Merge tag 'topic/drm-misc-2016-03-22' of git://anongit.freedesktop.org/drm-intel...
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57304_VF,
82 BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87 char *name;
88 } board_info[] = {
89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116 HWRM_FUNC_CFG,
117 HWRM_PORT_PHY_QCFG,
118 HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons) \
131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons) \
134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db) \
137 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 /* Tell compiler to fetch tx indices from memory. */
142 barrier();
143
144 return bp->tx_ring_size -
145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 TX_BD_FLAGS_LHINT_512_TO_1023,
151 TX_BD_FLAGS_LHINT_1024_TO_2047,
152 TX_BD_FLAGS_LHINT_1024_TO_2047,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 struct bnxt *bp = netdev_priv(dev);
173 struct tx_bd *txbd;
174 struct tx_bd_ext *txbd1;
175 struct netdev_queue *txq;
176 int i;
177 dma_addr_t mapping;
178 unsigned int length, pad = 0;
179 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 u16 prod, last_frag;
181 struct pci_dev *pdev = bp->pdev;
182 struct bnxt_tx_ring_info *txr;
183 struct bnxt_sw_tx_bd *tx_buf;
184
185 i = skb_get_queue_mapping(skb);
186 if (unlikely(i >= bp->tx_nr_rings)) {
187 dev_kfree_skb_any(skb);
188 return NETDEV_TX_OK;
189 }
190
191 txr = &bp->tx_ring[i];
192 txq = netdev_get_tx_queue(dev, i);
193 prod = txr->tx_prod;
194
195 free_size = bnxt_tx_avail(bp, txr);
196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 netif_tx_stop_queue(txq);
198 return NETDEV_TX_BUSY;
199 }
200
201 length = skb->len;
202 len = skb_headlen(skb);
203 last_frag = skb_shinfo(skb)->nr_frags;
204
205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207 txbd->tx_bd_opaque = prod;
208
209 tx_buf = &txr->tx_buf_ring[prod];
210 tx_buf->skb = skb;
211 tx_buf->nr_frags = last_frag;
212
213 vlan_tag_flags = 0;
214 cfa_action = 0;
215 if (skb_vlan_tag_present(skb)) {
216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 skb_vlan_tag_get(skb);
218 /* Currently supports 8021Q, 8021AD vlan offloads
219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 */
221 if (skb->vlan_proto == htons(ETH_P_8021Q))
222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 }
224
225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 void *pdata = tx_push_buf->data;
230 u64 *end;
231 int j, push_len;
232
233 /* Set COAL_NOW to be ready quickly for the next push */
234 tx_push->tx_bd_len_flags_type =
235 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 TX_BD_TYPE_LONG_TX_BD |
237 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 TX_BD_FLAGS_COAL_NOW |
239 TX_BD_FLAGS_PACKET_END |
240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242 if (skb->ip_summed == CHECKSUM_PARTIAL)
243 tx_push1->tx_bd_hsize_lflags =
244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 else
246 tx_push1->tx_bd_hsize_lflags = 0;
247
248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251 end = pdata + length;
252 end = PTR_ALIGN(end, 8) - 1;
253 *end = 0;
254
255 skb_copy_from_linear_data(skb, pdata, len);
256 pdata += len;
257 for (j = 0; j < last_frag; j++) {
258 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 void *fptr;
260
261 fptr = skb_frag_address_safe(frag);
262 if (!fptr)
263 goto normal_tx;
264
265 memcpy(pdata, fptr, skb_frag_size(frag));
266 pdata += skb_frag_size(frag);
267 }
268
269 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 txbd->tx_bd_haddr = txr->data_mapping;
271 prod = NEXT_TX(prod);
272 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 memcpy(txbd, tx_push1, sizeof(*txbd));
274 prod = NEXT_TX(prod);
275 tx_push->doorbell =
276 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 txr->tx_prod = prod;
278
279 netdev_tx_sent_queue(txq, skb->len);
280
281 push_len = (length + sizeof(*tx_push) + 7) / 8;
282 if (push_len > 16) {
283 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 push_len - 16);
286 } else {
287 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 push_len);
289 }
290
291 tx_buf->is_push = 1;
292 goto tx_done;
293 }
294
295 normal_tx:
296 if (length < BNXT_MIN_PKT_SIZE) {
297 pad = BNXT_MIN_PKT_SIZE - length;
298 if (skb_pad(skb, pad)) {
299 /* SKB already freed. */
300 tx_buf->skb = NULL;
301 return NETDEV_TX_OK;
302 }
303 length = BNXT_MIN_PKT_SIZE;
304 }
305
306 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307
308 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 dev_kfree_skb_any(skb);
310 tx_buf->skb = NULL;
311 return NETDEV_TX_OK;
312 }
313
314 dma_unmap_addr_set(tx_buf, mapping, mapping);
315 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317
318 txbd->tx_bd_haddr = cpu_to_le64(mapping);
319
320 prod = NEXT_TX(prod);
321 txbd1 = (struct tx_bd_ext *)
322 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323
324 txbd1->tx_bd_hsize_lflags = 0;
325 if (skb_is_gso(skb)) {
326 u32 hdr_len;
327
328 if (skb->encapsulation)
329 hdr_len = skb_inner_network_offset(skb) +
330 skb_inner_network_header_len(skb) +
331 inner_tcp_hdrlen(skb);
332 else
333 hdr_len = skb_transport_offset(skb) +
334 tcp_hdrlen(skb);
335
336 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 TX_BD_FLAGS_T_IPID |
338 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 length = skb_shinfo(skb)->gso_size;
340 txbd1->tx_bd_mss = cpu_to_le32(length);
341 length += hdr_len;
342 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 txbd1->tx_bd_hsize_lflags =
344 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 txbd1->tx_bd_mss = 0;
346 }
347
348 length >>= 9;
349 flags |= bnxt_lhint_arr[length];
350 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351
352 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 for (i = 0; i < last_frag; i++) {
355 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356
357 prod = NEXT_TX(prod);
358 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359
360 len = skb_frag_size(frag);
361 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 DMA_TO_DEVICE);
363
364 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 goto tx_dma_error;
366
367 tx_buf = &txr->tx_buf_ring[prod];
368 dma_unmap_addr_set(tx_buf, mapping, mapping);
369
370 txbd->tx_bd_haddr = cpu_to_le64(mapping);
371
372 flags = len << TX_BD_LEN_SHIFT;
373 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 }
375
376 flags &= ~TX_BD_LEN;
377 txbd->tx_bd_len_flags_type =
378 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 TX_BD_FLAGS_PACKET_END);
380
381 netdev_tx_sent_queue(txq, skb->len);
382
383 /* Sync BD data before updating doorbell */
384 wmb();
385
386 prod = NEXT_TX(prod);
387 txr->tx_prod = prod;
388
389 writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 writel(DB_KEY_TX | prod, txr->tx_doorbell);
391
392 tx_done:
393
394 mmiowb();
395
396 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 netif_tx_stop_queue(txq);
398
399 /* netif_tx_stop_queue() must be done before checking
400 * tx index in bnxt_tx_avail() below, because in
401 * bnxt_tx_int(), we update tx index before checking for
402 * netif_tx_queue_stopped().
403 */
404 smp_mb();
405 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 netif_tx_wake_queue(txq);
407 }
408 return NETDEV_TX_OK;
409
410 tx_dma_error:
411 last_frag = i;
412
413 /* start back at beginning and unmap skb */
414 prod = txr->tx_prod;
415 tx_buf = &txr->tx_buf_ring[prod];
416 tx_buf->skb = NULL;
417 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 skb_headlen(skb), PCI_DMA_TODEVICE);
419 prod = NEXT_TX(prod);
420
421 /* unmap remaining mapped pages */
422 for (i = 0; i < last_frag; i++) {
423 prod = NEXT_TX(prod);
424 tx_buf = &txr->tx_buf_ring[prod];
425 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 PCI_DMA_TODEVICE);
428 }
429
430 dev_kfree_skb_any(skb);
431 return NETDEV_TX_OK;
432 }
433
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 int index = txr - &bp->tx_ring[0];
438 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 u16 cons = txr->tx_cons;
440 struct pci_dev *pdev = bp->pdev;
441 int i;
442 unsigned int tx_bytes = 0;
443
444 for (i = 0; i < nr_pkts; i++) {
445 struct bnxt_sw_tx_bd *tx_buf;
446 struct sk_buff *skb;
447 int j, last;
448
449 tx_buf = &txr->tx_buf_ring[cons];
450 cons = NEXT_TX(cons);
451 skb = tx_buf->skb;
452 tx_buf->skb = NULL;
453
454 if (tx_buf->is_push) {
455 tx_buf->is_push = 0;
456 goto next_tx_int;
457 }
458
459 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 skb_headlen(skb), PCI_DMA_TODEVICE);
461 last = tx_buf->nr_frags;
462
463 for (j = 0; j < last; j++) {
464 cons = NEXT_TX(cons);
465 tx_buf = &txr->tx_buf_ring[cons];
466 dma_unmap_page(
467 &pdev->dev,
468 dma_unmap_addr(tx_buf, mapping),
469 skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 PCI_DMA_TODEVICE);
471 }
472
473 next_tx_int:
474 cons = NEXT_TX(cons);
475
476 tx_bytes += skb->len;
477 dev_kfree_skb_any(skb);
478 }
479
480 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 txr->tx_cons = cons;
482
483 /* Need to make the tx_cons update visible to bnxt_start_xmit()
484 * before checking for netif_tx_queue_stopped(). Without the
485 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 * will miss it and cause the queue to be stopped forever.
487 */
488 smp_mb();
489
490 if (unlikely(netif_tx_queue_stopped(txq)) &&
491 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 __netif_tx_lock(txq, smp_processor_id());
493 if (netif_tx_queue_stopped(txq) &&
494 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 netif_tx_wake_queue(txq);
497 __netif_tx_unlock(txq);
498 }
499 }
500
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 gfp_t gfp)
503 {
504 u8 *data;
505 struct pci_dev *pdev = bp->pdev;
506
507 data = kmalloc(bp->rx_buf_size, gfp);
508 if (!data)
509 return NULL;
510
511 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513
514 if (dma_mapping_error(&pdev->dev, *mapping)) {
515 kfree(data);
516 data = NULL;
517 }
518 return data;
519 }
520
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 struct bnxt_rx_ring_info *rxr,
523 u16 prod, gfp_t gfp)
524 {
525 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 u8 *data;
528 dma_addr_t mapping;
529
530 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 if (!data)
532 return -ENOMEM;
533
534 rx_buf->data = data;
535 dma_unmap_addr_set(rx_buf, mapping, mapping);
536
537 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538
539 return 0;
540 }
541
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 u8 *data)
544 {
545 u16 prod = rxr->rx_prod;
546 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 struct rx_bd *cons_bd, *prod_bd;
548
549 prod_rx_buf = &rxr->rx_buf_ring[prod];
550 cons_rx_buf = &rxr->rx_buf_ring[cons];
551
552 prod_rx_buf->data = data;
553
554 dma_unmap_addr_set(prod_rx_buf, mapping,
555 dma_unmap_addr(cons_rx_buf, mapping));
556
557 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559
560 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 u16 next, max = rxr->rx_agg_bmap_size;
566
567 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 if (next >= max)
569 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 return next;
571 }
572
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 struct bnxt_rx_ring_info *rxr,
575 u16 prod, gfp_t gfp)
576 {
577 struct rx_bd *rxbd =
578 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 struct pci_dev *pdev = bp->pdev;
581 struct page *page;
582 dma_addr_t mapping;
583 u16 sw_prod = rxr->rx_sw_agg_prod;
584
585 page = alloc_page(gfp);
586 if (!page)
587 return -ENOMEM;
588
589 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
590 PCI_DMA_FROMDEVICE);
591 if (dma_mapping_error(&pdev->dev, mapping)) {
592 __free_page(page);
593 return -EIO;
594 }
595
596 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
597 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
598
599 __set_bit(sw_prod, rxr->rx_agg_bmap);
600 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
601 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
602
603 rx_agg_buf->page = page;
604 rx_agg_buf->mapping = mapping;
605 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
606 rxbd->rx_bd_opaque = sw_prod;
607 return 0;
608 }
609
610 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
611 u32 agg_bufs)
612 {
613 struct bnxt *bp = bnapi->bp;
614 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
615 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
616 u16 prod = rxr->rx_agg_prod;
617 u16 sw_prod = rxr->rx_sw_agg_prod;
618 u32 i;
619
620 for (i = 0; i < agg_bufs; i++) {
621 u16 cons;
622 struct rx_agg_cmp *agg;
623 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
624 struct rx_bd *prod_bd;
625 struct page *page;
626
627 agg = (struct rx_agg_cmp *)
628 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
629 cons = agg->rx_agg_cmp_opaque;
630 __clear_bit(cons, rxr->rx_agg_bmap);
631
632 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
633 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
634
635 __set_bit(sw_prod, rxr->rx_agg_bmap);
636 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
637 cons_rx_buf = &rxr->rx_agg_ring[cons];
638
639 /* It is possible for sw_prod to be equal to cons, so
640 * set cons_rx_buf->page to NULL first.
641 */
642 page = cons_rx_buf->page;
643 cons_rx_buf->page = NULL;
644 prod_rx_buf->page = page;
645
646 prod_rx_buf->mapping = cons_rx_buf->mapping;
647
648 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
649
650 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
651 prod_bd->rx_bd_opaque = sw_prod;
652
653 prod = NEXT_RX_AGG(prod);
654 sw_prod = NEXT_RX_AGG(sw_prod);
655 cp_cons = NEXT_CMP(cp_cons);
656 }
657 rxr->rx_agg_prod = prod;
658 rxr->rx_sw_agg_prod = sw_prod;
659 }
660
661 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
662 struct bnxt_rx_ring_info *rxr, u16 cons,
663 u16 prod, u8 *data, dma_addr_t dma_addr,
664 unsigned int len)
665 {
666 int err;
667 struct sk_buff *skb;
668
669 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
670 if (unlikely(err)) {
671 bnxt_reuse_rx_data(rxr, cons, data);
672 return NULL;
673 }
674
675 skb = build_skb(data, 0);
676 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
677 PCI_DMA_FROMDEVICE);
678 if (!skb) {
679 kfree(data);
680 return NULL;
681 }
682
683 skb_reserve(skb, BNXT_RX_OFFSET);
684 skb_put(skb, len);
685 return skb;
686 }
687
688 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
689 struct sk_buff *skb, u16 cp_cons,
690 u32 agg_bufs)
691 {
692 struct pci_dev *pdev = bp->pdev;
693 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
694 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
695 u16 prod = rxr->rx_agg_prod;
696 u32 i;
697
698 for (i = 0; i < agg_bufs; i++) {
699 u16 cons, frag_len;
700 struct rx_agg_cmp *agg;
701 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
702 struct page *page;
703 dma_addr_t mapping;
704
705 agg = (struct rx_agg_cmp *)
706 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
707 cons = agg->rx_agg_cmp_opaque;
708 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
709 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
710
711 cons_rx_buf = &rxr->rx_agg_ring[cons];
712 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
713 __clear_bit(cons, rxr->rx_agg_bmap);
714
715 /* It is possible for bnxt_alloc_rx_page() to allocate
716 * a sw_prod index that equals the cons index, so we
717 * need to clear the cons entry now.
718 */
719 mapping = dma_unmap_addr(cons_rx_buf, mapping);
720 page = cons_rx_buf->page;
721 cons_rx_buf->page = NULL;
722
723 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
724 struct skb_shared_info *shinfo;
725 unsigned int nr_frags;
726
727 shinfo = skb_shinfo(skb);
728 nr_frags = --shinfo->nr_frags;
729 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
730
731 dev_kfree_skb(skb);
732
733 cons_rx_buf->page = page;
734
735 /* Update prod since possibly some pages have been
736 * allocated already.
