Merge remote-tracking branch 'asoc/topic/simple' into asoc-next
[deliverable/linux.git] / drivers / net / ethernet / broadcom / bnxt / bnxt.c
1 /* Broadcom NetXtreme-C/E network driver.
2 *
3 * Copyright (c) 2014-2015 Broadcom Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation.
8 */
9
10 #include <linux/module.h>
11
12 #include <linux/stringify.h>
13 #include <linux/kernel.h>
14 #include <linux/timer.h>
15 #include <linux/errno.h>
16 #include <linux/ioport.h>
17 #include <linux/slab.h>
18 #include <linux/vmalloc.h>
19 #include <linux/interrupt.h>
20 #include <linux/pci.h>
21 #include <linux/netdevice.h>
22 #include <linux/etherdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/bitops.h>
26 #include <linux/io.h>
27 #include <linux/irq.h>
28 #include <linux/delay.h>
29 #include <asm/byteorder.h>
30 #include <asm/page.h>
31 #include <linux/time.h>
32 #include <linux/mii.h>
33 #include <linux/if.h>
34 #include <linux/if_vlan.h>
35 #include <net/ip.h>
36 #include <net/tcp.h>
37 #include <net/udp.h>
38 #include <net/checksum.h>
39 #include <net/ip6_checksum.h>
40 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
41 #include <net/vxlan.h>
42 #endif
43 #ifdef CONFIG_NET_RX_BUSY_POLL
44 #include <net/busy_poll.h>
45 #endif
46 #include <linux/workqueue.h>
47 #include <linux/prefetch.h>
48 #include <linux/cache.h>
49 #include <linux/log2.h>
50 #include <linux/aer.h>
51 #include <linux/bitmap.h>
52 #include <linux/cpu_rmap.h>
53
54 #include "bnxt_hsi.h"
55 #include "bnxt.h"
56 #include "bnxt_sriov.h"
57 #include "bnxt_ethtool.h"
58
59 #define BNXT_TX_TIMEOUT (5 * HZ)
60
61 static const char version[] =
62 "Broadcom NetXtreme-C/E driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION "\n";
63
64 MODULE_LICENSE("GPL");
65 MODULE_DESCRIPTION("Broadcom BCM573xx network driver");
66 MODULE_VERSION(DRV_MODULE_VERSION);
67
68 #define BNXT_RX_OFFSET (NET_SKB_PAD + NET_IP_ALIGN)
69 #define BNXT_RX_DMA_OFFSET NET_SKB_PAD
70 #define BNXT_RX_COPY_THRESH 256
71
72 #define BNXT_TX_PUSH_THRESH 164
73
74 enum board_idx {
75 BCM57301,
76 BCM57302,
77 BCM57304,
78 BCM57402,
79 BCM57404,
80 BCM57406,
81 BCM57304_VF,
82 BCM57404_VF,
83 };
84
85 /* indexed by enum above */
86 static const struct {
87 char *name;
88 } board_info[] = {
89 { "Broadcom BCM57301 NetXtreme-C Single-port 10Gb Ethernet" },
90 { "Broadcom BCM57302 NetXtreme-C Dual-port 10Gb/25Gb Ethernet" },
91 { "Broadcom BCM57304 NetXtreme-C Dual-port 10Gb/25Gb/40Gb/50Gb Ethernet" },
92 { "Broadcom BCM57402 NetXtreme-E Dual-port 10Gb Ethernet" },
93 { "Broadcom BCM57404 NetXtreme-E Dual-port 10Gb/25Gb Ethernet" },
94 { "Broadcom BCM57406 NetXtreme-E Dual-port 10GBase-T Ethernet" },
95 { "Broadcom BCM57304 NetXtreme-C Ethernet Virtual Function" },
96 { "Broadcom BCM57404 NetXtreme-E Ethernet Virtual Function" },
97 };
98
99 static const struct pci_device_id bnxt_pci_tbl[] = {
100 { PCI_VDEVICE(BROADCOM, 0x16c8), .driver_data = BCM57301 },
101 { PCI_VDEVICE(BROADCOM, 0x16c9), .driver_data = BCM57302 },
102 { PCI_VDEVICE(BROADCOM, 0x16ca), .driver_data = BCM57304 },
103 { PCI_VDEVICE(BROADCOM, 0x16d0), .driver_data = BCM57402 },
104 { PCI_VDEVICE(BROADCOM, 0x16d1), .driver_data = BCM57404 },
105 { PCI_VDEVICE(BROADCOM, 0x16d2), .driver_data = BCM57406 },
106 #ifdef CONFIG_BNXT_SRIOV
107 { PCI_VDEVICE(BROADCOM, 0x16cb), .driver_data = BCM57304_VF },
108 { PCI_VDEVICE(BROADCOM, 0x16d3), .driver_data = BCM57404_VF },
109 #endif
110 { 0 }
111 };
112
113 MODULE_DEVICE_TABLE(pci, bnxt_pci_tbl);
114
115 static const u16 bnxt_vf_req_snif[] = {
116 HWRM_FUNC_CFG,
117 HWRM_PORT_PHY_QCFG,
118 HWRM_CFA_L2_FILTER_ALLOC,
119 };
120
121 static bool bnxt_vf_pciid(enum board_idx idx)
122 {
123 return (idx == BCM57304_VF || idx == BCM57404_VF);
124 }
125
126 #define DB_CP_REARM_FLAGS (DB_KEY_CP | DB_IDX_VALID)
127 #define DB_CP_FLAGS (DB_KEY_CP | DB_IDX_VALID | DB_IRQ_DIS)
128 #define DB_CP_IRQ_DIS_FLAGS (DB_KEY_CP | DB_IRQ_DIS)
129
130 #define BNXT_CP_DB_REARM(db, raw_cons) \
131 writel(DB_CP_REARM_FLAGS | RING_CMP(raw_cons), db)
132
133 #define BNXT_CP_DB(db, raw_cons) \
134 writel(DB_CP_FLAGS | RING_CMP(raw_cons), db)
135
136 #define BNXT_CP_DB_IRQ_DIS(db) \
137 writel(DB_CP_IRQ_DIS_FLAGS, db)
138
139 static inline u32 bnxt_tx_avail(struct bnxt *bp, struct bnxt_tx_ring_info *txr)
140 {
141 /* Tell compiler to fetch tx indices from memory. */
142 barrier();
143
144 return bp->tx_ring_size -
145 ((txr->tx_prod - txr->tx_cons) & bp->tx_ring_mask);
146 }
147
148 static const u16 bnxt_lhint_arr[] = {
149 TX_BD_FLAGS_LHINT_512_AND_SMALLER,
150 TX_BD_FLAGS_LHINT_512_TO_1023,
151 TX_BD_FLAGS_LHINT_1024_TO_2047,
152 TX_BD_FLAGS_LHINT_1024_TO_2047,
153 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
154 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
155 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
156 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
157 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
158 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
159 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
160 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
161 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
162 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
163 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
164 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
165 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
166 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
167 TX_BD_FLAGS_LHINT_2048_AND_LARGER,
168 };
169
170 static netdev_tx_t bnxt_start_xmit(struct sk_buff *skb, struct net_device *dev)
171 {
172 struct bnxt *bp = netdev_priv(dev);
173 struct tx_bd *txbd;
174 struct tx_bd_ext *txbd1;
175 struct netdev_queue *txq;
176 int i;
177 dma_addr_t mapping;
178 unsigned int length, pad = 0;
179 u32 len, free_size, vlan_tag_flags, cfa_action, flags;
180 u16 prod, last_frag;
181 struct pci_dev *pdev = bp->pdev;
182 struct bnxt_tx_ring_info *txr;
183 struct bnxt_sw_tx_bd *tx_buf;
184
185 i = skb_get_queue_mapping(skb);
186 if (unlikely(i >= bp->tx_nr_rings)) {
187 dev_kfree_skb_any(skb);
188 return NETDEV_TX_OK;
189 }
190
191 txr = &bp->tx_ring[i];
192 txq = netdev_get_tx_queue(dev, i);
193 prod = txr->tx_prod;
194
195 free_size = bnxt_tx_avail(bp, txr);
196 if (unlikely(free_size < skb_shinfo(skb)->nr_frags + 2)) {
197 netif_tx_stop_queue(txq);
198 return NETDEV_TX_BUSY;
199 }
200
201 length = skb->len;
202 len = skb_headlen(skb);
203 last_frag = skb_shinfo(skb)->nr_frags;
204
205 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
206
207 txbd->tx_bd_opaque = prod;
208
209 tx_buf = &txr->tx_buf_ring[prod];
210 tx_buf->skb = skb;
211 tx_buf->nr_frags = last_frag;
212
213 vlan_tag_flags = 0;
214 cfa_action = 0;
215 if (skb_vlan_tag_present(skb)) {
216 vlan_tag_flags = TX_BD_CFA_META_KEY_VLAN |
217 skb_vlan_tag_get(skb);
218 /* Currently supports 8021Q, 8021AD vlan offloads
219 * QINQ1, QINQ2, QINQ3 vlan headers are deprecated
220 */
221 if (skb->vlan_proto == htons(ETH_P_8021Q))
222 vlan_tag_flags |= 1 << TX_BD_CFA_META_TPID_SHIFT;
223 }
224
225 if (free_size == bp->tx_ring_size && length <= bp->tx_push_thresh) {
226 struct tx_push_buffer *tx_push_buf = txr->tx_push;
227 struct tx_push_bd *tx_push = &tx_push_buf->push_bd;
228 struct tx_bd_ext *tx_push1 = &tx_push->txbd2;
229 void *pdata = tx_push_buf->data;
230 u64 *end;
231 int j, push_len;
232
233 /* Set COAL_NOW to be ready quickly for the next push */
234 tx_push->tx_bd_len_flags_type =
235 cpu_to_le32((length << TX_BD_LEN_SHIFT) |
236 TX_BD_TYPE_LONG_TX_BD |
237 TX_BD_FLAGS_LHINT_512_AND_SMALLER |
238 TX_BD_FLAGS_COAL_NOW |
239 TX_BD_FLAGS_PACKET_END |
240 (2 << TX_BD_FLAGS_BD_CNT_SHIFT));
241
242 if (skb->ip_summed == CHECKSUM_PARTIAL)
243 tx_push1->tx_bd_hsize_lflags =
244 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
245 else
246 tx_push1->tx_bd_hsize_lflags = 0;
247
248 tx_push1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
249 tx_push1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
250
251 end = pdata + length;
252 end = PTR_ALIGN(end, 8) - 1;
253 *end = 0;
254
255 skb_copy_from_linear_data(skb, pdata, len);
256 pdata += len;
257 for (j = 0; j < last_frag; j++) {
258 skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
259 void *fptr;
260
261 fptr = skb_frag_address_safe(frag);
262 if (!fptr)
263 goto normal_tx;
264
265 memcpy(pdata, fptr, skb_frag_size(frag));
266 pdata += skb_frag_size(frag);
267 }
268
269 txbd->tx_bd_len_flags_type = tx_push->tx_bd_len_flags_type;
270 txbd->tx_bd_haddr = txr->data_mapping;
271 prod = NEXT_TX(prod);
272 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
273 memcpy(txbd, tx_push1, sizeof(*txbd));
274 prod = NEXT_TX(prod);
275 tx_push->doorbell =
276 cpu_to_le32(DB_KEY_TX_PUSH | DB_LONG_TX_PUSH | prod);
277 txr->tx_prod = prod;
278
279 netdev_tx_sent_queue(txq, skb->len);
280
281 push_len = (length + sizeof(*tx_push) + 7) / 8;
282 if (push_len > 16) {
283 __iowrite64_copy(txr->tx_doorbell, tx_push_buf, 16);
284 __iowrite64_copy(txr->tx_doorbell + 4, tx_push_buf + 1,
285 push_len - 16);
286 } else {
287 __iowrite64_copy(txr->tx_doorbell, tx_push_buf,
288 push_len);
289 }
290
291 tx_buf->is_push = 1;
292 goto tx_done;
293 }
294
295 normal_tx:
296 if (length < BNXT_MIN_PKT_SIZE) {
297 pad = BNXT_MIN_PKT_SIZE - length;
298 if (skb_pad(skb, pad)) {
299 /* SKB already freed. */
300 tx_buf->skb = NULL;
301 return NETDEV_TX_OK;
302 }
303 length = BNXT_MIN_PKT_SIZE;
304 }
305
306 mapping = dma_map_single(&pdev->dev, skb->data, len, DMA_TO_DEVICE);
307
308 if (unlikely(dma_mapping_error(&pdev->dev, mapping))) {
309 dev_kfree_skb_any(skb);
310 tx_buf->skb = NULL;
311 return NETDEV_TX_OK;
312 }
313
314 dma_unmap_addr_set(tx_buf, mapping, mapping);
315 flags = (len << TX_BD_LEN_SHIFT) | TX_BD_TYPE_LONG_TX_BD |
316 ((last_frag + 2) << TX_BD_FLAGS_BD_CNT_SHIFT);
317
318 txbd->tx_bd_haddr = cpu_to_le64(mapping);
319
320 prod = NEXT_TX(prod);
321 txbd1 = (struct tx_bd_ext *)
322 &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
323
324 txbd1->tx_bd_hsize_lflags = 0;
325 if (skb_is_gso(skb)) {
326 u32 hdr_len;
327
328 if (skb->encapsulation)
329 hdr_len = skb_inner_network_offset(skb) +
330 skb_inner_network_header_len(skb) +
331 inner_tcp_hdrlen(skb);
332 else
333 hdr_len = skb_transport_offset(skb) +
334 tcp_hdrlen(skb);
335
336 txbd1->tx_bd_hsize_lflags = cpu_to_le32(TX_BD_FLAGS_LSO |
337 TX_BD_FLAGS_T_IPID |
338 (hdr_len << (TX_BD_HSIZE_SHIFT - 1)));
339 length = skb_shinfo(skb)->gso_size;
340 txbd1->tx_bd_mss = cpu_to_le32(length);
341 length += hdr_len;
342 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
343 txbd1->tx_bd_hsize_lflags =
344 cpu_to_le32(TX_BD_FLAGS_TCP_UDP_CHKSUM);
345 txbd1->tx_bd_mss = 0;
346 }
347
348 length >>= 9;
349 flags |= bnxt_lhint_arr[length];
350 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
351
352 txbd1->tx_bd_cfa_meta = cpu_to_le32(vlan_tag_flags);
353 txbd1->tx_bd_cfa_action = cpu_to_le32(cfa_action);
354 for (i = 0; i < last_frag; i++) {
355 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
356
357 prod = NEXT_TX(prod);
358 txbd = &txr->tx_desc_ring[TX_RING(prod)][TX_IDX(prod)];
359
360 len = skb_frag_size(frag);
361 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, len,
362 DMA_TO_DEVICE);
363
364 if (unlikely(dma_mapping_error(&pdev->dev, mapping)))
365 goto tx_dma_error;
366
367 tx_buf = &txr->tx_buf_ring[prod];
368 dma_unmap_addr_set(tx_buf, mapping, mapping);
369
370 txbd->tx_bd_haddr = cpu_to_le64(mapping);
371
372 flags = len << TX_BD_LEN_SHIFT;
373 txbd->tx_bd_len_flags_type = cpu_to_le32(flags);
374 }
375
376 flags &= ~TX_BD_LEN;
377 txbd->tx_bd_len_flags_type =
378 cpu_to_le32(((len + pad) << TX_BD_LEN_SHIFT) | flags |
379 TX_BD_FLAGS_PACKET_END);
380
381 netdev_tx_sent_queue(txq, skb->len);
382
383 /* Sync BD data before updating doorbell */
384 wmb();
385
386 prod = NEXT_TX(prod);
387 txr->tx_prod = prod;
388
389 writel(DB_KEY_TX | prod, txr->tx_doorbell);
390 writel(DB_KEY_TX | prod, txr->tx_doorbell);
391
392 tx_done:
393
394 mmiowb();
395
396 if (unlikely(bnxt_tx_avail(bp, txr) <= MAX_SKB_FRAGS + 1)) {
397 netif_tx_stop_queue(txq);
398
399 /* netif_tx_stop_queue() must be done before checking
400 * tx index in bnxt_tx_avail() below, because in
401 * bnxt_tx_int(), we update tx index before checking for
402 * netif_tx_queue_stopped().
403 */
404 smp_mb();
405 if (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)
406 netif_tx_wake_queue(txq);
407 }
408 return NETDEV_TX_OK;
409
410 tx_dma_error:
411 last_frag = i;
412
413 /* start back at beginning and unmap skb */
414 prod = txr->tx_prod;
415 tx_buf = &txr->tx_buf_ring[prod];
416 tx_buf->skb = NULL;
417 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
418 skb_headlen(skb), PCI_DMA_TODEVICE);
419 prod = NEXT_TX(prod);
420
421 /* unmap remaining mapped pages */
422 for (i = 0; i < last_frag; i++) {
423 prod = NEXT_TX(prod);
424 tx_buf = &txr->tx_buf_ring[prod];
425 dma_unmap_page(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
426 skb_frag_size(&skb_shinfo(skb)->frags[i]),
427 PCI_DMA_TODEVICE);
428 }
429
430 dev_kfree_skb_any(skb);
431 return NETDEV_TX_OK;
432 }
433
434 static void bnxt_tx_int(struct bnxt *bp, struct bnxt_napi *bnapi, int nr_pkts)
435 {
436 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
437 int index = txr - &bp->tx_ring[0];
438 struct netdev_queue *txq = netdev_get_tx_queue(bp->dev, index);
439 u16 cons = txr->tx_cons;
440 struct pci_dev *pdev = bp->pdev;
441 int i;
442 unsigned int tx_bytes = 0;
443
444 for (i = 0; i < nr_pkts; i++) {
445 struct bnxt_sw_tx_bd *tx_buf;
446 struct sk_buff *skb;
447 int j, last;
448
449 tx_buf = &txr->tx_buf_ring[cons];
450 cons = NEXT_TX(cons);
451 skb = tx_buf->skb;
452 tx_buf->skb = NULL;
453
454 if (tx_buf->is_push) {
455 tx_buf->is_push = 0;
456 goto next_tx_int;
457 }
458
459 dma_unmap_single(&pdev->dev, dma_unmap_addr(tx_buf, mapping),
460 skb_headlen(skb), PCI_DMA_TODEVICE);
461 last = tx_buf->nr_frags;
462
463 for (j = 0; j < last; j++) {
464 cons = NEXT_TX(cons);
465 tx_buf = &txr->tx_buf_ring[cons];
466 dma_unmap_page(
467 &pdev->dev,
468 dma_unmap_addr(tx_buf, mapping),
469 skb_frag_size(&skb_shinfo(skb)->frags[j]),
470 PCI_DMA_TODEVICE);
471 }
472
473 next_tx_int:
474 cons = NEXT_TX(cons);
475
476 tx_bytes += skb->len;
477 dev_kfree_skb_any(skb);
478 }
479
480 netdev_tx_completed_queue(txq, nr_pkts, tx_bytes);
481 txr->tx_cons = cons;
482
483 /* Need to make the tx_cons update visible to bnxt_start_xmit()
484 * before checking for netif_tx_queue_stopped(). Without the
485 * memory barrier, there is a small possibility that bnxt_start_xmit()
486 * will miss it and cause the queue to be stopped forever.
487 */
488 smp_mb();
489
490 if (unlikely(netif_tx_queue_stopped(txq)) &&
491 (bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
492 __netif_tx_lock(txq, smp_processor_id());
493 if (netif_tx_queue_stopped(txq) &&
494 bnxt_tx_avail(bp, txr) > bp->tx_wake_thresh &&
495 txr->dev_state != BNXT_DEV_STATE_CLOSING)
496 netif_tx_wake_queue(txq);
497 __netif_tx_unlock(txq);
498 }
499 }
500
501 static inline u8 *__bnxt_alloc_rx_data(struct bnxt *bp, dma_addr_t *mapping,
502 gfp_t gfp)
503 {
504 u8 *data;
505 struct pci_dev *pdev = bp->pdev;
506
507 data = kmalloc(bp->rx_buf_size, gfp);
508 if (!data)
509 return NULL;
510
511 *mapping = dma_map_single(&pdev->dev, data + BNXT_RX_DMA_OFFSET,
512 bp->rx_buf_use_size, PCI_DMA_FROMDEVICE);
513
514 if (dma_mapping_error(&pdev->dev, *mapping)) {
515 kfree(data);
516 data = NULL;
517 }
518 return data;
519 }
520
521 static inline int bnxt_alloc_rx_data(struct bnxt *bp,
522 struct bnxt_rx_ring_info *rxr,
523 u16 prod, gfp_t gfp)
524 {
525 struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
526 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[prod];
527 u8 *data;
528 dma_addr_t mapping;
529
530 data = __bnxt_alloc_rx_data(bp, &mapping, gfp);
531 if (!data)
532 return -ENOMEM;
533
534 rx_buf->data = data;
535 dma_unmap_addr_set(rx_buf, mapping, mapping);
536
537 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
538
539 return 0;
540 }
541
542 static void bnxt_reuse_rx_data(struct bnxt_rx_ring_info *rxr, u16 cons,
543 u8 *data)
544 {
545 u16 prod = rxr->rx_prod;
546 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
547 struct rx_bd *cons_bd, *prod_bd;
548
549 prod_rx_buf = &rxr->rx_buf_ring[prod];
550 cons_rx_buf = &rxr->rx_buf_ring[cons];
551
552 prod_rx_buf->data = data;
553
554 dma_unmap_addr_set(prod_rx_buf, mapping,
555 dma_unmap_addr(cons_rx_buf, mapping));
556
557 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
558 cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
559
560 prod_bd->rx_bd_haddr = cons_bd->rx_bd_haddr;
561 }
562
563 static inline u16 bnxt_find_next_agg_idx(struct bnxt_rx_ring_info *rxr, u16 idx)
564 {
565 u16 next, max = rxr->rx_agg_bmap_size;
566
567 next = find_next_zero_bit(rxr->rx_agg_bmap, max, idx);
568 if (next >= max)
569 next = find_first_zero_bit(rxr->rx_agg_bmap, max);
570 return next;
571 }
572
573 static inline int bnxt_alloc_rx_page(struct bnxt *bp,
574 struct bnxt_rx_ring_info *rxr,
575 u16 prod, gfp_t gfp)
576 {
577 struct rx_bd *rxbd =
578 &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
579 struct bnxt_sw_rx_agg_bd *rx_agg_buf;
580 struct pci_dev *pdev = bp->pdev;
581 struct page *page;
582 dma_addr_t mapping;
583 u16 sw_prod = rxr->rx_sw_agg_prod;
584 unsigned int offset = 0;
585
586 if (PAGE_SIZE > BNXT_RX_PAGE_SIZE) {
587 page = rxr->rx_page;
588 if (!page) {
589 page = alloc_page(gfp);
590 if (!page)
591 return -ENOMEM;
592 rxr->rx_page = page;
593 rxr->rx_page_offset = 0;
594 }
595 offset = rxr->rx_page_offset;
596 rxr->rx_page_offset += BNXT_RX_PAGE_SIZE;
597 if (rxr->rx_page_offset == PAGE_SIZE)
598 rxr->rx_page = NULL;
599 else
600 get_page(page);
601 } else {
602 page = alloc_page(gfp);
603 if (!page)
604 return -ENOMEM;
605 }
606
607 mapping = dma_map_page(&pdev->dev, page, offset, BNXT_RX_PAGE_SIZE,
608 PCI_DMA_FROMDEVICE);
609 if (dma_mapping_error(&pdev->dev, mapping)) {
610 __free_page(page);
611 return -EIO;
612 }
613
614 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
615 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
616
617 __set_bit(sw_prod, rxr->rx_agg_bmap);
618 rx_agg_buf = &rxr->rx_agg_ring[sw_prod];
619 rxr->rx_sw_agg_prod = NEXT_RX_AGG(sw_prod);
620
621 rx_agg_buf->page = page;
622 rx_agg_buf->offset = offset;
623 rx_agg_buf->mapping = mapping;
624 rxbd->rx_bd_haddr = cpu_to_le64(mapping);
625 rxbd->rx_bd_opaque = sw_prod;
626 return 0;
627 }
628
629 static void bnxt_reuse_rx_agg_bufs(struct bnxt_napi *bnapi, u16 cp_cons,
630 u32 agg_bufs)
631 {
632 struct bnxt *bp = bnapi->bp;
633 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
634 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
635 u16 prod = rxr->rx_agg_prod;
636 u16 sw_prod = rxr->rx_sw_agg_prod;
637 u32 i;
638
639 for (i = 0; i < agg_bufs; i++) {
640 u16 cons;
641 struct rx_agg_cmp *agg;
642 struct bnxt_sw_rx_agg_bd *cons_rx_buf, *prod_rx_buf;
643 struct rx_bd *prod_bd;
644 struct page *page;
645
646 agg = (struct rx_agg_cmp *)
647 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
648 cons = agg->rx_agg_cmp_opaque;
649 __clear_bit(cons, rxr->rx_agg_bmap);
650
651 if (unlikely(test_bit(sw_prod, rxr->rx_agg_bmap)))
652 sw_prod = bnxt_find_next_agg_idx(rxr, sw_prod);
653
654 __set_bit(sw_prod, rxr->rx_agg_bmap);
655 prod_rx_buf = &rxr->rx_agg_ring[sw_prod];
656 cons_rx_buf = &rxr->rx_agg_ring[cons];
657
658 /* It is possible for sw_prod to be equal to cons, so
659 * set cons_rx_buf->page to NULL first.
660 */
661 page = cons_rx_buf->page;
662 cons_rx_buf->page = NULL;
663 prod_rx_buf->page = page;
664 prod_rx_buf->offset = cons_rx_buf->offset;
665
666 prod_rx_buf->mapping = cons_rx_buf->mapping;
667
668 prod_bd = &rxr->rx_agg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
669
670 prod_bd->rx_bd_haddr = cpu_to_le64(cons_rx_buf->mapping);
671 prod_bd->rx_bd_opaque = sw_prod;
672
673 prod = NEXT_RX_AGG(prod);
674 sw_prod = NEXT_RX_AGG(sw_prod);
675 cp_cons = NEXT_CMP(cp_cons);
676 }
677 rxr->rx_agg_prod = prod;
678 rxr->rx_sw_agg_prod = sw_prod;
679 }
680
681 static struct sk_buff *bnxt_rx_skb(struct bnxt *bp,
682 struct bnxt_rx_ring_info *rxr, u16 cons,
683 u16 prod, u8 *data, dma_addr_t dma_addr,
684 unsigned int len)
685 {
686 int err;
687 struct sk_buff *skb;
688
689 err = bnxt_alloc_rx_data(bp, rxr, prod, GFP_ATOMIC);
690 if (unlikely(err)) {
691 bnxt_reuse_rx_data(rxr, cons, data);
692 return NULL;
693 }
694
695 skb = build_skb(data, 0);
696 dma_unmap_single(&bp->pdev->dev, dma_addr, bp->rx_buf_use_size,
697 PCI_DMA_FROMDEVICE);
698 if (!skb) {
699 kfree(data);
700 return NULL;
701 }
702
703 skb_reserve(skb, BNXT_RX_OFFSET);
704 skb_put(skb, len);
705 return skb;
706 }
707
708 static struct sk_buff *bnxt_rx_pages(struct bnxt *bp, struct bnxt_napi *bnapi,
709 struct sk_buff *skb, u16 cp_cons,
710 u32 agg_bufs)
711 {
712 struct pci_dev *pdev = bp->pdev;
713 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
714 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
715 u16 prod = rxr->rx_agg_prod;
716 u32 i;
717
718 for (i = 0; i < agg_bufs; i++) {
719 u16 cons, frag_len;
720 struct rx_agg_cmp *agg;
721 struct bnxt_sw_rx_agg_bd *cons_rx_buf;
722 struct page *page;
723 dma_addr_t mapping;
724
725 agg = (struct rx_agg_cmp *)
726 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
727 cons = agg->rx_agg_cmp_opaque;
728 frag_len = (le32_to_cpu(agg->rx_agg_cmp_len_flags_type) &
729 RX_AGG_CMP_LEN) >> RX_AGG_CMP_LEN_SHIFT;
730
731 cons_rx_buf = &rxr->rx_agg_ring[cons];
732 skb_fill_page_desc(skb, i, cons_rx_buf->page,
733 cons_rx_buf->offset, frag_len);
734 __clear_bit(cons, rxr->rx_agg_bmap);
735
736 /* It is possible for bnxt_alloc_rx_page() to allocate
737 * a sw_prod index that equals the cons index, so we
738 * need to clear the cons entry now.
739 */
740 mapping = dma_unmap_addr(cons_rx_buf, mapping);
741 page = cons_rx_buf->page;
742 cons_rx_buf->page = NULL;
743
744 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_ATOMIC) != 0) {
745 struct skb_shared_info *shinfo;
746 unsigned int nr_frags;
747
748 shinfo = skb_shinfo(skb);
749 nr_frags = --shinfo->nr_frags;
750 __skb_frag_set_page(&shinfo->frags[nr_frags], NULL);
751
752 dev_kfree_skb(skb);
753
754 cons_rx_buf->page = page;
755
756 /* Update prod since possibly some pages have been
757 * allocated already.
