;
1636 j += 2;
1637 for (k = 0; k < last; k++, j++) {
1638 int ring_idx = j & bp->tx_ring_mask;
1639 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1640
1641 tx_buf = &txr->tx_buf_ring[ring_idx];
1642 dma_unmap_page(
1643 &pdev->dev,
1644 dma_unmap_addr(tx_buf, mapping),
1645 skb_frag_size(frag), PCI_DMA_TODEVICE);
1646 }
1647 dev_kfree_skb(skb);
1648 }
1649 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1650 }
1651 }
1652
1653 static void bnxt_free_rx_skbs(struct bnxt *bp)
1654 {
1655 int i, max_idx, max_agg_idx;
1656 struct pci_dev *pdev = bp->pdev;
1657
1658 if (!bp->rx_ring)
1659 return;
1660
1661 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1662 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1663 for (i = 0; i < bp->rx_nr_rings; i++) {
1664 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1665 int j;
1666
1667 if (rxr->rx_tpa) {
1668 for (j = 0; j < MAX_TPA; j++) {
1669 struct bnxt_tpa_info *tpa_info =
1670 &rxr->rx_tpa[j];
1671 u8 *data = tpa_info->data;
1672
1673 if (!data)
1674 continue;
1675
1676 dma_unmap_single(
1677 &pdev->dev,
1678 dma_unmap_addr(tpa_info, mapping),
1679 bp->rx_buf_use_size,
1680 PCI_DMA_FROMDEVICE);
1681
1682 tpa_info->data = NULL;
1683
1684 kfree(data);
1685 }
1686 }
1687
1688 for (j = 0; j < max_idx; j++) {
1689 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1690 u8 *data = rx_buf->data;
1691
1692 if (!data)
1693 continue;
1694
1695 dma_unmap_single(&pdev->dev,
1696 dma_unmap_addr(rx_buf, mapping),
1697 bp->rx_buf_use_size,
1698 PCI_DMA_FROMDEVICE);
1699
1700 rx_buf->data = NULL;
1701
1702 kfree(data);
1703 }
1704
1705 for (j = 0; j < max_agg_idx; j++) {
1706 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1707 &rxr->rx_agg_ring[j];
1708 struct page *page = rx_agg_buf->page;
1709
1710 if (!page)
1711 continue;
1712
1713 dma_unmap_page(&pdev->dev,
1714 dma_unmap_addr(rx_agg_buf, mapping),
1715 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1716
1717 rx_agg_buf->page = NULL;
1718 __clear_bit(j, rxr->rx_agg_bmap);
1719
1720 __free_page(page);
1721 }
1722 if (rxr->rx_page) {
1723 __free_page(rxr->rx_page);
1724 rxr->rx_page = NULL;
1725 }
1726 }
1727 }
1728
1729 static void bnxt_free_skbs(struct bnxt *bp)
1730 {
1731 bnxt_free_tx_skbs(bp);
1732 bnxt_free_rx_skbs(bp);
1733 }
1734
1735 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1736 {
1737 struct pci_dev *pdev = bp->pdev;
1738 int i;
1739
1740 for (i = 0; i < ring->nr_pages; i++) {
1741 if (!ring->pg_arr[i])
1742 continue;
1743
1744 dma_free_coherent(&pdev->dev, ring->page_size,
1745 ring->pg_arr[i], ring->dma_arr[i]);
1746
1747 ring->pg_arr[i] = NULL;
1748 }
1749 if (ring->pg_tbl) {
1750 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1751 ring->pg_tbl, ring->pg_tbl_map);
1752 ring->pg_tbl = NULL;
1753 }
1754 if (ring->vmem_size && *ring->vmem) {
1755 vfree(*ring->vmem);
1756 *ring->vmem = NULL;
1757 }
1758 }
1759
1760 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1761 {
1762 int i;
1763 struct pci_dev *pdev = bp->pdev;
1764
1765 if (ring->nr_pages > 1) {
1766 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1767 ring->nr_pages * 8,
1768 &ring->pg_tbl_map,
1769 GFP_KERNEL);
1770 if (!ring->pg_tbl)
1771 return -ENOMEM;
1772 }
1773
1774 for (i = 0; i < ring->nr_pages; i++) {
1775 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1776 ring->page_size,
1777 &ring->dma_arr[i],
1778 GFP_KERNEL);
1779 if (!ring->pg_arr[i])
1780 return -ENOMEM;
1781
1782 if (ring->nr_pages > 1)
1783 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1784 }
1785
1786 if (ring->vmem_size) {
1787 *ring->vmem = vzalloc(ring->vmem_size);
1788 if (!(*ring->vmem))
1789 return -ENOMEM;
1790 }
1791 return 0;
1792 }
1793
1794 static void bnxt_free_rx_rings(struct bnxt *bp)
1795 {
1796 int i;
1797
1798 if (!bp->rx_ring)
1799 return;
1800
1801 for (i = 0; i < bp->rx_nr_rings; i++) {
1802 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1803 struct bnxt_ring_struct *ring;
1804
1805 kfree(rxr->rx_tpa);
1806 rxr->rx_tpa = NULL;
1807
1808 kfree(rxr->rx_agg_bmap);
1809 rxr->rx_agg_bmap = NULL;
1810
1811 ring = &rxr->rx_ring_struct;
1812 bnxt_free_ring(bp, ring);
1813
1814 ring = &rxr->rx_agg_ring_struct;
1815 bnxt_free_ring(bp, ring);
1816 }
1817 }
1818
1819 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1820 {
1821 int i, rc, agg_rings = 0, tpa_rings = 0;
1822
1823 if (!bp->rx_ring)
1824 return -ENOMEM;
1825
1826 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1827 agg_rings = 1;
1828
1829 if (bp->flags & BNXT_FLAG_TPA)
1830 tpa_rings = 1;
1831
1832 for (i = 0; i < bp->rx_nr_rings; i++) {
1833 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1834 struct bnxt_ring_struct *ring;
1835
1836 ring = &rxr->rx_ring_struct;
1837
1838 rc = bnxt_alloc_ring(bp, ring);
1839 if (rc)
1840 return rc;
1841
1842 if (agg_rings) {
1843 u16 mem_size;
1844
1845 ring = &rxr->rx_agg_ring_struct;
1846 rc = bnxt_alloc_ring(bp, ring);
1847 if (rc)
1848 return rc;
1849
1850 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1851 mem_size = rxr->rx_agg_bmap_size / 8;
1852 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1853 if (!rxr->rx_agg_bmap)
1854 return -ENOMEM;
1855
1856 if (tpa_rings) {
1857 rxr->rx_tpa = kcalloc(MAX_TPA,
1858 sizeof(struct bnxt_tpa_info),
1859 GFP_KERNEL);
1860 if (!rxr->rx_tpa)
1861 return -ENOMEM;
1862 }
1863 }
1864 }
1865 return 0;
1866 }
1867
1868 static void bnxt_free_tx_rings(struct bnxt *bp)
1869 {
1870 int i;
1871 struct pci_dev *pdev = bp->pdev;
1872
1873 if (!bp->tx_ring)
1874 return;
1875
1876 for (i = 0; i < bp->tx_nr_rings; i++) {
1877 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1878 struct bnxt_ring_struct *ring;
1879
1880 if (txr->tx_push) {
1881 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1882 txr->tx_push, txr->tx_push_mapping);
1883 txr->tx_push = NULL;
1884 }
1885
1886 ring = &txr->tx_ring_struct;
1887
1888 bnxt_free_ring(bp, ring);
1889 }
1890 }
1891
1892 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1893 {
1894 int i, j, rc;
1895 struct pci_dev *pdev = bp->pdev;
1896
1897 bp->tx_push_size = 0;
1898 if (bp->tx_push_thresh) {
1899 int push_size;
1900
1901 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1902 bp->tx_push_thresh);
1903
1904 if (push_size > 256) {
1905 push_size = 0;
1906 bp->tx_push_thresh = 0;
1907 }
1908
1909 bp->tx_push_size = push_size;
1910 }
1911
1912 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1913 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1914 struct bnxt_ring_struct *ring;
1915
1916 ring = &txr->tx_ring_struct;
1917
1918 rc = bnxt_alloc_ring(bp, ring);
1919 if (rc)
1920 return rc;
1921
1922 if (bp->tx_push_size) {
1923 dma_addr_t mapping;
1924
1925 /* One pre-allocated DMA buffer to backup
1926 * TX push operation
1927 */
1928 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1929 bp->tx_push_size,
1930 &txr->tx_push_mapping,
1931 GFP_KERNEL);
1932
1933 if (!txr->tx_push)
1934 return -ENOMEM;
1935
1936 mapping = txr->tx_push_mapping +
1937 sizeof(struct tx_push_bd);
1938 txr->data_mapping = cpu_to_le64(mapping);
1939
1940 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1941 }
1942 ring->queue_id = bp->q_info[j].queue_id;
1943 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1944 j++;
1945 }
1946 return 0;
1947 }
1948
1949 static void bnxt_free_cp_rings(struct bnxt *bp)
1950 {
1951 int i;
1952
1953 if (!bp->bnapi)
1954 return;
1955
1956 for (i = 0; i < bp->cp_nr_rings; i++) {
1957 struct bnxt_napi *bnapi = bp->bnapi[i];
1958 struct bnxt_cp_ring_info *cpr;
1959 struct bnxt_ring_struct *ring;
1960
1961 if (!bnapi)
1962 continue;
1963
1964 cpr = &bnapi->cp_ring;
1965 ring = &cpr->cp_ring_struct;
1966
1967 bnxt_free_ring(bp, ring);
1968 }
1969 }
1970
1971 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1972 {
1973 int i, rc;
1974
1975 for (i = 0; i < bp->cp_nr_rings; i++) {
1976 struct bnxt_napi *bnapi = bp->bnapi[i];
1977 struct bnxt_cp_ring_info *cpr;
1978 struct bnxt_ring_struct *ring;
1979
1980 if (!bnapi)
1981 continue;
1982
1983 cpr = &bnapi->cp_ring;
1984 ring = &cpr->cp_ring_struct;
1985
1986 rc = bnxt_alloc_ring(bp, ring);
1987 if (rc)
1988 return rc;
1989 }
1990 return 0;
1991 }
1992
1993 static void bnxt_init_ring_struct(struct bnxt *bp)
1994 {
1995 int i;
1996
1997 for (i = 0; i < bp->cp_nr_rings; i++) {
1998 struct bnxt_napi *bnapi = bp->bnapi[i];
1999 struct bnxt_cp_ring_info *cpr;
2000 struct bnxt_rx_ring_info *rxr;
2001 struct bnxt_tx_ring_info *txr;
2002 struct bnxt_ring_struct *ring;
2003
2004 if (!bnapi)
2005 continue;
2006
2007 cpr = &bnapi->cp_ring;
2008 ring = &cpr->cp_ring_struct;
2009 ring->nr_pages = bp->cp_nr_pages;
2010 ring->page_size = HW_CMPD_RING_SIZE;
2011 ring->pg_arr = (void **)cpr->cp_desc_ring;
2012 ring->dma_arr = cpr->cp_desc_mapping;
2013 ring->vmem_size = 0;
2014
2015 rxr = bnapi->rx_ring;
2016 if (!rxr)
2017 goto skip_rx;
2018
2019 ring = &rxr->rx_ring_struct;
2020 ring->nr_pages = bp->rx_nr_pages;
2021 ring->page_size = HW_RXBD_RING_SIZE;
2022 ring->pg_arr = (void **)rxr->rx_desc_ring;
2023 ring->dma_arr = rxr->rx_desc_mapping;
2024 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
2025 ring->vmem = (void **)&rxr->rx_buf_ring;
2026
2027 ring = &rxr->rx_agg_ring_struct;
2028 ring->nr_pages = bp->rx_agg_nr_pages;
2029 ring->page_size = HW_RXBD_RING_SIZE;
2030 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
2031 ring->dma_arr = rxr->rx_agg_desc_mapping;
2032 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
2033 ring->vmem = (void **)&rxr->rx_agg_ring;
2034
2035 skip_rx:
2036 txr = bnapi->tx_ring;
2037 if (!txr)
2038 continue;
2039
2040 ring = &txr->tx_ring_struct;
2041 ring->nr_pages = bp->tx_nr_pages;
2042 ring->page_size = HW_RXBD_RING_SIZE;
2043 ring->pg_arr = (void **)txr->tx_desc_ring;
2044 ring->dma_arr = txr->tx_desc_mapping;
2045 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2046 ring->vmem = (void **)&txr->tx_buf_ring;
2047 }
2048 }
2049
2050 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2051 {
2052 int i;
2053 u32 prod;
2054 struct rx_bd **rx_buf_ring;
2055
2056 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2057 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2058 int j;
2059 struct rx_bd *rxbd;
2060
2061 rxbd = rx_buf_ring[i];
2062 if (!rxbd)
2063 continue;
2064
2065 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2066 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2067 rxbd->rx_bd_opaque = prod;
2068 }
2069 }
2070 }
2071
2072 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2073 {
2074 struct net_device *dev = bp->dev;
2075 struct bnxt_rx_ring_info *rxr;
2076 struct bnxt_ring_struct *ring;
2077 u32 prod, type;
2078 int i;
2079
2080 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2081 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2082
2083 if (NET_IP_ALIGN == 2)
2084 type |= RX_BD_FLAGS_SOP;
2085
2086 rxr = &bp->rx_ring[ring_nr];
2087 ring = &rxr->rx_ring_struct;
2088 bnxt_init_rxbd_pages(ring, type);
2089
2090 prod = rxr->rx_prod;
2091 for (i = 0; i < bp->rx_ring_size; i++) {
2092 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2093 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2094 ring_nr, i, bp->rx_ring_size);
2095 break;
2096 }
2097 prod = NEXT_RX(prod);
2098 }
2099 rxr->rx_prod = prod;
2100 ring->fw_ring_id = INVALID_HW_RING_ID;
2101
2102 ring = &rxr->rx_agg_ring_struct;
2103 ring->fw_ring_id = INVALID_HW_RING_ID;
2104
2105 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2106 return 0;
2107
2108 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2109 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2110
2111 bnxt_init_rxbd_pages(ring, type);
2112
2113 prod = rxr->rx_agg_prod;
2114 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2115 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2116 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2117 ring_nr, i, bp->rx_ring_size);
2118 break;
2119 }
2120 prod = NEXT_RX_AGG(prod);
2121 }
2122 rxr->rx_agg_prod = prod;
2123
2124 if (bp->flags & BNXT_FLAG_TPA) {
2125 if (rxr->rx_tpa) {
2126 u8 *data;
2127 dma_addr_t mapping;
2128
2129 for (i = 0; i < MAX_TPA; i++) {
2130 data = __bnxt_alloc_rx_data(bp, &mapping,
2131 GFP_KERNEL);
2132 if (!data)
2133 return -ENOMEM;
2134
2135 rxr->rx_tpa[i].data = data;
2136 rxr->rx_tpa[i].mapping = mapping;
2137 }
2138 } else {
2139 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2140 return -ENOMEM;
2141 }
2142 }
2143
2144 return 0;
2145 }
2146
2147 static int bnxt_init_rx_rings(struct bnxt *bp)
2148 {
2149 int i, rc = 0;
2150
2151 for (i = 0; i < bp->rx_nr_rings; i++) {
2152 rc = bnxt_init_one_rx_ring(bp, i);
2153 if (rc)
2154 break;
2155 }
2156
2157 return rc;
2158 }
2159
2160 static int bnxt_init_tx_rings(struct bnxt *bp)
2161 {
2162 u16 i;
2163
2164 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2165 MAX_SKB_FRAGS + 1);
2166
2167 for (i = 0; i < bp->tx_nr_rings; i++) {
2168 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2169 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2170
2171 ring->fw_ring_id = INVALID_HW_RING_ID;
2172 }
2173
2174 return 0;
2175 }
2176
2177 static void bnxt_free_ring_grps(struct bnxt *bp)
2178 {
2179 kfree(bp->grp_info);
2180 bp->grp_info = NULL;
2181 }
2182
2183 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2184 {
2185 int i;
2186
2187 if (irq_re_init) {
2188 bp->grp_info = kcalloc(bp->cp_nr_rings,
2189 sizeof(struct bnxt_ring_grp_info),
2190 GFP_KERNEL);
2191 if (!bp->grp_info)
2192 return -ENOMEM;
2193 }
2194 for (i = 0; i < bp->cp_nr_rings; i++) {
2195 if (irq_re_init)
2196 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2197 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2198 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2199 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2200 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2201 }
2202 return 0;
2203 }
2204
2205 static void bnxt_free_vnics(struct bnxt *bp)
2206 {
2207 kfree(bp->vnic_info);
2208 bp->vnic_info = NULL;
2209 bp->nr_vnics = 0;
2210 }
2211
2212 static int bnxt_alloc_vnics(struct bnxt *bp)
2213 {
2214 int num_vnics = 1;
2215
2216 #ifdef CONFIG_RFS_ACCEL
2217 if (bp->flags & BNXT_FLAG_RFS)
2218 num_vnics += bp->rx_nr_rings;
2219 #endif
2220
2221 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2222 GFP_KERNEL);
2223 if (!bp->vnic_info)
2224 return -ENOMEM;
2225
2226 bp->nr_vnics = num_vnics;
2227 return 0;
2228 }
2229
2230 static void bnxt_init_vnics(struct bnxt *bp)
2231 {
2232 int i;
2233
2234 for (i = 0; i < bp->nr_vnics; i++) {
2235 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2236
2237 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2238 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2239 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2240
2241 if (bp->vnic_info[i].rss_hash_key) {
2242 if (i == 0)
2243 prandom_bytes(vnic->rss_hash_key,
2244 HW_HASH_KEY_SIZE);
2245 else
2246 memcpy(vnic->rss_hash_key,
2247 bp->vnic_info[0].rss_hash_key,
2248 HW_HASH_KEY_SIZE);
2249 }
2250 }
2251 }
2252
2253 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2254 {
2255 int pages;
2256
2257 pages = ring_size / desc_per_pg;
2258
2259 if (!pages)
2260 return 1;
2261
2262 pages++;
2263
2264 while (pages & (pages - 1))
2265 pages++;
2266
2267 return pages;
2268 }
2269
2270 static void bnxt_set_tpa_flags(struct bnxt *bp)
2271 {
2272 bp->flags &= ~BNXT_FLAG_TPA;
2273 if (bp->dev->features & NETIF_F_LRO)
2274 bp->flags |= BNXT_FLAG_LRO;
2275 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2276 bp->flags |= BNXT_FLAG_GRO;
2277 }
2278
2279 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2280 * be set on entry.