737 */
738 rxr->rx_agg_prod = prod;
739 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
740 return NULL;
741 }
742
743 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
744 PCI_DMA_FROMDEVICE);
745
746 skb->data_len += frag_len;
747 skb->len += frag_len;
748 skb->truesize += PAGE_SIZE;
749
750 prod = NEXT_RX_AGG(prod);
751 cp_cons = NEXT_CMP(cp_cons);
752 }
753 rxr->rx_agg_prod = prod;
754 return skb;
755 }
756
757 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
758 u8 agg_bufs, u32 *raw_cons)
759 {
760 u16 last;
761 struct rx_agg_cmp *agg;
762
763 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
764 last = RING_CMP(*raw_cons);
765 agg = (struct rx_agg_cmp *)
766 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
767 return RX_AGG_CMP_VALID(agg, *raw_cons);
768 }
769
770 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
771 unsigned int len,
772 dma_addr_t mapping)
773 {
774 struct bnxt *bp = bnapi->bp;
775 struct pci_dev *pdev = bp->pdev;
776 struct sk_buff *skb;
777
778 skb = napi_alloc_skb(&bnapi->napi, len);
779 if (!skb)
780 return NULL;
781
782 dma_sync_single_for_cpu(&pdev->dev, mapping,
783 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
784
785 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
786
787 dma_sync_single_for_device(&pdev->dev, mapping,
788 bp->rx_copy_thresh,
789 PCI_DMA_FROMDEVICE);
790
791 skb_put(skb, len);
792 return skb;
793 }
794
795 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
796 struct rx_tpa_start_cmp *tpa_start,
797 struct rx_tpa_start_cmp_ext *tpa_start1)
798 {
799 u8 agg_id = TPA_START_AGG_ID(tpa_start);
800 u16 cons, prod;
801 struct bnxt_tpa_info *tpa_info;
802 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
803 struct rx_bd *prod_bd;
804 dma_addr_t mapping;
805
806 cons = tpa_start->rx_tpa_start_cmp_opaque;
807 prod = rxr->rx_prod;
808 cons_rx_buf = &rxr->rx_buf_ring[cons];
809 prod_rx_buf = &rxr->rx_buf_ring[prod];
810 tpa_info = &rxr->rx_tpa[agg_id];
811
812 prod_rx_buf->data = tpa_info->data;
813
814 mapping = tpa_info->mapping;
815 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
816
817 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818
819 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
820
821 tpa_info->data = cons_rx_buf->data;
822 cons_rx_buf->data = NULL;
823 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
824
825 tpa_info->len =
826 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
827 RX_TPA_START_CMP_LEN_SHIFT;
828 if (likely(TPA_START_HASH_VALID(tpa_start))) {
829 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
830
831 tpa_info->hash_type = PKT_HASH_TYPE_L4;
832 tpa_info->gso_type = SKB_GSO_TCPV4;
833 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
834 if (hash_type == 3)
835 tpa_info->gso_type = SKB_GSO_TCPV6;
836 tpa_info->rss_hash =
837 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
838 } else {
839 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
840 tpa_info->gso_type = 0;
841 if (netif_msg_rx_err(bp))
842 netdev_warn(bp->dev, "TPA packet without valid hash\n");
843 }
844 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
845 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
846
847 rxr->rx_prod = NEXT_RX(prod);
848 cons = NEXT_RX(cons);
849 cons_rx_buf = &rxr->rx_buf_ring[cons];
850
851 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
852 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
853 cons_rx_buf->data = NULL;
854 }
855
856 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
857 u16 cp_cons, u32 agg_bufs)
858 {
859 if (agg_bufs)
860 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
861 }
862
863 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
864 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
865
866 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
867 struct rx_tpa_end_cmp *tpa_end,
868 struct rx_tpa_end_cmp_ext *tpa_end1,
869 struct sk_buff *skb)
870 {
871 #ifdef CONFIG_INET
872 struct tcphdr *th;
873 int payload_off, tcp_opt_len = 0;
874 int len, nw_off;
875 u16 segs;
876
877 segs = TPA_END_TPA_SEGS(tpa_end);
878 if (segs == 1)
879 return skb;
880
881 NAPI_GRO_CB(skb)->count = segs;
882 skb_shinfo(skb)->gso_size =
883 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
884 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
885 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
886 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
887 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
888 if (TPA_END_GRO_TS(tpa_end))
889 tcp_opt_len = 12;
890
891 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
892 struct iphdr *iph;
893
894 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
895 ETH_HLEN;
896 skb_set_network_header(skb, nw_off);
897 iph = ip_hdr(skb);
898 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
899 len = skb->len - skb_transport_offset(skb);
900 th = tcp_hdr(skb);
901 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
902 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
903 struct ipv6hdr *iph;
904
905 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
906 ETH_HLEN;
907 skb_set_network_header(skb, nw_off);
908 iph = ipv6_hdr(skb);
909 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
910 len = skb->len - skb_transport_offset(skb);
911 th = tcp_hdr(skb);
912 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
913 } else {
914 dev_kfree_skb_any(skb);
915 return NULL;
916 }
917 tcp_gro_complete(skb);
918
919 if (nw_off) { /* tunnel */
920 struct udphdr *uh = NULL;
921
922 if (skb->protocol == htons(ETH_P_IP)) {
923 struct iphdr *iph = (struct iphdr *)skb->data;
924
925 if (iph->protocol == IPPROTO_UDP)
926 uh = (struct udphdr *)(iph + 1);
927 } else {
928 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
929
930 if (iph->nexthdr == IPPROTO_UDP)
931 uh = (struct udphdr *)(iph + 1);
932 }
933 if (uh) {
934 if (uh->check)
935 skb_shinfo(skb)->gso_type |=
936 SKB_GSO_UDP_TUNNEL_CSUM;
937 else
938 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
939 }
940 }
941 #endif
942 return skb;
943 }
944
945 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
946 struct bnxt_napi *bnapi,
947 u32 *raw_cons,
948 struct rx_tpa_end_cmp *tpa_end,
949 struct rx_tpa_end_cmp_ext *tpa_end1,
950 bool *agg_event)
951 {
952 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
953 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
954 u8 agg_id = TPA_END_AGG_ID(tpa_end);
955 u8 *data, agg_bufs;
956 u16 cp_cons = RING_CMP(*raw_cons);
957 unsigned int len;
958 struct bnxt_tpa_info *tpa_info;
959 dma_addr_t mapping;
960 struct sk_buff *skb;
961
962 tpa_info = &rxr->rx_tpa[agg_id];
963 data = tpa_info->data;
964 prefetch(data);
965 len = tpa_info->len;
966 mapping = tpa_info->mapping;
967
968 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
969 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
970
971 if (agg_bufs) {
972 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
973 return ERR_PTR(-EBUSY);
974
975 *agg_event = true;
976 cp_cons = NEXT_CMP(cp_cons);
977 }
978
979 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
980 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
981 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
982 agg_bufs, (int)MAX_SKB_FRAGS);
983 return NULL;
984 }
985
986 if (len <= bp->rx_copy_thresh) {
987 skb = bnxt_copy_skb(bnapi, data, len, mapping);
988 if (!skb) {
989 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
990 return NULL;
991 }
992 } else {
993 u8 *new_data;
994 dma_addr_t new_mapping;
995
996 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
997 if (!new_data) {
998 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
999 return NULL;
1000 }
1001
1002 tpa_info->data = new_data;
1003 tpa_info->mapping = new_mapping;
1004
1005 skb = build_skb(data, 0);
1006 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1007 PCI_DMA_FROMDEVICE);
1008
1009 if (!skb) {
1010 kfree(data);
1011 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1012 return NULL;
1013 }
1014 skb_reserve(skb, BNXT_RX_OFFSET);
1015 skb_put(skb, len);
1016 }
1017
1018 if (agg_bufs) {
1019 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1020 if (!skb) {
1021 /* Page reuse already handled by bnxt_rx_pages(). */
1022 return NULL;
1023 }
1024 }
1025 skb->protocol = eth_type_trans(skb, bp->dev);
1026
1027 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1028 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1029
1030 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1031 netdev_features_t features = skb->dev->features;
1032 u16 vlan_proto = tpa_info->metadata >>
1033 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1034
1035 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1036 vlan_proto == ETH_P_8021Q) ||
1037 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1038 vlan_proto == ETH_P_8021AD)) {
1039 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1040 tpa_info->metadata &
1041 RX_CMP_FLAGS2_METADATA_VID_MASK);
1042 }
1043 }
1044
1045 skb_checksum_none_assert(skb);
1046 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1047 skb->ip_summed = CHECKSUM_UNNECESSARY;
1048 skb->csum_level =
1049 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1050 }
1051
1052 if (TPA_END_GRO(tpa_end))
1053 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1054
1055 return skb;
1056 }
1057
1058 /* returns the following:
1059 * 1 - 1 packet successfully received
1060 * 0 - successful TPA_START, packet not completed yet
1061 * -EBUSY - completion ring does not have all the agg buffers yet
1062 * -ENOMEM - packet aborted due to out of memory
1063 * -EIO - packet aborted due to hw error indicated in BD
1064 */
1065 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1066 bool *agg_event)
1067 {
1068 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1069 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1070 struct net_device *dev = bp->dev;
1071 struct rx_cmp *rxcmp;
1072 struct rx_cmp_ext *rxcmp1;
1073 u32 tmp_raw_cons = *raw_cons;
1074 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1075 struct bnxt_sw_rx_bd *rx_buf;
1076 unsigned int len;
1077 u8 *data, agg_bufs, cmp_type;
1078 dma_addr_t dma_addr;
1079 struct sk_buff *skb;
1080 int rc = 0;
1081
1082 rxcmp = (struct rx_cmp *)
1083 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1084
1085 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1086 cp_cons = RING_CMP(tmp_raw_cons);
1087 rxcmp1 = (struct rx_cmp_ext *)
1088 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1089
1090 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1091 return -EBUSY;
1092
1093 cmp_type = RX_CMP_TYPE(rxcmp);
1094
1095 prod = rxr->rx_prod;
1096
1097 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1098 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1099 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1100
1101 goto next_rx_no_prod;
1102
1103 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1104 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1105 (struct rx_tpa_end_cmp *)rxcmp,
1106 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1107 agg_event);
1108
1109 if (unlikely(IS_ERR(skb)))
1110 return -EBUSY;
1111
1112 rc = -ENOMEM;
1113 if (likely(skb)) {
1114 skb_record_rx_queue(skb, bnapi->index);
1115 skb_mark_napi_id(skb, &bnapi->napi);
1116 if (bnxt_busy_polling(bnapi))
1117 netif_receive_skb(skb);
1118 else
1119 napi_gro_receive(&bnapi->napi, skb);
1120 rc = 1;
1121 }
1122 goto next_rx_no_prod;
1123 }
1124
1125 cons = rxcmp->rx_cmp_opaque;
1126 rx_buf = &rxr->rx_buf_ring[cons];
1127 data = rx_buf->data;
1128 prefetch(data);
1129
1130 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1131 RX_CMP_AGG_BUFS_SHIFT;
1132
1133 if (agg_bufs) {
1134 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1135 return -EBUSY;
1136
1137 cp_cons = NEXT_CMP(cp_cons);
1138 *agg_event = true;
1139 }
1140
1141 rx_buf->data = NULL;
1142 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1143 bnxt_reuse_rx_data(rxr, cons, data);
1144 if (agg_bufs)
1145 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146
1147 rc = -EIO;
1148 goto next_rx;
1149 }
1150
1151 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1152 dma_addr = dma_unmap_addr(rx_buf, mapping);
1153
1154 if (len <= bp->rx_copy_thresh) {
1155 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1156 bnxt_reuse_rx_data(rxr, cons, data);
1157 if (!skb) {
1158 rc = -ENOMEM;
1159 goto next_rx;
1160 }
1161 } else {
1162 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1163 if (!skb) {
1164 rc = -ENOMEM;
1165 goto next_rx;
1166 }
1167 }
1168
1169 if (agg_bufs) {
1170 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1171 if (!skb) {
1172 rc = -ENOMEM;
1173 goto next_rx;
1174 }
1175 }
1176
1177 if (RX_CMP_HASH_VALID(rxcmp)) {
1178 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1179 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1180
1181 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1182 if (hash_type != 1 && hash_type != 3)
1183 type = PKT_HASH_TYPE_L3;
1184 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1185 }
1186
1187 skb->protocol = eth_type_trans(skb, dev);
1188
1189 if (rxcmp1->rx_cmp_flags2 &
1190 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1191 netdev_features_t features = skb->dev->features;
1192 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1193 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1194
1195 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1196 vlan_proto == ETH_P_8021Q) ||
1197 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1198 vlan_proto == ETH_P_8021AD))
1199 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1200 meta_data &
1201 RX_CMP_FLAGS2_METADATA_VID_MASK);
1202 }
1203
1204 skb_checksum_none_assert(skb);
1205 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1206 if (dev->features & NETIF_F_RXCSUM) {
1207 skb->ip_summed = CHECKSUM_UNNECESSARY;
1208 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1209 }
1210 } else {
1211 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1212 if (dev->features & NETIF_F_RXCSUM)
1213 cpr->rx_l4_csum_errors++;
1214 }
1215 }
1216
1217 skb_record_rx_queue(skb, bnapi->index);
1218 skb_mark_napi_id(skb, &bnapi->napi);
1219 if (bnxt_busy_polling(bnapi))
1220 netif_receive_skb(skb);
1221 else
1222 napi_gro_receive(&bnapi->napi, skb);
1223 rc = 1;
1224
1225 next_rx:
1226 rxr->rx_prod = NEXT_RX(prod);
1227
1228 next_rx_no_prod:
1229 *raw_cons = tmp_raw_cons;
1230
1231 return rc;
1232 }
1233
1234 static int bnxt_async_event_process(struct bnxt *bp,
1235 struct hwrm_async_event_cmpl *cmpl)
1236 {
1237 u16 event_id = le16_to_cpu(cmpl->event_id);
1238
1239 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1240 switch (event_id) {
1241 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1242 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1243 schedule_work(&bp->sp_task);
1244 break;
1245 default:
1246 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1247 event_id);
1248 break;
1249 }
1250 return 0;
1251 }
1252
1253 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1254 {
1255 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1256 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1257 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1258 (struct hwrm_fwd_req_cmpl *)txcmp;
1259
1260 switch (cmpl_type) {
1261 case CMPL_BASE_TYPE_HWRM_DONE:
1262 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1263 if (seq_id == bp->hwrm_intr_seq_id)
1264 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1265 else
1266 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1267 break;
1268
1269 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1270 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1271
1272 if ((vf_id < bp->pf.first_vf_id) ||
1273 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1274 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1275 vf_id);
1276 return -EINVAL;
1277 }
1278
1279 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1280 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1281 schedule_work(&bp->sp_task);
1282 break;
1283
1284 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1285 bnxt_async_event_process(bp,
1286 (struct hwrm_async_event_cmpl *)txcmp);
1287
1288 default:
1289 break;
1290 }
1291
1292 return 0;
1293 }
1294
1295 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1296 {
1297 struct bnxt_napi *bnapi = dev_instance;
1298 struct bnxt *bp = bnapi->bp;
1299 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1300 u32 cons = RING_CMP(cpr->cp_raw_cons);
1301
1302 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1303 napi_schedule(&bnapi->napi);
1304 return IRQ_HANDLED;
1305 }
1306
1307 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1308 {
1309 u32 raw_cons = cpr->cp_raw_cons;
1310 u16 cons = RING_CMP(raw_cons);
1311 struct tx_cmp *txcmp;
1312
1313 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1314
1315 return TX_CMP_VALID(txcmp, raw_cons);
1316 }
1317
1318 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1319 {
1320 struct bnxt_napi *bnapi = dev_instance;
1321 struct bnxt *bp = bnapi->bp;
1322 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1323 u32 cons = RING_CMP(cpr->cp_raw_cons);
1324 u32 int_status;
1325
1326 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1327
1328 if (!bnxt_has_work(bp, cpr)) {
1329 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1330 /* return if erroneous interrupt */
1331 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1332 return IRQ_NONE;
1333 }
1334
1335 /* disable ring IRQ */
1336 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1337
1338 /* Return here if interrupt is shared and is disabled. */
1339 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1340 return IRQ_HANDLED;
1341
1342 napi_schedule(&bnapi->napi);
1343 return IRQ_HANDLED;
1344 }
1345
1346 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1347 {
1348 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1349 u32 raw_cons = cpr->cp_raw_cons;
1350 u32 cons;
1351 int tx_pkts = 0;
1352 int rx_pkts = 0;
1353 bool rx_event = false;
1354 bool agg_event = false;
1355 struct tx_cmp *txcmp;
1356
1357 while (1) {
1358 int rc;
1359
1360 cons = RING_CMP(raw_cons);
1361 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1362
1363 if (!TX_CMP_VALID(txcmp, raw_cons))
1364 break;
1365
1366 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1367 tx_pkts++;
1368 /* return full budget so NAPI will complete. */
1369 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1370 rx_pkts = budget;
1371 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1372 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1373 if (likely(rc >= 0))
1374 rx_pkts += rc;
1375 else if (rc == -EBUSY) /* partial completion */
1376 break;
1377 rx_event = true;
1378 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1379 CMPL_BASE_TYPE_HWRM_DONE) ||
1380 (TX_CMP_TYPE(txcmp) ==
1381 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1382 (TX_CMP_TYPE(txcmp) ==
1383 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1384 bnxt_hwrm_handler(bp, txcmp);
1385 }
1386 raw_cons = NEXT_RAW_CMP(raw_cons);
1387
1388 if (rx_pkts == budget)
1389 break;
1390 }
1391
1392 cpr->cp_raw_cons = raw_cons;
1393 /* ACK completion ring before freeing tx ring and producing new
1394 * buffers in rx/agg rings to prevent overflowing the completion
1395 * ring.
