Merge tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57304_VF,
82 BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87 char *name;
88 } board_info[] = {
89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116 HWRM_FUNC_CFG,
117 HWRM_PORT_PHY_QCFG,
118 HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons) \
131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons) \
134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db) \
137 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 /* Tell compiler to fetch tx indices from memory. */
142 barrier();
143
144 return bp->tx_ring_size -
145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 TX_BD_FLAGS_LHINT_512_TO_1023,
151 TX_BD_FLAGS_LHINT_1024_TO_2047,
152 TX_BD_FLAGS_LHINT_1024_TO_2047,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 struct bnxt *bp = netdev_priv(dev);
173 struct tx_bd *txbd;
174 struct tx_bd_ext *txbd1;
175 struct netdev_queue *txq;
176 int i;
177 dma_addr_t mapping;
178 unsigned int length, pad = 0;
179 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 u16 prod, last_frag;
181 struct pci_dev *pdev = bp->pdev;
182 struct bnxt_tx_ring_info *txr;
183 struct bnxt_sw_tx_bd *tx_buf;
184
185 i = skb_get_queue_mapping(skb);
186 if (unlikely(i >= bp->tx_nr_rings)) {
187 dev_kfree_skb_any(skb);
188 return NETDEV_TX_OK;
189 }
190
191 txr = &bp->tx_ring[i];
192 txq = netdev_get_tx_queue(dev, i);
193 prod = txr->tx_prod;
194
195 free_size = bnxt_tx_avail(bp, txr);
196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 netif_tx_stop_queue(txq);
198 return NETDEV_TX_BUSY;
199 }
200
201 length = skb->len;
202 len = skb_headlen(skb);
203 last_frag = skb_shinfo(skb)->nr_frags;
204
205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207 txbd->tx_bd_opaque = prod;
208
209 tx_buf = &txr->tx_buf_ring[prod];
210 tx_buf->skb = skb;
211 tx_buf->nr_frags = last_frag;
212
213 vlan_tag_flags = 0;
214 cfa_action = 0;
215 if (skb_vlan_tag_present(skb)) {
216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 skb_vlan_tag_get(skb);
218 /* Currently supports 8021Q, 8021AD vlan offloads
219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 */
221 if (skb->vlan_proto == htons(ETH_P_8021Q))
222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 }
224
225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 void *pdata = tx_push_buf->data;
230 u64 *end;
231 int j, push_len;
232
233 /* Set COAL_NOW to be ready quickly for the next push */
234 tx_push->tx_bd_len_flags_type =
235 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 TX_BD_TYPE_LONG_TX_BD |
237 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 TX_BD_FLAGS_COAL_NOW |
239 TX_BD_FLAGS_PACKET_END |
240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242 if (skb->ip_summed == CHECKSUM_PARTIAL)
243 tx_push1->tx_bd_hsize_lflags =
244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 else
246 tx_push1->tx_bd_hsize_lflags = 0;
247
248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251 end = pdata + length;
252 end = PTR_ALIGN(end, 8) - 1;
253 *end = 0;
254
255 skb_copy_from_linear_data(skb, pdata, len);
256 pdata += len;
257 for (j = 0; j < last_frag; j++) {
258 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 void *fptr;
260
261 fptr = skb_frag_address_safe(frag);
262 if (!fptr)
263 goto normal_tx;
264
265 memcpy(pdata, fptr, skb_frag_size(frag));
266 pdata += skb_frag_size(frag);
267 }
268
269 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 txbd->tx_bd_haddr = txr->data_mapping;
271 prod = NEXT_TX(prod);
272 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 memcpy(txbd, tx_push1, sizeof(*txbd));
274 prod = NEXT_TX(prod);
275 tx_push->doorbell =
276 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 txr->tx_prod = prod;
278
279 netdev_tx_sent_queue(txq, skb->len);
280
281 push_len = (length + sizeof(*tx_push) + 7) / 8;
282 if (push_len > 16) {
283 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 push_len - 16);
286 } else {
287 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 push_len);
289 }
290
291 tx_buf->is_push = 1;
292 goto tx_done;
293 }
294
295 normal_tx:
296 if (length < BNXT_MIN_PKT_SIZE) {
297 pad = BNXT_MIN_PKT_SIZE - length;
298 if (skb_pad(skb, pad)) {
299 /* SKB already freed. */
300 tx_buf->skb = NULL;
301 return NETDEV_TX_OK;
302 }
303 length = BNXT_MIN_PKT_SIZE;
304 }
305
306 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307
308 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 dev_kfree_skb_any(skb);
310 tx_buf->skb = NULL;
311 return NETDEV_TX_OK;
312 }
313
314 dma_unmap_addr_set(tx_buf, mapping, mapping);
315 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317
318 txbd->tx_bd_haddr = cpu_to_le64(mapping);
319
320 prod = NEXT_TX(prod);
321 txbd1 = (struct tx_bd_ext *)
322 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323
324 txbd1->tx_bd_hsize_lflags = 0;
325 if (skb_is_gso(skb)) {
326 u32 hdr_len;
327
328 if (skb->encapsulation)
329 hdr_len = skb_inner_network_offset(skb) +
330 skb_inner_network_header_len(skb) +
331 inner_tcp_hdrlen(skb);
332 else
333 hdr_len = skb_transport_offset(skb) +
334 tcp_hdrlen(skb);
335
336 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 TX_BD_FLAGS_T_IPID |
338 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 length = skb_shinfo(skb)->gso_size;
340 txbd1->tx_bd_mss = cpu_to_le32(length);
341 length += hdr_len;
342 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 txbd1->tx_bd_hsize_lflags =
344 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 txbd1->tx_bd_mss = 0;
346 }
347
348 length >>= 9;
349 flags |= bnxt_lhint_arr[length];
350 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351
352 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 for (i = 0; i < last_frag; i++) {
355 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356
357 prod = NEXT_TX(prod);
358 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359
360 len = skb_frag_size(frag);
361 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 DMA_TO_DEVICE);
363
364 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 goto tx_dma_error;
366
367 tx_buf = &txr->tx_buf_ring[prod];
368 dma_unmap_addr_set(tx_buf, mapping, mapping);
369
370 txbd->tx_bd_haddr = cpu_to_le64(mapping);
371
372 flags = len << TX_BD_LEN_SHIFT;
373 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 }
375
376 flags &= ~TX_BD_LEN;
377 txbd->tx_bd_len_flags_type =
378 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 TX_BD_FLAGS_PACKET_END);
380
381 netdev_tx_sent_queue(txq, skb->len);
382
383 /* Sync BD data before updating doorbell */
384 wmb();
385
386 prod = NEXT_TX(prod);
387 txr->tx_prod = prod;
388
389 writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 writel(DB_KEY_TX | prod, txr->tx_doorbell);
391
392 tx_done:
393
394 mmiowb();
395
396 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 netif_tx_stop_queue(txq);
398
399 /* netif_tx_stop_queue() must be done before checking
400 * tx index in bnxt_tx_avail() below, because in
401 * bnxt_tx_int(), we update tx index before checking for
402 * netif_tx_queue_stopped().
403 */
404 smp_mb();
405 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 netif_tx_wake_queue(txq);
407 }
408 return NETDEV_TX_OK;
409
410 tx_dma_error:
411 last_frag = i;
412
413 /* start back at beginning and unmap skb */
414 prod = txr->tx_prod;
415 tx_buf = &txr->tx_buf_ring[prod];
416 tx_buf->skb = NULL;
417 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 skb_headlen(skb), PCI_DMA_TODEVICE);
419 prod = NEXT_TX(prod);
420
421 /* unmap remaining mapped pages */
422 for (i = 0; i < last_frag; i++) {
423 prod = NEXT_TX(prod);
424 tx_buf = &txr->tx_buf_ring[prod];
425 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 PCI_DMA_TODEVICE);
428 }
429
430 dev_kfree_skb_any(skb);
431 return NETDEV_TX_OK;
432 }
433
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 int index = txr - &bp->tx_ring[0];
438 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 u16 cons = txr->tx_cons;
440 struct pci_dev *pdev = bp->pdev;
441 int i;
442 unsigned int tx_bytes = 0;
443
444 for (i = 0; i < nr_pkts; i++) {
445 struct bnxt_sw_tx_bd *tx_buf;
446 struct sk_buff *skb;
447 int j, last;
448
449 tx_buf = &txr->tx_buf_ring[cons];
450 cons = NEXT_TX(cons);
451 skb = tx_buf->skb;
452 tx_buf->skb = NULL;
453
454 if (tx_buf->is_push) {
455 tx_buf->is_push = 0;
456 goto next_tx_int;
457 }
458
459 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 skb_headlen(skb), PCI_DMA_TODEVICE);
461 last = tx_buf->nr_frags;
462
463 for (j = 0; j < last; j++) {
464 cons = NEXT_TX(cons);
465 tx_buf = &txr->tx_buf_ring[cons];
466 dma_unmap_page(
467 &pdev->dev,
468 dma_unmap_addr(tx_buf, mapping),
469 skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 PCI_DMA_TODEVICE);
471 }
472
473 next_tx_int:
474 cons = NEXT_TX(cons);
475
476 tx_bytes += skb->len;
477 dev_kfree_skb_any(skb);
478 }
479
480 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 txr->tx_cons = cons;
482
483 /* Need to make the tx_cons update visible to bnxt_start_xmit()
484 * before checking for netif_tx_queue_stopped(). Without the
485 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 * will miss it and cause the queue to be stopped forever.
487 */
488 smp_mb();
489
490 if (unlikely(netif_tx_queue_stopped(txq)) &&
491 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 __netif_tx_lock(txq, smp_processor_id());
493 if (netif_tx_queue_stopped(txq) &&
494 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 netif_tx_wake_queue(txq);
497 __netif_tx_unlock(txq);
498 }
499 }
500
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 gfp_t gfp)
503 {
504 u8 *data;
505 struct pci_dev *pdev = bp->pdev;
506
507 data = kmalloc(bp->rx_buf_size, gfp);
508 if (!data)
509 return NULL;
510
511 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513
514 if (dma_mapping_error(&pdev->dev, *mapping)) {
515 kfree(data);
516 data = NULL;
517 }
518 return data;
519 }
520
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 struct bnxt_rx_ring_info *rxr,
523 u16 prod, gfp_t gfp)
524 {
525 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 u8 *data;
528 dma_addr_t mapping;
529
530 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 if (!data)
532 return -ENOMEM;
533
534 rx_buf->data = data;
535 dma_unmap_addr_set(rx_buf, mapping, mapping);
536
537 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538
539 return 0;
540 }
541
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 u8 *data)
544 {
545 u16 prod = rxr->rx_prod;
546 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 struct rx_bd *cons_bd, *prod_bd;
548
549 prod_rx_buf = &rxr->rx_buf_ring[prod];
550 cons_rx_buf = &rxr->rx_buf_ring[cons];
551
552 prod_rx_buf->data = data;
553
554 dma_unmap_addr_set(prod_rx_buf, mapping,
555 dma_unmap_addr(cons_rx_buf, mapping));
556
557 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559
560 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 u16 next, max = rxr->rx_agg_bmap_size;
566
567 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 if (next >= max)
569 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 return next;
571 }
572
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 struct bnxt_rx_ring_info *rxr,
575 u16 prod, gfp_t gfp)
576 {
577 struct rx_bd *rxbd =
578 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 struct pci_dev *pdev = bp->pdev;
581 struct page *page;
582 dma_addr_t mapping;
583 u16 sw_prod = rxr->rx_sw_agg_prod;
584
585 page = alloc_page(gfp);
586 if (!page)
587 return -ENOMEM;
588
589 mapping = dma_map_page(&pdev->dev, page, 0, PAGE_SIZE,
590 PCI_DMA_FROMDEVICE);
591 if (dma_mapping_error(&pdev->dev, mapping)) {
592 __free_page(page);
593 return -EIO;
594 }
595
596 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
597 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
598
599 __set_bit(sw_prod, rxr->rx_agg_bmap);
600 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
601 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
602
603 rx_agg_buf->page = page;
604 rx_agg_buf->mapping = mapping;
605 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
606 rxbd->rx_bd_opaque = sw_prod;
607 return 0;
608 }
609
610 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
611 u32 agg_bufs)
612 {
613 struct bnxt *bp = bnapi->bp;
614 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
615 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
616 u16 prod = rxr->rx_agg_prod;
617 u16 sw_prod = rxr->rx_sw_agg_prod;
618 u32 i;
619
620 for (i = 0; i < agg_bufs; i++) {
621 u16 cons;
622 struct rx_agg_cmp *agg;
623 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
624 struct rx_bd *prod_bd;
625 struct page *page;
626
627 agg = (struct rx_agg_cmp *)
628 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
629 cons = agg->rx_agg_cmp_opaque;
630 __clear_bit(cons, rxr->rx_agg_bmap);
631
632 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
633 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
634
635 __set_bit(sw_prod, rxr->rx_agg_bmap);
636 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
637 cons_rx_buf = &rxr->rx_agg_ring[cons];
638
639 /* It is possible for sw_prod to be equal to cons, so
640 * set cons_rx_buf->page to NULL first.
641 */
642 page = cons_rx_buf->page;
643 cons_rx_buf->page = NULL;
644 prod_rx_buf->page = page;
645
646 prod_rx_buf->mapping = cons_rx_buf->mapping;
647
648 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
649
650 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
651 prod_bd->rx_bd_opaque = sw_prod;
652
653 prod = NEXT_RX_AGG(prod);
654 sw_prod = NEXT_RX_AGG(sw_prod);
655 cp_cons = NEXT_CMP(cp_cons);
656 }
657 rxr->rx_agg_prod = prod;
658 rxr->rx_sw_agg_prod = sw_prod;
659 }
660
661 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
662 struct bnxt_rx_ring_info *rxr, u16 cons,
663 u16 prod, u8 *data, dma_addr_t dma_addr,
664 unsigned int len)
665 {
666 int err;
667 struct sk_buff *skb;
668
669 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
670 if (unlikely(err)) {
671 bnxt_reuse_rx_data(rxr, cons, data);
672 return NULL;
673 }
674
675 skb = build_skb(data, 0);
676 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
677 PCI_DMA_FROMDEVICE);
678 if (!skb) {
679 kfree(data);
680 return NULL;
681 }
682
683 skb_reserve(skb, BNXT_RX_OFFSET);
684 skb_put(skb, len);
685 return skb;
686 }
687
688 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
689 struct sk_buff *skb, u16 cp_cons,
690 u32 agg_bufs)
691 {
692 struct pci_dev *pdev = bp->pdev;
693 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
694 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
695 u16 prod = rxr->rx_agg_prod;
696 u32 i;
697
698 for (i = 0; i < agg_bufs; i++) {
699 u16 cons, frag_len;
700 struct rx_agg_cmp *agg;
701 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
702 struct page *page;
703 dma_addr_t mapping;
704
705 agg = (struct rx_agg_cmp *)
706 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
707 cons = agg->rx_agg_cmp_opaque;
708 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
709 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
710
711 cons_rx_buf = &rxr->rx_agg_ring[cons];
712 skb_fill_page_desc(skb, i, cons_rx_buf->page, 0, frag_len);
713 __clear_bit(cons, rxr->rx_agg_bmap);
714
715 /* It is possible for bnxt_alloc_rx_page() to allocate
716 * a sw_prod index that equals the cons index, so we
717 * need to clear the cons entry now.
718 */
719 mapping = dma_unmap_addr(cons_rx_buf, mapping);
720 page = cons_rx_buf->page;
721 cons_rx_buf->page = NULL;
722
723 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
724 struct skb_shared_info *shinfo;
725 unsigned int nr_frags;
726
727 shinfo = skb_shinfo(skb);
728 nr_frags = --shinfo->nr_frags;
729 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
730
731 dev_kfree_skb(skb);
732
733 cons_rx_buf->page = page;
734
735 /* Update prod since possibly some pages have been
736 * allocated already.