2281 */
2282 void bnxt_set_ring_params(struct bnxt *bp)
2283 {
2284 u32 ring_size, rx_size, rx_space;
2285 u32 agg_factor = 0, agg_ring_size = 0;
2286
2287 /* 8 for CRC and VLAN */
2288 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2289
2290 rx_space = rx_size + NET_SKB_PAD +
2291 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2292
2293 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2294 ring_size = bp->rx_ring_size;
2295 bp->rx_agg_ring_size = 0;
2296 bp->rx_agg_nr_pages = 0;
2297
2298 if (bp->flags & BNXT_FLAG_TPA)
2299 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2300
2301 bp->flags &= ~BNXT_FLAG_JUMBO;
2302 if (rx_space > PAGE_SIZE) {
2303 u32 jumbo_factor;
2304
2305 bp->flags |= BNXT_FLAG_JUMBO;
2306 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2307 if (jumbo_factor > agg_factor)
2308 agg_factor = jumbo_factor;
2309 }
2310 agg_ring_size = ring_size * agg_factor;
2311
2312 if (agg_ring_size) {
2313 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2314 RX_DESC_CNT);
2315 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2316 u32 tmp = agg_ring_size;
2317
2318 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2319 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2320 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2321 tmp, agg_ring_size);
2322 }
2323 bp->rx_agg_ring_size = agg_ring_size;
2324 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2325 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2326 rx_space = rx_size + NET_SKB_PAD +
2327 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2328 }
2329
2330 bp->rx_buf_use_size = rx_size;
2331 bp->rx_buf_size = rx_space;
2332
2333 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2334 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2335
2336 ring_size = bp->tx_ring_size;
2337 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2338 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2339
2340 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2341 bp->cp_ring_size = ring_size;
2342
2343 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2344 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2345 bp->cp_nr_pages = MAX_CP_PAGES;
2346 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2347 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2348 ring_size, bp->cp_ring_size);
2349 }
2350 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2351 bp->cp_ring_mask = bp->cp_bit - 1;
2352 }
2353
2354 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2355 {
2356 int i;
2357 struct bnxt_vnic_info *vnic;
2358 struct pci_dev *pdev = bp->pdev;
2359
2360 if (!bp->vnic_info)
2361 return;
2362
2363 for (i = 0; i < bp->nr_vnics; i++) {
2364 vnic = &bp->vnic_info[i];
2365
2366 kfree(vnic->fw_grp_ids);
2367 vnic->fw_grp_ids = NULL;
2368
2369 kfree(vnic->uc_list);
2370 vnic->uc_list = NULL;
2371
2372 if (vnic->mc_list) {
2373 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2374 vnic->mc_list, vnic->mc_list_mapping);
2375 vnic->mc_list = NULL;
2376 }
2377
2378 if (vnic->rss_table) {
2379 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2380 vnic->rss_table,
2381 vnic->rss_table_dma_addr);
2382 vnic->rss_table = NULL;
2383 }
2384
2385 vnic->rss_hash_key = NULL;
2386 vnic->flags = 0;
2387 }
2388 }
2389
2390 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2391 {
2392 int i, rc = 0, size;
2393 struct bnxt_vnic_info *vnic;
2394 struct pci_dev *pdev = bp->pdev;
2395 int max_rings;
2396
2397 for (i = 0; i < bp->nr_vnics; i++) {
2398 vnic = &bp->vnic_info[i];
2399
2400 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2401 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2402
2403 if (mem_size > 0) {
2404 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2405 if (!vnic->uc_list) {
2406 rc = -ENOMEM;
2407 goto out;
2408 }
2409 }
2410 }
2411
2412 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2413 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2414 vnic->mc_list =
2415 dma_alloc_coherent(&pdev->dev,
2416 vnic->mc_list_size,
2417 &vnic->mc_list_mapping,
2418 GFP_KERNEL);
2419 if (!vnic->mc_list) {
2420 rc = -ENOMEM;
2421 goto out;
2422 }
2423 }
2424
2425 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2426 max_rings = bp->rx_nr_rings;
2427 else
2428 max_rings = 1;
2429
2430 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2431 if (!vnic->fw_grp_ids) {
2432 rc = -ENOMEM;
2433 goto out;
2434 }
2435
2436 /* Allocate rss table and hash key */
2437 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2438 &vnic->rss_table_dma_addr,
2439 GFP_KERNEL);
2440 if (!vnic->rss_table) {
2441 rc = -ENOMEM;
2442 goto out;
2443 }
2444
2445 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2446
2447 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2448 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2449 }
2450 return 0;
2451
2452 out:
2453 return rc;
2454 }
2455
2456 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2457 {
2458 struct pci_dev *pdev = bp->pdev;
2459
2460 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2461 bp->hwrm_cmd_resp_dma_addr);
2462
2463 bp->hwrm_cmd_resp_addr = NULL;
2464 if (bp->hwrm_dbg_resp_addr) {
2465 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2466 bp->hwrm_dbg_resp_addr,
2467 bp->hwrm_dbg_resp_dma_addr);
2468
2469 bp->hwrm_dbg_resp_addr = NULL;
2470 }
2471 }
2472
2473 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2474 {
2475 struct pci_dev *pdev = bp->pdev;
2476
2477 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2478 &bp->hwrm_cmd_resp_dma_addr,
2479 GFP_KERNEL);
2480 if (!bp->hwrm_cmd_resp_addr)
2481 return -ENOMEM;
2482 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2483 HWRM_DBG_REG_BUF_SIZE,
2484 &bp->hwrm_dbg_resp_dma_addr,
2485 GFP_KERNEL);
2486 if (!bp->hwrm_dbg_resp_addr)
2487 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2488
2489 return 0;
2490 }
2491
2492 static void bnxt_free_stats(struct bnxt *bp)
2493 {
2494 u32 size, i;
2495 struct pci_dev *pdev = bp->pdev;
2496
2497 if (bp->hw_rx_port_stats) {
2498 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2499 bp->hw_rx_port_stats,
2500 bp->hw_rx_port_stats_map);
2501 bp->hw_rx_port_stats = NULL;
2502 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2503 }
2504
2505 if (!bp->bnapi)
2506 return;
2507
2508 size = sizeof(struct ctx_hw_stats);
2509
2510 for (i = 0; i < bp->cp_nr_rings; i++) {
2511 struct bnxt_napi *bnapi = bp->bnapi[i];
2512 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2513
2514 if (cpr->hw_stats) {
2515 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2516 cpr->hw_stats_map);
2517 cpr->hw_stats = NULL;
2518 }
2519 }
2520 }
2521
2522 static int bnxt_alloc_stats(struct bnxt *bp)
2523 {
2524 u32 size, i;
2525 struct pci_dev *pdev = bp->pdev;
2526
2527 size = sizeof(struct ctx_hw_stats);
2528
2529 for (i = 0; i < bp->cp_nr_rings; i++) {
2530 struct bnxt_napi *bnapi = bp->bnapi[i];
2531 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2532
2533 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2534 &cpr->hw_stats_map,
2535 GFP_KERNEL);
2536 if (!cpr->hw_stats)
2537 return -ENOMEM;
2538
2539 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2540 }
2541
2542 if (BNXT_PF(bp)) {
2543 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2544 sizeof(struct tx_port_stats) + 1024;
2545
2546 bp->hw_rx_port_stats =
2547 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2548 &bp->hw_rx_port_stats_map,
2549 GFP_KERNEL);
2550 if (!bp->hw_rx_port_stats)
2551 return -ENOMEM;
2552
2553 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2554 512;
2555 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2556 sizeof(struct rx_port_stats) + 512;
2557 bp->flags |= BNXT_FLAG_PORT_STATS;
2558 }
2559 return 0;
2560 }
2561
2562 static void bnxt_clear_ring_indices(struct bnxt *bp)
2563 {
2564 int i;
2565
2566 if (!bp->bnapi)
2567 return;
2568
2569 for (i = 0; i < bp->cp_nr_rings; i++) {
2570 struct bnxt_napi *bnapi = bp->bnapi[i];
2571 struct bnxt_cp_ring_info *cpr;
2572 struct bnxt_rx_ring_info *rxr;
2573 struct bnxt_tx_ring_info *txr;
2574
2575 if (!bnapi)
2576 continue;
2577
2578 cpr = &bnapi->cp_ring;
2579 cpr->cp_raw_cons = 0;
2580
2581 txr = bnapi->tx_ring;
2582 if (txr) {
2583 txr->tx_prod = 0;
2584 txr->tx_cons = 0;
2585 }
2586
2587 rxr = bnapi->rx_ring;
2588 if (rxr) {
2589 rxr->rx_prod = 0;
2590 rxr->rx_agg_prod = 0;
2591 rxr->rx_sw_agg_prod = 0;
2592 rxr->rx_next_cons = 0;
2593 }
2594 }
2595 }
2596
2597 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2598 {
2599 #ifdef CONFIG_RFS_ACCEL
2600 int i;
2601
2602 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2603 * safe to delete the hash table.
2604 */
2605 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2606 struct hlist_head *head;
2607 struct hlist_node *tmp;
2608 struct bnxt_ntuple_filter *fltr;
2609
2610 head = &bp->ntp_fltr_hash_tbl[i];
2611 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2612 hlist_del(&fltr->hash);
2613 kfree(fltr);
2614 }
2615 }
2616 if (irq_reinit) {
2617 kfree(bp->ntp_fltr_bmap);
2618 bp->ntp_fltr_bmap = NULL;
2619 }
2620 bp->ntp_fltr_count = 0;
2621 #endif
2622 }
2623
2624 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2625 {
2626 #ifdef CONFIG_RFS_ACCEL
2627 int i, rc = 0;
2628
2629 if (!(bp->flags & BNXT_FLAG_RFS))
2630 return 0;
2631
2632 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2633 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2634
2635 bp->ntp_fltr_count = 0;
2636 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2637 GFP_KERNEL);
2638
2639 if (!bp->ntp_fltr_bmap)
2640 rc = -ENOMEM;
2641
2642 return rc;
2643 #else
2644 return 0;
2645 #endif
2646 }
2647
2648 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2649 {
2650 bnxt_free_vnic_attributes(bp);
2651 bnxt_free_tx_rings(bp);
2652 bnxt_free_rx_rings(bp);
2653 bnxt_free_cp_rings(bp);
2654 bnxt_free_ntp_fltrs(bp, irq_re_init);
2655 if (irq_re_init) {
2656 bnxt_free_stats(bp);
2657 bnxt_free_ring_grps(bp);
2658 bnxt_free_vnics(bp);
2659 kfree(bp->tx_ring);
2660 bp->tx_ring = NULL;
2661 kfree(bp->rx_ring);
2662 bp->rx_ring = NULL;
2663 kfree(bp->bnapi);
2664 bp->bnapi = NULL;
2665 } else {
2666 bnxt_clear_ring_indices(bp);
2667 }
2668 }
2669
2670 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2671 {
2672 int i, j, rc, size, arr_size;
2673 void *bnapi;
2674
2675 if (irq_re_init) {
2676 /* Allocate bnapi mem pointer array and mem block for
2677 * all queues
2678 */
2679 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2680 bp->cp_nr_rings);
2681 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2682 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2683 if (!bnapi)
2684 return -ENOMEM;
2685
2686 bp->bnapi = bnapi;
2687 bnapi += arr_size;
2688 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2689 bp->bnapi[i] = bnapi;
2690 bp->bnapi[i]->index = i;
2691 bp->bnapi[i]->bp = bp;
2692 }
2693
2694 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2695 sizeof(struct bnxt_rx_ring_info),
2696 GFP_KERNEL);
2697 if (!bp->rx_ring)
2698 return -ENOMEM;
2699
2700 for (i = 0; i < bp->rx_nr_rings; i++) {
2701 bp->rx_ring[i].bnapi = bp->bnapi[i];
2702 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2703 }
2704
2705 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2706 sizeof(struct bnxt_tx_ring_info),
2707 GFP_KERNEL);
2708 if (!bp->tx_ring)
2709 return -ENOMEM;
2710
2711 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2712 j = 0;
2713 else
2714 j = bp->rx_nr_rings;
2715
2716 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2717 bp->tx_ring[i].bnapi = bp->bnapi[j];
2718 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2719 }
2720
2721 rc = bnxt_alloc_stats(bp);
2722 if (rc)
2723 goto alloc_mem_err;
2724
2725 rc = bnxt_alloc_ntp_fltrs(bp);
2726 if (rc)
2727 goto alloc_mem_err;
2728
2729 rc = bnxt_alloc_vnics(bp);
2730 if (rc)
2731 goto alloc_mem_err;
2732 }
2733
2734 bnxt_init_ring_struct(bp);
2735
2736 rc = bnxt_alloc_rx_rings(bp);
2737 if (rc)
2738 goto alloc_mem_err;
2739
2740 rc = bnxt_alloc_tx_rings(bp);
2741 if (rc)
2742 goto alloc_mem_err;
2743
2744 rc = bnxt_alloc_cp_rings(bp);
2745 if (rc)
2746 goto alloc_mem_err;
2747
2748 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2749 BNXT_VNIC_UCAST_FLAG;
2750 rc = bnxt_alloc_vnic_attributes(bp);
2751 if (rc)
2752 goto alloc_mem_err;
2753 return 0;
2754
2755 alloc_mem_err:
2756 bnxt_free_mem(bp, true);
2757 return rc;
2758 }
2759
2760 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2761 u16 cmpl_ring, u16 target_id)
2762 {
2763 struct input *req = request;
2764
2765 req->req_type = cpu_to_le16(req_type);
2766 req->cmpl_ring = cpu_to_le16(cmpl_ring);
2767 req->target_id = cpu_to_le16(target_id);
2768 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2769 }
2770
2771 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2772 int timeout, bool silent)
2773 {
2774 int i, intr_process, rc, tmo_count;
2775 struct input *req = msg;
2776 u32 *data = msg;
2777 __le32 *resp_len, *valid;
2778 u16 cp_ring_id, len = 0;
2779 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2780
2781 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2782 memset(resp, 0, PAGE_SIZE);
2783 cp_ring_id = le16_to_cpu(req->cmpl_ring);
2784 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2785
2786 /* Write request msg to hwrm channel */
2787 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2788
2789 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2790 writel(0, bp->bar0 + i);
2791
2792 /* currently supports only one outstanding message */
2793 if (intr_process)
2794 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2795
2796 /* Ring channel doorbell */
2797 writel(1, bp->bar0 + 0x100);
2798
2799 if (!timeout)
2800 timeout = DFLT_HWRM_CMD_TIMEOUT;
2801
2802 i = 0;
2803 tmo_count = timeout * 40;
2804 if (intr_process) {
2805 /* Wait until hwrm response cmpl interrupt is processed */
2806 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2807 i++ < tmo_count) {
2808 usleep_range(25, 40);
2809 }
2810
2811 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2812 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2813 le16_to_cpu(req->req_type));
2814 return -1;
2815 }
2816 } else {
2817 /* Check if response len is updated */
2818 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2819 for (i = 0; i < tmo_count; i++) {
2820 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2821 HWRM_RESP_LEN_SFT;
2822 if (len)
2823 break;
2824 usleep_range(25, 40);
2825 }
2826
2827 if (i >= tmo_count) {
2828 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2829 timeout, le16_to_cpu(req->req_type),
2830 le16_to_cpu(req->seq_id), len);
2831 return -1;
2832 }
2833
2834 /* Last word of resp contains valid bit */
2835 valid = bp->hwrm_cmd_resp_addr + len - 4;
2836 for (i = 0; i < 5; i++) {
2837 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2838 break;
2839 udelay(1);
2840 }
2841
2842 if (i >= 5) {
2843 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2844 timeout, le16_to_cpu(req->req_type),
2845 le16_to_cpu(req->seq_id), len, *valid);
2846 return -1;
2847 }
2848 }
2849
2850 rc = le16_to_cpu(resp->error_code);
2851 if (rc && !silent)
2852 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2853 le16_to_cpu(resp->req_type),
2854 le16_to_cpu(resp->seq_id), rc);
2855 return rc;
2856 }
2857
2858 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2859 {
2860 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2861 }
2862
2863 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2864 {
2865 int rc;
2866
2867 mutex_lock(&bp->hwrm_cmd_lock);
2868 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2869 mutex_unlock(&bp->hwrm_cmd_lock);
2870 return rc;
2871 }
2872
2873 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2874 int timeout)
2875 {
2876 int rc;
2877
2878 mutex_lock(&bp->hwrm_cmd_lock);
2879 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2880 mutex_unlock(&bp->hwrm_cmd_lock);
2881 return rc;
2882 }
2883
2884 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2885 {
2886 struct hwrm_func_drv_rgtr_input req = {0};
2887 int i;
2888 DECLARE_BITMAP(async_events_bmap, 256);
2889 u32 *events = (u32 *)async_events_bmap;
2890
2891 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2892
2893 req.enables =
2894 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2895 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2896 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2897
2898 memset(async_events_bmap, 0, sizeof(async_events_bmap));
2899 for (i = 0; i < ARRAY_SIZE(bnxt_async_events_arr); i++)
2900 __set_bit(bnxt_async_events_arr[i], async_events_bmap);
2901
2902 for (i = 0; i < 8; i++)
2903 req.async_event_fwd[i] |= cpu_to_le32(events[i]);
2904
2905 req.os_type = cpu_to_le16(FUNC_DRV_RGTR_REQ_OS_TYPE_LINUX);
2906 req.ver_maj = DRV_VER_MAJ;
2907 req.ver_min = DRV_VER_MIN;
2908 req.ver_upd = DRV_VER_UPD;
2909
2910 if (BNXT_PF(bp)) {
2911 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2912 u32 *data = (u32 *)vf_req_snif_bmap;
2913
2914 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2915 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2916 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2917
2918 for (i = 0; i < 8; i++)
2919 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2920
2921 req.enables |=
2922 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2923 }
2924
2925 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2926 }
2927
2928 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2929 {
2930 struct hwrm_func_drv_unrgtr_input req = {0};
2931
2932 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2933 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2934 }
2935
2936 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2937 {
2938 u32 rc = 0;
2939 struct hwrm_tunnel_dst_port_free_input req = {0};
2940
2941 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2942 req.tunnel_type = tunnel_type;
2943
2944 switch (tunnel_type) {
2945 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2946 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2947 break;
2948 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2949 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2950 break;
2951 default:
2952 break;
2953 }
2954
2955 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2956 if (rc)
2957 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2958 rc);
2959 return rc;
2960 }
2961
2962 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2963 u8 tunnel_type)
2964 {
2965 u32 rc = 0;
2966 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2967 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2968
2969 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2970
2971 req.tunnel_type = tunnel_type;
2972 req.tunnel_dst_port_val = port;
2973
2974 mutex_lock(&bp->hwrm_cmd_lock);
2975 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2976 if (rc) {
2977 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2978 rc);
2979 goto err_out;
2980 }
2981
2982 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2983 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2984
2985 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2986 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2987 err_out:
2988 mutex_unlock(&bp->hwrm_cmd_lock);
2989 return rc;
2990 }
2991
2992 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2993 {
2994 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2995 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2996
2997 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2998 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2999
3000 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
3001 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
3002 req.mask = cpu_to_le32(vnic->rx_mask);
3003 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3004 }
3005
3006 #ifdef CONFIG_RFS_ACCEL
3007 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
3008 struct bnxt_ntuple_filter *fltr)
3009 {
3010 struct hwrm_cfa_ntuple_filter_free_input req = {0};
3011
3012 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
3013 req.ntuple_filter_id = fltr->filter_id;
3014 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3015 }
3016
3017 #define BNXT_NTP_FLTR_FLAGS \
3018 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
3019 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
3020 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
3021 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
3022 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
3023 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
3024 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
3025 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
3026 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
3027 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
3028 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
3029 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
3030 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
3031 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
3032
3033 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
3034 struct bnxt_ntuple_filter *fltr)
3035 {
3036 int rc = 0;
3037 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
3038 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
3039 bp->hwrm_cmd_resp_addr;
3040 struct flow_keys *keys = &fltr->fkeys;
3041 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
3042
3043 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
3044 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
3045
3046 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
3047
3048 req.ethertype = htons(ETH_P_IP);
3049 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3050 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3051 req.ip_protocol = keys->basic.ip_proto;
3052
3053 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3054 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3055 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3056 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3057
