net: bcmgenet: rewrite bcmgenet_rx_refill()
[deliverable/linux.git] / drivers / net / ethernet / broadcom / genet / bcmgenet.c
1 /*
2 * Broadcom GENET (Gigabit Ethernet) controller driver
3 *
4 * Copyright (c) 2014 Broadcom Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #define pr_fmt(fmt) "bcmgenet: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/fcntl.h>
18 #include <linux/interrupt.h>
19 #include <linux/string.h>
20 #include <linux/if_ether.h>
21 #include <linux/init.h>
22 #include <linux/errno.h>
23 #include <linux/delay.h>
24 #include <linux/platform_device.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pm.h>
27 #include <linux/clk.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_net.h>
32 #include <linux/of_platform.h>
33 #include <net/arp.h>
34
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/netdevice.h>
38 #include <linux/inetdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/skbuff.h>
41 #include <linux/in.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/phy.h>
45 #include <linux/platform_data/bcmgenet.h>
46
47 #include <asm/unaligned.h>
48
49 #include "bcmgenet.h"
50
51 /* Maximum number of hardware queues, downsized if needed */
52 #define GENET_MAX_MQ_CNT 4
53
54 /* Default highest priority queue for multi queue support */
55 #define GENET_Q0_PRIORITY 0
56
57 #define GENET_Q16_RX_BD_CNT \
58 (TOTAL_DESC - priv->hw_params->rx_queues * priv->hw_params->rx_bds_per_q)
59 #define GENET_Q16_TX_BD_CNT \
60 (TOTAL_DESC - priv->hw_params->tx_queues * priv->hw_params->tx_bds_per_q)
61
62 #define RX_BUF_LENGTH 2048
63 #define SKB_ALIGNMENT 32
64
65 /* Tx/Rx DMA register offset, skip 256 descriptors */
66 #define WORDS_PER_BD(p) (p->hw_params->words_per_bd)
67 #define DMA_DESC_SIZE (WORDS_PER_BD(priv) * sizeof(u32))
68
69 #define GENET_TDMA_REG_OFF (priv->hw_params->tdma_offset + \
70 TOTAL_DESC * DMA_DESC_SIZE)
71
72 #define GENET_RDMA_REG_OFF (priv->hw_params->rdma_offset + \
73 TOTAL_DESC * DMA_DESC_SIZE)
74
75 static inline void dmadesc_set_length_status(struct bcmgenet_priv *priv,
76 void __iomem *d, u32 value)
77 {
78 __raw_writel(value, d + DMA_DESC_LENGTH_STATUS);
79 }
80
81 static inline u32 dmadesc_get_length_status(struct bcmgenet_priv *priv,
82 void __iomem *d)
83 {
84 return __raw_readl(d + DMA_DESC_LENGTH_STATUS);
85 }
86
87 static inline void dmadesc_set_addr(struct bcmgenet_priv *priv,
88 void __iomem *d,
89 dma_addr_t addr)
90 {
91 __raw_writel(lower_32_bits(addr), d + DMA_DESC_ADDRESS_LO);
92
93 /* Register writes to GISB bus can take couple hundred nanoseconds
94 * and are done for each packet, save these expensive writes unless
95 * the platform is explicitly configured for 64-bits/LPAE.
96 */
97 #ifdef CONFIG_PHYS_ADDR_T_64BIT
98 if (priv->hw_params->flags & GENET_HAS_40BITS)
99 __raw_writel(upper_32_bits(addr), d + DMA_DESC_ADDRESS_HI);
100 #endif
101 }
102
103 /* Combined address + length/status setter */
104 static inline void dmadesc_set(struct bcmgenet_priv *priv,
105 void __iomem *d, dma_addr_t addr, u32 val)
106 {
107 dmadesc_set_length_status(priv, d, val);
108 dmadesc_set_addr(priv, d, addr);
109 }
110
111 static inline dma_addr_t dmadesc_get_addr(struct bcmgenet_priv *priv,
112 void __iomem *d)
113 {
114 dma_addr_t addr;
115
116 addr = __raw_readl(d + DMA_DESC_ADDRESS_LO);
117
118 /* Register writes to GISB bus can take couple hundred nanoseconds
119 * and are done for each packet, save these expensive writes unless
120 * the platform is explicitly configured for 64-bits/LPAE.