737 */
738 rxr->rx_agg_prod = prod;
739 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
740 return NULL;
741 }
742
743 dma_unmap_page(&pdev->dev, mapping, PAGE_SIZE,
744 PCI_DMA_FROMDEVICE);
745
746 skb->data_len += frag_len;
747 skb->len += frag_len;
748 skb->truesize += PAGE_SIZE;
749
750 prod = NEXT_RX_AGG(prod);
751 cp_cons = NEXT_CMP(cp_cons);
752 }
753 rxr->rx_agg_prod = prod;
754 return skb;
755 }
756
757 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
758 u8 agg_bufs, u32 *raw_cons)
759 {
760 u16 last;
761 struct rx_agg_cmp *agg;
762
763 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
764 last = RING_CMP(*raw_cons);
765 agg = (struct rx_agg_cmp *)
766 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
767 return RX_AGG_CMP_VALID(agg, *raw_cons);
768 }
769
770 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
771 unsigned int len,
772 dma_addr_t mapping)
773 {
774 struct bnxt *bp = bnapi->bp;
775 struct pci_dev *pdev = bp->pdev;
776 struct sk_buff *skb;
777
778 skb = napi_alloc_skb(&bnapi->napi, len);
779 if (!skb)
780 return NULL;
781
782 dma_sync_single_for_cpu(&pdev->dev, mapping,
783 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
784
785 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
786
787 dma_sync_single_for_device(&pdev->dev, mapping,
788 bp->rx_copy_thresh,
789 PCI_DMA_FROMDEVICE);
790
791 skb_put(skb, len);
792 return skb;
793 }
794
795 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
796 struct rx_tpa_start_cmp *tpa_start,
797 struct rx_tpa_start_cmp_ext *tpa_start1)
798 {
799 u8 agg_id = TPA_START_AGG_ID(tpa_start);
800 u16 cons, prod;
801 struct bnxt_tpa_info *tpa_info;
802 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
803 struct rx_bd *prod_bd;
804 dma_addr_t mapping;
805
806 cons = tpa_start->rx_tpa_start_cmp_opaque;
807 prod = rxr->rx_prod;
808 cons_rx_buf = &rxr->rx_buf_ring[cons];
809 prod_rx_buf = &rxr->rx_buf_ring[prod];
810 tpa_info = &rxr->rx_tpa[agg_id];
811
812 prod_rx_buf->data = tpa_info->data;
813
814 mapping = tpa_info->mapping;
815 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
816
817 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
818
819 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
820
821 tpa_info->data = cons_rx_buf->data;
822 cons_rx_buf->data = NULL;
823 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
824
825 tpa_info->len =
826 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
827 RX_TPA_START_CMP_LEN_SHIFT;
828 if (likely(TPA_START_HASH_VALID(tpa_start))) {
829 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
830
831 tpa_info->hash_type = PKT_HASH_TYPE_L4;
832 tpa_info->gso_type = SKB_GSO_TCPV4;
833 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
834 if (hash_type == 3)
835 tpa_info->gso_type = SKB_GSO_TCPV6;
836 tpa_info->rss_hash =
837 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
838 } else {
839 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
840 tpa_info->gso_type = 0;
841 if (netif_msg_rx_err(bp))
842 netdev_warn(bp->dev, "TPA packet without valid hash\n");
843 }
844 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
845 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
846
847 rxr->rx_prod = NEXT_RX(prod);
848 cons = NEXT_RX(cons);
849 cons_rx_buf = &rxr->rx_buf_ring[cons];
850
851 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
852 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
853 cons_rx_buf->data = NULL;
854 }
855
856 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
857 u16 cp_cons, u32 agg_bufs)
858 {
859 if (agg_bufs)
860 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
861 }
862
863 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
864 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
865
866 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
867 struct rx_tpa_end_cmp *tpa_end,
868 struct rx_tpa_end_cmp_ext *tpa_end1,
869 struct sk_buff *skb)
870 {
871 #ifdef CONFIG_INET
872 struct tcphdr *th;
873 int payload_off, tcp_opt_len = 0;
874 int len, nw_off;
875 u16 segs;
876
877 segs = TPA_END_TPA_SEGS(tpa_end);
878 if (segs == 1)
879 return skb;
880
881 NAPI_GRO_CB(skb)->count = segs;
882 skb_shinfo(skb)->gso_size =
883 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
884 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
885 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
886 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
887 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
888 if (TPA_END_GRO_TS(tpa_end))
889 tcp_opt_len = 12;
890
891 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
892 struct iphdr *iph;
893
894 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
895 ETH_HLEN;
896 skb_set_network_header(skb, nw_off);
897 iph = ip_hdr(skb);
898 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
899 len = skb->len - skb_transport_offset(skb);
900 th = tcp_hdr(skb);
901 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
902 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
903 struct ipv6hdr *iph;
904
905 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
906 ETH_HLEN;
907 skb_set_network_header(skb, nw_off);
908 iph = ipv6_hdr(skb);
909 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
910 len = skb->len - skb_transport_offset(skb);
911 th = tcp_hdr(skb);
912 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
913 } else {
914 dev_kfree_skb_any(skb);
915 return NULL;
916 }
917 tcp_gro_complete(skb);
918
919 if (nw_off) { /* tunnel */
920 struct udphdr *uh = NULL;
921
922 if (skb->protocol == htons(ETH_P_IP)) {
923 struct iphdr *iph = (struct iphdr *)skb->data;
924
925 if (iph->protocol == IPPROTO_UDP)
926 uh = (struct udphdr *)(iph + 1);
927 } else {
928 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
929
930 if (iph->nexthdr == IPPROTO_UDP)
931 uh = (struct udphdr *)(iph + 1);
932 }
933 if (uh) {
934 if (uh->check)
935 skb_shinfo(skb)->gso_type |=
936 SKB_GSO_UDP_TUNNEL_CSUM;
937 else
938 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
939 }
940 }
941 #endif
942 return skb;
943 }
944
945 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
946 struct bnxt_napi *bnapi,
947 u32 *raw_cons,
948 struct rx_tpa_end_cmp *tpa_end,
949 struct rx_tpa_end_cmp_ext *tpa_end1,
950 bool *agg_event)
951 {
952 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
953 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
954 u8 agg_id = TPA_END_AGG_ID(tpa_end);
955 u8 *data, agg_bufs;
956 u16 cp_cons = RING_CMP(*raw_cons);
957 unsigned int len;
958 struct bnxt_tpa_info *tpa_info;
959 dma_addr_t mapping;
960 struct sk_buff *skb;
961
962 tpa_info = &rxr->rx_tpa[agg_id];
963 data = tpa_info->data;
964 prefetch(data);
965 len = tpa_info->len;
966 mapping = tpa_info->mapping;
967
968 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
969 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
970
971 if (agg_bufs) {
972 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
973 return ERR_PTR(-EBUSY);
974
975 *agg_event = true;
976 cp_cons = NEXT_CMP(cp_cons);
977 }
978
979 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
980 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
981 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
982 agg_bufs, (int)MAX_SKB_FRAGS);
983 return NULL;
984 }
985
986 if (len <= bp->rx_copy_thresh) {
987 skb = bnxt_copy_skb(bnapi, data, len, mapping);
988 if (!skb) {
989 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
990 return NULL;
991 }
992 } else {
993 u8 *new_data;
994 dma_addr_t new_mapping;
995
996 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
997 if (!new_data) {
998 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
999 return NULL;
1000 }
1001
1002 tpa_info->data = new_data;
1003 tpa_info->mapping = new_mapping;
1004
1005 skb = build_skb(data, 0);
1006 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1007 PCI_DMA_FROMDEVICE);
1008
1009 if (!skb) {
1010 kfree(data);
1011 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1012 return NULL;
1013 }
1014 skb_reserve(skb, BNXT_RX_OFFSET);
1015 skb_put(skb, len);
1016 }
1017
1018 if (agg_bufs) {
1019 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1020 if (!skb) {
1021 /* Page reuse already handled by bnxt_rx_pages(). */
1022 return NULL;
1023 }
1024 }
1025 skb->protocol = eth_type_trans(skb, bp->dev);
1026
1027 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1028 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1029
1030 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1031 netdev_features_t features = skb->dev->features;
1032 u16 vlan_proto = tpa_info->metadata >>
1033 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1034
1035 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1036 vlan_proto == ETH_P_8021Q) ||
1037 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1038 vlan_proto == ETH_P_8021AD)) {
1039 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1040 tpa_info->metadata &
1041 RX_CMP_FLAGS2_METADATA_VID_MASK);
1042 }
1043 }
1044
1045 skb_checksum_none_assert(skb);
1046 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1047 skb->ip_summed = CHECKSUM_UNNECESSARY;
1048 skb->csum_level =
1049 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1050 }
1051
1052 if (TPA_END_GRO(tpa_end))
1053 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1054
1055 return skb;
1056 }
1057
1058 /* returns the following:
1059 * 1 - 1 packet successfully received
1060 * 0 - successful TPA_START, packet not completed yet
1061 * -EBUSY - completion ring does not have all the agg buffers yet
1062 * -ENOMEM - packet aborted due to out of memory
1063 * -EIO - packet aborted due to hw error indicated in BD
1064 */
1065 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1066 bool *agg_event)
1067 {
1068 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1069 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1070 struct net_device *dev = bp->dev;
1071 struct rx_cmp *rxcmp;
1072 struct rx_cmp_ext *rxcmp1;
1073 u32 tmp_raw_cons = *raw_cons;
1074 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1075 struct bnxt_sw_rx_bd *rx_buf;
1076 unsigned int len;
1077 u8 *data, agg_bufs, cmp_type;
1078 dma_addr_t dma_addr;
1079 struct sk_buff *skb;
1080 int rc = 0;
1081
1082 rxcmp = (struct rx_cmp *)
1083 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1084
1085 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1086 cp_cons = RING_CMP(tmp_raw_cons);
1087 rxcmp1 = (struct rx_cmp_ext *)
1088 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1089
1090 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1091 return -EBUSY;
1092
1093 cmp_type = RX_CMP_TYPE(rxcmp);
1094
1095 prod = rxr->rx_prod;
1096
1097 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1098 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1099 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1100
1101 goto next_rx_no_prod;
1102
1103 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1104 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1105 (struct rx_tpa_end_cmp *)rxcmp,
1106 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1107 agg_event);
1108
1109 if (unlikely(IS_ERR(skb)))
1110 return -EBUSY;
1111
1112 rc = -ENOMEM;
1113 if (likely(skb)) {
1114 skb_record_rx_queue(skb, bnapi->index);
1115 skb_mark_napi_id(skb, &bnapi->napi);
1116 if (bnxt_busy_polling(bnapi))
1117 netif_receive_skb(skb);
1118 else
1119 napi_gro_receive(&bnapi->napi, skb);
1120 rc = 1;
1121 }
1122 goto next_rx_no_prod;
1123 }
1124
1125 cons = rxcmp->rx_cmp_opaque;
1126 rx_buf = &rxr->rx_buf_ring[cons];
1127 data = rx_buf->data;
1128 prefetch(data);
1129
1130 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1131 RX_CMP_AGG_BUFS_SHIFT;
1132
1133 if (agg_bufs) {
1134 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1135 return -EBUSY;
1136
1137 cp_cons = NEXT_CMP(cp_cons);
1138 *agg_event = true;
1139 }
1140
1141 rx_buf->data = NULL;
1142 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1143 bnxt_reuse_rx_data(rxr, cons, data);
1144 if (agg_bufs)
1145 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1146
1147 rc = -EIO;
1148 goto next_rx;
1149 }
1150
1151 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1152 dma_addr = dma_unmap_addr(rx_buf, mapping);
1153
1154 if (len <= bp->rx_copy_thresh) {
1155 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1156 bnxt_reuse_rx_data(rxr, cons, data);
1157 if (!skb) {
1158 rc = -ENOMEM;
1159 goto next_rx;
1160 }
1161 } else {
1162 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1163 if (!skb) {
1164 rc = -ENOMEM;
1165 goto next_rx;
1166 }
1167 }
1168
1169 if (agg_bufs) {
1170 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1171 if (!skb) {
1172 rc = -ENOMEM;
1173 goto next_rx;
1174 }
1175 }
1176
1177 if (RX_CMP_HASH_VALID(rxcmp)) {
1178 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1179 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1180
1181 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1182 if (hash_type != 1 && hash_type != 3)
1183 type = PKT_HASH_TYPE_L3;
1184 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1185 }
1186
1187 skb->protocol = eth_type_trans(skb, dev);
1188
1189 if (rxcmp1->rx_cmp_flags2 &
1190 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1191 netdev_features_t features = skb->dev->features;
1192 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1193 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1194
1195 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1196 vlan_proto == ETH_P_8021Q) ||
1197 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1198 vlan_proto == ETH_P_8021AD))
1199 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1200 meta_data &
1201 RX_CMP_FLAGS2_METADATA_VID_MASK);
1202 }
1203
1204 skb_checksum_none_assert(skb);
1205 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1206 if (dev->features & NETIF_F_RXCSUM) {
1207 skb->ip_summed = CHECKSUM_UNNECESSARY;
1208 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1209 }
1210 } else {
1211 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1212 if (dev->features & NETIF_F_RXCSUM)
1213 cpr->rx_l4_csum_errors++;
1214 }
1215 }
1216
1217 skb_record_rx_queue(skb, bnapi->index);
1218 skb_mark_napi_id(skb, &bnapi->napi);
1219 if (bnxt_busy_polling(bnapi))
1220 netif_receive_skb(skb);
1221 else
1222 napi_gro_receive(&bnapi->napi, skb);
1223 rc = 1;
1224
1225 next_rx:
1226 rxr->rx_prod = NEXT_RX(prod);
1227
1228 next_rx_no_prod:
1229 *raw_cons = tmp_raw_cons;
1230
1231 return rc;
1232 }
1233
1234 static int bnxt_async_event_process(struct bnxt *bp,
1235 struct hwrm_async_event_cmpl *cmpl)
1236 {
1237 u16 event_id = le16_to_cpu(cmpl->event_id);
1238
1239 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1240 switch (event_id) {
1241 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1242 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1243 break;
1244 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1245 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1246 break;
1247 default:
1248 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1249 event_id);
1250 goto async_event_process_exit;
1251 }
1252 schedule_work(&bp->sp_task);
1253 async_event_process_exit:
1254 return 0;
1255 }
1256
1257 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1258 {
1259 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1260 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1261 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1262 (struct hwrm_fwd_req_cmpl *)txcmp;
1263
1264 switch (cmpl_type) {
1265 case CMPL_BASE_TYPE_HWRM_DONE:
1266 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1267 if (seq_id == bp->hwrm_intr_seq_id)
1268 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1269 else
1270 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1271 break;
1272
1273 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1274 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1275
1276 if ((vf_id < bp->pf.first_vf_id) ||
1277 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1278 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1279 vf_id);
1280 return -EINVAL;
1281 }
1282
1283 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1284 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1285 schedule_work(&bp->sp_task);
1286 break;
1287
1288 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1289 bnxt_async_event_process(bp,
1290 (struct hwrm_async_event_cmpl *)txcmp);
1291
1292 default:
1293 break;
1294 }
1295
1296 return 0;
1297 }
1298
1299 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1300 {
1301 struct bnxt_napi *bnapi = dev_instance;
1302 struct bnxt *bp = bnapi->bp;
1303 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1304 u32 cons = RING_CMP(cpr->cp_raw_cons);
1305
1306 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1307 napi_schedule(&bnapi->napi);
1308 return IRQ_HANDLED;
1309 }
1310
1311 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1312 {
1313 u32 raw_cons = cpr->cp_raw_cons;
1314 u16 cons = RING_CMP(raw_cons);
1315 struct tx_cmp *txcmp;
1316
1317 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1318
1319 return TX_CMP_VALID(txcmp, raw_cons);
1320 }
1321
1322 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1323 {
1324 struct bnxt_napi *bnapi = dev_instance;
1325 struct bnxt *bp = bnapi->bp;
1326 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1327 u32 cons = RING_CMP(cpr->cp_raw_cons);
1328 u32 int_status;
1329
1330 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1331
1332 if (!bnxt_has_work(bp, cpr)) {
1333 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1334 /* return if erroneous interrupt */
1335 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1336 return IRQ_NONE;
1337 }
1338
1339 /* disable ring IRQ */
1340 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1341
1342 /* Return here if interrupt is shared and is disabled. */
1343 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1344 return IRQ_HANDLED;
1345
1346 napi_schedule(&bnapi->napi);
1347 return IRQ_HANDLED;
1348 }
1349
1350 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1351 {
1352 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1353 u32 raw_cons = cpr->cp_raw_cons;
1354 u32 cons;
1355 int tx_pkts = 0;
1356 int rx_pkts = 0;
1357 bool rx_event = false;
1358 bool agg_event = false;
1359 struct tx_cmp *txcmp;
1360
1361 while (1) {
1362 int rc;
1363
1364 cons = RING_CMP(raw_cons);
1365 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1366
1367 if (!TX_CMP_VALID(txcmp, raw_cons))
1368 break;
1369
1370 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1371 tx_pkts++;
1372 /* return full budget so NAPI will complete. */
1373 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1374 rx_pkts = budget;
1375 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1376 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1377 if (likely(rc >= 0))
1378 rx_pkts += rc;
1379 else if (rc == -EBUSY) /* partial completion */
1380 break;
1381 rx_event = true;
1382 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1383 CMPL_BASE_TYPE_HWRM_DONE) ||
1384 (TX_CMP_TYPE(txcmp) ==
1385 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1386 (TX_CMP_TYPE(txcmp) ==
1387 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1388 bnxt_hwrm_handler(bp, txcmp);
1389 }
1390 raw_cons = NEXT_RAW_CMP(raw_cons);
1391
1392 if (rx_pkts == budget)
1393 break;
1394 }
1395
1396 cpr->cp_raw_cons = raw_cons;
1397 /* ACK completion ring before freeing tx ring and producing new
1398 * buffers in rx/agg rings to prevent overflowing the completion
1399 * ring.
1400 */
1401 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1402
1403 if (tx_pkts)
1404 bnxt_tx_int(bp, bnapi, tx_pkts);
1405
1406 if (rx_event) {
1407 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1408
1409 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1410 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1411 if (agg_event) {
1412 writel(DB_KEY_RX | rxr->rx_agg_prod,
1413 rxr->rx_agg_doorbell);
1414 writel(DB_KEY_RX | rxr->rx_agg_prod,
1415 rxr->rx_agg_doorbell);
1416 }
1417 }
1418 return rx_pkts;
1419 }
1420
1421 static int bnxt_poll(struct napi_struct *napi, int budget)
1422 {
1423 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1424 struct bnxt *bp = bnapi->bp;
1425 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1426 int work_done = 0;
1427
1428 if (!bnxt_lock_napi(bnapi))
1429 return budget;
1430
1431 while (1) {
1432 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1433
1434 if (work_done >= budget)
1435 break;
1436
1437 if (!bnxt_has_work(bp, cpr)) {
1438 napi_complete(napi);
1439 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1440 break;
1441 }
1442 }
1443 mmiowb();
1444 bnxt_unlock_napi(bnapi);
1445 return work_done;
1446 }
1447
1448 #ifdef CONFIG_NET_RX_BUSY_POLL
1449 static int bnxt_busy_poll(struct napi_struct *napi)
1450 {
1451 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1452 struct bnxt *bp = bnapi->bp;
1453 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1454 int rx_work, budget = 4;
1455
1456 if (atomic_read(&bp->intr_sem) != 0)
1457 return LL_FLUSH_FAILED;
1458
1459 if (!bnxt_lock_poll(bnapi))
1460 return LL_FLUSH_BUSY;
1461
1462 rx_work = bnxt_poll_work(bp, bnapi, budget);
1463
1464 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1465
1466 bnxt_unlock_poll(bnapi);
1467 return rx_work;
1468 }
1469 #endif
1470
1471 static void bnxt_free_tx_skbs(struct bnxt *bp)
1472 {
1473 int i, max_idx;
1474 struct pci_dev *pdev = bp->pdev;
1475
1476 if (!bp->tx_ring)
1477 return;
1478
1479 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1480 for (i = 0; i < bp->tx_nr_rings; i++) {
1481 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1482 int j;
1483
1484 for (j = 0; j < max_idx;) {
1485 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1486 struct sk_buff *skb = tx_buf->skb;
1487 int k, last;
1488
1489 if (!skb) {
1490 j++;
1491 continue;
1492 }
1493
1494 tx_buf->skb = NULL;
1495
1496 if (tx_buf->is_push) {
1497 dev_kfree_skb(skb);
1498 j += 2;
1499 continue;
1500 }
1501
1502 dma_unmap_single(&pdev->dev,
1503 dma_unmap_addr(tx_buf, mapping),
1504 skb_headlen(skb),
1505 PCI_DMA_TODEVICE);
1506
1507 last = tx_buf->nr_frags;
1508 j += 2;
1509 for (k = 0; k < last; k++, j++) {
1510 int ring_idx = j & bp->tx_ring_mask;
1511 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1512
1513 tx_buf = &txr->tx_buf_ring[ring_idx];
1514 dma_unmap_page(
1515 &pdev->dev,
1516 dma_unmap_addr(tx_buf, mapping),
1517 skb_frag_size(frag), PCI_DMA_TODEVICE);
1518 }
1519 dev_kfree_skb(skb);
1520 }
1521 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1522 }
1523 }
1524
1525 static void bnxt_free_rx_skbs(struct bnxt *bp)
1526 {
1527 int i, max_idx, max_agg_idx;
1528 struct pci_dev *pdev = bp->pdev;
1529
1530 if (!bp->rx_ring)
1531 return;
1532
1533 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1534 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1535 for (i = 0; i < bp->rx_nr_rings; i++) {
1536 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1537 int j;
1538
1539 if (rxr->rx_tpa) {
1540 for (j = 0; j < MAX_TPA; j++) {
1541 struct bnxt_tpa_info *tpa_info =