758 */
759 rxr->rx_agg_prod = prod;
760 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs - i);
761 return NULL;
762 }
763
764 dma_unmap_page(&pdev->dev, mapping, BNXT_RX_PAGE_SIZE,
765 PCI_DMA_FROMDEVICE);
766
767 skb->data_len += frag_len;
768 skb->len += frag_len;
769 skb->truesize += PAGE_SIZE;
770
771 prod = NEXT_RX_AGG(prod);
772 cp_cons = NEXT_CMP(cp_cons);
773 }
774 rxr->rx_agg_prod = prod;
775 return skb;
776 }
777
778 static int bnxt_agg_bufs_valid(struct bnxt *bp, struct bnxt_cp_ring_info *cpr,
779 u8 agg_bufs, u32 *raw_cons)
780 {
781 u16 last;
782 struct rx_agg_cmp *agg;
783
784 *raw_cons = ADV_RAW_CMP(*raw_cons, agg_bufs);
785 last = RING_CMP(*raw_cons);
786 agg = (struct rx_agg_cmp *)
787 &cpr->cp_desc_ring[CP_RING(last)][CP_IDX(last)];
788 return RX_AGG_CMP_VALID(agg, *raw_cons);
789 }
790
791 static inline struct sk_buff *bnxt_copy_skb(struct bnxt_napi *bnapi, u8 *data,
792 unsigned int len,
793 dma_addr_t mapping)
794 {
795 struct bnxt *bp = bnapi->bp;
796 struct pci_dev *pdev = bp->pdev;
797 struct sk_buff *skb;
798
799 skb = napi_alloc_skb(&bnapi->napi, len);
800 if (!skb)
801 return NULL;
802
803 dma_sync_single_for_cpu(&pdev->dev, mapping,
804 bp->rx_copy_thresh, PCI_DMA_FROMDEVICE);
805
806 memcpy(skb->data - BNXT_RX_OFFSET, data, len + BNXT_RX_OFFSET);
807
808 dma_sync_single_for_device(&pdev->dev, mapping,
809 bp->rx_copy_thresh,
810 PCI_DMA_FROMDEVICE);
811
812 skb_put(skb, len);
813 return skb;
814 }
815
816 static int bnxt_discard_rx(struct bnxt *bp, struct bnxt_napi *bnapi,
817 u32 *raw_cons, void *cmp)
818 {
819 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
820 struct rx_cmp *rxcmp = cmp;
821 u32 tmp_raw_cons = *raw_cons;
822 u8 cmp_type, agg_bufs = 0;
823
824 cmp_type = RX_CMP_TYPE(rxcmp);
825
826 if (cmp_type == CMP_TYPE_RX_L2_CMP) {
827 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) &
828 RX_CMP_AGG_BUFS) >>
829 RX_CMP_AGG_BUFS_SHIFT;
830 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
831 struct rx_tpa_end_cmp *tpa_end = cmp;
832
833 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
834 RX_TPA_END_CMP_AGG_BUFS) >>
835 RX_TPA_END_CMP_AGG_BUFS_SHIFT;
836 }
837
838 if (agg_bufs) {
839 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
840 return -EBUSY;
841 }
842 *raw_cons = tmp_raw_cons;
843 return 0;
844 }
845
846 static void bnxt_sched_reset(struct bnxt *bp, struct bnxt_rx_ring_info *rxr)
847 {
848 if (!rxr->bnapi->in_reset) {
849 rxr->bnapi->in_reset = true;
850 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
851 schedule_work(&bp->sp_task);
852 }
853 rxr->rx_next_cons = 0xffff;
854 }
855
856 static void bnxt_tpa_start(struct bnxt *bp, struct bnxt_rx_ring_info *rxr,
857 struct rx_tpa_start_cmp *tpa_start,
858 struct rx_tpa_start_cmp_ext *tpa_start1)
859 {
860 u8 agg_id = TPA_START_AGG_ID(tpa_start);
861 u16 cons, prod;
862 struct bnxt_tpa_info *tpa_info;
863 struct bnxt_sw_rx_bd *cons_rx_buf, *prod_rx_buf;
864 struct rx_bd *prod_bd;
865 dma_addr_t mapping;
866
867 cons = tpa_start->rx_tpa_start_cmp_opaque;
868 prod = rxr->rx_prod;
869 cons_rx_buf = &rxr->rx_buf_ring[cons];
870 prod_rx_buf = &rxr->rx_buf_ring[prod];
871 tpa_info = &rxr->rx_tpa[agg_id];
872
873 if (unlikely(cons != rxr->rx_next_cons)) {
874 bnxt_sched_reset(bp, rxr);
875 return;
876 }
877
878 prod_rx_buf->data = tpa_info->data;
879
880 mapping = tpa_info->mapping;
881 dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
882
883 prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
884
885 prod_bd->rx_bd_haddr = cpu_to_le64(mapping);
886
887 tpa_info->data = cons_rx_buf->data;
888 cons_rx_buf->data = NULL;
889 tpa_info->mapping = dma_unmap_addr(cons_rx_buf, mapping);
890
891 tpa_info->len =
892 le32_to_cpu(tpa_start->rx_tpa_start_cmp_len_flags_type) >>
893 RX_TPA_START_CMP_LEN_SHIFT;
894 if (likely(TPA_START_HASH_VALID(tpa_start))) {
895 u32 hash_type = TPA_START_HASH_TYPE(tpa_start);
896
897 tpa_info->hash_type = PKT_HASH_TYPE_L4;
898 tpa_info->gso_type = SKB_GSO_TCPV4;
899 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
900 if (hash_type == 3)
901 tpa_info->gso_type = SKB_GSO_TCPV6;
902 tpa_info->rss_hash =
903 le32_to_cpu(tpa_start->rx_tpa_start_cmp_rss_hash);
904 } else {
905 tpa_info->hash_type = PKT_HASH_TYPE_NONE;
906 tpa_info->gso_type = 0;
907 if (netif_msg_rx_err(bp))
908 netdev_warn(bp->dev, "TPA packet without valid hash\n");
909 }
910 tpa_info->flags2 = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_flags2);
911 tpa_info->metadata = le32_to_cpu(tpa_start1->rx_tpa_start_cmp_metadata);
912
913 rxr->rx_prod = NEXT_RX(prod);
914 cons = NEXT_RX(cons);
915 rxr->rx_next_cons = NEXT_RX(cons);
916 cons_rx_buf = &rxr->rx_buf_ring[cons];
917
918 bnxt_reuse_rx_data(rxr, cons, cons_rx_buf->data);
919 rxr->rx_prod = NEXT_RX(rxr->rx_prod);
920 cons_rx_buf->data = NULL;
921 }
922
923 static void bnxt_abort_tpa(struct bnxt *bp, struct bnxt_napi *bnapi,
924 u16 cp_cons, u32 agg_bufs)
925 {
926 if (agg_bufs)
927 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
928 }
929
930 #define BNXT_IPV4_HDR_SIZE (sizeof(struct iphdr) + sizeof(struct tcphdr))
931 #define BNXT_IPV6_HDR_SIZE (sizeof(struct ipv6hdr) + sizeof(struct tcphdr))
932
933 static inline struct sk_buff *bnxt_gro_skb(struct bnxt_tpa_info *tpa_info,
934 struct rx_tpa_end_cmp *tpa_end,
935 struct rx_tpa_end_cmp_ext *tpa_end1,
936 struct sk_buff *skb)
937 {
938 #ifdef CONFIG_INET
939 struct tcphdr *th;
940 int payload_off, tcp_opt_len = 0;
941 int len, nw_off;
942 u16 segs;
943
944 segs = TPA_END_TPA_SEGS(tpa_end);
945 if (segs == 1)
946 return skb;
947
948 NAPI_GRO_CB(skb)->count = segs;
949 skb_shinfo(skb)->gso_size =
950 le32_to_cpu(tpa_end1->rx_tpa_end_cmp_seg_len);
951 skb_shinfo(skb)->gso_type = tpa_info->gso_type;
952 payload_off = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
953 RX_TPA_END_CMP_PAYLOAD_OFFSET) >>
954 RX_TPA_END_CMP_PAYLOAD_OFFSET_SHIFT;
955 if (TPA_END_GRO_TS(tpa_end))
956 tcp_opt_len = 12;
957
958 if (tpa_info->gso_type == SKB_GSO_TCPV4) {
959 struct iphdr *iph;
960
961 nw_off = payload_off - BNXT_IPV4_HDR_SIZE - tcp_opt_len -
962 ETH_HLEN;
963 skb_set_network_header(skb, nw_off);
964 iph = ip_hdr(skb);
965 skb_set_transport_header(skb, nw_off + sizeof(struct iphdr));
966 len = skb->len - skb_transport_offset(skb);
967 th = tcp_hdr(skb);
968 th->check = ~tcp_v4_check(len, iph->saddr, iph->daddr, 0);
969 } else if (tpa_info->gso_type == SKB_GSO_TCPV6) {
970 struct ipv6hdr *iph;
971
972 nw_off = payload_off - BNXT_IPV6_HDR_SIZE - tcp_opt_len -
973 ETH_HLEN;
974 skb_set_network_header(skb, nw_off);
975 iph = ipv6_hdr(skb);
976 skb_set_transport_header(skb, nw_off + sizeof(struct ipv6hdr));
977 len = skb->len - skb_transport_offset(skb);
978 th = tcp_hdr(skb);
979 th->check = ~tcp_v6_check(len, &iph->saddr, &iph->daddr, 0);
980 } else {
981 dev_kfree_skb_any(skb);
982 return NULL;
983 }
984 tcp_gro_complete(skb);
985
986 if (nw_off) { /* tunnel */
987 struct udphdr *uh = NULL;
988
989 if (skb->protocol == htons(ETH_P_IP)) {
990 struct iphdr *iph = (struct iphdr *)skb->data;
991
992 if (iph->protocol == IPPROTO_UDP)
993 uh = (struct udphdr *)(iph + 1);
994 } else {
995 struct ipv6hdr *iph = (struct ipv6hdr *)skb->data;
996
997 if (iph->nexthdr == IPPROTO_UDP)
998 uh = (struct udphdr *)(iph + 1);
999 }
1000 if (uh) {
1001 if (uh->check)
1002 skb_shinfo(skb)->gso_type |=
1003 SKB_GSO_UDP_TUNNEL_CSUM;
1004 else
1005 skb_shinfo(skb)->gso_type |= SKB_GSO_UDP_TUNNEL;
1006 }
1007 }
1008 #endif
1009 return skb;
1010 }
1011
1012 static inline struct sk_buff *bnxt_tpa_end(struct bnxt *bp,
1013 struct bnxt_napi *bnapi,
1014 u32 *raw_cons,
1015 struct rx_tpa_end_cmp *tpa_end,
1016 struct rx_tpa_end_cmp_ext *tpa_end1,
1017 bool *agg_event)
1018 {
1019 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1020 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1021 u8 agg_id = TPA_END_AGG_ID(tpa_end);
1022 u8 *data, agg_bufs;
1023 u16 cp_cons = RING_CMP(*raw_cons);
1024 unsigned int len;
1025 struct bnxt_tpa_info *tpa_info;
1026 dma_addr_t mapping;
1027 struct sk_buff *skb;
1028
1029 if (unlikely(bnapi->in_reset)) {
1030 int rc = bnxt_discard_rx(bp, bnapi, raw_cons, tpa_end);
1031
1032 if (rc < 0)
1033 return ERR_PTR(-EBUSY);
1034 return NULL;
1035 }
1036
1037 tpa_info = &rxr->rx_tpa[agg_id];
1038 data = tpa_info->data;
1039 prefetch(data);
1040 len = tpa_info->len;
1041 mapping = tpa_info->mapping;
1042
1043 agg_bufs = (le32_to_cpu(tpa_end->rx_tpa_end_cmp_misc_v1) &
1044 RX_TPA_END_CMP_AGG_BUFS) >> RX_TPA_END_CMP_AGG_BUFS_SHIFT;
1045
1046 if (agg_bufs) {
1047 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, raw_cons))
1048 return ERR_PTR(-EBUSY);
1049
1050 *agg_event = true;
1051 cp_cons = NEXT_CMP(cp_cons);
1052 }
1053
1054 if (unlikely(agg_bufs > MAX_SKB_FRAGS)) {
1055 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1056 netdev_warn(bp->dev, "TPA frags %d exceeded MAX_SKB_FRAGS %d\n",
1057 agg_bufs, (int)MAX_SKB_FRAGS);
1058 return NULL;
1059 }
1060
1061 if (len <= bp->rx_copy_thresh) {
1062 skb = bnxt_copy_skb(bnapi, data, len, mapping);
1063 if (!skb) {
1064 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1065 return NULL;
1066 }
1067 } else {
1068 u8 *new_data;
1069 dma_addr_t new_mapping;
1070
1071 new_data = __bnxt_alloc_rx_data(bp, &new_mapping, GFP_ATOMIC);
1072 if (!new_data) {
1073 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1074 return NULL;
1075 }
1076
1077 tpa_info->data = new_data;
1078 tpa_info->mapping = new_mapping;
1079
1080 skb = build_skb(data, 0);
1081 dma_unmap_single(&bp->pdev->dev, mapping, bp->rx_buf_use_size,
1082 PCI_DMA_FROMDEVICE);
1083
1084 if (!skb) {
1085 kfree(data);
1086 bnxt_abort_tpa(bp, bnapi, cp_cons, agg_bufs);
1087 return NULL;
1088 }
1089 skb_reserve(skb, BNXT_RX_OFFSET);
1090 skb_put(skb, len);
1091 }
1092
1093 if (agg_bufs) {
1094 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1095 if (!skb) {
1096 /* Page reuse already handled by bnxt_rx_pages(). */
1097 return NULL;
1098 }
1099 }
1100 skb->protocol = eth_type_trans(skb, bp->dev);
1101
1102 if (tpa_info->hash_type != PKT_HASH_TYPE_NONE)
1103 skb_set_hash(skb, tpa_info->rss_hash, tpa_info->hash_type);
1104
1105 if (tpa_info->flags2 & RX_CMP_FLAGS2_META_FORMAT_VLAN) {
1106 netdev_features_t features = skb->dev->features;
1107 u16 vlan_proto = tpa_info->metadata >>
1108 RX_CMP_FLAGS2_METADATA_TPID_SFT;
1109
1110 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1111 vlan_proto == ETH_P_8021Q) ||
1112 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1113 vlan_proto == ETH_P_8021AD)) {
1114 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1115 tpa_info->metadata &
1116 RX_CMP_FLAGS2_METADATA_VID_MASK);
1117 }
1118 }
1119
1120 skb_checksum_none_assert(skb);
1121 if (likely(tpa_info->flags2 & RX_TPA_START_CMP_FLAGS2_L4_CS_CALC)) {
1122 skb->ip_summed = CHECKSUM_UNNECESSARY;
1123 skb->csum_level =
1124 (tpa_info->flags2 & RX_CMP_FLAGS2_T_L4_CS_CALC) >> 3;
1125 }
1126
1127 if (TPA_END_GRO(tpa_end))
1128 skb = bnxt_gro_skb(tpa_info, tpa_end, tpa_end1, skb);
1129
1130 return skb;
1131 }
1132
1133 /* returns the following:
1134 * 1 - 1 packet successfully received
1135 * 0 - successful TPA_START, packet not completed yet
1136 * -EBUSY - completion ring does not have all the agg buffers yet
1137 * -ENOMEM - packet aborted due to out of memory
1138 * -EIO - packet aborted due to hw error indicated in BD
1139 */
1140 static int bnxt_rx_pkt(struct bnxt *bp, struct bnxt_napi *bnapi, u32 *raw_cons,
1141 bool *agg_event)
1142 {
1143 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1144 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1145 struct net_device *dev = bp->dev;
1146 struct rx_cmp *rxcmp;
1147 struct rx_cmp_ext *rxcmp1;
1148 u32 tmp_raw_cons = *raw_cons;
1149 u16 cons, prod, cp_cons = RING_CMP(tmp_raw_cons);
1150 struct bnxt_sw_rx_bd *rx_buf;
1151 unsigned int len;
1152 u8 *data, agg_bufs, cmp_type;
1153 dma_addr_t dma_addr;
1154 struct sk_buff *skb;
1155 int rc = 0;
1156
1157 rxcmp = (struct rx_cmp *)
1158 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1159
1160 tmp_raw_cons = NEXT_RAW_CMP(tmp_raw_cons);
1161 cp_cons = RING_CMP(tmp_raw_cons);
1162 rxcmp1 = (struct rx_cmp_ext *)
1163 &cpr->cp_desc_ring[CP_RING(cp_cons)][CP_IDX(cp_cons)];
1164
1165 if (!RX_CMP_VALID(rxcmp1, tmp_raw_cons))
1166 return -EBUSY;
1167
1168 cmp_type = RX_CMP_TYPE(rxcmp);
1169
1170 prod = rxr->rx_prod;
1171
1172 if (cmp_type == CMP_TYPE_RX_L2_TPA_START_CMP) {
1173 bnxt_tpa_start(bp, rxr, (struct rx_tpa_start_cmp *)rxcmp,
1174 (struct rx_tpa_start_cmp_ext *)rxcmp1);
1175
1176 goto next_rx_no_prod;
1177
1178 } else if (cmp_type == CMP_TYPE_RX_L2_TPA_END_CMP) {
1179 skb = bnxt_tpa_end(bp, bnapi, &tmp_raw_cons,
1180 (struct rx_tpa_end_cmp *)rxcmp,
1181 (struct rx_tpa_end_cmp_ext *)rxcmp1,
1182 agg_event);
1183
1184 if (unlikely(IS_ERR(skb)))
1185 return -EBUSY;
1186
1187 rc = -ENOMEM;
1188 if (likely(skb)) {
1189 skb_record_rx_queue(skb, bnapi->index);
1190 skb_mark_napi_id(skb, &bnapi->napi);
1191 if (bnxt_busy_polling(bnapi))
1192 netif_receive_skb(skb);
1193 else
1194 napi_gro_receive(&bnapi->napi, skb);
1195 rc = 1;
1196 }
1197 goto next_rx_no_prod;
1198 }
1199
1200 cons = rxcmp->rx_cmp_opaque;
1201 rx_buf = &rxr->rx_buf_ring[cons];
1202 data = rx_buf->data;
1203 if (unlikely(cons != rxr->rx_next_cons)) {
1204 int rc1 = bnxt_discard_rx(bp, bnapi, raw_cons, rxcmp);
1205
1206 bnxt_sched_reset(bp, rxr);
1207 return rc1;
1208 }
1209 prefetch(data);
1210
1211 agg_bufs = (le32_to_cpu(rxcmp->rx_cmp_misc_v1) & RX_CMP_AGG_BUFS) >>
1212 RX_CMP_AGG_BUFS_SHIFT;
1213
1214 if (agg_bufs) {
1215 if (!bnxt_agg_bufs_valid(bp, cpr, agg_bufs, &tmp_raw_cons))
1216 return -EBUSY;
1217
1218 cp_cons = NEXT_CMP(cp_cons);
1219 *agg_event = true;
1220 }
1221
1222 rx_buf->data = NULL;
1223 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L2_ERRORS) {
1224 bnxt_reuse_rx_data(rxr, cons, data);
1225 if (agg_bufs)
1226 bnxt_reuse_rx_agg_bufs(bnapi, cp_cons, agg_bufs);
1227
1228 rc = -EIO;
1229 goto next_rx;
1230 }
1231
1232 len = le32_to_cpu(rxcmp->rx_cmp_len_flags_type) >> RX_CMP_LEN_SHIFT;
1233 dma_addr = dma_unmap_addr(rx_buf, mapping);
1234
1235 if (len <= bp->rx_copy_thresh) {
1236 skb = bnxt_copy_skb(bnapi, data, len, dma_addr);
1237 bnxt_reuse_rx_data(rxr, cons, data);
1238 if (!skb) {
1239 rc = -ENOMEM;
1240 goto next_rx;
1241 }
1242 } else {
1243 skb = bnxt_rx_skb(bp, rxr, cons, prod, data, dma_addr, len);
1244 if (!skb) {
1245 rc = -ENOMEM;
1246 goto next_rx;
1247 }
1248 }
1249
1250 if (agg_bufs) {
1251 skb = bnxt_rx_pages(bp, bnapi, skb, cp_cons, agg_bufs);
1252 if (!skb) {
1253 rc = -ENOMEM;
1254 goto next_rx;
1255 }
1256 }
1257
1258 if (RX_CMP_HASH_VALID(rxcmp)) {
1259 u32 hash_type = RX_CMP_HASH_TYPE(rxcmp);
1260 enum pkt_hash_types type = PKT_HASH_TYPE_L4;
1261
1262 /* RSS profiles 1 and 3 with extract code 0 for inner 4-tuple */
1263 if (hash_type != 1 && hash_type != 3)
1264 type = PKT_HASH_TYPE_L3;
1265 skb_set_hash(skb, le32_to_cpu(rxcmp->rx_cmp_rss_hash), type);
1266 }
1267
1268 skb->protocol = eth_type_trans(skb, dev);
1269
1270 if (rxcmp1->rx_cmp_flags2 &
1271 cpu_to_le32(RX_CMP_FLAGS2_META_FORMAT_VLAN)) {
1272 netdev_features_t features = skb->dev->features;
1273 u32 meta_data = le32_to_cpu(rxcmp1->rx_cmp_meta_data);
1274 u16 vlan_proto = meta_data >> RX_CMP_FLAGS2_METADATA_TPID_SFT;
1275
1276 if (((features & NETIF_F_HW_VLAN_CTAG_RX) &&
1277 vlan_proto == ETH_P_8021Q) ||
1278 ((features & NETIF_F_HW_VLAN_STAG_RX) &&
1279 vlan_proto == ETH_P_8021AD))
1280 __vlan_hwaccel_put_tag(skb, htons(vlan_proto),
1281 meta_data &
1282 RX_CMP_FLAGS2_METADATA_VID_MASK);
1283 }
1284
1285 skb_checksum_none_assert(skb);
1286 if (RX_CMP_L4_CS_OK(rxcmp1)) {
1287 if (dev->features & NETIF_F_RXCSUM) {
1288 skb->ip_summed = CHECKSUM_UNNECESSARY;
1289 skb->csum_level = RX_CMP_ENCAP(rxcmp1);
1290 }
1291 } else {
1292 if (rxcmp1->rx_cmp_cfa_code_errors_v2 & RX_CMP_L4_CS_ERR_BITS) {
1293 if (dev->features & NETIF_F_RXCSUM)
1294 cpr->rx_l4_csum_errors++;
1295 }
1296 }
1297
1298 skb_record_rx_queue(skb, bnapi->index);
1299 skb_mark_napi_id(skb, &bnapi->napi);
1300 if (bnxt_busy_polling(bnapi))
1301 netif_receive_skb(skb);
1302 else
1303 napi_gro_receive(&bnapi->napi, skb);
1304 rc = 1;
1305
1306 next_rx:
1307 rxr->rx_prod = NEXT_RX(prod);
1308 rxr->rx_next_cons = NEXT_RX(cons);
1309
1310 next_rx_no_prod:
1311 *raw_cons = tmp_raw_cons;
1312
1313 return rc;
1314 }
1315
1316 static int bnxt_async_event_process(struct bnxt *bp,
1317 struct hwrm_async_event_cmpl *cmpl)
1318 {
1319 u16 event_id = le16_to_cpu(cmpl->event_id);
1320
1321 /* TODO CHIMP_FW: Define event id's for link change, error etc */
1322 switch (event_id) {
1323 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_LINK_STATUS_CHANGE:
1324 set_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event);
1325 break;
1326 case HWRM_ASYNC_EVENT_CMPL_EVENT_ID_PF_DRVR_UNLOAD:
1327 set_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event);
1328 break;
1329 default:
1330 netdev_err(bp->dev, "unhandled ASYNC event (id 0x%x)\n",
1331 event_id);
1332 goto async_event_process_exit;
1333 }
1334 schedule_work(&bp->sp_task);
1335 async_event_process_exit:
1336 return 0;
1337 }
1338
1339 static int bnxt_hwrm_handler(struct bnxt *bp, struct tx_cmp *txcmp)
1340 {
1341 u16 cmpl_type = TX_CMP_TYPE(txcmp), vf_id, seq_id;
1342 struct hwrm_cmpl *h_cmpl = (struct hwrm_cmpl *)txcmp;
1343 struct hwrm_fwd_req_cmpl *fwd_req_cmpl =
1344 (struct hwrm_fwd_req_cmpl *)txcmp;
1345
1346 switch (cmpl_type) {
1347 case CMPL_BASE_TYPE_HWRM_DONE:
1348 seq_id = le16_to_cpu(h_cmpl->sequence_id);
1349 if (seq_id == bp->hwrm_intr_seq_id)
1350 bp->hwrm_intr_seq_id = HWRM_SEQ_ID_INVALID;
1351 else
1352 netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id);
1353 break;
1354
1355 case CMPL_BASE_TYPE_HWRM_FWD_REQ:
1356 vf_id = le16_to_cpu(fwd_req_cmpl->source_id);
1357
1358 if ((vf_id < bp->pf.first_vf_id) ||
1359 (vf_id >= bp->pf.first_vf_id + bp->pf.active_vfs)) {
1360 netdev_err(bp->dev, "Msg contains invalid VF id %x\n",
1361 vf_id);
1362 return -EINVAL;
1363 }
1364
1365 set_bit(vf_id - bp->pf.first_vf_id, bp->pf.vf_event_bmap);
1366 set_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event);
1367 schedule_work(&bp->sp_task);
1368 break;
1369
1370 case CMPL_BASE_TYPE_HWRM_ASYNC_EVENT:
1371 bnxt_async_event_process(bp,
1372 (struct hwrm_async_event_cmpl *)txcmp);
1373
1374 default:
1375 break;
1376 }
1377
1378 return 0;
1379 }
1380
1381 static irqreturn_t bnxt_msix(int irq, void *dev_instance)
1382 {
1383 struct bnxt_napi *bnapi = dev_instance;
1384 struct bnxt *bp = bnapi->bp;
1385 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1386 u32 cons = RING_CMP(cpr->cp_raw_cons);
1387
1388 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1389 napi_schedule(&bnapi->napi);
1390 return IRQ_HANDLED;
1391 }
1392
1393 static inline int bnxt_has_work(struct bnxt *bp, struct bnxt_cp_ring_info *cpr)
1394 {
1395 u32 raw_cons = cpr->cp_raw_cons;
1396 u16 cons = RING_CMP(raw_cons);
1397 struct tx_cmp *txcmp;
1398
1399 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1400
1401 return TX_CMP_VALID(txcmp, raw_cons);
1402 }
1403
1404 static irqreturn_t bnxt_inta(int irq, void *dev_instance)
1405 {
1406 struct bnxt_napi *bnapi = dev_instance;
1407 struct bnxt *bp = bnapi->bp;
1408 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1409 u32 cons = RING_CMP(cpr->cp_raw_cons);
1410 u32 int_status;
1411
1412 prefetch(&cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)]);
1413
1414 if (!bnxt_has_work(bp, cpr)) {
1415 int_status = readl(bp->bar0 + BNXT_CAG_REG_LEGACY_INT_STATUS);
1416 /* return if erroneous interrupt */
1417 if (!(int_status & (0x10000 << cpr->cp_ring_struct.fw_ring_id)))
1418 return IRQ_NONE;
1419 }
1420
1421 /* disable ring IRQ */
1422 BNXT_CP_DB_IRQ_DIS(cpr->cp_doorbell);
1423
1424 /* Return here if interrupt is shared and is disabled. */
1425 if (unlikely(atomic_read(&bp->intr_sem) != 0))
1426 return IRQ_HANDLED;
1427
1428 napi_schedule(&bnapi->napi);
1429 return IRQ_HANDLED;
1430 }
1431
1432 static int bnxt_poll_work(struct bnxt *bp, struct bnxt_napi *bnapi, int budget)
1433 {
1434 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1435 u32 raw_cons = cpr->cp_raw_cons;
1436 u32 cons;
1437 int tx_pkts = 0;
1438 int rx_pkts = 0;
1439 bool rx_event = false;
1440 bool agg_event = false;
1441 struct tx_cmp *txcmp;
1442
1443 while (1) {
1444 int rc;
1445
1446 cons = RING_CMP(raw_cons);
1447 txcmp = &cpr->cp_desc_ring[CP_RING(cons)][CP_IDX(cons)];
1448
1449 if (!TX_CMP_VALID(txcmp, raw_cons))
1450 break;
1451
1452 /* The valid test of the entry must be done first before
1453 * reading any further.
1454 */
1455 rmb();
1456 if (TX_CMP_TYPE(txcmp) == CMP_TYPE_TX_L2_CMP) {
1457 tx_pkts++;
1458 /* return full budget so NAPI will complete. */
1459 if (unlikely(tx_pkts > bp->tx_wake_thresh))
1460 rx_pkts = budget;
1461 } else if ((TX_CMP_TYPE(txcmp) & 0x30) == 0x10) {
1462 rc = bnxt_rx_pkt(bp, bnapi, &raw_cons, &agg_event);
1463 if (likely(rc >= 0))
1464 rx_pkts += rc;
1465 else if (rc == -EBUSY) /* partial completion */
1466 break;
1467 rx_event = true;
1468 } else if (unlikely((TX_CMP_TYPE(txcmp) ==
1469 CMPL_BASE_TYPE_HWRM_DONE) ||
1470 (TX_CMP_TYPE(txcmp) ==
1471 CMPL_BASE_TYPE_HWRM_FWD_REQ) ||
1472 (TX_CMP_TYPE(txcmp) ==
1473 CMPL_BASE_TYPE_HWRM_ASYNC_EVENT))) {
1474 bnxt_hwrm_handler(bp, txcmp);
1475 }
1476 raw_cons = NEXT_RAW_CMP(raw_cons);
1477
1478 if (rx_pkts == budget)
1479 break;
1480 }
1481
1482 cpr->cp_raw_cons = raw_cons;
1483 /* ACK completion ring before freeing tx ring and producing new
1484 * buffers in rx/agg rings to prevent overflowing the completion
1485 * ring.