121 */
122 #ifdef CONFIG_PHYS_ADDR_T_64BIT
123 if (priv->hw_params->flags & GENET_HAS_40BITS)
124 addr |= (u64)__raw_readl(d + DMA_DESC_ADDRESS_HI) << 32;
125 #endif
126 return addr;
127 }
128
129 #define GENET_VER_FMT "%1d.%1d EPHY: 0x%04x"
130
131 #define GENET_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
132 NETIF_MSG_LINK)
133
134 static inline u32 bcmgenet_rbuf_ctrl_get(struct bcmgenet_priv *priv)
135 {
136 if (GENET_IS_V1(priv))
137 return bcmgenet_rbuf_readl(priv, RBUF_FLUSH_CTRL_V1);
138 else
139 return bcmgenet_sys_readl(priv, SYS_RBUF_FLUSH_CTRL);
140 }
141
142 static inline void bcmgenet_rbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
143 {
144 if (GENET_IS_V1(priv))
145 bcmgenet_rbuf_writel(priv, val, RBUF_FLUSH_CTRL_V1);
146 else
147 bcmgenet_sys_writel(priv, val, SYS_RBUF_FLUSH_CTRL);
148 }
149
150 /* These macros are defined to deal with register map change
151 * between GENET1.1 and GENET2. Only those currently being used
152 * by driver are defined.
153 */
154 static inline u32 bcmgenet_tbuf_ctrl_get(struct bcmgenet_priv *priv)
155 {
156 if (GENET_IS_V1(priv))
157 return bcmgenet_rbuf_readl(priv, TBUF_CTRL_V1);
158 else
159 return __raw_readl(priv->base +
160 priv->hw_params->tbuf_offset + TBUF_CTRL);
161 }
162
163 static inline void bcmgenet_tbuf_ctrl_set(struct bcmgenet_priv *priv, u32 val)
164 {
165 if (GENET_IS_V1(priv))
166 bcmgenet_rbuf_writel(priv, val, TBUF_CTRL_V1);
167 else
168 __raw_writel(val, priv->base +
169 priv->hw_params->tbuf_offset + TBUF_CTRL);
170 }
171
172 static inline u32 bcmgenet_bp_mc_get(struct bcmgenet_priv *priv)
173 {
174 if (GENET_IS_V1(priv))
175 return bcmgenet_rbuf_readl(priv, TBUF_BP_MC_V1);
176 else
177 return __raw_readl(priv->base +
178 priv->hw_params->tbuf_offset + TBUF_BP_MC);
179 }
180
181 static inline void bcmgenet_bp_mc_set(struct bcmgenet_priv *priv, u32 val)
182 {
183 if (GENET_IS_V1(priv))
184 bcmgenet_rbuf_writel(priv, val, TBUF_BP_MC_V1);
185 else
186 __raw_writel(val, priv->base +
187 priv->hw_params->tbuf_offset + TBUF_BP_MC);
188 }
189
190 /* RX/TX DMA register accessors */
191 enum dma_reg {
192 DMA_RING_CFG = 0,
193 DMA_CTRL,
194 DMA_STATUS,
195 DMA_SCB_BURST_SIZE,
196 DMA_ARB_CTRL,
197 DMA_PRIORITY_0,
198 DMA_PRIORITY_1,
199 DMA_PRIORITY_2,
200 };
201
202 static const u8 bcmgenet_dma_regs_v3plus[] = {
203 [DMA_RING_CFG] = 0x00,
204 [DMA_CTRL] = 0x04,
205 [DMA_STATUS] = 0x08,
206 [DMA_SCB_BURST_SIZE] = 0x0C,
207 [DMA_ARB_CTRL] = 0x2C,
208 [DMA_PRIORITY_0] = 0x30,
209 [DMA_PRIORITY_1] = 0x34,
210 [DMA_PRIORITY_2] = 0x38,
211 };
212
213 static const u8 bcmgenet_dma_regs_v2[] = {
214 [DMA_RING_CFG] = 0x00,
215 [DMA_CTRL] = 0x04,
216 [DMA_STATUS] = 0x08,
217 [DMA_SCB_BURST_SIZE] = 0x0C,
218 [DMA_ARB_CTRL] = 0x30,
219 [DMA_PRIORITY_0] = 0x34,
220 [DMA_PRIORITY_1] = 0x38,
221 [DMA_PRIORITY_2] = 0x3C,
222 };
223
224 static const u8 bcmgenet_dma_regs_v1[] = {
225 [DMA_CTRL] = 0x00,
226 [DMA_STATUS] = 0x04,
227 [DMA_SCB_BURST_SIZE] = 0x0C,
228 [DMA_ARB_CTRL] = 0x30,
229 [DMA_PRIORITY_0] = 0x34,
230 [DMA_PRIORITY_1] = 0x38,
231 [DMA_PRIORITY_2] = 0x3C,
232 };
233
234 /* Set at runtime once bcmgenet version is known */