1542 &rxr->rx_tpa[j];
1543 u8 *data = tpa_info->data;
1544
1545 if (!data)
1546 continue;
1547
1548 dma_unmap_single(
1549 &pdev->dev,
1550 dma_unmap_addr(tpa_info, mapping),
1551 bp->rx_buf_use_size,
1552 PCI_DMA_FROMDEVICE);
1553
1554 tpa_info->data = NULL;
1555
1556 kfree(data);
1557 }
1558 }
1559
1560 for (j = 0; j < max_idx; j++) {
1561 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1562 u8 *data = rx_buf->data;
1563
1564 if (!data)
1565 continue;
1566
1567 dma_unmap_single(&pdev->dev,
1568 dma_unmap_addr(rx_buf, mapping),
1569 bp->rx_buf_use_size,
1570 PCI_DMA_FROMDEVICE);
1571
1572 rx_buf->data = NULL;
1573
1574 kfree(data);
1575 }
1576
1577 for (j = 0; j < max_agg_idx; j++) {
1578 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1579 &rxr->rx_agg_ring[j];
1580 struct page *page = rx_agg_buf->page;
1581
1582 if (!page)
1583 continue;
1584
1585 dma_unmap_page(&pdev->dev,
1586 dma_unmap_addr(rx_agg_buf, mapping),
1587 PAGE_SIZE, PCI_DMA_FROMDEVICE);
1588
1589 rx_agg_buf->page = NULL;
1590 __clear_bit(j, rxr->rx_agg_bmap);
1591
1592 __free_page(page);
1593 }
1594 }
1595 }
1596
1597 static void bnxt_free_skbs(struct bnxt *bp)
1598 {
1599 bnxt_free_tx_skbs(bp);
1600 bnxt_free_rx_skbs(bp);
1601 }
1602
1603 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1604 {
1605 struct pci_dev *pdev = bp->pdev;
1606 int i;
1607
1608 for (i = 0; i < ring->nr_pages; i++) {
1609 if (!ring->pg_arr[i])
1610 continue;
1611
1612 dma_free_coherent(&pdev->dev, ring->page_size,
1613 ring->pg_arr[i], ring->dma_arr[i]);
1614
1615 ring->pg_arr[i] = NULL;
1616 }
1617 if (ring->pg_tbl) {
1618 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1619 ring->pg_tbl, ring->pg_tbl_map);
1620 ring->pg_tbl = NULL;
1621 }
1622 if (ring->vmem_size && *ring->vmem) {
1623 vfree(*ring->vmem);
1624 *ring->vmem = NULL;
1625 }
1626 }
1627
1628 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1629 {
1630 int i;
1631 struct pci_dev *pdev = bp->pdev;
1632
1633 if (ring->nr_pages > 1) {
1634 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1635 ring->nr_pages * 8,
1636 &ring->pg_tbl_map,
1637 GFP_KERNEL);
1638 if (!ring->pg_tbl)
1639 return -ENOMEM;
1640 }
1641
1642 for (i = 0; i < ring->nr_pages; i++) {
1643 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1644 ring->page_size,
1645 &ring->dma_arr[i],
1646 GFP_KERNEL);
1647 if (!ring->pg_arr[i])
1648 return -ENOMEM;
1649
1650 if (ring->nr_pages > 1)
1651 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1652 }
1653
1654 if (ring->vmem_size) {
1655 *ring->vmem = vzalloc(ring->vmem_size);
1656 if (!(*ring->vmem))
1657 return -ENOMEM;
1658 }
1659 return 0;
1660 }
1661
1662 static void bnxt_free_rx_rings(struct bnxt *bp)
1663 {
1664 int i;
1665
1666 if (!bp->rx_ring)
1667 return;
1668
1669 for (i = 0; i < bp->rx_nr_rings; i++) {
1670 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1671 struct bnxt_ring_struct *ring;
1672
1673 kfree(rxr->rx_tpa);
1674 rxr->rx_tpa = NULL;
1675
1676 kfree(rxr->rx_agg_bmap);
1677 rxr->rx_agg_bmap = NULL;
1678
1679 ring = &rxr->rx_ring_struct;
1680 bnxt_free_ring(bp, ring);
1681
1682 ring = &rxr->rx_agg_ring_struct;
1683 bnxt_free_ring(bp, ring);
1684 }
1685 }
1686
1687 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1688 {
1689 int i, rc, agg_rings = 0, tpa_rings = 0;
1690
1691 if (!bp->rx_ring)
1692 return -ENOMEM;
1693
1694 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1695 agg_rings = 1;
1696
1697 if (bp->flags & BNXT_FLAG_TPA)
1698 tpa_rings = 1;
1699
1700 for (i = 0; i < bp->rx_nr_rings; i++) {
1701 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1702 struct bnxt_ring_struct *ring;
1703
1704 ring = &rxr->rx_ring_struct;
1705
1706 rc = bnxt_alloc_ring(bp, ring);
1707 if (rc)
1708 return rc;
1709
1710 if (agg_rings) {
1711 u16 mem_size;
1712
1713 ring = &rxr->rx_agg_ring_struct;
1714 rc = bnxt_alloc_ring(bp, ring);
1715 if (rc)
1716 return rc;
1717
1718 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1719 mem_size = rxr->rx_agg_bmap_size / 8;
1720 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1721 if (!rxr->rx_agg_bmap)
1722 return -ENOMEM;
1723
1724 if (tpa_rings) {
1725 rxr->rx_tpa = kcalloc(MAX_TPA,
1726 sizeof(struct bnxt_tpa_info),
1727 GFP_KERNEL);
1728 if (!rxr->rx_tpa)
1729 return -ENOMEM;
1730 }
1731 }
1732 }
1733 return 0;
1734 }
1735
1736 static void bnxt_free_tx_rings(struct bnxt *bp)
1737 {
1738 int i;
1739 struct pci_dev *pdev = bp->pdev;
1740
1741 if (!bp->tx_ring)
1742 return;
1743
1744 for (i = 0; i < bp->tx_nr_rings; i++) {
1745 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1746 struct bnxt_ring_struct *ring;
1747
1748 if (txr->tx_push) {
1749 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1750 txr->tx_push, txr->tx_push_mapping);
1751 txr->tx_push = NULL;
1752 }
1753
1754 ring = &txr->tx_ring_struct;
1755
1756 bnxt_free_ring(bp, ring);
1757 }
1758 }
1759
1760 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1761 {
1762 int i, j, rc;
1763 struct pci_dev *pdev = bp->pdev;
1764
1765 bp->tx_push_size = 0;
1766 if (bp->tx_push_thresh) {
1767 int push_size;
1768
1769 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1770 bp->tx_push_thresh);
1771
1772 if (push_size > 256) {
1773 push_size = 0;
1774 bp->tx_push_thresh = 0;
1775 }
1776
1777 bp->tx_push_size = push_size;
1778 }
1779
1780 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1781 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1782 struct bnxt_ring_struct *ring;
1783
1784 ring = &txr->tx_ring_struct;
1785
1786 rc = bnxt_alloc_ring(bp, ring);
1787 if (rc)
1788 return rc;
1789
1790 if (bp->tx_push_size) {
1791 dma_addr_t mapping;
1792
1793 /* One pre-allocated DMA buffer to backup
1794 * TX push operation
1795 */
1796 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1797 bp->tx_push_size,
1798 &txr->tx_push_mapping,
1799 GFP_KERNEL);
1800
1801 if (!txr->tx_push)
1802 return -ENOMEM;
1803
1804 mapping = txr->tx_push_mapping +
1805 sizeof(struct tx_push_bd);
1806 txr->data_mapping = cpu_to_le64(mapping);
1807
1808 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1809 }
1810 ring->queue_id = bp->q_info[j].queue_id;
1811 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1812 j++;
1813 }
1814 return 0;
1815 }
1816
1817 static void bnxt_free_cp_rings(struct bnxt *bp)
1818 {
1819 int i;
1820
1821 if (!bp->bnapi)
1822 return;
1823
1824 for (i = 0; i < bp->cp_nr_rings; i++) {
1825 struct bnxt_napi *bnapi = bp->bnapi[i];
1826 struct bnxt_cp_ring_info *cpr;
1827 struct bnxt_ring_struct *ring;
1828
1829 if (!bnapi)
1830 continue;
1831
1832 cpr = &bnapi->cp_ring;
1833 ring = &cpr->cp_ring_struct;
1834
1835 bnxt_free_ring(bp, ring);
1836 }
1837 }
1838
1839 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1840 {
1841 int i, rc;
1842
1843 for (i = 0; i < bp->cp_nr_rings; i++) {
1844 struct bnxt_napi *bnapi = bp->bnapi[i];
1845 struct bnxt_cp_ring_info *cpr;
1846 struct bnxt_ring_struct *ring;
1847
1848 if (!bnapi)
1849 continue;
1850
1851 cpr = &bnapi->cp_ring;
1852 ring = &cpr->cp_ring_struct;
1853
1854 rc = bnxt_alloc_ring(bp, ring);
1855 if (rc)
1856 return rc;
1857 }
1858 return 0;
1859 }
1860
1861 static void bnxt_init_ring_struct(struct bnxt *bp)
1862 {
1863 int i;
1864
1865 for (i = 0; i < bp->cp_nr_rings; i++) {
1866 struct bnxt_napi *bnapi = bp->bnapi[i];
1867 struct bnxt_cp_ring_info *cpr;
1868 struct bnxt_rx_ring_info *rxr;
1869 struct bnxt_tx_ring_info *txr;
1870 struct bnxt_ring_struct *ring;
1871
1872 if (!bnapi)
1873 continue;
1874
1875 cpr = &bnapi->cp_ring;
1876 ring = &cpr->cp_ring_struct;
1877 ring->nr_pages = bp->cp_nr_pages;
1878 ring->page_size = HW_CMPD_RING_SIZE;
1879 ring->pg_arr = (void **)cpr->cp_desc_ring;
1880 ring->dma_arr = cpr->cp_desc_mapping;
1881 ring->vmem_size = 0;
1882
1883 rxr = bnapi->rx_ring;
1884 if (!rxr)
1885 goto skip_rx;
1886
1887 ring = &rxr->rx_ring_struct;
1888 ring->nr_pages = bp->rx_nr_pages;
1889 ring->page_size = HW_RXBD_RING_SIZE;
1890 ring->pg_arr = (void **)rxr->rx_desc_ring;
1891 ring->dma_arr = rxr->rx_desc_mapping;
1892 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1893 ring->vmem = (void **)&rxr->rx_buf_ring;
1894
1895 ring = &rxr->rx_agg_ring_struct;
1896 ring->nr_pages = bp->rx_agg_nr_pages;
1897 ring->page_size = HW_RXBD_RING_SIZE;
1898 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1899 ring->dma_arr = rxr->rx_agg_desc_mapping;
1900 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1901 ring->vmem = (void **)&rxr->rx_agg_ring;
1902
1903 skip_rx:
1904 txr = bnapi->tx_ring;
1905 if (!txr)
1906 continue;
1907
1908 ring = &txr->tx_ring_struct;
1909 ring->nr_pages = bp->tx_nr_pages;
1910 ring->page_size = HW_RXBD_RING_SIZE;
1911 ring->pg_arr = (void **)txr->tx_desc_ring;
1912 ring->dma_arr = txr->tx_desc_mapping;
1913 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
1914 ring->vmem = (void **)&txr->tx_buf_ring;
1915 }
1916 }
1917
1918 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
1919 {
1920 int i;
1921 u32 prod;
1922 struct rx_bd **rx_buf_ring;
1923
1924 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
1925 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
1926 int j;
1927 struct rx_bd *rxbd;
1928
1929 rxbd = rx_buf_ring[i];
1930 if (!rxbd)
1931 continue;
1932
1933 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
1934 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
1935 rxbd->rx_bd_opaque = prod;
1936 }
1937 }
1938 }
1939
1940 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
1941 {
1942 struct net_device *dev = bp->dev;
1943 struct bnxt_rx_ring_info *rxr;
1944 struct bnxt_ring_struct *ring;
1945 u32 prod, type;
1946 int i;
1947
1948 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
1949 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
1950
1951 if (NET_IP_ALIGN == 2)
1952 type |= RX_BD_FLAGS_SOP;
1953
1954 rxr = &bp->rx_ring[ring_nr];
1955 ring = &rxr->rx_ring_struct;
1956 bnxt_init_rxbd_pages(ring, type);
1957
1958 prod = rxr->rx_prod;
1959 for (i = 0; i < bp->rx_ring_size; i++) {
1960 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
1961 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
1962 ring_nr, i, bp->rx_ring_size);
1963 break;
1964 }
1965 prod = NEXT_RX(prod);
1966 }
1967 rxr->rx_prod = prod;
1968 ring->fw_ring_id = INVALID_HW_RING_ID;
1969
1970 ring = &rxr->rx_agg_ring_struct;
1971 ring->fw_ring_id = INVALID_HW_RING_ID;
1972
1973 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
1974 return 0;
1975
1976 type = ((u32)PAGE_SIZE << RX_BD_LEN_SHIFT) |
1977 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
1978
1979 bnxt_init_rxbd_pages(ring, type);
1980
1981 prod = rxr->rx_agg_prod;
1982 for (i = 0; i < bp->rx_agg_ring_size; i++) {
1983 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
1984 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
1985 ring_nr, i, bp->rx_ring_size);
1986 break;
1987 }
1988 prod = NEXT_RX_AGG(prod);
1989 }
1990 rxr->rx_agg_prod = prod;
1991
1992 if (bp->flags & BNXT_FLAG_TPA) {
1993 if (rxr->rx_tpa) {
1994 u8 *data;
1995 dma_addr_t mapping;
1996
1997 for (i = 0; i < MAX_TPA; i++) {
1998 data = __bnxt_alloc_rx_data(bp, &mapping,
1999 GFP_KERNEL);
2000 if (!data)
2001 return -ENOMEM;
2002
2003 rxr->rx_tpa[i].data = data;
2004 rxr->rx_tpa[i].mapping = mapping;
2005 }
2006 } else {
2007 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2008 return -ENOMEM;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 static int bnxt_init_rx_rings(struct bnxt *bp)
2016 {
2017 int i, rc = 0;
2018
2019 for (i = 0; i < bp->rx_nr_rings; i++) {
2020 rc = bnxt_init_one_rx_ring(bp, i);
2021 if (rc)
2022 break;
2023 }
2024
2025 return rc;
2026 }
2027
2028 static int bnxt_init_tx_rings(struct bnxt *bp)
2029 {
2030 u16 i;
2031
2032 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2033 MAX_SKB_FRAGS + 1);
2034
2035 for (i = 0; i < bp->tx_nr_rings; i++) {
2036 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2037 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2038
2039 ring->fw_ring_id = INVALID_HW_RING_ID;
2040 }
2041
2042 return 0;
2043 }
2044
2045 static void bnxt_free_ring_grps(struct bnxt *bp)
2046 {
2047 kfree(bp->grp_info);
2048 bp->grp_info = NULL;
2049 }
2050
2051 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2052 {
2053 int i;
2054
2055 if (irq_re_init) {
2056 bp->grp_info = kcalloc(bp->cp_nr_rings,
2057 sizeof(struct bnxt_ring_grp_info),
2058 GFP_KERNEL);
2059 if (!bp->grp_info)
2060 return -ENOMEM;
2061 }
2062 for (i = 0; i < bp->cp_nr_rings; i++) {
2063 if (irq_re_init)
2064 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2065 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2066 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2067 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2068 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2069 }
2070 return 0;
2071 }
2072
2073 static void bnxt_free_vnics(struct bnxt *bp)
2074 {
2075 kfree(bp->vnic_info);
2076 bp->vnic_info = NULL;
2077 bp->nr_vnics = 0;
2078 }
2079
2080 static int bnxt_alloc_vnics(struct bnxt *bp)
2081 {
2082 int num_vnics = 1;
2083
2084 #ifdef CONFIG_RFS_ACCEL
2085 if (bp->flags & BNXT_FLAG_RFS)
2086 num_vnics += bp->rx_nr_rings;
2087 #endif
2088
2089 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2090 GFP_KERNEL);
2091 if (!bp->vnic_info)
2092 return -ENOMEM;
2093
2094 bp->nr_vnics = num_vnics;
2095 return 0;
2096 }
2097
2098 static void bnxt_init_vnics(struct bnxt *bp)
2099 {
2100 int i;
2101
2102 for (i = 0; i < bp->nr_vnics; i++) {
2103 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2104
2105 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2106 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2107 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2108
2109 if (bp->vnic_info[i].rss_hash_key) {
2110 if (i == 0)
2111 prandom_bytes(vnic->rss_hash_key,
2112 HW_HASH_KEY_SIZE);
2113 else
2114 memcpy(vnic->rss_hash_key,
2115 bp->vnic_info[0].rss_hash_key,
2116 HW_HASH_KEY_SIZE);
2117 }
2118 }
2119 }
2120
2121 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2122 {
2123 int pages;
2124
2125 pages = ring_size / desc_per_pg;
2126
2127 if (!pages)
2128 return 1;
2129
2130 pages++;
2131
2132 while (pages & (pages - 1))
2133 pages++;
2134
2135 return pages;
2136 }
2137
2138 static void bnxt_set_tpa_flags(struct bnxt *bp)
2139 {
2140 bp->flags &= ~BNXT_FLAG_TPA;
2141 if (bp->dev->features & NETIF_F_LRO)
2142 bp->flags |= BNXT_FLAG_LRO;
2143 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2144 bp->flags |= BNXT_FLAG_GRO;
2145 }
2146
2147 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2148 * be set on entry.
2149 */
2150 void bnxt_set_ring_params(struct bnxt *bp)
2151 {
2152 u32 ring_size, rx_size, rx_space;
2153 u32 agg_factor = 0, agg_ring_size = 0;
2154
2155 /* 8 for CRC and VLAN */
2156 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2157
2158 rx_space = rx_size + NET_SKB_PAD +
2159 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2160
2161 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2162 ring_size = bp->rx_ring_size;
2163 bp->rx_agg_ring_size = 0;
2164 bp->rx_agg_nr_pages = 0;
2165
2166 if (bp->flags & BNXT_FLAG_TPA)
2167 agg_factor = 4;
2168
2169 bp->flags &= ~BNXT_FLAG_JUMBO;
2170 if (rx_space > PAGE_SIZE) {
2171 u32 jumbo_factor;
2172
2173 bp->flags |= BNXT_FLAG_JUMBO;
2174 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2175 if (jumbo_factor > agg_factor)
2176 agg_factor = jumbo_factor;
2177 }
2178 agg_ring_size = ring_size * agg_factor;
2179
2180 if (agg_ring_size) {
2181 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2182 RX_DESC_CNT);
2183 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2184 u32 tmp = agg_ring_size;
2185
2186 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2187 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2188 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2189 tmp, agg_ring_size);
2190 }
2191 bp->rx_agg_ring_size = agg_ring_size;
2192 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2193 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2194 rx_space = rx_size + NET_SKB_PAD +
2195 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2196 }
2197
2198 bp->rx_buf_use_size = rx_size;
2199 bp->rx_buf_size = rx_space;
2200
2201 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2202 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2203
2204 ring_size = bp->tx_ring_size;
2205 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2206 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2207
2208 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2209 bp->cp_ring_size = ring_size;
2210
2211 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2212 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2213 bp->cp_nr_pages = MAX_CP_PAGES;
2214 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2215 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2216 ring_size, bp->cp_ring_size);
2217 }
2218 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2219 bp->cp_ring_mask = bp->cp_bit - 1;
2220 }
2221
2222 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2223 {
2224 int i;
2225 struct bnxt_vnic_info *vnic;
2226 struct pci_dev *pdev = bp->pdev;
2227
2228 if (!bp->vnic_info)
2229 return;
2230
2231 for (i = 0; i < bp->nr_vnics; i++) {
2232 vnic = &bp->vnic_info[i];
2233
2234 kfree(vnic->fw_grp_ids);
2235 vnic->fw_grp_ids = NULL;
2236
2237 kfree(vnic->uc_list);
2238 vnic->uc_list = NULL;
2239
2240 if (vnic->mc_list) {
2241 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2242 vnic->mc_list, vnic->mc_list_mapping);
2243 vnic->mc_list = NULL;
2244 }
2245
2246 if (vnic->rss_table) {
2247 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2248 vnic->rss_table,
2249 vnic->rss_table_dma_addr);
2250 vnic->rss_table = NULL;
2251 }
2252
2253 vnic->rss_hash_key = NULL;
2254 vnic->flags = 0;
2255 }
2256 }
2257
2258 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2259 {
2260 int i, rc = 0, size;
2261 struct bnxt_vnic_info *vnic;
2262 struct pci_dev *pdev = bp->pdev;
2263 int max_rings;
2264
2265 for (i = 0; i < bp->nr_vnics; i++) {
2266 vnic = &bp->vnic_info[i];
2267
2268 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2269 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2270
2271 if (mem_size > 0) {
2272 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2273 if (!vnic->uc_list) {
2274 rc = -ENOMEM;
2275 goto out;
2276 }
2277 }
2278 }
2279
2280 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2281 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2282 vnic->mc_list =
2283 dma_alloc_coherent(&pdev->dev,
2284 vnic->mc_list_size,
2285 &vnic->mc_list_mapping,
2286 GFP_KERNEL);
2287 if (!vnic->mc_list) {
2288 rc = -ENOMEM;
2289 goto out;
2290 }
2291 }
2292
2293 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2294 max_rings = bp->rx_nr_rings;
2295 else
2296 max_rings = 1;
2297
2298 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2299 if (!vnic->fw_grp_ids) {
2300 rc = -ENOMEM;
2301 goto out;
2302 }
2303
2304 /* Allocate rss table and hash key */
2305 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2306 &vnic->rss_table_dma_addr,
2307 GFP_KERNEL);
2308 if (!vnic->rss_table) {
2309 rc = -ENOMEM;
2310 goto out;
2311 }
2312
2313 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2314
2315 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2316 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2317 }
2318 return 0;
2319
2320 out:
2321 return rc;
2322 }
2323
2324 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2325 {
2326 struct pci_dev *pdev = bp->pdev;
2327
2328 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2329 bp->hwrm_cmd_resp_dma_addr);
2330
2331 bp->hwrm_cmd_resp_addr = NULL;
2332 if (bp->hwrm_dbg_resp_addr) {
2333 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2334 bp->hwrm_dbg_resp_addr,
2335 bp->hwrm_dbg_resp_dma_addr);
2336
2337 bp->hwrm_dbg_resp_addr = NULL;
2338 }
2339 }
2340
2341 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2342 {
2343 struct pci_dev *pdev = bp->pdev;
2344
2345 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2346 &bp->hwrm_cmd_resp_dma_addr,
2347 GFP_KERNEL);
2348 if (!bp->hwrm_cmd_resp_addr)
2349 return -ENOMEM;
2350 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2351 HWRM_DBG_REG_BUF_SIZE,
2352 &bp->hwrm_dbg_resp_dma_addr,
2353 GFP_KERNEL);
2354 if (!bp->hwrm_dbg_resp_addr)
2355 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2356
2357 return 0;
2358 }
2359
2360 static void bnxt_free_stats(struct bnxt *bp)
2361 {
2362 u32 size, i;
2363 struct pci_dev *pdev = bp->pdev;
2364
2365 if (bp->hw_rx_port_stats) {
2366 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2367 bp->hw_rx_port_stats,
2368 bp->hw_rx_port_stats_map);
2369 bp->hw_rx_port_stats = NULL;
2370 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2371 }
2372
2373 if (!bp->bnapi)
2374 return;
2375
2376 size = sizeof(struct ctx_hw_stats);
2377
2378 for (i = 0; i < bp->cp_nr_rings; i++) {
2379 struct bnxt_napi *bnapi = bp->bnapi[i];
2380 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2381
2382 if (cpr->hw_stats) {
2383 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2384 cpr->hw_stats_map);
2385 cpr->hw_stats = NULL;
2386 }
2387 }
2388 }
2389
2390 static int bnxt_alloc_stats(struct bnxt *bp)
2391 {
2392 u32 size, i;
2393 struct pci_dev *pdev = bp->pdev;
2394
2395 size = sizeof(struct ctx_hw_stats);
2396
2397 for (i = 0; i < bp->cp_nr_rings; i++) {
2398 struct bnxt_napi *bnapi = bp->bnapi[i];
2399 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2400
2401 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2402 &cpr->hw_stats_map,
2403 GFP_KERNEL);
2404 if (!cpr->hw_stats)
2405 return -ENOMEM;
2406
2407 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2408 }
2409
2410 if (BNXT_PF(bp)) {
2411 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2412 sizeof(struct tx_port_stats) + 1024;
2413
2414 bp->hw_rx_port_stats =
2415 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2416 &bp->hw_rx_port_stats_map,
2417 GFP_KERNEL);
2418 if (!bp->hw_rx_port_stats)
2419 return -ENOMEM;
2420
2421 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2422 512;
2423 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2424 sizeof(struct rx_port_stats) + 512;
2425 bp->flags |= BNXT_FLAG_PORT_STATS;
2426 }
2427 return 0;
2428 }
2429
2430 static void bnxt_clear_ring_indices(struct bnxt *bp)
2431 {
2432 int i;
2433
2434 if (!bp->bnapi)
2435 return;
2436
2437 for (i = 0; i < bp->cp_nr_rings; i++) {
2438 struct bnxt_napi *bnapi = bp->bnapi[i];
2439 struct bnxt_cp_ring_info *cpr;
2440 struct bnxt_rx_ring_info *rxr;
2441 struct bnxt_tx_ring_info *txr;
2442
2443 if (!bnapi)
2444 continue;
2445
2446 cpr = &bnapi->cp_ring;
2447 cpr->cp_raw_cons = 0;
2448
2449 txr = bnapi->tx_ring;
2450 if (txr) {
2451 txr->tx_prod = 0;
2452 txr->tx_cons = 0;
2453 }
2454
2455 rxr = bnapi->rx_ring;
2456 if (rxr) {
2457 rxr->rx_prod = 0;
2458 rxr->rx_agg_prod = 0;
2459 rxr->rx_sw_agg_prod = 0;
2460 }
2461 }
2462 }
2463
2464 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2465 {
2466 #ifdef CONFIG_RFS_ACCEL
2467 int i;
2468
2469 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2470 * safe to delete the hash table.