3058 req.src_port = keys->ports.src;
3059 req.src_port_mask = cpu_to_be16(0xffff);
3060 req.dst_port = keys->ports.dst;
3061 req.dst_port_mask = cpu_to_be16(0xffff);
3062
3063 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3064 mutex_lock(&bp->hwrm_cmd_lock);
3065 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3066 if (!rc)
3067 fltr->filter_id = resp->ntuple_filter_id;
3068 mutex_unlock(&bp->hwrm_cmd_lock);
3069 return rc;
3070 }
3071 #endif
3072
3073 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3074 u8 *mac_addr)
3075 {
3076 u32 rc = 0;
3077 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3078 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3079
3080 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3081 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
3082 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3083 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3084 req.enables =
3085 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3086 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3087 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3088 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3089 req.l2_addr_mask[0] = 0xff;
3090 req.l2_addr_mask[1] = 0xff;
3091 req.l2_addr_mask[2] = 0xff;
3092 req.l2_addr_mask[3] = 0xff;
3093 req.l2_addr_mask[4] = 0xff;
3094 req.l2_addr_mask[5] = 0xff;
3095
3096 mutex_lock(&bp->hwrm_cmd_lock);
3097 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3098 if (!rc)
3099 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3100 resp->l2_filter_id;
3101 mutex_unlock(&bp->hwrm_cmd_lock);
3102 return rc;
3103 }
3104
3105 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3106 {
3107 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3108 int rc = 0;
3109
3110 /* Any associated ntuple filters will also be cleared by firmware. */
3111 mutex_lock(&bp->hwrm_cmd_lock);
3112 for (i = 0; i < num_of_vnics; i++) {
3113 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3114
3115 for (j = 0; j < vnic->uc_filter_count; j++) {
3116 struct hwrm_cfa_l2_filter_free_input req = {0};
3117
3118 bnxt_hwrm_cmd_hdr_init(bp, &req,
3119 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3120
3121 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3122
3123 rc = _hwrm_send_message(bp, &req, sizeof(req),
3124 HWRM_CMD_TIMEOUT);
3125 }
3126 vnic->uc_filter_count = 0;
3127 }
3128 mutex_unlock(&bp->hwrm_cmd_lock);
3129
3130 return rc;
3131 }
3132
3133 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3134 {
3135 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3136 struct hwrm_vnic_tpa_cfg_input req = {0};
3137
3138 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3139
3140 if (tpa_flags) {
3141 u16 mss = bp->dev->mtu - 40;
3142 u32 nsegs, n, segs = 0, flags;
3143
3144 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3145 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3146 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3147 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3148 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3149 if (tpa_flags & BNXT_FLAG_GRO)
3150 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3151
3152 req.flags = cpu_to_le32(flags);
3153
3154 req.enables =
3155 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3156 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3157 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3158
3159 /* Number of segs are log2 units, and first packet is not
3160 * included as part of this units.
3161 */
3162 if (mss <= BNXT_RX_PAGE_SIZE) {
3163 n = BNXT_RX_PAGE_SIZE / mss;
3164 nsegs = (MAX_SKB_FRAGS - 1) * n;
3165 } else {
3166 n = mss / BNXT_RX_PAGE_SIZE;
3167 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3168 n++;
3169 nsegs = (MAX_SKB_FRAGS - n) / n;
3170 }
3171
3172 segs = ilog2(nsegs);
3173 req.max_agg_segs = cpu_to_le16(segs);
3174 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3175
3176 req.min_agg_len = cpu_to_le32(512);
3177 }
3178 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3179
3180 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3181 }
3182
3183 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3184 {
3185 u32 i, j, max_rings;
3186 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3187 struct hwrm_vnic_rss_cfg_input req = {0};
3188
3189 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3190 return 0;
3191
3192 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3193 if (set_rss) {
3194 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3195 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3196 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3197 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3198
3199 req.hash_type = cpu_to_le32(vnic->hash_type);
3200
3201 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3202 max_rings = bp->rx_nr_rings;
3203 else
3204 max_rings = 1;
3205
3206 /* Fill the RSS indirection table with ring group ids */
3207 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3208 if (j == max_rings)
3209 j = 0;
3210 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3211 }
3212
3213 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3214 req.hash_key_tbl_addr =
3215 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3216 }
3217 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3218 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3219 }
3220
3221 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3222 {
3223 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3224 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3225
3226 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3227 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3228 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3229 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3230 req.enables =
3231 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3232 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3233 /* thresholds not implemented in firmware yet */
3234 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3235 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3236 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3237 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3238 }
3239
3240 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3241 {
3242 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3243
3244 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3245 req.rss_cos_lb_ctx_id =
3246 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3247
3248 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3249 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3250 }
3251
3252 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3253 {
3254 int i;
3255
3256 for (i = 0; i < bp->nr_vnics; i++) {
3257 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3258
3259 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3260 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3261 }
3262 bp->rsscos_nr_ctxs = 0;
3263 }
3264
3265 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3266 {
3267 int rc;
3268 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3269 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3270 bp->hwrm_cmd_resp_addr;
3271
3272 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3273 -1);
3274
3275 mutex_lock(&bp->hwrm_cmd_lock);
3276 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3277 if (!rc)
3278 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3279 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3280 mutex_unlock(&bp->hwrm_cmd_lock);
3281
3282 return rc;
3283 }
3284
3285 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3286 {
3287 unsigned int ring = 0, grp_idx;
3288 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3289 struct hwrm_vnic_cfg_input req = {0};
3290
3291 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3292 /* Only RSS support for now TBD: COS & LB */
3293 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3294 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3295 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3296 req.cos_rule = cpu_to_le16(0xffff);
3297 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3298 ring = 0;
3299 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3300 ring = vnic_id - 1;
3301
3302 grp_idx = bp->rx_ring[ring].bnapi->index;
3303 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3304 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3305
3306 req.lb_rule = cpu_to_le16(0xffff);
3307 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3308 VLAN_HLEN);
3309
3310 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3311 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3312
3313 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3314 }
3315
3316 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3317 {
3318 u32 rc = 0;
3319
3320 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3321 struct hwrm_vnic_free_input req = {0};
3322
3323 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3324 req.vnic_id =
3325 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3326
3327 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3328 if (rc)
3329 return rc;
3330 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3331 }
3332 return rc;
3333 }
3334
3335 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3336 {
3337 u16 i;
3338
3339 for (i = 0; i < bp->nr_vnics; i++)
3340 bnxt_hwrm_vnic_free_one(bp, i);
3341 }
3342
3343 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3344 unsigned int start_rx_ring_idx,
3345 unsigned int nr_rings)
3346 {
3347 int rc = 0;
3348 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3349 struct hwrm_vnic_alloc_input req = {0};
3350 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3351
3352 /* map ring groups to this vnic */
3353 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3354 grp_idx = bp->rx_ring[i].bnapi->index;
3355 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3356 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3357 j, nr_rings);
3358 break;
3359 }
3360 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3361 bp->grp_info[grp_idx].fw_grp_id;
3362 }
3363
3364 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3365 if (vnic_id == 0)
3366 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3367
3368 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3369
3370 mutex_lock(&bp->hwrm_cmd_lock);
3371 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3372 if (!rc)
3373 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3374 mutex_unlock(&bp->hwrm_cmd_lock);
3375 return rc;
3376 }
3377
3378 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3379 {
3380 u16 i;
3381 u32 rc = 0;
3382
3383 mutex_lock(&bp->hwrm_cmd_lock);
3384 for (i = 0; i < bp->rx_nr_rings; i++) {
3385 struct hwrm_ring_grp_alloc_input req = {0};
3386 struct hwrm_ring_grp_alloc_output *resp =
3387 bp->hwrm_cmd_resp_addr;
3388 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3389
3390 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3391
3392 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3393 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3394 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3395 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3396
3397 rc = _hwrm_send_message(bp, &req, sizeof(req),
3398 HWRM_CMD_TIMEOUT);
3399 if (rc)
3400 break;
3401
3402 bp->grp_info[grp_idx].fw_grp_id =
3403 le32_to_cpu(resp->ring_group_id);
3404 }
3405 mutex_unlock(&bp->hwrm_cmd_lock);
3406 return rc;
3407 }
3408
3409 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3410 {
3411 u16 i;
3412 u32 rc = 0;
3413 struct hwrm_ring_grp_free_input req = {0};
3414
3415 if (!bp->grp_info)
3416 return 0;
3417
3418 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3419
3420 mutex_lock(&bp->hwrm_cmd_lock);
3421 for (i = 0; i < bp->cp_nr_rings; i++) {
3422 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3423 continue;
3424 req.ring_group_id =
3425 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3426
3427 rc = _hwrm_send_message(bp, &req, sizeof(req),
3428 HWRM_CMD_TIMEOUT);
3429 if (rc)
3430 break;
3431 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3432 }
3433 mutex_unlock(&bp->hwrm_cmd_lock);
3434 return rc;
3435 }
3436
3437 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3438 struct bnxt_ring_struct *ring,
3439 u32 ring_type, u32 map_index,
3440 u32 stats_ctx_id)
3441 {
3442 int rc = 0, err = 0;
3443 struct hwrm_ring_alloc_input req = {0};
3444 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3445 u16 ring_id;
3446
3447 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3448
3449 req.enables = 0;
3450 if (ring->nr_pages > 1) {
3451 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3452 /* Page size is in log2 units */
3453 req.page_size = BNXT_PAGE_SHIFT;
3454 req.page_tbl_depth = 1;
3455 } else {
3456 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3457 }
3458 req.fbo = 0;
3459 /* Association of ring index with doorbell index and MSIX number */
3460 req.logical_id = cpu_to_le16(map_index);
3461
3462 switch (ring_type) {
3463 case HWRM_RING_ALLOC_TX:
3464 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3465 /* Association of transmit ring with completion ring */
3466 req.cmpl_ring_id =
3467 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3468 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3469 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3470 req.queue_id = cpu_to_le16(ring->queue_id);
3471 break;
3472 case HWRM_RING_ALLOC_RX:
3473 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3474 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3475 break;
3476 case HWRM_RING_ALLOC_AGG:
3477 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3478 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3479 break;
3480 case HWRM_RING_ALLOC_CMPL:
3481 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3482 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3483 if (bp->flags & BNXT_FLAG_USING_MSIX)
3484 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3485 break;
3486 default:
3487 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3488 ring_type);
3489 return -1;
3490 }
3491
3492 mutex_lock(&bp->hwrm_cmd_lock);
3493 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3494 err = le16_to_cpu(resp->error_code);
3495 ring_id = le16_to_cpu(resp->ring_id);
3496 mutex_unlock(&bp->hwrm_cmd_lock);
3497
3498 if (rc || err) {
3499 switch (ring_type) {
3500 case RING_FREE_REQ_RING_TYPE_CMPL:
3501 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3502 rc, err);
3503 return -1;
3504
3505 case RING_FREE_REQ_RING_TYPE_RX:
3506 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3507 rc, err);
3508 return -1;
3509
3510 case RING_FREE_REQ_RING_TYPE_TX:
3511 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3512 rc, err);
3513 return -1;
3514
3515 default:
3516 netdev_err(bp->dev, "Invalid ring\n");
3517 return -1;
3518 }
3519 }
3520 ring->fw_ring_id = ring_id;
3521 return rc;
3522 }
3523
3524 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3525 {
3526 int i, rc = 0;
3527
3528 for (i = 0; i < bp->cp_nr_rings; i++) {
3529 struct bnxt_napi *bnapi = bp->bnapi[i];
3530 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3531 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3532
3533 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3534 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3535 INVALID_STATS_CTX_ID);
3536 if (rc)
3537 goto err_out;
3538 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3539 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3540 }
3541
3542 for (i = 0; i < bp->tx_nr_rings; i++) {
3543 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3544 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3545 u32 map_idx = txr->bnapi->index;
3546 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3547
3548 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3549 map_idx, fw_stats_ctx);
3550 if (rc)
3551 goto err_out;
3552 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3553 }
3554
3555 for (i = 0; i < bp->rx_nr_rings; i++) {
3556 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3557 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3558 u32 map_idx = rxr->bnapi->index;
3559
3560 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3561 map_idx, INVALID_STATS_CTX_ID);
3562 if (rc)
3563 goto err_out;
3564 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3565 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3566 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3567 }
3568
3569 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3570 for (i = 0; i < bp->rx_nr_rings; i++) {
3571 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3572 struct bnxt_ring_struct *ring =
3573 &rxr->rx_agg_ring_struct;
3574 u32 grp_idx = rxr->bnapi->index;
3575 u32 map_idx = grp_idx + bp->rx_nr_rings;
3576
3577 rc = hwrm_ring_alloc_send_msg(bp, ring,
3578 HWRM_RING_ALLOC_AGG,
3579 map_idx,
3580 INVALID_STATS_CTX_ID);
3581 if (rc)
3582 goto err_out;
3583
3584 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3585 writel(DB_KEY_RX | rxr->rx_agg_prod,
3586 rxr->rx_agg_doorbell);
3587 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3588 }
3589 }
3590 err_out:
3591 return rc;
3592 }
3593
3594 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3595 struct bnxt_ring_struct *ring,
3596 u32 ring_type, int cmpl_ring_id)
3597 {
3598 int rc;
3599 struct hwrm_ring_free_input req = {0};
3600 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3601 u16 error_code;
3602
3603 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3604 req.ring_type = ring_type;
3605 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3606
3607 mutex_lock(&bp->hwrm_cmd_lock);
3608 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3609 error_code = le16_to_cpu(resp->error_code);
3610 mutex_unlock(&bp->hwrm_cmd_lock);
3611
3612 if (rc || error_code) {
3613 switch (ring_type) {
3614 case RING_FREE_REQ_RING_TYPE_CMPL:
3615 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3616 rc);
3617 return rc;
3618 case RING_FREE_REQ_RING_TYPE_RX:
3619 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3620 rc);
3621 return rc;
3622 case RING_FREE_REQ_RING_TYPE_TX:
3623 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3624 rc);
3625 return rc;
3626 default:
3627 netdev_err(bp->dev, "Invalid ring\n");
3628 return -1;
3629 }
3630 }
3631 return 0;
3632 }
3633
3634 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3635 {
3636 int i;
3637
3638 if (!bp->bnapi)
3639 return;
3640
3641 for (i = 0; i < bp->tx_nr_rings; i++) {
3642 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3643 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3644 u32 grp_idx = txr->bnapi->index;
3645 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3646
3647 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3648 hwrm_ring_free_send_msg(bp, ring,
3649 RING_FREE_REQ_RING_TYPE_TX,
3650 close_path ? cmpl_ring_id :
3651 INVALID_HW_RING_ID);
3652 ring->fw_ring_id = INVALID_HW_RING_ID;
3653 }
3654 }
3655
3656 for (i = 0; i < bp->rx_nr_rings; i++) {
3657 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3658 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3659 u32 grp_idx = rxr->bnapi->index;
3660 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3661
3662 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3663 hwrm_ring_free_send_msg(bp, ring,
3664 RING_FREE_REQ_RING_TYPE_RX,
3665 close_path ? cmpl_ring_id :
3666 INVALID_HW_RING_ID);
3667 ring->fw_ring_id = INVALID_HW_RING_ID;
3668 bp->grp_info[grp_idx].rx_fw_ring_id =
3669 INVALID_HW_RING_ID;
3670 }
3671 }
3672
3673 for (i = 0; i < bp->rx_nr_rings; i++) {
3674 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3675 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3676 u32 grp_idx = rxr->bnapi->index;
3677 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3678
3679 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3680 hwrm_ring_free_send_msg(bp, ring,
3681 RING_FREE_REQ_RING_TYPE_RX,
3682 close_path ? cmpl_ring_id :
3683 INVALID_HW_RING_ID);
3684 ring->fw_ring_id = INVALID_HW_RING_ID;
3685 bp->grp_info[grp_idx].agg_fw_ring_id =
3686 INVALID_HW_RING_ID;
3687 }
3688 }
3689
3690 for (i = 0; i < bp->cp_nr_rings; i++) {
3691 struct bnxt_napi *bnapi = bp->bnapi[i];
3692 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3693 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3694
3695 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3696 hwrm_ring_free_send_msg(bp, ring,
3697 RING_FREE_REQ_RING_TYPE_CMPL,
3698 INVALID_HW_RING_ID);
3699 ring->fw_ring_id = INVALID_HW_RING_ID;
3700 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3701 }
3702 }
3703 }
3704
3705 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3706 u32 buf_tmrs, u16 flags,
3707 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3708 {
3709 req->flags = cpu_to_le16(flags);
3710 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3711 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3712 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3713 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3714 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3715 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3716 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3717 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3718 }
3719
3720 int bnxt_hwrm_set_coal(struct bnxt *bp)
3721 {
3722 int i, rc = 0;
3723 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3724 req_tx = {0}, *req;
3725 u16 max_buf, max_buf_irq;
3726 u16 buf_tmr, buf_tmr_irq;
3727 u32 flags;
3728
3729 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3730 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3731 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3732 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3733
3734 /* Each rx completion (2 records) should be DMAed immediately.