1486 */
1487 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
1488
1489 if (tx_pkts)
1490 bnxt_tx_int(bp, bnapi, tx_pkts);
1491
1492 if (rx_event) {
1493 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
1494
1495 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1496 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
1497 if (agg_event) {
1498 writel(DB_KEY_RX | rxr->rx_agg_prod,
1499 rxr->rx_agg_doorbell);
1500 writel(DB_KEY_RX | rxr->rx_agg_prod,
1501 rxr->rx_agg_doorbell);
1502 }
1503 }
1504 return rx_pkts;
1505 }
1506
1507 static int bnxt_poll(struct napi_struct *napi, int budget)
1508 {
1509 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1510 struct bnxt *bp = bnapi->bp;
1511 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1512 int work_done = 0;
1513
1514 if (!bnxt_lock_napi(bnapi))
1515 return budget;
1516
1517 while (1) {
1518 work_done += bnxt_poll_work(bp, bnapi, budget - work_done);
1519
1520 if (work_done >= budget)
1521 break;
1522
1523 if (!bnxt_has_work(bp, cpr)) {
1524 napi_complete(napi);
1525 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1526 break;
1527 }
1528 }
1529 mmiowb();
1530 bnxt_unlock_napi(bnapi);
1531 return work_done;
1532 }
1533
1534 #ifdef CONFIG_NET_RX_BUSY_POLL
1535 static int bnxt_busy_poll(struct napi_struct *napi)
1536 {
1537 struct bnxt_napi *bnapi = container_of(napi, struct bnxt_napi, napi);
1538 struct bnxt *bp = bnapi->bp;
1539 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
1540 int rx_work, budget = 4;
1541
1542 if (atomic_read(&bp->intr_sem) != 0)
1543 return LL_FLUSH_FAILED;
1544
1545 if (!bnxt_lock_poll(bnapi))
1546 return LL_FLUSH_BUSY;
1547
1548 rx_work = bnxt_poll_work(bp, bnapi, budget);
1549
1550 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
1551
1552 bnxt_unlock_poll(bnapi);
1553 return rx_work;
1554 }
1555 #endif
1556
1557 static void bnxt_free_tx_skbs(struct bnxt *bp)
1558 {
1559 int i, max_idx;
1560 struct pci_dev *pdev = bp->pdev;
1561
1562 if (!bp->tx_ring)
1563 return;
1564
1565 max_idx = bp->tx_nr_pages * TX_DESC_CNT;
1566 for (i = 0; i < bp->tx_nr_rings; i++) {
1567 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1568 int j;
1569
1570 for (j = 0; j < max_idx;) {
1571 struct bnxt_sw_tx_bd *tx_buf = &txr->tx_buf_ring[j];
1572 struct sk_buff *skb = tx_buf->skb;
1573 int k, last;
1574
1575 if (!skb) {
1576 j++;
1577 continue;
1578 }
1579
1580 tx_buf->skb = NULL;
1581
1582 if (tx_buf->is_push) {
1583 dev_kfree_skb(skb);
1584 j += 2;
1585 continue;
1586 }
1587
1588 dma_unmap_single(&pdev->dev,
1589 dma_unmap_addr(tx_buf, mapping),
1590 skb_headlen(skb),
1591 PCI_DMA_TODEVICE);
1592
1593 last = tx_buf->nr_frags;
1594 j += 2;
1595 for (k = 0; k < last; k++, j++) {
1596 int ring_idx = j & bp->tx_ring_mask;
1597 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
1598
1599 tx_buf = &txr->tx_buf_ring[ring_idx];
1600 dma_unmap_page(
1601 &pdev->dev,
1602 dma_unmap_addr(tx_buf, mapping),
1603 skb_frag_size(frag), PCI_DMA_TODEVICE);
1604 }
1605 dev_kfree_skb(skb);
1606 }
1607 netdev_tx_reset_queue(netdev_get_tx_queue(bp->dev, i));
1608 }
1609 }
1610
1611 static void bnxt_free_rx_skbs(struct bnxt *bp)
1612 {
1613 int i, max_idx, max_agg_idx;
1614 struct pci_dev *pdev = bp->pdev;
1615
1616 if (!bp->rx_ring)
1617 return;
1618
1619 max_idx = bp->rx_nr_pages * RX_DESC_CNT;
1620 max_agg_idx = bp->rx_agg_nr_pages * RX_DESC_CNT;
1621 for (i = 0; i < bp->rx_nr_rings; i++) {
1622 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1623 int j;
1624
1625 if (rxr->rx_tpa) {
1626 for (j = 0; j < MAX_TPA; j++) {
1627 struct bnxt_tpa_info *tpa_info =
1628 &rxr->rx_tpa[j];
1629 u8 *data = tpa_info->data;
1630
1631 if (!data)
1632 continue;
1633
1634 dma_unmap_single(
1635 &pdev->dev,
1636 dma_unmap_addr(tpa_info, mapping),
1637 bp->rx_buf_use_size,
1638 PCI_DMA_FROMDEVICE);
1639
1640 tpa_info->data = NULL;
1641
1642 kfree(data);
1643 }
1644 }
1645
1646 for (j = 0; j < max_idx; j++) {
1647 struct bnxt_sw_rx_bd *rx_buf = &rxr->rx_buf_ring[j];
1648 u8 *data = rx_buf->data;
1649
1650 if (!data)
1651 continue;
1652
1653 dma_unmap_single(&pdev->dev,
1654 dma_unmap_addr(rx_buf, mapping),
1655 bp->rx_buf_use_size,
1656 PCI_DMA_FROMDEVICE);
1657
1658 rx_buf->data = NULL;
1659
1660 kfree(data);
1661 }
1662
1663 for (j = 0; j < max_agg_idx; j++) {
1664 struct bnxt_sw_rx_agg_bd *rx_agg_buf =
1665 &rxr->rx_agg_ring[j];
1666 struct page *page = rx_agg_buf->page;
1667
1668 if (!page)
1669 continue;
1670
1671 dma_unmap_page(&pdev->dev,
1672 dma_unmap_addr(rx_agg_buf, mapping),
1673 BNXT_RX_PAGE_SIZE, PCI_DMA_FROMDEVICE);
1674
1675 rx_agg_buf->page = NULL;
1676 __clear_bit(j, rxr->rx_agg_bmap);
1677
1678 __free_page(page);
1679 }
1680 if (rxr->rx_page) {
1681 __free_page(rxr->rx_page);
1682 rxr->rx_page = NULL;
1683 }
1684 }
1685 }
1686
1687 static void bnxt_free_skbs(struct bnxt *bp)
1688 {
1689 bnxt_free_tx_skbs(bp);
1690 bnxt_free_rx_skbs(bp);
1691 }
1692
1693 static void bnxt_free_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1694 {
1695 struct pci_dev *pdev = bp->pdev;
1696 int i;
1697
1698 for (i = 0; i < ring->nr_pages; i++) {
1699 if (!ring->pg_arr[i])
1700 continue;
1701
1702 dma_free_coherent(&pdev->dev, ring->page_size,
1703 ring->pg_arr[i], ring->dma_arr[i]);
1704
1705 ring->pg_arr[i] = NULL;
1706 }
1707 if (ring->pg_tbl) {
1708 dma_free_coherent(&pdev->dev, ring->nr_pages * 8,
1709 ring->pg_tbl, ring->pg_tbl_map);
1710 ring->pg_tbl = NULL;
1711 }
1712 if (ring->vmem_size && *ring->vmem) {
1713 vfree(*ring->vmem);
1714 *ring->vmem = NULL;
1715 }
1716 }
1717
1718 static int bnxt_alloc_ring(struct bnxt *bp, struct bnxt_ring_struct *ring)
1719 {
1720 int i;
1721 struct pci_dev *pdev = bp->pdev;
1722
1723 if (ring->nr_pages > 1) {
1724 ring->pg_tbl = dma_alloc_coherent(&pdev->dev,
1725 ring->nr_pages * 8,
1726 &ring->pg_tbl_map,
1727 GFP_KERNEL);
1728 if (!ring->pg_tbl)
1729 return -ENOMEM;
1730 }
1731
1732 for (i = 0; i < ring->nr_pages; i++) {
1733 ring->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
1734 ring->page_size,
1735 &ring->dma_arr[i],
1736 GFP_KERNEL);
1737 if (!ring->pg_arr[i])
1738 return -ENOMEM;
1739
1740 if (ring->nr_pages > 1)
1741 ring->pg_tbl[i] = cpu_to_le64(ring->dma_arr[i]);
1742 }
1743
1744 if (ring->vmem_size) {
1745 *ring->vmem = vzalloc(ring->vmem_size);
1746 if (!(*ring->vmem))
1747 return -ENOMEM;
1748 }
1749 return 0;
1750 }
1751
1752 static void bnxt_free_rx_rings(struct bnxt *bp)
1753 {
1754 int i;
1755
1756 if (!bp->rx_ring)
1757 return;
1758
1759 for (i = 0; i < bp->rx_nr_rings; i++) {
1760 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1761 struct bnxt_ring_struct *ring;
1762
1763 kfree(rxr->rx_tpa);
1764 rxr->rx_tpa = NULL;
1765
1766 kfree(rxr->rx_agg_bmap);
1767 rxr->rx_agg_bmap = NULL;
1768
1769 ring = &rxr->rx_ring_struct;
1770 bnxt_free_ring(bp, ring);
1771
1772 ring = &rxr->rx_agg_ring_struct;
1773 bnxt_free_ring(bp, ring);
1774 }
1775 }
1776
1777 static int bnxt_alloc_rx_rings(struct bnxt *bp)
1778 {
1779 int i, rc, agg_rings = 0, tpa_rings = 0;
1780
1781 if (!bp->rx_ring)
1782 return -ENOMEM;
1783
1784 if (bp->flags & BNXT_FLAG_AGG_RINGS)
1785 agg_rings = 1;
1786
1787 if (bp->flags & BNXT_FLAG_TPA)
1788 tpa_rings = 1;
1789
1790 for (i = 0; i < bp->rx_nr_rings; i++) {
1791 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
1792 struct bnxt_ring_struct *ring;
1793
1794 ring = &rxr->rx_ring_struct;
1795
1796 rc = bnxt_alloc_ring(bp, ring);
1797 if (rc)
1798 return rc;
1799
1800 if (agg_rings) {
1801 u16 mem_size;
1802
1803 ring = &rxr->rx_agg_ring_struct;
1804 rc = bnxt_alloc_ring(bp, ring);
1805 if (rc)
1806 return rc;
1807
1808 rxr->rx_agg_bmap_size = bp->rx_agg_ring_mask + 1;
1809 mem_size = rxr->rx_agg_bmap_size / 8;
1810 rxr->rx_agg_bmap = kzalloc(mem_size, GFP_KERNEL);
1811 if (!rxr->rx_agg_bmap)
1812 return -ENOMEM;
1813
1814 if (tpa_rings) {
1815 rxr->rx_tpa = kcalloc(MAX_TPA,
1816 sizeof(struct bnxt_tpa_info),
1817 GFP_KERNEL);
1818 if (!rxr->rx_tpa)
1819 return -ENOMEM;
1820 }
1821 }
1822 }
1823 return 0;
1824 }
1825
1826 static void bnxt_free_tx_rings(struct bnxt *bp)
1827 {
1828 int i;
1829 struct pci_dev *pdev = bp->pdev;
1830
1831 if (!bp->tx_ring)
1832 return;
1833
1834 for (i = 0; i < bp->tx_nr_rings; i++) {
1835 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1836 struct bnxt_ring_struct *ring;
1837
1838 if (txr->tx_push) {
1839 dma_free_coherent(&pdev->dev, bp->tx_push_size,
1840 txr->tx_push, txr->tx_push_mapping);
1841 txr->tx_push = NULL;
1842 }
1843
1844 ring = &txr->tx_ring_struct;
1845
1846 bnxt_free_ring(bp, ring);
1847 }
1848 }
1849
1850 static int bnxt_alloc_tx_rings(struct bnxt *bp)
1851 {
1852 int i, j, rc;
1853 struct pci_dev *pdev = bp->pdev;
1854
1855 bp->tx_push_size = 0;
1856 if (bp->tx_push_thresh) {
1857 int push_size;
1858
1859 push_size = L1_CACHE_ALIGN(sizeof(struct tx_push_bd) +
1860 bp->tx_push_thresh);
1861
1862 if (push_size > 256) {
1863 push_size = 0;
1864 bp->tx_push_thresh = 0;
1865 }
1866
1867 bp->tx_push_size = push_size;
1868 }
1869
1870 for (i = 0, j = 0; i < bp->tx_nr_rings; i++) {
1871 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
1872 struct bnxt_ring_struct *ring;
1873
1874 ring = &txr->tx_ring_struct;
1875
1876 rc = bnxt_alloc_ring(bp, ring);
1877 if (rc)
1878 return rc;
1879
1880 if (bp->tx_push_size) {
1881 dma_addr_t mapping;
1882
1883 /* One pre-allocated DMA buffer to backup
1884 * TX push operation
1885 */
1886 txr->tx_push = dma_alloc_coherent(&pdev->dev,
1887 bp->tx_push_size,
1888 &txr->tx_push_mapping,
1889 GFP_KERNEL);
1890
1891 if (!txr->tx_push)
1892 return -ENOMEM;
1893
1894 mapping = txr->tx_push_mapping +
1895 sizeof(struct tx_push_bd);
1896 txr->data_mapping = cpu_to_le64(mapping);
1897
1898 memset(txr->tx_push, 0, sizeof(struct tx_push_bd));
1899 }
1900 ring->queue_id = bp->q_info[j].queue_id;
1901 if (i % bp->tx_nr_rings_per_tc == (bp->tx_nr_rings_per_tc - 1))
1902 j++;
1903 }
1904 return 0;
1905 }
1906
1907 static void bnxt_free_cp_rings(struct bnxt *bp)
1908 {
1909 int i;
1910
1911 if (!bp->bnapi)
1912 return;
1913
1914 for (i = 0; i < bp->cp_nr_rings; i++) {
1915 struct bnxt_napi *bnapi = bp->bnapi[i];
1916 struct bnxt_cp_ring_info *cpr;
1917 struct bnxt_ring_struct *ring;
1918
1919 if (!bnapi)
1920 continue;
1921
1922 cpr = &bnapi->cp_ring;
1923 ring = &cpr->cp_ring_struct;
1924
1925 bnxt_free_ring(bp, ring);
1926 }
1927 }
1928
1929 static int bnxt_alloc_cp_rings(struct bnxt *bp)
1930 {
1931 int i, rc;
1932
1933 for (i = 0; i < bp->cp_nr_rings; i++) {
1934 struct bnxt_napi *bnapi = bp->bnapi[i];
1935 struct bnxt_cp_ring_info *cpr;
1936 struct bnxt_ring_struct *ring;
1937
1938 if (!bnapi)
1939 continue;
1940
1941 cpr = &bnapi->cp_ring;
1942 ring = &cpr->cp_ring_struct;
1943
1944 rc = bnxt_alloc_ring(bp, ring);
1945 if (rc)
1946 return rc;
1947 }
1948 return 0;
1949 }
1950
1951 static void bnxt_init_ring_struct(struct bnxt *bp)
1952 {
1953 int i;
1954
1955 for (i = 0; i < bp->cp_nr_rings; i++) {
1956 struct bnxt_napi *bnapi = bp->bnapi[i];
1957 struct bnxt_cp_ring_info *cpr;
1958 struct bnxt_rx_ring_info *rxr;
1959 struct bnxt_tx_ring_info *txr;
1960 struct bnxt_ring_struct *ring;
1961
1962 if (!bnapi)
1963 continue;
1964
1965 cpr = &bnapi->cp_ring;
1966 ring = &cpr->cp_ring_struct;
1967 ring->nr_pages = bp->cp_nr_pages;
1968 ring->page_size = HW_CMPD_RING_SIZE;
1969 ring->pg_arr = (void **)cpr->cp_desc_ring;
1970 ring->dma_arr = cpr->cp_desc_mapping;
1971 ring->vmem_size = 0;
1972
1973 rxr = bnapi->rx_ring;
1974 if (!rxr)
1975 goto skip_rx;
1976
1977 ring = &rxr->rx_ring_struct;
1978 ring->nr_pages = bp->rx_nr_pages;
1979 ring->page_size = HW_RXBD_RING_SIZE;
1980 ring->pg_arr = (void **)rxr->rx_desc_ring;
1981 ring->dma_arr = rxr->rx_desc_mapping;
1982 ring->vmem_size = SW_RXBD_RING_SIZE * bp->rx_nr_pages;
1983 ring->vmem = (void **)&rxr->rx_buf_ring;
1984
1985 ring = &rxr->rx_agg_ring_struct;
1986 ring->nr_pages = bp->rx_agg_nr_pages;
1987 ring->page_size = HW_RXBD_RING_SIZE;
1988 ring->pg_arr = (void **)rxr->rx_agg_desc_ring;
1989 ring->dma_arr = rxr->rx_agg_desc_mapping;
1990 ring->vmem_size = SW_RXBD_AGG_RING_SIZE * bp->rx_agg_nr_pages;
1991 ring->vmem = (void **)&rxr->rx_agg_ring;
1992
1993 skip_rx:
1994 txr = bnapi->tx_ring;
1995 if (!txr)
1996 continue;
1997
1998 ring = &txr->tx_ring_struct;
1999 ring->nr_pages = bp->tx_nr_pages;
2000 ring->page_size = HW_RXBD_RING_SIZE;
2001 ring->pg_arr = (void **)txr->tx_desc_ring;
2002 ring->dma_arr = txr->tx_desc_mapping;
2003 ring->vmem_size = SW_TXBD_RING_SIZE * bp->tx_nr_pages;
2004 ring->vmem = (void **)&txr->tx_buf_ring;
2005 }
2006 }
2007
2008 static void bnxt_init_rxbd_pages(struct bnxt_ring_struct *ring, u32 type)
2009 {
2010 int i;
2011 u32 prod;
2012 struct rx_bd **rx_buf_ring;
2013
2014 rx_buf_ring = (struct rx_bd **)ring->pg_arr;
2015 for (i = 0, prod = 0; i < ring->nr_pages; i++) {
2016 int j;
2017 struct rx_bd *rxbd;
2018
2019 rxbd = rx_buf_ring[i];
2020 if (!rxbd)
2021 continue;
2022
2023 for (j = 0; j < RX_DESC_CNT; j++, rxbd++, prod++) {
2024 rxbd->rx_bd_len_flags_type = cpu_to_le32(type);
2025 rxbd->rx_bd_opaque = prod;
2026 }
2027 }
2028 }
2029
2030 static int bnxt_init_one_rx_ring(struct bnxt *bp, int ring_nr)
2031 {
2032 struct net_device *dev = bp->dev;
2033 struct bnxt_rx_ring_info *rxr;
2034 struct bnxt_ring_struct *ring;
2035 u32 prod, type;
2036 int i;
2037
2038 type = (bp->rx_buf_use_size << RX_BD_LEN_SHIFT) |
2039 RX_BD_TYPE_RX_PACKET_BD | RX_BD_FLAGS_EOP;
2040
2041 if (NET_IP_ALIGN == 2)
2042 type |= RX_BD_FLAGS_SOP;
2043
2044 rxr = &bp->rx_ring[ring_nr];
2045 ring = &rxr->rx_ring_struct;
2046 bnxt_init_rxbd_pages(ring, type);
2047
2048 prod = rxr->rx_prod;
2049 for (i = 0; i < bp->rx_ring_size; i++) {
2050 if (bnxt_alloc_rx_data(bp, rxr, prod, GFP_KERNEL) != 0) {
2051 netdev_warn(dev, "init'ed rx ring %d with %d/%d skbs only\n",
2052 ring_nr, i, bp->rx_ring_size);
2053 break;
2054 }
2055 prod = NEXT_RX(prod);
2056 }
2057 rxr->rx_prod = prod;
2058 ring->fw_ring_id = INVALID_HW_RING_ID;
2059
2060 ring = &rxr->rx_agg_ring_struct;
2061 ring->fw_ring_id = INVALID_HW_RING_ID;
2062
2063 if (!(bp->flags & BNXT_FLAG_AGG_RINGS))
2064 return 0;
2065
2066 type = ((u32)BNXT_RX_PAGE_SIZE << RX_BD_LEN_SHIFT) |
2067 RX_BD_TYPE_RX_AGG_BD | RX_BD_FLAGS_SOP;
2068
2069 bnxt_init_rxbd_pages(ring, type);
2070
2071 prod = rxr->rx_agg_prod;
2072 for (i = 0; i < bp->rx_agg_ring_size; i++) {
2073 if (bnxt_alloc_rx_page(bp, rxr, prod, GFP_KERNEL) != 0) {
2074 netdev_warn(dev, "init'ed rx ring %d with %d/%d pages only\n",
2075 ring_nr, i, bp->rx_ring_size);
2076 break;
2077 }
2078 prod = NEXT_RX_AGG(prod);
2079 }
2080 rxr->rx_agg_prod = prod;
2081
2082 if (bp->flags & BNXT_FLAG_TPA) {
2083 if (rxr->rx_tpa) {
2084 u8 *data;
2085 dma_addr_t mapping;
2086
2087 for (i = 0; i < MAX_TPA; i++) {
2088 data = __bnxt_alloc_rx_data(bp, &mapping,
2089 GFP_KERNEL);
2090 if (!data)
2091 return -ENOMEM;
2092
2093 rxr->rx_tpa[i].data = data;
2094 rxr->rx_tpa[i].mapping = mapping;
2095 }
2096 } else {
2097 netdev_err(bp->dev, "No resource allocated for LRO/GRO\n");
2098 return -ENOMEM;
2099 }
2100 }
2101
2102 return 0;
2103 }
2104
2105 static int bnxt_init_rx_rings(struct bnxt *bp)
2106 {
2107 int i, rc = 0;
2108
2109 for (i = 0; i < bp->rx_nr_rings; i++) {
2110 rc = bnxt_init_one_rx_ring(bp, i);
2111 if (rc)
2112 break;
2113 }
2114
2115 return rc;
2116 }
2117
2118 static int bnxt_init_tx_rings(struct bnxt *bp)
2119 {
2120 u16 i;
2121
2122 bp->tx_wake_thresh = max_t(int, bp->tx_ring_size / 2,
2123 MAX_SKB_FRAGS + 1);
2124
2125 for (i = 0; i < bp->tx_nr_rings; i++) {
2126 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
2127 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
2128
2129 ring->fw_ring_id = INVALID_HW_RING_ID;
2130 }
2131
2132 return 0;
2133 }
2134
2135 static void bnxt_free_ring_grps(struct bnxt *bp)
2136 {
2137 kfree(bp->grp_info);
2138 bp->grp_info = NULL;
2139 }
2140
2141 static int bnxt_init_ring_grps(struct bnxt *bp, bool irq_re_init)
2142 {
2143 int i;
2144
2145 if (irq_re_init) {
2146 bp->grp_info = kcalloc(bp->cp_nr_rings,
2147 sizeof(struct bnxt_ring_grp_info),
2148 GFP_KERNEL);
2149 if (!bp->grp_info)
2150 return -ENOMEM;
2151 }
2152 for (i = 0; i < bp->cp_nr_rings; i++) {
2153 if (irq_re_init)
2154 bp->grp_info[i].fw_stats_ctx = INVALID_HW_RING_ID;
2155 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
2156 bp->grp_info[i].rx_fw_ring_id = INVALID_HW_RING_ID;
2157 bp->grp_info[i].agg_fw_ring_id = INVALID_HW_RING_ID;
2158 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
2159 }
2160 return 0;
2161 }
2162
2163 static void bnxt_free_vnics(struct bnxt *bp)
2164 {
2165 kfree(bp->vnic_info);
2166 bp->vnic_info = NULL;
2167 bp->nr_vnics = 0;
2168 }
2169
2170 static int bnxt_alloc_vnics(struct bnxt *bp)
2171 {
2172 int num_vnics = 1;
2173
2174 #ifdef CONFIG_RFS_ACCEL
2175 if (bp->flags & BNXT_FLAG_RFS)
2176 num_vnics += bp->rx_nr_rings;
2177 #endif
2178
2179 bp->vnic_info = kcalloc(num_vnics, sizeof(struct bnxt_vnic_info),
2180 GFP_KERNEL);
2181 if (!bp->vnic_info)
2182 return -ENOMEM;
2183
2184 bp->nr_vnics = num_vnics;
2185 return 0;
2186 }
2187
2188 static void bnxt_init_vnics(struct bnxt *bp)
2189 {
2190 int i;
2191
2192 for (i = 0; i < bp->nr_vnics; i++) {
2193 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
2194
2195 vnic->fw_vnic_id = INVALID_HW_RING_ID;
2196 vnic->fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
2197 vnic->fw_l2_ctx_id = INVALID_HW_RING_ID;
2198
2199 if (bp->vnic_info[i].rss_hash_key) {
2200 if (i == 0)
2201 prandom_bytes(vnic->rss_hash_key,
2202 HW_HASH_KEY_SIZE);
2203 else
2204 memcpy(vnic->rss_hash_key,
2205 bp->vnic_info[0].rss_hash_key,
2206 HW_HASH_KEY_SIZE);
2207 }
2208 }
2209 }
2210
2211 static int bnxt_calc_nr_ring_pages(u32 ring_size, int desc_per_pg)
2212 {
2213 int pages;
2214
2215 pages = ring_size / desc_per_pg;
2216
2217 if (!pages)
2218 return 1;
2219
2220 pages++;
2221
2222 while (pages & (pages - 1))
2223 pages++;
2224
2225 return pages;
2226 }
2227
2228 static void bnxt_set_tpa_flags(struct bnxt *bp)
2229 {
2230 bp->flags &= ~BNXT_FLAG_TPA;
2231 if (bp->dev->features & NETIF_F_LRO)
2232 bp->flags |= BNXT_FLAG_LRO;
2233 if ((bp->dev->features & NETIF_F_GRO) && (bp->pdev->revision > 0))
2234 bp->flags |= BNXT_FLAG_GRO;
2235 }
2236
2237 /* bp->rx_ring_size, bp->tx_ring_size, dev->mtu, BNXT_FLAG_{G|L}RO flags must
2238 * be set on entry.
2239 */
2240 void bnxt_set_ring_params(struct bnxt *bp)
2241 {
2242 u32 ring_size, rx_size, rx_space;
2243 u32 agg_factor = 0, agg_ring_size = 0;
2244
2245 /* 8 for CRC and VLAN */
2246 rx_size = SKB_DATA_ALIGN(bp->dev->mtu + ETH_HLEN + NET_IP_ALIGN + 8);
2247
2248 rx_space = rx_size + NET_SKB_PAD +
2249 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2250
2251 bp->rx_copy_thresh = BNXT_RX_COPY_THRESH;
2252 ring_size = bp->rx_ring_size;
2253 bp->rx_agg_ring_size = 0;
2254 bp->rx_agg_nr_pages = 0;
2255
2256 if (bp->flags & BNXT_FLAG_TPA)
2257 agg_factor = min_t(u32, 4, 65536 / BNXT_RX_PAGE_SIZE);
2258
2259 bp->flags &= ~BNXT_FLAG_JUMBO;
2260 if (rx_space > PAGE_SIZE) {
2261 u32 jumbo_factor;
2262
2263 bp->flags |= BNXT_FLAG_JUMBO;
2264 jumbo_factor = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
2265 if (jumbo_factor > agg_factor)
2266 agg_factor = jumbo_factor;
2267 }
2268 agg_ring_size = ring_size * agg_factor;
2269
2270 if (agg_ring_size) {
2271 bp->rx_agg_nr_pages = bnxt_calc_nr_ring_pages(agg_ring_size,
2272 RX_DESC_CNT);
2273 if (bp->rx_agg_nr_pages > MAX_RX_AGG_PAGES) {
2274 u32 tmp = agg_ring_size;
2275
2276 bp->rx_agg_nr_pages = MAX_RX_AGG_PAGES;
2277 agg_ring_size = MAX_RX_AGG_PAGES * RX_DESC_CNT - 1;
2278 netdev_warn(bp->dev, "rx agg ring size %d reduced to %d.\n",
2279 tmp, agg_ring_size);
2280 }
2281 bp->rx_agg_ring_size = agg_ring_size;
2282 bp->rx_agg_ring_mask = (bp->rx_agg_nr_pages * RX_DESC_CNT) - 1;
2283 rx_size = SKB_DATA_ALIGN(BNXT_RX_COPY_THRESH + NET_IP_ALIGN);
2284 rx_space = rx_size + NET_SKB_PAD +
2285 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2286 }
2287
2288 bp->rx_buf_use_size = rx_size;
2289 bp->rx_buf_size = rx_space;
2290
2291 bp->rx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, RX_DESC_CNT);
2292 bp->rx_ring_mask = (bp->rx_nr_pages * RX_DESC_CNT) - 1;
2293
2294 ring_size = bp->tx_ring_size;
2295 bp->tx_nr_pages = bnxt_calc_nr_ring_pages(ring_size, TX_DESC_CNT);
2296 bp->tx_ring_mask = (bp->tx_nr_pages * TX_DESC_CNT) - 1;
2297
2298 ring_size = bp->rx_ring_size * (2 + agg_factor) + bp->tx_ring_size;
2299 bp->cp_ring_size = ring_size;
2300
2301 bp->cp_nr_pages = bnxt_calc_nr_ring_pages(ring_size, CP_DESC_CNT);
2302 if (bp->cp_nr_pages > MAX_CP_PAGES) {
2303 bp->cp_nr_pages = MAX_CP_PAGES;
2304 bp->cp_ring_size = MAX_CP_PAGES * CP_DESC_CNT - 1;
2305 netdev_warn(bp->dev, "completion ring size %d reduced to %d.\n",
2306 ring_size, bp->cp_ring_size);
2307 }
2308 bp->cp_bit = bp->cp_nr_pages * CP_DESC_CNT;
2309 bp->cp_ring_mask = bp->cp_bit - 1;
2310 }
2311
2312 static void bnxt_free_vnic_attributes(struct bnxt *bp)
2313 {
2314 int i;
2315 struct bnxt_vnic_info *vnic;
2316 struct pci_dev *pdev = bp->pdev;
2317
2318 if (!bp->vnic_info)
2319 return;
2320
2321 for (i = 0; i < bp->nr_vnics; i++) {
2322 vnic = &bp->vnic_info[i];
2323
2324 kfree(vnic->fw_grp_ids);
2325 vnic->fw_grp_ids = NULL;
2326
2327 kfree(vnic->uc_list);
2328 vnic->uc_list = NULL;
2329
2330 if (vnic->mc_list) {
2331 dma_free_coherent(&pdev->dev, vnic->mc_list_size,
2332 vnic->mc_list, vnic->mc_list_mapping);
2333 vnic->mc_list = NULL;
2334 }
2335
2336 if (vnic->rss_table) {
2337 dma_free_coherent(&pdev->dev, PAGE_SIZE,
2338 vnic->rss_table,
2339 vnic->rss_table_dma_addr);
2340 vnic->rss_table = NULL;
2341 }
2342
2343 vnic->rss_hash_key = NULL;
2344 vnic->flags = 0;
2345 }
2346 }
2347
2348 static int bnxt_alloc_vnic_attributes(struct bnxt *bp)
2349 {
2350 int i, rc = 0, size;
2351 struct bnxt_vnic_info *vnic;
2352 struct pci_dev *pdev = bp->pdev;
2353 int max_rings;
2354
2355 for (i = 0; i < bp->nr_vnics; i++) {
2356 vnic = &bp->vnic_info[i];
2357
2358 if (vnic->flags & BNXT_VNIC_UCAST_FLAG) {
2359 int mem_size = (BNXT_MAX_UC_ADDRS - 1) * ETH_ALEN;
2360
2361 if (mem_size > 0) {
2362 vnic->uc_list = kmalloc(mem_size, GFP_KERNEL);
2363 if (!vnic->uc_list) {
2364 rc = -ENOMEM;
2365 goto out;
2366 }
2367 }
2368 }
2369
2370 if (vnic->flags & BNXT_VNIC_MCAST_FLAG) {
2371 vnic->mc_list_size = BNXT_MAX_MC_ADDRS * ETH_ALEN;
2372 vnic->mc_list =
2373 dma_alloc_coherent(&pdev->dev,
2374 vnic->mc_list_size,
2375 &vnic->mc_list_mapping,
2376 GFP_KERNEL);
2377 if (!vnic->mc_list) {
2378 rc = -ENOMEM;
2379 goto out;
2380 }
2381 }
2382
2383 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
2384 max_rings = bp->rx_nr_rings;
2385 else
2386 max_rings = 1;
2387
2388 vnic->fw_grp_ids = kcalloc(max_rings, sizeof(u16), GFP_KERNEL);
2389 if (!vnic->fw_grp_ids) {
2390 rc = -ENOMEM;
2391 goto out;
2392 }
2393
2394 /* Allocate rss table and hash key */
2395 vnic->rss_table = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2396 &vnic->rss_table_dma_addr,
2397 GFP_KERNEL);
2398 if (!vnic->rss_table) {
2399 rc = -ENOMEM;
2400 goto out;
2401 }
2402
2403 size = L1_CACHE_ALIGN(HW_HASH_INDEX_SIZE * sizeof(u16));
2404
2405 vnic->rss_hash_key = ((void *)vnic->rss_table) + size;
2406 vnic->rss_hash_key_dma_addr = vnic->rss_table_dma_addr + size;
2407 }
2408 return 0;
2409
2410 out:
2411 return rc;
2412 }
2413
2414 static void bnxt_free_hwrm_resources(struct bnxt *bp)
2415 {
2416 struct pci_dev *pdev = bp->pdev;
2417
2418 dma_free_coherent(&pdev->dev, PAGE_SIZE, bp->hwrm_cmd_resp_addr,
2419 bp->hwrm_cmd_resp_dma_addr);
2420
2421 bp->hwrm_cmd_resp_addr = NULL;
2422 if (bp->hwrm_dbg_resp_addr) {
2423 dma_free_coherent(&pdev->dev, HWRM_DBG_REG_BUF_SIZE,
2424 bp->hwrm_dbg_resp_addr,
2425 bp->hwrm_dbg_resp_dma_addr);
2426
2427 bp->hwrm_dbg_resp_addr = NULL;
2428 }
2429 }
2430
2431 static int bnxt_alloc_hwrm_resources(struct bnxt *bp)
2432 {
2433 struct pci_dev *pdev = bp->pdev;
2434
2435 bp->hwrm_cmd_resp_addr = dma_alloc_coherent(&pdev->dev, PAGE_SIZE,
2436 &bp->hwrm_cmd_resp_dma_addr,
2437 GFP_KERNEL);
2438 if (!bp->hwrm_cmd_resp_addr)
2439 return -ENOMEM;
2440 bp->hwrm_dbg_resp_addr = dma_alloc_coherent(&pdev->dev,
2441 HWRM_DBG_REG_BUF_SIZE,
2442 &bp->hwrm_dbg_resp_dma_addr,
2443 GFP_KERNEL);
2444 if (!bp->hwrm_dbg_resp_addr)
2445 netdev_warn(bp->dev, "fail to alloc debug register dma mem\n");
2446
2447 return 0;
2448 }
2449
2450 static void bnxt_free_stats(struct bnxt *bp)
2451 {
2452 u32 size, i;
2453 struct pci_dev *pdev = bp->pdev;
2454
2455 if (bp->hw_rx_port_stats) {
2456 dma_free_coherent(&pdev->dev, bp->hw_port_stats_size,
2457 bp->hw_rx_port_stats,
2458 bp->hw_rx_port_stats_map);
2459 bp->hw_rx_port_stats = NULL;
2460 bp->flags &= ~BNXT_FLAG_PORT_STATS;
2461 }
2462
2463 if (!bp->bnapi)
2464 return;
2465
2466 size = sizeof(struct ctx_hw_stats);
2467
2468 for (i = 0; i < bp->cp_nr_rings; i++) {
2469 struct bnxt_napi *bnapi = bp->bnapi[i];
2470 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2471
2472 if (cpr->hw_stats) {
2473 dma_free_coherent(&pdev->dev, size, cpr->hw_stats,
2474 cpr->hw_stats_map);
2475 cpr->hw_stats = NULL;
2476 }
2477 }
2478 }
2479
2480 static int bnxt_alloc_stats(struct bnxt *bp)
2481 {
2482 u32 size, i;
2483 struct pci_dev *pdev = bp->pdev;
2484
2485 size = sizeof(struct ctx_hw_stats);
2486
2487 for (i = 0; i < bp->cp_nr_rings; i++) {
2488 struct bnxt_napi *bnapi = bp->bnapi[i];
2489 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
2490
2491 cpr->hw_stats = dma_alloc_coherent(&pdev->dev, size,
2492 &cpr->hw_stats_map,
2493 GFP_KERNEL);
2494 if (!cpr->hw_stats)
2495 return -ENOMEM;
2496
2497 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
2498 }
2499
2500 if (BNXT_PF(bp)) {
2501 bp->hw_port_stats_size = sizeof(struct rx_port_stats) +
2502 sizeof(struct tx_port_stats) + 1024;
2503
2504 bp->hw_rx_port_stats =
2505 dma_alloc_coherent(&pdev->dev, bp->hw_port_stats_size,
2506 &bp->hw_rx_port_stats_map,
2507 GFP_KERNEL);
2508 if (!bp->hw_rx_port_stats)
2509 return -ENOMEM;
2510
2511 bp->hw_tx_port_stats = (void *)(bp->hw_rx_port_stats + 1) +
2512 512;
2513 bp->hw_tx_port_stats_map = bp->hw_rx_port_stats_map +
2514 sizeof(struct rx_port_stats) + 512;
2515 bp->flags |= BNXT_FLAG_PORT_STATS;
2516 }
2517 return 0;
2518 }
2519
2520 static void bnxt_clear_ring_indices(struct bnxt *bp)
2521 {
2522 int i;
2523
2524 if (!bp->bnapi)
2525 return;
2526
2527 for (i = 0; i < bp->cp_nr_rings; i++) {
2528 struct bnxt_napi *bnapi = bp->bnapi[i];
2529 struct bnxt_cp_ring_info *cpr;
2530 struct bnxt_rx_ring_info *rxr;
2531 struct bnxt_tx_ring_info *txr;
2532
2533 if (!bnapi)
2534 continue;
2535
2536 cpr = &bnapi->cp_ring;
2537 cpr->cp_raw_cons = 0;
2538
2539 txr = bnapi->tx_ring;
2540 if (txr) {
2541 txr->tx_prod = 0;
2542 txr->tx_cons = 0;
2543 }
2544
2545 rxr = bnapi->rx_ring;
2546 if (rxr) {
2547 rxr->rx_prod = 0;
2548 rxr->rx_agg_prod = 0;
2549 rxr->rx_sw_agg_prod = 0;
2550 rxr->rx_next_cons = 0;
2551 }
2552 }
2553 }
2554
2555 static void bnxt_free_ntp_fltrs(struct bnxt *bp, bool irq_reinit)
2556 {
2557 #ifdef CONFIG_RFS_ACCEL
2558 int i;
2559
2560 /* Under rtnl_lock and all our NAPIs have been disabled. It's
2561 * safe to delete the hash table.