2471 */
2472 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2473 struct hlist_head *head;
2474 struct hlist_node *tmp;
2475 struct bnxt_ntuple_filter *fltr;
2476
2477 head = &bp->ntp_fltr_hash_tbl[i];
2478 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2479 hlist_del(&fltr->hash);
2480 kfree(fltr);
2481 }
2482 }
2483 if (irq_reinit) {
2484 kfree(bp->ntp_fltr_bmap);
2485 bp->ntp_fltr_bmap = NULL;
2486 }
2487 bp->ntp_fltr_count = 0;
2488 #endif
2489 }
2490
2491 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2492 {
2493 #ifdef CONFIG_RFS_ACCEL
2494 int i, rc = 0;
2495
2496 if (!(bp->flags & BNXT_FLAG_RFS))
2497 return 0;
2498
2499 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2500 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2501
2502 bp->ntp_fltr_count = 0;
2503 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2504 GFP_KERNEL);
2505
2506 if (!bp->ntp_fltr_bmap)
2507 rc = -ENOMEM;
2508
2509 return rc;
2510 #else
2511 return 0;
2512 #endif
2513 }
2514
2515 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2516 {
2517 bnxt_free_vnic_attributes(bp);
2518 bnxt_free_tx_rings(bp);
2519 bnxt_free_rx_rings(bp);
2520 bnxt_free_cp_rings(bp);
2521 bnxt_free_ntp_fltrs(bp, irq_re_init);
2522 if (irq_re_init) {
2523 bnxt_free_stats(bp);
2524 bnxt_free_ring_grps(bp);
2525 bnxt_free_vnics(bp);
2526 kfree(bp->tx_ring);
2527 bp->tx_ring = NULL;
2528 kfree(bp->rx_ring);
2529 bp->rx_ring = NULL;
2530 kfree(bp->bnapi);
2531 bp->bnapi = NULL;
2532 } else {
2533 bnxt_clear_ring_indices(bp);
2534 }
2535 }
2536
2537 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2538 {
2539 int i, j, rc, size, arr_size;
2540 void *bnapi;
2541
2542 if (irq_re_init) {
2543 /* Allocate bnapi mem pointer array and mem block for
2544 * all queues
2545 */
2546 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2547 bp->cp_nr_rings);
2548 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2549 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2550 if (!bnapi)
2551 return -ENOMEM;
2552
2553 bp->bnapi = bnapi;
2554 bnapi += arr_size;
2555 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2556 bp->bnapi[i] = bnapi;
2557 bp->bnapi[i]->index = i;
2558 bp->bnapi[i]->bp = bp;
2559 }
2560
2561 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2562 sizeof(struct bnxt_rx_ring_info),
2563 GFP_KERNEL);
2564 if (!bp->rx_ring)
2565 return -ENOMEM;
2566
2567 for (i = 0; i < bp->rx_nr_rings; i++) {
2568 bp->rx_ring[i].bnapi = bp->bnapi[i];
2569 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2570 }
2571
2572 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2573 sizeof(struct bnxt_tx_ring_info),
2574 GFP_KERNEL);
2575 if (!bp->tx_ring)
2576 return -ENOMEM;
2577
2578 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2579 j = 0;
2580 else
2581 j = bp->rx_nr_rings;
2582
2583 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2584 bp->tx_ring[i].bnapi = bp->bnapi[j];
2585 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2586 }
2587
2588 rc = bnxt_alloc_stats(bp);
2589 if (rc)
2590 goto alloc_mem_err;
2591
2592 rc = bnxt_alloc_ntp_fltrs(bp);
2593 if (rc)
2594 goto alloc_mem_err;
2595
2596 rc = bnxt_alloc_vnics(bp);
2597 if (rc)
2598 goto alloc_mem_err;
2599 }
2600
2601 bnxt_init_ring_struct(bp);
2602
2603 rc = bnxt_alloc_rx_rings(bp);
2604 if (rc)
2605 goto alloc_mem_err;
2606
2607 rc = bnxt_alloc_tx_rings(bp);
2608 if (rc)
2609 goto alloc_mem_err;
2610
2611 rc = bnxt_alloc_cp_rings(bp);
2612 if (rc)
2613 goto alloc_mem_err;
2614
2615 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2616 BNXT_VNIC_UCAST_FLAG;
2617 rc = bnxt_alloc_vnic_attributes(bp);
2618 if (rc)
2619 goto alloc_mem_err;
2620 return 0;
2621
2622 alloc_mem_err:
2623 bnxt_free_mem(bp, true);
2624 return rc;
2625 }
2626
2627 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2628 u16 cmpl_ring, u16 target_id)
2629 {
2630 struct input *req = request;
2631
2632 req->req_type = cpu_to_le16(req_type);
2633 req->cmpl_ring = cpu_to_le16(cmpl_ring);
2634 req->target_id = cpu_to_le16(target_id);
2635 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2636 }
2637
2638 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2639 int timeout, bool silent)
2640 {
2641 int i, intr_process, rc;
2642 struct input *req = msg;
2643 u32 *data = msg;
2644 __le32 *resp_len, *valid;
2645 u16 cp_ring_id, len = 0;
2646 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2647
2648 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2649 memset(resp, 0, PAGE_SIZE);
2650 cp_ring_id = le16_to_cpu(req->cmpl_ring);
2651 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2652
2653 /* Write request msg to hwrm channel */
2654 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2655
2656 for (i = msg_len; i < HWRM_MAX_REQ_LEN; i += 4)
2657 writel(0, bp->bar0 + i);
2658
2659 /* currently supports only one outstanding message */
2660 if (intr_process)
2661 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2662
2663 /* Ring channel doorbell */
2664 writel(1, bp->bar0 + 0x100);
2665
2666 if (!timeout)
2667 timeout = DFLT_HWRM_CMD_TIMEOUT;
2668
2669 i = 0;
2670 if (intr_process) {
2671 /* Wait until hwrm response cmpl interrupt is processed */
2672 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2673 i++ < timeout) {
2674 usleep_range(600, 800);
2675 }
2676
2677 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2678 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2679 le16_to_cpu(req->req_type));
2680 return -1;
2681 }
2682 } else {
2683 /* Check if response len is updated */
2684 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2685 for (i = 0; i < timeout; i++) {
2686 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2687 HWRM_RESP_LEN_SFT;
2688 if (len)
2689 break;
2690 usleep_range(600, 800);
2691 }
2692
2693 if (i >= timeout) {
2694 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2695 timeout, le16_to_cpu(req->req_type),
2696 le16_to_cpu(req->seq_id), *resp_len);
2697 return -1;
2698 }
2699
2700 /* Last word of resp contains valid bit */
2701 valid = bp->hwrm_cmd_resp_addr + len - 4;
2702 for (i = 0; i < timeout; i++) {
2703 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2704 break;
2705 usleep_range(600, 800);
2706 }
2707
2708 if (i >= timeout) {
2709 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2710 timeout, le16_to_cpu(req->req_type),
2711 le16_to_cpu(req->seq_id), len, *valid);
2712 return -1;
2713 }
2714 }
2715
2716 rc = le16_to_cpu(resp->error_code);
2717 if (rc && !silent)
2718 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2719 le16_to_cpu(resp->req_type),
2720 le16_to_cpu(resp->seq_id), rc);
2721 return rc;
2722 }
2723
2724 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2725 {
2726 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2727 }
2728
2729 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2730 {
2731 int rc;
2732
2733 mutex_lock(&bp->hwrm_cmd_lock);
2734 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2735 mutex_unlock(&bp->hwrm_cmd_lock);
2736 return rc;
2737 }
2738
2739 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2740 int timeout)
2741 {
2742 int rc;
2743
2744 mutex_lock(&bp->hwrm_cmd_lock);
2745 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2746 mutex_unlock(&bp->hwrm_cmd_lock);
2747 return rc;
2748 }
2749
2750 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2751 {
2752 struct hwrm_func_drv_rgtr_input req = {0};
2753 int i;
2754
2755 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2756
2757 req.enables =
2758 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2759 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2760 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2761
2762 /* TODO: current async event fwd bits are not defined and the firmware
2763 * only checks if it is non-zero to enable async event forwarding
2764 */
2765 req.async_event_fwd[0] |= cpu_to_le32(1);
2766 req.os_type = cpu_to_le16(1);
2767 req.ver_maj = DRV_VER_MAJ;
2768 req.ver_min = DRV_VER_MIN;
2769 req.ver_upd = DRV_VER_UPD;
2770
2771 if (BNXT_PF(bp)) {
2772 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2773 u32 *data = (u32 *)vf_req_snif_bmap;
2774
2775 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2776 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2777 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2778
2779 for (i = 0; i < 8; i++)
2780 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2781
2782 req.enables |=
2783 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2784 }
2785
2786 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2787 }
2788
2789 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2790 {
2791 struct hwrm_func_drv_unrgtr_input req = {0};
2792
2793 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2794 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2795 }
2796
2797 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2798 {
2799 u32 rc = 0;
2800 struct hwrm_tunnel_dst_port_free_input req = {0};
2801
2802 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2803 req.tunnel_type = tunnel_type;
2804
2805 switch (tunnel_type) {
2806 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2807 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2808 break;
2809 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2810 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2811 break;
2812 default:
2813 break;
2814 }
2815
2816 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2817 if (rc)
2818 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2819 rc);
2820 return rc;
2821 }
2822
2823 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2824 u8 tunnel_type)
2825 {
2826 u32 rc = 0;
2827 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2828 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2829
2830 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2831
2832 req.tunnel_type = tunnel_type;
2833 req.tunnel_dst_port_val = port;
2834
2835 mutex_lock(&bp->hwrm_cmd_lock);
2836 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2837 if (rc) {
2838 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2839 rc);
2840 goto err_out;
2841 }
2842
2843 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2844 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2845
2846 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2847 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2848 err_out:
2849 mutex_unlock(&bp->hwrm_cmd_lock);
2850 return rc;
2851 }
2852
2853 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2854 {
2855 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2856 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2857
2858 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2859 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2860
2861 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2862 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2863 req.mask = cpu_to_le32(vnic->rx_mask);
2864 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2865 }
2866
2867 #ifdef CONFIG_RFS_ACCEL
2868 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2869 struct bnxt_ntuple_filter *fltr)
2870 {
2871 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2872
2873 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2874 req.ntuple_filter_id = fltr->filter_id;
2875 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2876 }
2877
2878 #define BNXT_NTP_FLTR_FLAGS \
2879 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2880 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2881 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2882 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2883 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2884 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2885 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2886 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2887 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2888 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2889 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2890 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2891 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2892 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2893
2894 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2895 struct bnxt_ntuple_filter *fltr)
2896 {
2897 int rc = 0;
2898 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2899 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2900 bp->hwrm_cmd_resp_addr;
2901 struct flow_keys *keys = &fltr->fkeys;
2902 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2903
2904 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2905 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2906
2907 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2908
2909 req.ethertype = htons(ETH_P_IP);
2910 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
2911 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
2912 req.ip_protocol = keys->basic.ip_proto;
2913
2914 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
2915 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2916 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
2917 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
2918
2919 req.src_port = keys->ports.src;
2920 req.src_port_mask = cpu_to_be16(0xffff);
2921 req.dst_port = keys->ports.dst;
2922 req.dst_port_mask = cpu_to_be16(0xffff);
2923
2924 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
2925 mutex_lock(&bp->hwrm_cmd_lock);
2926 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2927 if (!rc)
2928 fltr->filter_id = resp->ntuple_filter_id;
2929 mutex_unlock(&bp->hwrm_cmd_lock);
2930 return rc;
2931 }
2932 #endif
2933
2934 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
2935 u8 *mac_addr)
2936 {
2937 u32 rc = 0;
2938 struct hwrm_cfa_l2_filter_alloc_input req = {0};
2939 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2940
2941 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
2942 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
2943 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
2944 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
2945 req.enables =
2946 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
2947 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
2948 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
2949 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
2950 req.l2_addr_mask[0] = 0xff;
2951 req.l2_addr_mask[1] = 0xff;
2952 req.l2_addr_mask[2] = 0xff;
2953 req.l2_addr_mask[3] = 0xff;
2954 req.l2_addr_mask[4] = 0xff;
2955 req.l2_addr_mask[5] = 0xff;
2956
2957 mutex_lock(&bp->hwrm_cmd_lock);
2958 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2959 if (!rc)
2960 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
2961 resp->l2_filter_id;
2962 mutex_unlock(&bp->hwrm_cmd_lock);
2963 return rc;
2964 }
2965
2966 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
2967 {
2968 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
2969 int rc = 0;
2970
2971 /* Any associated ntuple filters will also be cleared by firmware. */
2972 mutex_lock(&bp->hwrm_cmd_lock);
2973 for (i = 0; i < num_of_vnics; i++) {
2974 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2975
2976 for (j = 0; j < vnic->uc_filter_count; j++) {
2977 struct hwrm_cfa_l2_filter_free_input req = {0};
2978
2979 bnxt_hwrm_cmd_hdr_init(bp, &req,
2980 HWRM_CFA_L2_FILTER_FREE, -1, -1);
2981
2982 req.l2_filter_id = vnic->fw_l2_filter_id[j];
2983
2984 rc = _hwrm_send_message(bp, &req, sizeof(req),
2985 HWRM_CMD_TIMEOUT);
2986 }
2987 vnic->uc_filter_count = 0;
2988 }
2989 mutex_unlock(&bp->hwrm_cmd_lock);
2990
2991 return rc;
2992 }
2993
2994 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
2995 {
2996 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2997 struct hwrm_vnic_tpa_cfg_input req = {0};
2998
2999 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3000
3001 if (tpa_flags) {
3002 u16 mss = bp->dev->mtu - 40;
3003 u32 nsegs, n, segs = 0, flags;
3004
3005 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3006 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3007 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3008 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3009 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3010 if (tpa_flags & BNXT_FLAG_GRO)
3011 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3012
3013 req.flags = cpu_to_le32(flags);
3014
3015 req.enables =
3016 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3017 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3018 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3019
3020 /* Number of segs are log2 units, and first packet is not
3021 * included as part of this units.