1396 */
1397 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1398
1399 if (tx_pkts)
1400 bnxt_tx_int(bp, bnapi, tx_pkts);
1401
1402 if (rx_event) {
1403 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1404
1405 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1406 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1407 if (agg_event) {
1408 writel(DB_KEY_RX | rxr->rx_agg_prod,
1409 rxr->rx_agg_doorbell);
1410 writel(DB_KEY_RX | rxr->rx_agg_prod,
1411 rxr->rx_agg_doorbell);
1412 }
1413 }
1414 return rx_pkts;
1415 }
1416
1417 static int bnxt_poll(struct napi_struct *napi, int budget)
1418 {
1419 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1420 struct bnxt *bp = bnapi->bp;
1421 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1422 int work_done = 0;
1423
1424 if (!bnxt_lock_napi(bnapi))
1425 return budget;
1426
1427 while (1) {
1428 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1429
1430 if (work_done >= budget)
1431 break;
1432
1433 if (!bnxt_has_work(bp, cpr)) {
1434 napi_complete(napi);
1435 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1436 break;
1437 }
1438 }
1439 mmiowb();
1440 bnxt_unlock_napi(bnapi);
1441 return work_done;
1442 }
1443
1444 #ifdef CONFIG_NET_RX_BUSY_POLL
1445 static int bnxt_busy_poll(struct napi_struct *napi)
1446 {
1447 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1448 struct bnxt *bp = bnapi->bp;
1449 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1450 int rx_work, budget = 4;
1451
1452 if (atomic_read(&bp->intr_sem) != 0)
1453 return LL_FLUSH_FAILED;
1454
1455 if (!bnxt_lock_poll(bnapi))
1456 return LL_FLUSH_BUSY;
1457
1458 rx_work = bnxt_poll_work(bp, bnapi, budget);
1459
1460 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1461
1462 bnxt_unlock_poll(bnapi);
1463 return rx_work;
1464 }
1465 #endif
1466
1467 static void bnxt_free_tx_skbs(struct bnxt *bp)
1468 {
1469 int i, max_idx;
1470 struct pci_dev *pdev = bp->pdev;
1471
1472 if (!bp->tx_ring)
1473 return;
1474
1475 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1476 for (i = 0; i < bp->tx_nr_rings; i++) {
1477 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1478 int j;
1479
1480 for (j = 0; j < max_idx;) {
1481 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1482 struct sk_buff *skb = tx_buf->skb;
1483 int k, last;
1484
1485 if (!skb) {
1486 j++;
1487 continue;
1488 }
1489
1490 tx_buf->skb = NULL;
1491
1492 if (tx_buf->is_push) {
1493 dev_kfree_skb(skb);
1494 j += 2;
1495 continue;
1496 }
1497
1498 dma_unmap_single(&pdev->dev,
1499 dma_unmap_addr(tx_buf, mapping),
1500 skb_headlen(skb),
1501 PCI_DMA_TODEVICE);
1502
1503 last = tx_buf->nr_frags;
1504 j += 2;
1505 for (k = 0; k < last; k++, j++) {
1506 int ring_idx = j & bp->tx_ring_mask;
1507 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1508
1509 tx_buf = &txr->tx_buf_ring[ring_idx];
1510 dma_unmap_page(
1511 &pdev->dev,
1512 dma_unmap_addr(tx_buf, mapping),
1513 skb_frag_size(frag), PCI_DMA_TODEVICE);
1514 }
1515 dev_kfree_skb(skb);
1516 }
1517 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1518 }
1519 }
1520
1521 static void bnxt_free_rx_skbs(struct bnxt *bp)
1522 {
1523 int i, max_idx, max_agg_idx;
1524 struct pci_dev *pdev = bp->pdev;
1525
1526 if (!bp->rx_ring)
1527 return;
1528
1529 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1530 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1531 for (i = 0; i < bp->rx_nr_rings; i++) {
1532 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1533 int j;
1534
1535 if (rxr->rx_tpa) {
1536 for (j = 0; j < MAX_TPA; j++) {
1537 struct bnxt_tpa_info *tpa_info =
1538 &rxr->rx_tpa[j];
1539 u8 *data = tpa_info->data;
1540
1541 if (!data)
1542 continue;
1543
1544 dma_unmap_single(
1545 &pdev->dev,
1546 dma_unmap_addr(tpa_info, mapping),
1547 bp->rx_buf_use_size,
1548 PCI_DMA_FROMDEVICE);
1549
1550 tpa_info->data = NULL;
1551
1552 kfree(data);
1553 }
1554 }
1555
1556 for (j = 0; j < max_idx; j++) {
1557 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1558 u8 *data = rx_buf->data;
1559
1560 if (!data)
1561 continue;
1562
1563 dma_unmap_single(&pdev->dev,
1564 dma_unmap_addr(rx_buf, mapping),
1565 bp->rx_buf_use_size,
1566 PCI_DMA_FROMDEVICE);
1567
1568 rx_buf->data = NULL;
1569
1570 kfree(data);
1571 }
1572
1573 for (j = 0; j < max_agg_idx; j++) {
1574 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1575 &rxr->rx_agg_ring[j];
1576 struct page *page = rx_agg_buf->page;
1577
1578 if (!page)
1579 continue;
1580
1581 dma_unmap_page(&pdev->dev,
1582 dma_unmap_addr(rx_agg_buf, mapping),
1583 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1584
1585 rx_agg_buf->page = NULL;
1586 __clear_bit(j, rxr->rx_agg_bmap);
1587
1588 __free_page(page);
1589 }
1590 }
1591 }
1592
1593 static void bnxt_free_skbs(struct bnxt *bp)
1594 {
1595 bnxt_free_tx_skbs(bp);
1596 bnxt_free_rx_skbs(bp);
1597 }
1598
1599 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1600 {
1601 struct pci_dev *pdev = bp->pdev;
1602 int i;
1603
1604 for (i = 0; i < ring->nr_pages; i++) {
1605 if (!ring->pg_arr[i])
1606 continue;
1607
1608 dma_free_coherent(&pdev->dev, ring->page_size,
1609 ring->pg_arr[i], ring->dma_arr[i]);
1610
1611 ring->pg_arr[i] = NULL;
1612 }
1613 if (ring->pg_tbl) {
1614 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1615 ring->pg_tbl, ring->pg_tbl_map);
1616 ring->pg_tbl = NULL;
1617 }
1618 if (ring->vmem_size && *ring->vmem) {
1619 vfree(*ring->vmem);
1620 *ring->vmem = NULL;
1621 }
1622 }
1623
1624 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1625 {
1626 int i;
1627 struct pci_dev *pdev = bp->pdev;
1628
1629 if (ring->nr_pages > 1) {
1630 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1631 ring->nr_pages * 8,
1632 &ring->pg_tbl_map,
1633 GFP_KERNEL);
1634 if (!ring->pg_tbl)
1635 return -ENOMEM;
1636 }
1637
1638 for (i = 0; i < ring->nr_pages; i++) {
1639 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1640 ring->page_size,
1641 &ring->dma_arr[i],
1642 GFP_KERNEL);
1643 if (!ring->pg_arr[i])
1644 return -ENOMEM;
1645
1646 if (ring->nr_pages > 1)
1647 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1648 }
1649
1650 if (ring->vmem_size) {
1651 *ring->vmem = vzalloc(ring->vmem_size);
1652 if (!(*ring->vmem))
1653 return -ENOMEM;
1654 }
1655 return 0;
1656 }
1657
1658 static void bnxt_free_rx_rings(struct bnxt *bp)
1659 {
1660 int i;
1661
1662 if (!bp->rx_ring)
1663 return;
1664
1665 for (i = 0; i < bp->rx_nr_rings; i++) {
1666 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1667 struct bnxt_ring_struct *ring;
1668
1669 kfree(rxr->rx_tpa);
1670 rxr->rx_tpa = NULL;
1671
1672 kfree(rxr->rx_agg_bmap);
1673 rxr->rx_agg_bmap = NULL;
1674
1675 ring = &rxr->rx_ring_struct;
1676 bnxt_free_ring(bp, ring);
1677
1678 ring = &rxr->rx_agg_ring_struct;
1679 bnxt_free_ring(bp, ring);
1680 }
1681 }
1682
1683 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1684 {
1685 int i, rc, agg_rings = 0, tpa_rings = 0;
1686
1687 if (!bp->rx_ring)
1688 return -ENOMEM;
1689
1690 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1691 agg_rings = 1;
1692
1693 if (bp->flags & BNXT_FLAG_TPA)
1694 tpa_rings = 1;
1695
1696 for (i = 0; i < bp->rx_nr_rings; i++) {
1697 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1698 struct bnxt_ring_struct *ring;
1699
1700 ring = &rxr->rx_ring_struct;
1701
1702 rc = bnxt_alloc_ring(bp, ring);
1703 if (rc)
1704 return rc;
1705
1706 if (agg_rings) {
1707 u16 mem_size;
1708
1709 ring = &rxr->rx_agg_ring_struct;
1710 rc = bnxt_alloc_ring(bp, ring);
1711 if (rc)
1712 return rc;
1713
1714 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1715 mem_size = rxr->rx_agg_bmap_size / 8;
1716 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1717 if (!rxr->rx_agg_bmap)
1718 return -ENOMEM;
1719
1720 if (tpa_rings) {
1721 rxr->rx_tpa = kcalloc(MAX_TPA,
1722 sizeof(struct bnxt_tpa_info),
1723 GFP_KERNEL);
1724 if (!rxr->rx_tpa)
1725 return -ENOMEM;
1726 }
1727 }
1728 }
1729 return 0;
1730 }
1731
1732 static void bnxt_free_tx_rings(struct bnxt *bp)
1733 {
1734 int i;
1735 struct pci_dev *pdev = bp->pdev;
1736
1737 if (!bp->tx_ring)
1738 return;
1739
1740 for (i = 0; i < bp->tx_nr_rings; i++) {
1741 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1742 struct bnxt_ring_struct *ring;
1743
1744 if (txr->tx_push) {
1745 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1746 txr->tx_push, txr->tx_push_mapping);
1747 txr->tx_push = NULL;
1748 }
1749
1750 ring = &txr->tx_ring_struct;
1751
1752 bnxt_free_ring(bp, ring);
1753 }
1754 }
1755
1756 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1757 {
1758 int i, j, rc;
1759 struct pci_dev *pdev = bp->pdev;
1760
1761 bp->tx_push_size = 0;
1762 if (bp->tx_push_thresh) {
1763 int push_size;
1764
1765 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1766 bp->tx_push_thresh);
1767
1768 if (push_size > 256) {
1769 push_size = 0;
1770 bp->tx_push_thresh = 0;
1771 }
1772
1773 bp->tx_push_size = push_size;
1774 }
1775
1776 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1777 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1778 struct bnxt_ring_struct *ring;
1779
1780 ring = &txr->tx_ring_struct;
1781
1782 rc = bnxt_alloc_ring(bp, ring);
1783 if (rc)
1784 return rc;
1785
1786 if (bp->tx_push_size) {
1787 dma_addr_t mapping;
1788
1789 /* One pre-allocated DMA buffer to backup
1790 * TX push operation
1791 */
1792 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1793 bp->tx_push_size,
1794 &txr->tx_push_mapping,
1795 GFP_KERNEL);
1796
1797 if (!txr->tx_push)
1798 return -ENOMEM;
1799
1800 mapping = txr->tx_push_mapping +
1801 sizeof(struct tx_push_bd);
1802 txr->data_mapping = cpu_to_le64(mapping);
1803
1804 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1805 }
1806 ring->queue_id = bp->q_info[j].queue_id;
1807 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1808 j++;
1809 }
1810 return 0;
1811 }
1812
1813 static void bnxt_free_cp_rings(struct bnxt *bp)
1814 {
1815 int i;
1816
1817 if (!bp->bnapi)
1818 return;
1819
1820 for (i = 0; i < bp->cp_nr_rings; i++) {
1821 struct bnxt_napi *bnapi = bp->bnapi[i];
1822 struct bnxt_cp_ring_info *cpr;
1823 struct bnxt_ring_struct *ring;
1824
1825 if (!bnapi)
1826 continue;
1827
1828 cpr = &bnapi->cp_ring;
1829 ring = &cpr->cp_ring_struct;
1830
1831 bnxt_free_ring(bp, ring);
1832 }
1833 }
1834
1835 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1836 {
1837 int i, rc;
1838
1839 for (i = 0; i < bp->cp_nr_rings; i++) {
1840 struct bnxt_napi *bnapi = bp->bnapi[i];
1841 struct bnxt_cp_ring_info *cpr;
1842 struct bnxt_ring_struct *ring;
1843
1844 if (!bnapi)
1845 continue;
1846
1847 cpr = &bnapi->cp_ring;
1848 ring = &cpr->cp_ring_struct;
1849
1850 rc = bnxt_alloc_ring(bp, ring);
1851 if (rc)
1852 return rc;
1853 }
1854 return 0;
1855 }
1856
1857 static void bnxt_init_ring_struct(struct bnxt *bp)
1858 {
1859 int i;
1860
1861 for (i = 0; i < bp->cp_nr_rings; i++) {
1862 struct bnxt_napi *bnapi = bp->bnapi[i];
1863 struct bnxt_cp_ring_info *cpr;
1864 struct bnxt_rx_ring_info *rxr;
1865 struct bnxt_tx_ring_info *txr;
1866 struct bnxt_ring_struct *ring;
1867
1868 if (!bnapi)
1869 continue;
1870
1871 cpr = &bnapi->cp_ring;
1872 ring = &cpr->cp_ring_struct;
1873 ring->nr_pages = bp->cp_nr_pages;
1874 ring->page_size = HW_CMPD_RING_SIZE;
1875 ring->pg_arr = (void **)cpr->cp_desc_ring;
1876 ring->dma_arr = cpr->cp_desc_mapping;
1877 ring->vmem_size = 0;
1878
1879 rxr = bnapi->rx_ring;
1880 if (!rxr)
1881 goto skip_rx;
1882
1883 ring = &rxr->rx_ring_struct;
1884 ring->nr_pages = bp->rx_nr_pages;
1885 ring->page_size = HW_RXBD_RING_SIZE;
1886 ring->pg_arr = (void **)rxr->rx_desc_ring;
1887 ring->dma_arr = rxr->rx_desc_mapping;
1888 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1889 ring->vmem = (void **)&rxr->rx_buf_ring;
1890
1891 ring = &rxr->rx_agg_ring_struct;
1892 ring->nr_pages = bp->rx_agg_nr_pages;
1893 ring->page_size = HW_RXBD_RING_SIZE;
1894 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1895 ring->dma_arr = rxr->rx_agg_desc_mapping;
1896 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1897 ring->vmem = (void **)&rxr->rx_agg_ring;
1898
1899 skip_rx:
1900 txr = bnapi->tx_ring;
1901 if (!txr)
1902 continue;
1903
1904 ring = &txr->tx_ring_struct;
1905 ring->nr_pages = bp->tx_nr_pages;
1906 ring->page_size = HW_RXBD_RING_SIZE;
1907 ring->pg_arr = (void **)txr->tx_desc_ring;
1908 ring->dma_arr = txr->tx_desc_mapping;
1909 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1910 ring->vmem = (void **)&txr->tx_buf_ring;
1911 }
1912 }
1913
1914 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1915 {
1916 int i;
1917 u32 prod;
1918 struct rx_bd **rx_buf_ring;
1919
1920 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1921 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1922 int j;
1923 struct rx_bd *rxbd;
1924
1925 rxbd = rx_buf_ring[i];
1926 if (!rxbd)
1927 continue;
1928
1929 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1930 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1931 rxbd->rx_bd_opaque = prod;
1932 }
1933 }
1934 }
1935
1936 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1937 {
1938 struct net_device *dev = bp->dev;
1939 struct bnxt_rx_ring_info *rxr;
1940 struct bnxt_ring_struct *ring;
1941 u32 prod, type;
1942 int i;
1943
1944 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1945 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1946
1947 if (NET_IP_ALIGN == 2)
1948 type |= RX_BD_FLAGS_SOP;
1949
1950 rxr = &bp->rx_ring[ring_nr];
1951 ring = &rxr->rx_ring_struct;
1952 bnxt_init_rxbd_pages(ring, type);
1953
1954 prod = rxr->rx_prod;
1955 for (i = 0; i < bp->rx_ring_size; i++) {
1956 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1957 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1958 ring_nr, i, bp->rx_ring_size);
1959 break;
1960 }
1961 prod = NEXT_RX(prod);
1962 }
1963 rxr->rx_prod = prod;
1964 ring->fw_ring_id = INVALID_HW_RING_ID;
1965
1966 ring = &rxr->rx_agg_ring_struct;
1967 ring->fw_ring_id = INVALID_HW_RING_ID;
1968
1969 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1970 return 0;
1971
1972 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1973 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1974
1975 bnxt_init_rxbd_pages(ring, type);
1976
1977 prod = rxr->rx_agg_prod;
1978 for (i = 0; i < bp->rx_agg_ring_size; i++) {
1979 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1980 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1981 ring_nr, i, bp->rx_ring_size);
1982 break;
1983 }
1984 prod = NEXT_RX_AGG(prod);
1985 }
1986 rxr->rx_agg_prod = prod;
1987
1988 if (bp->flags & BNXT_FLAG_TPA) {
1989 if (rxr->rx_tpa) {
1990 u8 *data;
1991 dma_addr_t mapping;
1992
1993 for (i = 0; i < MAX_TPA; i++) {
1994 data = __bnxt_alloc_rx_data(bp, &mapping,
1995 GFP_KERNEL);
1996 if (!data)
1997 return -ENOMEM;
1998
1999 rxr->rx_tpa[i].data = data;
2000 rxr->rx_tpa[i].mapping = mapping;
2001 }
2002 } else {
2003 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2004 return -ENOMEM;
2005 }
2006 }
2007
2008 return 0;
2009 }
2010
2011 static int bnxt_init_rx_rings(struct bnxt *bp)
2012 {
2013 int i, rc = 0;
2014
2015 for (i = 0; i < bp->rx_nr_rings; i++) {
2016 rc = bnxt_init_one_rx_ring(bp, i);
2017 if (rc)
2018 break;
2019 }
2020
2021 return rc;
2022 }
2023
2024 static int bnxt_init_tx_rings(struct bnxt *bp)
2025 {
2026 u16 i;
2027
2028 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2029 MAX_SKB_FRAGS + 1);
2030
2031 for (i = 0; i < bp->tx_nr_rings; i++) {
2032 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2033 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2034
2035 ring->fw_ring_id = INVALID_HW_RING_ID;
2036 }
2037
2038 return 0;
2039 }
2040
2041 static void bnxt_free_ring_grps(struct bnxt *bp)
2042 {
2043 kfree(bp->grp_info);
2044 bp->grp_info = NULL;
2045 }
2046
2047 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2048 {
2049 int i;
2050
2051 if (irq_re_init) {
2052 bp->grp_info = kcalloc(bp->cp_nr_rings,
2053 sizeof(struct bnxt_ring_grp_info),
2054 GFP_KERNEL);
2055 if (!bp->grp_info)
2056 return -ENOMEM;
2057 }
2058 for (i = 0; i < bp->cp_nr_rings; i++) {
2059 if (irq_re_init)
2060 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2061 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2062 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2063 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2064 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2065 }
2066 return 0;
2067 }
2068
2069 static void bnxt_free_vnics(struct bnxt *bp)
2070 {
2071 kfree(bp->vnic_info);
2072 bp->vnic_info = NULL;
2073 bp->nr_vnics = 0;
2074 }
2075
2076 static int bnxt_alloc_vnics(struct bnxt *bp)
2077 {
2078 int num_vnics = 1;
2079
2080 #ifdef CONFIG_RFS_ACCEL
2081 if (bp->flags & BNXT_FLAG_RFS)
2082 num_vnics += bp->rx_nr_rings;
2083 #endif
2084
2085 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2086 GFP_KERNEL);
2087 if (!bp->vnic_info)
2088 return -ENOMEM;
2089
2090 bp->nr_vnics = num_vnics;
2091 return 0;
2092 }
2093
2094 static void bnxt_init_vnics(struct bnxt *bp)
2095 {
2096 int i;
2097
2098 for (i = 0; i < bp->nr_vnics; i++) {
2099 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2100
2101 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2102 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2103 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2104
2105 if (bp->vnic_info[i].rss_hash_key) {
2106 if (i == 0)
2107 prandom_bytes(vnic->rss_hash_key,
2108 HW_HASH_KEY_SIZE);
2109 else
2110 memcpy(vnic->rss_hash_key,
2111 bp->vnic_info[0].rss_hash_key,
2112 HW_HASH_KEY_SIZE);
2113 }
2114 }
2115 }
2116
2117 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2118 {
2119 int pages;
2120
2121 pages = ring_size / desc_per_pg;
2122
2123 if (!pages)
2124 return 1;
2125
2126 pages++;
2127
2128 while (pages & (pages - 1))
2129 pages++;
2130
2131 return pages;
2132 }
2133
2134 static void bnxt_set_tpa_flags(struct bnxt *bp)
2135 {
2136 bp->flags &= ~BNXT_FLAG_TPA;
2137 if (bp->dev->features & NETIF_F_LRO)
2138 bp->flags |= BNXT_FLAG_LRO;
2139 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2140 bp->flags |= BNXT_FLAG_GRO;
2141 }
2142
2143 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2144 * be set on entry.