2562 */
2563 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
2564 struct hlist_head *head;
2565 struct hlist_node *tmp;
2566 struct bnxt_ntuple_filter *fltr;
2567
2568 head = &bp->ntp_fltr_hash_tbl[i];
2569 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
2570 hlist_del(&fltr->hash);
2571 kfree(fltr);
2572 }
2573 }
2574 if (irq_reinit) {
2575 kfree(bp->ntp_fltr_bmap);
2576 bp->ntp_fltr_bmap = NULL;
2577 }
2578 bp->ntp_fltr_count = 0;
2579 #endif
2580 }
2581
2582 static int bnxt_alloc_ntp_fltrs(struct bnxt *bp)
2583 {
2584 #ifdef CONFIG_RFS_ACCEL
2585 int i, rc = 0;
2586
2587 if (!(bp->flags & BNXT_FLAG_RFS))
2588 return 0;
2589
2590 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++)
2591 INIT_HLIST_HEAD(&bp->ntp_fltr_hash_tbl[i]);
2592
2593 bp->ntp_fltr_count = 0;
2594 bp->ntp_fltr_bmap = kzalloc(BITS_TO_LONGS(BNXT_NTP_FLTR_MAX_FLTR),
2595 GFP_KERNEL);
2596
2597 if (!bp->ntp_fltr_bmap)
2598 rc = -ENOMEM;
2599
2600 return rc;
2601 #else
2602 return 0;
2603 #endif
2604 }
2605
2606 static void bnxt_free_mem(struct bnxt *bp, bool irq_re_init)
2607 {
2608 bnxt_free_vnic_attributes(bp);
2609 bnxt_free_tx_rings(bp);
2610 bnxt_free_rx_rings(bp);
2611 bnxt_free_cp_rings(bp);
2612 bnxt_free_ntp_fltrs(bp, irq_re_init);
2613 if (irq_re_init) {
2614 bnxt_free_stats(bp);
2615 bnxt_free_ring_grps(bp);
2616 bnxt_free_vnics(bp);
2617 kfree(bp->tx_ring);
2618 bp->tx_ring = NULL;
2619 kfree(bp->rx_ring);
2620 bp->rx_ring = NULL;
2621 kfree(bp->bnapi);
2622 bp->bnapi = NULL;
2623 } else {
2624 bnxt_clear_ring_indices(bp);
2625 }
2626 }
2627
2628 static int bnxt_alloc_mem(struct bnxt *bp, bool irq_re_init)
2629 {
2630 int i, j, rc, size, arr_size;
2631 void *bnapi;
2632
2633 if (irq_re_init) {
2634 /* Allocate bnapi mem pointer array and mem block for
2635 * all queues
2636 */
2637 arr_size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi *) *
2638 bp->cp_nr_rings);
2639 size = L1_CACHE_ALIGN(sizeof(struct bnxt_napi));
2640 bnapi = kzalloc(arr_size + size * bp->cp_nr_rings, GFP_KERNEL);
2641 if (!bnapi)
2642 return -ENOMEM;
2643
2644 bp->bnapi = bnapi;
2645 bnapi += arr_size;
2646 for (i = 0; i < bp->cp_nr_rings; i++, bnapi += size) {
2647 bp->bnapi[i] = bnapi;
2648 bp->bnapi[i]->index = i;
2649 bp->bnapi[i]->bp = bp;
2650 }
2651
2652 bp->rx_ring = kcalloc(bp->rx_nr_rings,
2653 sizeof(struct bnxt_rx_ring_info),
2654 GFP_KERNEL);
2655 if (!bp->rx_ring)
2656 return -ENOMEM;
2657
2658 for (i = 0; i < bp->rx_nr_rings; i++) {
2659 bp->rx_ring[i].bnapi = bp->bnapi[i];
2660 bp->bnapi[i]->rx_ring = &bp->rx_ring[i];
2661 }
2662
2663 bp->tx_ring = kcalloc(bp->tx_nr_rings,
2664 sizeof(struct bnxt_tx_ring_info),
2665 GFP_KERNEL);
2666 if (!bp->tx_ring)
2667 return -ENOMEM;
2668
2669 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
2670 j = 0;
2671 else
2672 j = bp->rx_nr_rings;
2673
2674 for (i = 0; i < bp->tx_nr_rings; i++, j++) {
2675 bp->tx_ring[i].bnapi = bp->bnapi[j];
2676 bp->bnapi[j]->tx_ring = &bp->tx_ring[i];
2677 }
2678
2679 rc = bnxt_alloc_stats(bp);
2680 if (rc)
2681 goto alloc_mem_err;
2682
2683 rc = bnxt_alloc_ntp_fltrs(bp);
2684 if (rc)
2685 goto alloc_mem_err;
2686
2687 rc = bnxt_alloc_vnics(bp);
2688 if (rc)
2689 goto alloc_mem_err;
2690 }
2691
2692 bnxt_init_ring_struct(bp);
2693
2694 rc = bnxt_alloc_rx_rings(bp);
2695 if (rc)
2696 goto alloc_mem_err;
2697
2698 rc = bnxt_alloc_tx_rings(bp);
2699 if (rc)
2700 goto alloc_mem_err;
2701
2702 rc = bnxt_alloc_cp_rings(bp);
2703 if (rc)
2704 goto alloc_mem_err;
2705
2706 bp->vnic_info[0].flags |= BNXT_VNIC_RSS_FLAG | BNXT_VNIC_MCAST_FLAG |
2707 BNXT_VNIC_UCAST_FLAG;
2708 rc = bnxt_alloc_vnic_attributes(bp);
2709 if (rc)
2710 goto alloc_mem_err;
2711 return 0;
2712
2713 alloc_mem_err:
2714 bnxt_free_mem(bp, true);
2715 return rc;
2716 }
2717
2718 void bnxt_hwrm_cmd_hdr_init(struct bnxt *bp, void *request, u16 req_type,
2719 u16 cmpl_ring, u16 target_id)
2720 {
2721 struct input *req = request;
2722
2723 req->req_type = cpu_to_le16(req_type);
2724 req->cmpl_ring = cpu_to_le16(cmpl_ring);
2725 req->target_id = cpu_to_le16(target_id);
2726 req->resp_addr = cpu_to_le64(bp->hwrm_cmd_resp_dma_addr);
2727 }
2728
2729 static int bnxt_hwrm_do_send_msg(struct bnxt *bp, void *msg, u32 msg_len,
2730 int timeout, bool silent)
2731 {
2732 int i, intr_process, rc;
2733 struct input *req = msg;
2734 u32 *data = msg;
2735 __le32 *resp_len, *valid;
2736 u16 cp_ring_id, len = 0;
2737 struct hwrm_err_output *resp = bp->hwrm_cmd_resp_addr;
2738
2739 req->seq_id = cpu_to_le16(bp->hwrm_cmd_seq++);
2740 memset(resp, 0, PAGE_SIZE);
2741 cp_ring_id = le16_to_cpu(req->cmpl_ring);
2742 intr_process = (cp_ring_id == INVALID_HW_RING_ID) ? 0 : 1;
2743
2744 /* Write request msg to hwrm channel */
2745 __iowrite32_copy(bp->bar0, data, msg_len / 4);
2746
2747 for (i = msg_len; i < BNXT_HWRM_MAX_REQ_LEN; i += 4)
2748 writel(0, bp->bar0 + i);
2749
2750 /* currently supports only one outstanding message */
2751 if (intr_process)
2752 bp->hwrm_intr_seq_id = le16_to_cpu(req->seq_id);
2753
2754 /* Ring channel doorbell */
2755 writel(1, bp->bar0 + 0x100);
2756
2757 if (!timeout)
2758 timeout = DFLT_HWRM_CMD_TIMEOUT;
2759
2760 i = 0;
2761 if (intr_process) {
2762 /* Wait until hwrm response cmpl interrupt is processed */
2763 while (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID &&
2764 i++ < timeout) {
2765 usleep_range(600, 800);
2766 }
2767
2768 if (bp->hwrm_intr_seq_id != HWRM_SEQ_ID_INVALID) {
2769 netdev_err(bp->dev, "Resp cmpl intr err msg: 0x%x\n",
2770 le16_to_cpu(req->req_type));
2771 return -1;
2772 }
2773 } else {
2774 /* Check if response len is updated */
2775 resp_len = bp->hwrm_cmd_resp_addr + HWRM_RESP_LEN_OFFSET;
2776 for (i = 0; i < timeout; i++) {
2777 len = (le32_to_cpu(*resp_len) & HWRM_RESP_LEN_MASK) >>
2778 HWRM_RESP_LEN_SFT;
2779 if (len)
2780 break;
2781 usleep_range(600, 800);
2782 }
2783
2784 if (i >= timeout) {
2785 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d\n",
2786 timeout, le16_to_cpu(req->req_type),
2787 le16_to_cpu(req->seq_id), *resp_len);
2788 return -1;
2789 }
2790
2791 /* Last word of resp contains valid bit */
2792 valid = bp->hwrm_cmd_resp_addr + len - 4;
2793 for (i = 0; i < timeout; i++) {
2794 if (le32_to_cpu(*valid) & HWRM_RESP_VALID_MASK)
2795 break;
2796 usleep_range(600, 800);
2797 }
2798
2799 if (i >= timeout) {
2800 netdev_err(bp->dev, "Error (timeout: %d) msg {0x%x 0x%x} len:%d v:%d\n",
2801 timeout, le16_to_cpu(req->req_type),
2802 le16_to_cpu(req->seq_id), len, *valid);
2803 return -1;
2804 }
2805 }
2806
2807 rc = le16_to_cpu(resp->error_code);
2808 if (rc && !silent)
2809 netdev_err(bp->dev, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n",
2810 le16_to_cpu(resp->req_type),
2811 le16_to_cpu(resp->seq_id), rc);
2812 return rc;
2813 }
2814
2815 int _hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2816 {
2817 return bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, false);
2818 }
2819
2820 int hwrm_send_message(struct bnxt *bp, void *msg, u32 msg_len, int timeout)
2821 {
2822 int rc;
2823
2824 mutex_lock(&bp->hwrm_cmd_lock);
2825 rc = _hwrm_send_message(bp, msg, msg_len, timeout);
2826 mutex_unlock(&bp->hwrm_cmd_lock);
2827 return rc;
2828 }
2829
2830 int hwrm_send_message_silent(struct bnxt *bp, void *msg, u32 msg_len,
2831 int timeout)
2832 {
2833 int rc;
2834
2835 mutex_lock(&bp->hwrm_cmd_lock);
2836 rc = bnxt_hwrm_do_send_msg(bp, msg, msg_len, timeout, true);
2837 mutex_unlock(&bp->hwrm_cmd_lock);
2838 return rc;
2839 }
2840
2841 static int bnxt_hwrm_func_drv_rgtr(struct bnxt *bp)
2842 {
2843 struct hwrm_func_drv_rgtr_input req = {0};
2844 int i;
2845
2846 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_RGTR, -1, -1);
2847
2848 req.enables =
2849 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_OS_TYPE |
2850 FUNC_DRV_RGTR_REQ_ENABLES_VER |
2851 FUNC_DRV_RGTR_REQ_ENABLES_ASYNC_EVENT_FWD);
2852
2853 /* TODO: current async event fwd bits are not defined and the firmware
2854 * only checks if it is non-zero to enable async event forwarding
2855 */
2856 req.async_event_fwd[0] |= cpu_to_le32(1);
2857 req.os_type = cpu_to_le16(1);
2858 req.ver_maj = DRV_VER_MAJ;
2859 req.ver_min = DRV_VER_MIN;
2860 req.ver_upd = DRV_VER_UPD;
2861
2862 if (BNXT_PF(bp)) {
2863 DECLARE_BITMAP(vf_req_snif_bmap, 256);
2864 u32 *data = (u32 *)vf_req_snif_bmap;
2865
2866 memset(vf_req_snif_bmap, 0, sizeof(vf_req_snif_bmap));
2867 for (i = 0; i < ARRAY_SIZE(bnxt_vf_req_snif); i++)
2868 __set_bit(bnxt_vf_req_snif[i], vf_req_snif_bmap);
2869
2870 for (i = 0; i < 8; i++)
2871 req.vf_req_fwd[i] = cpu_to_le32(data[i]);
2872
2873 req.enables |=
2874 cpu_to_le32(FUNC_DRV_RGTR_REQ_ENABLES_VF_REQ_FWD);
2875 }
2876
2877 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2878 }
2879
2880 static int bnxt_hwrm_func_drv_unrgtr(struct bnxt *bp)
2881 {
2882 struct hwrm_func_drv_unrgtr_input req = {0};
2883
2884 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_DRV_UNRGTR, -1, -1);
2885 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2886 }
2887
2888 static int bnxt_hwrm_tunnel_dst_port_free(struct bnxt *bp, u8 tunnel_type)
2889 {
2890 u32 rc = 0;
2891 struct hwrm_tunnel_dst_port_free_input req = {0};
2892
2893 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_FREE, -1, -1);
2894 req.tunnel_type = tunnel_type;
2895
2896 switch (tunnel_type) {
2897 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN:
2898 req.tunnel_dst_port_id = bp->vxlan_fw_dst_port_id;
2899 break;
2900 case TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE:
2901 req.tunnel_dst_port_id = bp->nge_fw_dst_port_id;
2902 break;
2903 default:
2904 break;
2905 }
2906
2907 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2908 if (rc)
2909 netdev_err(bp->dev, "hwrm_tunnel_dst_port_free failed. rc:%d\n",
2910 rc);
2911 return rc;
2912 }
2913
2914 static int bnxt_hwrm_tunnel_dst_port_alloc(struct bnxt *bp, __be16 port,
2915 u8 tunnel_type)
2916 {
2917 u32 rc = 0;
2918 struct hwrm_tunnel_dst_port_alloc_input req = {0};
2919 struct hwrm_tunnel_dst_port_alloc_output *resp = bp->hwrm_cmd_resp_addr;
2920
2921 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_TUNNEL_DST_PORT_ALLOC, -1, -1);
2922
2923 req.tunnel_type = tunnel_type;
2924 req.tunnel_dst_port_val = port;
2925
2926 mutex_lock(&bp->hwrm_cmd_lock);
2927 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2928 if (rc) {
2929 netdev_err(bp->dev, "hwrm_tunnel_dst_port_alloc failed. rc:%d\n",
2930 rc);
2931 goto err_out;
2932 }
2933
2934 if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_VXLAN)
2935 bp->vxlan_fw_dst_port_id = resp->tunnel_dst_port_id;
2936
2937 else if (tunnel_type & TUNNEL_DST_PORT_ALLOC_REQ_TUNNEL_TYPE_GENEVE)
2938 bp->nge_fw_dst_port_id = resp->tunnel_dst_port_id;
2939 err_out:
2940 mutex_unlock(&bp->hwrm_cmd_lock);
2941 return rc;
2942 }
2943
2944 static int bnxt_hwrm_cfa_l2_set_rx_mask(struct bnxt *bp, u16 vnic_id)
2945 {
2946 struct hwrm_cfa_l2_set_rx_mask_input req = {0};
2947 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
2948
2949 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_SET_RX_MASK, -1, -1);
2950 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
2951
2952 req.num_mc_entries = cpu_to_le32(vnic->mc_list_count);
2953 req.mc_tbl_addr = cpu_to_le64(vnic->mc_list_mapping);
2954 req.mask = cpu_to_le32(vnic->rx_mask);
2955 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2956 }
2957
2958 #ifdef CONFIG_RFS_ACCEL
2959 static int bnxt_hwrm_cfa_ntuple_filter_free(struct bnxt *bp,
2960 struct bnxt_ntuple_filter *fltr)
2961 {
2962 struct hwrm_cfa_ntuple_filter_free_input req = {0};
2963
2964 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_FREE, -1, -1);
2965 req.ntuple_filter_id = fltr->filter_id;
2966 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
2967 }
2968
2969 #define BNXT_NTP_FLTR_FLAGS \
2970 (CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_L2_FILTER_ID | \
2971 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_ETHERTYPE | \
2972 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_MACADDR | \
2973 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IPADDR_TYPE | \
2974 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR | \
2975 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_IPADDR_MASK | \
2976 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR | \
2977 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_IPADDR_MASK | \
2978 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_IP_PROTOCOL | \
2979 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT | \
2980 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_SRC_PORT_MASK | \
2981 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT | \
2982 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_PORT_MASK | \
2983 CFA_NTUPLE_FILTER_ALLOC_REQ_ENABLES_DST_ID)
2984
2985 static int bnxt_hwrm_cfa_ntuple_filter_alloc(struct bnxt *bp,
2986 struct bnxt_ntuple_filter *fltr)
2987 {
2988 int rc = 0;
2989 struct hwrm_cfa_ntuple_filter_alloc_input req = {0};
2990 struct hwrm_cfa_ntuple_filter_alloc_output *resp =
2991 bp->hwrm_cmd_resp_addr;
2992 struct flow_keys *keys = &fltr->fkeys;
2993 struct bnxt_vnic_info *vnic = &bp->vnic_info[fltr->rxq + 1];
2994
2995 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_NTUPLE_FILTER_ALLOC, -1, -1);
2996 req.l2_filter_id = bp->vnic_info[0].fw_l2_filter_id[0];
2997
2998 req.enables = cpu_to_le32(BNXT_NTP_FLTR_FLAGS);
2999
3000 req.ethertype = htons(ETH_P_IP);
3001 memcpy(req.src_macaddr, fltr->src_mac_addr, ETH_ALEN);
3002 req.ip_addr_type = CFA_NTUPLE_FILTER_ALLOC_REQ_IP_ADDR_TYPE_IPV4;
3003 req.ip_protocol = keys->basic.ip_proto;
3004
3005 req.src_ipaddr[0] = keys->addrs.v4addrs.src;
3006 req.src_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3007 req.dst_ipaddr[0] = keys->addrs.v4addrs.dst;
3008 req.dst_ipaddr_mask[0] = cpu_to_be32(0xffffffff);
3009
3010 req.src_port = keys->ports.src;
3011 req.src_port_mask = cpu_to_be16(0xffff);
3012 req.dst_port = keys->ports.dst;
3013 req.dst_port_mask = cpu_to_be16(0xffff);
3014
3015 req.dst_id = cpu_to_le16(vnic->fw_vnic_id);
3016 mutex_lock(&bp->hwrm_cmd_lock);
3017 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3018 if (!rc)
3019 fltr->filter_id = resp->ntuple_filter_id;
3020 mutex_unlock(&bp->hwrm_cmd_lock);
3021 return rc;
3022 }
3023 #endif
3024
3025 static int bnxt_hwrm_set_vnic_filter(struct bnxt *bp, u16 vnic_id, u16 idx,
3026 u8 *mac_addr)
3027 {
3028 u32 rc = 0;
3029 struct hwrm_cfa_l2_filter_alloc_input req = {0};
3030 struct hwrm_cfa_l2_filter_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3031
3032 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_ALLOC, -1, -1);
3033 req.flags = cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_FLAGS_PATH_RX |
3034 CFA_L2_FILTER_ALLOC_REQ_FLAGS_OUTERMOST);
3035 req.dst_id = cpu_to_le16(bp->vnic_info[vnic_id].fw_vnic_id);
3036 req.enables =
3037 cpu_to_le32(CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR |
3038 CFA_L2_FILTER_ALLOC_REQ_ENABLES_DST_ID |
3039 CFA_L2_FILTER_ALLOC_REQ_ENABLES_L2_ADDR_MASK);
3040 memcpy(req.l2_addr, mac_addr, ETH_ALEN);
3041 req.l2_addr_mask[0] = 0xff;
3042 req.l2_addr_mask[1] = 0xff;
3043 req.l2_addr_mask[2] = 0xff;
3044 req.l2_addr_mask[3] = 0xff;
3045 req.l2_addr_mask[4] = 0xff;
3046 req.l2_addr_mask[5] = 0xff;
3047
3048 mutex_lock(&bp->hwrm_cmd_lock);
3049 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3050 if (!rc)
3051 bp->vnic_info[vnic_id].fw_l2_filter_id[idx] =
3052 resp->l2_filter_id;
3053 mutex_unlock(&bp->hwrm_cmd_lock);
3054 return rc;
3055 }
3056
3057 static int bnxt_hwrm_clear_vnic_filter(struct bnxt *bp)
3058 {
3059 u16 i, j, num_of_vnics = 1; /* only vnic 0 supported */
3060 int rc = 0;
3061
3062 /* Any associated ntuple filters will also be cleared by firmware. */
3063 mutex_lock(&bp->hwrm_cmd_lock);
3064 for (i = 0; i < num_of_vnics; i++) {
3065 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3066
3067 for (j = 0; j < vnic->uc_filter_count; j++) {
3068 struct hwrm_cfa_l2_filter_free_input req = {0};
3069
3070 bnxt_hwrm_cmd_hdr_init(bp, &req,
3071 HWRM_CFA_L2_FILTER_FREE, -1, -1);
3072
3073 req.l2_filter_id = vnic->fw_l2_filter_id[j];
3074
3075 rc = _hwrm_send_message(bp, &req, sizeof(req),
3076 HWRM_CMD_TIMEOUT);
3077 }
3078 vnic->uc_filter_count = 0;
3079 }
3080 mutex_unlock(&bp->hwrm_cmd_lock);
3081
3082 return rc;
3083 }
3084
3085 static int bnxt_hwrm_vnic_set_tpa(struct bnxt *bp, u16 vnic_id, u32 tpa_flags)
3086 {
3087 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3088 struct hwrm_vnic_tpa_cfg_input req = {0};
3089
3090 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_TPA_CFG, -1, -1);
3091
3092 if (tpa_flags) {
3093 u16 mss = bp->dev->mtu - 40;
3094 u32 nsegs, n, segs = 0, flags;
3095
3096 flags = VNIC_TPA_CFG_REQ_FLAGS_TPA |
3097 VNIC_TPA_CFG_REQ_FLAGS_ENCAP_TPA |
3098 VNIC_TPA_CFG_REQ_FLAGS_RSC_WND_UPDATE |
3099 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_ECN |
3100 VNIC_TPA_CFG_REQ_FLAGS_AGG_WITH_SAME_GRE_SEQ;
3101 if (tpa_flags & BNXT_FLAG_GRO)
3102 flags |= VNIC_TPA_CFG_REQ_FLAGS_GRO;
3103
3104 req.flags = cpu_to_le32(flags);
3105
3106 req.enables =
3107 cpu_to_le32(VNIC_TPA_CFG_REQ_ENABLES_MAX_AGG_SEGS |
3108 VNIC_TPA_CFG_REQ_ENABLES_MAX_AGGS |
3109 VNIC_TPA_CFG_REQ_ENABLES_MIN_AGG_LEN);
3110
3111 /* Number of segs are log2 units, and first packet is not
3112 * included as part of this units.