3022 */
3023 if (mss <= PAGE_SIZE) {
3024 n = PAGE_SIZE / mss;
3025 nsegs = (MAX_SKB_FRAGS - 1) * n;
3026 } else {
3027 n = mss / PAGE_SIZE;
3028 if (mss & (PAGE_SIZE - 1))
3029 n++;
3030 nsegs = (MAX_SKB_FRAGS - n) / n;
3031 }
3032
3033 segs = ilog2(nsegs);
3034 req.max_agg_segs = cpu_to_le16(segs);
3035 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3036
3037 req.min_agg_len = cpu_to_le32(512);
3038 }
3039 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3040
3041 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3042 }
3043
3044 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3045 {
3046 u32 i, j, max_rings;
3047 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3048 struct hwrm_vnic_rss_cfg_input req = {0};
3049
3050 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3051 return 0;
3052
3053 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3054 if (set_rss) {
3055 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3056 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3057 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3058 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3059
3060 req.hash_type = cpu_to_le32(vnic->hash_type);
3061
3062 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3063 max_rings = bp->rx_nr_rings;
3064 else
3065 max_rings = 1;
3066
3067 /* Fill the RSS indirection table with ring group ids */
3068 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3069 if (j == max_rings)
3070 j = 0;
3071 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3072 }
3073
3074 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3075 req.hash_key_tbl_addr =
3076 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3077 }
3078 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3079 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3080 }
3081
3082 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3083 {
3084 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3085 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3086
3087 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3088 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3089 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3090 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3091 req.enables =
3092 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3093 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3094 /* thresholds not implemented in firmware yet */
3095 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3096 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3097 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3098 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3099 }
3100
3101 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3102 {
3103 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3104
3105 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3106 req.rss_cos_lb_ctx_id =
3107 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3108
3109 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3110 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3111 }
3112
3113 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3114 {
3115 int i;
3116
3117 for (i = 0; i < bp->nr_vnics; i++) {
3118 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3119
3120 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3121 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3122 }
3123 bp->rsscos_nr_ctxs = 0;
3124 }
3125
3126 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3127 {
3128 int rc;
3129 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3130 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3131 bp->hwrm_cmd_resp_addr;
3132
3133 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3134 -1);
3135
3136 mutex_lock(&bp->hwrm_cmd_lock);
3137 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3138 if (!rc)
3139 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3140 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3141 mutex_unlock(&bp->hwrm_cmd_lock);
3142
3143 return rc;
3144 }
3145
3146 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3147 {
3148 unsigned int ring = 0, grp_idx;
3149 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3150 struct hwrm_vnic_cfg_input req = {0};
3151
3152 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3153 /* Only RSS support for now TBD: COS & LB */
3154 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3155 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3156 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3157 req.cos_rule = cpu_to_le16(0xffff);
3158 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3159 ring = 0;
3160 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3161 ring = vnic_id - 1;
3162
3163 grp_idx = bp->rx_ring[ring].bnapi->index;
3164 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3165 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3166
3167 req.lb_rule = cpu_to_le16(0xffff);
3168 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3169 VLAN_HLEN);
3170
3171 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3172 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3173
3174 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3175 }
3176
3177 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3178 {
3179 u32 rc = 0;
3180
3181 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3182 struct hwrm_vnic_free_input req = {0};
3183
3184 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3185 req.vnic_id =
3186 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3187
3188 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3189 if (rc)
3190 return rc;
3191 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3192 }
3193 return rc;
3194 }
3195
3196 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3197 {
3198 u16 i;
3199
3200 for (i = 0; i < bp->nr_vnics; i++)
3201 bnxt_hwrm_vnic_free_one(bp, i);
3202 }
3203
3204 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3205 unsigned int start_rx_ring_idx,
3206 unsigned int nr_rings)
3207 {
3208 int rc = 0;
3209 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3210 struct hwrm_vnic_alloc_input req = {0};
3211 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3212
3213 /* map ring groups to this vnic */
3214 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3215 grp_idx = bp->rx_ring[i].bnapi->index;
3216 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3217 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3218 j, nr_rings);
3219 break;
3220 }
3221 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3222 bp->grp_info[grp_idx].fw_grp_id;
3223 }
3224
3225 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3226 if (vnic_id == 0)
3227 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3228
3229 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3230
3231 mutex_lock(&bp->hwrm_cmd_lock);
3232 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3233 if (!rc)
3234 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3235 mutex_unlock(&bp->hwrm_cmd_lock);
3236 return rc;
3237 }
3238
3239 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3240 {
3241 u16 i;
3242 u32 rc = 0;
3243
3244 mutex_lock(&bp->hwrm_cmd_lock);
3245 for (i = 0; i < bp->rx_nr_rings; i++) {
3246 struct hwrm_ring_grp_alloc_input req = {0};
3247 struct hwrm_ring_grp_alloc_output *resp =
3248 bp->hwrm_cmd_resp_addr;
3249 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3250
3251 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3252
3253 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3254 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3255 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3256 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3257
3258 rc = _hwrm_send_message(bp, &req, sizeof(req),
3259 HWRM_CMD_TIMEOUT);
3260 if (rc)
3261 break;
3262
3263 bp->grp_info[grp_idx].fw_grp_id =
3264 le32_to_cpu(resp->ring_group_id);
3265 }
3266 mutex_unlock(&bp->hwrm_cmd_lock);
3267 return rc;
3268 }
3269
3270 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3271 {
3272 u16 i;
3273 u32 rc = 0;
3274 struct hwrm_ring_grp_free_input req = {0};
3275
3276 if (!bp->grp_info)
3277 return 0;
3278
3279 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3280
3281 mutex_lock(&bp->hwrm_cmd_lock);
3282 for (i = 0; i < bp->cp_nr_rings; i++) {
3283 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3284 continue;
3285 req.ring_group_id =
3286 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3287
3288 rc = _hwrm_send_message(bp, &req, sizeof(req),
3289 HWRM_CMD_TIMEOUT);
3290 if (rc)
3291 break;
3292 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3293 }
3294 mutex_unlock(&bp->hwrm_cmd_lock);
3295 return rc;
3296 }
3297
3298 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3299 struct bnxt_ring_struct *ring,
3300 u32 ring_type, u32 map_index,
3301 u32 stats_ctx_id)
3302 {
3303 int rc = 0, err = 0;
3304 struct hwrm_ring_alloc_input req = {0};
3305 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3306 u16 ring_id;
3307
3308 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3309
3310 req.enables = 0;
3311 if (ring->nr_pages > 1) {
3312 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3313 /* Page size is in log2 units */
3314 req.page_size = BNXT_PAGE_SHIFT;
3315 req.page_tbl_depth = 1;
3316 } else {
3317 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3318 }
3319 req.fbo = 0;
3320 /* Association of ring index with doorbell index and MSIX number */
3321 req.logical_id = cpu_to_le16(map_index);
3322
3323 switch (ring_type) {
3324 case HWRM_RING_ALLOC_TX:
3325 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3326 /* Association of transmit ring with completion ring */
3327 req.cmpl_ring_id =
3328 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3329 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3330 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3331 req.queue_id = cpu_to_le16(ring->queue_id);
3332 break;
3333 case HWRM_RING_ALLOC_RX:
3334 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3335 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3336 break;
3337 case HWRM_RING_ALLOC_AGG:
3338 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3339 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3340 break;
3341 case HWRM_RING_ALLOC_CMPL:
3342 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3343 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3344 if (bp->flags & BNXT_FLAG_USING_MSIX)
3345 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3346 break;
3347 default:
3348 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3349 ring_type);
3350 return -1;
3351 }
3352
3353 mutex_lock(&bp->hwrm_cmd_lock);
3354 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3355 err = le16_to_cpu(resp->error_code);
3356 ring_id = le16_to_cpu(resp->ring_id);
3357 mutex_unlock(&bp->hwrm_cmd_lock);
3358
3359 if (rc || err) {
3360 switch (ring_type) {
3361 case RING_FREE_REQ_RING_TYPE_CMPL:
3362 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3363 rc, err);
3364 return -1;
3365
3366 case RING_FREE_REQ_RING_TYPE_RX:
3367 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3368 rc, err);
3369 return -1;
3370
3371 case RING_FREE_REQ_RING_TYPE_TX:
3372 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3373 rc, err);
3374 return -1;
3375
3376 default:
3377 netdev_err(bp->dev, "Invalid ring\n");
3378 return -1;
3379 }
3380 }
3381 ring->fw_ring_id = ring_id;
3382 return rc;
3383 }
3384
3385 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3386 {
3387 int i, rc = 0;
3388
3389 for (i = 0; i < bp->cp_nr_rings; i++) {
3390 struct bnxt_napi *bnapi = bp->bnapi[i];
3391 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3392 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3393
3394 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3395 INVALID_STATS_CTX_ID);
3396 if (rc)
3397 goto err_out;
3398 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3399 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3400 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3401 }
3402
3403 for (i = 0; i < bp->tx_nr_rings; i++) {
3404 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3405 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3406 u32 map_idx = txr->bnapi->index;
3407 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3408
3409 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3410 map_idx, fw_stats_ctx);
3411 if (rc)
3412 goto err_out;
3413 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3414 }
3415
3416 for (i = 0; i < bp->rx_nr_rings; i++) {
3417 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3418 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3419 u32 map_idx = rxr->bnapi->index;
3420
3421 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3422 map_idx, INVALID_STATS_CTX_ID);
3423 if (rc)
3424 goto err_out;
3425 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3426 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3427 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3428 }
3429
3430 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3431 for (i = 0; i < bp->rx_nr_rings; i++) {
3432 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3433 struct bnxt_ring_struct *ring =
3434 &rxr->rx_agg_ring_struct;
3435 u32 grp_idx = rxr->bnapi->index;
3436 u32 map_idx = grp_idx + bp->rx_nr_rings;
3437
3438 rc = hwrm_ring_alloc_send_msg(bp, ring,
3439 HWRM_RING_ALLOC_AGG,
3440 map_idx,
3441 INVALID_STATS_CTX_ID);
3442 if (rc)
3443 goto err_out;
3444
3445 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3446 writel(DB_KEY_RX | rxr->rx_agg_prod,
3447 rxr->rx_agg_doorbell);
3448 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3449 }
3450 }
3451 err_out:
3452 return rc;
3453 }
3454
3455 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3456 struct bnxt_ring_struct *ring,
3457 u32 ring_type, int cmpl_ring_id)
3458 {
3459 int rc;
3460 struct hwrm_ring_free_input req = {0};
3461 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3462 u16 error_code;
3463
3464 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3465 req.ring_type = ring_type;
3466 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3467
3468 mutex_lock(&bp->hwrm_cmd_lock);
3469 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3470 error_code = le16_to_cpu(resp->error_code);
3471 mutex_unlock(&bp->hwrm_cmd_lock);
3472
3473 if (rc || error_code) {
3474 switch (ring_type) {
3475 case RING_FREE_REQ_RING_TYPE_CMPL:
3476 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3477 rc);
3478 return rc;
3479 case RING_FREE_REQ_RING_TYPE_RX:
3480 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3481 rc);
3482 return rc;
3483 case RING_FREE_REQ_RING_TYPE_TX:
3484 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3485 rc);
3486 return rc;
3487 default:
3488 netdev_err(bp->dev, "Invalid ring\n");
3489 return -1;
3490 }
3491 }
3492 return 0;
3493 }
3494
3495 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3496 {
3497 int i;
3498
3499 if (!bp->bnapi)
3500 return;
3501
3502 for (i = 0; i < bp->tx_nr_rings; i++) {
3503 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3504 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3505 u32 grp_idx = txr->bnapi->index;
3506 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3507
3508 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3509 hwrm_ring_free_send_msg(bp, ring,
3510 RING_FREE_REQ_RING_TYPE_TX,
3511 close_path ? cmpl_ring_id :
3512 INVALID_HW_RING_ID);
3513 ring->fw_ring_id = INVALID_HW_RING_ID;
3514 }
3515 }
3516
3517 for (i = 0; i < bp->rx_nr_rings; i++) {
3518 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3519 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3520 u32 grp_idx = rxr->bnapi->index;
3521 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3522
3523 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3524 hwrm_ring_free_send_msg(bp, ring,
3525 RING_FREE_REQ_RING_TYPE_RX,
3526 close_path ? cmpl_ring_id :
3527 INVALID_HW_RING_ID);
3528 ring->fw_ring_id = INVALID_HW_RING_ID;
3529 bp->grp_info[grp_idx].rx_fw_ring_id =
3530 INVALID_HW_RING_ID;
3531 }
3532 }
3533
3534 for (i = 0; i < bp->rx_nr_rings; i++) {
3535 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3536 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3537 u32 grp_idx = rxr->bnapi->index;
3538 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3539
3540 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3541 hwrm_ring_free_send_msg(bp, ring,
3542 RING_FREE_REQ_RING_TYPE_RX,
3543 close_path ? cmpl_ring_id :
3544 INVALID_HW_RING_ID);
3545 ring->fw_ring_id = INVALID_HW_RING_ID;
3546 bp->grp_info[grp_idx].agg_fw_ring_id =
3547 INVALID_HW_RING_ID;
3548 }
3549 }
3550
3551 for (i = 0; i < bp->cp_nr_rings; i++) {
3552 struct bnxt_napi *bnapi = bp->bnapi[i];
3553 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3554 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3555
3556 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3557 hwrm_ring_free_send_msg(bp, ring,
3558 RING_FREE_REQ_RING_TYPE_CMPL,
3559 INVALID_HW_RING_ID);
3560 ring->fw_ring_id = INVALID_HW_RING_ID;
3561 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3562 }
3563 }
3564 }
3565
3566 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3567 u32 buf_tmrs, u16 flags,
3568 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3569 {
3570 req->flags = cpu_to_le16(flags);
3571 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3572 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3573 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3574 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3575 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3576 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3577 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3578 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3579 }
3580
3581 int bnxt_hwrm_set_coal(struct bnxt *bp)
3582 {
3583 int i, rc = 0;
3584 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3585 req_tx = {0}, *req;
3586 u16 max_buf, max_buf_irq;
3587 u16 buf_tmr, buf_tmr_irq;
3588 u32 flags;
3589
3590 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3591 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3592 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3593 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3594
3595 /* Each rx completion (2 records) should be DMAed immediately.
3596 * DMA 1/4 of the completion buffers at a time.
3597 */
3598 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3599 /* max_buf must not be zero */
3600 max_buf = clamp_t(u16, max_buf, 1, 63);
3601 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3602 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3603 /* buf timer set to 1/4 of interrupt timer */
3604 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3605 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3606 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3607
3608 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3609
3610 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3611 * if coal_ticks is less than 25 us.
3612 */
3613 if (bp->rx_coal_ticks < 25)
3614 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3615
3616 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3617 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3618
3619 /* max_buf must not be zero */
3620 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3621 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3622 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3623 /* buf timer set to 1/4 of interrupt timer */
3624 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3625 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3626 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3627
3628 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3629 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3630 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3631
3632 mutex_lock(&bp->hwrm_cmd_lock);
3633 for (i = 0; i < bp->cp_nr_rings; i++) {
3634 struct bnxt_napi *bnapi = bp->bnapi[i];
3635
3636 req = &req_rx;
3637 if (!bnapi->rx_ring)
3638 req = &req_tx;
3639 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3640
3641 rc = _hwrm_send_message(bp, req, sizeof(*req),
3642 HWRM_CMD_TIMEOUT);
3643 if (rc)
3644 break;
3645 }
3646 mutex_unlock(&bp->hwrm_cmd_lock);
3647 return rc;
3648 }
3649
3650 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3651 {
3652 int rc = 0, i;
3653 struct hwrm_stat_ctx_free_input req = {0};
3654
3655 if (!bp->bnapi)
3656 return 0;
3657
3658 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3659
3660 mutex_lock(&bp->hwrm_cmd_lock);
3661 for (i = 0; i < bp->cp_nr_rings; i++) {
3662 struct bnxt_napi *bnapi = bp->bnapi[i];
3663 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3664
3665 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3666 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3667
3668 rc = _hwrm_send_message(bp, &req, sizeof(req),
3669 HWRM_CMD_TIMEOUT);
3670 if (rc)
3671 break;
3672
3673 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3674 }
3675 }
3676 mutex_unlock(&bp->hwrm_cmd_lock);
3677 return rc;
3678 }
3679
3680 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3681 {
3682 int rc = 0, i;
3683 struct hwrm_stat_ctx_alloc_input req = {0};
3684 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3685
3686 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3687
3688 req.update_period_ms = cpu_to_le32(1000);
3689
3690 mutex_lock(&bp->hwrm_cmd_lock);
3691 for (i = 0; i < bp->cp_nr_rings; i++) {
3692 struct bnxt_napi *bnapi = bp->bnapi[i];
3693 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3694
3695 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3696
3697 rc = _hwrm_send_message(bp, &req, sizeof(req),
3698 HWRM_CMD_TIMEOUT);
3699 if (rc)
3700 break;
3701
3702 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3703
3704 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3705 }
3706 mutex_unlock(&bp->hwrm_cmd_lock);
3707 return 0;
3708 }
3709
3710 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3711 {
3712 int rc = 0;
3713 struct hwrm_func_qcaps_input req = {0};
3714 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3715
3716 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3717 req.fid = cpu_to_le16(0xffff);
3718
3719 mutex_lock(&bp->hwrm_cmd_lock);
3720 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3721 if (rc)
3722 goto hwrm_func_qcaps_exit;
3723
3724 if (BNXT_PF(bp)) {
3725 struct bnxt_pf_info *pf = &bp->pf;
3726
3727 pf->fw_fid = le16_to_cpu(resp->fid);
3728 pf->port_id = le16_to_cpu(resp->port_id);
3729 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3730 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3731 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3732 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3733 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3734 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3735 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3736 if (!pf->max_hw_ring_grps)
3737 pf->max_hw_ring_grps = pf->max_tx_rings;
3738 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3739 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3740 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3741 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3742 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3743 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3744 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3745 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3746 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3747 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3748 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3749 } else {
3750 #ifdef CONFIG_BNXT_SRIOV
3751 struct bnxt_vf_info *vf = &bp->vf;
3752
3753 vf->fw_fid = le16_to_cpu(resp->fid);
3754 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3755 if (is_valid_ether_addr(vf->mac_addr))
3756 /* overwrite netdev dev_adr with admin VF MAC */
3757 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3758 else
3759 random_ether_addr(bp->dev->dev_addr);
3760
3761 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3762 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3763 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3764 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3765 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3766 if (!vf->max_hw_ring_grps)
3767 vf->max_hw_ring_grps = vf->max_tx_rings;
3768 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3769 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3770 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3771 #endif
3772 }
3773
3774 bp->tx_push_thresh = 0;
3775 if (resp->flags &
3776 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3777 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3778
3779 hwrm_func_qcaps_exit:
3780 mutex_unlock(&bp->hwrm_cmd_lock);
3781 return rc;
3782 }
3783
3784 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3785 {
3786 struct hwrm_func_reset_input req = {0};
3787