2145 */
2146 void bnxt_set_ring_params(struct bnxt *bp)
2147 {
2148 u32 ring_size, rx_size, rx_space;
2149 u32 agg_factor = 0, agg_ring_size = 0;
2150
2151 /* 8 for CRC and VLAN */
2152 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2153
2154 rx_space = rx_size + NET_SKB_PAD +
2155 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2156
2157 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2158 ring_size = bp->rx_ring_size;
2159 bp->rx_agg_ring_size = 0;
2160 bp->rx_agg_nr_pages = 0;
2161
2162 if (bp->flags & BNXT_FLAG_TPA)
2163 agg_factor = 4;
2164
2165 bp->flags &= ~BNXT_FLAG_JUMBO;
2166 if (rx_space > PAGE_SIZE) {
2167 u32 jumbo_factor;
2168
2169 bp->flags |= BNXT_FLAG_JUMBO;
2170 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2171 if (jumbo_factor > agg_factor)
2172 agg_factor = jumbo_factor;
2173 }
2174 agg_ring_size = ring_size * agg_factor;
2175
2176 if (agg_ring_size) {
2177 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2178 RX_DESC_CNT);
2179 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2180 u32 tmp = agg_ring_size;
2181
2182 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2183 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2184 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2185 tmp, agg_ring_size);
2186 }
2187 bp->rx_agg_ring_size = agg_ring_size;
2188 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2189 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2190 rx_space = rx_size + NET_SKB_PAD +
2191 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2192 }
2193
2194 bp->rx_buf_use_size = rx_size;
2195 bp->rx_buf_size = rx_space;
2196
2197 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2198 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2199
2200 ring_size = bp->tx_ring_size;
2201 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2202 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2203
2204 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2205 bp->cp_ring_size = ring_size;
2206
2207 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2208 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2209 bp->cp_nr_pages = MAX_CP_PAGES;
2210 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2211 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2212 ring_size, bp->cp_ring_size);
2213 }
2214 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2215 bp->cp_ring_mask = bp->cp_bit - 1;
2216 }
2217
2218 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2219 {
2220 int i;
2221 struct bnxt_vnic_info *vnic;
2222 struct pci_dev *pdev = bp->pdev;
2223
2224 if (!bp->vnic_info)
2225 return;
2226
2227 for (i = 0; i < bp->nr_vnics; i++) {
2228 vnic = &bp->vnic_info[i];
2229
2230 kfree(vnic->fw_grp_ids);
2231 vnic->fw_grp_ids = NULL;
2232
2233 kfree(vnic->uc_list);
2234 vnic->uc_list = NULL;
2235
2236 if (vnic->mc_list) {
2237 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2238 vnic->mc_list, vnic->mc_list_mapping);
2239 vnic->mc_list = NULL;
2240 }
2241
2242 if (vnic->rss_table) {
2243 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2244 vnic->rss_table,
2245 vnic->rss_table_dma_addr);
2246 vnic->rss_table = NULL;
2247 }
2248
2249 vnic->rss_hash_key = NULL;
2250 vnic->flags = 0;
2251 }
2252 }
2253
2254 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2255 {
2256 int i, rc = 0, size;
2257 struct bnxt_vnic_info *vnic;
2258 struct pci_dev *pdev = bp->pdev;
2259 int max_rings;
2260
2261 for (i = 0; i < bp->nr_vnics; i++) {
2262 vnic = &bp->vnic_info[i];
2263
2264 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2265 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2266
2267 if (mem_size > 0) {
2268 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2269 if (!vnic->uc_list) {
2270 rc = -ENOMEM;
2271 goto out;
2272 }
2273 }
2274 }
2275
2276 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2277 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2278 vnic->mc_list =
2279 dma_alloc_coherent(&pdev->dev,
2280 vnic->mc_list_size,
2281 &vnic->mc_list_mapping,
2282 GFP_KERNEL);
2283 if (!vnic->mc_list) {
2284 rc = -ENOMEM;
2285 goto out;
2286 }
2287 }
2288
2289 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2290 max_rings = bp->rx_nr_rings;
2291 else
2292 max_rings = 1;
2293
2294 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2295 if (!vnic->fw_grp_ids) {
2296 rc = -ENOMEM;
2297 goto out;
2298 }
2299
2300 /* Allocate rss table and hash key */
2301 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2302 &vnic->rss_table_dma_addr,
2303 GFP_KERNEL);
2304 if (!vnic->rss_table) {
2305 rc = -ENOMEM;
2306 goto out;
2307 }
2308
2309 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2310
2311 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2312 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2313 }
2314 return 0;
2315
2316 out:
2317 return rc;
2318 }
2319
2320 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2321 {
2322 struct pci_dev *pdev = bp->pdev;
2323
2324 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2325 bp->hwrm_cmd_resp_dma_addr);
2326
2327 bp->hwrm_cmd_resp_addr = NULL;
2328 if (bp->hwrm_dbg_resp_addr) {
2329 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2330 bp->hwrm_dbg_resp_addr,
2331 bp->hwrm_dbg_resp_dma_addr);
2332
2333 bp->hwrm_dbg_resp_addr = NULL;
2334 }
2335 }
2336
2337 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2338 {
2339 struct pci_dev *pdev = bp->pdev;
2340
2341 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2342 &bp->hwrm_cmd_resp_dma_addr,
2343 GFP_KERNEL);
2344 if (!bp->hwrm_cmd_resp_addr)
2345 return -ENOMEM;
2346 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2347 HWRM_DBG_REG_BUF_SIZE,
2348 &bp->hwrm_dbg_resp_dma_addr,
2349 GFP_KERNEL);
2350 if (!bp->hwrm_dbg_resp_addr)
2351 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2352
2353 return 0;
2354 }
2355
2356 static void bnxt_free_stats(struct bnxt *bp)
2357 {
2358 u32 size, i;
2359 struct pci_dev *pdev = bp->pdev;
2360
2361 if (!bp->bnapi)
2362 return;
2363
2364 size = sizeof(struct ctx_hw_stats);
2365
2366 for (i = 0; i < bp->cp_nr_rings; i++) {
2367 struct bnxt_napi *bnapi = bp->bnapi[i];
2368 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2369
2370 if (cpr->hw_stats) {
2371 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2372 cpr->hw_stats_map);
2373 cpr->hw_stats = NULL;
2374 }
2375 }
2376 }
2377
2378 static int bnxt_alloc_stats(struct bnxt *bp)
2379 {
2380 u32 size, i;
2381 struct pci_dev *pdev = bp->pdev;
2382
2383 size = sizeof(struct ctx_hw_stats);
2384
2385 for (i = 0; i < bp->cp_nr_rings; i++) {
2386 struct bnxt_napi *bnapi = bp->bnapi[i];
2387 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2388
2389 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2390 &cpr->hw_stats_map,
2391 GFP_KERNEL);
2392 if (!cpr->hw_stats)
2393 return -ENOMEM;
2394
2395 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2396 }
2397 return 0;
2398 }
2399
2400 static void bnxt_clear_ring_indices(struct bnxt *bp)
2401 {
2402 int i;
2403
2404 if (!bp->bnapi)
2405 return;
2406
2407 for (i = 0; i < bp->cp_nr_rings; i++) {
2408 struct bnxt_napi *bnapi = bp->bnapi[i];
2409 struct bnxt_cp_ring_info *cpr;
2410 struct bnxt_rx_ring_info *rxr;
2411 struct bnxt_tx_ring_info *txr;
2412
2413 if (!bnapi)
2414 continue;
2415
2416 cpr = &bnapi->cp_ring;
2417 cpr->cp_raw_cons = 0;
2418
2419 txr = bnapi->tx_ring;
2420 if (txr) {
2421 txr->tx_prod = 0;
2422 txr->tx_cons = 0;
2423 }
2424
2425 rxr = bnapi->rx_ring;
2426 if (rxr) {
2427 rxr->rx_prod = 0;
2428 rxr->rx_agg_prod = 0;
2429 rxr->rx_sw_agg_prod = 0;
2430 }
2431 }
2432 }
2433
2434 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2435 {
2436 #ifdef CONFIG_RFS_ACCEL
2437 int i;
2438
2439 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2440 * safe to delete the hash table.
2441 */
2442 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2443 struct hlist_head *head;
2444 struct hlist_node *tmp;
2445 struct bnxt_ntuple_filter *fltr;
2446
2447 head = &bp->ntp_fltr_hash_tbl[i];
2448 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2449 hlist_del(&fltr->hash);
2450 kfree(fltr);
2451 }
2452 }
2453 if (irq_reinit) {
2454 kfree(bp->ntp_fltr_bmap);
2455 bp->ntp_fltr_bmap = NULL;
2456 }
2457 bp->ntp_fltr_count = 0;
2458 #endif
2459 }
2460
2461 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2462 {
2463 #ifdef CONFIG_RFS_ACCEL
2464 int i, rc = 0;
2465
2466 if (!(bp->flags & BNXT_FLAG_RFS))
2467 return 0;
2468
2469 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2470 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2471
2472 bp->ntp_fltr_count = 0;
2473 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2474 GFP_KERNEL);
2475
2476 if (!bp->ntp_fltr_bmap)
2477 rc = -ENOMEM;
2478
2479 return rc;
2480 #else
2481 return 0;
2482 #endif
2483 }
2484
2485 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2486 {
2487 bnxt_free_vnic_attributes(bp);
2488 bnxt_free_tx_rings(bp);
2489 bnxt_free_rx_rings(bp);
2490 bnxt_free_cp_rings(bp);
2491 bnxt_free_ntp_fltrs(bp, irq_re_init);
2492 if (irq_re_init) {
2493 bnxt_free_stats(bp);
2494 bnxt_free_ring_grps(bp);
2495 bnxt_free_vnics(bp);
2496 kfree(bp->tx_ring);
2497 bp->tx_ring = NULL;
2498 kfree(bp->rx_ring);
2499 bp->rx_ring = NULL;
2500 kfree(bp->bnapi);
2501 bp->bnapi = NULL;
2502 } else {
2503 bnxt_clear_ring_indices(bp);
2504 }
2505 }
2506
2507 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2508 {
2509 int i, j, rc, size, arr_size;
2510 void *bnapi;
2511
2512 if (irq_re_init) {
2513 /* Allocate bnapi mem pointer array and mem block for
2514 * all queues
2515 */
2516 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2517 bp->cp_nr_rings);
2518 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2519 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2520 if (!bnapi)
2521 return -ENOMEM;
2522
2523 bp->bnapi = bnapi;
2524 bnapi += arr_size;
2525 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2526 bp->bnapi[i] = bnapi;
2527 bp->bnapi[i]->index = i;
2528 bp->bnapi[i]->bp = bp;
2529 }
2530
2531 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2532 sizeof(struct bnxt_rx_ring_info),
2533 GFP_KERNEL);
2534 if (!bp->rx_ring)
2535 return -ENOMEM;
2536
2537 for (i = 0; i < bp->rx_nr_rings; i++) {
2538 bp->rx_ring[i].bnapi = bp->bnapi[i];
2539 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2540 }
2541
2542 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2543 sizeof(struct bnxt_tx_ring_info),
2544 GFP_KERNEL);
2545 if (!bp->tx_ring)
2546 return -ENOMEM;
2547
2548 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2549 j = 0;
2550 else
2551 j = bp->rx_nr_rings;
2552
2553 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2554 bp->tx_ring[i].bnapi = bp->bnapi[j];
2555 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2556 }
2557
2558 rc = bnxt_alloc_stats(bp);
2559 if (rc)
2560 goto alloc_mem_err;
2561
2562 rc = bnxt_alloc_ntp_fltrs(bp);
2563 if (rc)
2564 goto alloc_mem_err;
2565
2566 rc = bnxt_alloc_vnics(bp);
2567 if (rc)
2568 goto alloc_mem_err;
2569 }
2570
2571 bnxt_init_ring_struct(bp);
2572
2573 rc = bnxt_alloc_rx_rings(bp);
2574 if (rc)
2575 goto alloc_mem_err;
2576
2577 rc = bnxt_alloc_tx_rings(bp);
2578 if (rc)
2579 goto alloc_mem_err;
2580
2581 rc = bnxt_alloc_cp_rings(bp);
2582 if (rc)
2583 goto alloc_mem_err;
2584
2585 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2586 BNXT_VNIC_UCAST_FLAG;
2587 rc = bnxt_alloc_vnic_attributes(bp);
2588 if (rc)
2589 goto alloc_mem_err;
2590 return 0;
2591
2592 alloc_mem_err:
2593 bnxt_free_mem(bp, true);
2594 return rc;
2595 }
2596
2597 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2598 u16 cmpl_ring, u16 target_id)
2599 {
2600 struct hwrm_cmd_req_hdr *req = request;
2601
2602 req->cmpl_ring_req_type =
2603 cpu_to_le32(req_type | (cmpl_ring << HWRM_CMPL_RING_SFT));
2604 req->target_id_seq_id = cpu_to_le32(target_id << HWRM_TARGET_FID_SFT);
2605 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2606 }
2607
2608 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2609 {
2610 int i, intr_process, rc;
2611 struct hwrm_cmd_req_hdr *req = msg;
2612 u32 *data = msg;
2613 __le32 *resp_len, *valid;
2614 u16 cp_ring_id, len = 0;
2615 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2616
2617 req->target_id_seq_id |= cpu_to_le32(bp->hwrm_cmd_seq++);
2618 memset(resp, 0, PAGE_SIZE);
2619 cp_ring_id = (le32_to_cpu(req->cmpl_ring_req_type) &
2620 HWRM_CMPL_RING_MASK) >>
2621 HWRM_CMPL_RING_SFT;
2622 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2623
2624 /* Write request msg to hwrm channel */
2625 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2626
2627 for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2628 writel(0, bp->bar0 + i);
2629
2630 /* currently supports only one outstanding message */
2631 if (intr_process)
2632 bp->hwrm_intr_seq_id = le32_to_cpu(req->target_id_seq_id) &
2633 HWRM_SEQ_ID_MASK;
2634
2635 /* Ring channel doorbell */
2636 writel(1, bp->bar0 + 0x100);
2637
2638 i = 0;
2639 if (intr_process) {
2640 /* Wait until hwrm response cmpl interrupt is processed */
2641 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2642 i++ < timeout) {
2643 usleep_range(600, 800);
2644 }
2645
2646 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2647 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2648 req->cmpl_ring_req_type);
2649 return -1;
2650 }
2651 } else {
2652 /* Check if response len is updated */
2653 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2654 for (i = 0; i < timeout; i++) {
2655 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2656 HWRM_RESP_LEN_SFT;
2657 if (len)
2658 break;
2659 usleep_range(600, 800);
2660 }
2661
2662 if (i >= timeout) {
2663 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2664 timeout, req->cmpl_ring_req_type,
2665 req->target_id_seq_id, *resp_len);
2666 return -1;
2667 }
2668
2669 /* Last word of resp contains valid bit */
2670 valid = bp->hwrm_cmd_resp_addr + len - 4;
2671 for (i = 0; i < timeout; i++) {
2672 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2673 break;
2674 usleep_range(600, 800);
2675 }
2676
2677 if (i >= timeout) {
2678 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2679 timeout, req->cmpl_ring_req_type,
2680 req->target_id_seq_id, len, *valid);
2681 return -1;
2682 }
2683 }
2684
2685 rc = le16_to_cpu(resp->error_code);
2686 if (rc) {
2687 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2688 le16_to_cpu(resp->req_type),
2689 le16_to_cpu(resp->seq_id), rc);
2690 return rc;
2691 }
2692 return 0;
2693 }
2694
2695 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2696 {
2697 int rc;
2698
2699 mutex_lock(&bp->hwrm_cmd_lock);
2700 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2701 mutex_unlock(&bp->hwrm_cmd_lock);
2702 return rc;
2703 }
2704
2705 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2706 {
2707 struct hwrm_func_drv_rgtr_input req = {0};
2708 int i;
2709
2710 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2711
2712 req.enables =
2713 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2714 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2715 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2716
2717 /* TODO: current async event fwd bits are not defined and the firmware
2718 * only checks if it is non-zero to enable async event forwarding
2719 */
2720 req.async_event_fwd[0] |= cpu_to_le32(1);
2721 req.os_type = cpu_to_le16(1);
2722 req.ver_maj = DRV_VER_MAJ;
2723 req.ver_min = DRV_VER_MIN;
2724 req.ver_upd = DRV_VER_UPD;
2725
2726 if (BNXT_PF(bp)) {
2727 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2728 u32 *data = (u32 *)vf_req_snif_bmap;
2729
2730 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2731 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2732 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2733
2734 for (i = 0; i < 8; i++)
2735 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2736
2737 req.enables |=
2738 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2739 }
2740
2741 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2742 }
2743
2744 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2745 {
2746 struct hwrm_func_drv_unrgtr_input req = {0};
2747
2748 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2749 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2750 }
2751
2752 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2753 {
2754 u32 rc = 0;
2755 struct hwrm_tunnel_dst_port_free_input req = {0};
2756
2757 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2758 req.tunnel_type = tunnel_type;
2759
2760 switch (tunnel_type) {
2761 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2762 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2763 break;
2764 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2765 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2766 break;
2767 default:
2768 break;
2769 }
2770
2771 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2772 if (rc)
2773 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2774 rc);
2775 return rc;
2776 }
2777
2778 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2779 u8 tunnel_type)
2780 {
2781 u32 rc = 0;
2782 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2783 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2784
2785 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2786
2787 req.tunnel_type = tunnel_type;
2788 req.tunnel_dst_port_val = port;
2789
2790 mutex_lock(&bp->hwrm_cmd_lock);
2791 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2792 if (rc) {
2793 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2794 rc);
2795 goto err_out;
2796 }
2797
2798 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2799 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2800
2801 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2802 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2803 err_out:
2804 mutex_unlock(&bp->hwrm_cmd_lock);
2805 return rc;
2806 }
2807
2808 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2809 {
2810 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2811 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2812
2813 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2814 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2815
2816 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2817 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2818 req.mask = cpu_to_le32(vnic->rx_mask);
2819 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2820 }
2821
2822 #ifdef CONFIG_RFS_ACCEL
2823 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2824 struct bnxt_ntuple_filter *fltr)
2825 {
2826 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2827
2828 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2829 req.ntuple_filter_id = fltr->filter_id;
2830 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2831 }
2832
2833 #define BNXT_NTP_FLTR_FLAGS \
2834 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2835 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2836 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2837 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2838 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2839 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2840 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2841 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2842 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2843 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2844 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2845 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2846 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2847 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2848
2849 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2850 struct bnxt_ntuple_filter *fltr)
2851 {
2852 int rc = 0;
2853 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2854 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2855 bp->hwrm_cmd_resp_addr;
2856 struct flow_keys *keys = &fltr->fkeys;
2857 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2858
2859 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2860 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2861
2862 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2863
2864 req.ethertype = htons(ETH_P_IP);
2865 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2866 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2867 req.ip_protocol = keys->basic.ip_proto;
2868
2869 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2870 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2871 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2872 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2873
2874 req.src_port = keys->ports.src;
2875 req.src_port_mask = cpu_to_be16(0xffff);
2876 req.dst_port = keys->ports.dst;
2877 req.dst_port_mask = cpu_to_be16(0xffff);
2878
2879 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2880 mutex_lock(&bp->hwrm_cmd_lock);
2881 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2882 if (!rc)
2883 fltr->filter_id = resp->ntuple_filter_id;
2884 mutex_unlock(&bp->hwrm_cmd_lock);
2885 return rc;
2886 }
2887 #endif
2888
2889 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2890 u8 *mac_addr)
2891 {
2892 u32 rc = 0;
2893 struct hwrm_cfa_l2_filter_alloc_input req = {0};
2894 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2895
2896 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2897 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2898 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2899 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2900 req.enables =
2901 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2902 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2903 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2904 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2905 req.l2_addr_mask[0] = 0xff;
2906 req.l2_addr_mask[1] = 0xff;
2907 req.l2_addr_mask[2] = 0xff;
2908 req.l2_addr_mask[3] = 0xff;
2909 req.l2_addr_mask[4] = 0xff;
2910 req.l2_addr_mask[5] = 0xff;
2911
2912 mutex_lock(&bp->hwrm_cmd_lock);
2913 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2914 if (!rc)
2915 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2916 resp->l2_filter_id;
2917 mutex_unlock(&bp->hwrm_cmd_lock);
2918 return rc;
2919 }
2920
2921 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2922 {
2923 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2924 int rc = 0;
2925
2926 /* Any associated ntuple filters will also be cleared by firmware. */
2927 mutex_lock(&bp->hwrm_cmd_lock);
2928 for (i = 0; i < num_of_vnics; i++) {
2929 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2930
2931 for (j = 0; j < vnic->uc_filter_count; j++) {
2932 struct hwrm_cfa_l2_filter_free_input req = {0};
2933
2934 bnxt_hwrm_cmd_hdr_init(bp, &req,
2935 HWRM_CFA_L2_FILTER_FREE, -1, -1);
2936
2937 req.l2_filter_id = vnic->fw_l2_filter_id[j];
2938
2939 rc = _hwrm_send_message(bp, &req, sizeof(req),
2940 HWRM_CMD_TIMEOUT);
2941 }
2942 vnic->uc_filter_count = 0;
2943 }
2944 mutex_unlock(&bp->hwrm_cmd_lock);
2945
2946 return rc;
2947 }
2948
2949 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2950 {
2951 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2952 struct hwrm_vnic_tpa_cfg_input req = {0};
2953
2954 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
2955
2956 if (tpa_flags) {
2957 u16 mss = bp->dev->mtu - 40;
2958 u32 nsegs, n, segs = 0, flags;
2959
2960 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
2961 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
2962 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
2963 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
2964 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
2965 if (tpa_flags & BNXT_FLAG_GRO)
2966 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
2967
2968 req.flags = cpu_to_le32(flags);
2969
2970 req.enables =
2971 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
2972 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
2973 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
2974
2975 /* Number of segs are log2 units, and first packet is not
2976 * included as part of this units.