3113 */
3114 if (mss <= BNXT_RX_PAGE_SIZE) {
3115 n = BNXT_RX_PAGE_SIZE / mss;
3116 nsegs = (MAX_SKB_FRAGS - 1) * n;
3117 } else {
3118 n = mss / BNXT_RX_PAGE_SIZE;
3119 if (mss & (BNXT_RX_PAGE_SIZE - 1))
3120 n++;
3121 nsegs = (MAX_SKB_FRAGS - n) / n;
3122 }
3123
3124 segs = ilog2(nsegs);
3125 req.max_agg_segs = cpu_to_le16(segs);
3126 req.max_aggs = cpu_to_le16(VNIC_TPA_CFG_REQ_MAX_AGGS_MAX);
3127
3128 req.min_agg_len = cpu_to_le32(512);
3129 }
3130 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3131
3132 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3133 }
3134
3135 static int bnxt_hwrm_vnic_set_rss(struct bnxt *bp, u16 vnic_id, bool set_rss)
3136 {
3137 u32 i, j, max_rings;
3138 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3139 struct hwrm_vnic_rss_cfg_input req = {0};
3140
3141 if (vnic->fw_rss_cos_lb_ctx == INVALID_HW_RING_ID)
3142 return 0;
3143
3144 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_CFG, -1, -1);
3145 if (set_rss) {
3146 vnic->hash_type = BNXT_RSS_HASH_TYPE_FLAG_IPV4 |
3147 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV4 |
3148 BNXT_RSS_HASH_TYPE_FLAG_IPV6 |
3149 BNXT_RSS_HASH_TYPE_FLAG_TCP_IPV6;
3150
3151 req.hash_type = cpu_to_le32(vnic->hash_type);
3152
3153 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3154 max_rings = bp->rx_nr_rings;
3155 else
3156 max_rings = 1;
3157
3158 /* Fill the RSS indirection table with ring group ids */
3159 for (i = 0, j = 0; i < HW_HASH_INDEX_SIZE; i++, j++) {
3160 if (j == max_rings)
3161 j = 0;
3162 vnic->rss_table[i] = cpu_to_le16(vnic->fw_grp_ids[j]);
3163 }
3164
3165 req.ring_grp_tbl_addr = cpu_to_le64(vnic->rss_table_dma_addr);
3166 req.hash_key_tbl_addr =
3167 cpu_to_le64(vnic->rss_hash_key_dma_addr);
3168 }
3169 req.rss_ctx_idx = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3170 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3171 }
3172
3173 static int bnxt_hwrm_vnic_set_hds(struct bnxt *bp, u16 vnic_id)
3174 {
3175 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3176 struct hwrm_vnic_plcmodes_cfg_input req = {0};
3177
3178 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_PLCMODES_CFG, -1, -1);
3179 req.flags = cpu_to_le32(VNIC_PLCMODES_CFG_REQ_FLAGS_JUMBO_PLACEMENT |
3180 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV4 |
3181 VNIC_PLCMODES_CFG_REQ_FLAGS_HDS_IPV6);
3182 req.enables =
3183 cpu_to_le32(VNIC_PLCMODES_CFG_REQ_ENABLES_JUMBO_THRESH_VALID |
3184 VNIC_PLCMODES_CFG_REQ_ENABLES_HDS_THRESHOLD_VALID);
3185 /* thresholds not implemented in firmware yet */
3186 req.jumbo_thresh = cpu_to_le16(bp->rx_copy_thresh);
3187 req.hds_threshold = cpu_to_le16(bp->rx_copy_thresh);
3188 req.vnic_id = cpu_to_le32(vnic->fw_vnic_id);
3189 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3190 }
3191
3192 static void bnxt_hwrm_vnic_ctx_free_one(struct bnxt *bp, u16 vnic_id)
3193 {
3194 struct hwrm_vnic_rss_cos_lb_ctx_free_input req = {0};
3195
3196 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_FREE, -1, -1);
3197 req.rss_cos_lb_ctx_id =
3198 cpu_to_le16(bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx);
3199
3200 hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3201 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3202 }
3203
3204 static void bnxt_hwrm_vnic_ctx_free(struct bnxt *bp)
3205 {
3206 int i;
3207
3208 for (i = 0; i < bp->nr_vnics; i++) {
3209 struct bnxt_vnic_info *vnic = &bp->vnic_info[i];
3210
3211 if (vnic->fw_rss_cos_lb_ctx != INVALID_HW_RING_ID)
3212 bnxt_hwrm_vnic_ctx_free_one(bp, i);
3213 }
3214 bp->rsscos_nr_ctxs = 0;
3215 }
3216
3217 static int bnxt_hwrm_vnic_ctx_alloc(struct bnxt *bp, u16 vnic_id)
3218 {
3219 int rc;
3220 struct hwrm_vnic_rss_cos_lb_ctx_alloc_input req = {0};
3221 struct hwrm_vnic_rss_cos_lb_ctx_alloc_output *resp =
3222 bp->hwrm_cmd_resp_addr;
3223
3224 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_RSS_COS_LB_CTX_ALLOC, -1,
3225 -1);
3226
3227 mutex_lock(&bp->hwrm_cmd_lock);
3228 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3229 if (!rc)
3230 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx =
3231 le16_to_cpu(resp->rss_cos_lb_ctx_id);
3232 mutex_unlock(&bp->hwrm_cmd_lock);
3233
3234 return rc;
3235 }
3236
3237 static int bnxt_hwrm_vnic_cfg(struct bnxt *bp, u16 vnic_id)
3238 {
3239 unsigned int ring = 0, grp_idx;
3240 struct bnxt_vnic_info *vnic = &bp->vnic_info[vnic_id];
3241 struct hwrm_vnic_cfg_input req = {0};
3242
3243 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_CFG, -1, -1);
3244 /* Only RSS support for now TBD: COS & LB */
3245 req.enables = cpu_to_le32(VNIC_CFG_REQ_ENABLES_DFLT_RING_GRP |
3246 VNIC_CFG_REQ_ENABLES_RSS_RULE);
3247 req.rss_rule = cpu_to_le16(vnic->fw_rss_cos_lb_ctx);
3248 req.cos_rule = cpu_to_le16(0xffff);
3249 if (vnic->flags & BNXT_VNIC_RSS_FLAG)
3250 ring = 0;
3251 else if (vnic->flags & BNXT_VNIC_RFS_FLAG)
3252 ring = vnic_id - 1;
3253
3254 grp_idx = bp->rx_ring[ring].bnapi->index;
3255 req.vnic_id = cpu_to_le16(vnic->fw_vnic_id);
3256 req.dflt_ring_grp = cpu_to_le16(bp->grp_info[grp_idx].fw_grp_id);
3257
3258 req.lb_rule = cpu_to_le16(0xffff);
3259 req.mru = cpu_to_le16(bp->dev->mtu + ETH_HLEN + ETH_FCS_LEN +
3260 VLAN_HLEN);
3261
3262 if (bp->flags & BNXT_FLAG_STRIP_VLAN)
3263 req.flags |= cpu_to_le32(VNIC_CFG_REQ_FLAGS_VLAN_STRIP_MODE);
3264
3265 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3266 }
3267
3268 static int bnxt_hwrm_vnic_free_one(struct bnxt *bp, u16 vnic_id)
3269 {
3270 u32 rc = 0;
3271
3272 if (bp->vnic_info[vnic_id].fw_vnic_id != INVALID_HW_RING_ID) {
3273 struct hwrm_vnic_free_input req = {0};
3274
3275 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_FREE, -1, -1);
3276 req.vnic_id =
3277 cpu_to_le32(bp->vnic_info[vnic_id].fw_vnic_id);
3278
3279 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3280 if (rc)
3281 return rc;
3282 bp->vnic_info[vnic_id].fw_vnic_id = INVALID_HW_RING_ID;
3283 }
3284 return rc;
3285 }
3286
3287 static void bnxt_hwrm_vnic_free(struct bnxt *bp)
3288 {
3289 u16 i;
3290
3291 for (i = 0; i < bp->nr_vnics; i++)
3292 bnxt_hwrm_vnic_free_one(bp, i);
3293 }
3294
3295 static int bnxt_hwrm_vnic_alloc(struct bnxt *bp, u16 vnic_id,
3296 unsigned int start_rx_ring_idx,
3297 unsigned int nr_rings)
3298 {
3299 int rc = 0;
3300 unsigned int i, j, grp_idx, end_idx = start_rx_ring_idx + nr_rings;
3301 struct hwrm_vnic_alloc_input req = {0};
3302 struct hwrm_vnic_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3303
3304 /* map ring groups to this vnic */
3305 for (i = start_rx_ring_idx, j = 0; i < end_idx; i++, j++) {
3306 grp_idx = bp->rx_ring[i].bnapi->index;
3307 if (bp->grp_info[grp_idx].fw_grp_id == INVALID_HW_RING_ID) {
3308 netdev_err(bp->dev, "Not enough ring groups avail:%x req:%x\n",
3309 j, nr_rings);
3310 break;
3311 }
3312 bp->vnic_info[vnic_id].fw_grp_ids[j] =
3313 bp->grp_info[grp_idx].fw_grp_id;
3314 }
3315
3316 bp->vnic_info[vnic_id].fw_rss_cos_lb_ctx = INVALID_HW_RING_ID;
3317 if (vnic_id == 0)
3318 req.flags = cpu_to_le32(VNIC_ALLOC_REQ_FLAGS_DEFAULT);
3319
3320 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VNIC_ALLOC, -1, -1);
3321
3322 mutex_lock(&bp->hwrm_cmd_lock);
3323 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3324 if (!rc)
3325 bp->vnic_info[vnic_id].fw_vnic_id = le32_to_cpu(resp->vnic_id);
3326 mutex_unlock(&bp->hwrm_cmd_lock);
3327 return rc;
3328 }
3329
3330 static int bnxt_hwrm_ring_grp_alloc(struct bnxt *bp)
3331 {
3332 u16 i;
3333 u32 rc = 0;
3334
3335 mutex_lock(&bp->hwrm_cmd_lock);
3336 for (i = 0; i < bp->rx_nr_rings; i++) {
3337 struct hwrm_ring_grp_alloc_input req = {0};
3338 struct hwrm_ring_grp_alloc_output *resp =
3339 bp->hwrm_cmd_resp_addr;
3340 unsigned int grp_idx = bp->rx_ring[i].bnapi->index;
3341
3342 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_ALLOC, -1, -1);
3343
3344 req.cr = cpu_to_le16(bp->grp_info[grp_idx].cp_fw_ring_id);
3345 req.rr = cpu_to_le16(bp->grp_info[grp_idx].rx_fw_ring_id);
3346 req.ar = cpu_to_le16(bp->grp_info[grp_idx].agg_fw_ring_id);
3347 req.sc = cpu_to_le16(bp->grp_info[grp_idx].fw_stats_ctx);
3348
3349 rc = _hwrm_send_message(bp, &req, sizeof(req),
3350 HWRM_CMD_TIMEOUT);
3351 if (rc)
3352 break;
3353
3354 bp->grp_info[grp_idx].fw_grp_id =
3355 le32_to_cpu(resp->ring_group_id);
3356 }
3357 mutex_unlock(&bp->hwrm_cmd_lock);
3358 return rc;
3359 }
3360
3361 static int bnxt_hwrm_ring_grp_free(struct bnxt *bp)
3362 {
3363 u16 i;
3364 u32 rc = 0;
3365 struct hwrm_ring_grp_free_input req = {0};
3366
3367 if (!bp->grp_info)
3368 return 0;
3369
3370 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_GRP_FREE, -1, -1);
3371
3372 mutex_lock(&bp->hwrm_cmd_lock);
3373 for (i = 0; i < bp->cp_nr_rings; i++) {
3374 if (bp->grp_info[i].fw_grp_id == INVALID_HW_RING_ID)
3375 continue;
3376 req.ring_group_id =
3377 cpu_to_le32(bp->grp_info[i].fw_grp_id);
3378
3379 rc = _hwrm_send_message(bp, &req, sizeof(req),
3380 HWRM_CMD_TIMEOUT);
3381 if (rc)
3382 break;
3383 bp->grp_info[i].fw_grp_id = INVALID_HW_RING_ID;
3384 }
3385 mutex_unlock(&bp->hwrm_cmd_lock);
3386 return rc;
3387 }
3388
3389 static int hwrm_ring_alloc_send_msg(struct bnxt *bp,
3390 struct bnxt_ring_struct *ring,
3391 u32 ring_type, u32 map_index,
3392 u32 stats_ctx_id)
3393 {
3394 int rc = 0, err = 0;
3395 struct hwrm_ring_alloc_input req = {0};
3396 struct hwrm_ring_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3397 u16 ring_id;
3398
3399 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_ALLOC, -1, -1);
3400
3401 req.enables = 0;
3402 if (ring->nr_pages > 1) {
3403 req.page_tbl_addr = cpu_to_le64(ring->pg_tbl_map);
3404 /* Page size is in log2 units */
3405 req.page_size = BNXT_PAGE_SHIFT;
3406 req.page_tbl_depth = 1;
3407 } else {
3408 req.page_tbl_addr = cpu_to_le64(ring->dma_arr[0]);
3409 }
3410 req.fbo = 0;
3411 /* Association of ring index with doorbell index and MSIX number */
3412 req.logical_id = cpu_to_le16(map_index);
3413
3414 switch (ring_type) {
3415 case HWRM_RING_ALLOC_TX:
3416 req.ring_type = RING_ALLOC_REQ_RING_TYPE_TX;
3417 /* Association of transmit ring with completion ring */
3418 req.cmpl_ring_id =
3419 cpu_to_le16(bp->grp_info[map_index].cp_fw_ring_id);
3420 req.length = cpu_to_le32(bp->tx_ring_mask + 1);
3421 req.stat_ctx_id = cpu_to_le32(stats_ctx_id);
3422 req.queue_id = cpu_to_le16(ring->queue_id);
3423 break;
3424 case HWRM_RING_ALLOC_RX:
3425 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3426 req.length = cpu_to_le32(bp->rx_ring_mask + 1);
3427 break;
3428 case HWRM_RING_ALLOC_AGG:
3429 req.ring_type = RING_ALLOC_REQ_RING_TYPE_RX;
3430 req.length = cpu_to_le32(bp->rx_agg_ring_mask + 1);
3431 break;
3432 case HWRM_RING_ALLOC_CMPL:
3433 req.ring_type = RING_ALLOC_REQ_RING_TYPE_CMPL;
3434 req.length = cpu_to_le32(bp->cp_ring_mask + 1);
3435 if (bp->flags & BNXT_FLAG_USING_MSIX)
3436 req.int_mode = RING_ALLOC_REQ_INT_MODE_MSIX;
3437 break;
3438 default:
3439 netdev_err(bp->dev, "hwrm alloc invalid ring type %d\n",
3440 ring_type);
3441 return -1;
3442 }
3443
3444 mutex_lock(&bp->hwrm_cmd_lock);
3445 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3446 err = le16_to_cpu(resp->error_code);
3447 ring_id = le16_to_cpu(resp->ring_id);
3448 mutex_unlock(&bp->hwrm_cmd_lock);
3449
3450 if (rc || err) {
3451 switch (ring_type) {
3452 case RING_FREE_REQ_RING_TYPE_CMPL:
3453 netdev_err(bp->dev, "hwrm_ring_alloc cp failed. rc:%x err:%x\n",
3454 rc, err);
3455 return -1;
3456
3457 case RING_FREE_REQ_RING_TYPE_RX:
3458 netdev_err(bp->dev, "hwrm_ring_alloc rx failed. rc:%x err:%x\n",
3459 rc, err);
3460 return -1;
3461
3462 case RING_FREE_REQ_RING_TYPE_TX:
3463 netdev_err(bp->dev, "hwrm_ring_alloc tx failed. rc:%x err:%x\n",
3464 rc, err);
3465 return -1;
3466
3467 default:
3468 netdev_err(bp->dev, "Invalid ring\n");
3469 return -1;
3470 }
3471 }
3472 ring->fw_ring_id = ring_id;
3473 return rc;
3474 }
3475
3476 static int bnxt_hwrm_ring_alloc(struct bnxt *bp)
3477 {
3478 int i, rc = 0;
3479
3480 for (i = 0; i < bp->cp_nr_rings; i++) {
3481 struct bnxt_napi *bnapi = bp->bnapi[i];
3482 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3483 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3484
3485 cpr->cp_doorbell = bp->bar1 + i * 0x80;
3486 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_CMPL, i,
3487 INVALID_STATS_CTX_ID);
3488 if (rc)
3489 goto err_out;
3490 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
3491 bp->grp_info[i].cp_fw_ring_id = ring->fw_ring_id;
3492 }
3493
3494 for (i = 0; i < bp->tx_nr_rings; i++) {
3495 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3496 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3497 u32 map_idx = txr->bnapi->index;
3498 u16 fw_stats_ctx = bp->grp_info[map_idx].fw_stats_ctx;
3499
3500 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_TX,
3501 map_idx, fw_stats_ctx);
3502 if (rc)
3503 goto err_out;
3504 txr->tx_doorbell = bp->bar1 + map_idx * 0x80;
3505 }
3506
3507 for (i = 0; i < bp->rx_nr_rings; i++) {
3508 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3509 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3510 u32 map_idx = rxr->bnapi->index;
3511
3512 rc = hwrm_ring_alloc_send_msg(bp, ring, HWRM_RING_ALLOC_RX,
3513 map_idx, INVALID_STATS_CTX_ID);
3514 if (rc)
3515 goto err_out;
3516 rxr->rx_doorbell = bp->bar1 + map_idx * 0x80;
3517 writel(DB_KEY_RX | rxr->rx_prod, rxr->rx_doorbell);
3518 bp->grp_info[map_idx].rx_fw_ring_id = ring->fw_ring_id;
3519 }
3520
3521 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
3522 for (i = 0; i < bp->rx_nr_rings; i++) {
3523 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3524 struct bnxt_ring_struct *ring =
3525 &rxr->rx_agg_ring_struct;
3526 u32 grp_idx = rxr->bnapi->index;
3527 u32 map_idx = grp_idx + bp->rx_nr_rings;
3528
3529 rc = hwrm_ring_alloc_send_msg(bp, ring,
3530 HWRM_RING_ALLOC_AGG,
3531 map_idx,
3532 INVALID_STATS_CTX_ID);
3533 if (rc)
3534 goto err_out;
3535
3536 rxr->rx_agg_doorbell = bp->bar1 + map_idx * 0x80;
3537 writel(DB_KEY_RX | rxr->rx_agg_prod,
3538 rxr->rx_agg_doorbell);
3539 bp->grp_info[grp_idx].agg_fw_ring_id = ring->fw_ring_id;
3540 }
3541 }
3542 err_out:
3543 return rc;
3544 }
3545
3546 static int hwrm_ring_free_send_msg(struct bnxt *bp,
3547 struct bnxt_ring_struct *ring,
3548 u32 ring_type, int cmpl_ring_id)
3549 {
3550 int rc;
3551 struct hwrm_ring_free_input req = {0};
3552 struct hwrm_ring_free_output *resp = bp->hwrm_cmd_resp_addr;
3553 u16 error_code;
3554
3555 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_RING_FREE, cmpl_ring_id, -1);
3556 req.ring_type = ring_type;
3557 req.ring_id = cpu_to_le16(ring->fw_ring_id);
3558
3559 mutex_lock(&bp->hwrm_cmd_lock);
3560 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3561 error_code = le16_to_cpu(resp->error_code);
3562 mutex_unlock(&bp->hwrm_cmd_lock);
3563
3564 if (rc || error_code) {
3565 switch (ring_type) {
3566 case RING_FREE_REQ_RING_TYPE_CMPL:
3567 netdev_err(bp->dev, "hwrm_ring_free cp failed. rc:%d\n",
3568 rc);
3569 return rc;
3570 case RING_FREE_REQ_RING_TYPE_RX:
3571 netdev_err(bp->dev, "hwrm_ring_free rx failed. rc:%d\n",
3572 rc);
3573 return rc;
3574 case RING_FREE_REQ_RING_TYPE_TX:
3575 netdev_err(bp->dev, "hwrm_ring_free tx failed. rc:%d\n",
3576 rc);
3577 return rc;
3578 default:
3579 netdev_err(bp->dev, "Invalid ring\n");
3580 return -1;
3581 }
3582 }
3583 return 0;
3584 }
3585
3586 static void bnxt_hwrm_ring_free(struct bnxt *bp, bool close_path)
3587 {
3588 int i;
3589
3590 if (!bp->bnapi)
3591 return;
3592
3593 for (i = 0; i < bp->tx_nr_rings; i++) {
3594 struct bnxt_tx_ring_info *txr = &bp->tx_ring[i];
3595 struct bnxt_ring_struct *ring = &txr->tx_ring_struct;
3596 u32 grp_idx = txr->bnapi->index;
3597 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3598
3599 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3600 hwrm_ring_free_send_msg(bp, ring,
3601 RING_FREE_REQ_RING_TYPE_TX,
3602 close_path ? cmpl_ring_id :
3603 INVALID_HW_RING_ID);
3604 ring->fw_ring_id = INVALID_HW_RING_ID;
3605 }
3606 }
3607
3608 for (i = 0; i < bp->rx_nr_rings; i++) {
3609 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3610 struct bnxt_ring_struct *ring = &rxr->rx_ring_struct;
3611 u32 grp_idx = rxr->bnapi->index;
3612 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3613
3614 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3615 hwrm_ring_free_send_msg(bp, ring,
3616 RING_FREE_REQ_RING_TYPE_RX,
3617 close_path ? cmpl_ring_id :
3618 INVALID_HW_RING_ID);
3619 ring->fw_ring_id = INVALID_HW_RING_ID;
3620 bp->grp_info[grp_idx].rx_fw_ring_id =
3621 INVALID_HW_RING_ID;
3622 }
3623 }
3624
3625 for (i = 0; i < bp->rx_nr_rings; i++) {
3626 struct bnxt_rx_ring_info *rxr = &bp->rx_ring[i];
3627 struct bnxt_ring_struct *ring = &rxr->rx_agg_ring_struct;
3628 u32 grp_idx = rxr->bnapi->index;
3629 u32 cmpl_ring_id = bp->grp_info[grp_idx].cp_fw_ring_id;
3630
3631 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3632 hwrm_ring_free_send_msg(bp, ring,
3633 RING_FREE_REQ_RING_TYPE_RX,
3634 close_path ? cmpl_ring_id :
3635 INVALID_HW_RING_ID);
3636 ring->fw_ring_id = INVALID_HW_RING_ID;
3637 bp->grp_info[grp_idx].agg_fw_ring_id =
3638 INVALID_HW_RING_ID;
3639 }
3640 }
3641
3642 for (i = 0; i < bp->cp_nr_rings; i++) {
3643 struct bnxt_napi *bnapi = bp->bnapi[i];
3644 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3645 struct bnxt_ring_struct *ring = &cpr->cp_ring_struct;
3646
3647 if (ring->fw_ring_id != INVALID_HW_RING_ID) {
3648 hwrm_ring_free_send_msg(bp, ring,
3649 RING_FREE_REQ_RING_TYPE_CMPL,
3650 INVALID_HW_RING_ID);
3651 ring->fw_ring_id = INVALID_HW_RING_ID;
3652 bp->grp_info[i].cp_fw_ring_id = INVALID_HW_RING_ID;
3653 }
3654 }
3655 }
3656
3657 static void bnxt_hwrm_set_coal_params(struct bnxt *bp, u32 max_bufs,
3658 u32 buf_tmrs, u16 flags,
3659 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input *req)
3660 {
3661 req->flags = cpu_to_le16(flags);
3662 req->num_cmpl_dma_aggr = cpu_to_le16((u16)max_bufs);
3663 req->num_cmpl_dma_aggr_during_int = cpu_to_le16(max_bufs >> 16);
3664 req->cmpl_aggr_dma_tmr = cpu_to_le16((u16)buf_tmrs);
3665 req->cmpl_aggr_dma_tmr_during_int = cpu_to_le16(buf_tmrs >> 16);
3666 /* Minimum time between 2 interrupts set to buf_tmr x 2 */
3667 req->int_lat_tmr_min = cpu_to_le16((u16)buf_tmrs * 2);
3668 req->int_lat_tmr_max = cpu_to_le16((u16)buf_tmrs * 4);
3669 req->num_cmpl_aggr_int = cpu_to_le16((u16)max_bufs * 4);
3670 }
3671
3672 int bnxt_hwrm_set_coal(struct bnxt *bp)
3673 {
3674 int i, rc = 0;
3675 struct hwrm_ring_cmpl_ring_cfg_aggint_params_input req_rx = {0},
3676 req_tx = {0}, *req;
3677 u16 max_buf, max_buf_irq;
3678 u16 buf_tmr, buf_tmr_irq;
3679 u32 flags;
3680
3681 bnxt_hwrm_cmd_hdr_init(bp, &req_rx,
3682 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3683 bnxt_hwrm_cmd_hdr_init(bp, &req_tx,
3684 HWRM_RING_CMPL_RING_CFG_AGGINT_PARAMS, -1, -1);
3685
3686 /* Each rx completion (2 records) should be DMAed immediately.
3687 * DMA 1/4 of the completion buffers at a time.
3688 */
3689 max_buf = min_t(u16, bp->rx_coal_bufs / 4, 2);
3690 /* max_buf must not be zero */
3691 max_buf = clamp_t(u16, max_buf, 1, 63);
3692 max_buf_irq = clamp_t(u16, bp->rx_coal_bufs_irq, 1, 63);
3693 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks);
3694 /* buf timer set to 1/4 of interrupt timer */
3695 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3696 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->rx_coal_ticks_irq);
3697 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3698
3699 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3700
3701 /* RING_IDLE generates more IRQs for lower latency. Enable it only
3702 * if coal_ticks is less than 25 us.