3788 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3789 req.enables = 0;
3790
3791 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3792 }
3793
3794 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3795 {
3796 int rc = 0;
3797 struct hwrm_queue_qportcfg_input req = {0};
3798 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3799 u8 i, *qptr;
3800
3801 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3802
3803 mutex_lock(&bp->hwrm_cmd_lock);
3804 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3805 if (rc)
3806 goto qportcfg_exit;
3807
3808 if (!resp->max_configurable_queues) {
3809 rc = -EINVAL;
3810 goto qportcfg_exit;
3811 }
3812 bp->max_tc = resp->max_configurable_queues;
3813 if (bp->max_tc > BNXT_MAX_QUEUE)
3814 bp->max_tc = BNXT_MAX_QUEUE;
3815
3816 qptr = &resp->queue_id0;
3817 for (i = 0; i < bp->max_tc; i++) {
3818 bp->q_info[i].queue_id = *qptr++;
3819 bp->q_info[i].queue_profile = *qptr++;
3820 }
3821
3822 qportcfg_exit:
3823 mutex_unlock(&bp->hwrm_cmd_lock);
3824 return rc;
3825 }
3826
3827 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3828 {
3829 int rc;
3830 struct hwrm_ver_get_input req = {0};
3831 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3832
3833 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3834 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3835 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3836 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3837 mutex_lock(&bp->hwrm_cmd_lock);
3838 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3839 if (rc)
3840 goto hwrm_ver_get_exit;
3841
3842 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3843
3844 if (resp->hwrm_intf_maj < 1) {
3845 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3846 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3847 resp->hwrm_intf_upd);
3848 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3849 }
3850 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3851 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3852 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3853
3854 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3855 if (!bp->hwrm_cmd_timeout)
3856 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3857
3858 hwrm_ver_get_exit:
3859 mutex_unlock(&bp->hwrm_cmd_lock);
3860 return rc;
3861 }
3862
3863 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3864 {
3865 int rc;
3866 struct bnxt_pf_info *pf = &bp->pf;
3867 struct hwrm_port_qstats_input req = {0};
3868
3869 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
3870 return 0;
3871
3872 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
3873 req.port_id = cpu_to_le16(pf->port_id);
3874 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
3875 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
3876 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3877 return rc;
3878 }
3879
3880 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3881 {
3882 if (bp->vxlan_port_cnt) {
3883 bnxt_hwrm_tunnel_dst_port_free(
3884 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3885 }
3886 bp->vxlan_port_cnt = 0;
3887 if (bp->nge_port_cnt) {
3888 bnxt_hwrm_tunnel_dst_port_free(
3889 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3890 }
3891 bp->nge_port_cnt = 0;
3892 }
3893
3894 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3895 {
3896 int rc, i;
3897 u32 tpa_flags = 0;
3898
3899 if (set_tpa)
3900 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3901 for (i = 0; i < bp->nr_vnics; i++) {
3902 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3903 if (rc) {
3904 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
3905 rc, i);
3906 return rc;
3907 }
3908 }
3909 return 0;
3910 }
3911
3912 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
3913 {
3914 int i;
3915
3916 for (i = 0; i < bp->nr_vnics; i++)
3917 bnxt_hwrm_vnic_set_rss(bp, i, false);
3918 }
3919
3920 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
3921 bool irq_re_init)
3922 {
3923 if (bp->vnic_info) {
3924 bnxt_hwrm_clear_vnic_filter(bp);
3925 /* clear all RSS setting before free vnic ctx */
3926 bnxt_hwrm_clear_vnic_rss(bp);
3927 bnxt_hwrm_vnic_ctx_free(bp);
3928 /* before free the vnic, undo the vnic tpa settings */
3929 if (bp->flags & BNXT_FLAG_TPA)
3930 bnxt_set_tpa(bp, false);
3931 bnxt_hwrm_vnic_free(bp);
3932 }
3933 bnxt_hwrm_ring_free(bp, close_path);
3934 bnxt_hwrm_ring_grp_free(bp);
3935 if (irq_re_init) {
3936 bnxt_hwrm_stat_ctx_free(bp);
3937 bnxt_hwrm_free_tunnel_ports(bp);
3938 }
3939 }
3940
3941 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
3942 {
3943 int rc;
3944
3945 /* allocate context for vnic */
3946 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
3947 if (rc) {
3948 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3949 vnic_id, rc);
3950 goto vnic_setup_err;
3951 }
3952 bp->rsscos_nr_ctxs++;
3953
3954 /* configure default vnic, ring grp */
3955 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
3956 if (rc) {
3957 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
3958 vnic_id, rc);
3959 goto vnic_setup_err;
3960 }
3961
3962 /* Enable RSS hashing on vnic */
3963 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
3964 if (rc) {
3965 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
3966 vnic_id, rc);
3967 goto vnic_setup_err;
3968 }
3969
3970 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3971 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
3972 if (rc) {
3973 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
3974 vnic_id, rc);
3975 }
3976 }
3977
3978 vnic_setup_err:
3979 return rc;
3980 }
3981
3982 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
3983 {
3984 #ifdef CONFIG_RFS_ACCEL
3985 int i, rc = 0;
3986
3987 for (i = 0; i < bp->rx_nr_rings; i++) {
3988 u16 vnic_id = i + 1;
3989 u16 ring_id = i;
3990
3991 if (vnic_id >= bp->nr_vnics)
3992 break;
3993
3994 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
3995 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
3996 if (rc) {
3997 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
3998 vnic_id, rc);
3999 break;
4000 }
4001 rc = bnxt_setup_vnic(bp, vnic_id);
4002 if (rc)
4003 break;
4004 }
4005 return rc;
4006 #else
4007 return 0;
4008 #endif
4009 }
4010
4011 static int bnxt_cfg_rx_mode(struct bnxt *);
4012
4013 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4014 {
4015 int rc = 0;
4016
4017 if (irq_re_init) {
4018 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4019 if (rc) {
4020 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4021 rc);
4022 goto err_out;
4023 }
4024 }
4025
4026 rc = bnxt_hwrm_ring_alloc(bp);
4027 if (rc) {
4028 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4029 goto err_out;
4030 }
4031
4032 rc = bnxt_hwrm_ring_grp_alloc(bp);
4033 if (rc) {
4034 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4035 goto err_out;
4036 }
4037
4038 /* default vnic 0 */
4039 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4040 if (rc) {
4041 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4042 goto err_out;
4043 }
4044
4045 rc = bnxt_setup_vnic(bp, 0);
4046 if (rc)
4047 goto err_out;
4048
4049 if (bp->flags & BNXT_FLAG_RFS) {
4050 rc = bnxt_alloc_rfs_vnics(bp);
4051 if (rc)
4052 goto err_out;
4053 }
4054
4055 if (bp->flags & BNXT_FLAG_TPA) {
4056 rc = bnxt_set_tpa(bp, true);
4057 if (rc)
4058 goto err_out;
4059 }
4060
4061 if (BNXT_VF(bp))
4062 bnxt_update_vf_mac(bp);
4063
4064 /* Filter for default vnic 0 */
4065 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4066 if (rc) {
4067 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4068 goto err_out;
4069 }
4070 bp->vnic_info[0].uc_filter_count = 1;
4071
4072 bp->vnic_info[0].rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4073
4074 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4075 bp->vnic_info[0].rx_mask |=
4076 CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4077
4078 rc = bnxt_cfg_rx_mode(bp);
4079 if (rc)
4080 goto err_out;
4081
4082 rc = bnxt_hwrm_set_coal(bp);
4083 if (rc)
4084 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4085 rc);
4086
4087 return 0;
4088
4089 err_out:
4090 bnxt_hwrm_resource_free(bp, 0, true);
4091
4092 return rc;
4093 }
4094
4095 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4096 {
4097 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4098 return 0;
4099 }
4100
4101 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4102 {
4103 bnxt_init_rx_rings(bp);
4104 bnxt_init_tx_rings(bp);
4105 bnxt_init_ring_grps(bp, irq_re_init);
4106 bnxt_init_vnics(bp);
4107
4108 return bnxt_init_chip(bp, irq_re_init);
4109 }
4110
4111 static void bnxt_disable_int(struct bnxt *bp)
4112 {
4113 int i;
4114
4115 if (!bp->bnapi)
4116 return;
4117
4118 for (i = 0; i < bp->cp_nr_rings; i++) {
4119 struct bnxt_napi *bnapi = bp->bnapi[i];
4120 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4121
4122 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4123 }
4124 }
4125
4126 static void bnxt_enable_int(struct bnxt *bp)
4127 {
4128 int i;
4129
4130 atomic_set(&bp->intr_sem, 0);
4131 for (i = 0; i < bp->cp_nr_rings; i++) {
4132 struct bnxt_napi *bnapi = bp->bnapi[i];
4133 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4134
4135 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4136 }
4137 }
4138
4139 static int bnxt_set_real_num_queues(struct bnxt *bp)
4140 {
4141 int rc;
4142 struct net_device *dev = bp->dev;
4143
4144 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4145 if (rc)
4146 return rc;
4147
4148 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4149 if (rc)
4150 return rc;
4151
4152 #ifdef CONFIG_RFS_ACCEL
4153 if (bp->flags & BNXT_FLAG_RFS)
4154 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4155 #endif
4156
4157 return rc;
4158 }
4159
4160 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4161 bool shared)
4162 {
4163 int _rx = *rx, _tx = *tx;
4164
4165 if (shared) {
4166 *rx = min_t(int, _rx, max);
4167 *tx = min_t(int, _tx, max);
4168 } else {
4169 if (max < 2)
4170 return -ENOMEM;
4171
4172 while (_rx + _tx > max) {
4173 if (_rx > _tx && _rx > 1)
4174 _rx--;
4175 else if (_tx > 1)
4176 _tx--;
4177 }
4178 *rx = _rx;
4179 *tx = _tx;
4180 }
4181 return 0;
4182 }
4183
4184 static int bnxt_setup_msix(struct bnxt *bp)
4185 {
4186 struct msix_entry *msix_ent;
4187 struct net_device *dev = bp->dev;
4188 int i, total_vecs, rc = 0, min = 1;
4189 const int len = sizeof(bp->irq_tbl[0].name);
4190
4191 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4192 total_vecs = bp->cp_nr_rings;
4193
4194 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4195 if (!msix_ent)
4196 return -ENOMEM;
4197
4198 for (i = 0; i < total_vecs; i++) {
4199 msix_ent[i].entry = i;
4200 msix_ent[i].vector = 0;
4201 }
4202
4203 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4204 min = 2;
4205
4206 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4207 if (total_vecs < 0) {
4208 rc = -ENODEV;
4209 goto msix_setup_exit;
4210 }
4211
4212 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4213 if (bp->irq_tbl) {
4214 int tcs;
4215
4216 /* Trim rings based upon num of vectors allocated */
4217 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4218 total_vecs, min == 1);
4219 if (rc)
4220 goto msix_setup_exit;
4221
4222 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4223 tcs = netdev_get_num_tc(dev);
4224 if (tcs > 1) {
4225 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4226 if (bp->tx_nr_rings_per_tc == 0) {
4227 netdev_reset_tc(dev);
4228 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4229 } else {
4230 int i, off, count;
4231
4232 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4233 for (i = 0; i < tcs; i++) {
4234 count = bp->tx_nr_rings_per_tc;
4235 off = i * count;
4236 netdev_set_tc_queue(dev, i, count, off);
4237 }
4238 }
4239 }
4240 bp->cp_nr_rings = total_vecs;
4241
4242 for (i = 0; i < bp->cp_nr_rings; i++) {
4243 char *attr;
4244
4245 bp->irq_tbl[i].vector = msix_ent[i].vector;
4246 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4247 attr = "TxRx";
4248 else if (i < bp->rx_nr_rings)
4249 attr = "rx";
4250 else
4251 attr = "tx";
4252
4253 snprintf(bp->irq_tbl[i].name, len,
4254 "%s-%s-%d", dev->name, attr, i);
4255 bp->irq_tbl[i].handler = bnxt_msix;
4256 }
4257 rc = bnxt_set_real_num_queues(bp);
4258 if (rc)
4259 goto msix_setup_exit;
4260 } else {
4261 rc = -ENOMEM;
4262 goto msix_setup_exit;
4263 }
4264 bp->flags |= BNXT_FLAG_USING_MSIX;
4265 kfree(msix_ent);
4266 return 0;
4267
4268 msix_setup_exit:
4269 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4270 pci_disable_msix(bp->pdev);
4271 kfree(msix_ent);
4272 return rc;
4273 }
4274
4275 static int bnxt_setup_inta(struct bnxt *bp)
4276 {
4277 int rc;
4278 const int len = sizeof(bp->irq_tbl[0].name);
4279
4280 if (netdev_get_num_tc(bp->dev))
4281 netdev_reset_tc(bp->dev);
4282
4283 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4284 if (!bp->irq_tbl) {
4285 rc = -ENOMEM;
4286 return rc;
4287 }
4288 bp->rx_nr_rings = 1;
4289 bp->tx_nr_rings = 1;
4290 bp->cp_nr_rings = 1;
4291 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4292 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4293 bp->irq_tbl[0].vector = bp->pdev->irq;
4294 snprintf(bp->irq_tbl[0].name, len,
4295 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4296 bp->irq_tbl[0].handler = bnxt_inta;
4297 rc = bnxt_set_real_num_queues(bp);
4298 return rc;
4299 }
4300
4301 static int bnxt_setup_int_mode(struct bnxt *bp)
4302 {
4303 int rc = 0;
4304
4305 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4306 rc = bnxt_setup_msix(bp);
4307
4308 if (!(bp->flags & BNXT_FLAG_USING_MSIX)) {
4309 /* fallback to INTA */
4310 rc = bnxt_setup_inta(bp);
4311 }
4312 return rc;
4313 }
4314
4315 static void bnxt_free_irq(struct bnxt *bp)
4316 {
4317 struct bnxt_irq *irq;
4318 int i;
4319
4320 #ifdef CONFIG_RFS_ACCEL
4321 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4322 bp->dev->rx_cpu_rmap = NULL;
4323 #endif
4324 if (!bp->irq_tbl)
4325 return;
4326
4327 for (i = 0; i < bp->cp_nr_rings; i++) {
4328 irq = &bp->irq_tbl[i];
4329 if (irq->requested)
4330 free_irq(irq->vector, bp->bnapi[i]);
4331 irq->requested = 0;
4332 }
4333 if (bp->flags & BNXT_FLAG_USING_MSIX)
4334 pci_disable_msix(bp->pdev);
4335 kfree(bp->irq_tbl);
4336 bp->irq_tbl = NULL;
4337 }
4338
4339 static int bnxt_request_irq(struct bnxt *bp)
4340 {
4341 int i, j, rc = 0;
4342 unsigned long flags = 0;
4343 #ifdef CONFIG_RFS_ACCEL
4344 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4345 #endif
4346
4347 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4348 flags = IRQF_SHARED;
4349
4350 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4351 struct bnxt_irq *irq = &bp->irq_tbl[i];
4352 #ifdef CONFIG_RFS_ACCEL
4353 if (rmap && bp->bnapi[i]->rx_ring) {
4354 rc = irq_cpu_rmap_add(rmap, irq->vector);
4355 if (rc)
4356 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4357 j);
4358 j++;
4359 }
4360 #endif
4361 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4362 bp->bnapi[i]);
4363 if (rc)
4364 break;
4365
4366 irq->requested = 1;
4367 }
4368 return rc;
4369 }
4370
4371 static void bnxt_del_napi(struct bnxt *bp)
4372 {
4373 int i;
4374
4375 if (!bp->bnapi)
4376 return;
4377
4378 for (i = 0; i < bp->cp_nr_rings; i++) {
4379 struct bnxt_napi *bnapi = bp->bnapi[i];
4380
4381 napi_hash_del(&bnapi->napi);
4382 netif_napi_del(&bnapi->napi);
4383 }
4384 }
4385
4386 static void bnxt_init_napi(struct bnxt *bp)
4387 {
4388 int i;
4389 struct bnxt_napi *bnapi;
4390
4391 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4392 for (i = 0; i < bp->cp_nr_rings; i++) {
4393 bnapi = bp->bnapi[i];
4394 netif_napi_add(bp->dev, &bnapi->napi,
4395 bnxt_poll, 64);
4396 }
4397 } else {
4398 bnapi = bp->bnapi[0];
4399 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4400 }
4401 }
4402
4403 static void bnxt_disable_napi(struct bnxt *bp)
4404 {
4405 int i;
4406
4407 if (!bp->bnapi)
4408 return;
4409
4410 for (i = 0; i < bp->cp_nr_rings; i++) {
4411 napi_disable(&bp->bnapi[i]->napi);
4412 bnxt_disable_poll(bp->bnapi[i]);
4413 }
4414 }
4415
4416 static void bnxt_enable_napi(struct bnxt *bp)
4417 {
4418 int i;
4419
4420 for (i = 0; i < bp->cp_nr_rings; i++) {
4421 bnxt_enable_poll(bp->bnapi[i]);
4422 napi_enable(&bp->bnapi[i]->napi);
4423 }
4424 }
4425
4426 static void bnxt_tx_disable(struct bnxt *bp)
4427 {
4428 int i;
4429 struct bnxt_tx_ring_info *txr;
4430 struct netdev_queue *txq;
4431
4432 if (bp->tx_ring) {
4433 for (i = 0; i < bp->tx_nr_rings; i++) {
4434 txr = &bp->tx_ring[i];
4435 txq = netdev_get_tx_queue(bp->dev, i);
4436 __netif_tx_lock(txq, smp_processor_id());
4437 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4438 __netif_tx_unlock(txq);
4439 }
4440 }
4441 /* Stop all TX queues */
4442 netif_tx_disable(bp->dev);
4443 netif_carrier_off(bp->dev);
4444 }
4445
4446 static void bnxt_tx_enable(struct bnxt *bp)
4447 {
4448 int i;
4449 struct bnxt_tx_ring_info *txr;
4450 struct netdev_queue *txq;
4451
4452 for (i = 0; i < bp->tx_nr_rings; i++) {
4453 txr = &bp->tx_ring[i];
4454 txq = netdev_get_tx_queue(bp->dev, i);
4455 txr->dev_state = 0;
4456 }
4457 netif_tx_wake_all_queues(bp->dev);
4458 if (bp->link_info.link_up)
4459 netif_carrier_on(bp->dev);
4460 }
4461
4462 static void bnxt_report_link(struct bnxt *bp)
4463 {
4464 if (bp->link_info.link_up) {
4465 const char *duplex;
4466 const char *flow_ctrl;
4467 u16 speed;
4468
4469 netif_carrier_on(bp->dev);
4470 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4471 duplex = "full";
4472 else
4473 duplex = "half";
4474 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4475 flow_ctrl = "ON - receive & transmit";
4476 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4477 flow_ctrl = "ON - transmit";
4478 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4479 flow_ctrl = "ON - receive";
4480 else
4481 flow_ctrl = "none";
4482 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4483 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4484 speed, duplex, flow_ctrl);
4485 } else {
4486 netif_carrier_off(bp->dev);
4487 netdev_err(bp->dev, "NIC Link is Down\n");
4488 }
4489 }
4490
4491 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4492 {
4493 int rc = 0;
4494 struct bnxt_link_info *link_info = &bp->link_info;
4495 struct hwrm_port_phy_qcfg_input req = {0};
4496 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4497 u8 link_up = link_info->link_up;
4498
4499 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4500
4501 mutex_lock(&bp->hwrm_cmd_lock);
4502 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4503 if (rc) {
4504 mutex_unlock(&bp->hwrm_cmd_lock);
4505 return rc;
4506 }
4507
4508 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4509 link_info->phy_link_status = resp->link;
4510 link_info->duplex = resp->duplex;
4511 link_info->pause = resp->pause;
4512 link_info->auto_mode = resp->auto_mode;
4513 link_info->auto_pause_setting = resp->auto_pause;
4514 link_info->lp_pause = resp->link_partner_adv_pause;
4515 link_info->force_pause_setting = resp->force_pause;
4516 link_info->duplex_setting = resp->duplex;
4517 if (link_info->phy_link_status == BNXT_LINK_LINK)
4518 link_info->link_speed = le16_to_cpu(resp->link_speed);
4519 else
4520 link_info->link_speed = 0;
4521 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4522 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4523 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4524 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4525 link_info->lp_auto_link_speeds =
4526 le16_to_cpu(resp->link_partner_adv_speeds);
4527 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4528 link_info->phy_ver[0] = resp->phy_maj;
4529 link_info->phy_ver[1] = resp->phy_min;
4530 link_info->phy_ver[2] = resp->phy_bld;
4531 link_info->media_type = resp->media_type;
4532 link_info->transceiver = resp->transceiver_type;
4533 link_info->phy_addr = resp->phy_addr;
4534
4535 /* TODO: need to add more logic to report VF link */
4536 if (chng_link_state) {
4537 if (link_info->phy_link_status == BNXT_LINK_LINK)
4538 link_info->link_up = 1;
4539 else
4540 link_info->link_up = 0;
4541 if (link_up != link_info->link_up)
4542 bnxt_report_link(bp);
4543 } else {
4544 /* alwasy link down if not require to update link state */
4545 link_info->link_up = 0;
4546 }
4547 mutex_unlock(&bp->hwrm_cmd_lock);
4548 return 0;
4549 }
4550
4551 static void
4552 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4553 {
4554 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4555 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4556 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4557 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4558 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4559 req->enables |=
4560 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4561 } else {
4562 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4563 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4564 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4565 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4566 req->enables |=
4567 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4568 }
4569 }
4570
4571 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4572 struct hwrm_port_phy_cfg_input *req)
4573 {
4574 u8 autoneg = bp->link_info.autoneg;
4575 u16 fw_link_speed = bp->link_info.req_link_speed;
4576 u32 advertising = bp->link_info.advertising;
4577
4578 if (autoneg & BNXT_AUTONEG_SPEED) {
4579 req->auto_mode |=
4580 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4581
4582 req->enables |= cpu_to_le32(
4583 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4584 req->auto_link_speed_mask = cpu_to_le16(advertising);
4585
4586 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4587 req->flags |=
4588 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4589 } else {
4590 req->force_link_speed = cpu_to_le16(fw_link_speed);
4591 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4592 }
4593
4594 /* currently don't support half duplex */
4595 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4596 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4597 /* tell chimp that the setting takes effect immediately */
4598 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4599 }
4600
4601 int bnxt_hwrm_set_pause(struct bnxt *bp)
4602 {
4603 struct hwrm_port_phy_cfg_input req = {0};
4604 int rc;
4605
4606 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4607 bnxt_hwrm_set_pause_common(bp, &req);
4608
4609 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4610 bp->link_info.force_link_chng)
4611 bnxt_hwrm_set_link_common(bp, &req);
4612
4613 mutex_lock(&bp->hwrm_cmd_lock);
4614 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4615 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4616 /* since changing of pause setting doesn't trigger any link
4617 * change event, the driver needs to update the current pause
4618 * result upon successfully return of the phy_cfg command
4619 */
4620 bp->link_info.pause =
4621 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4622 bp->link_info.auto_pause_setting = 0;
4623 if (!bp->link_info.force_link_chng)
4624 bnxt_report_link(bp);
4625 }
4626 bp->link_info.force_link_chng = false;
4627 mutex_unlock(&bp->hwrm_cmd_lock);
4628 return rc;
4629 }
4630
4631 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4632 {
4633 struct hwrm_port_phy_cfg_input req = {0};
4634
4635 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4636 if (set_pause)
4637 bnxt_hwrm_set_pause_common(bp, &req);
4638
4639 bnxt_hwrm_set_link_common(bp, &req);
4640 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4641 }
4642
4643 static int bnxt_update_phy_setting(struct bnxt *bp)
4644 {
4645 int rc;
4646 bool update_link = false;
4647 bool update_pause = false;
4648 struct bnxt_link_info *link_info = &bp->link_info;
4649
4650 rc = bnxt_update_link(bp, true);
4651 if (rc) {
4652 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4653 rc);
4654 return rc;
4655 }
4656 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4657 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4658 update_pause = true;
4659 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4660 link_info->force_pause_setting != link_info->req_flow_ctrl)
4661 update_pause = true;
4662 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4663 if (BNXT_AUTO_MODE(link_info->auto_mode))
4664 update_link = true;
4665 if (link_info->req_link_speed != link_info->force_link_speed)
4666 update_link = true;
4667 if (link_info->req_duplex != link_info->duplex_setting)
4668 update_link = true;
4669 } else {
4670 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4671 update_link = true;
4672 if (link_info->advertising != link_info->auto_link_speeds)
4673 update_link = true;
4674 }
4675
4676 if (update_link)
4677 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4678 else if (update_pause)
4679 rc = bnxt_hwrm_set_pause(bp);
4680 if (rc) {
4681 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4682 rc);
4683 return rc;
4684 }
4685
4686 return rc;
4687 }
4688
4689 /* Common routine to pre-map certain register block to different GRC window.