3735 * DMA 1/4 of the completion buffers at a time.
3736 */
3737 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3738 /* max_buf must not be zero */
3739 max_buf = clamp_t(u16, max_buf, 1, 63);
3740 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3741 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3742 /* buf timer set to 1/4 of interrupt timer */
3743 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3744 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3745 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3746
3747 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3748
3749 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3750 * if coal_ticks is less than 25 us.
3751 */
3752 if (bp->rx_coal_ticks < 25)
3753 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3754
3755 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3756 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3757
3758 /* max_buf must not be zero */
3759 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3760 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3761 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3762 /* buf timer set to 1/4 of interrupt timer */
3763 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3764 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3765 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3766
3767 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3768 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3769 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3770
3771 mutex_lock(&bp->hwrm_cmd_lock);
3772 for (i = 0; i < bp->cp_nr_rings; i++) {
3773 struct bnxt_napi *bnapi = bp->bnapi[i];
3774
3775 req = &req_rx;
3776 if (!bnapi->rx_ring)
3777 req = &req_tx;
3778 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3779
3780 rc = _hwrm_send_message(bp, req, sizeof(*req),
3781 HWRM_CMD_TIMEOUT);
3782 if (rc)
3783 break;
3784 }
3785 mutex_unlock(&bp->hwrm_cmd_lock);
3786 return rc;
3787 }
3788
3789 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3790 {
3791 int rc = 0, i;
3792 struct hwrm_stat_ctx_free_input req = {0};
3793
3794 if (!bp->bnapi)
3795 return 0;
3796
3797 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3798
3799 mutex_lock(&bp->hwrm_cmd_lock);
3800 for (i = 0; i < bp->cp_nr_rings; i++) {
3801 struct bnxt_napi *bnapi = bp->bnapi[i];
3802 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3803
3804 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3805 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3806
3807 rc = _hwrm_send_message(bp, &req, sizeof(req),
3808 HWRM_CMD_TIMEOUT);
3809 if (rc)
3810 break;
3811
3812 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3813 }
3814 }
3815 mutex_unlock(&bp->hwrm_cmd_lock);
3816 return rc;
3817 }
3818
3819 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3820 {
3821 int rc = 0, i;
3822 struct hwrm_stat_ctx_alloc_input req = {0};
3823 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3824
3825 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3826
3827 req.update_period_ms = cpu_to_le32(1000);
3828
3829 mutex_lock(&bp->hwrm_cmd_lock);
3830 for (i = 0; i < bp->cp_nr_rings; i++) {
3831 struct bnxt_napi *bnapi = bp->bnapi[i];
3832 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3833
3834 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3835
3836 rc = _hwrm_send_message(bp, &req, sizeof(req),
3837 HWRM_CMD_TIMEOUT);
3838 if (rc)
3839 break;
3840
3841 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3842
3843 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3844 }
3845 mutex_unlock(&bp->hwrm_cmd_lock);
3846 return 0;
3847 }
3848
3849 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3850 {
3851 int rc = 0;
3852 struct hwrm_func_qcaps_input req = {0};
3853 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3854
3855 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3856 req.fid = cpu_to_le16(0xffff);
3857
3858 mutex_lock(&bp->hwrm_cmd_lock);
3859 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3860 if (rc)
3861 goto hwrm_func_qcaps_exit;
3862
3863 if (BNXT_PF(bp)) {
3864 struct bnxt_pf_info *pf = &bp->pf;
3865
3866 pf->fw_fid = le16_to_cpu(resp->fid);
3867 pf->port_id = le16_to_cpu(resp->port_id);
3868 memcpy(pf->mac_addr, resp->mac_address, ETH_ALEN);
3869 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3870 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3871 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3872 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3873 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3874 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3875 if (!pf->max_hw_ring_grps)
3876 pf->max_hw_ring_grps = pf->max_tx_rings;
3877 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3878 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3879 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3880 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3881 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3882 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3883 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3884 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3885 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3886 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3887 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3888 } else {
3889 #ifdef CONFIG_BNXT_SRIOV
3890 struct bnxt_vf_info *vf = &bp->vf;
3891
3892 vf->fw_fid = le16_to_cpu(resp->fid);
3893 memcpy(vf->mac_addr, resp->mac_address, ETH_ALEN);
3894 if (is_valid_ether_addr(vf->mac_addr))
3895 /* overwrite netdev dev_adr with admin VF MAC */
3896 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3897 else
3898 random_ether_addr(bp->dev->dev_addr);
3899
3900 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3901 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3902 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3903 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3904 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3905 if (!vf->max_hw_ring_grps)
3906 vf->max_hw_ring_grps = vf->max_tx_rings;
3907 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3908 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3909 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3910 #endif
3911 }
3912
3913 bp->tx_push_thresh = 0;
3914 if (resp->flags &
3915 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3916 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3917
3918 hwrm_func_qcaps_exit:
3919 mutex_unlock(&bp->hwrm_cmd_lock);
3920 return rc;
3921 }
3922
3923 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3924 {
3925 struct hwrm_func_reset_input req = {0};
3926
3927 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3928 req.enables = 0;
3929
3930 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3931 }
3932
3933 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3934 {
3935 int rc = 0;
3936 struct hwrm_queue_qportcfg_input req = {0};
3937 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3938 u8 i, *qptr;
3939
3940 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3941
3942 mutex_lock(&bp->hwrm_cmd_lock);
3943 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3944 if (rc)
3945 goto qportcfg_exit;
3946
3947 if (!resp->max_configurable_queues) {
3948 rc = -EINVAL;
3949 goto qportcfg_exit;
3950 }
3951 bp->max_tc = resp->max_configurable_queues;
3952 if (bp->max_tc > BNXT_MAX_QUEUE)
3953 bp->max_tc = BNXT_MAX_QUEUE;
3954
3955 qptr = &resp->queue_id0;
3956 for (i = 0; i < bp->max_tc; i++) {
3957 bp->q_info[i].queue_id = *qptr++;
3958 bp->q_info[i].queue_profile = *qptr++;
3959 }
3960
3961 qportcfg_exit:
3962 mutex_unlock(&bp->hwrm_cmd_lock);
3963 return rc;
3964 }
3965
3966 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3967 {
3968 int rc;
3969 struct hwrm_ver_get_input req = {0};
3970 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3971
3972 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3973 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3974 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3975 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3976 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3977 mutex_lock(&bp->hwrm_cmd_lock);
3978 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3979 if (rc)
3980 goto hwrm_ver_get_exit;
3981
3982 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3983
3984 bp->hwrm_spec_code = resp->hwrm_intf_maj << 16 |
3985 resp->hwrm_intf_min << 8 | resp->hwrm_intf_upd;
3986 if (resp->hwrm_intf_maj < 1) {
3987 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3988 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3989 resp->hwrm_intf_upd);
3990 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3991 }
3992 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3993 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3994 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3995
3996 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3997 if (!bp->hwrm_cmd_timeout)
3998 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3999
4000 if (resp->hwrm_intf_maj >= 1)
4001 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
4002
4003 hwrm_ver_get_exit:
4004 mutex_unlock(&bp->hwrm_cmd_lock);
4005 return rc;
4006 }
4007
4008 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
4009 {
4010 int rc;
4011 struct bnxt_pf_info *pf = &bp->pf;
4012 struct hwrm_port_qstats_input req = {0};
4013
4014 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
4015 return 0;
4016
4017 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
4018 req.port_id = cpu_to_le16(pf->port_id);
4019 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
4020 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
4021 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4022 return rc;
4023 }
4024
4025 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
4026 {
4027 if (bp->vxlan_port_cnt) {
4028 bnxt_hwrm_tunnel_dst_port_free(
4029 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
4030 }
4031 bp->vxlan_port_cnt = 0;
4032 if (bp->nge_port_cnt) {
4033 bnxt_hwrm_tunnel_dst_port_free(
4034 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
4035 }
4036 bp->nge_port_cnt = 0;
4037 }
4038
4039 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
4040 {
4041 int rc, i;
4042 u32 tpa_flags = 0;
4043
4044 if (set_tpa)
4045 tpa_flags = bp->flags & BNXT_FLAG_TPA;
4046 for (i = 0; i < bp->nr_vnics; i++) {
4047 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
4048 if (rc) {
4049 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4050 rc, i);
4051 return rc;
4052 }
4053 }
4054 return 0;
4055 }
4056
4057 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4058 {
4059 int i;
4060
4061 for (i = 0; i < bp->nr_vnics; i++)
4062 bnxt_hwrm_vnic_set_rss(bp, i, false);
4063 }
4064
4065 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4066 bool irq_re_init)
4067 {
4068 if (bp->vnic_info) {
4069 bnxt_hwrm_clear_vnic_filter(bp);
4070 /* clear all RSS setting before free vnic ctx */
4071 bnxt_hwrm_clear_vnic_rss(bp);
4072 bnxt_hwrm_vnic_ctx_free(bp);
4073 /* before free the vnic, undo the vnic tpa settings */
4074 if (bp->flags & BNXT_FLAG_TPA)
4075 bnxt_set_tpa(bp, false);
4076 bnxt_hwrm_vnic_free(bp);
4077 }
4078 bnxt_hwrm_ring_free(bp, close_path);
4079 bnxt_hwrm_ring_grp_free(bp);
4080 if (irq_re_init) {
4081 bnxt_hwrm_stat_ctx_free(bp);
4082 bnxt_hwrm_free_tunnel_ports(bp);
4083 }
4084 }
4085
4086 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4087 {
4088 int rc;
4089
4090 /* allocate context for vnic */
4091 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
4092 if (rc) {
4093 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4094 vnic_id, rc);
4095 goto vnic_setup_err;
4096 }
4097 bp->rsscos_nr_ctxs++;
4098
4099 /* configure default vnic, ring grp */
4100 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4101 if (rc) {
4102 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4103 vnic_id, rc);
4104 goto vnic_setup_err;
4105 }
4106
4107 /* Enable RSS hashing on vnic */
4108 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4109 if (rc) {
4110 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4111 vnic_id, rc);
4112 goto vnic_setup_err;
4113 }
4114
4115 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4116 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4117 if (rc) {
4118 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4119 vnic_id, rc);
4120 }
4121 }
4122
4123 vnic_setup_err:
4124 return rc;
4125 }
4126
4127 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4128 {
4129 #ifdef CONFIG_RFS_ACCEL
4130 int i, rc = 0;
4131
4132 for (i = 0; i < bp->rx_nr_rings; i++) {
4133 u16 vnic_id = i + 1;
4134 u16 ring_id = i;
4135
4136 if (vnic_id >= bp->nr_vnics)
4137 break;
4138
4139 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4140 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4141 if (rc) {
4142 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4143 vnic_id, rc);
4144 break;
4145 }
4146 rc = bnxt_setup_vnic(bp, vnic_id);
4147 if (rc)
4148 break;
4149 }
4150 return rc;
4151 #else
4152 return 0;
4153 #endif
4154 }
4155
4156 static int bnxt_cfg_rx_mode(struct bnxt *);
4157 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4158
4159 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4160 {
4161 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4162 int rc = 0;
4163
4164 if (irq_re_init) {
4165 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4166 if (rc) {
4167 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4168 rc);
4169 goto err_out;
4170 }
4171 }
4172
4173 rc = bnxt_hwrm_ring_alloc(bp);
4174 if (rc) {
4175 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4176 goto err_out;
4177 }
4178
4179 rc = bnxt_hwrm_ring_grp_alloc(bp);
4180 if (rc) {
4181 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4182 goto err_out;
4183 }
4184
4185 /* default vnic 0 */
4186 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4187 if (rc) {
4188 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4189 goto err_out;
4190 }
4191
4192 rc = bnxt_setup_vnic(bp, 0);
4193 if (rc)
4194 goto err_out;
4195
4196 if (bp->flags & BNXT_FLAG_RFS) {
4197 rc = bnxt_alloc_rfs_vnics(bp);
4198 if (rc)
4199 goto err_out;
4200 }
4201
4202 if (bp->flags & BNXT_FLAG_TPA) {
4203 rc = bnxt_set_tpa(bp, true);
4204 if (rc)
4205 goto err_out;
4206 }
4207
4208 if (BNXT_VF(bp))
4209 bnxt_update_vf_mac(bp);
4210
4211 /* Filter for default vnic 0 */
4212 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4213 if (rc) {
4214 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4215 goto err_out;
4216 }
4217 vnic->uc_filter_count = 1;
4218
4219 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4220
4221 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4222 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4223
4224 if (bp->dev->flags & IFF_ALLMULTI) {
4225 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4226 vnic->mc_list_count = 0;
4227 } else {
4228 u32 mask = 0;
4229
4230 bnxt_mc_list_updated(bp, &mask);
4231 vnic->rx_mask |= mask;
4232 }
4233
4234 rc = bnxt_cfg_rx_mode(bp);
4235 if (rc)
4236 goto err_out;
4237
4238 rc = bnxt_hwrm_set_coal(bp);
4239 if (rc)
4240 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4241 rc);
4242
4243 return 0;
4244
4245 err_out:
4246 bnxt_hwrm_resource_free(bp, 0, true);
4247
4248 return rc;
4249 }
4250
4251 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4252 {
4253 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4254 return 0;
4255 }
4256
4257 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4258 {
4259 bnxt_init_rx_rings(bp);
4260 bnxt_init_tx_rings(bp);
4261 bnxt_init_ring_grps(bp, irq_re_init);
4262 bnxt_init_vnics(bp);
4263
4264 return bnxt_init_chip(bp, irq_re_init);
4265 }
4266
4267 static void bnxt_disable_int(struct bnxt *bp)
4268 {
4269 int i;
4270
4271 if (!bp->bnapi)
4272 return;
4273
4274 for (i = 0; i < bp->cp_nr_rings; i++) {
4275 struct bnxt_napi *bnapi = bp->bnapi[i];
4276 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4277
4278 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4279 }
4280 }
4281
4282 static void bnxt_enable_int(struct bnxt *bp)
4283 {
4284 int i;
4285
4286 atomic_set(&bp->intr_sem, 0);
4287 for (i = 0; i < bp->cp_nr_rings; i++) {
4288 struct bnxt_napi *bnapi = bp->bnapi[i];
4289 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4290
4291 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4292 }
4293 }
4294
4295 static int bnxt_set_real_num_queues(struct bnxt *bp)
4296 {
4297 int rc;
4298 struct net_device *dev = bp->dev;
4299
4300 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4301 if (rc)
4302 return rc;
4303
4304 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4305 if (rc)
4306 return rc;
4307
4308 #ifdef CONFIG_RFS_ACCEL
4309 if (bp->flags & BNXT_FLAG_RFS)
4310 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4311 #endif
4312
4313 return rc;
4314 }
4315
4316 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4317 bool shared)
4318 {
4319 int _rx = *rx, _tx = *tx;
4320
4321 if (shared) {
4322 *rx = min_t(int, _rx, max);