2977 */
2978 if (mss <= PAGE_SIZE) {
2979 n = PAGE_SIZE / mss;
2980 nsegs = (MAX_SKB_FRAGS - 1) * n;
2981 } else {
2982 n = mss / PAGE_SIZE;
2983 if (mss & (PAGE_SIZE - 1))
2984 n++;
2985 nsegs = (MAX_SKB_FRAGS - n) / n;
2986 }
2987
2988 segs = ilog2(nsegs);
2989 req.max_agg_segs = cpu_to_le16(segs);
2990 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
2991
2992 req.min_agg_len = cpu_to_le32(512);
2993 }
2994 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
2995
2996 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2997 }
2998
2999 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3000 {
3001 u32 i, j, max_rings;
3002 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3003 struct hwrm_vnic_rss_cfg_input req = {0};
3004
3005 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3006 return 0;
3007
3008 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3009 if (set_rss) {
3010 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3011 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3012 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3013 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3014
3015 req.hash_type = cpu_to_le32(vnic->hash_type);
3016
3017 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3018 max_rings = bp->rx_nr_rings;
3019 else
3020 max_rings = 1;
3021
3022 /* Fill the RSS indirection table with ring group ids */
3023 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3024 if (j == max_rings)
3025 j = 0;
3026 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3027 }
3028
3029 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3030 req.hash_key_tbl_addr =
3031 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3032 }
3033 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3034 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3035 }
3036
3037 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3038 {
3039 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3040 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3041
3042 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3043 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3044 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3045 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3046 req.enables =
3047 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3048 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3049 /* thresholds not implemented in firmware yet */
3050 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3051 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3052 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3053 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3054 }
3055
3056 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3057 {
3058 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3059
3060 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3061 req.rss_cos_lb_ctx_id =
3062 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3063
3064 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3065 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3066 }
3067
3068 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3069 {
3070 int i;
3071
3072 for (i = 0; i < bp->nr_vnics; i++) {
3073 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3074
3075 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3076 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3077 }
3078 bp->rsscos_nr_ctxs = 0;
3079 }
3080
3081 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3082 {
3083 int rc;
3084 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3085 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3086 bp->hwrm_cmd_resp_addr;
3087
3088 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3089 -1);
3090
3091 mutex_lock(&bp->hwrm_cmd_lock);
3092 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3093 if (!rc)
3094 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3095 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3096 mutex_unlock(&bp->hwrm_cmd_lock);
3097
3098 return rc;
3099 }
3100
3101 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3102 {
3103 unsigned int ring = 0, grp_idx;
3104 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3105 struct hwrm_vnic_cfg_input req = {0};
3106
3107 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3108 /* Only RSS support for now TBD: COS & LB */
3109 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3110 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3111 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3112 req.cos_rule = cpu_to_le16(0xffff);
3113 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3114 ring = 0;
3115 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3116 ring = vnic_id - 1;
3117
3118 grp_idx = bp->rx_ring[ring].bnapi->index;
3119 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3120 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3121
3122 req.lb_rule = cpu_to_le16(0xffff);
3123 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3124 VLAN_HLEN);
3125
3126 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3127 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3128
3129 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3130 }
3131
3132 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3133 {
3134 u32 rc = 0;
3135
3136 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3137 struct hwrm_vnic_free_input req = {0};
3138
3139 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3140 req.vnic_id =
3141 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3142
3143 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3144 if (rc)
3145 return rc;
3146 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3147 }
3148 return rc;
3149 }
3150
3151 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3152 {
3153 u16 i;
3154
3155 for (i = 0; i < bp->nr_vnics; i++)
3156 bnxt_hwrm_vnic_free_one(bp, i);
3157 }
3158
3159 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3160 unsigned int start_rx_ring_idx,
3161 unsigned int nr_rings)
3162 {
3163 int rc = 0;
3164 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3165 struct hwrm_vnic_alloc_input req = {0};
3166 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3167
3168 /* map ring groups to this vnic */
3169 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3170 grp_idx = bp->rx_ring[i].bnapi->index;
3171 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3172 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3173 j, nr_rings);
3174 break;
3175 }
3176 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3177 bp->grp_info[grp_idx].fw_grp_id;
3178 }
3179
3180 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3181 if (vnic_id == 0)
3182 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3183
3184 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3185
3186 mutex_lock(&bp->hwrm_cmd_lock);
3187 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3188 if (!rc)
3189 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3190 mutex_unlock(&bp->hwrm_cmd_lock);
3191 return rc;
3192 }
3193
3194 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3195 {
3196 u16 i;
3197 u32 rc = 0;
3198
3199 mutex_lock(&bp->hwrm_cmd_lock);
3200 for (i = 0; i < bp->rx_nr_rings; i++) {
3201 struct hwrm_ring_grp_alloc_input req = {0};
3202 struct hwrm_ring_grp_alloc_output *resp =
3203 bp->hwrm_cmd_resp_addr;
3204 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3205
3206 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3207
3208 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3209 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3210 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3211 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3212
3213 rc = _hwrm_send_message(bp, &req, sizeof(req),
3214 HWRM_CMD_TIMEOUT);
3215 if (rc)
3216 break;
3217
3218 bp->grp_info[grp_idx].fw_grp_id =
3219 le32_to_cpu(resp->ring_group_id);
3220 }
3221 mutex_unlock(&bp->hwrm_cmd_lock);
3222 return rc;
3223 }
3224
3225 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3226 {
3227 u16 i;
3228 u32 rc = 0;
3229 struct hwrm_ring_grp_free_input req = {0};
3230
3231 if (!bp->grp_info)
3232 return 0;
3233
3234 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3235
3236 mutex_lock(&bp->hwrm_cmd_lock);
3237 for (i = 0; i < bp->cp_nr_rings; i++) {
3238 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3239 continue;
3240 req.ring_group_id =
3241 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3242
3243 rc = _hwrm_send_message(bp, &req, sizeof(req),
3244 HWRM_CMD_TIMEOUT);
3245 if (rc)
3246 break;
3247 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3248 }
3249 mutex_unlock(&bp->hwrm_cmd_lock);
3250 return rc;
3251 }
3252
3253 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3254 struct bnxt_ring_struct *ring,
3255 u32 ring_type, u32 map_index,
3256 u32 stats_ctx_id)
3257 {
3258 int rc = 0, err = 0;
3259 struct hwrm_ring_alloc_input req = {0};
3260 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3261 u16 ring_id;
3262
3263 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3264
3265 req.enables = 0;
3266 if (ring->nr_pages > 1) {
3267 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3268 /* Page size is in log2 units */
3269 req.page_size = BNXT_PAGE_SHIFT;
3270 req.page_tbl_depth = 1;
3271 } else {
3272 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3273 }
3274 req.fbo = 0;
3275 /* Association of ring index with doorbell index and MSIX number */
3276 req.logical_id = cpu_to_le16(map_index);
3277
3278 switch (ring_type) {
3279 case HWRM_RING_ALLOC_TX:
3280 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3281 /* Association of transmit ring with completion ring */
3282 req.cmpl_ring_id =
3283 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3284 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3285 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3286 req.queue_id = cpu_to_le16(ring->queue_id);
3287 break;
3288 case HWRM_RING_ALLOC_RX:
3289 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3290 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3291 break;
3292 case HWRM_RING_ALLOC_AGG:
3293 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3294 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3295 break;
3296 case HWRM_RING_ALLOC_CMPL:
3297 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3298 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3299 if (bp->flags & BNXT_FLAG_USING_MSIX)
3300 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3301 break;
3302 default:
3303 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3304 ring_type);
3305 return -1;
3306 }
3307
3308 mutex_lock(&bp->hwrm_cmd_lock);
3309 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3310 err = le16_to_cpu(resp->error_code);
3311 ring_id = le16_to_cpu(resp->ring_id);
3312 mutex_unlock(&bp->hwrm_cmd_lock);
3313
3314 if (rc || err) {
3315 switch (ring_type) {
3316 case RING_FREE_REQ_RING_TYPE_CMPL:
3317 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3318 rc, err);
3319 return -1;
3320
3321 case RING_FREE_REQ_RING_TYPE_RX:
3322 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3323 rc, err);
3324 return -1;
3325
3326 case RING_FREE_REQ_RING_TYPE_TX:
3327 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3328 rc, err);
3329 return -1;
3330
3331 default:
3332 netdev_err(bp->dev, "Invalid ring\n");
3333 return -1;
3334 }
3335 }
3336 ring->fw_ring_id = ring_id;
3337 return rc;
3338 }
3339
3340 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3341 {
3342 int i, rc = 0;
3343
3344 for (i = 0; i < bp->cp_nr_rings; i++) {
3345 struct bnxt_napi *bnapi = bp->bnapi[i];
3346 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3347 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3348
3349 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3350 INVALID_STATS_CTX_ID);
3351 if (rc)
3352 goto err_out;
3353 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3354 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3355 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3356 }
3357
3358 for (i = 0; i < bp->tx_nr_rings; i++) {
3359 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3360 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3361 u32 map_idx = txr->bnapi->index;
3362 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3363
3364 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3365 map_idx, fw_stats_ctx);
3366 if (rc)
3367 goto err_out;
3368 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3369 }
3370
3371 for (i = 0; i < bp->rx_nr_rings; i++) {
3372 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3373 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3374 u32 map_idx = rxr->bnapi->index;
3375
3376 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3377 map_idx, INVALID_STATS_CTX_ID);
3378 if (rc)
3379 goto err_out;
3380 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3381 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3382 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3383 }
3384
3385 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3386 for (i = 0; i < bp->rx_nr_rings; i++) {
3387 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3388 struct bnxt_ring_struct *ring =
3389 &rxr->rx_agg_ring_struct;
3390 u32 grp_idx = rxr->bnapi->index;
3391 u32 map_idx = grp_idx + bp->rx_nr_rings;
3392
3393 rc = hwrm_ring_alloc_send_msg(bp, ring,
3394 HWRM_RING_ALLOC_AGG,
3395 map_idx,
3396 INVALID_STATS_CTX_ID);
3397 if (rc)
3398 goto err_out;
3399
3400 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3401 writel(DB_KEY_RX | rxr->rx_agg_prod,
3402 rxr->rx_agg_doorbell);
3403 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3404 }
3405 }
3406 err_out:
3407 return rc;
3408 }
3409
3410 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3411 struct bnxt_ring_struct *ring,
3412 u32 ring_type, int cmpl_ring_id)
3413 {
3414 int rc;
3415 struct hwrm_ring_free_input req = {0};
3416 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3417 u16 error_code;
3418
3419 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3420 req.ring_type = ring_type;
3421 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3422
3423 mutex_lock(&bp->hwrm_cmd_lock);
3424 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3425 error_code = le16_to_cpu(resp->error_code);
3426 mutex_unlock(&bp->hwrm_cmd_lock);
3427
3428 if (rc || error_code) {
3429 switch (ring_type) {
3430 case RING_FREE_REQ_RING_TYPE_CMPL:
3431 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3432 rc);
3433 return rc;
3434 case RING_FREE_REQ_RING_TYPE_RX:
3435 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3436 rc);
3437 return rc;
3438 case RING_FREE_REQ_RING_TYPE_TX:
3439 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3440 rc);
3441 return rc;
3442 default:
3443 netdev_err(bp->dev, "Invalid ring\n");
3444 return -1;
3445 }
3446 }
3447 return 0;
3448 }
3449
3450 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3451 {
3452 int i;
3453
3454 if (!bp->bnapi)
3455 return;
3456
3457 for (i = 0; i < bp->tx_nr_rings; i++) {
3458 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3459 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3460 u32 grp_idx = txr->bnapi->index;
3461 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3462
3463 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3464 hwrm_ring_free_send_msg(bp, ring,
3465 RING_FREE_REQ_RING_TYPE_TX,
3466 close_path ? cmpl_ring_id :
3467 INVALID_HW_RING_ID);
3468 ring->fw_ring_id = INVALID_HW_RING_ID;
3469 }
3470 }
3471
3472 for (i = 0; i < bp->rx_nr_rings; i++) {
3473 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3474 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3475 u32 grp_idx = rxr->bnapi->index;
3476 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3477
3478 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3479 hwrm_ring_free_send_msg(bp, ring,
3480 RING_FREE_REQ_RING_TYPE_RX,
3481 close_path ? cmpl_ring_id :
3482 INVALID_HW_RING_ID);
3483 ring->fw_ring_id = INVALID_HW_RING_ID;
3484 bp->grp_info[grp_idx].rx_fw_ring_id =
3485 INVALID_HW_RING_ID;
3486 }
3487 }
3488
3489 for (i = 0; i < bp->rx_nr_rings; i++) {
3490 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3491 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3492 u32 grp_idx = rxr->bnapi->index;
3493 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3494
3495 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3496 hwrm_ring_free_send_msg(bp, ring,
3497 RING_FREE_REQ_RING_TYPE_RX,
3498 close_path ? cmpl_ring_id :
3499 INVALID_HW_RING_ID);
3500 ring->fw_ring_id = INVALID_HW_RING_ID;
3501 bp->grp_info[grp_idx].agg_fw_ring_id =
3502 INVALID_HW_RING_ID;
3503 }
3504 }
3505
3506 for (i = 0; i < bp->cp_nr_rings; i++) {
3507 struct bnxt_napi *bnapi = bp->bnapi[i];
3508 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3509 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3510
3511 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3512 hwrm_ring_free_send_msg(bp, ring,
3513 RING_FREE_REQ_RING_TYPE_CMPL,
3514 INVALID_HW_RING_ID);
3515 ring->fw_ring_id = INVALID_HW_RING_ID;
3516 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3517 }
3518 }
3519 }
3520
3521 int bnxt_hwrm_set_coal(struct bnxt *bp)
3522 {
3523 int i, rc = 0;
3524 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req = {0};
3525 u16 max_buf, max_buf_irq;
3526 u16 buf_tmr, buf_tmr_irq;
3527 u32 flags;
3528
3529 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS,
3530 -1, -1);
3531
3532 /* Each rx completion (2 records) should be DMAed immediately */
3533 max_buf = min_t(u16, bp->coal_bufs / 4, 2);
3534 /* max_buf must not be zero */
3535 max_buf = clamp_t(u16, max_buf, 1, 63);
3536 max_buf_irq = clamp_t(u16, bp->coal_bufs_irq, 1, 63);
3537 buf_tmr = max_t(u16, bp->coal_ticks / 4, 1);
3538 buf_tmr_irq = max_t(u16, bp->coal_ticks_irq, 1);
3539
3540 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3541
3542 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3543 * if coal_ticks is less than 25 us.
3544 */
3545 if (BNXT_COAL_TIMER_TO_USEC(bp->coal_ticks) < 25)
3546 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3547
3548 req.flags = cpu_to_le16(flags);
3549 req.num_cmpl_dma_aggr = cpu_to_le16(max_buf);
3550 req.num_cmpl_dma_aggr_during_int = cpu_to_le16(max_buf_irq);
3551 req.cmpl_aggr_dma_tmr = cpu_to_le16(buf_tmr);
3552 req.cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmr_irq);
3553 req.int_lat_tmr_min = cpu_to_le16(buf_tmr);
3554 req.int_lat_tmr_max = cpu_to_le16(bp->coal_ticks);
3555 req.num_cmpl_aggr_int = cpu_to_le16(bp->coal_bufs);
3556
3557 mutex_lock(&bp->hwrm_cmd_lock);
3558 for (i = 0; i < bp->cp_nr_rings; i++) {
3559 req.ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3560
3561 rc = _hwrm_send_message(bp, &req, sizeof(req),
3562 HWRM_CMD_TIMEOUT);
3563 if (rc)
3564 break;
3565 }
3566 mutex_unlock(&bp->hwrm_cmd_lock);
3567 return rc;
3568 }
3569
3570 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3571 {
3572 int rc = 0, i;
3573 struct hwrm_stat_ctx_free_input req = {0};
3574
3575 if (!bp->bnapi)
3576 return 0;
3577
3578 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3579
3580 mutex_lock(&bp->hwrm_cmd_lock);
3581 for (i = 0; i < bp->cp_nr_rings; i++) {
3582 struct bnxt_napi *bnapi = bp->bnapi[i];
3583 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3584
3585 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3586 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3587
3588 rc = _hwrm_send_message(bp, &req, sizeof(req),
3589 HWRM_CMD_TIMEOUT);
3590 if (rc)
3591 break;
3592
3593 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3594 }
3595 }
3596 mutex_unlock(&bp->hwrm_cmd_lock);
3597 return rc;
3598 }
3599
3600 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3601 {
3602 int rc = 0, i;
3603 struct hwrm_stat_ctx_alloc_input req = {0};
3604 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3605
3606 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3607
3608 req.update_period_ms = cpu_to_le32(1000);
3609
3610 mutex_lock(&bp->hwrm_cmd_lock);
3611 for (i = 0; i < bp->cp_nr_rings; i++) {
3612 struct bnxt_napi *bnapi = bp->bnapi[i];
3613 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3614
3615 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3616
3617 rc = _hwrm_send_message(bp, &req, sizeof(req),
3618 HWRM_CMD_TIMEOUT);
3619 if (rc)
3620 break;
3621
3622 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3623
3624 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3625 }
3626 mutex_unlock(&bp->hwrm_cmd_lock);
3627 return 0;
3628 }
3629
3630 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3631 {
3632 int rc = 0;
3633 struct hwrm_func_qcaps_input req = {0};
3634 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3635
3636 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3637 req.fid = cpu_to_le16(0xffff);
3638
3639 mutex_lock(&bp->hwrm_cmd_lock);
3640 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3641 if (rc)
3642 goto hwrm_func_qcaps_exit;
3643
3644 if (BNXT_PF(bp)) {
3645 struct bnxt_pf_info *pf = &bp->pf;
3646
3647 pf->fw_fid = le16_to_cpu(resp->fid);
3648 pf->port_id = le16_to_cpu(resp->port_id);
3649 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3650 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3651 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3652 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3653 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3654 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3655 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3656 if (!pf->max_hw_ring_grps)
3657 pf->max_hw_ring_grps = pf->max_tx_rings;
3658 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3659 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3660 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3661 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3662 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3663 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3664 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3665 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3666 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3667 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3668 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3669 } else {
3670 #ifdef CONFIG_BNXT_SRIOV
3671 struct bnxt_vf_info *vf = &bp->vf;
3672
3673 vf->fw_fid = le16_to_cpu(resp->fid);
3674 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3675 if (is_valid_ether_addr(vf->mac_addr))
3676 /* overwrite netdev dev_adr with admin VF MAC */
3677 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3678 else
3679 random_ether_addr(bp->dev->dev_addr);
3680
3681 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3682 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3683 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3684 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3685 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3686 if (!vf->max_hw_ring_grps)
3687 vf->max_hw_ring_grps = vf->max_tx_rings;
3688 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3689 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3690 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3691 #endif
3692 }
3693
3694 bp->tx_push_thresh = 0;
3695 if (resp->flags &
3696 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3697 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3698
3699 hwrm_func_qcaps_exit:
3700 mutex_unlock(&bp->hwrm_cmd_lock);
3701 return rc;
3702 }
3703
3704 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3705 {
3706 struct hwrm_func_reset_input req = {0};
3707
3708 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3709 req.enables = 0;
3710
3711 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3712 }
3713
3714 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3715 {
3716 int rc = 0;
3717 struct hwrm_queue_qportcfg_input req = {0};