4690 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4691 * in PF and 3 windows in VF that can be customized to map in different
4692 * register blocks.
4693 */
4694 static void bnxt_preset_reg_win(struct bnxt *bp)
4695 {
4696 if (BNXT_PF(bp)) {
4697 /* CAG registers map to GRC window #4 */
4698 writel(BNXT_CAG_REG_BASE,
4699 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4700 }
4701 }
4702
4703 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4704 {
4705 int rc = 0;
4706
4707 bnxt_preset_reg_win(bp);
4708 netif_carrier_off(bp->dev);
4709 if (irq_re_init) {
4710 rc = bnxt_setup_int_mode(bp);
4711 if (rc) {
4712 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4713 rc);
4714 return rc;
4715 }
4716 }
4717 if ((bp->flags & BNXT_FLAG_RFS) &&
4718 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4719 /* disable RFS if falling back to INTA */
4720 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4721 bp->flags &= ~BNXT_FLAG_RFS;
4722 }
4723
4724 rc = bnxt_alloc_mem(bp, irq_re_init);
4725 if (rc) {
4726 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4727 goto open_err_free_mem;
4728 }
4729
4730 if (irq_re_init) {
4731 bnxt_init_napi(bp);
4732 rc = bnxt_request_irq(bp);
4733 if (rc) {
4734 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4735 goto open_err;
4736 }
4737 }
4738
4739 bnxt_enable_napi(bp);
4740
4741 rc = bnxt_init_nic(bp, irq_re_init);
4742 if (rc) {
4743 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4744 goto open_err;
4745 }
4746
4747 if (link_re_init) {
4748 rc = bnxt_update_phy_setting(bp);
4749 if (rc)
4750 netdev_warn(bp->dev, "failed to update phy settings\n");
4751 }
4752
4753 if (irq_re_init) {
4754 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4755 vxlan_get_rx_port(bp->dev);
4756 #endif
4757 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4758 bp, htons(0x17c1),
4759 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4760 bp->nge_port_cnt = 1;
4761 }
4762
4763 set_bit(BNXT_STATE_OPEN, &bp->state);
4764 bnxt_enable_int(bp);
4765 /* Enable TX queues */
4766 bnxt_tx_enable(bp);
4767 mod_timer(&bp->timer, jiffies + bp->current_interval);
4768 bnxt_update_link(bp, true);
4769
4770 return 0;
4771
4772 open_err:
4773 bnxt_disable_napi(bp);
4774 bnxt_del_napi(bp);
4775
4776 open_err_free_mem:
4777 bnxt_free_skbs(bp);
4778 bnxt_free_irq(bp);
4779 bnxt_free_mem(bp, true);
4780 return rc;
4781 }
4782
4783 /* rtnl_lock held */
4784 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4785 {
4786 int rc = 0;
4787
4788 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4789 if (rc) {
4790 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4791 dev_close(bp->dev);
4792 }
4793 return rc;
4794 }
4795
4796 static int bnxt_open(struct net_device *dev)
4797 {
4798 struct bnxt *bp = netdev_priv(dev);
4799 int rc = 0;
4800
4801 rc = bnxt_hwrm_func_reset(bp);
4802 if (rc) {
4803 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4804 rc);
4805 rc = -1;
4806 return rc;
4807 }
4808 return __bnxt_open_nic(bp, true, true);
4809 }
4810
4811 static void bnxt_disable_int_sync(struct bnxt *bp)
4812 {
4813 int i;
4814
4815 atomic_inc(&bp->intr_sem);
4816 if (!netif_running(bp->dev))
4817 return;
4818
4819 bnxt_disable_int(bp);
4820 for (i = 0; i < bp->cp_nr_rings; i++)
4821 synchronize_irq(bp->irq_tbl[i].vector);
4822 }
4823
4824 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4825 {
4826 int rc = 0;
4827
4828 #ifdef CONFIG_BNXT_SRIOV
4829 if (bp->sriov_cfg) {
4830 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4831 !bp->sriov_cfg,
4832 BNXT_SRIOV_CFG_WAIT_TMO);
4833 if (rc)
4834 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4835 }
4836 #endif
4837 /* Change device state to avoid TX queue wake up's */
4838 bnxt_tx_disable(bp);
4839
4840 clear_bit(BNXT_STATE_OPEN, &bp->state);
4841 smp_mb__after_atomic();
4842 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4843 msleep(20);
4844
4845 /* Flush rings before disabling interrupts */
4846 bnxt_shutdown_nic(bp, irq_re_init);
4847
4848 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4849
4850 bnxt_disable_napi(bp);
4851 bnxt_disable_int_sync(bp);
4852 del_timer_sync(&bp->timer);
4853 bnxt_free_skbs(bp);
4854
4855 if (irq_re_init) {
4856 bnxt_free_irq(bp);
4857 bnxt_del_napi(bp);
4858 }
4859 bnxt_free_mem(bp, irq_re_init);
4860 return rc;
4861 }
4862
4863 static int bnxt_close(struct net_device *dev)
4864 {
4865 struct bnxt *bp = netdev_priv(dev);
4866
4867 bnxt_close_nic(bp, true, true);
4868 return 0;
4869 }
4870
4871 /* rtnl_lock held */
4872 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4873 {
4874 switch (cmd) {
4875 case SIOCGMIIPHY:
4876 /* fallthru */
4877 case SIOCGMIIREG: {
4878 if (!netif_running(dev))
4879 return -EAGAIN;
4880
4881 return 0;
4882 }
4883
4884 case SIOCSMIIREG:
4885 if (!netif_running(dev))
4886 return -EAGAIN;
4887
4888 return 0;
4889
4890 default:
4891 /* do nothing */
4892 break;
4893 }
4894 return -EOPNOTSUPP;
4895 }
4896
4897 static struct rtnl_link_stats64 *
4898 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
4899 {
4900 u32 i;
4901 struct bnxt *bp = netdev_priv(dev);
4902
4903 memset(stats, 0, sizeof(struct rtnl_link_stats64));
4904
4905 if (!bp->bnapi)
4906 return stats;
4907
4908 /* TODO check if we need to synchronize with bnxt_close path */
4909 for (i = 0; i < bp->cp_nr_rings; i++) {
4910 struct bnxt_napi *bnapi = bp->bnapi[i];
4911 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4912 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
4913
4914 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
4915 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
4916 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
4917
4918 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
4919 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
4920 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
4921
4922 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
4923 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
4924 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
4925
4926 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
4927 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
4928 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
4929
4930 stats->rx_missed_errors +=
4931 le64_to_cpu(hw_stats->rx_discard_pkts);
4932
4933 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
4934
4935 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
4936 }
4937
4938 if (bp->flags & BNXT_FLAG_PORT_STATS) {
4939 struct rx_port_stats *rx = bp->hw_rx_port_stats;
4940 struct tx_port_stats *tx = bp->hw_tx_port_stats;
4941
4942 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
4943 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
4944 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
4945 le64_to_cpu(rx->rx_ovrsz_frames) +
4946 le64_to_cpu(rx->rx_runt_frames);
4947 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
4948 le64_to_cpu(rx->rx_jbr_frames);
4949 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
4950 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
4951 stats->tx_errors = le64_to_cpu(tx->tx_err);
4952 }
4953
4954 return stats;
4955 }
4956
4957 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
4958 {
4959 struct net_device *dev = bp->dev;
4960 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4961 struct netdev_hw_addr *ha;
4962 u8 *haddr;
4963 int mc_count = 0;
4964 bool update = false;
4965 int off = 0;
4966
4967 netdev_for_each_mc_addr(ha, dev) {
4968 if (mc_count >= BNXT_MAX_MC_ADDRS) {
4969 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4970 vnic->mc_list_count = 0;
4971 return false;
4972 }
4973 haddr = ha->addr;
4974 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
4975 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
4976 update = true;
4977 }
4978 off += ETH_ALEN;
4979 mc_count++;
4980 }
4981 if (mc_count)
4982 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
4983
4984 if (mc_count != vnic->mc_list_count) {
4985 vnic->mc_list_count = mc_count;
4986 update = true;
4987 }
4988 return update;
4989 }
4990
4991 static bool bnxt_uc_list_updated(struct bnxt *bp)
4992 {
4993 struct net_device *dev = bp->dev;
4994 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4995 struct netdev_hw_addr *ha;
4996 int off = 0;
4997
4998 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
4999 return true;
5000
5001 netdev_for_each_uc_addr(ha, dev) {
5002 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5003 return true;
5004
5005 off += ETH_ALEN;
5006 }
5007 return false;
5008 }
5009
5010 static void bnxt_set_rx_mode(struct net_device *dev)
5011 {
5012 struct bnxt *bp = netdev_priv(dev);
5013 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5014 u32 mask = vnic->rx_mask;
5015 bool mc_update = false;
5016 bool uc_update;
5017
5018 if (!netif_running(dev))
5019 return;
5020
5021 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5022 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5023 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5024
5025 /* Only allow PF to be in promiscuous mode */
5026 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5027 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5028
5029 uc_update = bnxt_uc_list_updated(bp);
5030
5031 if (dev->flags & IFF_ALLMULTI) {
5032 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5033 vnic->mc_list_count = 0;
5034 } else {
5035 mc_update = bnxt_mc_list_updated(bp, &mask);
5036 }
5037
5038 if (mask != vnic->rx_mask || uc_update || mc_update) {
5039 vnic->rx_mask = mask;
5040
5041 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5042 schedule_work(&bp->sp_task);
5043 }
5044 }
5045
5046 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5047 {
5048 struct net_device *dev = bp->dev;
5049 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5050 struct netdev_hw_addr *ha;
5051 int i, off = 0, rc;
5052 bool uc_update;
5053
5054 netif_addr_lock_bh(dev);
5055 uc_update = bnxt_uc_list_updated(bp);
5056 netif_addr_unlock_bh(dev);
5057
5058 if (!uc_update)
5059 goto skip_uc;
5060
5061 mutex_lock(&bp->hwrm_cmd_lock);
5062 for (i = 1; i < vnic->uc_filter_count; i++) {
5063 struct hwrm_cfa_l2_filter_free_input req = {0};
5064
5065 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5066 -1);
5067
5068 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5069
5070 rc = _hwrm_send_message(bp, &req, sizeof(req),
5071 HWRM_CMD_TIMEOUT);
5072 }
5073 mutex_unlock(&bp->hwrm_cmd_lock);
5074
5075 vnic->uc_filter_count = 1;
5076
5077 netif_addr_lock_bh(dev);
5078 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5079 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5080 } else {
5081 netdev_for_each_uc_addr(ha, dev) {
5082 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5083 off += ETH_ALEN;
5084 vnic->uc_filter_count++;
5085 }
5086 }
5087 netif_addr_unlock_bh(dev);
5088
5089 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5090 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5091 if (rc) {
5092 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5093 rc);
5094 vnic->uc_filter_count = i;
5095 return rc;
5096 }
5097 }
5098
5099 skip_uc:
5100 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5101 if (rc)
5102 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5103 rc);
5104
5105 return rc;
5106 }
5107
5108 static bool bnxt_rfs_capable(struct bnxt *bp)
5109 {
5110 #ifdef CONFIG_RFS_ACCEL
5111 struct bnxt_pf_info *pf = &bp->pf;
5112 int vnics;
5113
5114 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5115 return false;
5116
5117 vnics = 1 + bp->rx_nr_rings;
5118 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5119 return false;
5120
5121 return true;
5122 #else
5123 return false;
5124 #endif
5125 }
5126
5127 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5128 netdev_features_t features)
5129 {
5130 struct bnxt *bp = netdev_priv(dev);
5131
5132 if (!bnxt_rfs_capable(bp))
5133 features &= ~NETIF_F_NTUPLE;
5134 return features;
5135 }
5136
5137 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5138 {
5139 struct bnxt *bp = netdev_priv(dev);
5140 u32 flags = bp->flags;
5141 u32 changes;
5142 int rc = 0;
5143 bool re_init = false;
5144 bool update_tpa = false;
5145
5146 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5147 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5148 flags |= BNXT_FLAG_GRO;
5149 if (features & NETIF_F_LRO)
5150 flags |= BNXT_FLAG_LRO;
5151
5152 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5153 flags |= BNXT_FLAG_STRIP_VLAN;
5154
5155 if (features & NETIF_F_NTUPLE)
5156 flags |= BNXT_FLAG_RFS;
5157
5158 changes = flags ^ bp->flags;
5159 if (changes & BNXT_FLAG_TPA) {
5160 update_tpa = true;
5161 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5162 (flags & BNXT_FLAG_TPA) == 0)
5163 re_init = true;
5164 }
5165
5166 if (changes & ~BNXT_FLAG_TPA)
5167 re_init = true;
5168
5169 if (flags != bp->flags) {
5170 u32 old_flags = bp->flags;
5171
5172 bp->flags = flags;
5173
5174 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5175 if (update_tpa)
5176 bnxt_set_ring_params(bp);
5177 return rc;
5178 }
5179
5180 if (re_init) {
5181 bnxt_close_nic(bp, false, false);
5182 if (update_tpa)
5183 bnxt_set_ring_params(bp);
5184
5185 return bnxt_open_nic(bp, false, false);
5186 }
5187 if (update_tpa) {
5188 rc = bnxt_set_tpa(bp,
5189 (flags & BNXT_FLAG_TPA) ?
5190 true : false);
5191 if (rc)
5192 bp->flags = old_flags;
5193 }
5194 }
5195 return rc;
5196 }
5197
5198 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5199 {
5200 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5201 int i = bnapi->index;
5202
5203 if (!txr)
5204 return;
5205
5206 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5207 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5208 txr->tx_cons);
5209 }
5210
5211 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5212 {
5213 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5214 int i = bnapi->index;
5215
5216 if (!rxr)
5217 return;
5218
5219 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5220 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5221 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5222 rxr->rx_sw_agg_prod);
5223 }
5224
5225 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5226 {
5227 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5228 int i = bnapi->index;
5229
5230 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5231 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5232 }
5233
5234 static void bnxt_dbg_dump_states(struct bnxt *bp)
5235 {
5236 int i;
5237 struct bnxt_napi *bnapi;
5238
5239 for (i = 0; i < bp->cp_nr_rings; i++) {
5240 bnapi = bp->bnapi[i];
5241 if (netif_msg_drv(bp)) {
5242 bnxt_dump_tx_sw_state(bnapi);
5243 bnxt_dump_rx_sw_state(bnapi);
5244 bnxt_dump_cp_sw_state(bnapi);
5245 }
5246 }
5247 }
5248
5249 static void bnxt_reset_task(struct bnxt *bp)
5250 {
5251 bnxt_dbg_dump_states(bp);
5252 if (netif_running(bp->dev)) {
5253 bnxt_close_nic(bp, false, false);
5254 bnxt_open_nic(bp, false, false);
5255 }
5256 }
5257
5258 static void bnxt_tx_timeout(struct net_device *dev)
5259 {
5260 struct bnxt *bp = netdev_priv(dev);
5261
5262 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5263 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5264 schedule_work(&bp->sp_task);
5265 }
5266
5267 #ifdef CONFIG_NET_POLL_CONTROLLER
5268 static void bnxt_poll_controller(struct net_device *dev)
5269 {
5270 struct bnxt *bp = netdev_priv(dev);
5271 int i;
5272
5273 for (i = 0; i < bp->cp_nr_rings; i++) {
5274 struct bnxt_irq *irq = &bp->irq_tbl[i];
5275
5276 disable_irq(irq->vector);
5277 irq->handler(irq->vector, bp->bnapi[i]);
5278 enable_irq(irq->vector);
5279 }
5280 }
5281 #endif
5282
5283 static void bnxt_timer(unsigned long data)
5284 {
5285 struct bnxt *bp = (struct bnxt *)data;
5286 struct net_device *dev = bp->dev;
5287
5288 if (!netif_running(dev))
5289 return;
5290
5291 if (atomic_read(&bp->intr_sem) != 0)
5292 goto bnxt_restart_timer;
5293
5294 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5295 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5296 schedule_work(&bp->sp_task);
5297 }
5298 bnxt_restart_timer:
5299 mod_timer(&bp->timer, jiffies + bp->current_interval);
5300 }
5301
5302 static void bnxt_cfg_ntp_filters(struct bnxt *);
5303
5304 static void bnxt_sp_task(struct work_struct *work)
5305 {
5306 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5307 int rc;
5308
5309 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5310 smp_mb__after_atomic();
5311 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5312 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5313 return;
5314 }
5315
5316 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5317 bnxt_cfg_rx_mode(bp);
5318
5319 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5320 bnxt_cfg_ntp_filters(bp);
5321 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5322 rc = bnxt_update_link(bp, true);
5323 if (rc)
5324 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5325 rc);
5326 }
5327 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5328 bnxt_hwrm_exec_fwd_req(bp);
5329 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5330 bnxt_hwrm_tunnel_dst_port_alloc(
5331 bp, bp->vxlan_port,
5332 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5333 }
5334 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5335 bnxt_hwrm_tunnel_dst_port_free(
5336 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5337 }
5338 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5339 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5340 * for BNXT_STATE_IN_SP_TASK to clear.