235 static const u8 *bcmgenet_dma_regs;
236
237 static inline struct bcmgenet_priv *dev_to_priv(struct device *dev)
238 {
239 return netdev_priv(dev_get_drvdata(dev));
240 }
241
242 static inline u32 bcmgenet_tdma_readl(struct bcmgenet_priv *priv,
243 enum dma_reg r)
244 {
245 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
246 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
247 }
248
249 static inline void bcmgenet_tdma_writel(struct bcmgenet_priv *priv,
250 u32 val, enum dma_reg r)
251 {
252 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
253 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
254 }
255
256 static inline u32 bcmgenet_rdma_readl(struct bcmgenet_priv *priv,
257 enum dma_reg r)
258 {
259 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
260 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
261 }
262
263 static inline void bcmgenet_rdma_writel(struct bcmgenet_priv *priv,
264 u32 val, enum dma_reg r)
265 {
266 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
267 DMA_RINGS_SIZE + bcmgenet_dma_regs[r]);
268 }
269
270 /* RDMA/TDMA ring registers and accessors
271 * we merge the common fields and just prefix with T/D the registers
272 * having different meaning depending on the direction
273 */
274 enum dma_ring_reg {
275 TDMA_READ_PTR = 0,
276 RDMA_WRITE_PTR = TDMA_READ_PTR,
277 TDMA_READ_PTR_HI,
278 RDMA_WRITE_PTR_HI = TDMA_READ_PTR_HI,
279 TDMA_CONS_INDEX,
280 RDMA_PROD_INDEX = TDMA_CONS_INDEX,
281 TDMA_PROD_INDEX,
282 RDMA_CONS_INDEX = TDMA_PROD_INDEX,
283 DMA_RING_BUF_SIZE,
284 DMA_START_ADDR,
285 DMA_START_ADDR_HI,
286 DMA_END_ADDR,
287 DMA_END_ADDR_HI,
288 DMA_MBUF_DONE_THRESH,
289 TDMA_FLOW_PERIOD,
290 RDMA_XON_XOFF_THRESH = TDMA_FLOW_PERIOD,
291 TDMA_WRITE_PTR,
292 RDMA_READ_PTR = TDMA_WRITE_PTR,
293 TDMA_WRITE_PTR_HI,
294 RDMA_READ_PTR_HI = TDMA_WRITE_PTR_HI
295 };
296
297 /* GENET v4 supports 40-bits pointer addressing
298 * for obvious reasons the LO and HI word parts
299 * are contiguous, but this offsets the other
300 * registers.
301 */
302 static const u8 genet_dma_ring_regs_v4[] = {
303 [TDMA_READ_PTR] = 0x00,
304 [TDMA_READ_PTR_HI] = 0x04,
305 [TDMA_CONS_INDEX] = 0x08,
306 [TDMA_PROD_INDEX] = 0x0C,
307 [DMA_RING_BUF_SIZE] = 0x10,
308 [DMA_START_ADDR] = 0x14,
309 [DMA_START_ADDR_HI] = 0x18,
310 [DMA_END_ADDR] = 0x1C,
311 [DMA_END_ADDR_HI] = 0x20,
312 [DMA_MBUF_DONE_THRESH] = 0x24,
313 [TDMA_FLOW_PERIOD] = 0x28,
314 [TDMA_WRITE_PTR] = 0x2C,
315 [TDMA_WRITE_PTR_HI] = 0x30,
316 };
317
318 static const u8 genet_dma_ring_regs_v123[] = {
319 [TDMA_READ_PTR] = 0x00,
320 [TDMA_CONS_INDEX] = 0x04,
321 [TDMA_PROD_INDEX] = 0x08,
322 [DMA_RING_BUF_SIZE] = 0x0C,
323 [DMA_START_ADDR] = 0x10,
324 [DMA_END_ADDR] = 0x14,
325 [DMA_MBUF_DONE_THRESH] = 0x18,
326 [TDMA_FLOW_PERIOD] = 0x1C,
327 [TDMA_WRITE_PTR] = 0x20,
328 };
329
330 /* Set at runtime once GENET version is known */
331 static const u8 *genet_dma_ring_regs;
332
333 static inline u32 bcmgenet_tdma_ring_readl(struct bcmgenet_priv *priv,
334 unsigned int ring,
335 enum dma_ring_reg r)
336 {
337 return __raw_readl(priv->base + GENET_TDMA_REG_OFF +
338 (DMA_RING_SIZE * ring) +