3718 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3719 u8 i, *qptr;
3720
3721 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3722
3723 mutex_lock(&bp->hwrm_cmd_lock);
3724 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3725 if (rc)
3726 goto qportcfg_exit;
3727
3728 if (!resp->max_configurable_queues) {
3729 rc = -EINVAL;
3730 goto qportcfg_exit;
3731 }
3732 bp->max_tc = resp->max_configurable_queues;
3733 if (bp->max_tc > BNXT_MAX_QUEUE)
3734 bp->max_tc = BNXT_MAX_QUEUE;
3735
3736 qptr = &resp->queue_id0;
3737 for (i = 0; i < bp->max_tc; i++) {
3738 bp->q_info[i].queue_id = *qptr++;
3739 bp->q_info[i].queue_profile = *qptr++;
3740 }
3741
3742 qportcfg_exit:
3743 mutex_unlock(&bp->hwrm_cmd_lock);
3744 return rc;
3745 }
3746
3747 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3748 {
3749 int rc;
3750 struct hwrm_ver_get_input req = {0};
3751 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3752
3753 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3754 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3755 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3756 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3757 mutex_lock(&bp->hwrm_cmd_lock);
3758 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3759 if (rc)
3760 goto hwrm_ver_get_exit;
3761
3762 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3763
3764 if (resp->hwrm_intf_maj < 1) {
3765 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3766 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3767 resp->hwrm_intf_upd);
3768 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3769 }
3770 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "bc %d.%d.%d rm %d.%d.%d",
3771 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3772 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3773
3774 hwrm_ver_get_exit:
3775 mutex_unlock(&bp->hwrm_cmd_lock);
3776 return rc;
3777 }
3778
3779 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3780 {
3781 if (bp->vxlan_port_cnt) {
3782 bnxt_hwrm_tunnel_dst_port_free(
3783 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3784 }
3785 bp->vxlan_port_cnt = 0;
3786 if (bp->nge_port_cnt) {
3787 bnxt_hwrm_tunnel_dst_port_free(
3788 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3789 }
3790 bp->nge_port_cnt = 0;
3791 }
3792
3793 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3794 {
3795 int rc, i;
3796 u32 tpa_flags = 0;
3797
3798 if (set_tpa)
3799 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3800 for (i = 0; i < bp->nr_vnics; i++) {
3801 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3802 if (rc) {
3803 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3804 rc, i);
3805 return rc;
3806 }
3807 }
3808 return 0;
3809 }
3810
3811 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3812 {
3813 int i;
3814
3815 for (i = 0; i < bp->nr_vnics; i++)
3816 bnxt_hwrm_vnic_set_rss(bp, i, false);
3817 }
3818
3819 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3820 bool irq_re_init)
3821 {
3822 if (bp->vnic_info) {
3823 bnxt_hwrm_clear_vnic_filter(bp);
3824 /* clear all RSS setting before free vnic ctx */
3825 bnxt_hwrm_clear_vnic_rss(bp);
3826 bnxt_hwrm_vnic_ctx_free(bp);
3827 /* before free the vnic, undo the vnic tpa settings */
3828 if (bp->flags & BNXT_FLAG_TPA)
3829 bnxt_set_tpa(bp, false);
3830 bnxt_hwrm_vnic_free(bp);
3831 }
3832 bnxt_hwrm_ring_free(bp, close_path);
3833 bnxt_hwrm_ring_grp_free(bp);
3834 if (irq_re_init) {
3835 bnxt_hwrm_stat_ctx_free(bp);
3836 bnxt_hwrm_free_tunnel_ports(bp);
3837 }
3838 }
3839
3840 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3841 {
3842 int rc;
3843
3844 /* allocate context for vnic */
3845 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3846 if (rc) {
3847 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3848 vnic_id, rc);
3849 goto vnic_setup_err;
3850 }
3851 bp->rsscos_nr_ctxs++;
3852
3853 /* configure default vnic, ring grp */
3854 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3855 if (rc) {
3856 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3857 vnic_id, rc);
3858 goto vnic_setup_err;
3859 }
3860
3861 /* Enable RSS hashing on vnic */
3862 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3863 if (rc) {
3864 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3865 vnic_id, rc);
3866 goto vnic_setup_err;
3867 }
3868
3869 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3870 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3871 if (rc) {
3872 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3873 vnic_id, rc);
3874 }
3875 }
3876
3877 vnic_setup_err:
3878 return rc;
3879 }
3880
3881 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3882 {
3883 #ifdef CONFIG_RFS_ACCEL
3884 int i, rc = 0;
3885
3886 for (i = 0; i < bp->rx_nr_rings; i++) {
3887 u16 vnic_id = i + 1;
3888 u16 ring_id = i;
3889
3890 if (vnic_id >= bp->nr_vnics)
3891 break;
3892
3893 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3894 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3895 if (rc) {
3896 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3897 vnic_id, rc);
3898 break;
3899 }
3900 rc = bnxt_setup_vnic(bp, vnic_id);
3901 if (rc)
3902 break;
3903 }
3904 return rc;
3905 #else
3906 return 0;
3907 #endif
3908 }
3909
3910 static int bnxt_cfg_rx_mode(struct bnxt *);
3911
3912 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
3913 {
3914 int rc = 0;
3915
3916 if (irq_re_init) {
3917 rc = bnxt_hwrm_stat_ctx_alloc(bp);
3918 if (rc) {
3919 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
3920 rc);
3921 goto err_out;
3922 }
3923 }
3924
3925 rc = bnxt_hwrm_ring_alloc(bp);
3926 if (rc) {
3927 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
3928 goto err_out;
3929 }
3930
3931 rc = bnxt_hwrm_ring_grp_alloc(bp);
3932 if (rc) {
3933 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
3934 goto err_out;
3935 }
3936
3937 /* default vnic 0 */
3938 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
3939 if (rc) {
3940 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
3941 goto err_out;
3942 }
3943
3944 rc = bnxt_setup_vnic(bp, 0);
3945 if (rc)
3946 goto err_out;
3947
3948 if (bp->flags & BNXT_FLAG_RFS) {
3949 rc = bnxt_alloc_rfs_vnics(bp);
3950 if (rc)
3951 goto err_out;
3952 }
3953
3954 if (bp->flags & BNXT_FLAG_TPA) {
3955 rc = bnxt_set_tpa(bp, true);
3956 if (rc)
3957 goto err_out;
3958 }
3959
3960 if (BNXT_VF(bp))
3961 bnxt_update_vf_mac(bp);
3962
3963 /* Filter for default vnic 0 */
3964 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
3965 if (rc) {
3966 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
3967 goto err_out;
3968 }
3969 bp->vnic_info[0].uc_filter_count = 1;
3970
3971 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
3972
3973 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
3974 bp->vnic_info[0].rx_mask |=
3975 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
3976
3977 rc = bnxt_cfg_rx_mode(bp);
3978 if (rc)
3979 goto err_out;
3980
3981 rc = bnxt_hwrm_set_coal(bp);
3982 if (rc)
3983 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
3984 rc);
3985
3986 return 0;
3987
3988 err_out:
3989 bnxt_hwrm_resource_free(bp, 0, true);
3990
3991 return rc;
3992 }
3993
3994 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
3995 {
3996 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
3997 return 0;
3998 }
3999
4000 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4001 {
4002 bnxt_init_rx_rings(bp);
4003 bnxt_init_tx_rings(bp);
4004 bnxt_init_ring_grps(bp, irq_re_init);
4005 bnxt_init_vnics(bp);
4006
4007 return bnxt_init_chip(bp, irq_re_init);
4008 }
4009
4010 static void bnxt_disable_int(struct bnxt *bp)
4011 {
4012 int i;
4013
4014 if (!bp->bnapi)
4015 return;
4016
4017 for (i = 0; i < bp->cp_nr_rings; i++) {
4018 struct bnxt_napi *bnapi = bp->bnapi[i];
4019 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4020
4021 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4022 }
4023 }
4024
4025 static void bnxt_enable_int(struct bnxt *bp)
4026 {
4027 int i;
4028
4029 atomic_set(&bp->intr_sem, 0);
4030 for (i = 0; i < bp->cp_nr_rings; i++) {
4031 struct bnxt_napi *bnapi = bp->bnapi[i];
4032 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4033
4034 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4035 }
4036 }
4037
4038 static int bnxt_set_real_num_queues(struct bnxt *bp)
4039 {
4040 int rc;
4041 struct net_device *dev = bp->dev;
4042
4043 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4044 if (rc)
4045 return rc;
4046
4047 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4048 if (rc)
4049 return rc;
4050
4051 #ifdef CONFIG_RFS_ACCEL
4052 if (bp->flags & BNXT_FLAG_RFS)
4053 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4054 #endif
4055
4056 return rc;
4057 }
4058
4059 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4060 bool shared)
4061 {
4062 int _rx = *rx, _tx = *tx;
4063
4064 if (shared) {
4065 *rx = min_t(int, _rx, max);
4066 *tx = min_t(int, _tx, max);
4067 } else {
4068 if (max < 2)
4069 return -ENOMEM;
4070
4071 while (_rx + _tx > max) {
4072 if (_rx > _tx && _rx > 1)
4073 _rx--;
4074 else if (_tx > 1)
4075 _tx--;
4076 }
4077 *rx = _rx;
4078 *tx = _tx;
4079 }
4080 return 0;
4081 }
4082
4083 static int bnxt_setup_msix(struct bnxt *bp)
4084 {
4085 struct msix_entry *msix_ent;
4086 struct net_device *dev = bp->dev;
4087 int i, total_vecs, rc = 0, min = 1;
4088 const int len = sizeof(bp->irq_tbl[0].name);
4089
4090 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4091 total_vecs = bp->cp_nr_rings;
4092
4093 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4094 if (!msix_ent)
4095 return -ENOMEM;
4096
4097 for (i = 0; i < total_vecs; i++) {
4098 msix_ent[i].entry = i;
4099 msix_ent[i].vector = 0;
4100 }
4101
4102 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4103 min = 2;
4104
4105 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4106 if (total_vecs < 0) {
4107 rc = -ENODEV;
4108 goto msix_setup_exit;
4109 }
4110
4111 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4112 if (bp->irq_tbl) {
4113 int tcs;
4114
4115 /* Trim rings based upon num of vectors allocated */
4116 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4117 total_vecs, min == 1);
4118 if (rc)
4119 goto msix_setup_exit;
4120
4121 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4122 tcs = netdev_get_num_tc(dev);
4123 if (tcs > 1) {
4124 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4125 if (bp->tx_nr_rings_per_tc == 0) {
4126 netdev_reset_tc(dev);
4127 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4128 } else {
4129 int i, off, count;
4130
4131 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4132 for (i = 0; i < tcs; i++) {
4133 count = bp->tx_nr_rings_per_tc;
4134 off = i * count;
4135 netdev_set_tc_queue(dev, i, count, off);
4136 }
4137 }
4138 }
4139 bp->cp_nr_rings = total_vecs;
4140
4141 for (i = 0; i < bp->cp_nr_rings; i++) {
4142 char *attr;
4143
4144 bp->irq_tbl[i].vector = msix_ent[i].vector;
4145 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4146 attr = "TxRx";
4147 else if (i < bp->rx_nr_rings)
4148 attr = "rx";
4149 else
4150 attr = "tx";
4151
4152 snprintf(bp->irq_tbl[i].name, len,
4153 "%s-%s-%d", dev->name, attr, i);
4154 bp->irq_tbl[i].handler = bnxt_msix;
4155 }
4156 rc = bnxt_set_real_num_queues(bp);
4157 if (rc)
4158 goto msix_setup_exit;
4159 } else {
4160 rc = -ENOMEM;
4161 goto msix_setup_exit;
4162 }
4163 bp->flags |= BNXT_FLAG_USING_MSIX;
4164 kfree(msix_ent);
4165 return 0;
4166
4167 msix_setup_exit:
4168 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4169 pci_disable_msix(bp->pdev);
4170 kfree(msix_ent);
4171 return rc;
4172 }
4173
4174 static int bnxt_setup_inta(struct bnxt *bp)
4175 {
4176 int rc;
4177 const int len = sizeof(bp->irq_tbl[0].name);
4178
4179 if (netdev_get_num_tc(bp->dev))
4180 netdev_reset_tc(bp->dev);
4181
4182 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4183 if (!bp->irq_tbl) {
4184 rc = -ENOMEM;
4185 return rc;
4186 }
4187 bp->rx_nr_rings = 1;
4188 bp->tx_nr_rings = 1;
4189 bp->cp_nr_rings = 1;
4190 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4191 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4192 bp->irq_tbl[0].vector = bp->pdev->irq;
4193 snprintf(bp->irq_tbl[0].name, len,
4194 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4195 bp->irq_tbl[0].handler = bnxt_inta;
4196 rc = bnxt_set_real_num_queues(bp);
4197 return rc;
4198 }
4199
4200 static int bnxt_setup_int_mode(struct bnxt *bp)
4201 {
4202 int rc = 0;
4203
4204 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4205 rc = bnxt_setup_msix(bp);
4206
4207 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4208 /* fallback to INTA */
4209 rc = bnxt_setup_inta(bp);
4210 }
4211 return rc;
4212 }
4213
4214 static void bnxt_free_irq(struct bnxt *bp)
4215 {
4216 struct bnxt_irq *irq;
4217 int i;
4218
4219 #ifdef CONFIG_RFS_ACCEL
4220 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4221 bp->dev->rx_cpu_rmap = NULL;
4222 #endif
4223 if (!bp->irq_tbl)
4224 return;
4225
4226 for (i = 0; i < bp->cp_nr_rings; i++) {
4227 irq = &bp->irq_tbl[i];
4228 if (irq->requested)
4229 free_irq(irq->vector, bp->bnapi[i]);
4230 irq->requested = 0;
4231 }
4232 if (bp->flags & BNXT_FLAG_USING_MSIX)
4233 pci_disable_msix(bp->pdev);
4234 kfree(bp->irq_tbl);
4235 bp->irq_tbl = NULL;
4236 }
4237
4238 static int bnxt_request_irq(struct bnxt *bp)
4239 {
4240 int i, j, rc = 0;
4241 unsigned long flags = 0;
4242 #ifdef CONFIG_RFS_ACCEL
4243 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4244 #endif
4245
4246 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4247 flags = IRQF_SHARED;
4248
4249 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4250 struct bnxt_irq *irq = &bp->irq_tbl[i];
4251 #ifdef CONFIG_RFS_ACCEL
4252 if (rmap && bp->bnapi[i]->rx_ring) {
4253 rc = irq_cpu_rmap_add(rmap, irq->vector);
4254 if (rc)
4255 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4256 j);
4257 j++;
4258 }
4259 #endif
4260 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4261 bp->bnapi[i]);
4262 if (rc)
4263 break;
4264
4265 irq->requested = 1;
4266 }
4267 return rc;
4268 }
4269
4270 static void bnxt_del_napi(struct bnxt *bp)
4271 {
4272 int i;
4273
4274 if (!bp->bnapi)
4275 return;
4276
4277 for (i = 0; i < bp->cp_nr_rings; i++) {
4278 struct bnxt_napi *bnapi = bp->bnapi[i];
4279
4280 napi_hash_del(&bnapi->napi);
4281 netif_napi_del(&bnapi->napi);
4282 }
4283 }
4284
4285 static void bnxt_init_napi(struct bnxt *bp)
4286 {
4287 int i;
4288 struct bnxt_napi *bnapi;
4289
4290 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4291 for (i = 0; i < bp->cp_nr_rings; i++) {
4292 bnapi = bp->bnapi[i];
4293 netif_napi_add(bp->dev, &bnapi->napi,
4294 bnxt_poll, 64);
4295 }
4296 } else {
4297 bnapi = bp->bnapi[0];
4298 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4299 }
4300 }
4301
4302 static void bnxt_disable_napi(struct bnxt *bp)
4303 {
4304 int i;
4305
4306 if (!bp->bnapi)
4307 return;
4308
4309 for (i = 0; i < bp->cp_nr_rings; i++) {
4310 napi_disable(&bp->bnapi[i]->napi);
4311 bnxt_disable_poll(bp->bnapi[i]);
4312 }
4313 }
4314
4315 static void bnxt_enable_napi(struct bnxt *bp)
4316 {
4317 int i;
4318
4319 for (i = 0; i < bp->cp_nr_rings; i++) {
4320 bnxt_enable_poll(bp->bnapi[i]);
4321 napi_enable(&bp->bnapi[i]->napi);
4322 }
4323 }
4324
4325 static void bnxt_tx_disable(struct bnxt *bp)
4326 {
4327 int i;
4328 struct bnxt_tx_ring_info *txr;
4329 struct netdev_queue *txq;
4330
4331 if (bp->tx_ring) {
4332 for (i = 0; i < bp->tx_nr_rings; i++) {
4333 txr = &bp->tx_ring[i];
4334 txq = netdev_get_tx_queue(bp->dev, i);
4335 __netif_tx_lock(txq, smp_processor_id());
4336 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4337 __netif_tx_unlock(txq);
4338 }
4339 }
4340 /* Stop all TX queues */
4341 netif_tx_disable(bp->dev);
4342 netif_carrier_off(bp->dev);
4343 }
4344
4345 static void bnxt_tx_enable(struct bnxt *bp)
4346 {
4347 int i;
4348 struct bnxt_tx_ring_info *txr;
4349 struct netdev_queue *txq;
4350
4351 for (i = 0; i < bp->tx_nr_rings; i++) {
4352 txr = &bp->tx_ring[i];
4353 txq = netdev_get_tx_queue(bp->dev, i);
4354 txr->dev_state = 0;
4355 }
4356 netif_tx_wake_all_queues(bp->dev);
4357 if (bp->link_info.link_up)
4358 netif_carrier_on(bp->dev);
4359 }
4360
4361 static void bnxt_report_link(struct bnxt *bp)
4362 {
4363 if (bp->link_info.link_up) {
4364 const char *duplex;
4365 const char *flow_ctrl;
4366 u16 speed;
4367
4368 netif_carrier_on(bp->dev);
4369 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4370 duplex = "full";
4371 else
4372 duplex = "half";
4373 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4374 flow_ctrl = "ON - receive & transmit";
4375 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4376 flow_ctrl = "ON - transmit";
4377 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4378 flow_ctrl = "ON - receive";
4379 else
4380 flow_ctrl = "none";
4381 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4382 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4383 speed, duplex, flow_ctrl);
4384 } else {
4385 netif_carrier_off(bp->dev);
4386 netdev_err(bp->dev, "NIC Link is Down\n");
4387 }
4388 }
4389
4390 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4391 {
4392 int rc = 0;
4393 struct bnxt_link_info *link_info = &bp->link_info;
4394 struct hwrm_port_phy_qcfg_input req = {0};
4395 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4396 u8 link_up = link_info->link_up;
4397
4398 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4399
4400 mutex_lock(&bp->hwrm_cmd_lock);
4401 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4402 if (rc) {
4403 mutex_unlock(&bp->hwrm_cmd_lock);
4404 return rc;
4405 }
4406
4407 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4408 link_info->phy_link_status = resp->link;
4409 link_info->duplex = resp->duplex;
4410 link_info->pause = resp->pause;
4411 link_info->auto_mode = resp->auto_mode;
4412 link_info->auto_pause_setting = resp->auto_pause;
4413 link_info->force_pause_setting = resp->force_pause;
4414 link_info->duplex_setting = resp->duplex;
4415 if (link_info->phy_link_status == BNXT_LINK_LINK)
4416 link_info->link_speed = le16_to_cpu(resp->link_speed);
4417 else
4418 link_info->link_speed = 0;
4419 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4420 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4421 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4422 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4423 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4424 link_info->phy_ver[0] = resp->phy_maj;
4425 link_info->phy_ver[1] = resp->phy_min;
4426 link_info->phy_ver[2] = resp->phy_bld;
4427 link_info->media_type = resp->media_type;
4428 link_info->transceiver = resp->transceiver_type;
4429 link_info->phy_addr = resp->phy_addr;
4430
4431 /* TODO: need to add more logic to report VF link */
4432 if (chng_link_state) {
4433 if (link_info->phy_link_status == BNXT_LINK_LINK)
4434 link_info->link_up = 1;
4435 else
4436 link_info->link_up = 0;
4437 if (link_up != link_info->link_up)
4438 bnxt_report_link(bp);
4439 } else {
4440 /* alwasy link down if not require to update link state */
4441 link_info->link_up = 0;
4442 }
4443 mutex_unlock(&bp->hwrm_cmd_lock);
4444 return 0;
4445 }
4446
4447 static void
4448 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4449 {
4450 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4451 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4452 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4453 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4454 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4455 req->enables |=
4456 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4457 } else {
4458 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4459 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4460 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4461 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4462 req->enables |=
4463 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4464 }
4465 }
4466
4467 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4468 struct hwrm_port_phy_cfg_input *req)
4469 {
4470 u8 autoneg = bp->link_info.autoneg;
4471 u16 fw_link_speed = bp->link_info.req_link_speed;
4472 u32 advertising = bp->link_info.advertising;
4473
4474 if (autoneg & BNXT_AUTONEG_SPEED) {
4475 req->auto_mode |=
4476 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4477
4478 req->enables |= cpu_to_le32(
4479 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4480 req->auto_link_speed_mask = cpu_to_le16(advertising);
4481
4482 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4483 req->flags |=
4484 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4485 } else {
4486 req->force_link_speed = cpu_to_le16(fw_link_speed);
4487 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4488 }
4489
4490 /* currently don't support half duplex */
4491 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4492 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4493 /* tell chimp that the setting takes effect immediately */
4494 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4495 }
4496
4497 int bnxt_hwrm_set_pause(struct bnxt *bp)
4498 {
4499 struct hwrm_port_phy_cfg_input req = {0};
4500 int rc;
4501
4502 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4503 bnxt_hwrm_set_pause_common(bp, &req);
4504
4505 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4506 bp->link_info.force_link_chng)
4507 bnxt_hwrm_set_link_common(bp, &req);
4508
4509 mutex_lock(&bp->hwrm_cmd_lock);
4510 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4511 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4512 /* since changing of pause setting doesn't trigger any link
4513 * change event, the driver needs to update the current pause
4514 * result upon successfully return of the phy_cfg command
4515 */
4516 bp->link_info.pause =
4517 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4518 bp->link_info.auto_pause_setting = 0;
4519 if (!bp->link_info.force_link_chng)
4520 bnxt_report_link(bp);
4521 }
4522 bp->link_info.force_link_chng = false;
4523 mutex_unlock(&bp->hwrm_cmd_lock);
4524 return rc;
4525 }
4526
4527 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4528 {
4529 struct hwrm_port_phy_cfg_input req = {0};
4530
4531 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4532 if (set_pause)
4533 bnxt_hwrm_set_pause_common(bp, &req);
4534
4535 bnxt_hwrm_set_link_common(bp, &req);
4536 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4537 }
4538
4539 static int bnxt_update_phy_setting(struct bnxt *bp)
4540 {
4541 int rc;
4542 bool update_link = false;
4543 bool update_pause = false;
4544 struct bnxt_link_info *link_info = &bp->link_info;
4545
4546 rc = bnxt_update_link(bp, true);
4547 if (rc) {
4548 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4549 rc);
4550 return rc;
4551 }
4552 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4553 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4554 update_pause = true;
4555 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4556 link_info->force_pause_setting != link_info->req_flow_ctrl)
4557 update_pause = true;
4558 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4559 if (BNXT_AUTO_MODE(link_info->auto_mode))
4560 update_link = true;
4561 if (link_info->req_link_speed != link_info->force_link_speed)
4562 update_link = true;
4563 if (link_info->req_duplex != link_info->duplex_setting)
4564 update_link = true;
4565 } else {
4566 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4567 update_link = true;
4568 if (link_info->advertising != link_info->auto_link_speeds)
4569 update_link = true;
4570 }
4571
4572 if (update_link)
4573 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4574 else if (update_pause)
4575 rc = bnxt_hwrm_set_pause(bp);
4576 if (rc) {
4577 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4578 rc);
4579 return rc;
4580 }
4581
4582 return rc;
4583 }
4584
4585 /* Common routine to pre-map certain register block to different GRC window.