3703 */
3704 if (bp->rx_coal_ticks < 25)
3705 flags |= RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_RING_IDLE;
3706
3707 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3708 buf_tmr_irq << 16 | buf_tmr, flags, &req_rx);
3709
3710 /* max_buf must not be zero */
3711 max_buf = clamp_t(u16, bp->tx_coal_bufs, 1, 63);
3712 max_buf_irq = clamp_t(u16, bp->tx_coal_bufs_irq, 1, 63);
3713 buf_tmr = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks);
3714 /* buf timer set to 1/4 of interrupt timer */
3715 buf_tmr = max_t(u16, buf_tmr / 4, 1);
3716 buf_tmr_irq = BNXT_USEC_TO_COAL_TIMER(bp->tx_coal_ticks_irq);
3717 buf_tmr_irq = max_t(u16, buf_tmr_irq, 1);
3718
3719 flags = RING_CMPL_RING_CFG_AGGINT_PARAMS_REQ_FLAGS_TIMER_RESET;
3720 bnxt_hwrm_set_coal_params(bp, max_buf_irq << 16 | max_buf,
3721 buf_tmr_irq << 16 | buf_tmr, flags, &req_tx);
3722
3723 mutex_lock(&bp->hwrm_cmd_lock);
3724 for (i = 0; i < bp->cp_nr_rings; i++) {
3725 struct bnxt_napi *bnapi = bp->bnapi[i];
3726
3727 req = &req_rx;
3728 if (!bnapi->rx_ring)
3729 req = &req_tx;
3730 req->ring_id = cpu_to_le16(bp->grp_info[i].cp_fw_ring_id);
3731
3732 rc = _hwrm_send_message(bp, req, sizeof(*req),
3733 HWRM_CMD_TIMEOUT);
3734 if (rc)
3735 break;
3736 }
3737 mutex_unlock(&bp->hwrm_cmd_lock);
3738 return rc;
3739 }
3740
3741 static int bnxt_hwrm_stat_ctx_free(struct bnxt *bp)
3742 {
3743 int rc = 0, i;
3744 struct hwrm_stat_ctx_free_input req = {0};
3745
3746 if (!bp->bnapi)
3747 return 0;
3748
3749 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_FREE, -1, -1);
3750
3751 mutex_lock(&bp->hwrm_cmd_lock);
3752 for (i = 0; i < bp->cp_nr_rings; i++) {
3753 struct bnxt_napi *bnapi = bp->bnapi[i];
3754 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3755
3756 if (cpr->hw_stats_ctx_id != INVALID_STATS_CTX_ID) {
3757 req.stat_ctx_id = cpu_to_le32(cpr->hw_stats_ctx_id);
3758
3759 rc = _hwrm_send_message(bp, &req, sizeof(req),
3760 HWRM_CMD_TIMEOUT);
3761 if (rc)
3762 break;
3763
3764 cpr->hw_stats_ctx_id = INVALID_STATS_CTX_ID;
3765 }
3766 }
3767 mutex_unlock(&bp->hwrm_cmd_lock);
3768 return rc;
3769 }
3770
3771 static int bnxt_hwrm_stat_ctx_alloc(struct bnxt *bp)
3772 {
3773 int rc = 0, i;
3774 struct hwrm_stat_ctx_alloc_input req = {0};
3775 struct hwrm_stat_ctx_alloc_output *resp = bp->hwrm_cmd_resp_addr;
3776
3777 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_STAT_CTX_ALLOC, -1, -1);
3778
3779 req.update_period_ms = cpu_to_le32(1000);
3780
3781 mutex_lock(&bp->hwrm_cmd_lock);
3782 for (i = 0; i < bp->cp_nr_rings; i++) {
3783 struct bnxt_napi *bnapi = bp->bnapi[i];
3784 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
3785
3786 req.stats_dma_addr = cpu_to_le64(cpr->hw_stats_map);
3787
3788 rc = _hwrm_send_message(bp, &req, sizeof(req),
3789 HWRM_CMD_TIMEOUT);
3790 if (rc)
3791 break;
3792
3793 cpr->hw_stats_ctx_id = le32_to_cpu(resp->stat_ctx_id);
3794
3795 bp->grp_info[i].fw_stats_ctx = cpr->hw_stats_ctx_id;
3796 }
3797 mutex_unlock(&bp->hwrm_cmd_lock);
3798 return 0;
3799 }
3800
3801 int bnxt_hwrm_func_qcaps(struct bnxt *bp)
3802 {
3803 int rc = 0;
3804 struct hwrm_func_qcaps_input req = {0};
3805 struct hwrm_func_qcaps_output *resp = bp->hwrm_cmd_resp_addr;
3806
3807 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_QCAPS, -1, -1);
3808 req.fid = cpu_to_le16(0xffff);
3809
3810 mutex_lock(&bp->hwrm_cmd_lock);
3811 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3812 if (rc)
3813 goto hwrm_func_qcaps_exit;
3814
3815 if (BNXT_PF(bp)) {
3816 struct bnxt_pf_info *pf = &bp->pf;
3817
3818 pf->fw_fid = le16_to_cpu(resp->fid);
3819 pf->port_id = le16_to_cpu(resp->port_id);
3820 memcpy(pf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3821 memcpy(bp->dev->dev_addr, pf->mac_addr, ETH_ALEN);
3822 pf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3823 pf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3824 pf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3825 pf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3826 pf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3827 if (!pf->max_hw_ring_grps)
3828 pf->max_hw_ring_grps = pf->max_tx_rings;
3829 pf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3830 pf->max_vnics = le16_to_cpu(resp->max_vnics);
3831 pf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3832 pf->first_vf_id = le16_to_cpu(resp->first_vf_id);
3833 pf->max_vfs = le16_to_cpu(resp->max_vfs);
3834 pf->max_encap_records = le32_to_cpu(resp->max_encap_records);
3835 pf->max_decap_records = le32_to_cpu(resp->max_decap_records);
3836 pf->max_tx_em_flows = le32_to_cpu(resp->max_tx_em_flows);
3837 pf->max_tx_wm_flows = le32_to_cpu(resp->max_tx_wm_flows);
3838 pf->max_rx_em_flows = le32_to_cpu(resp->max_rx_em_flows);
3839 pf->max_rx_wm_flows = le32_to_cpu(resp->max_rx_wm_flows);
3840 } else {
3841 #ifdef CONFIG_BNXT_SRIOV
3842 struct bnxt_vf_info *vf = &bp->vf;
3843
3844 vf->fw_fid = le16_to_cpu(resp->fid);
3845 memcpy(vf->mac_addr, resp->perm_mac_address, ETH_ALEN);
3846 if (is_valid_ether_addr(vf->mac_addr))
3847 /* overwrite netdev dev_adr with admin VF MAC */
3848 memcpy(bp->dev->dev_addr, vf->mac_addr, ETH_ALEN);
3849 else
3850 random_ether_addr(bp->dev->dev_addr);
3851
3852 vf->max_rsscos_ctxs = le16_to_cpu(resp->max_rsscos_ctx);
3853 vf->max_cp_rings = le16_to_cpu(resp->max_cmpl_rings);
3854 vf->max_tx_rings = le16_to_cpu(resp->max_tx_rings);
3855 vf->max_rx_rings = le16_to_cpu(resp->max_rx_rings);
3856 vf->max_hw_ring_grps = le32_to_cpu(resp->max_hw_ring_grps);
3857 if (!vf->max_hw_ring_grps)
3858 vf->max_hw_ring_grps = vf->max_tx_rings;
3859 vf->max_l2_ctxs = le16_to_cpu(resp->max_l2_ctxs);
3860 vf->max_vnics = le16_to_cpu(resp->max_vnics);
3861 vf->max_stat_ctxs = le16_to_cpu(resp->max_stat_ctx);
3862 #endif
3863 }
3864
3865 bp->tx_push_thresh = 0;
3866 if (resp->flags &
3867 cpu_to_le32(FUNC_QCAPS_RESP_FLAGS_PUSH_MODE_SUPPORTED))
3868 bp->tx_push_thresh = BNXT_TX_PUSH_THRESH;
3869
3870 hwrm_func_qcaps_exit:
3871 mutex_unlock(&bp->hwrm_cmd_lock);
3872 return rc;
3873 }
3874
3875 static int bnxt_hwrm_func_reset(struct bnxt *bp)
3876 {
3877 struct hwrm_func_reset_input req = {0};
3878
3879 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_FUNC_RESET, -1, -1);
3880 req.enables = 0;
3881
3882 return hwrm_send_message(bp, &req, sizeof(req), HWRM_RESET_TIMEOUT);
3883 }
3884
3885 static int bnxt_hwrm_queue_qportcfg(struct bnxt *bp)
3886 {
3887 int rc = 0;
3888 struct hwrm_queue_qportcfg_input req = {0};
3889 struct hwrm_queue_qportcfg_output *resp = bp->hwrm_cmd_resp_addr;
3890 u8 i, *qptr;
3891
3892 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_QUEUE_QPORTCFG, -1, -1);
3893
3894 mutex_lock(&bp->hwrm_cmd_lock);
3895 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3896 if (rc)
3897 goto qportcfg_exit;
3898
3899 if (!resp->max_configurable_queues) {
3900 rc = -EINVAL;
3901 goto qportcfg_exit;
3902 }
3903 bp->max_tc = resp->max_configurable_queues;
3904 if (bp->max_tc > BNXT_MAX_QUEUE)
3905 bp->max_tc = BNXT_MAX_QUEUE;
3906
3907 qptr = &resp->queue_id0;
3908 for (i = 0; i < bp->max_tc; i++) {
3909 bp->q_info[i].queue_id = *qptr++;
3910 bp->q_info[i].queue_profile = *qptr++;
3911 }
3912
3913 qportcfg_exit:
3914 mutex_unlock(&bp->hwrm_cmd_lock);
3915 return rc;
3916 }
3917
3918 static int bnxt_hwrm_ver_get(struct bnxt *bp)
3919 {
3920 int rc;
3921 struct hwrm_ver_get_input req = {0};
3922 struct hwrm_ver_get_output *resp = bp->hwrm_cmd_resp_addr;
3923
3924 bp->hwrm_max_req_len = HWRM_MAX_REQ_LEN;
3925 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_VER_GET, -1, -1);
3926 req.hwrm_intf_maj = HWRM_VERSION_MAJOR;
3927 req.hwrm_intf_min = HWRM_VERSION_MINOR;
3928 req.hwrm_intf_upd = HWRM_VERSION_UPDATE;
3929 mutex_lock(&bp->hwrm_cmd_lock);
3930 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3931 if (rc)
3932 goto hwrm_ver_get_exit;
3933
3934 memcpy(&bp->ver_resp, resp, sizeof(struct hwrm_ver_get_output));
3935
3936 if (resp->hwrm_intf_maj < 1) {
3937 netdev_warn(bp->dev, "HWRM interface %d.%d.%d is older than 1.0.0.\n",
3938 resp->hwrm_intf_maj, resp->hwrm_intf_min,
3939 resp->hwrm_intf_upd);
3940 netdev_warn(bp->dev, "Please update firmware with HWRM interface 1.0.0 or newer.\n");
3941 }
3942 snprintf(bp->fw_ver_str, BC_HWRM_STR_LEN, "%d.%d.%d/%d.%d.%d",
3943 resp->hwrm_fw_maj, resp->hwrm_fw_min, resp->hwrm_fw_bld,
3944 resp->hwrm_intf_maj, resp->hwrm_intf_min, resp->hwrm_intf_upd);
3945
3946 bp->hwrm_cmd_timeout = le16_to_cpu(resp->def_req_timeout);
3947 if (!bp->hwrm_cmd_timeout)
3948 bp->hwrm_cmd_timeout = DFLT_HWRM_CMD_TIMEOUT;
3949
3950 if (resp->hwrm_intf_maj >= 1)
3951 bp->hwrm_max_req_len = le16_to_cpu(resp->max_req_win_len);
3952
3953 hwrm_ver_get_exit:
3954 mutex_unlock(&bp->hwrm_cmd_lock);
3955 return rc;
3956 }
3957
3958 static int bnxt_hwrm_port_qstats(struct bnxt *bp)
3959 {
3960 int rc;
3961 struct bnxt_pf_info *pf = &bp->pf;
3962 struct hwrm_port_qstats_input req = {0};
3963
3964 if (!(bp->flags & BNXT_FLAG_PORT_STATS))
3965 return 0;
3966
3967 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_QSTATS, -1, -1);
3968 req.port_id = cpu_to_le16(pf->port_id);
3969 req.tx_stat_host_addr = cpu_to_le64(bp->hw_tx_port_stats_map);
3970 req.rx_stat_host_addr = cpu_to_le64(bp->hw_rx_port_stats_map);
3971 rc = hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
3972 return rc;
3973 }
3974
3975 static void bnxt_hwrm_free_tunnel_ports(struct bnxt *bp)
3976 {
3977 if (bp->vxlan_port_cnt) {
3978 bnxt_hwrm_tunnel_dst_port_free(
3979 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
3980 }
3981 bp->vxlan_port_cnt = 0;
3982 if (bp->nge_port_cnt) {
3983 bnxt_hwrm_tunnel_dst_port_free(
3984 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE);
3985 }
3986 bp->nge_port_cnt = 0;
3987 }
3988
3989 static int bnxt_set_tpa(struct bnxt *bp, bool set_tpa)
3990 {
3991 int rc, i;
3992 u32 tpa_flags = 0;
3993
3994 if (set_tpa)
3995 tpa_flags = bp->flags & BNXT_FLAG_TPA;
3996 for (i = 0; i < bp->nr_vnics; i++) {
3997 rc = bnxt_hwrm_vnic_set_tpa(bp, i, tpa_flags);
3998 if (rc) {
3999 netdev_err(bp->dev, "hwrm vnic set tpa failure rc for vnic %d: %x\n",
4000 rc, i);
4001 return rc;
4002 }
4003 }
4004 return 0;
4005 }
4006
4007 static void bnxt_hwrm_clear_vnic_rss(struct bnxt *bp)
4008 {
4009 int i;
4010
4011 for (i = 0; i < bp->nr_vnics; i++)
4012 bnxt_hwrm_vnic_set_rss(bp, i, false);
4013 }
4014
4015 static void bnxt_hwrm_resource_free(struct bnxt *bp, bool close_path,
4016 bool irq_re_init)
4017 {
4018 if (bp->vnic_info) {
4019 bnxt_hwrm_clear_vnic_filter(bp);
4020 /* clear all RSS setting before free vnic ctx */
4021 bnxt_hwrm_clear_vnic_rss(bp);
4022 bnxt_hwrm_vnic_ctx_free(bp);
4023 /* before free the vnic, undo the vnic tpa settings */
4024 if (bp->flags & BNXT_FLAG_TPA)
4025 bnxt_set_tpa(bp, false);
4026 bnxt_hwrm_vnic_free(bp);
4027 }
4028 bnxt_hwrm_ring_free(bp, close_path);
4029 bnxt_hwrm_ring_grp_free(bp);
4030 if (irq_re_init) {
4031 bnxt_hwrm_stat_ctx_free(bp);
4032 bnxt_hwrm_free_tunnel_ports(bp);
4033 }
4034 }
4035
4036 static int bnxt_setup_vnic(struct bnxt *bp, u16 vnic_id)
4037 {
4038 int rc;
4039
4040 /* allocate context for vnic */
4041 rc = bnxt_hwrm_vnic_ctx_alloc(bp, vnic_id);
4042 if (rc) {
4043 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4044 vnic_id, rc);
4045 goto vnic_setup_err;
4046 }
4047 bp->rsscos_nr_ctxs++;
4048
4049 /* configure default vnic, ring grp */
4050 rc = bnxt_hwrm_vnic_cfg(bp, vnic_id);
4051 if (rc) {
4052 netdev_err(bp->dev, "hwrm vnic %d cfg failure rc: %x\n",
4053 vnic_id, rc);
4054 goto vnic_setup_err;
4055 }
4056
4057 /* Enable RSS hashing on vnic */
4058 rc = bnxt_hwrm_vnic_set_rss(bp, vnic_id, true);
4059 if (rc) {
4060 netdev_err(bp->dev, "hwrm vnic %d set rss failure rc: %x\n",
4061 vnic_id, rc);
4062 goto vnic_setup_err;
4063 }
4064
4065 if (bp->flags & BNXT_FLAG_AGG_RINGS) {
4066 rc = bnxt_hwrm_vnic_set_hds(bp, vnic_id);
4067 if (rc) {
4068 netdev_err(bp->dev, "hwrm vnic %d set hds failure rc: %x\n",
4069 vnic_id, rc);
4070 }
4071 }
4072
4073 vnic_setup_err:
4074 return rc;
4075 }
4076
4077 static int bnxt_alloc_rfs_vnics(struct bnxt *bp)
4078 {
4079 #ifdef CONFIG_RFS_ACCEL
4080 int i, rc = 0;
4081
4082 for (i = 0; i < bp->rx_nr_rings; i++) {
4083 u16 vnic_id = i + 1;
4084 u16 ring_id = i;
4085
4086 if (vnic_id >= bp->nr_vnics)
4087 break;
4088
4089 bp->vnic_info[vnic_id].flags |= BNXT_VNIC_RFS_FLAG;
4090 rc = bnxt_hwrm_vnic_alloc(bp, vnic_id, ring_id, 1);
4091 if (rc) {
4092 netdev_err(bp->dev, "hwrm vnic %d alloc failure rc: %x\n",
4093 vnic_id, rc);
4094 break;
4095 }
4096 rc = bnxt_setup_vnic(bp, vnic_id);
4097 if (rc)
4098 break;
4099 }
4100 return rc;
4101 #else
4102 return 0;
4103 #endif
4104 }
4105
4106 static int bnxt_cfg_rx_mode(struct bnxt *);
4107 static bool bnxt_mc_list_updated(struct bnxt *, u32 *);
4108
4109 static int bnxt_init_chip(struct bnxt *bp, bool irq_re_init)
4110 {
4111 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
4112 int rc = 0;
4113
4114 if (irq_re_init) {
4115 rc = bnxt_hwrm_stat_ctx_alloc(bp);
4116 if (rc) {
4117 netdev_err(bp->dev, "hwrm stat ctx alloc failure rc: %x\n",
4118 rc);
4119 goto err_out;
4120 }
4121 }
4122
4123 rc = bnxt_hwrm_ring_alloc(bp);
4124 if (rc) {
4125 netdev_err(bp->dev, "hwrm ring alloc failure rc: %x\n", rc);
4126 goto err_out;
4127 }
4128
4129 rc = bnxt_hwrm_ring_grp_alloc(bp);
4130 if (rc) {
4131 netdev_err(bp->dev, "hwrm_ring_grp alloc failure: %x\n", rc);
4132 goto err_out;
4133 }
4134
4135 /* default vnic 0 */
4136 rc = bnxt_hwrm_vnic_alloc(bp, 0, 0, bp->rx_nr_rings);
4137 if (rc) {
4138 netdev_err(bp->dev, "hwrm vnic alloc failure rc: %x\n", rc);
4139 goto err_out;
4140 }
4141
4142 rc = bnxt_setup_vnic(bp, 0);
4143 if (rc)
4144 goto err_out;
4145
4146 if (bp->flags & BNXT_FLAG_RFS) {
4147 rc = bnxt_alloc_rfs_vnics(bp);
4148 if (rc)
4149 goto err_out;
4150 }
4151
4152 if (bp->flags & BNXT_FLAG_TPA) {
4153 rc = bnxt_set_tpa(bp, true);
4154 if (rc)
4155 goto err_out;
4156 }
4157
4158 if (BNXT_VF(bp))
4159 bnxt_update_vf_mac(bp);
4160
4161 /* Filter for default vnic 0 */
4162 rc = bnxt_hwrm_set_vnic_filter(bp, 0, 0, bp->dev->dev_addr);
4163 if (rc) {
4164 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n", rc);
4165 goto err_out;
4166 }
4167 vnic->uc_filter_count = 1;
4168
4169 vnic->rx_mask = CFA_L2_SET_RX_MASK_REQ_MASK_BCAST;
4170
4171 if ((bp->dev->flags & IFF_PROMISC) && BNXT_PF(bp))
4172 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
4173
4174 if (bp->dev->flags & IFF_ALLMULTI) {
4175 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
4176 vnic->mc_list_count = 0;
4177 } else {
4178 u32 mask = 0;
4179
4180 bnxt_mc_list_updated(bp, &mask);
4181 vnic->rx_mask |= mask;
4182 }
4183
4184 rc = bnxt_cfg_rx_mode(bp);
4185 if (rc)
4186 goto err_out;
4187
4188 rc = bnxt_hwrm_set_coal(bp);
4189 if (rc)
4190 netdev_warn(bp->dev, "HWRM set coalescing failure rc: %x\n",
4191 rc);
4192
4193 return 0;
4194
4195 err_out:
4196 bnxt_hwrm_resource_free(bp, 0, true);
4197
4198 return rc;
4199 }
4200
4201 static int bnxt_shutdown_nic(struct bnxt *bp, bool irq_re_init)
4202 {
4203 bnxt_hwrm_resource_free(bp, 1, irq_re_init);
4204 return 0;
4205 }
4206
4207 static int bnxt_init_nic(struct bnxt *bp, bool irq_re_init)
4208 {
4209 bnxt_init_rx_rings(bp);
4210 bnxt_init_tx_rings(bp);
4211 bnxt_init_ring_grps(bp, irq_re_init);
4212 bnxt_init_vnics(bp);
4213
4214 return bnxt_init_chip(bp, irq_re_init);
4215 }
4216
4217 static void bnxt_disable_int(struct bnxt *bp)
4218 {
4219 int i;
4220
4221 if (!bp->bnapi)
4222 return;
4223
4224 for (i = 0; i < bp->cp_nr_rings; i++) {
4225 struct bnxt_napi *bnapi = bp->bnapi[i];
4226 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4227
4228 BNXT_CP_DB(cpr->cp_doorbell, cpr->cp_raw_cons);
4229 }
4230 }
4231
4232 static void bnxt_enable_int(struct bnxt *bp)
4233 {
4234 int i;
4235
4236 atomic_set(&bp->intr_sem, 0);
4237 for (i = 0; i < bp->cp_nr_rings; i++) {
4238 struct bnxt_napi *bnapi = bp->bnapi[i];
4239 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
4240
4241 BNXT_CP_DB_REARM(cpr->cp_doorbell, cpr->cp_raw_cons);
4242 }
4243 }
4244
4245 static int bnxt_set_real_num_queues(struct bnxt *bp)
4246 {
4247 int rc;
4248 struct net_device *dev = bp->dev;
4249
4250 rc = netif_set_real_num_tx_queues(dev, bp->tx_nr_rings);
4251 if (rc)
4252 return rc;
4253
4254 rc = netif_set_real_num_rx_queues(dev, bp->rx_nr_rings);
4255 if (rc)
4256 return rc;
4257
4258 #ifdef CONFIG_RFS_ACCEL
4259 if (bp->flags & BNXT_FLAG_RFS)
4260 dev->rx_cpu_rmap = alloc_irq_cpu_rmap(bp->rx_nr_rings);
4261 #endif
4262
4263 return rc;
4264 }
4265
4266 static int bnxt_trim_rings(struct bnxt *bp, int *rx, int *tx, int max,
4267 bool shared)
4268 {
4269 int _rx = *rx, _tx = *tx;
4270
4271 if (shared) {
4272 *rx = min_t(int, _rx, max);
4273 *tx = min_t(int, _tx, max);
4274 } else {
4275 if (max < 2)
4276 return -ENOMEM;
4277
4278 while (_rx + _tx > max) {
4279 if (_rx > _tx && _rx > 1)
4280 _rx--;
4281 else if (_tx > 1)
4282 _tx--;
4283 }
4284 *rx = _rx;
4285 *tx = _tx;
4286 }
4287 return 0;
4288 }
4289
4290 static int bnxt_setup_msix(struct bnxt *bp)
4291 {
4292 struct msix_entry *msix_ent;
4293 struct net_device *dev = bp->dev;
4294 int i, total_vecs, rc = 0, min = 1;
4295 const int len = sizeof(bp->irq_tbl[0].name);
4296
4297 bp->flags &= ~BNXT_FLAG_USING_MSIX;
4298 total_vecs = bp->cp_nr_rings;
4299
4300 msix_ent = kcalloc(total_vecs, sizeof(struct msix_entry), GFP_KERNEL);
4301 if (!msix_ent)
4302 return -ENOMEM;
4303
4304 for (i = 0; i < total_vecs; i++) {
4305 msix_ent[i].entry = i;
4306 msix_ent[i].vector = 0;
4307 }
4308
4309 if (!(bp->flags & BNXT_FLAG_SHARED_RINGS))
4310 min = 2;
4311
4312 total_vecs = pci_enable_msix_range(bp->pdev, msix_ent, min, total_vecs);
4313 if (total_vecs < 0) {
4314 rc = -ENODEV;
4315 goto msix_setup_exit;
4316 }
4317
4318 bp->irq_tbl = kcalloc(total_vecs, sizeof(struct bnxt_irq), GFP_KERNEL);
4319 if (bp->irq_tbl) {
4320 int tcs;
4321
4322 /* Trim rings based upon num of vectors allocated */
4323 rc = bnxt_trim_rings(bp, &bp->rx_nr_rings, &bp->tx_nr_rings,
4324 total_vecs, min == 1);
4325 if (rc)
4326 goto msix_setup_exit;
4327
4328 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4329 tcs = netdev_get_num_tc(dev);
4330 if (tcs > 1) {
4331 bp->tx_nr_rings_per_tc = bp->tx_nr_rings / tcs;
4332 if (bp->tx_nr_rings_per_tc == 0) {
4333 netdev_reset_tc(dev);
4334 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4335 } else {
4336 int i, off, count;
4337
4338 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tcs;
4339 for (i = 0; i < tcs; i++) {
4340 count = bp->tx_nr_rings_per_tc;
4341 off = i * count;
4342 netdev_set_tc_queue(dev, i, count, off);
4343 }
4344 }
4345 }
4346 bp->cp_nr_rings = total_vecs;
4347
4348 for (i = 0; i < bp->cp_nr_rings; i++) {
4349 char *attr;
4350
4351 bp->irq_tbl[i].vector = msix_ent[i].vector;
4352 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
4353 attr = "TxRx";
4354 else if (i < bp->rx_nr_rings)
4355 attr = "rx";
4356 else
4357 attr = "tx";
4358
4359 snprintf(bp->irq_tbl[i].name, len,
4360 "%s-%s-%d", dev->name, attr, i);
4361 bp->irq_tbl[i].handler = bnxt_msix;
4362 }
4363 rc = bnxt_set_real_num_queues(bp);
4364 if (rc)
4365 goto msix_setup_exit;
4366 } else {
4367 rc = -ENOMEM;
4368 goto msix_setup_exit;
4369 }
4370 bp->flags |= BNXT_FLAG_USING_MSIX;
4371 kfree(msix_ent);
4372 return 0;
4373
4374 msix_setup_exit:
4375 netdev_err(bp->dev, "bnxt_setup_msix err: %x\n", rc);
4376 pci_disable_msix(bp->pdev);
4377 kfree(msix_ent);
4378 return rc;
4379 }
4380
4381 static int bnxt_setup_inta(struct bnxt *bp)
4382 {
4383 int rc;
4384 const int len = sizeof(bp->irq_tbl[0].name);
4385
4386 if (netdev_get_num_tc(bp->dev))
4387 netdev_reset_tc(bp->dev);
4388
4389 bp->irq_tbl = kcalloc(1, sizeof(struct bnxt_irq), GFP_KERNEL);
4390 if (!bp->irq_tbl) {
4391 rc = -ENOMEM;
4392 return rc;
4393 }
4394 bp->rx_nr_rings = 1;
4395 bp->tx_nr_rings = 1;
4396 bp->cp_nr_rings = 1;
4397 bp->tx_nr_rings_per_tc = bp->tx_nr_rings;
4398 bp->flags |= BNXT_FLAG_SHARED_RINGS;
4399 bp->irq_tbl[0].vector = bp->pdev->irq;
4400 snprintf(bp->irq_tbl[0].name, len,
4401 "%s-%s-%d", bp->dev->name, "TxRx", 0);
4402 bp->irq_tbl[0].handler = bnxt_inta;
4403 rc = bnxt_set_real_num_queues(bp);
4404 return rc;
4405 }
4406
4407 static int bnxt_setup_int_mode(struct bnxt *bp)
4408 {
4409 int rc = 0;
4410
4411 if (bp->flags & BNXT_FLAG_MSIX_CAP)
4412 rc = bnxt_setup_msix(bp);
4413
4414 if (!(bp->flags & BNXT_FLAG_USING_MSIX) && BNXT_PF(bp)) {
4415 /* fallback to INTA */
4416 rc = bnxt_setup_inta(bp);
4417 }
4418 return rc;
4419 }
4420
4421 static void bnxt_free_irq(struct bnxt *bp)
4422 {
4423 struct bnxt_irq *irq;
4424 int i;
4425
4426 #ifdef CONFIG_RFS_ACCEL
4427 free_irq_cpu_rmap(bp->dev->rx_cpu_rmap);
4428 bp->dev->rx_cpu_rmap = NULL;
4429 #endif
4430 if (!bp->irq_tbl)
4431 return;
4432
4433 for (i = 0; i < bp->cp_nr_rings; i++) {
4434 irq = &bp->irq_tbl[i];
4435 if (irq->requested)
4436 free_irq(irq->vector, bp->bnapi[i]);
4437 irq->requested = 0;
4438 }
4439 if (bp->flags & BNXT_FLAG_USING_MSIX)
4440 pci_disable_msix(bp->pdev);
4441 kfree(bp->irq_tbl);
4442 bp->irq_tbl = NULL;
4443 }
4444
4445 static int bnxt_request_irq(struct bnxt *bp)
4446 {
4447 int i, j, rc = 0;
4448 unsigned long flags = 0;
4449 #ifdef CONFIG_RFS_ACCEL
4450 struct cpu_rmap *rmap = bp->dev->rx_cpu_rmap;
4451 #endif
4452
4453 if (!(bp->flags & BNXT_FLAG_USING_MSIX))
4454 flags = IRQF_SHARED;
4455
4456 for (i = 0, j = 0; i < bp->cp_nr_rings; i++) {
4457 struct bnxt_irq *irq = &bp->irq_tbl[i];
4458 #ifdef CONFIG_RFS_ACCEL
4459 if (rmap && bp->bnapi[i]->rx_ring) {
4460 rc = irq_cpu_rmap_add(rmap, irq->vector);
4461 if (rc)
4462 netdev_warn(bp->dev, "failed adding irq rmap for ring %d\n",
4463 j);
4464 j++;
4465 }
4466 #endif
4467 rc = request_irq(irq->vector, irq->handler, flags, irq->name,
4468 bp->bnapi[i]);
4469 if (rc)
4470 break;
4471
4472 irq->requested = 1;
4473 }
4474 return rc;
4475 }
4476
4477 static void bnxt_del_napi(struct bnxt *bp)
4478 {
4479 int i;
4480
4481 if (!bp->bnapi)
4482 return;
4483
4484 for (i = 0; i < bp->cp_nr_rings; i++) {
4485 struct bnxt_napi *bnapi = bp->bnapi[i];
4486
4487 napi_hash_del(&bnapi->napi);
4488 netif_napi_del(&bnapi->napi);
4489 }
4490 }
4491
4492 static void bnxt_init_napi(struct bnxt *bp)
4493 {
4494 int i;
4495 struct bnxt_napi *bnapi;
4496
4497 if (bp->flags & BNXT_FLAG_USING_MSIX) {
4498 for (i = 0; i < bp->cp_nr_rings; i++) {
4499 bnapi = bp->bnapi[i];
4500 netif_napi_add(bp->dev, &bnapi->napi,
4501 bnxt_poll, 64);
4502 }
4503 } else {
4504 bnapi = bp->bnapi[0];
4505 netif_napi_add(bp->dev, &bnapi->napi, bnxt_poll, 64);
4506 }
4507 }
4508
4509 static void bnxt_disable_napi(struct bnxt *bp)
4510 {
4511 int i;
4512
4513 if (!bp->bnapi)
4514 return;
4515
4516 for (i = 0; i < bp->cp_nr_rings; i++) {
4517 napi_disable(&bp->bnapi[i]->napi);
4518 bnxt_disable_poll(bp->bnapi[i]);
4519 }
4520 }
4521
4522 static void bnxt_enable_napi(struct bnxt *bp)
4523 {
4524 int i;
4525
4526 for (i = 0; i < bp->cp_nr_rings; i++) {
4527 bp->bnapi[i]->in_reset = false;
4528 bnxt_enable_poll(bp->bnapi[i]);
4529 napi_enable(&bp->bnapi[i]->napi);
4530 }
4531 }
4532
4533 static void bnxt_tx_disable(struct bnxt *bp)
4534 {
4535 int i;
4536 struct bnxt_tx_ring_info *txr;
4537 struct netdev_queue *txq;
4538
4539 if (bp->tx_ring) {
4540 for (i = 0; i < bp->tx_nr_rings; i++) {
4541 txr = &bp->tx_ring[i];
4542 txq = netdev_get_tx_queue(bp->dev, i);
4543 __netif_tx_lock(txq, smp_processor_id());
4544 txr->dev_state = BNXT_DEV_STATE_CLOSING;
4545 __netif_tx_unlock(txq);
4546 }
4547 }
4548 /* Stop all TX queues */
4549 netif_tx_disable(bp->dev);
4550 netif_carrier_off(bp->dev);
4551 }
4552
4553 static void bnxt_tx_enable(struct bnxt *bp)
4554 {
4555 int i;
4556 struct bnxt_tx_ring_info *txr;
4557 struct netdev_queue *txq;
4558
4559 for (i = 0; i < bp->tx_nr_rings; i++) {
4560 txr = &bp->tx_ring[i];
4561 txq = netdev_get_tx_queue(bp->dev, i);
4562 txr->dev_state = 0;
4563 }
4564 netif_tx_wake_all_queues(bp->dev);
4565 if (bp->link_info.link_up)
4566 netif_carrier_on(bp->dev);
4567 }
4568
4569 static void bnxt_report_link(struct bnxt *bp)
4570 {
4571 if (bp->link_info.link_up) {
4572 const char *duplex;
4573 const char *flow_ctrl;
4574 u16 speed;
4575
4576 netif_carrier_on(bp->dev);
4577 if (bp->link_info.duplex == BNXT_LINK_DUPLEX_FULL)
4578 duplex = "full";
4579 else
4580 duplex = "half";
4581 if (bp->link_info.pause == BNXT_LINK_PAUSE_BOTH)
4582 flow_ctrl = "ON - receive & transmit";
4583 else if (bp->link_info.pause == BNXT_LINK_PAUSE_TX)
4584 flow_ctrl = "ON - transmit";
4585 else if (bp->link_info.pause == BNXT_LINK_PAUSE_RX)
4586 flow_ctrl = "ON - receive";
4587 else
4588 flow_ctrl = "none";
4589 speed = bnxt_fw_to_ethtool_speed(bp->link_info.link_speed);
4590 netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
4591 speed, duplex, flow_ctrl);
4592 } else {
4593 netif_carrier_off(bp->dev);
4594 netdev_err(bp->dev, "NIC Link is Down\n");
4595 }
4596 }
4597
4598 static int bnxt_update_link(struct bnxt *bp, bool chng_link_state)
4599 {
4600 int rc = 0;
4601 struct bnxt_link_info *link_info = &bp->link_info;
4602 struct hwrm_port_phy_qcfg_input req = {0};
4603 struct hwrm_port_phy_qcfg_output *resp = bp->hwrm_cmd_resp_addr;
4604 u8 link_up = link_info->link_up;
4605
4606 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_QCFG, -1, -1);
4607
4608 mutex_lock(&bp->hwrm_cmd_lock);
4609 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4610 if (rc) {
4611 mutex_unlock(&bp->hwrm_cmd_lock);
4612 return rc;
4613 }
4614
4615 memcpy(&link_info->phy_qcfg_resp, resp, sizeof(*resp));
4616 link_info->phy_link_status = resp->link;
4617 link_info->duplex = resp->duplex;
4618 link_info->pause = resp->pause;
4619 link_info->auto_mode = resp->auto_mode;
4620 link_info->auto_pause_setting = resp->auto_pause;
4621 link_info->lp_pause = resp->link_partner_adv_pause;
4622 link_info->force_pause_setting = resp->force_pause;
4623 link_info->duplex_setting = resp->duplex;
4624 if (link_info->phy_link_status == BNXT_LINK_LINK)
4625 link_info->link_speed = le16_to_cpu(resp->link_speed);
4626 else
4627 link_info->link_speed = 0;
4628 link_info->force_link_speed = le16_to_cpu(resp->force_link_speed);
4629 link_info->auto_link_speed = le16_to_cpu(resp->auto_link_speed);
4630 link_info->support_speeds = le16_to_cpu(resp->support_speeds);
4631 link_info->auto_link_speeds = le16_to_cpu(resp->auto_link_speed_mask);
4632 link_info->lp_auto_link_speeds =
4633 le16_to_cpu(resp->link_partner_adv_speeds);
4634 link_info->preemphasis = le32_to_cpu(resp->preemphasis);
4635 link_info->phy_ver[0] = resp->phy_maj;
4636 link_info->phy_ver[1] = resp->phy_min;
4637 link_info->phy_ver[2] = resp->phy_bld;
4638 link_info->media_type = resp->media_type;
4639 link_info->transceiver = resp->transceiver_type;
4640 link_info->phy_addr = resp->phy_addr;
4641
4642 /* TODO: need to add more logic to report VF link */
4643 if (chng_link_state) {
4644 if (link_info->phy_link_status == BNXT_LINK_LINK)
4645 link_info->link_up = 1;
4646 else
4647 link_info->link_up = 0;
4648 if (link_up != link_info->link_up)
4649 bnxt_report_link(bp);
4650 } else {
4651 /* alwasy link down if not require to update link state */
4652 link_info->link_up = 0;
4653 }
4654 mutex_unlock(&bp->hwrm_cmd_lock);
4655 return 0;
4656 }
4657
4658 static void
4659 bnxt_hwrm_set_pause_common(struct bnxt *bp, struct hwrm_port_phy_cfg_input *req)
4660 {
4661 if (bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) {
4662 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4663 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_RX;
4664 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4665 req->auto_pause |= PORT_PHY_CFG_REQ_AUTO_PAUSE_TX;
4666 req->enables |=
4667 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_PAUSE);
4668 } else {
4669 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_RX)
4670 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_RX;
4671 if (bp->link_info.req_flow_ctrl & BNXT_LINK_PAUSE_TX)
4672 req->force_pause |= PORT_PHY_CFG_REQ_FORCE_PAUSE_TX;
4673 req->enables |=
4674 cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_FORCE_PAUSE);
4675 }
4676 }
4677
4678 static void bnxt_hwrm_set_link_common(struct bnxt *bp,
4679 struct hwrm_port_phy_cfg_input *req)
4680 {
4681 u8 autoneg = bp->link_info.autoneg;
4682 u16 fw_link_speed = bp->link_info.req_link_speed;
4683 u32 advertising = bp->link_info.advertising;
4684
4685 if (autoneg & BNXT_AUTONEG_SPEED) {
4686 req->auto_mode |=
4687 PORT_PHY_CFG_REQ_AUTO_MODE_MASK;
4688
4689 req->enables |= cpu_to_le32(
4690 PORT_PHY_CFG_REQ_ENABLES_AUTO_LINK_SPEED_MASK);
4691 req->auto_link_speed_mask = cpu_to_le16(advertising);
4692
4693 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_MODE);
4694 req->flags |=
4695 cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESTART_AUTONEG);
4696 } else {
4697 req->force_link_speed = cpu_to_le16(fw_link_speed);
4698 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_FORCE);
4699 }
4700
4701 /* currently don't support half duplex */
4702 req->auto_duplex = PORT_PHY_CFG_REQ_AUTO_DUPLEX_FULL;
4703 req->enables |= cpu_to_le32(PORT_PHY_CFG_REQ_ENABLES_AUTO_DUPLEX);
4704 /* tell chimp that the setting takes effect immediately */
4705 req->flags |= cpu_to_le32(PORT_PHY_CFG_REQ_FLAGS_RESET_PHY);
4706 }
4707
4708 int bnxt_hwrm_set_pause(struct bnxt *bp)
4709 {
4710 struct hwrm_port_phy_cfg_input req = {0};
4711 int rc;
4712
4713 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4714 bnxt_hwrm_set_pause_common(bp, &req);
4715
4716 if ((bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL) ||
4717 bp->link_info.force_link_chng)
4718 bnxt_hwrm_set_link_common(bp, &req);
4719
4720 mutex_lock(&bp->hwrm_cmd_lock);
4721 rc = _hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4722 if (!rc && !(bp->link_info.autoneg & BNXT_AUTONEG_FLOW_CTRL)) {
4723 /* since changing of pause setting doesn't trigger any link
4724 * change event, the driver needs to update the current pause
4725 * result upon successfully return of the phy_cfg command
4726 */
4727 bp->link_info.pause =
4728 bp->link_info.force_pause_setting = bp->link_info.req_flow_ctrl;
4729 bp->link_info.auto_pause_setting = 0;
4730 if (!bp->link_info.force_link_chng)
4731 bnxt_report_link(bp);
4732 }
4733 bp->link_info.force_link_chng = false;
4734 mutex_unlock(&bp->hwrm_cmd_lock);
4735 return rc;
4736 }
4737
4738 int bnxt_hwrm_set_link_setting(struct bnxt *bp, bool set_pause)
4739 {
4740 struct hwrm_port_phy_cfg_input req = {0};
4741
4742 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_PORT_PHY_CFG, -1, -1);
4743 if (set_pause)
4744 bnxt_hwrm_set_pause_common(bp, &req);
4745
4746 bnxt_hwrm_set_link_common(bp, &req);
4747 return hwrm_send_message(bp, &req, sizeof(req), HWRM_CMD_TIMEOUT);
4748 }
4749
4750 static int bnxt_update_phy_setting(struct bnxt *bp)
4751 {
4752 int rc;
4753 bool update_link = false;
4754 bool update_pause = false;
4755 struct bnxt_link_info *link_info = &bp->link_info;
4756
4757 rc = bnxt_update_link(bp, true);
4758 if (rc) {
4759 netdev_err(bp->dev, "failed to update link (rc: %x)\n",
4760 rc);
4761 return rc;
4762 }
4763 if ((link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4764 link_info->auto_pause_setting != link_info->req_flow_ctrl)
4765 update_pause = true;
4766 if (!(link_info->autoneg & BNXT_AUTONEG_FLOW_CTRL) &&
4767 link_info->force_pause_setting != link_info->req_flow_ctrl)
4768 update_pause = true;
4769 if (!(link_info->autoneg & BNXT_AUTONEG_SPEED)) {
4770 if (BNXT_AUTO_MODE(link_info->auto_mode))
4771 update_link = true;
4772 if (link_info->req_link_speed != link_info->force_link_speed)
4773 update_link = true;
4774 if (link_info->req_duplex != link_info->duplex_setting)
4775 update_link = true;
4776 } else {
4777 if (link_info->auto_mode == BNXT_LINK_AUTO_NONE)
4778 update_link = true;
4779 if (link_info->advertising != link_info->auto_link_speeds)
4780 update_link = true;
4781 }
4782
4783 if (update_link)
4784 rc = bnxt_hwrm_set_link_setting(bp, update_pause);
4785 else if (update_pause)
4786 rc = bnxt_hwrm_set_pause(bp);
4787 if (rc) {
4788 netdev_err(bp->dev, "failed to update phy setting (rc: %x)\n",
4789 rc);
4790 return rc;
4791 }
4792
4793 return rc;
4794 }
4795
4796 /* Common routine to pre-map certain register block to different GRC window.