4323 *tx = min_t(int, _tx, max);
4324 } else {
4325 if (max < 2)
4326 return -ENOMEM;
4327
4328 while (_rx + _tx > max) {
4329 if (_rx > _tx && _rx > 1)
4330 _rx--;
4331 else if (_tx > 1)
4332 _tx--;
4333 }
4334 *rx = _rx;
4335 *tx = _tx;
4336 }
4337 return 0;
4338 }
4339
4340 static int bnxt_setup_msix(struct bnxt *bp)
4341 {
4342 struct msix_entry *msix_ent;
4343 struct net_device *dev = bp->dev;
4344 int i, total_vecs, rc = 0, min = 1;
4345 const int len = sizeof(bp->irq_tbl[0].name);
4346
4347 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4348 total_vecs = bp->cp_nr_rings;
4349
4350 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4351 if (!msix_ent)
4352 return -ENOMEM;
4353
4354 for (i = 0; i < total_vecs; i++) {
4355 msix_ent[i].entry = i;
4356 msix_ent[i].vector = 0;
4357 }
4358
4359 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4360 min = 2;
4361
4362 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4363 if (total_vecs < 0) {
4364 rc = -ENODEV;
4365 goto msix_setup_exit;
4366 }
4367
4368 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4369 if (bp->irq_tbl) {
4370 int tcs;
4371
4372 /* Trim rings based upon num of vectors allocated */
4373 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4374 total_vecs, min == 1);
4375 if (rc)
4376 goto msix_setup_exit;
4377
4378 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4379 tcs = netdev_get_num_tc(dev);
4380 if (tcs > 1) {
4381 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4382 if (bp->tx_nr_rings_per_tc == 0) {
4383 netdev_reset_tc(dev);
4384 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4385 } else {
4386 int i, off, count;
4387
4388 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4389 for (i = 0; i < tcs; i++) {
4390 count = bp->tx_nr_rings_per_tc;
4391 off = i * count;
4392 netdev_set_tc_queue(dev, i, count, off);
4393 }
4394 }
4395 }
4396 bp->cp_nr_rings = total_vecs;
4397
4398 for (i = 0; i < bp->cp_nr_rings; i++) {
4399 char *attr;
4400
4401 bp->irq_tbl[i].vector = msix_ent[i].vector;
4402 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4403 attr = "TxRx";
4404 else if (i < bp->rx_nr_rings)
4405 attr = "rx";
4406 else
4407 attr = "tx";
4408
4409 snprintf(bp->irq_tbl[i].name, len,
4410 "%s-%s-%d", dev->name, attr, i);
4411 bp->irq_tbl[i].handler = bnxt_msix;
4412 }
4413 rc = bnxt_set_real_num_queues(bp);
4414 if (rc)
4415 goto msix_setup_exit;
4416 } else {
4417 rc = -ENOMEM;
4418 goto msix_setup_exit;
4419 }
4420 bp->flags |= BNXT_FLAG_USING_MSIX;
4421 kfree(msix_ent);
4422 return 0;
4423
4424 msix_setup_exit:
4425 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4426 pci_disable_msix(bp->pdev);
4427 kfree(msix_ent);
4428 return rc;
4429 }
4430
4431 static int bnxt_setup_inta(struct bnxt *bp)
4432 {
4433 int rc;
4434 const int len = sizeof(bp->irq_tbl[0].name);
4435
4436 if (netdev_get_num_tc(bp->dev))
4437 netdev_reset_tc(bp->dev);
4438
4439 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4440 if (!bp->irq_tbl) {
4441 rc = -ENOMEM;
4442 return rc;
4443 }
4444 bp->rx_nr_rings = 1;
4445 bp->tx_nr_rings = 1;
4446 bp->cp_nr_rings = 1;
4447 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4448 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4449 bp->irq_tbl[0].vector = bp->pdev->irq;
4450 snprintf(bp->irq_tbl[0].name, len,
4451 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4452 bp->irq_tbl[0].handler = bnxt_inta;
4453 rc = bnxt_set_real_num_queues(bp);
4454 return rc;
4455 }
4456
4457 static int bnxt_setup_int_mode(struct bnxt *bp)
4458 {
4459 int rc = 0;
4460
4461 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4462 rc = bnxt_setup_msix(bp);
4463
4464 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4465 /* fallback to INTA */
4466 rc = bnxt_setup_inta(bp);
4467 }
4468 return rc;
4469 }
4470
4471 static void bnxt_free_irq(struct bnxt *bp)
4472 {
4473 struct bnxt_irq *irq;
4474 int i;
4475
4476 #ifdef CONFIG_RFS_ACCEL
4477 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4478 bp->dev->rx_cpu_rmap = NULL;
4479 #endif
4480 if (!bp->irq_tbl)
4481 return;
4482
4483 for (i = 0; i < bp->cp_nr_rings; i++) {
4484 irq = &bp->irq_tbl[i];
4485 if (irq->requested)
4486 free_irq(irq->vector, bp->bnapi[i]);
4487 irq->requested = 0;
4488 }
4489 if (bp->flags & BNXT_FLAG_USING_MSIX)
4490 pci_disable_msix(bp->pdev);
4491 kfree(bp->irq_tbl);
4492 bp->irq_tbl = NULL;
4493 }
4494
4495 static int bnxt_request_irq(struct bnxt *bp)
4496 {
4497 int i, j, rc = 0;
4498 unsigned long flags = 0;
4499 #ifdef CONFIG_RFS_ACCEL
4500 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4501 #endif
4502
4503 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4504 flags = IRQF_SHARED;
4505
4506 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4507 struct bnxt_irq *irq = &bp->irq_tbl[i];
4508 #ifdef CONFIG_RFS_ACCEL
4509 if (rmap && bp->bnapi[i]->rx_ring) {
4510 rc = irq_cpu_rmap_add(rmap, irq->vector);
4511 if (rc)
4512 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4513 j);
4514 j++;
4515 }
4516 #endif
4517 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4518 bp->bnapi[i]);
4519 if (rc)
4520 break;
4521
4522 irq->requested = 1;
4523 }
4524 return rc;
4525 }
4526
4527 static void bnxt_del_napi(struct bnxt *bp)
4528 {
4529 int i;
4530
4531 if (!bp->bnapi)
4532 return;
4533
4534 for (i = 0; i < bp->cp_nr_rings; i++) {
4535 struct bnxt_napi *bnapi = bp->bnapi[i];
4536
4537 napi_hash_del(&bnapi->napi);
4538 netif_napi_del(&bnapi->napi);
4539 }
4540 }
4541
4542 static void bnxt_init_napi(struct bnxt *bp)
4543 {
4544 int i;
4545 struct bnxt_napi *bnapi;
4546
4547 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4548 for (i = 0; i < bp->cp_nr_rings; i++) {
4549 bnapi = bp->bnapi[i];
4550 netif_napi_add(bp->dev, &bnapi->napi,
4551 bnxt_poll, 64);
4552 }
4553 } else {
4554 bnapi = bp->bnapi[0];
4555 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4556 }
4557 }
4558
4559 static void bnxt_disable_napi(struct bnxt *bp)
4560 {
4561 int i;
4562
4563 if (!bp->bnapi)
4564 return;
4565
4566 for (i = 0; i < bp->cp_nr_rings; i++) {
4567 napi_disable(&bp->bnapi[i]->napi);
4568 bnxt_disable_poll(bp->bnapi[i]);
4569 }
4570 }
4571
4572 static void bnxt_enable_napi(struct bnxt *bp)
4573 {
4574 int i;
4575
4576 for (i = 0; i < bp->cp_nr_rings; i++) {
4577 bp->bnapi[i]->in_reset = false;
4578 bnxt_enable_poll(bp->bnapi[i]);
4579 napi_enable(&bp->bnapi[i]->napi);
4580 }
4581 }
4582
4583 static void bnxt_tx_disable(struct bnxt *bp)
4584 {
4585 int i;
4586 struct bnxt_tx_ring_info *txr;
4587 struct netdev_queue *txq;
4588
4589 if (bp->tx_ring) {
4590 for (i = 0; i < bp->tx_nr_rings; i++) {
4591 txr = &bp->tx_ring[i];
4592 txq = netdev_get_tx_queue(bp->dev, i);
4593 __netif_tx_lock(txq, smp_processor_id());
4594 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4595 __netif_tx_unlock(txq);
4596 }
4597 }
4598 /* Stop all TX queues */
4599 netif_tx_disable(bp->dev);
4600 netif_carrier_off(bp->dev);
4601 }
4602
4603 static void bnxt_tx_enable(struct bnxt *bp)
4604 {
4605 int i;
4606 struct bnxt_tx_ring_info *txr;
4607 struct netdev_queue *txq;
4608
4609 for (i = 0; i < bp->tx_nr_rings; i++) {
4610 txr = &bp->tx_ring[i];
4611 txq = netdev_get_tx_queue(bp->dev, i);
4612 txr->dev_state = 0;
4613 }
4614 netif_tx_wake_all_queues(bp->dev);
4615 if (bp->link_info.link_up)
4616 netif_carrier_on(bp->dev);
4617 }
4618
4619 static void bnxt_report_link(struct bnxt *bp)
4620 {
4621 if (bp->link_info.link_up) {
4622 const char *duplex;
4623 const char *flow_ctrl;
4624 u16 speed;
4625
4626 netif_carrier_on(bp->dev);
4627 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4628 duplex = "full";
4629 else
4630 duplex = "half";
4631 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4632 flow_ctrl = "ON - receive & transmit";
4633 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4634 flow_ctrl = "ON - transmit";
4635 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4636 flow_ctrl = "ON - receive";
4637 else
4638 flow_ctrl = "none";
4639 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4640 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4641 speed, duplex, flow_ctrl);
4642 if (bp->flags & BNXT_FLAG_EEE_CAP)
4643 netdev_info(bp->dev, "EEE is %s\n",
4644 bp->eee.eee_active ? "active" :
4645 "not active");
4646 } else {
4647 netif_carrier_off(bp->dev);
4648 netdev_err(bp->dev, "NIC Link is Down\n");
4649 }
4650 }
4651
4652 static int bnxt_hwrm_phy_qcaps(struct bnxt *bp)
4653 {
4654 int rc = 0;
4655 struct hwrm_port_phy_qcaps_input req = {0};
4656 struct hwrm_port_phy_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
4657
4658 if (bp->hwrm_spec_code < 0x10201)
4659 return 0;
4660
4661 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCAPS, -1, -1);
4662
4663 mutex_lock(&bp->hwrm_cmd_lock);
4664 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4665 if (rc)
4666 goto hwrm_phy_qcaps_exit;
4667
4668 if (resp->eee_supported & PORT_PHY_QCAPS_RESP_EEE_SUPPORTED) {
4669 struct ethtool_eee *eee = &bp->eee;
4670 u16 fw_speeds = le16_to_cpu(resp->supported_speeds_eee_mode);
4671
4672 bp->flags |= BNXT_FLAG_EEE_CAP;
4673 eee->supported = _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4674 bp->lpi_tmr_lo = le32_to_cpu(resp->tx_lpi_timer_low) &
4675 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_LOW_MASK;
4676 bp->lpi_tmr_hi = le32_to_cpu(resp->valid_tx_lpi_timer_high) &
4677 PORT_PHY_QCAPS_RESP_TX_LPI_TIMER_HIGH_MASK;
4678 }
4679
4680 hwrm_phy_qcaps_exit:
4681 mutex_unlock(&bp->hwrm_cmd_lock);
4682 return rc;
4683 }
4684
4685 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4686 {
4687 int rc = 0;
4688 struct bnxt_link_info *link_info = &bp->link_info;
4689 struct hwrm_port_phy_qcfg_input req = {0};
4690 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4691 u8 link_up = link_info->link_up;
4692
4693 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4694
4695 mutex_lock(&bp->hwrm_cmd_lock);
4696 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4697 if (rc) {
4698 mutex_unlock(&bp->hwrm_cmd_lock);
4699 return rc;
4700 }
4701
4702 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4703 link_info->phy_link_status = resp->link;
4704 link_info->duplex = resp->duplex;
4705 link_info->pause = resp->pause;
4706 link_info->auto_mode = resp->auto_mode;
4707 link_info->auto_pause_setting = resp->auto_pause;
4708 link_info->lp_pause = resp->link_partner_adv_pause;
4709 link_info->force_pause_setting = resp->force_pause;
4710 link_info->duplex_setting = resp->duplex;
4711 if (link_info->phy_link_status == BNXT_LINK_LINK)
4712 link_info->link_speed = le16_to_cpu(resp->link_speed);
4713 else
4714 link_info->link_speed = 0;
4715 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4716 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4717 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4718 link_info->lp_auto_link_speeds =
4719 le16_to_cpu(resp->link_partner_adv_speeds);
4720 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4721 link_info->phy_ver[0] = resp->phy_maj;
4722 link_info->phy_ver[1] = resp->phy_min;
4723 link_info->phy_ver[2] = resp->phy_bld;
4724 link_info->media_type = resp->media_type;
4725 link_info->phy_type = resp->phy_type;
4726 link_info->transceiver = resp->xcvr_pkg_type;
4727 link_info->phy_addr = resp->eee_config_phy_addr &
4728 PORT_PHY_QCFG_RESP_PHY_ADDR_MASK;
4729 link_info->module_status = resp->module_status;
4730
4731 if (bp->flags & BNXT_FLAG_EEE_CAP) {
4732 struct ethtool_eee *eee = &bp->eee;
4733 u16 fw_speeds;
4734
4735 eee->eee_active = 0;
4736 if (resp->eee_config_phy_addr &
4737 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ACTIVE) {
4738 eee->eee_active = 1;
4739 fw_speeds = le16_to_cpu(
4740 resp->link_partner_adv_eee_link_speed_mask);
4741 eee->lp_advertised =
4742 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4743 }
4744
4745 /* Pull initial EEE config */
4746 if (!chng_link_state) {
4747 if (resp->eee_config_phy_addr &
4748 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_ENABLED)
4749 eee->eee_enabled = 1;
4750
4751 fw_speeds = le16_to_cpu(resp->adv_eee_link_speed_mask);
4752 eee->advertised =
4753 _bnxt_fw_to_ethtool_adv_spds(fw_speeds, 0);
4754
4755 if (resp->eee_config_phy_addr &
4756 PORT_PHY_QCFG_RESP_EEE_CONFIG_EEE_TX_LPI) {
4757 __le32 tmr;
4758
4759 eee->tx_lpi_enabled = 1;
4760 tmr = resp->xcvr_identifier_type_tx_lpi_timer;
4761 eee->tx_lpi_timer = le32_to_cpu(tmr) &
4762 PORT_PHY_QCFG_RESP_TX_LPI_TIMER_MASK;
4763 }
4764 }
4765 }
4766 /* TODO: need to add more logic to report VF link */
4767 if (chng_link_state) {
4768 if (link_info->phy_link_status == BNXT_LINK_LINK)
4769 link_info->link_up = 1;
4770 else
4771 link_info->link_up = 0;
4772 if (link_up != link_info->link_up)
4773 bnxt_report_link(bp);
4774 } else {
4775 /* alwasy link down if not require to update link state */
4776 link_info->link_up = 0;
4777 }
4778 mutex_unlock(&bp->hwrm_cmd_lock);
4779 return 0;
4780 }
4781
4782 static void bnxt_get_port_module_status(struct bnxt *bp)
4783 {
4784 struct bnxt_link_info *link_info = &bp->link_info;
4785 struct hwrm_port_phy_qcfg_output *resp = &link_info->phy_qcfg_resp;
4786 u8 module_status;
4787
4788 if (bnxt_update_link(bp, true))
4789 return;
4790
4791 module_status = link_info->module_status;
4792 switch (module_status) {
4793 case PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX:
4794 case PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN:
4795 case PORT_PHY_QCFG_RESP_MODULE_STATUS_WARNINGMSG:
4796 netdev_warn(bp->dev, "Unqualified SFP+ module detected on port %d\n",
4797 bp->pf.port_id);
4798 if (bp->hwrm_spec_code >= 0x10201) {
4799 netdev_warn(bp->dev, "Module part number %s\n",
4800 resp->phy_vendor_partnumber);
4801 }
4802 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_DISABLETX)
4803 netdev_warn(bp->dev, "TX is disabled\n");
4804 if (module_status == PORT_PHY_QCFG_RESP_MODULE_STATUS_PWRDOWN)
4805 netdev_warn(bp->dev, "SFP+ module is shutdown\n");
4806 }
4807 }
4808
4809 static void
4810 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4811 {
4812 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4813 if (bp->hwrm_spec_code >= 0x10201)
4814 req->auto_pause =
4815 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE;
4816 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4817 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4818 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4819 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4820 req->enables |=
4821 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4822 } else {
4823 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4824 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4825 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4826 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4827 req->enables |=
4828 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4829 if (bp->hwrm_spec_code >= 0x10201) {
4830 req->auto_pause = req->force_pause;
4831 req->enables |= cpu_to_le32(
4832 PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4833 }
4834 }
4835 }
4836
4837 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4838 struct hwrm_port_phy_cfg_input *req)
4839 {
4840 u8 autoneg = bp->link_info.autoneg;
4841 u16 fw_link_speed = bp->link_info.req_link_speed;
4842 u32 advertising = bp->link_info.advertising;
4843
4844 if (autoneg & BNXT_AUTONEG_SPEED) {
4845 req->auto_mode |=
4846 PORT_PHY_CFG_REQ_AUTO_MODE_SPEED_MASK;
4847
4848 req->enables |= cpu_to_le32(
4849 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4850 req->auto_link_speed_mask = cpu_to_le16(advertising);
4851
4852 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4853 req->flags |=
4854 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4855 } else {
4856 req->force_link_speed = cpu_to_le16(fw_link_speed);
4857 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4858 }
4859
4860 /* tell chimp that the setting takes effect immediately */
4861 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4862 }
4863
4864 int bnxt_hwrm_set_pause(struct bnxt *bp)
4865 {
4866 struct hwrm_port_phy_cfg_input req = {0};
4867 int rc;
4868
4869 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4870 bnxt_hwrm_set_pause_common(bp, &req);
4871
4872 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4873 bp->link_info.force_link_chng)
4874 bnxt_hwrm_set_link_common(bp, &req);
4875
4876 mutex_lock(&bp->hwrm_cmd_lock);
4877 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4878 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4879 /* since changing of pause setting doesn't trigger any link
4880 * change event, the driver needs to update the current pause
4881 * result upon successfully return of the phy_cfg command
4882 */
4883 bp->link_info.pause =
4884 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4885 bp->link_info.auto_pause_setting = 0;
4886 if (!bp->link_info.force_link_chng)
4887 bnxt_report_link(bp);
4888 }
4889 bp->link_info.force_link_chng = false;
4890 mutex_unlock(&bp->hwrm_cmd_lock);
4891 return rc;
4892 }
4893
4894 static void bnxt_hwrm_set_eee(struct bnxt *bp,
4895 struct hwrm_port_phy_cfg_input *req)
4896 {
4897 struct ethtool_eee *eee = &bp->eee;
4898
4899 if (eee->eee_enabled) {