4586 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4587 * in PF and 3 windows in VF that can be customized to map in different
4588 * register blocks.
4589 */
4590 static void bnxt_preset_reg_win(struct bnxt *bp)
4591 {
4592 if (BNXT_PF(bp)) {
4593 /* CAG registers map to GRC window #4 */
4594 writel(BNXT_CAG_REG_BASE,
4595 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4596 }
4597 }
4598
4599 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4600 {
4601 int rc = 0;
4602
4603 bnxt_preset_reg_win(bp);
4604 netif_carrier_off(bp->dev);
4605 if (irq_re_init) {
4606 rc = bnxt_setup_int_mode(bp);
4607 if (rc) {
4608 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4609 rc);
4610 return rc;
4611 }
4612 }
4613 if ((bp->flags & BNXT_FLAG_RFS) &&
4614 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4615 /* disable RFS if falling back to INTA */
4616 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4617 bp->flags &= ~BNXT_FLAG_RFS;
4618 }
4619
4620 rc = bnxt_alloc_mem(bp, irq_re_init);
4621 if (rc) {
4622 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4623 goto open_err_free_mem;
4624 }
4625
4626 if (irq_re_init) {
4627 bnxt_init_napi(bp);
4628 rc = bnxt_request_irq(bp);
4629 if (rc) {
4630 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4631 goto open_err;
4632 }
4633 }
4634
4635 bnxt_enable_napi(bp);
4636
4637 rc = bnxt_init_nic(bp, irq_re_init);
4638 if (rc) {
4639 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4640 goto open_err;
4641 }
4642
4643 if (link_re_init) {
4644 rc = bnxt_update_phy_setting(bp);
4645 if (rc)
4646 netdev_warn(bp->dev, "failed to update phy settings\n");
4647 }
4648
4649 if (irq_re_init) {
4650 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4651 vxlan_get_rx_port(bp->dev);
4652 #endif
4653 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4654 bp, htons(0x17c1),
4655 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4656 bp->nge_port_cnt = 1;
4657 }
4658
4659 set_bit(BNXT_STATE_OPEN, &bp->state);
4660 bnxt_enable_int(bp);
4661 /* Enable TX queues */
4662 bnxt_tx_enable(bp);
4663 mod_timer(&bp->timer, jiffies + bp->current_interval);
4664 bnxt_update_link(bp, true);
4665
4666 return 0;
4667
4668 open_err:
4669 bnxt_disable_napi(bp);
4670 bnxt_del_napi(bp);
4671
4672 open_err_free_mem:
4673 bnxt_free_skbs(bp);
4674 bnxt_free_irq(bp);
4675 bnxt_free_mem(bp, true);
4676 return rc;
4677 }
4678
4679 /* rtnl_lock held */
4680 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4681 {
4682 int rc = 0;
4683
4684 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4685 if (rc) {
4686 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4687 dev_close(bp->dev);
4688 }
4689 return rc;
4690 }
4691
4692 static int bnxt_open(struct net_device *dev)
4693 {
4694 struct bnxt *bp = netdev_priv(dev);
4695 int rc = 0;
4696
4697 rc = bnxt_hwrm_func_reset(bp);
4698 if (rc) {
4699 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4700 rc);
4701 rc = -1;
4702 return rc;
4703 }
4704 return __bnxt_open_nic(bp, true, true);
4705 }
4706
4707 static void bnxt_disable_int_sync(struct bnxt *bp)
4708 {
4709 int i;
4710
4711 atomic_inc(&bp->intr_sem);
4712 if (!netif_running(bp->dev))
4713 return;
4714
4715 bnxt_disable_int(bp);
4716 for (i = 0; i < bp->cp_nr_rings; i++)
4717 synchronize_irq(bp->irq_tbl[i].vector);
4718 }
4719
4720 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4721 {
4722 int rc = 0;
4723
4724 #ifdef CONFIG_BNXT_SRIOV
4725 if (bp->sriov_cfg) {
4726 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4727 !bp->sriov_cfg,
4728 BNXT_SRIOV_CFG_WAIT_TMO);
4729 if (rc)
4730 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4731 }
4732 #endif
4733 /* Change device state to avoid TX queue wake up's */
4734 bnxt_tx_disable(bp);
4735
4736 clear_bit(BNXT_STATE_OPEN, &bp->state);
4737 smp_mb__after_atomic();
4738 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4739 msleep(20);
4740
4741 /* Flush rings before disabling interrupts */
4742 bnxt_shutdown_nic(bp, irq_re_init);
4743
4744 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4745
4746 bnxt_disable_napi(bp);
4747 bnxt_disable_int_sync(bp);
4748 del_timer_sync(&bp->timer);
4749 bnxt_free_skbs(bp);
4750
4751 if (irq_re_init) {
4752 bnxt_free_irq(bp);
4753 bnxt_del_napi(bp);
4754 }
4755 bnxt_free_mem(bp, irq_re_init);
4756 return rc;
4757 }
4758
4759 static int bnxt_close(struct net_device *dev)
4760 {
4761 struct bnxt *bp = netdev_priv(dev);
4762
4763 bnxt_close_nic(bp, true, true);
4764 return 0;
4765 }
4766
4767 /* rtnl_lock held */
4768 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4769 {
4770 switch (cmd) {
4771 case SIOCGMIIPHY:
4772 /* fallthru */
4773 case SIOCGMIIREG: {
4774 if (!netif_running(dev))
4775 return -EAGAIN;
4776
4777 return 0;
4778 }
4779
4780 case SIOCSMIIREG:
4781 if (!netif_running(dev))
4782 return -EAGAIN;
4783
4784 return 0;
4785
4786 default:
4787 /* do nothing */
4788 break;
4789 }
4790 return -EOPNOTSUPP;
4791 }
4792
4793 static struct rtnl_link_stats64 *
4794 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4795 {
4796 u32 i;
4797 struct bnxt *bp = netdev_priv(dev);
4798
4799 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4800
4801 if (!bp->bnapi)
4802 return stats;
4803
4804 /* TODO check if we need to synchronize with bnxt_close path */
4805 for (i = 0; i < bp->cp_nr_rings; i++) {
4806 struct bnxt_napi *bnapi = bp->bnapi[i];
4807 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4808 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4809
4810 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4811 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4812 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4813
4814 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4815 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4816 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4817
4818 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4819 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4820 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4821
4822 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4823 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4824 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4825
4826 stats->rx_missed_errors +=
4827 le64_to_cpu(hw_stats->rx_discard_pkts);
4828
4829 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4830
4831 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4832 }
4833
4834 return stats;
4835 }
4836
4837 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4838 {
4839 struct net_device *dev = bp->dev;
4840 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4841 struct netdev_hw_addr *ha;
4842 u8 *haddr;
4843 int mc_count = 0;
4844 bool update = false;
4845 int off = 0;
4846
4847 netdev_for_each_mc_addr(ha, dev) {
4848 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4849 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4850 vnic->mc_list_count = 0;
4851 return false;
4852 }
4853 haddr = ha->addr;
4854 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4855 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4856 update = true;
4857 }
4858 off += ETH_ALEN;
4859 mc_count++;
4860 }
4861 if (mc_count)
4862 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4863
4864 if (mc_count != vnic->mc_list_count) {
4865 vnic->mc_list_count = mc_count;
4866 update = true;
4867 }
4868 return update;
4869 }
4870
4871 static bool bnxt_uc_list_updated(struct bnxt *bp)
4872 {
4873 struct net_device *dev = bp->dev;
4874 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4875 struct netdev_hw_addr *ha;
4876 int off = 0;
4877
4878 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4879 return true;
4880
4881 netdev_for_each_uc_addr(ha, dev) {
4882 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
4883 return true;
4884
4885 off += ETH_ALEN;
4886 }
4887 return false;
4888 }
4889
4890 static void bnxt_set_rx_mode(struct net_device *dev)
4891 {
4892 struct bnxt *bp = netdev_priv(dev);
4893 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4894 u32 mask = vnic->rx_mask;
4895 bool mc_update = false;
4896 bool uc_update;
4897
4898 if (!netif_running(dev))
4899 return;
4900
4901 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
4902 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
4903 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
4904
4905 /* Only allow PF to be in promiscuous mode */
4906 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4907 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4908
4909 uc_update = bnxt_uc_list_updated(bp);
4910
4911 if (dev->flags & IFF_ALLMULTI) {
4912 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4913 vnic->mc_list_count = 0;
4914 } else {
4915 mc_update = bnxt_mc_list_updated(bp, &mask);
4916 }
4917
4918 if (mask != vnic->rx_mask || uc_update || mc_update) {
4919 vnic->rx_mask = mask;
4920
4921 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
4922 schedule_work(&bp->sp_task);
4923 }
4924 }
4925
4926 static int bnxt_cfg_rx_mode(struct bnxt *bp)
4927 {
4928 struct net_device *dev = bp->dev;
4929 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4930 struct netdev_hw_addr *ha;
4931 int i, off = 0, rc;
4932 bool uc_update;
4933
4934 netif_addr_lock_bh(dev);
4935 uc_update = bnxt_uc_list_updated(bp);
4936 netif_addr_unlock_bh(dev);
4937
4938 if (!uc_update)
4939 goto skip_uc;
4940
4941 mutex_lock(&bp->hwrm_cmd_lock);
4942 for (i = 1; i < vnic->uc_filter_count; i++) {
4943 struct hwrm_cfa_l2_filter_free_input req = {0};
4944
4945 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
4946 -1);
4947
4948 req.l2_filter_id = vnic->fw_l2_filter_id[i];
4949
4950 rc = _hwrm_send_message(bp, &req, sizeof(req),
4951 HWRM_CMD_TIMEOUT);
4952 }
4953 mutex_unlock(&bp->hwrm_cmd_lock);
4954
4955 vnic->uc_filter_count = 1;
4956
4957 netif_addr_lock_bh(dev);
4958 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
4959 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4960 } else {
4961 netdev_for_each_uc_addr(ha, dev) {
4962 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
4963 off += ETH_ALEN;
4964 vnic->uc_filter_count++;
4965 }
4966 }
4967 netif_addr_unlock_bh(dev);
4968
4969 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
4970 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
4971 if (rc) {
4972 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
4973 rc);
4974 vnic->uc_filter_count = i;
4975 return rc;
4976 }
4977 }
4978
4979 skip_uc:
4980 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
4981 if (rc)
4982 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
4983 rc);
4984
4985 return rc;
4986 }
4987
4988 static bool bnxt_rfs_capable(struct bnxt *bp)
4989 {
4990 #ifdef CONFIG_RFS_ACCEL
4991 struct bnxt_pf_info *pf = &bp->pf;
4992 int vnics;
4993
4994 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
4995 return false;
4996
4997 vnics = 1 + bp->rx_nr_rings;
4998 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
4999 return false;
5000
5001 return true;
5002 #else
5003 return false;
5004 #endif
5005 }
5006
5007 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5008 netdev_features_t features)
5009 {
5010 struct bnxt *bp = netdev_priv(dev);
5011
5012 if (!bnxt_rfs_capable(bp))
5013 features &= ~NETIF_F_NTUPLE;
5014 return features;
5015 }
5016
5017 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5018 {
5019 struct bnxt *bp = netdev_priv(dev);
5020 u32 flags = bp->flags;
5021 u32 changes;
5022 int rc = 0;
5023 bool re_init = false;
5024 bool update_tpa = false;
5025
5026 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5027 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5028 flags |= BNXT_FLAG_GRO;
5029 if (features & NETIF_F_LRO)
5030 flags |= BNXT_FLAG_LRO;
5031
5032 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5033 flags |= BNXT_FLAG_STRIP_VLAN;
5034
5035 if (features & NETIF_F_NTUPLE)
5036 flags |= BNXT_FLAG_RFS;
5037
5038 changes = flags ^ bp->flags;
5039 if (changes & BNXT_FLAG_TPA) {
5040 update_tpa = true;
5041 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5042 (flags & BNXT_FLAG_TPA) == 0)
5043 re_init = true;
5044 }
5045
5046 if (changes & ~BNXT_FLAG_TPA)
5047 re_init = true;
5048
5049 if (flags != bp->flags) {
5050 u32 old_flags = bp->flags;
5051
5052 bp->flags = flags;
5053
5054 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5055 if (update_tpa)
5056 bnxt_set_ring_params(bp);
5057 return rc;
5058 }
5059
5060 if (re_init) {
5061 bnxt_close_nic(bp, false, false);
5062 if (update_tpa)
5063 bnxt_set_ring_params(bp);
5064
5065 return bnxt_open_nic(bp, false, false);
5066 }
5067 if (update_tpa) {
5068 rc = bnxt_set_tpa(bp,
5069 (flags & BNXT_FLAG_TPA) ?
5070 true : false);
5071 if (rc)
5072 bp->flags = old_flags;
5073 }
5074 }
5075 return rc;
5076 }
5077
5078 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5079 {
5080 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5081 int i = bnapi->index;
5082
5083 if (!txr)
5084 return;
5085
5086 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5087 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5088 txr->tx_cons);
5089 }
5090
5091 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5092 {
5093 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5094 int i = bnapi->index;
5095
5096 if (!rxr)
5097 return;
5098
5099 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5100 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5101 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5102 rxr->rx_sw_agg_prod);
5103 }
5104
5105 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5106 {
5107 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5108 int i = bnapi->index;
5109
5110 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5111 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5112 }
5113
5114 static void bnxt_dbg_dump_states(struct bnxt *bp)
5115 {
5116 int i;
5117 struct bnxt_napi *bnapi;
5118
5119 for (i = 0; i < bp->cp_nr_rings; i++) {
5120 bnapi = bp->bnapi[i];
5121 if (netif_msg_drv(bp)) {
5122 bnxt_dump_tx_sw_state(bnapi);
5123 bnxt_dump_rx_sw_state(bnapi);
5124 bnxt_dump_cp_sw_state(bnapi);
5125 }
5126 }
5127 }
5128
5129 static void bnxt_reset_task(struct bnxt *bp)
5130 {
5131 bnxt_dbg_dump_states(bp);
5132 if (netif_running(bp->dev)) {
5133 bnxt_close_nic(bp, false, false);
5134 bnxt_open_nic(bp, false, false);
5135 }
5136 }
5137
5138 static void bnxt_tx_timeout(struct net_device *dev)
5139 {
5140 struct bnxt *bp = netdev_priv(dev);
5141
5142 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5143 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5144 schedule_work(&bp->sp_task);
5145 }
5146
5147 #ifdef CONFIG_NET_POLL_CONTROLLER
5148 static void bnxt_poll_controller(struct net_device *dev)
5149 {
5150 struct bnxt *bp = netdev_priv(dev);
5151 int i;
5152
5153 for (i = 0; i < bp->cp_nr_rings; i++) {
5154 struct bnxt_irq *irq = &bp->irq_tbl[i];
5155
5156 disable_irq(irq->vector);
5157 irq->handler(irq->vector, bp->bnapi[i]);
5158 enable_irq(irq->vector);
5159 }
5160 }
5161 #endif
5162
5163 static void bnxt_timer(unsigned long data)
5164 {
5165 struct bnxt *bp = (struct bnxt *)data;
5166 struct net_device *dev = bp->dev;
5167
5168 if (!netif_running(dev))
5169 return;
5170
5171 if (atomic_read(&bp->intr_sem) != 0)
5172 goto bnxt_restart_timer;
5173
5174 bnxt_restart_timer:
5175 mod_timer(&bp->timer, jiffies + bp->current_interval);
5176 }
5177
5178 static void bnxt_cfg_ntp_filters(struct bnxt *);
5179
5180 static void bnxt_sp_task(struct work_struct *work)
5181 {
5182 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5183 int rc;
5184
5185 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5186 smp_mb__after_atomic();
5187 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5188 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5189 return;
5190 }
5191
5192 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5193 bnxt_cfg_rx_mode(bp);
5194
5195 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5196 bnxt_cfg_ntp_filters(bp);
5197 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5198 rc = bnxt_update_link(bp, true);
5199 if (rc)
5200 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5201 rc);
5202 }
5203 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5204 bnxt_hwrm_exec_fwd_req(bp);
5205 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5206 bnxt_hwrm_tunnel_dst_port_alloc(
5207 bp, bp->vxlan_port,
5208 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5209 }
5210 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5211 bnxt_hwrm_tunnel_dst_port_free(
5212 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5213 }
5214 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5215 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5216 * for BNXT_STATE_IN_SP_TASK to clear.