4797 * A PF has 16 4K windows and a VF has 4 4K windows. However, only 15 windows
4798 * in PF and 3 windows in VF that can be customized to map in different
4799 * register blocks.
4800 */
4801 static void bnxt_preset_reg_win(struct bnxt *bp)
4802 {
4803 if (BNXT_PF(bp)) {
4804 /* CAG registers map to GRC window #4 */
4805 writel(BNXT_CAG_REG_BASE,
4806 bp->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 12);
4807 }
4808 }
4809
4810 static int __bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4811 {
4812 int rc = 0;
4813
4814 bnxt_preset_reg_win(bp);
4815 netif_carrier_off(bp->dev);
4816 if (irq_re_init) {
4817 rc = bnxt_setup_int_mode(bp);
4818 if (rc) {
4819 netdev_err(bp->dev, "bnxt_setup_int_mode err: %x\n",
4820 rc);
4821 return rc;
4822 }
4823 }
4824 if ((bp->flags & BNXT_FLAG_RFS) &&
4825 !(bp->flags & BNXT_FLAG_USING_MSIX)) {
4826 /* disable RFS if falling back to INTA */
4827 bp->dev->hw_features &= ~NETIF_F_NTUPLE;
4828 bp->flags &= ~BNXT_FLAG_RFS;
4829 }
4830
4831 rc = bnxt_alloc_mem(bp, irq_re_init);
4832 if (rc) {
4833 netdev_err(bp->dev, "bnxt_alloc_mem err: %x\n", rc);
4834 goto open_err_free_mem;
4835 }
4836
4837 if (irq_re_init) {
4838 bnxt_init_napi(bp);
4839 rc = bnxt_request_irq(bp);
4840 if (rc) {
4841 netdev_err(bp->dev, "bnxt_request_irq err: %x\n", rc);
4842 goto open_err;
4843 }
4844 }
4845
4846 bnxt_enable_napi(bp);
4847
4848 rc = bnxt_init_nic(bp, irq_re_init);
4849 if (rc) {
4850 netdev_err(bp->dev, "bnxt_init_nic err: %x\n", rc);
4851 goto open_err;
4852 }
4853
4854 if (link_re_init) {
4855 rc = bnxt_update_phy_setting(bp);
4856 if (rc)
4857 netdev_warn(bp->dev, "failed to update phy settings\n");
4858 }
4859
4860 if (irq_re_init) {
4861 #if defined(CONFIG_VXLAN) || defined(CONFIG_VXLAN_MODULE)
4862 vxlan_get_rx_port(bp->dev);
4863 #endif
4864 if (!bnxt_hwrm_tunnel_dst_port_alloc(
4865 bp, htons(0x17c1),
4866 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_GENEVE))
4867 bp->nge_port_cnt = 1;
4868 }
4869
4870 set_bit(BNXT_STATE_OPEN, &bp->state);
4871 bnxt_enable_int(bp);
4872 /* Enable TX queues */
4873 bnxt_tx_enable(bp);
4874 mod_timer(&bp->timer, jiffies + bp->current_interval);
4875 bnxt_update_link(bp, true);
4876
4877 return 0;
4878
4879 open_err:
4880 bnxt_disable_napi(bp);
4881 bnxt_del_napi(bp);
4882
4883 open_err_free_mem:
4884 bnxt_free_skbs(bp);
4885 bnxt_free_irq(bp);
4886 bnxt_free_mem(bp, true);
4887 return rc;
4888 }
4889
4890 /* rtnl_lock held */
4891 int bnxt_open_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4892 {
4893 int rc = 0;
4894
4895 rc = __bnxt_open_nic(bp, irq_re_init, link_re_init);
4896 if (rc) {
4897 netdev_err(bp->dev, "nic open fail (rc: %x)\n", rc);
4898 dev_close(bp->dev);
4899 }
4900 return rc;
4901 }
4902
4903 static int bnxt_open(struct net_device *dev)
4904 {
4905 struct bnxt *bp = netdev_priv(dev);
4906 int rc = 0;
4907
4908 rc = bnxt_hwrm_func_reset(bp);
4909 if (rc) {
4910 netdev_err(bp->dev, "hwrm chip reset failure rc: %x\n",
4911 rc);
4912 rc = -1;
4913 return rc;
4914 }
4915 return __bnxt_open_nic(bp, true, true);
4916 }
4917
4918 static void bnxt_disable_int_sync(struct bnxt *bp)
4919 {
4920 int i;
4921
4922 atomic_inc(&bp->intr_sem);
4923 if (!netif_running(bp->dev))
4924 return;
4925
4926 bnxt_disable_int(bp);
4927 for (i = 0; i < bp->cp_nr_rings; i++)
4928 synchronize_irq(bp->irq_tbl[i].vector);
4929 }
4930
4931 int bnxt_close_nic(struct bnxt *bp, bool irq_re_init, bool link_re_init)
4932 {
4933 int rc = 0;
4934
4935 #ifdef CONFIG_BNXT_SRIOV
4936 if (bp->sriov_cfg) {
4937 rc = wait_event_interruptible_timeout(bp->sriov_cfg_wait,
4938 !bp->sriov_cfg,
4939 BNXT_SRIOV_CFG_WAIT_TMO);
4940 if (rc)
4941 netdev_warn(bp->dev, "timeout waiting for SRIOV config operation to complete!\n");
4942 }
4943 #endif
4944 /* Change device state to avoid TX queue wake up's */
4945 bnxt_tx_disable(bp);
4946
4947 clear_bit(BNXT_STATE_OPEN, &bp->state);
4948 smp_mb__after_atomic();
4949 while (test_bit(BNXT_STATE_IN_SP_TASK, &bp->state))
4950 msleep(20);
4951
4952 /* Flush rings before disabling interrupts */
4953 bnxt_shutdown_nic(bp, irq_re_init);
4954
4955 /* TODO CHIMP_FW: Link/PHY related cleanup if (link_re_init) */
4956
4957 bnxt_disable_napi(bp);
4958 bnxt_disable_int_sync(bp);
4959 del_timer_sync(&bp->timer);
4960 bnxt_free_skbs(bp);
4961
4962 if (irq_re_init) {
4963 bnxt_free_irq(bp);
4964 bnxt_del_napi(bp);
4965 }
4966 bnxt_free_mem(bp, irq_re_init);
4967 return rc;
4968 }
4969
4970 static int bnxt_close(struct net_device *dev)
4971 {
4972 struct bnxt *bp = netdev_priv(dev);
4973
4974 bnxt_close_nic(bp, true, true);
4975 return 0;
4976 }
4977
4978 /* rtnl_lock held */
4979 static int bnxt_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4980 {
4981 switch (cmd) {
4982 case SIOCGMIIPHY:
4983 /* fallthru */
4984 case SIOCGMIIREG: {
4985 if (!netif_running(dev))
4986 return -EAGAIN;
4987
4988 return 0;
4989 }
4990
4991 case SIOCSMIIREG:
4992 if (!netif_running(dev))
4993 return -EAGAIN;
4994
4995 return 0;
4996
4997 default:
4998 /* do nothing */
4999 break;
5000 }
5001 return -EOPNOTSUPP;
5002 }
5003
5004 static struct rtnl_link_stats64 *
5005 bnxt_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
5006 {
5007 u32 i;
5008 struct bnxt *bp = netdev_priv(dev);
5009
5010 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5011
5012 if (!bp->bnapi)
5013 return stats;
5014
5015 /* TODO check if we need to synchronize with bnxt_close path */
5016 for (i = 0; i < bp->cp_nr_rings; i++) {
5017 struct bnxt_napi *bnapi = bp->bnapi[i];
5018 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5019 struct ctx_hw_stats *hw_stats = cpr->hw_stats;
5020
5021 stats->rx_packets += le64_to_cpu(hw_stats->rx_ucast_pkts);
5022 stats->rx_packets += le64_to_cpu(hw_stats->rx_mcast_pkts);
5023 stats->rx_packets += le64_to_cpu(hw_stats->rx_bcast_pkts);
5024
5025 stats->tx_packets += le64_to_cpu(hw_stats->tx_ucast_pkts);
5026 stats->tx_packets += le64_to_cpu(hw_stats->tx_mcast_pkts);
5027 stats->tx_packets += le64_to_cpu(hw_stats->tx_bcast_pkts);
5028
5029 stats->rx_bytes += le64_to_cpu(hw_stats->rx_ucast_bytes);
5030 stats->rx_bytes += le64_to_cpu(hw_stats->rx_mcast_bytes);
5031 stats->rx_bytes += le64_to_cpu(hw_stats->rx_bcast_bytes);
5032
5033 stats->tx_bytes += le64_to_cpu(hw_stats->tx_ucast_bytes);
5034 stats->tx_bytes += le64_to_cpu(hw_stats->tx_mcast_bytes);
5035 stats->tx_bytes += le64_to_cpu(hw_stats->tx_bcast_bytes);
5036
5037 stats->rx_missed_errors +=
5038 le64_to_cpu(hw_stats->rx_discard_pkts);
5039
5040 stats->multicast += le64_to_cpu(hw_stats->rx_mcast_pkts);
5041
5042 stats->tx_dropped += le64_to_cpu(hw_stats->tx_drop_pkts);
5043 }
5044
5045 if (bp->flags & BNXT_FLAG_PORT_STATS) {
5046 struct rx_port_stats *rx = bp->hw_rx_port_stats;
5047 struct tx_port_stats *tx = bp->hw_tx_port_stats;
5048
5049 stats->rx_crc_errors = le64_to_cpu(rx->rx_fcs_err_frames);
5050 stats->rx_frame_errors = le64_to_cpu(rx->rx_align_err_frames);
5051 stats->rx_length_errors = le64_to_cpu(rx->rx_undrsz_frames) +
5052 le64_to_cpu(rx->rx_ovrsz_frames) +
5053 le64_to_cpu(rx->rx_runt_frames);
5054 stats->rx_errors = le64_to_cpu(rx->rx_false_carrier_frames) +
5055 le64_to_cpu(rx->rx_jbr_frames);
5056 stats->collisions = le64_to_cpu(tx->tx_total_collisions);
5057 stats->tx_fifo_errors = le64_to_cpu(tx->tx_fifo_underruns);
5058 stats->tx_errors = le64_to_cpu(tx->tx_err);
5059 }
5060
5061 return stats;
5062 }
5063
5064 static bool bnxt_mc_list_updated(struct bnxt *bp, u32 *rx_mask)
5065 {
5066 struct net_device *dev = bp->dev;
5067 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5068 struct netdev_hw_addr *ha;
5069 u8 *haddr;
5070 int mc_count = 0;
5071 bool update = false;
5072 int off = 0;
5073
5074 netdev_for_each_mc_addr(ha, dev) {
5075 if (mc_count >= BNXT_MAX_MC_ADDRS) {
5076 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5077 vnic->mc_list_count = 0;
5078 return false;
5079 }
5080 haddr = ha->addr;
5081 if (!ether_addr_equal(haddr, vnic->mc_list + off)) {
5082 memcpy(vnic->mc_list + off, haddr, ETH_ALEN);
5083 update = true;
5084 }
5085 off += ETH_ALEN;
5086 mc_count++;
5087 }
5088 if (mc_count)
5089 *rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_MCAST;
5090
5091 if (mc_count != vnic->mc_list_count) {
5092 vnic->mc_list_count = mc_count;
5093 update = true;
5094 }
5095 return update;
5096 }
5097
5098 static bool bnxt_uc_list_updated(struct bnxt *bp)
5099 {
5100 struct net_device *dev = bp->dev;
5101 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5102 struct netdev_hw_addr *ha;
5103 int off = 0;
5104
5105 if (netdev_uc_count(dev) != (vnic->uc_filter_count - 1))
5106 return true;
5107
5108 netdev_for_each_uc_addr(ha, dev) {
5109 if (!ether_addr_equal(ha->addr, vnic->uc_list + off))
5110 return true;
5111
5112 off += ETH_ALEN;
5113 }
5114 return false;
5115 }
5116
5117 static void bnxt_set_rx_mode(struct net_device *dev)
5118 {
5119 struct bnxt *bp = netdev_priv(dev);
5120 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5121 u32 mask = vnic->rx_mask;
5122 bool mc_update = false;
5123 bool uc_update;
5124
5125 if (!netif_running(dev))
5126 return;
5127
5128 mask &= ~(CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS |
5129 CFA_L2_SET_RX_MASK_REQ_MASK_MCAST |
5130 CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST);
5131
5132 /* Only allow PF to be in promiscuous mode */
5133 if ((dev->flags & IFF_PROMISC) && BNXT_PF(bp))
5134 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5135
5136 uc_update = bnxt_uc_list_updated(bp);
5137
5138 if (dev->flags & IFF_ALLMULTI) {
5139 mask |= CFA_L2_SET_RX_MASK_REQ_MASK_ALL_MCAST;
5140 vnic->mc_list_count = 0;
5141 } else {
5142 mc_update = bnxt_mc_list_updated(bp, &mask);
5143 }
5144
5145 if (mask != vnic->rx_mask || uc_update || mc_update) {
5146 vnic->rx_mask = mask;
5147
5148 set_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event);
5149 schedule_work(&bp->sp_task);
5150 }
5151 }
5152
5153 static int bnxt_cfg_rx_mode(struct bnxt *bp)
5154 {
5155 struct net_device *dev = bp->dev;
5156 struct bnxt_vnic_info *vnic = &bp->vnic_info[0];
5157 struct netdev_hw_addr *ha;
5158 int i, off = 0, rc;
5159 bool uc_update;
5160
5161 netif_addr_lock_bh(dev);
5162 uc_update = bnxt_uc_list_updated(bp);
5163 netif_addr_unlock_bh(dev);
5164
5165 if (!uc_update)
5166 goto skip_uc;
5167
5168 mutex_lock(&bp->hwrm_cmd_lock);
5169 for (i = 1; i < vnic->uc_filter_count; i++) {
5170 struct hwrm_cfa_l2_filter_free_input req = {0};
5171
5172 bnxt_hwrm_cmd_hdr_init(bp, &req, HWRM_CFA_L2_FILTER_FREE, -1,
5173 -1);
5174
5175 req.l2_filter_id = vnic->fw_l2_filter_id[i];
5176
5177 rc = _hwrm_send_message(bp, &req, sizeof(req),
5178 HWRM_CMD_TIMEOUT);
5179 }
5180 mutex_unlock(&bp->hwrm_cmd_lock);
5181
5182 vnic->uc_filter_count = 1;
5183
5184 netif_addr_lock_bh(dev);
5185 if (netdev_uc_count(dev) > (BNXT_MAX_UC_ADDRS - 1)) {
5186 vnic->rx_mask |= CFA_L2_SET_RX_MASK_REQ_MASK_PROMISCUOUS;
5187 } else {
5188 netdev_for_each_uc_addr(ha, dev) {
5189 memcpy(vnic->uc_list + off, ha->addr, ETH_ALEN);
5190 off += ETH_ALEN;
5191 vnic->uc_filter_count++;
5192 }
5193 }
5194 netif_addr_unlock_bh(dev);
5195
5196 for (i = 1, off = 0; i < vnic->uc_filter_count; i++, off += ETH_ALEN) {
5197 rc = bnxt_hwrm_set_vnic_filter(bp, 0, i, vnic->uc_list + off);
5198 if (rc) {
5199 netdev_err(bp->dev, "HWRM vnic filter failure rc: %x\n",
5200 rc);
5201 vnic->uc_filter_count = i;
5202 return rc;
5203 }
5204 }
5205
5206 skip_uc:
5207 rc = bnxt_hwrm_cfa_l2_set_rx_mask(bp, 0);
5208 if (rc)
5209 netdev_err(bp->dev, "HWRM cfa l2 rx mask failure rc: %x\n",
5210 rc);
5211
5212 return rc;
5213 }
5214
5215 static bool bnxt_rfs_capable(struct bnxt *bp)
5216 {
5217 #ifdef CONFIG_RFS_ACCEL
5218 struct bnxt_pf_info *pf = &bp->pf;
5219 int vnics;
5220
5221 if (BNXT_VF(bp) || !(bp->flags & BNXT_FLAG_MSIX_CAP))
5222 return false;
5223
5224 vnics = 1 + bp->rx_nr_rings;
5225 if (vnics > pf->max_rsscos_ctxs || vnics > pf->max_vnics)
5226 return false;
5227
5228 return true;
5229 #else
5230 return false;
5231 #endif
5232 }
5233
5234 static netdev_features_t bnxt_fix_features(struct net_device *dev,
5235 netdev_features_t features)
5236 {
5237 struct bnxt *bp = netdev_priv(dev);
5238
5239 if (!bnxt_rfs_capable(bp))
5240 features &= ~NETIF_F_NTUPLE;
5241 return features;
5242 }
5243
5244 static int bnxt_set_features(struct net_device *dev, netdev_features_t features)
5245 {
5246 struct bnxt *bp = netdev_priv(dev);
5247 u32 flags = bp->flags;
5248 u32 changes;
5249 int rc = 0;
5250 bool re_init = false;
5251 bool update_tpa = false;
5252
5253 flags &= ~BNXT_FLAG_ALL_CONFIG_FEATS;
5254 if ((features & NETIF_F_GRO) && (bp->pdev->revision > 0))
5255 flags |= BNXT_FLAG_GRO;
5256 if (features & NETIF_F_LRO)
5257 flags |= BNXT_FLAG_LRO;
5258
5259 if (features & NETIF_F_HW_VLAN_CTAG_RX)
5260 flags |= BNXT_FLAG_STRIP_VLAN;
5261
5262 if (features & NETIF_F_NTUPLE)
5263 flags |= BNXT_FLAG_RFS;
5264
5265 changes = flags ^ bp->flags;
5266 if (changes & BNXT_FLAG_TPA) {
5267 update_tpa = true;
5268 if ((bp->flags & BNXT_FLAG_TPA) == 0 ||
5269 (flags & BNXT_FLAG_TPA) == 0)
5270 re_init = true;
5271 }
5272
5273 if (changes & ~BNXT_FLAG_TPA)
5274 re_init = true;
5275
5276 if (flags != bp->flags) {
5277 u32 old_flags = bp->flags;
5278
5279 bp->flags = flags;
5280
5281 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5282 if (update_tpa)
5283 bnxt_set_ring_params(bp);
5284 return rc;
5285 }
5286
5287 if (re_init) {
5288 bnxt_close_nic(bp, false, false);
5289 if (update_tpa)
5290 bnxt_set_ring_params(bp);
5291
5292 return bnxt_open_nic(bp, false, false);
5293 }
5294 if (update_tpa) {
5295 rc = bnxt_set_tpa(bp,
5296 (flags & BNXT_FLAG_TPA) ?
5297 true : false);
5298 if (rc)
5299 bp->flags = old_flags;
5300 }
5301 }
5302 return rc;
5303 }
5304
5305 static void bnxt_dump_tx_sw_state(struct bnxt_napi *bnapi)
5306 {
5307 struct bnxt_tx_ring_info *txr = bnapi->tx_ring;
5308 int i = bnapi->index;
5309
5310 if (!txr)
5311 return;
5312
5313 netdev_info(bnapi->bp->dev, "[%d]: tx{fw_ring: %d prod: %x cons: %x}\n",
5314 i, txr->tx_ring_struct.fw_ring_id, txr->tx_prod,
5315 txr->tx_cons);
5316 }
5317
5318 static void bnxt_dump_rx_sw_state(struct bnxt_napi *bnapi)
5319 {
5320 struct bnxt_rx_ring_info *rxr = bnapi->rx_ring;
5321 int i = bnapi->index;
5322
5323 if (!rxr)
5324 return;
5325
5326 netdev_info(bnapi->bp->dev, "[%d]: rx{fw_ring: %d prod: %x} rx_agg{fw_ring: %d agg_prod: %x sw_agg_prod: %x}\n",
5327 i, rxr->rx_ring_struct.fw_ring_id, rxr->rx_prod,
5328 rxr->rx_agg_ring_struct.fw_ring_id, rxr->rx_agg_prod,
5329 rxr->rx_sw_agg_prod);
5330 }
5331
5332 static void bnxt_dump_cp_sw_state(struct bnxt_napi *bnapi)
5333 {
5334 struct bnxt_cp_ring_info *cpr = &bnapi->cp_ring;
5335 int i = bnapi->index;
5336
5337 netdev_info(bnapi->bp->dev, "[%d]: cp{fw_ring: %d raw_cons: %x}\n",
5338 i, cpr->cp_ring_struct.fw_ring_id, cpr->cp_raw_cons);
5339 }
5340
5341 static void bnxt_dbg_dump_states(struct bnxt *bp)
5342 {
5343 int i;
5344 struct bnxt_napi *bnapi;
5345
5346 for (i = 0; i < bp->cp_nr_rings; i++) {
5347 bnapi = bp->bnapi[i];
5348 if (netif_msg_drv(bp)) {
5349 bnxt_dump_tx_sw_state(bnapi);
5350 bnxt_dump_rx_sw_state(bnapi);
5351 bnxt_dump_cp_sw_state(bnapi);
5352 }
5353 }
5354 }
5355
5356 static void bnxt_reset_task(struct bnxt *bp)
5357 {
5358 bnxt_dbg_dump_states(bp);
5359 if (netif_running(bp->dev)) {
5360 bnxt_close_nic(bp, false, false);
5361 bnxt_open_nic(bp, false, false);
5362 }
5363 }
5364
5365 static void bnxt_tx_timeout(struct net_device *dev)
5366 {
5367 struct bnxt *bp = netdev_priv(dev);
5368
5369 netdev_err(bp->dev, "TX timeout detected, starting reset task!\n");
5370 set_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event);
5371 schedule_work(&bp->sp_task);
5372 }
5373
5374 #ifdef CONFIG_NET_POLL_CONTROLLER
5375 static void bnxt_poll_controller(struct net_device *dev)
5376 {
5377 struct bnxt *bp = netdev_priv(dev);
5378 int i;
5379
5380 for (i = 0; i < bp->cp_nr_rings; i++) {
5381 struct bnxt_irq *irq = &bp->irq_tbl[i];
5382
5383 disable_irq(irq->vector);
5384 irq->handler(irq->vector, bp->bnapi[i]);
5385 enable_irq(irq->vector);
5386 }
5387 }
5388 #endif
5389
5390 static void bnxt_timer(unsigned long data)
5391 {
5392 struct bnxt *bp = (struct bnxt *)data;
5393 struct net_device *dev = bp->dev;
5394
5395 if (!netif_running(dev))
5396 return;
5397
5398 if (atomic_read(&bp->intr_sem) != 0)
5399 goto bnxt_restart_timer;
5400
5401 if (bp->link_info.link_up && (bp->flags & BNXT_FLAG_PORT_STATS)) {
5402 set_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event);
5403 schedule_work(&bp->sp_task);
5404 }
5405 bnxt_restart_timer:
5406 mod_timer(&bp->timer, jiffies + bp->current_interval);
5407 }
5408
5409 static void bnxt_cfg_ntp_filters(struct bnxt *);
5410
5411 static void bnxt_sp_task(struct work_struct *work)
5412 {
5413 struct bnxt *bp = container_of(work, struct bnxt, sp_task);
5414 int rc;
5415
5416 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5417 smp_mb__after_atomic();
5418 if (!test_bit(BNXT_STATE_OPEN, &bp->state)) {
5419 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5420 return;
5421 }
5422
5423 if (test_and_clear_bit(BNXT_RX_MASK_SP_EVENT, &bp->sp_event))
5424 bnxt_cfg_rx_mode(bp);
5425
5426 if (test_and_clear_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event))
5427 bnxt_cfg_ntp_filters(bp);
5428 if (test_and_clear_bit(BNXT_LINK_CHNG_SP_EVENT, &bp->sp_event)) {
5429 rc = bnxt_update_link(bp, true);
5430 if (rc)
5431 netdev_err(bp->dev, "SP task can't update link (rc: %x)\n",
5432 rc);
5433 }
5434 if (test_and_clear_bit(BNXT_HWRM_EXEC_FWD_REQ_SP_EVENT, &bp->sp_event))
5435 bnxt_hwrm_exec_fwd_req(bp);
5436 if (test_and_clear_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event)) {
5437 bnxt_hwrm_tunnel_dst_port_alloc(
5438 bp, bp->vxlan_port,
5439 TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5440 }
5441 if (test_and_clear_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event)) {
5442 bnxt_hwrm_tunnel_dst_port_free(
5443 bp, TUNNEL_DST_PORT_FREE_REQ_TUNNEL_TYPE_VXLAN);
5444 }
5445 if (test_and_clear_bit(BNXT_RESET_TASK_SP_EVENT, &bp->sp_event)) {
5446 /* bnxt_reset_task() calls bnxt_close_nic() which waits
5447 * for BNXT_STATE_IN_SP_TASK to clear.