4900 u16 eee_speeds;
4901 u32 flags = PORT_PHY_CFG_REQ_FLAGS_EEE_ENABLE;
4902
4903 if (eee->tx_lpi_enabled)
4904 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_ENABLE;
4905 else
4906 flags |= PORT_PHY_CFG_REQ_FLAGS_EEE_TX_LPI_DISABLE;
4907
4908 req->flags |= cpu_to_le32(flags);
4909 eee_speeds = bnxt_get_fw_auto_link_speeds(eee->advertised);
4910 req->eee_link_speed_mask = cpu_to_le16(eee_speeds);
4911 req->tx_lpi_timer = cpu_to_le32(eee->tx_lpi_timer);
4912 } else {
4913 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_EEE_DISABLE);
4914 }
4915 }
4916
4917 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause, bool set_eee)
4918 {
4919 struct hwrm_port_phy_cfg_input req = {0};
4920
4921 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4922 if (set_pause)
4923 bnxt_hwrm_set_pause_common(bp, &req);
4924
4925 bnxt_hwrm_set_link_common(bp, &req);
4926
4927 if (set_eee)
4928 bnxt_hwrm_set_eee(bp, &req);
4929 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4930 }
4931
4932 static int bnxt_hwrm_shutdown_link(struct bnxt *bp)
4933 {
4934 struct hwrm_port_phy_cfg_input req = {0};
4935
4936 if (BNXT_VF(bp))
4937 return 0;
4938
4939 if (pci_num_vf(bp->pdev))
4940 return 0;
4941
4942 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4943 req.flags = cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE_LINK_DOWN);
4944 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4945 }
4946
4947 static bool bnxt_eee_config_ok(struct bnxt *bp)
4948 {
4949 struct ethtool_eee *eee = &bp->eee;
4950 struct bnxt_link_info *link_info = &bp->link_info;
4951
4952 if (!(bp->flags & BNXT_FLAG_EEE_CAP))
4953 return true;
4954
4955 if (eee->eee_enabled) {
4956 u32 advertising =
4957 _bnxt_fw_to_ethtool_adv_spds(link_info->advertising, 0);
4958
4959 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4960 eee->eee_enabled = 0;
4961 return false;
4962 }
4963 if (eee->advertised & ~advertising) {
4964 eee->advertised = advertising & eee->supported;
4965 return false;
4966 }
4967 }
4968 return true;
4969 }
4970
4971 static int bnxt_update_phy_setting(struct bnxt *bp)
4972 {
4973 int rc;
4974 bool update_link = false;
4975 bool update_pause = false;
4976 bool update_eee = false;
4977 struct bnxt_link_info *link_info = &bp->link_info;
4978
4979 rc = bnxt_update_link(bp, true);
4980 if (rc) {
4981 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4982 rc);
4983 return rc;
4984 }
4985 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4986 (link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH) !=
4987 link_info->req_flow_ctrl)
4988 update_pause = true;
4989 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4990 link_info->force_pause_setting != link_info->req_flow_ctrl)
4991 update_pause = true;
4992 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4993 if (BNXT_AUTO_MODE(link_info->auto_mode))
4994 update_link = true;
4995 if (link_info->req_link_speed != link_info->force_link_speed)
4996 update_link = true;
4997 if (link_info->req_duplex != link_info->duplex_setting)
4998 update_link = true;
4999 } else {
5000 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
5001 update_link = true;
5002 if (link_info->advertising != link_info->auto_link_speeds)
5003 update_link = true;
5004 }
5005
5006 if (!bnxt_eee_config_ok(bp))
5007 update_eee = true;
5008
5009 if (update_link)
5010 rc = bnxt_hwrm_set_link_setting(bp, update_pause, update_eee);
5011 else if (update_pause)
5012 rc = bnxt_hwrm_set_pause(bp);
5013 if (rc) {
5014 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
5015 rc);
5016 return rc;
5017 }
5018
5019 return rc;
5020 }
5021
5022 /* Common routine to pre-map certain register block to different GRC window.
5023 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
5024 * in PF and 3 windows in VF that can be customized to map in different
5025 * register blocks.
5026 */
5027 static void bnxt_preset_reg_win(struct bnxt *bp)
5028 {
5029 if (BNXT_PF(bp)) {
5030 /* CAG registers map to GRC window #4 */
5031 writel(BNXT_CAG_REG_BASE,
5032 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
5033 }
5034 }
5035
5036 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5037 {
5038 int rc = 0;
5039
5040 bnxt_preset_reg_win(bp);
5041 netif_carrier_off(bp->dev);
5042 if (irq_re_init) {
5043 rc = bnxt_setup_int_mode(bp);
5044 if (rc) {
5045 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
5046 rc);
5047 return rc;
5048 }
5049 }
5050 if ((bp->flags & BNXT_FLAG_RFS) &&
5051 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
5052 /* disable RFS if falling back to INTA */
5053 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
5054 bp->flags &= ~BNXT_FLAG_RFS;
5055 }
5056
5057 rc = bnxt_alloc_mem(bp, irq_re_init);
5058 if (rc) {
5059 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
5060 goto open_err_free_mem;
5061 }
5062
5063 if (irq_re_init) {
5064 bnxt_init_napi(bp);
5065 rc = bnxt_request_irq(bp);
5066 if (rc) {
5067 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
5068 goto open_err;
5069 }
5070 }
5071
5072 bnxt_enable_napi(bp);
5073
5074 rc = bnxt_init_nic(bp, irq_re_init);
5075 if (rc) {
5076 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
5077 goto open_err;
5078 }
5079
5080 if (link_re_init) {
5081 rc = bnxt_update_phy_setting(bp);
5082 if (rc)
5083 netdev_warn(bp->dev, "failed to update phy settings\n");
5084 }
5085
5086 if (irq_re_init) {
5087 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
5088 vxlan_get_rx_port(bp->dev);
5089 #endif
5090 if (!bnxt_hwrm_tunnel_dst_port_alloc(
5091 bp, htons(0x17c1),
5092 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
5093 bp->nge_port_cnt = 1;
5094 }
5095
5096 set_bit(BNXT_STATE_OPEN, &bp->state);
5097 bnxt_enable_int(bp);
5098 /* Enable TX queues */
5099 bnxt_tx_enable(bp);
5100 mod_timer(&bp->timer, jiffies + bp->current_interval);
5101 /* Poll link status and check for SFP+ module status */
5102 bnxt_get_port_module_status(bp);
5103
5104 return 0;
5105
5106 open_err:
5107 bnxt_disable_napi(bp);
5108 bnxt_del_napi(bp);
5109
5110 open_err_free_mem:
5111 bnxt_free_skbs(bp);
5112 bnxt_free_irq(bp);
5113 bnxt_free_mem(bp, true);
5114 return rc;
5115 }
5116
5117 /* rtnl_lock held */
5118 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5119 {
5120 int rc = 0;
5121
5122 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
5123 if (rc) {
5124 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
5125 dev_close(bp->dev);
5126 }
5127 return rc;
5128 }
5129
5130 static int bnxt_open(struct net_device *dev)
5131 {
5132 struct bnxt *bp = netdev_priv(dev);
5133 int rc = 0;
5134
5135 rc = bnxt_hwrm_func_reset(bp);
5136 if (rc) {
5137 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
5138 rc);
5139 rc = -1;
5140 return rc;
5141 }
5142 return __bnxt_open_nic(bp, true, true);
5143 }
5144
5145 static void bnxt_disable_int_sync(struct bnxt *bp)
5146 {
5147 int i;
5148
5149 atomic_inc(&bp->intr_sem);
5150 if (!netif_running(bp->dev))
5151 return;
5152
5153 bnxt_disable_int(bp);
5154 for (i = 0; i < bp->cp_nr_rings; i++)
5155 synchronize_irq(bp->irq_tbl[i].vector);
5156 }
5157
5158 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
5159 {
5160 int rc = 0;
5161
5162 #ifdef CONFIG_BNXT_SRIOV
5163 if (bp->sriov_cfg) {
5164 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
5165 !bp->sriov_cfg,
5166 BNXT_SRIOV_CFG_WAIT_TMO);
5167 if (rc)
5168 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
5169 }
5170 #endif
5171 /* Change device state to avoid TX queue wake up's */
5172 bnxt_tx_disable(bp);
5173
5174 clear_bit(BNXT_STATE_OPEN, &bp->state);
5175 smp_mb__after_atomic();
5176 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
5177 msleep(20);
5178
5179 /* Flush rings before disabling interrupts */
5180 bnxt_shutdown_nic(bp, irq_re_init);
5181
5182 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
5183
5184 bnxt_disable_napi(bp);
5185 bnxt_disable_int_sync(bp);
5186 del_timer_sync(&bp->timer);
5187 bnxt_free_skbs(bp);
5188
5189 if (irq_re_init) {
5190 bnxt_free_irq(bp);
5191 bnxt_del_napi(bp);
5192 }
5193 bnxt_free_mem(bp, irq_re_init);
5194 return rc;
5195 }
5196
5197 static int bnxt_close(struct net_device *dev)
5198 {
5199 struct bnxt *bp = netdev_priv(dev);
5200
5201 bnxt_close_nic(bp, true, true);
5202 bnxt_hwrm_shutdown_link(bp);
5203 return 0;
5204 }
5205
5206 /* rtnl_lock held */
5207 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5208 {
5209 switch (cmd) {
5210 case SIOCGMIIPHY:
5211 /* fallthru */
5212 case SIOCGMIIREG: {
5213 if (!netif_running(dev))
5214 return -EAGAIN;
5215
5216 return 0;
5217 }
5218
5219 case SIOCSMIIREG:
5220 if (!netif_running(dev))
5221 return -EAGAIN;
5222
5223 return 0;
5224
5225 default:
5226 /* do nothing */
5227 break;
5228 }
5229 return -EOPNOTSUPP;
5230 }
5231
5232 static struct rtnl_link_stats64 *
5233 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5234 {
5235 u32 i;
5236 struct bnxt *bp = netdev_priv(dev);
5237
5238 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5239
5240 if (!bp->bnapi)
5241 return stats;
5242
5243 /* TODO check if we need to synchronize with bnxt_close path */
5244 for (i = 0; i < bp->cp_nr_rings; i++) {
5245 struct bnxt_napi *bnapi = bp->bnapi[i];
5246 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5247 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5248
5249 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5250 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5251 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5252
5253 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5254 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5255 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5256
5257 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5258 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5259 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5260
5261 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5262 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5263 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5264
5265 stats->rx_missed_errors +=
5266 le64_to_cpu(hw_stats->rx_discard_pkts);
5267
5268 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5269
5270 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5271 }
5272
5273 if (bp->flags & BNXT_FLAG_PORT_STATS) {
5274 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5275 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5276
5277 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5278 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5279 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5280 le64_to_cpu(rx->rx_ovrsz_frames) +
5281 le64_to_cpu(rx->rx_runt_frames);
5282 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5283 le64_to_cpu(rx->rx_jbr_frames);
5284 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5285 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5286 stats->tx_errors = le64_to_cpu(tx->tx_err);
5287 }
5288
5289 return stats;
5290 }
5291
5292 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5293 {
5294 struct net_device *dev = bp->dev;
5295 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5296 struct netdev_hw_addr *ha;
5297 u8 *haddr;
5298 int mc_count = 0;
5299 bool update = false;
5300 int off = 0;
5301
5302 netdev_for_each_mc_addr(ha, dev) {
5303 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5304 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5305 vnic->mc_list_count = 0;
5306 return false;
5307 }
5308 haddr = ha->addr;
5309 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5310 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5311 update = true;
5312 }
5313 off += ETH_ALEN;
5314 mc_count++;
5315 }
5316 if (mc_count)
5317 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5318
5319 if (mc_count != vnic->mc_list_count) {
5320 vnic->mc_list_count = mc_count;
5321 update = true;
5322 }
5323 return update;
5324 }
5325
5326 static bool bnxt_uc_list_updated(struct bnxt *bp)
5327 {
5328 struct net_device *dev = bp->dev;
5329 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5330 struct netdev_hw_addr *ha;
5331 int off = 0;
5332
5333 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5334 return true;
5335
5336 netdev_for_each_uc_addr(ha, dev) {
5337 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5338 return true;
5339
5340 off += ETH_ALEN;
5341 }
5342 return false;
5343 }
5344
5345 static void bnxt_set_rx_mode(struct net_device *dev)
5346 {
5347 struct bnxt *bp = netdev_priv(dev);
5348 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5349 u32 mask = vnic->rx_mask;
5350 bool mc_update = false;
5351 bool uc_update;
5352
5353 if (!netif_running(dev))
5354 return;
5355
5356 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5357 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5358 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5359
5360 /* Only allow PF to be in promiscuous mode */
5361 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5362 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5363
5364 uc_update = bnxt_uc_list_updated(bp);
5365
5366 if (dev->flags & IFF_ALLMULTI) {
5367 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5368 vnic->mc_list_count = 0;
5369 } else {
5370 mc_update = bnxt_mc_list_updated(bp, &mask);
5371 }
5372
5373 if (mask != vnic->rx_mask || uc_update || mc_update) {
5374 vnic->rx_mask = mask;
5375
5376 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5377 schedule_work(&bp->sp_task);
5378 }
5379 }
5380
5381 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5382 {
5383 struct net_device *dev = bp->dev;
5384 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5385 struct netdev_hw_addr *ha;
5386 int i, off = 0, rc;
5387 bool uc_update;
5388
5389 netif_addr_lock_bh(dev);
5390 uc_update = bnxt_uc_list_updated(bp);
5391 netif_addr_unlock_bh(dev);
5392
5393 if (!uc_update)
5394 goto skip_uc;
5395
5396 mutex_lock(&bp->hwrm_cmd_lock);
5397 for (i = 1; i < vnic->uc_filter_count; i++) {
5398 struct hwrm_cfa_l2_filter_free_input req = {0};
5399
5400 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5401 -1);
5402
5403 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5404
5405 rc = _hwrm_send_message(bp, &req, sizeof(req),
5406 HWRM_CMD_TIMEOUT);
5407 }
5408 mutex_unlock(&bp->hwrm_cmd_lock);
5409
5410 vnic->uc_filter_count = 1;
5411
5412 netif_addr_lock_bh(dev);
5413 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5414 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5415 } else {
5416 netdev_for_each_uc_addr(ha, dev) {
5417 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5418 off += ETH_ALEN;
5419 vnic->uc_filter_count++;
5420 }
5421 }
5422 netif_addr_unlock_bh(dev);
5423
5424 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5425 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5426 if (rc) {
5427 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5428 rc);
5429 vnic->uc_filter_count = i;
5430 return rc;
5431 }
5432 }
5433
5434 skip_uc:
5435 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5436 if (rc)
5437 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5438 rc);
5439
5440 return rc;
5441 }
5442
5443 static bool bnxt_rfs_capable(struct bnxt *bp)
5444 {
5445 #ifdef CONFIG_RFS_ACCEL
5446 struct bnxt_pf_info *pf = &bp->pf;
5447 int vnics;
5448
5449 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5450 return false;
5451
5452 vnics = 1 + bp->rx_nr_rings;
5453 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5454 return false;
5455
5456 return true;
5457 #else
5458 return false;
5459 #endif
5460 }
5461
5462 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5463 netdev_features_t features)
5464 {
5465 struct bnxt *bp = netdev_priv(dev);
5466
5467 if (!bnxt_rfs_capable(bp))
5468 features &= ~NETIF_F_NTUPLE;
5469 return features;
5470 }
5471
5472 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5473 {
5474 struct bnxt *bp = netdev_priv(dev);
5475 u32 flags = bp->flags;
5476 u32 changes;
5477 int rc = 0;
5478 bool re_init = false;
5479 bool update_tpa = false;
5480
5481 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5482 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5483 flags |= BNXT_FLAG_GRO;
5484 if (features & NETIF_F_LRO)
5485 flags |= BNXT_FLAG_LRO;
5486
5487 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5488 flags |= BNXT_FLAG_STRIP_VLAN;
5489
5490 if (features & NETIF_F_NTUPLE)
5491 flags |= BNXT_FLAG_RFS;
5492
5493 changes = flags ^ bp->flags;
5494 if (changes & BNXT_FLAG_TPA) {
5495 update_tpa = true;
5496 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5497 (flags & BNXT_FLAG_TPA) == 0)
5498 re_init = true;
5499 }
5500
5501 if (changes & ~BNXT_FLAG_TPA)
5502 re_init = true;
5503
5504 if (flags != bp->flags) {
5505 u32 old_flags = bp->flags;
5506
5507 bp->flags = flags;
5508
5509 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5510 if (update_tpa)
5511 bnxt_set_ring_params(bp);
5512 return rc;
5513 }
5514
5515 if (re_init) {
5516 bnxt_close_nic(bp, false, false);
5517 if (update_tpa)
5518 bnxt_set_ring_params(bp);
5519
5520 return bnxt_open_nic(bp, false, false);
5521 }
5522 if (update_tpa) {
5523 rc = bnxt_set_tpa(bp,
5524 (flags & BNXT_FLAG_TPA) ?