5217 */
5218 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5219 rtnl_lock();
5220 bnxt_reset_task(bp);
5221 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5222 rtnl_unlock();
5223 }
5224
5225 smp_mb__before_atomic();
5226 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5227 }
5228
5229 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5230 {
5231 int rc;
5232 struct bnxt *bp = netdev_priv(dev);
5233
5234 SET_NETDEV_DEV(dev, &pdev->dev);
5235
5236 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5237 rc = pci_enable_device(pdev);
5238 if (rc) {
5239 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5240 goto init_err;
5241 }
5242
5243 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5244 dev_err(&pdev->dev,
5245 "Cannot find PCI device base address, aborting\n");
5246 rc = -ENODEV;
5247 goto init_err_disable;
5248 }
5249
5250 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5251 if (rc) {
5252 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5253 goto init_err_disable;
5254 }
5255
5256 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5257 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5258 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5259 goto init_err_disable;
5260 }
5261
5262 pci_set_master(pdev);
5263
5264 bp->dev = dev;
5265 bp->pdev = pdev;
5266
5267 bp->bar0 = pci_ioremap_bar(pdev, 0);
5268 if (!bp->bar0) {
5269 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5270 rc = -ENOMEM;
5271 goto init_err_release;
5272 }
5273
5274 bp->bar1 = pci_ioremap_bar(pdev, 2);
5275 if (!bp->bar1) {
5276 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5277 rc = -ENOMEM;
5278 goto init_err_release;
5279 }
5280
5281 bp->bar2 = pci_ioremap_bar(pdev, 4);
5282 if (!bp->bar2) {
5283 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5284 rc = -ENOMEM;
5285 goto init_err_release;
5286 }
5287
5288 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5289
5290 spin_lock_init(&bp->ntp_fltr_lock);
5291
5292 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5293 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5294
5295 bp->coal_ticks = BNXT_USEC_TO_COAL_TIMER(4);
5296 bp->coal_bufs = 20;
5297 bp->coal_ticks_irq = BNXT_USEC_TO_COAL_TIMER(1);
5298 bp->coal_bufs_irq = 2;
5299
5300 init_timer(&bp->timer);
5301 bp->timer.data = (unsigned long)bp;
5302 bp->timer.function = bnxt_timer;
5303 bp->current_interval = BNXT_TIMER_INTERVAL;
5304
5305 clear_bit(BNXT_STATE_OPEN, &bp->state);
5306
5307 return 0;
5308
5309 init_err_release:
5310 if (bp->bar2) {
5311 pci_iounmap(pdev, bp->bar2);
5312 bp->bar2 = NULL;
5313 }
5314
5315 if (bp->bar1) {
5316 pci_iounmap(pdev, bp->bar1);
5317 bp->bar1 = NULL;
5318 }
5319
5320 if (bp->bar0) {
5321 pci_iounmap(pdev, bp->bar0);
5322 bp->bar0 = NULL;
5323 }
5324
5325 pci_release_regions(pdev);
5326
5327 init_err_disable:
5328 pci_disable_device(pdev);
5329
5330 init_err:
5331 return rc;
5332 }
5333
5334 /* rtnl_lock held */
5335 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5336 {
5337 struct sockaddr *addr = p;
5338 struct bnxt *bp = netdev_priv(dev);
5339 int rc = 0;
5340
5341 if (!is_valid_ether_addr(addr->sa_data))
5342 return -EADDRNOTAVAIL;
5343
5344 #ifdef CONFIG_BNXT_SRIOV
5345 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5346 return -EADDRNOTAVAIL;
5347 #endif
5348
5349 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5350 return 0;
5351
5352 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5353 if (netif_running(dev)) {
5354 bnxt_close_nic(bp, false, false);
5355 rc = bnxt_open_nic(bp, false, false);
5356 }
5357
5358 return rc;
5359 }
5360
5361 /* rtnl_lock held */
5362 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5363 {
5364 struct bnxt *bp = netdev_priv(dev);
5365
5366 if (new_mtu < 60 || new_mtu > 9000)
5367 return -EINVAL;
5368
5369 if (netif_running(dev))
5370 bnxt_close_nic(bp, false, false);
5371
5372 dev->mtu = new_mtu;
5373 bnxt_set_ring_params(bp);
5374
5375 if (netif_running(dev))
5376 return bnxt_open_nic(bp, false, false);
5377
5378 return 0;
5379 }
5380
5381 static int bnxt_setup_tc(struct net_device *dev, u8 tc)
5382 {
5383 struct bnxt *bp = netdev_priv(dev);
5384
5385 if (tc > bp->max_tc) {
5386 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5387 tc, bp->max_tc);
5388 return -EINVAL;
5389 }
5390
5391 if (netdev_get_num_tc(dev) == tc)
5392 return 0;
5393
5394 if (tc) {
5395 int max_rx_rings, max_tx_rings, rc;
5396 bool sh = false;
5397
5398 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5399 sh = true;
5400
5401 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5402 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5403 return -ENOMEM;
5404 }
5405
5406 /* Needs to close the device and do hw resource re-allocations */
5407 if (netif_running(bp->dev))
5408 bnxt_close_nic(bp, true, false);
5409
5410 if (tc) {
5411 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5412 netdev_set_num_tc(dev, tc);
5413 } else {
5414 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5415 netdev_reset_tc(dev);
5416 }
5417 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5418 bp->num_stat_ctxs = bp->cp_nr_rings;
5419
5420 if (netif_running(bp->dev))
5421 return bnxt_open_nic(bp, true, false);
5422
5423 return 0;
5424 }
5425
5426 #ifdef CONFIG_RFS_ACCEL
5427 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5428 struct bnxt_ntuple_filter *f2)
5429 {
5430 struct flow_keys *keys1 = &f1->fkeys;
5431 struct flow_keys *keys2 = &f2->fkeys;
5432
5433 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5434 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5435 keys1->ports.ports == keys2->ports.ports &&
5436 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5437 keys1->basic.n_proto == keys2->basic.n_proto &&
5438 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5439 return true;
5440
5441 return false;
5442 }
5443
5444 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5445 u16 rxq_index, u32 flow_id)
5446 {
5447 struct bnxt *bp = netdev_priv(dev);
5448 struct bnxt_ntuple_filter *fltr, *new_fltr;
5449 struct flow_keys *fkeys;
5450 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5451 int rc = 0, idx, bit_id;
5452 struct hlist_head *head;
5453
5454 if (skb->encapsulation)
5455 return -EPROTONOSUPPORT;
5456
5457 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5458 if (!new_fltr)
5459 return -ENOMEM;
5460
5461 fkeys = &new_fltr->fkeys;
5462 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5463 rc = -EPROTONOSUPPORT;
5464 goto err_free;
5465 }
5466
5467 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5468 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5469 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5470 rc = -EPROTONOSUPPORT;
5471 goto err_free;
5472 }
5473
5474 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5475
5476 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5477 head = &bp->ntp_fltr_hash_tbl[idx];
5478 rcu_read_lock();
5479 hlist_for_each_entry_rcu(fltr, head, hash) {
5480 if (bnxt_fltr_match(fltr, new_fltr)) {
5481 rcu_read_unlock();
5482 rc = 0;
5483 goto err_free;
5484 }
5485 }
5486 rcu_read_unlock();
5487
5488 spin_lock_bh(&bp->ntp_fltr_lock);
5489 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5490 BNXT_NTP_FLTR_MAX_FLTR, 0);
5491 if (bit_id < 0) {
5492 spin_unlock_bh(&bp->ntp_fltr_lock);
5493 rc = -ENOMEM;
5494 goto err_free;
5495 }
5496
5497 new_fltr->sw_id = (u16)bit_id;
5498 new_fltr->flow_id = flow_id;
5499 new_fltr->rxq = rxq_index;
5500 hlist_add_head_rcu(&new_fltr->hash, head);
5501 bp->ntp_fltr_count++;
5502 spin_unlock_bh(&bp->ntp_fltr_lock);
5503
5504 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5505 schedule_work(&bp->sp_task);
5506
5507 return new_fltr->sw_id;
5508
5509 err_free:
5510 kfree(new_fltr);
5511 return rc;
5512 }
5513
5514 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5515 {
5516 int i;
5517
5518 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5519 struct hlist_head *head;
5520 struct hlist_node *tmp;
5521 struct bnxt_ntuple_filter *fltr;
5522 int rc;
5523
5524 head = &bp->ntp_fltr_hash_tbl[i];
5525 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5526 bool del = false;
5527
5528 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5529 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5530 fltr->flow_id,
5531 fltr->sw_id)) {
5532 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5533 fltr);
5534 del = true;
5535 }
5536 } else {
5537 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5538 fltr);
5539 if (rc)
5540 del = true;
5541 else
5542 set_bit(BNXT_FLTR_VALID, &fltr->state);
5543 }
5544
5545 if (del) {
5546 spin_lock_bh(&bp->ntp_fltr_lock);
5547 hlist_del_rcu(&fltr->hash);
5548 bp->ntp_fltr_count--;
5549 spin_unlock_bh(&bp->ntp_fltr_lock);
5550 synchronize_rcu();
5551 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5552 kfree(fltr);
5553 }
5554 }
5555 }
5556 }
5557
5558 #else
5559
5560 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5561 {
5562 }
5563
5564 #endif /* CONFIG_RFS_ACCEL */
5565
5566 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5567 __be16 port)
5568 {
5569 struct bnxt *bp = netdev_priv(dev);
5570
5571 if (!netif_running(dev))
5572 return;
5573
5574 if (sa_family != AF_INET6 && sa_family != AF_INET)
5575 return;
5576
5577 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5578 return;
5579
5580 bp->vxlan_port_cnt++;
5581 if (bp->vxlan_port_cnt == 1) {
5582 bp->vxlan_port = port;
5583 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5584 schedule_work(&bp->sp_task);
5585 }
5586 }
5587
5588 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5589 __be16 port)
5590 {
5591 struct bnxt *bp = netdev_priv(dev);
5592
5593 if (!netif_running(dev))
5594 return;
5595
5596 if (sa_family != AF_INET6 && sa_family != AF_INET)
5597 return;
5598
5599 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5600 bp->vxlan_port_cnt--;
5601
5602 if (bp->vxlan_port_cnt == 0) {
5603 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5604 schedule_work(&bp->sp_task);
5605 }
5606 }
5607 }
5608
5609 static const struct net_device_ops bnxt_netdev_ops = {
5610 .ndo_open = bnxt_open,
5611 .ndo_start_xmit = bnxt_start_xmit,
5612 .ndo_stop = bnxt_close,
5613 .ndo_get_stats64 = bnxt_get_stats64,
5614 .ndo_set_rx_mode = bnxt_set_rx_mode,
5615 .ndo_do_ioctl = bnxt_ioctl,
5616 .ndo_validate_addr = eth_validate_addr,
5617 .ndo_set_mac_address = bnxt_change_mac_addr,
5618 .ndo_change_mtu = bnxt_change_mtu,
5619 .ndo_fix_features = bnxt_fix_features,
5620 .ndo_set_features = bnxt_set_features,
5621 .ndo_tx_timeout = bnxt_tx_timeout,
5622 #ifdef CONFIG_BNXT_SRIOV
5623 .ndo_get_vf_config = bnxt_get_vf_config,
5624 .ndo_set_vf_mac = bnxt_set_vf_mac,
5625 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5626 .ndo_set_vf_rate = bnxt_set_vf_bw,
5627 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5628 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5629 #endif
5630 #ifdef CONFIG_NET_POLL_CONTROLLER
5631 .ndo_poll_controller = bnxt_poll_controller,
5632 #endif
5633 .ndo_setup_tc = bnxt_setup_tc,
5634 #ifdef CONFIG_RFS_ACCEL
5635 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5636 #endif
5637 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5638 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5639 #ifdef CONFIG_NET_RX_BUSY_POLL
5640 .ndo_busy_poll = bnxt_busy_poll,
5641 #endif
5642 };
5643
5644 static void bnxt_remove_one(struct pci_dev *pdev)
5645 {
5646 struct net_device *dev = pci_get_drvdata(pdev);
5647 struct bnxt *bp = netdev_priv(dev);
5648
5649 if (BNXT_PF(bp))
5650 bnxt_sriov_disable(bp);
5651
5652 unregister_netdev(dev);
5653 cancel_work_sync(&bp->sp_task);
5654 bp->sp_event = 0;
5655
5656 bnxt_hwrm_func_drv_unrgtr(bp);
5657 bnxt_free_hwrm_resources(bp);
5658 pci_iounmap(pdev, bp->bar2);
5659 pci_iounmap(pdev, bp->bar1);
5660 pci_iounmap(pdev, bp->bar0);
5661 free_netdev(dev);
5662
5663 pci_release_regions(pdev);
5664 pci_disable_device(pdev);
5665 }
5666
5667 static int bnxt_probe_phy(struct bnxt *bp)
5668 {
5669 int rc = 0;
5670 struct bnxt_link_info *link_info = &bp->link_info;
5671 char phy_ver[PHY_VER_STR_LEN];
5672
5673 rc = bnxt_update_link(bp, false);
5674 if (rc) {
5675 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5676 rc);
5677 return rc;
5678 }
5679
5680 /*initialize the ethool setting copy with NVM settings */
5681 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5682 link_info->autoneg = BNXT_AUTONEG_SPEED |
5683 BNXT_AUTONEG_FLOW_CTRL;
5684 link_info->advertising = link_info->auto_link_speeds;
5685 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5686 } else {
5687 link_info->req_link_speed = link_info->force_link_speed;
5688 link_info->req_duplex = link_info->duplex_setting;
5689 link_info->req_flow_ctrl = link_info->force_pause_setting;
5690 }
5691 snprintf(phy_ver, PHY_VER_STR_LEN, " ph %d.%d.%d",
5692 link_info->phy_ver[0],
5693 link_info->phy_ver[1],
5694 link_info->phy_ver[2]);
5695 strcat(bp->fw_ver_str, phy_ver);
5696 return rc;
5697 }
5698
5699 static int bnxt_get_max_irq(struct pci_dev *pdev)
5700 {
5701 u16 ctrl;
5702
5703 if (!pdev->msix_cap)
5704 return 1;
5705
5706 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5707 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5708 }
5709
5710 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5711 int *max_cp)
5712 {
5713 int max_ring_grps = 0;
5714
5715 #ifdef CONFIG_BNXT_SRIOV
5716 if (!BNXT_PF(bp)) {
5717 *max_tx = bp->vf.max_tx_rings;
5718 *max_rx = bp->vf.max_rx_rings;
5719 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5720 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5721 max_ring_grps = bp->vf.max_hw_ring_grps;
5722 } else
5723 #endif
5724 {
5725 *max_tx = bp->pf.max_tx_rings;
5726 *max_rx = bp->pf.max_rx_rings;
5727 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5728 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5729 max_ring_grps = bp->pf.max_hw_ring_grps;
5730 }
5731
5732 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5733 *max_rx >>= 1;
5734 *max_rx = min_t(int, *max_rx, max_ring_grps);
5735 }
5736
5737 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5738 {
5739 int rx, tx, cp;
5740
5741 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5742 if (!rx || !tx || !cp)
5743 return -ENOMEM;
5744
5745 *max_rx = rx;
5746 *max_tx = tx;
5747 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5748 }
5749
5750 static int bnxt_set_dflt_rings(struct bnxt *bp)
5751 {
5752 int dflt_rings, max_rx_rings, max_tx_rings, rc;
5753 bool sh = true;
5754
5755 if (sh)
5756 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5757 dflt_rings = netif_get_num_default_rss_queues();
5758 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5759 if (rc)
5760 return rc;
5761 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5762 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5763 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5764 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5765 bp->tx_nr_rings + bp->rx_nr_rings;
5766 bp->num_stat_ctxs = bp->cp_nr_rings;
5767 return rc;
5768 }
5769
5770 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5771 {
5772 static int version_printed;
5773 struct net_device *dev;
5774 struct bnxt *bp;
5775 int rc, max_irqs;
5776
5777 if (version_printed++ == 0)
5778 pr_info("%s", version);
5779
5780 max_irqs = bnxt_get_max_irq(pdev);
5781 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5782 if (!dev)
5783 return -ENOMEM;
5784
5785 bp = netdev_priv(dev);
5786
5787 if (bnxt_vf_pciid(ent->driver_data))
5788 bp->flags |= BNXT_FLAG_VF;
5789
5790 if (pdev->msix_cap)
5791 bp->flags |= BNXT_FLAG_MSIX_CAP;
5792
5793 rc = bnxt_init_board(pdev, dev);
5794 if (rc < 0)
5795 goto init_err_free;
5796
5797 dev->netdev_ops = &bnxt_netdev_ops;
5798 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5799 dev->ethtool_ops = &bnxt_ethtool_ops;
5800
5801 pci_set_drvdata(pdev, dev);
5802
5803 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5804 NETIF_F_TSO | NETIF_F_TSO6 |
5805 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5806 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5807 NETIF_F_RXHASH |
5808 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5809
5810 dev->hw_enc_features =
5811 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5812 NETIF_F_TSO | NETIF_F_TSO6 |
5813 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5814 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5815 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5816 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5817 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5818 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5819 dev->priv_flags |= IFF_UNICAST_FLT;
5820
5821 #ifdef CONFIG_BNXT_SRIOV
5822 init_waitqueue_head(&bp->sriov_cfg_wait);
5823 #endif
5824 rc = bnxt_alloc_hwrm_resources(bp);
5825 if (rc)
5826 goto init_err;
5827
5828 mutex_init(&bp->hwrm_cmd_lock);
5829 bnxt_hwrm_ver_get(bp);
5830
5831 rc = bnxt_hwrm_func_drv_rgtr(bp);
5832 if (rc)
5833 goto init_err;
5834
5835 /* Get the MAX capabilities for this function */
5836 rc = bnxt_hwrm_func_qcaps(bp);
5837 if (rc) {
5838 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5839 rc);
5840 rc = -1;
5841 goto init_err;
5842 }
5843
5844 rc = bnxt_hwrm_queue_qportcfg(bp);
5845 if (rc) {
5846 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5847 rc);
5848 rc = -1;
5849 goto init_err;
5850 }
5851
5852 bnxt_set_tpa_flags(bp);
5853 bnxt_set_ring_params(bp);
5854 if (BNXT_PF(bp))
5855 bp->pf.max_irqs = max_irqs;
5856 #if defined(CONFIG_BNXT_SRIOV)
5857 else
5858 bp->vf.max_irqs = max_irqs;
5859 #endif
5860 bnxt_set_dflt_rings(bp);
5861
5862 if (BNXT_PF(bp)) {
5863 dev->hw_features |= NETIF_F_NTUPLE;
5864 if (bnxt_rfs_capable(bp)) {
5865 bp->flags |= BNXT_FLAG_RFS;
5866 dev->features |= NETIF_F_NTUPLE;
5867 }
5868 }
5869
5870 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
5871 bp->flags |= BNXT_FLAG_STRIP_VLAN;
5872
5873 rc = bnxt_probe_phy(bp);
5874 if (rc)
5875 goto init_err;
5876
5877 rc = register_netdev(dev);
5878 if (rc)
5879 goto init_err;
5880
5881 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
5882 board_info[ent->driver_data].name,
5883 (long)pci_resource_start(pdev, 0), dev->dev_addr);
5884
5885 return 0;
5886
5887 init_err:
5888 pci_iounmap(pdev, bp->bar0);
5889 pci_release_regions(pdev);
5890 pci_disable_device(pdev);
5891
5892 init_err_free:
5893 free_netdev(dev);
5894 return rc;
5895 }
5896
5897 static struct pci_driver bnxt_pci_driver = {
5898 .name = DRV_MODULE_NAME,
5899 .id_table = bnxt_pci_tbl,
5900 .probe = bnxt_init_one,
5901 .remove = bnxt_remove_one,
5902 #if defined(CONFIG_BNXT_SRIOV)
5903 .sriov_configure = bnxt_sriov_configure,
5904 #endif
5905 };
5906
5907 module_pci_driver(bnxt_pci_driver);
This page took 0.148841 seconds and 6 git commands to generate.