5448 */
5449 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5450 rtnl_lock();
5451 bnxt_reset_task(bp);
5452 set_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5453 rtnl_unlock();
5454 }
5455
5456 if (test_and_clear_bit(BNXT_PERIODIC_STATS_SP_EVENT, &bp->sp_event))
5457 bnxt_hwrm_port_qstats(bp);
5458
5459 smp_mb__before_atomic();
5460 clear_bit(BNXT_STATE_IN_SP_TASK, &bp->state);
5461 }
5462
5463 static int bnxt_init_board(struct pci_dev *pdev, struct net_device *dev)
5464 {
5465 int rc;
5466 struct bnxt *bp = netdev_priv(dev);
5467
5468 SET_NETDEV_DEV(dev, &pdev->dev);
5469
5470 /* enable device (incl. PCI PM wakeup), and bus-mastering */
5471 rc = pci_enable_device(pdev);
5472 if (rc) {
5473 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
5474 goto init_err;
5475 }
5476
5477 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
5478 dev_err(&pdev->dev,
5479 "Cannot find PCI device base address, aborting\n");
5480 rc = -ENODEV;
5481 goto init_err_disable;
5482 }
5483
5484 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
5485 if (rc) {
5486 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
5487 goto init_err_disable;
5488 }
5489
5490 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) != 0 &&
5491 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)) != 0) {
5492 dev_err(&pdev->dev, "System does not support DMA, aborting\n");
5493 goto init_err_disable;
5494 }
5495
5496 pci_set_master(pdev);
5497
5498 bp->dev = dev;
5499 bp->pdev = pdev;
5500
5501 bp->bar0 = pci_ioremap_bar(pdev, 0);
5502 if (!bp->bar0) {
5503 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5504 rc = -ENOMEM;
5505 goto init_err_release;
5506 }
5507
5508 bp->bar1 = pci_ioremap_bar(pdev, 2);
5509 if (!bp->bar1) {
5510 dev_err(&pdev->dev, "Cannot map doorbell registers, aborting\n");
5511 rc = -ENOMEM;
5512 goto init_err_release;
5513 }
5514
5515 bp->bar2 = pci_ioremap_bar(pdev, 4);
5516 if (!bp->bar2) {
5517 dev_err(&pdev->dev, "Cannot map bar4 registers, aborting\n");
5518 rc = -ENOMEM;
5519 goto init_err_release;
5520 }
5521
5522 pci_enable_pcie_error_reporting(pdev);
5523
5524 INIT_WORK(&bp->sp_task, bnxt_sp_task);
5525
5526 spin_lock_init(&bp->ntp_fltr_lock);
5527
5528 bp->rx_ring_size = BNXT_DEFAULT_RX_RING_SIZE;
5529 bp->tx_ring_size = BNXT_DEFAULT_TX_RING_SIZE;
5530
5531 /* tick values in micro seconds */
5532 bp->rx_coal_ticks = 12;
5533 bp->rx_coal_bufs = 30;
5534 bp->rx_coal_ticks_irq = 1;
5535 bp->rx_coal_bufs_irq = 2;
5536
5537 bp->tx_coal_ticks = 25;
5538 bp->tx_coal_bufs = 30;
5539 bp->tx_coal_ticks_irq = 2;
5540 bp->tx_coal_bufs_irq = 2;
5541
5542 init_timer(&bp->timer);
5543 bp->timer.data = (unsigned long)bp;
5544 bp->timer.function = bnxt_timer;
5545 bp->current_interval = BNXT_TIMER_INTERVAL;
5546
5547 clear_bit(BNXT_STATE_OPEN, &bp->state);
5548
5549 return 0;
5550
5551 init_err_release:
5552 if (bp->bar2) {
5553 pci_iounmap(pdev, bp->bar2);
5554 bp->bar2 = NULL;
5555 }
5556
5557 if (bp->bar1) {
5558 pci_iounmap(pdev, bp->bar1);
5559 bp->bar1 = NULL;
5560 }
5561
5562 if (bp->bar0) {
5563 pci_iounmap(pdev, bp->bar0);
5564 bp->bar0 = NULL;
5565 }
5566
5567 pci_release_regions(pdev);
5568
5569 init_err_disable:
5570 pci_disable_device(pdev);
5571
5572 init_err:
5573 return rc;
5574 }
5575
5576 /* rtnl_lock held */
5577 static int bnxt_change_mac_addr(struct net_device *dev, void *p)
5578 {
5579 struct sockaddr *addr = p;
5580 struct bnxt *bp = netdev_priv(dev);
5581 int rc = 0;
5582
5583 if (!is_valid_ether_addr(addr->sa_data))
5584 return -EADDRNOTAVAIL;
5585
5586 #ifdef CONFIG_BNXT_SRIOV
5587 if (BNXT_VF(bp) && is_valid_ether_addr(bp->vf.mac_addr))
5588 return -EADDRNOTAVAIL;
5589 #endif
5590
5591 if (ether_addr_equal(addr->sa_data, dev->dev_addr))
5592 return 0;
5593
5594 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5595 if (netif_running(dev)) {
5596 bnxt_close_nic(bp, false, false);
5597 rc = bnxt_open_nic(bp, false, false);
5598 }
5599
5600 return rc;
5601 }
5602
5603 /* rtnl_lock held */
5604 static int bnxt_change_mtu(struct net_device *dev, int new_mtu)
5605 {
5606 struct bnxt *bp = netdev_priv(dev);
5607
5608 if (new_mtu < 60 || new_mtu > 9000)
5609 return -EINVAL;
5610
5611 if (netif_running(dev))
5612 bnxt_close_nic(bp, false, false);
5613
5614 dev->mtu = new_mtu;
5615 bnxt_set_ring_params(bp);
5616
5617 if (netif_running(dev))
5618 return bnxt_open_nic(bp, false, false);
5619
5620 return 0;
5621 }
5622
5623 static int bnxt_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
5624 struct tc_to_netdev *ntc)
5625 {
5626 struct bnxt *bp = netdev_priv(dev);
5627 u8 tc;
5628
5629 if (ntc->type != TC_SETUP_MQPRIO)
5630 return -EINVAL;
5631
5632 tc = ntc->tc;
5633
5634 if (tc > bp->max_tc) {
5635 netdev_err(dev, "too many traffic classes requested: %d Max supported is %d\n",
5636 tc, bp->max_tc);
5637 return -EINVAL;
5638 }
5639
5640 if (netdev_get_num_tc(dev) == tc)
5641 return 0;
5642
5643 if (tc) {
5644 int max_rx_rings, max_tx_rings, rc;
5645 bool sh = false;
5646
5647 if (bp->flags & BNXT_FLAG_SHARED_RINGS)
5648 sh = true;
5649
5650 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
5651 if (rc || bp->tx_nr_rings_per_tc * tc > max_tx_rings)
5652 return -ENOMEM;
5653 }
5654
5655 /* Needs to close the device and do hw resource re-allocations */
5656 if (netif_running(bp->dev))
5657 bnxt_close_nic(bp, true, false);
5658
5659 if (tc) {
5660 bp->tx_nr_rings = bp->tx_nr_rings_per_tc * tc;
5661 netdev_set_num_tc(dev, tc);
5662 } else {
5663 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
5664 netdev_reset_tc(dev);
5665 }
5666 bp->cp_nr_rings = max_t(int, bp->tx_nr_rings, bp->rx_nr_rings);
5667 bp->num_stat_ctxs = bp->cp_nr_rings;
5668
5669 if (netif_running(bp->dev))
5670 return bnxt_open_nic(bp, true, false);
5671
5672 return 0;
5673 }
5674
5675 #ifdef CONFIG_RFS_ACCEL
5676 static bool bnxt_fltr_match(struct bnxt_ntuple_filter *f1,
5677 struct bnxt_ntuple_filter *f2)
5678 {
5679 struct flow_keys *keys1 = &f1->fkeys;
5680 struct flow_keys *keys2 = &f2->fkeys;
5681
5682 if (keys1->addrs.v4addrs.src == keys2->addrs.v4addrs.src &&
5683 keys1->addrs.v4addrs.dst == keys2->addrs.v4addrs.dst &&
5684 keys1->ports.ports == keys2->ports.ports &&
5685 keys1->basic.ip_proto == keys2->basic.ip_proto &&
5686 keys1->basic.n_proto == keys2->basic.n_proto &&
5687 ether_addr_equal(f1->src_mac_addr, f2->src_mac_addr))
5688 return true;
5689
5690 return false;
5691 }
5692
5693 static int bnxt_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb,
5694 u16 rxq_index, u32 flow_id)
5695 {
5696 struct bnxt *bp = netdev_priv(dev);
5697 struct bnxt_ntuple_filter *fltr, *new_fltr;
5698 struct flow_keys *fkeys;
5699 struct ethhdr *eth = (struct ethhdr *)skb_mac_header(skb);
5700 int rc = 0, idx, bit_id;
5701 struct hlist_head *head;
5702
5703 if (skb->encapsulation)
5704 return -EPROTONOSUPPORT;
5705
5706 new_fltr = kzalloc(sizeof(*new_fltr), GFP_ATOMIC);
5707 if (!new_fltr)
5708 return -ENOMEM;
5709
5710 fkeys = &new_fltr->fkeys;
5711 if (!skb_flow_dissect_flow_keys(skb, fkeys, 0)) {
5712 rc = -EPROTONOSUPPORT;
5713 goto err_free;
5714 }
5715
5716 if ((fkeys->basic.n_proto != htons(ETH_P_IP)) ||
5717 ((fkeys->basic.ip_proto != IPPROTO_TCP) &&
5718 (fkeys->basic.ip_proto != IPPROTO_UDP))) {
5719 rc = -EPROTONOSUPPORT;
5720 goto err_free;
5721 }
5722
5723 memcpy(new_fltr->src_mac_addr, eth->h_source, ETH_ALEN);
5724
5725 idx = skb_get_hash_raw(skb) & BNXT_NTP_FLTR_HASH_MASK;
5726 head = &bp->ntp_fltr_hash_tbl[idx];
5727 rcu_read_lock();
5728 hlist_for_each_entry_rcu(fltr, head, hash) {
5729 if (bnxt_fltr_match(fltr, new_fltr)) {
5730 rcu_read_unlock();
5731 rc = 0;
5732 goto err_free;
5733 }
5734 }
5735 rcu_read_unlock();
5736
5737 spin_lock_bh(&bp->ntp_fltr_lock);
5738 bit_id = bitmap_find_free_region(bp->ntp_fltr_bmap,
5739 BNXT_NTP_FLTR_MAX_FLTR, 0);
5740 if (bit_id < 0) {
5741 spin_unlock_bh(&bp->ntp_fltr_lock);
5742 rc = -ENOMEM;
5743 goto err_free;
5744 }
5745
5746 new_fltr->sw_id = (u16)bit_id;
5747 new_fltr->flow_id = flow_id;
5748 new_fltr->rxq = rxq_index;
5749 hlist_add_head_rcu(&new_fltr->hash, head);
5750 bp->ntp_fltr_count++;
5751 spin_unlock_bh(&bp->ntp_fltr_lock);
5752
5753 set_bit(BNXT_RX_NTP_FLTR_SP_EVENT, &bp->sp_event);
5754 schedule_work(&bp->sp_task);
5755
5756 return new_fltr->sw_id;
5757
5758 err_free:
5759 kfree(new_fltr);
5760 return rc;
5761 }
5762
5763 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5764 {
5765 int i;
5766
5767 for (i = 0; i < BNXT_NTP_FLTR_HASH_SIZE; i++) {
5768 struct hlist_head *head;
5769 struct hlist_node *tmp;
5770 struct bnxt_ntuple_filter *fltr;
5771 int rc;
5772
5773 head = &bp->ntp_fltr_hash_tbl[i];
5774 hlist_for_each_entry_safe(fltr, tmp, head, hash) {
5775 bool del = false;
5776
5777 if (test_bit(BNXT_FLTR_VALID, &fltr->state)) {
5778 if (rps_may_expire_flow(bp->dev, fltr->rxq,
5779 fltr->flow_id,
5780 fltr->sw_id)) {
5781 bnxt_hwrm_cfa_ntuple_filter_free(bp,
5782 fltr);
5783 del = true;
5784 }
5785 } else {
5786 rc = bnxt_hwrm_cfa_ntuple_filter_alloc(bp,
5787 fltr);
5788 if (rc)
5789 del = true;
5790 else
5791 set_bit(BNXT_FLTR_VALID, &fltr->state);
5792 }
5793
5794 if (del) {
5795 spin_lock_bh(&bp->ntp_fltr_lock);
5796 hlist_del_rcu(&fltr->hash);
5797 bp->ntp_fltr_count--;
5798 spin_unlock_bh(&bp->ntp_fltr_lock);
5799 synchronize_rcu();
5800 clear_bit(fltr->sw_id, bp->ntp_fltr_bmap);
5801 kfree(fltr);
5802 }
5803 }
5804 }
5805 if (test_and_clear_bit(BNXT_HWRM_PF_UNLOAD_SP_EVENT, &bp->sp_event))
5806 netdev_info(bp->dev, "Receive PF driver unload event!");
5807 }
5808
5809 #else
5810
5811 static void bnxt_cfg_ntp_filters(struct bnxt *bp)
5812 {
5813 }
5814
5815 #endif /* CONFIG_RFS_ACCEL */
5816
5817 static void bnxt_add_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5818 __be16 port)
5819 {
5820 struct bnxt *bp = netdev_priv(dev);
5821
5822 if (!netif_running(dev))
5823 return;
5824
5825 if (sa_family != AF_INET6 && sa_family != AF_INET)
5826 return;
5827
5828 if (bp->vxlan_port_cnt && bp->vxlan_port != port)
5829 return;
5830
5831 bp->vxlan_port_cnt++;
5832 if (bp->vxlan_port_cnt == 1) {
5833 bp->vxlan_port = port;
5834 set_bit(BNXT_VXLAN_ADD_PORT_SP_EVENT, &bp->sp_event);
5835 schedule_work(&bp->sp_task);
5836 }
5837 }
5838
5839 static void bnxt_del_vxlan_port(struct net_device *dev, sa_family_t sa_family,
5840 __be16 port)
5841 {
5842 struct bnxt *bp = netdev_priv(dev);
5843
5844 if (!netif_running(dev))
5845 return;
5846
5847 if (sa_family != AF_INET6 && sa_family != AF_INET)
5848 return;
5849
5850 if (bp->vxlan_port_cnt && bp->vxlan_port == port) {
5851 bp->vxlan_port_cnt--;
5852
5853 if (bp->vxlan_port_cnt == 0) {
5854 set_bit(BNXT_VXLAN_DEL_PORT_SP_EVENT, &bp->sp_event);
5855 schedule_work(&bp->sp_task);
5856 }
5857 }
5858 }
5859
5860 static const struct net_device_ops bnxt_netdev_ops = {
5861 .ndo_open = bnxt_open,
5862 .ndo_start_xmit = bnxt_start_xmit,
5863 .ndo_stop = bnxt_close,
5864 .ndo_get_stats64 = bnxt_get_stats64,
5865 .ndo_set_rx_mode = bnxt_set_rx_mode,
5866 .ndo_do_ioctl = bnxt_ioctl,
5867 .ndo_validate_addr = eth_validate_addr,
5868 .ndo_set_mac_address = bnxt_change_mac_addr,
5869 .ndo_change_mtu = bnxt_change_mtu,
5870 .ndo_fix_features = bnxt_fix_features,
5871 .ndo_set_features = bnxt_set_features,
5872 .ndo_tx_timeout = bnxt_tx_timeout,
5873 #ifdef CONFIG_BNXT_SRIOV
5874 .ndo_get_vf_config = bnxt_get_vf_config,
5875 .ndo_set_vf_mac = bnxt_set_vf_mac,
5876 .ndo_set_vf_vlan = bnxt_set_vf_vlan,
5877 .ndo_set_vf_rate = bnxt_set_vf_bw,
5878 .ndo_set_vf_link_state = bnxt_set_vf_link_state,
5879 .ndo_set_vf_spoofchk = bnxt_set_vf_spoofchk,
5880 #endif
5881 #ifdef CONFIG_NET_POLL_CONTROLLER
5882 .ndo_poll_controller = bnxt_poll_controller,
5883 #endif
5884 .ndo_setup_tc = bnxt_setup_tc,
5885 #ifdef CONFIG_RFS_ACCEL
5886 .ndo_rx_flow_steer = bnxt_rx_flow_steer,
5887 #endif
5888 .ndo_add_vxlan_port = bnxt_add_vxlan_port,
5889 .ndo_del_vxlan_port = bnxt_del_vxlan_port,
5890 #ifdef CONFIG_NET_RX_BUSY_POLL
5891 .ndo_busy_poll = bnxt_busy_poll,
5892 #endif
5893 };
5894
5895 static void bnxt_remove_one(struct pci_dev *pdev)
5896 {
5897 struct net_device *dev = pci_get_drvdata(pdev);
5898 struct bnxt *bp = netdev_priv(dev);
5899
5900 if (BNXT_PF(bp))
5901 bnxt_sriov_disable(bp);
5902
5903 pci_disable_pcie_error_reporting(pdev);
5904 unregister_netdev(dev);
5905 cancel_work_sync(&bp->sp_task);
5906 bp->sp_event = 0;
5907
5908 bnxt_hwrm_func_drv_unrgtr(bp);
5909 bnxt_free_hwrm_resources(bp);
5910 pci_iounmap(pdev, bp->bar2);
5911 pci_iounmap(pdev, bp->bar1);
5912 pci_iounmap(pdev, bp->bar0);
5913 free_netdev(dev);
5914
5915 pci_release_regions(pdev);
5916 pci_disable_device(pdev);
5917 }
5918
5919 static int bnxt_probe_phy(struct bnxt *bp)
5920 {
5921 int rc = 0;
5922 struct bnxt_link_info *link_info = &bp->link_info;
5923
5924 rc = bnxt_update_link(bp, false);
5925 if (rc) {
5926 netdev_err(bp->dev, "Probe phy can't update link (rc: %x)\n",
5927 rc);
5928 return rc;
5929 }
5930
5931 /*initialize the ethool setting copy with NVM settings */
5932 if (BNXT_AUTO_MODE(link_info->auto_mode)) {
5933 link_info->autoneg = BNXT_AUTONEG_SPEED |
5934 BNXT_AUTONEG_FLOW_CTRL;
5935 link_info->advertising = link_info->auto_link_speeds;
5936 link_info->req_flow_ctrl = link_info->auto_pause_setting;
5937 } else {
5938 link_info->req_link_speed = link_info->force_link_speed;
5939 link_info->req_duplex = link_info->duplex_setting;
5940 link_info->req_flow_ctrl = link_info->force_pause_setting;
5941 }
5942 return rc;
5943 }
5944
5945 static int bnxt_get_max_irq(struct pci_dev *pdev)
5946 {
5947 u16 ctrl;
5948
5949 if (!pdev->msix_cap)
5950 return 1;
5951
5952 pci_read_config_word(pdev, pdev->msix_cap + PCI_MSIX_FLAGS, &ctrl);
5953 return (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
5954 }
5955
5956 static void _bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx,
5957 int *max_cp)
5958 {
5959 int max_ring_grps = 0;
5960
5961 #ifdef CONFIG_BNXT_SRIOV
5962 if (!BNXT_PF(bp)) {
5963 *max_tx = bp->vf.max_tx_rings;
5964 *max_rx = bp->vf.max_rx_rings;
5965 *max_cp = min_t(int, bp->vf.max_irqs, bp->vf.max_cp_rings);
5966 *max_cp = min_t(int, *max_cp, bp->vf.max_stat_ctxs);
5967 max_ring_grps = bp->vf.max_hw_ring_grps;
5968 } else
5969 #endif
5970 {
5971 *max_tx = bp->pf.max_tx_rings;
5972 *max_rx = bp->pf.max_rx_rings;
5973 *max_cp = min_t(int, bp->pf.max_irqs, bp->pf.max_cp_rings);
5974 *max_cp = min_t(int, *max_cp, bp->pf.max_stat_ctxs);
5975 max_ring_grps = bp->pf.max_hw_ring_grps;
5976 }
5977
5978 if (bp->flags & BNXT_FLAG_AGG_RINGS)
5979 *max_rx >>= 1;
5980 *max_rx = min_t(int, *max_rx, max_ring_grps);
5981 }
5982
5983 int bnxt_get_max_rings(struct bnxt *bp, int *max_rx, int *max_tx, bool shared)
5984 {
5985 int rx, tx, cp;
5986
5987 _bnxt_get_max_rings(bp, &rx, &tx, &cp);
5988 if (!rx || !tx || !cp)
5989 return -ENOMEM;
5990
5991 *max_rx = rx;
5992 *max_tx = tx;
5993 return bnxt_trim_rings(bp, max_rx, max_tx, cp, shared);
5994 }
5995
5996 static int bnxt_set_dflt_rings(struct bnxt *bp)
5997 {
5998 int dflt_rings, max_rx_rings, max_tx_rings, rc;
5999 bool sh = true;
6000
6001 if (sh)
6002 bp->flags |= BNXT_FLAG_SHARED_RINGS;
6003 dflt_rings = netif_get_num_default_rss_queues();
6004 rc = bnxt_get_max_rings(bp, &max_rx_rings, &max_tx_rings, sh);
6005 if (rc)
6006 return rc;
6007 bp->rx_nr_rings = min_t(int, dflt_rings, max_rx_rings);
6008 bp->tx_nr_rings_per_tc = min_t(int, dflt_rings, max_tx_rings);
6009 bp->tx_nr_rings = bp->tx_nr_rings_per_tc;
6010 bp->cp_nr_rings = sh ? max_t(int, bp->tx_nr_rings, bp->rx_nr_rings) :
6011 bp->tx_nr_rings + bp->rx_nr_rings;
6012 bp->num_stat_ctxs = bp->cp_nr_rings;
6013 return rc;
6014 }
6015
6016 static int bnxt_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
6017 {
6018 static int version_printed;
6019 struct net_device *dev;
6020 struct bnxt *bp;
6021 int rc, max_irqs;
6022
6023 if (version_printed++ == 0)
6024 pr_info("%s", version);
6025
6026 max_irqs = bnxt_get_max_irq(pdev);
6027 dev = alloc_etherdev_mq(sizeof(*bp), max_irqs);
6028 if (!dev)
6029 return -ENOMEM;
6030
6031 bp = netdev_priv(dev);
6032
6033 if (bnxt_vf_pciid(ent->driver_data))
6034 bp->flags |= BNXT_FLAG_VF;
6035
6036 if (pdev->msix_cap)
6037 bp->flags |= BNXT_FLAG_MSIX_CAP;
6038
6039 rc = bnxt_init_board(pdev, dev);
6040 if (rc < 0)
6041 goto init_err_free;
6042
6043 dev->netdev_ops = &bnxt_netdev_ops;
6044 dev->watchdog_timeo = BNXT_TX_TIMEOUT;
6045 dev->ethtool_ops = &bnxt_ethtool_ops;
6046
6047 pci_set_drvdata(pdev, dev);
6048
6049 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6050 NETIF_F_TSO | NETIF_F_TSO6 |
6051 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6052 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT |
6053 NETIF_F_RXHASH |
6054 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO;
6055
6056 dev->hw_enc_features =
6057 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
6058 NETIF_F_TSO | NETIF_F_TSO6 |
6059 NETIF_F_GSO_UDP_TUNNEL | NETIF_F_GSO_GRE |
6060 NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
6061 dev->vlan_features = dev->hw_features | NETIF_F_HIGHDMA;
6062 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6063 NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX;
6064 dev->features |= dev->hw_features | NETIF_F_HIGHDMA;
6065 dev->priv_flags |= IFF_UNICAST_FLT;
6066
6067 #ifdef CONFIG_BNXT_SRIOV
6068 init_waitqueue_head(&bp->sriov_cfg_wait);
6069 #endif
6070 rc = bnxt_alloc_hwrm_resources(bp);
6071 if (rc)
6072 goto init_err;
6073
6074 mutex_init(&bp->hwrm_cmd_lock);
6075 bnxt_hwrm_ver_get(bp);
6076
6077 rc = bnxt_hwrm_func_drv_rgtr(bp);
6078 if (rc)
6079 goto init_err;
6080
6081 /* Get the MAX capabilities for this function */
6082 rc = bnxt_hwrm_func_qcaps(bp);
6083 if (rc) {
6084 netdev_err(bp->dev, "hwrm query capability failure rc: %x\n",
6085 rc);
6086 rc = -1;
6087 goto init_err;
6088 }
6089
6090 rc = bnxt_hwrm_queue_qportcfg(bp);
6091 if (rc) {
6092 netdev_err(bp->dev, "hwrm query qportcfg failure rc: %x\n",
6093 rc);
6094 rc = -1;
6095 goto init_err;
6096 }
6097
6098 bnxt_set_tpa_flags(bp);
6099 bnxt_set_ring_params(bp);
6100 if (BNXT_PF(bp))
6101 bp->pf.max_irqs = max_irqs;
6102 #if defined(CONFIG_BNXT_SRIOV)
6103 else
6104 bp->vf.max_irqs = max_irqs;
6105 #endif
6106 bnxt_set_dflt_rings(bp);
6107
6108 if (BNXT_PF(bp)) {
6109 dev->hw_features |= NETIF_F_NTUPLE;
6110 if (bnxt_rfs_capable(bp)) {
6111 bp->flags |= BNXT_FLAG_RFS;
6112 dev->features |= NETIF_F_NTUPLE;
6113 }
6114 }
6115
6116 if (dev->hw_features & NETIF_F_HW_VLAN_CTAG_RX)
6117 bp->flags |= BNXT_FLAG_STRIP_VLAN;
6118
6119 rc = bnxt_probe_phy(bp);
6120 if (rc)
6121 goto init_err;
6122
6123 rc = register_netdev(dev);
6124 if (rc)
6125 goto init_err;
6126
6127 netdev_info(dev, "%s found at mem %lx, node addr %pM\n",
6128 board_info[ent->driver_data].name,
6129 (long)pci_resource_start(pdev, 0), dev->dev_addr);
6130
6131 return 0;
6132
6133 init_err:
6134 pci_iounmap(pdev, bp->bar0);
6135 pci_release_regions(pdev);
6136 pci_disable_device(pdev);
6137
6138 init_err_free:
6139 free_netdev(dev);
6140 return rc;
6141 }
6142
6143 /**
6144 * bnxt_io_error_detected - called when PCI error is detected
6145 * @pdev: Pointer to PCI device
6146 * @state: The current pci connection state
6147 *
6148 * This function is called after a PCI bus error affecting
6149 * this device has been detected.
6150 */
6151 static pci_ers_result_t bnxt_io_error_detected(struct pci_dev *pdev,
6152 pci_channel_state_t state)
6153 {
6154 struct net_device *netdev = pci_get_drvdata(pdev);
6155
6156 netdev_info(netdev, "PCI I/O error detected\n");
6157
6158 rtnl_lock();
6159 netif_device_detach(netdev);
6160
6161 if (state == pci_channel_io_perm_failure) {
6162 rtnl_unlock();
6163 return PCI_ERS_RESULT_DISCONNECT;
6164 }
6165
6166 if (netif_running(netdev))
6167 bnxt_close(netdev);
6168
6169 pci_disable_device(pdev);
6170 rtnl_unlock();
6171
6172 /* Request a slot slot reset. */
6173 return PCI_ERS_RESULT_NEED_RESET;
6174 }
6175
6176 /**
6177 * bnxt_io_slot_reset - called after the pci bus has been reset.
6178 * @pdev: Pointer to PCI device
6179 *
6180 * Restart the card from scratch, as if from a cold-boot.
6181 * At this point, the card has exprienced a hard reset,
6182 * followed by fixups by BIOS, and has its config space
6183 * set up identically to what it was at cold boot.
6184 */
6185 static pci_ers_result_t bnxt_io_slot_reset(struct pci_dev *pdev)
6186 {
6187 struct net_device *netdev = pci_get_drvdata(pdev);
6188 struct bnxt *bp = netdev_priv(netdev);
6189 int err = 0;
6190 pci_ers_result_t result = PCI_ERS_RESULT_DISCONNECT;
6191
6192 netdev_info(bp->dev, "PCI Slot Reset\n");
6193
6194 rtnl_lock();
6195
6196 if (pci_enable_device(pdev)) {
6197 dev_err(&pdev->dev,
6198 "Cannot re-enable PCI device after reset.\n");
6199 } else {
6200 pci_set_master(pdev);
6201
6202 if (netif_running(netdev))
6203 err = bnxt_open(netdev);
6204
6205 if (!err)
6206 result = PCI_ERS_RESULT_RECOVERED;
6207 }
6208
6209 if (result != PCI_ERS_RESULT_RECOVERED && netif_running(netdev))
6210 dev_close(netdev);
6211
6212 rtnl_unlock();
6213
6214 err = pci_cleanup_aer_uncorrect_error_status(pdev);
6215 if (err) {
6216 dev_err(&pdev->dev,
6217 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
6218 err); /* non-fatal, continue */
6219 }
6220
6221 return PCI_ERS_RESULT_RECOVERED;
6222 }
6223
6224 /**
6225 * bnxt_io_resume - called when traffic can start flowing again.
6226 * @pdev: Pointer to PCI device
6227 *
6228 * This callback is called when the error recovery driver tells
6229 * us that its OK to resume normal operation.
6230 */
6231 static void bnxt_io_resume(struct pci_dev *pdev)
6232 {
6233 struct net_device *netdev = pci_get_drvdata(pdev);
6234
6235 rtnl_lock();
6236
6237 netif_device_attach(netdev);
6238
6239 rtnl_unlock();
6240 }
6241
6242 static const struct pci_error_handlers bnxt_err_handler = {
6243 .error_detected = bnxt_io_error_detected,
6244 .slot_reset = bnxt_io_slot_reset,
6245 .resume = bnxt_io_resume
6246 };
6247
6248 static struct pci_driver bnxt_pci_driver = {
6249 .name = DRV_MODULE_NAME,
6250 .id_table = bnxt_pci_tbl,
6251 .probe = bnxt_init_one,
6252 .remove = bnxt_remove_one,
6253 .err_handler = &bnxt_err_handler,
6254 #if defined(CONFIG_BNXT_SRIOV)
6255 .sriov_configure = bnxt_sriov_configure,
6256 #endif
6257 };
6258
6259 module_pci_driver(bnxt_pci_driver);
This page took 0.17477 seconds and 6 git commands to generate.