5525 true : false);
5526 if (rc)
5527 bp->flags = old_flags;
5528 }
5529 }
5530 return rc;
5531 }
5532
5533 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5534 {
5535 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5536 int i = bnapi->index;
5537
5538 if (!txr)
5539 return;
5540
5541 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5542 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5543 txr->tx_cons);
5544 }
5545
5546 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5547 {
5548 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5549 int i = bnapi->index;
5550
5551 if (!rxr)
5552 return;
5553
5554 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5555 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5556 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5557 rxr->rx_sw_agg_prod);
5558 }
5559
5560 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5561 {
5562 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5563 int i = bnapi->index;
5564
5565 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5566 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5567 }
5568
5569 static void bnxt_dbg_dump_states(struct bnxt *bp)
5570 {
5571 int i;
5572 struct bnxt_napi *bnapi;
5573
5574 for (i = 0; i < bp->cp_nr_rings; i++) {
5575 bnapi = bp->bnapi[i];
5576 if (netif_msg_drv(bp)) {
5577 bnxt_dump_tx_sw_state(bnapi);
5578 bnxt_dump_rx_sw_state(bnapi);
5579 bnxt_dump_cp_sw_state(bnapi);
5580 }
5581 }
5582 }
5583
5584 static void bnxt_reset_task(struct bnxt *bp)
5585 {
5586 bnxt_dbg_dump_states(bp);
5587 if (netif_running(bp->dev)) {
5588 bnxt_close_nic(bp, false, false);
5589 bnxt_open_nic(bp, false, false);
5590 }
5591 }
5592
5593 static void bnxt_tx_timeout(struct net_device *dev)
5594 {
5595 struct bnxt *bp = netdev_priv(dev);
5596
5597 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5598 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5599 schedule_work(&bp->sp_task);
5600 }
5601
5602 #ifdef CONFIG_NET_POLL_CONTROLLER
5603 static void bnxt_poll_controller(struct net_device *dev)
5604 {
5605 struct bnxt *bp = netdev_priv(dev);
5606 int i;
5607
5608 for (i = 0; i < bp->cp_nr_rings; i++) {
5609 struct bnxt_irq *irq = &bp->irq_tbl[i];
5610
5611 disable_irq(irq->vector);
5612 irq->handler(irq->vector, bp->bnapi[i]);
5613 enable_irq(irq->vector);
5614 }
5615 }
5616 #endif
5617
5618 static void bnxt_timer(unsigned long data)
5619 {
5620 struct bnxt *bp = (struct bnxt *)data;
5621 struct net_device *dev = bp->dev;
5622
5623 if (!netif_running(dev))
5624 return;
5625
5626 if (atomic_read(&bp->intr_sem) != 0)
5627 goto bnxt_restart_timer;
5628
5629 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5630 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5631 schedule_work(&bp->sp_task);
5632 }
5633 bnxt_restart_timer:
5634 mod_timer(&bp->timer, jiffies + bp->current_interval);
5635 }
5636
5637 static void bnxt_cfg_ntp_filters(struct bnxt *);
5638
5639 static void bnxt_sp_task(struct work_struct *work)
5640 {
5641 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5642 int rc;
5643
5644 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5645 smp_mb__after_atomic();
5646 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5647 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5648 return;
5649 }
5650
5651 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5652 bnxt_cfg_rx_mode(bp);
5653
5654 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5655 bnxt_cfg_ntp_filters(bp);
5656 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5657 rc = bnxt_update_link(bp, true);
5658 if (rc)
5659 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5660 rc);
5661 }
5662 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5663 bnxt_hwrm_exec_fwd_req(bp);
5664 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5665 bnxt_hwrm_tunnel_dst_port_alloc(
5666 bp, bp->vxlan_port,
5667 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5668 }
5669 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5670 bnxt_hwrm_tunnel_dst_port_free(
5671 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5672 }
5673 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5674 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5675 * for BNXT_STATE_IN_SP_TASK to clear.
5676 */
5677 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5678 rtnl_lock();
5679 bnxt_reset_task(bp);
5680 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5681 rtnl_unlock();
5682 }
5683
5684 if (test_and_clear_bit(BNXT_HWRM_PORT_MODULE_SP_EVENT, &bp->sp_event))
5685 bnxt_get_port_module_status(bp);
5686
5687 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5688 bnxt_hwrm_port_qstats(bp);
5689
5690 smp_mb__before_atomic();
5691 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5692 }
5693
5694 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5695 {
5696 int rc;
5697 struct bnxt *bp = netdev_priv(dev);
5698
5699 SET_NETDEV_DEV(dev, &pdev->dev);
5700
5701 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5702 rc = pci_enable_device(pdev);
5703 if (rc) {
5704 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5705 goto init_err;
5706 }
5707
5708 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5709 dev_err(&pdev->dev,
5710 "Cannot find PCI device base address, aborting\n");
5711 rc = -ENODEV;
5712 goto init_err_disable;
5713 }
5714
5715 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5716 if (rc) {
5717 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5718 goto init_err_disable;
5719 }
5720
5721 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5722 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5723 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5724 goto init_err_disable;
5725 }
5726
5727 pci_set_master(pdev);
5728
5729 bp->dev = dev;
5730 bp->pdev = pdev;
5731
5732 bp->bar0 = pci_ioremap_bar(pdev, 0);
5733 if (!bp->bar0) {
5734 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5735 rc = -ENOMEM;
5736 goto init_err_release;
5737 }
5738
5739 bp->bar1 = pci_ioremap_bar(pdev, 2);
5740 if (!bp->bar1) {
5741 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5742 rc = -ENOMEM;
5743 goto init_err_release;
5744 }
5745
5746 bp->bar2 = pci_ioremap_bar(pdev, 4);
5747 if (!bp->bar2) {
5748 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5749 rc = -ENOMEM;
5750 goto init_err_release;
5751 }
5752
5753 pci_enable_pcie_error_reporting(pdev);
5754
5755 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5756
5757 spin_lock_init(&bp->ntp_fltr_lock);
5758
5759 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5760 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5761
5762 /* tick values in micro seconds */
5763 bp->rx_coal_ticks = 12;
5764 bp->rx_coal_bufs = 30;
5765 bp->rx_coal_ticks_irq = 1;
5766 bp->rx_coal_bufs_irq = 2;
5767
5768 bp->tx_coal_ticks = 25;
5769 bp->tx_coal_bufs = 30;
5770 bp->tx_coal_ticks_irq = 2;
5771 bp->tx_coal_bufs_irq = 2;
5772
5773 init_timer(&bp->timer);
5774 bp->timer.data = (unsigned long)bp;
5775 bp->timer.function = bnxt_timer;
5776 bp->current_interval = BNXT_TIMER_INTERVAL;
5777
5778 clear_bit(BNXT_STATE_OPEN, &bp->state);
5779
5780 return 0;
5781
5782 init_err_release:
5783 if (bp->bar2) {
5784 pci_iounmap(pdev, bp->bar2);
5785 bp->bar2 = NULL;
5786 }
5787
5788 if (bp->bar1) {
5789 pci_iounmap(pdev, bp->bar1);
5790 bp->bar1 = NULL;
5791 }
5792
5793 if (bp->bar0) {
5794 pci_iounmap(pdev, bp->bar0);
5795 bp->bar0 = NULL;
5796 }
5797
5798 pci_release_regions(pdev);
5799
5800 init_err_disable:
5801 pci_disable_device(pdev);
5802
5803 init_err:
5804 return rc;
5805 }
5806
5807 /* rtnl_lock held */
5808 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5809 {
5810 struct sockaddr *addr = p;
5811 struct bnxt *bp = netdev_priv(dev);
5812 int rc = 0;
5813
5814 if (!is_valid_ether_addr(addr->sa_data))
5815 return -EADDRNOTAVAIL;
5816
5817 rc = bnxt_approve_mac(bp, addr->sa_data);
5818 if (rc)
5819 return rc;
5820
5821 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5822 return 0;
5823
5824 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5825 if (netif_running(dev)) {
5826 bnxt_close_nic(bp, false, false);
5827 rc = bnxt_open_nic(bp, false, false);
5828 }
5829
5830 return rc;
5831 }
5832
5833 /* rtnl_lock held */
5834 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5835 {
5836 struct bnxt *bp = netdev_priv(dev);
5837
5838 if (new_mtu < 60 || new_mtu > 9000)
5839 return -EINVAL;
5840
5841 if (netif_running(dev))
5842 bnxt_close_nic(bp, false, false);
5843
5844 dev->mtu = new_mtu;
5845 bnxt_set_ring_params(bp);
5846
5847 if (netif_running(dev))
5848 return bnxt_open_nic(bp, false, false);
5849
5850 return 0;
5851 }
5852
5853 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5854 struct tc_to_netdev *ntc)
5855 {
5856 struct bnxt *bp = netdev_priv(dev);
5857 u8 tc;
5858
5859 if (ntc->type != TC_SETUP_MQPRIO)
5860 return -EINVAL;
5861
5862 tc = ntc->tc;
5863
5864 if (tc > bp->max_tc) {
5865 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5866 tc, bp->max_tc);
5867 return -EINVAL;
5868 }
5869
5870 if (netdev_get_num_tc(dev) == tc)
5871 return 0;
5872
5873 if (tc) {
5874 int max_rx_rings, max_tx_rings, rc;
5875 bool sh = false;
5876
5877 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5878 sh = true;
5879
5880 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5881 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5882 return -ENOMEM;
5883 }
5884
5885 /* Needs to close the device and do hw resource re-allocations */
5886 if (netif_running(bp->dev))
5887 bnxt_close_nic(bp, true, false);
5888
5889 if (tc) {
5890 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5891 netdev_set_num_tc(dev, tc);
5892 } else {
5893 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5894 netdev_reset_tc(dev);
5895 }
5896 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5897 bp->num_stat_ctxs = bp->cp_nr_rings;
5898
5899 if (netif_running(bp->dev))
5900 return bnxt_open_nic(bp, true, false);
5901
5902 return 0;
5903 }
5904
5905 #ifdef CONFIG_RFS_ACCEL
5906 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5907 struct bnxt_ntuple_filter *f2)
5908 {
5909 struct flow_keys *keys1 = &f1->fkeys;
5910 struct flow_keys *keys2 = &f2->fkeys;
5911
5912 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5913 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5914 keys1->ports.ports == keys2->ports.ports &&
5915 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5916 keys1->basic.n_proto == keys2->basic.n_proto &&
5917 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5918 return true;
5919
5920 return false;
5921 }
5922
5923 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5924 u16 rxq_index, u32 flow_id)
5925 {
5926 struct bnxt *bp = netdev_priv(dev);
5927 struct bnxt_ntuple_filter *fltr, *new_fltr;
5928 struct flow_keys *fkeys;
5929 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5930 int rc = 0, idx, bit_id;
5931 struct hlist_head *head;
5932
5933 if (skb->encapsulation)
5934 return -EPROTONOSUPPORT;
5935
5936 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5937 if (!new_fltr)
5938 return -ENOMEM;
5939
5940 fkeys = &new_fltr->fkeys;
5941 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5942 rc = -EPROTONOSUPPORT;
5943 goto err_free;
5944 }
5945
5946 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5947 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5948 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5949 rc = -EPROTONOSUPPORT;
5950 goto err_free;
5951 }
5952
5953 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5954
5955 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5956 head = &bp->ntp_fltr_hash_tbl[idx];
5957 rcu_read_lock();
5958 hlist_for_each_entry_rcu(fltr, head, hash) {
5959 if (bnxt_fltr_match(fltr, new_fltr)) {
5960 rcu_read_unlock();
5961 rc = 0;
5962 goto err_free;
5963 }
5964 }
5965 rcu_read_unlock();
5966
5967 spin_lock_bh(&bp->ntp_fltr_lock);
5968 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5969 BNXT_NTP_FLTR_MAX_FLTR, 0);
5970 if (bit_id < 0) {
5971 spin_unlock_bh(&bp->ntp_fltr_lock);
5972 rc = -ENOMEM;
5973 goto err_free;
5974 }
5975
5976 new_fltr->sw_id = (u16)bit_id;
5977 new_fltr->flow_id = flow_id;
5978 new_fltr->rxq = rxq_index;
5979 hlist_add_head_rcu(&new_fltr->hash, head);
5980 bp->ntp_fltr_count++;
5981 spin_unlock_bh(&bp->ntp_fltr_lock);
5982
5983 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5984 schedule_work(&bp->sp_task);
5985
5986 return new_fltr->sw_id;
5987
5988 err_free:
5989 kfree(new_fltr);
5990 return rc;
5991 }
5992
5993 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5994 {
5995 int i;
5996
5997 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5998 struct hlist_head *head;
5999 struct hlist_node *tmp;
6000 struct bnxt_ntuple_filter *fltr;
6001 int rc;
6002
6003 head = &bp->ntp_fltr_hash_tbl[i];
6004 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
6005 bool del = false;
6006
6007 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
6008 if (rps_may_expire_flow(bp->dev, fltr->rxq,
6009 fltr->flow_id,
6010 fltr->sw_id)) {
6011 bnxt_hwrm_cfa_ntuple_filter_free(bp,
6012 fltr);
6013 del = true;
6014 }
6015 } else {
6016 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
6017 fltr);
6018 if (rc)
6019 del = true;
6020 else
6021 set_bit(BNXT_FLTR_VALID, &fltr->state);
6022 }
6023
6024 if (del) {
6025 spin_lock_bh(&bp->ntp_fltr_lock);
6026 hlist_del_rcu(&fltr->hash);
6027 bp->ntp_fltr_count--;
6028 spin_unlock_bh(&bp->ntp_fltr_lock);
6029 synchronize_rcu();
6030 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
6031 kfree(fltr);
6032 }
6033 }
6034 }
6035 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
6036 netdev_info(bp->dev, "Receive PF driver unload event!");
6037 }
6038
6039 #else
6040
6041 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
6042 {
6043 }
6044
6045 #endif /* CONFIG_RFS_ACCEL */
6046
6047 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6048 __be16 port)