5341 */
5342 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5343 rtnl_lock();
5344 bnxt_reset_task(bp);
5345 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5346 rtnl_unlock();
5347 }
5348
5349 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5350 bnxt_hwrm_port_qstats(bp);
5351
5352 smp_mb__before_atomic();
5353 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5354 }
5355
5356 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5357 {
5358 int rc;
5359 struct bnxt *bp = netdev_priv(dev);
5360
5361 SET_NETDEV_DEV(dev, &pdev->dev);
5362
5363 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5364 rc = pci_enable_device(pdev);
5365 if (rc) {
5366 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5367 goto init_err;
5368 }
5369
5370 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5371 dev_err(&pdev->dev,
5372 "Cannot find PCI device base address, aborting\n");
5373 rc = -ENODEV;
5374 goto init_err_disable;
5375 }
5376
5377 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5378 if (rc) {
5379 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5380 goto init_err_disable;
5381 }
5382
5383 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5384 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5385 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5386 goto init_err_disable;
5387 }
5388
5389 pci_set_master(pdev);
5390
5391 bp->dev = dev;
5392 bp->pdev = pdev;
5393
5394 bp->bar0 = pci_ioremap_bar(pdev, 0);
5395 if (!bp->bar0) {
5396 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5397 rc = -ENOMEM;
5398 goto init_err_release;
5399 }
5400
5401 bp->bar1 = pci_ioremap_bar(pdev, 2);
5402 if (!bp->bar1) {
5403 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5404 rc = -ENOMEM;
5405 goto init_err_release;
5406 }
5407
5408 bp->bar2 = pci_ioremap_bar(pdev, 4);
5409 if (!bp->bar2) {
5410 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5411 rc = -ENOMEM;
5412 goto init_err_release;
5413 }
5414
5415 pci_enable_pcie_error_reporting(pdev);
5416
5417 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5418
5419 spin_lock_init(&bp->ntp_fltr_lock);
5420
5421 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5422 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5423
5424 /* tick values in micro seconds */
5425 bp->rx_coal_ticks = 12;
5426 bp->rx_coal_bufs = 30;
5427 bp->rx_coal_ticks_irq = 1;
5428 bp->rx_coal_bufs_irq = 2;
5429
5430 bp->tx_coal_ticks = 25;
5431 bp->tx_coal_bufs = 30;
5432 bp->tx_coal_ticks_irq = 2;
5433 bp->tx_coal_bufs_irq = 2;
5434
5435 init_timer(&bp->timer);
5436 bp->timer.data = (unsigned long)bp;
5437 bp->timer.function = bnxt_timer;
5438 bp->current_interval = BNXT_TIMER_INTERVAL;
5439
5440 clear_bit(BNXT_STATE_OPEN, &bp->state);
5441
5442 return 0;
5443
5444 init_err_release:
5445 if (bp->bar2) {
5446 pci_iounmap(pdev, bp->bar2);
5447 bp->bar2 = NULL;
5448 }
5449
5450 if (bp->bar1) {
5451 pci_iounmap(pdev, bp->bar1);
5452 bp->bar1 = NULL;
5453 }
5454
5455 if (bp->bar0) {
5456 pci_iounmap(pdev, bp->bar0);
5457 bp->bar0 = NULL;
5458 }
5459
5460 pci_release_regions(pdev);
5461
5462 init_err_disable:
5463 pci_disable_device(pdev);
5464
5465 init_err:
5466 return rc;
5467 }
5468
5469 /* rtnl_lock held */
5470 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5471 {
5472 struct sockaddr *addr = p;
5473 struct bnxt *bp = netdev_priv(dev);
5474 int rc = 0;
5475
5476 if (!is_valid_ether_addr(addr->sa_data))
5477 return -EADDRNOTAVAIL;
5478
5479 #ifdef CONFIG_BNXT_SRIOV
5480 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5481 return -EADDRNOTAVAIL;
5482 #endif
5483
5484 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5485 return 0;
5486
5487 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5488 if (netif_running(dev)) {
5489 bnxt_close_nic(bp, false, false);
5490 rc = bnxt_open_nic(bp, false, false);
5491 }
5492
5493 return rc;
5494 }
5495
5496 /* rtnl_lock held */
5497 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5498 {
5499 struct bnxt *bp = netdev_priv(dev);
5500
5501 if (new_mtu < 60 || new_mtu > 9000)
5502 return -EINVAL;
5503
5504 if (netif_running(dev))
5505 bnxt_close_nic(bp, false, false);
5506
5507 dev->mtu = new_mtu;
5508 bnxt_set_ring_params(bp);
5509
5510 if (netif_running(dev))
5511 return bnxt_open_nic(bp, false, false);
5512
5513 return 0;
5514 }
5515
5516 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5517 struct tc_to_netdev *ntc)
5518 {
5519 struct bnxt *bp = netdev_priv(dev);
5520 u8 tc;
5521
5522 if (ntc->type != TC_SETUP_MQPRIO)
5523 return -EINVAL;
5524
5525 tc = ntc->tc;
5526
5527 if (tc > bp->max_tc) {
5528 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5529 tc, bp->max_tc);
5530 return -EINVAL;
5531 }
5532
5533 if (netdev_get_num_tc(dev) == tc)
5534 return 0;
5535
5536 if (tc) {
5537 int max_rx_rings, max_tx_rings, rc;
5538 bool sh = false;
5539
5540 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5541 sh = true;
5542
5543 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5544 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5545 return -ENOMEM;
5546 }
5547
5548 /* Needs to close the device and do hw resource re-allocations */
5549 if (netif_running(bp->dev))
5550 bnxt_close_nic(bp, true, false);
5551
5552 if (tc) {
5553 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5554 netdev_set_num_tc(dev, tc);
5555 } else {
5556 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5557 netdev_reset_tc(dev);
5558 }
5559 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5560 bp->num_stat_ctxs = bp->cp_nr_rings;
5561
5562 if (netif_running(bp->dev))
5563 return bnxt_open_nic(bp, true, false);
5564
5565 return 0;
5566 }
5567
5568 #ifdef CONFIG_RFS_ACCEL
5569 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5570 struct bnxt_ntuple_filter *f2)
5571 {
5572 struct flow_keys *keys1 = &f1->fkeys;
5573 struct flow_keys *keys2 = &f2->fkeys;
5574
5575 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5576 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5577 keys1->ports.ports == keys2->ports.ports &&
5578 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5579 keys1->basic.n_proto == keys2->basic.n_proto &&
5580 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5581 return true;
5582
5583 return false;
5584 }
5585
5586 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5587 u16 rxq_index, u32 flow_id)
5588 {
5589 struct bnxt *bp = netdev_priv(dev);
5590 struct bnxt_ntuple_filter *fltr, *new_fltr;
5591 struct flow_keys *fkeys;
5592 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5593 int rc = 0, idx, bit_id;
5594 struct hlist_head *head;
5595
5596 if (skb->encapsulation)
5597 return -EPROTONOSUPPORT;
5598
5599 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5600 if (!new_fltr)
5601 return -ENOMEM;
5602
5603 fkeys = &new_fltr->fkeys;
5604 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5605 rc = -EPROTONOSUPPORT;
5606 goto err_free;
5607 }
5608
5609 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5610 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5611 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5612 rc = -EPROTONOSUPPORT;
5613 goto err_free;
5614 }
5615
5616 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5617
5618 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5619 head = &bp->ntp_fltr_hash_tbl[idx];
5620 rcu_read_lock();
5621 hlist_for_each_entry_rcu(fltr, head, hash) {
5622 if (bnxt_fltr_match(fltr, new_fltr)) {
5623 rcu_read_unlock();
5624 rc = 0;
5625 goto err_free;
5626 }
5627 }
5628 rcu_read_unlock();
5629
5630 spin_lock_bh(&bp->ntp_fltr_lock);
5631 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5632 BNXT_NTP_FLTR_MAX_FLTR, 0);
5633 if (bit_id < 0) {
5634 spin_unlock_bh(&bp->ntp_fltr_lock);
5635 rc = -ENOMEM;
5636 goto err_free;
5637 }
5638
5639 new_fltr->sw_id = (u16)bit_id;
5640 new_fltr->flow_id = flow_id;
5641 new_fltr->rxq = rxq_index;
5642 hlist_add_head_rcu(&new_fltr->hash, head);
5643 bp->ntp_fltr_count++;
5644 spin_unlock_bh(&bp->ntp_fltr_lock);
5645
5646 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5647 schedule_work(&bp->sp_task);
5648
5649 return new_fltr->sw_id;
5650
5651 err_free:
5652 kfree(new_fltr);
5653 return rc;
5654 }
5655
5656 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5657 {
5658 int i;
5659
5660 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5661 struct hlist_head *head;
5662 struct hlist_node *tmp;
5663 struct bnxt_ntuple_filter *fltr;
5664 int rc;
5665
5666 head = &bp->ntp_fltr_hash_tbl[i];
5667 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5668 bool del = false;
5669
5670 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5671 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5672 fltr->flow_id,
5673 fltr->sw_id)) {
5674 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5675 fltr);
5676 del = true;
5677 }
5678 } else {
5679 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5680 fltr);
5681 if (rc)
5682 del = true;
5683 else
5684 set_bit(BNXT_FLTR_VALID, &fltr->state);
5685 }
5686
5687 if (del) {
5688 spin_lock_bh(&bp->ntp_fltr_lock);
5689 hlist_del_rcu(&fltr->hash);
5690 bp->ntp_fltr_count--;
5691 spin_unlock_bh(&bp->ntp_fltr_lock);
5692 synchronize_rcu();
5693 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5694 kfree(fltr);
5695 }
5696 }
5697 }
5698 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
5699 netdev_info(bp->dev, "Receive PF driver unload event!");
5700 }
5701
5702 #else
5703
5704 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5705 {
5706 }
5707
5708 #endif /* CONFIG_RFS_ACCEL */
5709
5710 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5711 __be16 port)
5712 {
5713 struct bnxt *bp = netdev_priv(dev);
5714
5715 if (!netif_running(dev))
5716 return;
5717
5718 if (sa_family != AF_INET6 && sa_family != AF_INET)
5719 return;
5720
5721 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5722 return;
5723
5724 bp->vxlan_port_cnt++;
5725 if (bp->vxlan_port_cnt == 1) {
5726 bp->vxlan_port = port;
5727 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5728 schedule_work(&bp->sp_task);
5729 }
5730 }
5731
5732 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5733 __be16 port)
5734 {
5735 struct bnxt *bp = netdev_priv(dev);
5736
5737 if (!netif_running(dev))
5738 return;
5739
5740 if (sa_family != AF_INET6 && sa_family != AF_INET)
5741 return;
5742
5743 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5744 bp->vxlan_port_cnt--;
5745
5746 if (bp->vxlan_port_cnt == 0) {
5747 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5748 schedule_work(&bp->sp_task);
5749 }
5750 }
5751 }
5752
5753 static const struct net_device_ops bnxt_netdev_ops = {
5754 .ndo_open = bnxt_open,
5755 .ndo_start_xmit = bnxt_start_xmit,
5756 .ndo_stop = bnxt_close,
5757 .ndo_get_stats64 = bnxt_get_stats64,
5758 .ndo_set_rx_mode = bnxt_set_rx_mode,
5759 .ndo_do_ioctl = bnxt_ioctl,
5760 .ndo_validate_addr = eth_validate_addr,
5761 .ndo_set_mac_address = bnxt_change_mac_addr,
5762 .ndo_change_mtu = bnxt_change_mtu,
5763 .ndo_fix_features = bnxt_fix_features,
5764 .ndo_set_features = bnxt_set_features,
5765 .ndo_tx_timeout = bnxt_tx_timeout,
5766 #ifdef CONFIG_BNXT_SRIOV
5767 .ndo_get_vf_config = bnxt_get_vf_config,
5768 .ndo_set_vf_mac = bnxt_set_vf_mac,
5769 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5770 .ndo_set_vf_rate = bnxt_set_vf_bw,
5771 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5772 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5773 #endif
5774 #ifdef CONFIG_NET_POLL_CONTROLLER
5775 .ndo_poll_controller = bnxt_poll_controller,
5776 #endif
5777 .ndo_setup_tc = bnxt_setup_tc,
5778 #ifdef CONFIG_RFS_ACCEL
5779 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5780 #endif
5781 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5782 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5783 #ifdef CONFIG_NET_RX_BUSY_POLL
5784 .ndo_busy_poll = bnxt_busy_poll,
5785 #endif
5786 };
5787
5788 static void bnxt_remove_one(struct pci_dev *pdev)
5789 {
5790 struct net_device *dev = pci_get_drvdata(pdev);
5791 struct bnxt *bp = netdev_priv(dev);
5792
5793 if (BNXT_PF(bp))
5794 bnxt_sriov_disable(bp);
5795
5796 pci_disable_pcie_error_reporting(pdev);
5797 unregister_netdev(dev);
5798 cancel_work_sync(&bp->sp_task);
5799 bp->sp_event = 0;
5800
5801 bnxt_hwrm_func_drv_unrgtr(bp);
5802 bnxt_free_hwrm_resources(bp);
5803 pci_iounmap(pdev, bp->bar2);
5804 pci_iounmap(pdev, bp->bar1);
5805 pci_iounmap(pdev, bp->bar0);
5806 free_netdev(dev);
5807
5808 pci_release_regions(pdev);
5809 pci_disable_device(pdev);
5810 }
5811
5812 static int bnxt_probe_phy(struct bnxt *bp)
5813 {
5814 int rc = 0;
5815 struct bnxt_link_info *link_info = &bp->link_info;
5816
5817 rc = bnxt_update_link(bp, false);
5818 if (rc) {
5819 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5820 rc);
5821 return rc;
5822 }
5823
5824 /*initialize the ethool setting copy with NVM settings */
5825 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5826 link_info->autoneg = BNXT_AUTONEG_SPEED |
5827 BNXT_AUTONEG_FLOW_CTRL;
5828 link_info->advertising = link_info->auto_link_speeds;
5829 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5830 } else {
5831 link_info->req_link_speed = link_info->force_link_speed;
5832 link_info->req_duplex = link_info->duplex_setting;
5833 link_info->req_flow_ctrl = link_info->force_pause_setting;
5834 }
5835 return rc;
5836 }
5837
5838 static int bnxt_get_max_irq(struct pci_dev *pdev)
5839 {
5840 u16 ctrl;
5841
5842 if (!pdev->msix_cap)
5843 return 1;
5844
5845 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5846 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5847 }
5848
5849 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5850 int *max_cp)
5851 {
5852 int max_ring_grps = 0;
5853
5854 #ifdef CONFIG_BNXT_SRIOV
5855 if (!BNXT_PF(bp)) {
5856 *max_tx = bp->vf.max_tx_rings;
5857 *max_rx = bp->vf.max_rx_rings;
5858 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5859 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5860 max_ring_grps = bp->vf.max_hw_ring_grps;
5861 } else
5862 #endif
5863 {
5864 *max_tx = bp->pf.max_tx_rings;
5865 *max_rx = bp->pf.max_rx_rings;
5866 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5867 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5868 max_ring_grps = bp->pf.max_hw_ring_grps;
5869 }
5870
5871 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5872 *max_rx >>= 1;
5873 *max_rx = min_t(int, *max_rx, max_ring_grps);
5874 }
5875
5876 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5877 {
5878 int rx, tx, cp;
5879
5880 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5881 if (!rx || !tx || !cp)
5882 return -ENOMEM;
5883
5884 *max_rx = rx;
5885 *max_tx = tx;
5886 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5887 }
5888
5889 static int bnxt_set_dflt_rings(struct bnxt *bp)
5890 {
5891 int dflt_rings, max_rx_rings, max_tx_rings, rc;
5892 bool sh = true;
5893
5894 if (sh)
5895 bp->flags |= BNXT_FLAG_SHARED_RINGS;
5896 dflt_rings = netif_get_num_default_rss_queues();
5897 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5898 if (rc)
5899 return rc;
5900 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
5901 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
5902 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5903 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
5904 bp->tx_nr_rings + bp->rx_nr_rings;
5905 bp->num_stat_ctxs = bp->cp_nr_rings;
5906 return rc;
5907 }
5908
5909 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5910 {
5911 static int version_printed;
5912 struct net_device *dev;
5913 struct bnxt *bp;
5914 int rc, max_irqs;
5915
5916 if (version_printed++ == 0)
5917 pr_info("%s", version);
5918
5919 max_irqs = bnxt_get_max_irq(pdev);
5920 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
5921 if (!dev)
5922 return -ENOMEM;
5923
5924 bp = netdev_priv(dev);
5925
5926 if (bnxt_vf_pciid(ent->driver_data))
5927 bp->flags |= BNXT_FLAG_VF;
5928
5929 if (pdev->msix_cap)
5930 bp->flags |= BNXT_FLAG_MSIX_CAP;
5931
5932 rc = bnxt_init_board(pdev, dev);
5933 if (rc < 0)
5934 goto init_err_free;
5935
5936 dev->netdev_ops = &bnxt_netdev_ops;
5937 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
5938 dev->ethtool_ops = &bnxt_ethtool_ops;
5939
5940 pci_set_drvdata(pdev, dev);
5941
5942 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5943 NETIF_F_TSO | NETIF_F_TSO6 |
5944 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5945 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
5946 NETIF_F_RXHASH |
5947 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
5948
5949 dev->hw_enc_features =
5950 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
5951 NETIF_F_TSO | NETIF_F_TSO6 |
5952 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
5953 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
5954 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
5955 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
5956 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
5957 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
5958 dev->priv_flags |= IFF_UNICAST_FLT;
5959
5960 #ifdef CONFIG_BNXT_SRIOV
5961 init_waitqueue_head(&bp->sriov_cfg_wait);
5962 #endif
5963 rc = bnxt_alloc_hwrm_resources(bp);
5964 if (rc)
5965 goto init_err;
5966
5967 mutex_init(&bp->hwrm_cmd_lock);
5968 bnxt_hwrm_ver_get(bp);
5969
5970 rc = bnxt_hwrm_func_drv_rgtr(bp);
5971 if (rc)
5972 goto init_err;
5973
5974 /* Get the MAX capabilities for this function */
5975 rc = bnxt_hwrm_func_qcaps(bp);
5976 if (rc) {
5977 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
5978 rc);
5979 rc = -1;
5980 goto init_err;
5981 }
5982
5983 rc = bnxt_hwrm_queue_qportcfg(bp);
5984 if (rc) {
5985 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
5986 rc);
5987 rc = -1;
5988 goto init_err;
5989 }
5990
5991 bnxt_set_tpa_flags(bp);
5992 bnxt_set_ring_params(bp);
5993 if (BNXT_PF(bp))
5994 bp->pf.max_irqs = max_irqs;
5995 #if defined(CONFIG_BNXT_SRIOV)
5996 else
5997 bp->vf.max_irqs = max_irqs;
5998 #endif
5999 bnxt_set_dflt_rings(bp);
6000
6001 if (BNXT_PF(bp)) {
6002 dev->hw_features |= NETIF_F_NTUPLE;
6003 if (bnxt_rfs_capable(bp)) {
6004 bp->flags |= BNXT_FLAG_RFS;
6005 dev->features |= NETIF_F_NTUPLE;
6006 }
6007 }
6008
6009 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6010 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6011
6012 rc = bnxt_probe_phy(bp);
6013 if (rc)
6014 goto init_err;
6015
6016 rc = register_netdev(dev);
6017 if (rc)
6018 goto init_err;
6019
6020 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6021 board_info[ent->driver_data].name,
6022 (long)pci_resource_start(pdev, 0), dev->dev_addr);
6023
6024 return 0;
6025
6026 init_err:
6027 pci_iounmap(pdev, bp->bar0);
6028 pci_release_regions(pdev);
6029 pci_disable_device(pdev);
6030
6031 init_err_free:
6032 free_netdev(dev);
6033 return rc;
6034 }
6035
6036 /**
6037 * bnxt_io_error_detected - called when PCI error is detected
6038 * @pdev: Pointer to PCI device
6039 * @state: The current pci connection state
6040 *
6041 * This function is called after a PCI bus error affecting
6042 * this device has been detected.
6043 */
6044 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6045 pci_channel_state_t state)
6046 {
6047 struct net_device *netdev = pci_get_drvdata(pdev);
6048
6049 netdev_info(netdev, "PCI I/O error detected\n");
6050
6051 rtnl_lock();
6052 netif_device_detach(netdev);
6053
6054 if (state == pci_channel_io_perm_failure) {
6055 rtnl_unlock();
6056 return PCI_ERS_RESULT_DISCONNECT;
6057 }
6058
6059 if (netif_running(netdev))
6060 bnxt_close(netdev);
6061
6062 pci_disable_device(pdev);
6063 rtnl_unlock();
6064
6065 /* Request a slot slot reset. */
6066 return PCI_ERS_RESULT_NEED_RESET;
6067 }
6068
6069 /**
6070 * bnxt_io_slot_reset - called after the pci bus has been reset.
6071 * @pdev: Pointer to PCI device
6072 *
6073 * Restart the card from scratch, as if from a cold-boot.
6074 * At this point, the card has exprienced a hard reset,
6075 * followed by fixups by BIOS, and has its config space
6076 * set up identically to what it was at cold boot.
6077 */
6078 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6079 {
6080 struct net_device *netdev = pci_get_drvdata(pdev);
6081 struct bnxt *bp = netdev_priv(netdev);
6082 int err = 0;
6083 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6084
6085 netdev_info(bp->dev, "PCI Slot Reset\n");
6086
6087 rtnl_lock();
6088
6089 if (pci_enable_device(pdev)) {
6090 dev_err(&pdev->dev,
6091 "Cannot re-enable PCI device after reset.\n");
6092 } else {
6093 pci_set_master(pdev);
6094
6095 if (netif_running(netdev))
6096 err = bnxt_open(netdev);
6097
6098 if (!err)
6099 result = PCI_ERS_RESULT_RECOVERED;
6100 }
6101
6102 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6103 dev_close(netdev);
6104
6105 rtnl_unlock();
6106
6107 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6108 if (err) {
6109 dev_err(&pdev->dev,
6110 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6111 err); /* non-fatal, continue */
6112 }
6113
6114 return PCI_ERS_RESULT_RECOVERED;
6115 }
6116
6117 /**
6118 * bnxt_io_resume - called when traffic can start flowing again.
6119 * @pdev: Pointer to PCI device
6120 *
6121 * This callback is called when the error recovery driver tells
6122 * us that its OK to resume normal operation.
6123 */
6124 static void bnxt_io_resume(struct pci_dev *pdev)
6125 {
6126 struct net_device *netdev = pci_get_drvdata(pdev);
6127
6128 rtnl_lock();
6129
6130 netif_device_attach(netdev);
6131
6132 rtnl_unlock();
6133 }
6134
6135 static const struct pci_error_handlers bnxt_err_handler = {
6136 .error_detected = bnxt_io_error_detected,
6137 .slot_reset = bnxt_io_slot_reset,
6138 .resume = bnxt_io_resume
6139 };
6140
6141 static struct pci_driver bnxt_pci_driver = {
6142 .name = DRV_MODULE_NAME,
6143 .id_table = bnxt_pci_tbl,
6144 .probe = bnxt_init_one,
6145 .remove = bnxt_remove_one,
6146 .err_handler = &bnxt_err_handler,
6147 #if defined(CONFIG_BNXT_SRIOV)
6148 .sriov_configure = bnxt_sriov_configure,
6149 #endif
6150 };
6151
6152 module_pci_driver(bnxt_pci_driver);
This page took 0.15557 seconds and 6 git commands to generate.