6049 {
6050 struct bnxt *bp = netdev_priv(dev);
6051
6052 if (!netif_running(dev))
6053 return;
6054
6055 if (sa_family != AF_INET6 && sa_family != AF_INET)
6056 return;
6057
6058 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
6059 return;
6060
6061 bp->vxlan_port_cnt++;
6062 if (bp->vxlan_port_cnt == 1) {
6063 bp->vxlan_port = port;
6064 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
6065 schedule_work(&bp->sp_task);
6066 }
6067 }
6068
6069 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
6070 __be16 port)
6071 {
6072 struct bnxt *bp = netdev_priv(dev);
6073
6074 if (!netif_running(dev))
6075 return;
6076
6077 if (sa_family != AF_INET6 && sa_family != AF_INET)
6078 return;
6079
6080 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
6081 bp->vxlan_port_cnt--;
6082
6083 if (bp->vxlan_port_cnt == 0) {
6084 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
6085 schedule_work(&bp->sp_task);
6086 }
6087 }
6088 }
6089
6090 static const struct net_device_ops bnxt_netdev_ops = {
6091 .ndo_open = bnxt_open,
6092 .ndo_start_xmit = bnxt_start_xmit,
6093 .ndo_stop = bnxt_close,
6094 .ndo_get_stats64 = bnxt_get_stats64,
6095 .ndo_set_rx_mode = bnxt_set_rx_mode,
6096 .ndo_do_ioctl = bnxt_ioctl,
6097 .ndo_validate_addr = eth_validate_addr,
6098 .ndo_set_mac_address = bnxt_change_mac_addr,
6099 .ndo_change_mtu = bnxt_change_mtu,
6100 .ndo_fix_features = bnxt_fix_features,
6101 .ndo_set_features = bnxt_set_features,
6102 .ndo_tx_timeout = bnxt_tx_timeout,
6103 #ifdef CONFIG_BNXT_SRIOV
6104 .ndo_get_vf_config = bnxt_get_vf_config,
6105 .ndo_set_vf_mac = bnxt_set_vf_mac,
6106 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
6107 .ndo_set_vf_rate = bnxt_set_vf_bw,
6108 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
6109 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
6110 #endif
6111 #ifdef CONFIG_NET_POLL_CONTROLLER
6112 .ndo_poll_controller = bnxt_poll_controller,
6113 #endif
6114 .ndo_setup_tc = bnxt_setup_tc,
6115 #ifdef CONFIG_RFS_ACCEL
6116 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
6117 #endif
6118 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
6119 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
6120 #ifdef CONFIG_NET_RX_BUSY_POLL
6121 .ndo_busy_poll = bnxt_busy_poll,
6122 #endif
6123 };
6124
6125 static void bnxt_remove_one(struct pci_dev *pdev)
6126 {
6127 struct net_device *dev = pci_get_drvdata(pdev);
6128 struct bnxt *bp = netdev_priv(dev);
6129
6130 if (BNXT_PF(bp))
6131 bnxt_sriov_disable(bp);
6132
6133 pci_disable_pcie_error_reporting(pdev);
6134 unregister_netdev(dev);
6135 cancel_work_sync(&bp->sp_task);
6136 bp->sp_event = 0;
6137
6138 bnxt_hwrm_func_drv_unrgtr(bp);
6139 bnxt_free_hwrm_resources(bp);
6140 pci_iounmap(pdev, bp->bar2);
6141 pci_iounmap(pdev, bp->bar1);
6142 pci_iounmap(pdev, bp->bar0);
6143 free_netdev(dev);
6144
6145 pci_release_regions(pdev);
6146 pci_disable_device(pdev);
6147 }
6148
6149 static int bnxt_probe_phy(struct bnxt *bp)
6150 {
6151 int rc = 0;
6152 struct bnxt_link_info *link_info = &bp->link_info;
6153
6154 rc = bnxt_hwrm_phy_qcaps(bp);
6155 if (rc) {
6156 netdev_err(bp->dev, "Probe phy can't get phy capabilities (rc: %x)\n",
6157 rc);
6158 return rc;
6159 }
6160
6161 rc = bnxt_update_link(bp, false);
6162 if (rc) {
6163 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
6164 rc);
6165 return rc;
6166 }
6167
6168 /*initialize the ethool setting copy with NVM settings */
6169 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
6170 link_info->autoneg = BNXT_AUTONEG_SPEED;
6171 if (bp->hwrm_spec_code >= 0x10201) {
6172 if (link_info->auto_pause_setting &
6173 PORT_PHY_CFG_REQ_AUTO_PAUSE_AUTONEG_PAUSE)
6174 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6175 } else {
6176 link_info->autoneg |= BNXT_AUTONEG_FLOW_CTRL;
6177 }
6178 link_info->advertising = link_info->auto_link_speeds;
6179 } else {
6180 link_info->req_link_speed = link_info->force_link_speed;
6181 link_info->req_duplex = link_info->duplex_setting;
6182 }
6183 if (link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL)
6184 link_info->req_flow_ctrl =
6185 link_info->auto_pause_setting & BNXT_LINK_PAUSE_BOTH;
6186 else
6187 link_info->req_flow_ctrl = link_info->force_pause_setting;
6188 return rc;
6189 }
6190
6191 static int bnxt_get_max_irq(struct pci_dev *pdev)
6192 {
6193 u16 ctrl;
6194
6195 if (!pdev->msix_cap)
6196 return 1;
6197
6198 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
6199 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
6200 }
6201
6202 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
6203 int *max_cp)
6204 {
6205 int max_ring_grps = 0;
6206
6207 #ifdef CONFIG_BNXT_SRIOV
6208 if (!BNXT_PF(bp)) {
6209 *max_tx = bp->vf.max_tx_rings;
6210 *max_rx = bp->vf.max_rx_rings;
6211 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
6212 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
6213 max_ring_grps = bp->vf.max_hw_ring_grps;
6214 } else
6215 #endif
6216 {
6217 *max_tx = bp->pf.max_tx_rings;
6218 *max_rx = bp->pf.max_rx_rings;
6219 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
6220 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
6221 max_ring_grps = bp->pf.max_hw_ring_grps;
6222 }
6223
6224 if (bp->flags & BNXT_FLAG_AGG_RINGS)
6225 *max_rx >>= 1;
6226 *max_rx = min_t(int, *max_rx, max_ring_grps);
6227 }
6228
6229 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
6230 {
6231 int rx, tx, cp;
6232
6233 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
6234 if (!rx || !tx || !cp)
6235 return -ENOMEM;
6236
6237 *max_rx = rx;
6238 *max_tx = tx;
6239 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
6240 }
6241
6242 static int bnxt_set_dflt_rings(struct bnxt *bp)
6243 {
6244 int dflt_rings, max_rx_rings, max_tx_rings, rc;
6245 bool sh = true;
6246
6247 if (sh)
6248 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6249 dflt_rings = netif_get_num_default_rss_queues();
6250 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6251 if (rc)
6252 return rc;
6253 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6254 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6255 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6256 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6257 bp->tx_nr_rings + bp->rx_nr_rings;
6258 bp->num_stat_ctxs = bp->cp_nr_rings;
6259 return rc;
6260 }
6261
6262 static void bnxt_parse_log_pcie_link(struct bnxt *bp)
6263 {
6264 enum pcie_link_width width = PCIE_LNK_WIDTH_UNKNOWN;
6265 enum pci_bus_speed speed = PCI_SPEED_UNKNOWN;
6266
6267 if (pcie_get_minimum_link(bp->pdev, &speed, &width) ||
6268 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN)
6269 netdev_info(bp->dev, "Failed to determine PCIe Link Info\n");
6270 else
6271 netdev_info(bp->dev, "PCIe: Speed %s Width x%d\n",
6272 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" :
6273 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" :
6274 speed == PCIE_SPEED_8_0GT ? "8.0GT/s" :
6275 "Unknown", width);
6276 }
6277
6278 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6279 {
6280 static int version_printed;
6281 struct net_device *dev;
6282 struct bnxt *bp;
6283 int rc, max_irqs;
6284
6285 if (version_printed++ == 0)
6286 pr_info("%s", version);
6287
6288 max_irqs = bnxt_get_max_irq(pdev);
6289 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6290 if (!dev)
6291 return -ENOMEM;
6292
6293 bp = netdev_priv(dev);
6294
6295 if (bnxt_vf_pciid(ent->driver_data))
6296 bp->flags |= BNXT_FLAG_VF;
6297
6298 if (pdev->msix_cap)
6299 bp->flags |= BNXT_FLAG_MSIX_CAP;
6300
6301 rc = bnxt_init_board(pdev, dev);
6302 if (rc < 0)
6303 goto init_err_free;
6304
6305 dev->netdev_ops = &bnxt_netdev_ops;
6306 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6307 dev->ethtool_ops = &bnxt_ethtool_ops;
6308
6309 pci_set_drvdata(pdev, dev);
6310
6311 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6312 NETIF_F_TSO | NETIF_F_TSO6 |
6313 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6314 NETIF_F_GSO_IPXIP4 |
6315 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6316 NETIF_F_GSO_PARTIAL | NETIF_F_RXHASH |
6317 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
6318
6319 dev->hw_enc_features =
6320 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6321 NETIF_F_TSO | NETIF_F_TSO6 |
6322 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6323 NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_GSO_GRE_CSUM |
6324 NETIF_F_GSO_IPXIP4 | NETIF_F_GSO_PARTIAL;
6325 dev->gso_partial_features = NETIF_F_GSO_UDP_TUNNEL_CSUM |
6326 NETIF_F_GSO_GRE_CSUM;
6327 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6328 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6329 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6330 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6331 dev->priv_flags |= IFF_UNICAST_FLT;
6332
6333 #ifdef CONFIG_BNXT_SRIOV
6334 init_waitqueue_head(&bp->sriov_cfg_wait);
6335 #endif
6336 rc = bnxt_alloc_hwrm_resources(bp);
6337 if (rc)
6338 goto init_err;
6339
6340 mutex_init(&bp->hwrm_cmd_lock);
6341 bnxt_hwrm_ver_get(bp);
6342
6343 rc = bnxt_hwrm_func_drv_rgtr(bp);
6344 if (rc)
6345 goto init_err;
6346
6347 /* Get the MAX capabilities for this function */
6348 rc = bnxt_hwrm_func_qcaps(bp);
6349 if (rc) {
6350 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6351 rc);
6352 rc = -1;
6353 goto init_err;
6354 }
6355
6356 rc = bnxt_hwrm_queue_qportcfg(bp);
6357 if (rc) {
6358 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6359 rc);
6360 rc = -1;
6361 goto init_err;
6362 }
6363
6364 bnxt_set_tpa_flags(bp);
6365 bnxt_set_ring_params(bp);
6366 if (BNXT_PF(bp))
6367 bp->pf.max_irqs = max_irqs;
6368 #if defined(CONFIG_BNXT_SRIOV)
6369 else
6370 bp->vf.max_irqs = max_irqs;
6371 #endif
6372 bnxt_set_dflt_rings(bp);
6373
6374 if (BNXT_PF(bp)) {
6375 dev->hw_features |= NETIF_F_NTUPLE;
6376 if (bnxt_rfs_capable(bp)) {
6377 bp->flags |= BNXT_FLAG_RFS;
6378 dev->features |= NETIF_F_NTUPLE;
6379 }
6380 }
6381
6382 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6383 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6384
6385 rc = bnxt_probe_phy(bp);
6386 if (rc)
6387 goto init_err;
6388
6389 rc = register_netdev(dev);
6390 if (rc)
6391 goto init_err;
6392
6393 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6394 board_info[ent->driver_data].name,
6395 (long)pci_resource_start(pdev, 0), dev->dev_addr);
6396
6397 bnxt_parse_log_pcie_link(bp);
6398
6399 return 0;
6400
6401 init_err:
6402 pci_iounmap(pdev, bp->bar0);
6403 pci_release_regions(pdev);
6404 pci_disable_device(pdev);
6405
6406 init_err_free:
6407 free_netdev(dev);
6408 return rc;
6409 }
6410
6411 /**
6412 * bnxt_io_error_detected - called when PCI error is detected
6413 * @pdev: Pointer to PCI device
6414 * @state: The current pci connection state
6415 *
6416 * This function is called after a PCI bus error affecting
6417 * this device has been detected.
6418 */
6419 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6420 pci_channel_state_t state)
6421 {
6422 struct net_device *netdev = pci_get_drvdata(pdev);
6423
6424 netdev_info(netdev, "PCI I/O error detected\n");
6425
6426 rtnl_lock();
6427 netif_device_detach(netdev);
6428
6429 if (state == pci_channel_io_perm_failure) {
6430 rtnl_unlock();
6431 return PCI_ERS_RESULT_DISCONNECT;
6432 }
6433
6434 if (netif_running(netdev))
6435 bnxt_close(netdev);
6436
6437 pci_disable_device(pdev);
6438 rtnl_unlock();
6439
6440 /* Request a slot slot reset. */
6441 return PCI_ERS_RESULT_NEED_RESET;
6442 }
6443
6444 /**
6445 * bnxt_io_slot_reset - called after the pci bus has been reset.
6446 * @pdev: Pointer to PCI device
6447 *
6448 * Restart the card from scratch, as if from a cold-boot.
6449 * At this point, the card has exprienced a hard reset,
6450 * followed by fixups by BIOS, and has its config space
6451 * set up identically to what it was at cold boot.
6452 */
6453 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6454 {
6455 struct net_device *netdev = pci_get_drvdata(pdev);
6456 struct bnxt *bp = netdev_priv(netdev);
6457 int err = 0;
6458 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6459
6460 netdev_info(bp->dev, "PCI Slot Reset\n");
6461
6462 rtnl_lock();
6463
6464 if (pci_enable_device(pdev)) {
6465 dev_err(&pdev->dev,
6466 "Cannot re-enable PCI device after reset.\n");
6467 } else {
6468 pci_set_master(pdev);
6469
6470 if (netif_running(netdev))
6471 err = bnxt_open(netdev);
6472
6473 if (!err)
6474 result = PCI_ERS_RESULT_RECOVERED;
6475 }
6476
6477 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6478 dev_close(netdev);
6479
6480 rtnl_unlock();
6481
6482 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6483 if (err) {
6484 dev_err(&pdev->dev,
6485 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6486 err); /* non-fatal, continue */
6487 }
6488
6489 return PCI_ERS_RESULT_RECOVERED;
6490 }
6491
6492 /**
6493 * bnxt_io_resume - called when traffic can start flowing again.
6494 * @pdev: Pointer to PCI device
6495 *
6496 * This callback is called when the error recovery driver tells
6497 * us that its OK to resume normal operation.
6498 */
6499 static void bnxt_io_resume(struct pci_dev *pdev)
6500 {
6501 struct net_device *netdev = pci_get_drvdata(pdev);
6502
6503 rtnl_lock();
6504
6505 netif_device_attach(netdev);
6506
6507 rtnl_unlock();
6508 }
6509
6510 static const struct pci_error_handlers bnxt_err_handler = {
6511 .error_detected = bnxt_io_error_detected,
6512 .slot_reset = bnxt_io_slot_reset,
6513 .resume = bnxt_io_resume
6514 };
6515
6516 static struct pci_driver bnxt_pci_driver = {
6517 .name = DRV_MODULE_NAME,
6518 .id_table = bnxt_pci_tbl,
6519 .probe = bnxt_init_one,
6520 .remove = bnxt_remove_one,
6521 .err_handler = &bnxt_err_handler,
6522 #if defined(CONFIG_BNXT_SRIOV)
6523 .sriov_configure = bnxt_sriov_configure,
6524 #endif
6525 };
6526
6527 module_pci_driver(bnxt_pci_driver);
This page took 0.180301 seconds and 6 git commands to generate.