339 genet_dma_ring_regs[r]);
340 }
341
342 static inline void bcmgenet_tdma_ring_writel(struct bcmgenet_priv *priv,
343 unsigned int ring, u32 val,
344 enum dma_ring_reg r)
345 {
346 __raw_writel(val, priv->base + GENET_TDMA_REG_OFF +
347 (DMA_RING_SIZE * ring) +
348 genet_dma_ring_regs[r]);
349 }
350
351 static inline u32 bcmgenet_rdma_ring_readl(struct bcmgenet_priv *priv,
352 unsigned int ring,
353 enum dma_ring_reg r)
354 {
355 return __raw_readl(priv->base + GENET_RDMA_REG_OFF +
356 (DMA_RING_SIZE * ring) +
357 genet_dma_ring_regs[r]);
358 }
359
360 static inline void bcmgenet_rdma_ring_writel(struct bcmgenet_priv *priv,
361 unsigned int ring, u32 val,
362 enum dma_ring_reg r)
363 {
364 __raw_writel(val, priv->base + GENET_RDMA_REG_OFF +
365 (DMA_RING_SIZE * ring) +
366 genet_dma_ring_regs[r]);
367 }
368
369 static int bcmgenet_get_settings(struct net_device *dev,
370 struct ethtool_cmd *cmd)
371 {
372 struct bcmgenet_priv *priv = netdev_priv(dev);
373
374 if (!netif_running(dev))
375 return -EINVAL;
376
377 if (!priv->phydev)
378 return -ENODEV;
379
380 return phy_ethtool_gset(priv->phydev, cmd);
381 }
382
383 static int bcmgenet_set_settings(struct net_device *dev,
384 struct ethtool_cmd *cmd)
385 {
386 struct bcmgenet_priv *priv = netdev_priv(dev);
387
388 if (!netif_running(dev))
389 return -EINVAL;
390
391 if (!priv->phydev)
392 return -ENODEV;
393
394 return phy_ethtool_sset(priv->phydev, cmd);
395 }
396
397 static int bcmgenet_set_rx_csum(struct net_device *dev,
398 netdev_features_t wanted)
399 {
400 struct bcmgenet_priv *priv = netdev_priv(dev);
401 u32 rbuf_chk_ctrl;
402 bool rx_csum_en;
403
404 rx_csum_en = !!(wanted & NETIF_F_RXCSUM);
405
406 rbuf_chk_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CHK_CTRL);
407
408 /* enable rx checksumming */
409 if (rx_csum_en)
410 rbuf_chk_ctrl |= RBUF_RXCHK_EN;
411 else
412 rbuf_chk_ctrl &= ~RBUF_RXCHK_EN;
413 priv->desc_rxchk_en = rx_csum_en;
414
415 /* If UniMAC forwards CRC, we need to skip over it to get
416 * a valid CHK bit to be set in the per-packet status word
417 */
418 if (rx_csum_en && priv->crc_fwd_en)
419 rbuf_chk_ctrl |= RBUF_SKIP_FCS;
420 else
421 rbuf_chk_ctrl &= ~RBUF_SKIP_FCS;
422
423 bcmgenet_rbuf_writel(priv, rbuf_chk_ctrl, RBUF_CHK_CTRL);
424
425 return 0;
426 }
427
428 static int bcmgenet_set_tx_csum(struct net_device *dev,
429 netdev_features_t wanted)
430 {
431 struct bcmgenet_priv *priv = netdev_priv(dev);
432 bool desc_64b_en;
433 u32 tbuf_ctrl, rbuf_ctrl;
434
435 tbuf_ctrl = bcmgenet_tbuf_ctrl_get(priv);
436 rbuf_ctrl = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
437
438 desc_64b_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM));
439
440 /* enable 64 bytes descriptor in both directions (RBUF and TBUF) */
441 if (desc_64b_en) {
442 tbuf_ctrl |= RBUF_64B_EN;
443 rbuf_ctrl |= RBUF_64B_EN;
444 } else {
445 tbuf_ctrl &= ~RBUF_64B_EN;
446 rbuf_ctrl &= ~RBUF_64B_EN;
447 }
448 priv->desc_64b_en = desc_64b_en;
449
450 bcmgenet_tbuf_ctrl_set(priv, tbuf_ctrl);
451 bcmgenet_rbuf_writel(priv, rbuf_ctrl, RBUF_CTRL);
452
453 return 0;
454 }
455
456 static int bcmgenet_set_features(struct net_device *dev,
457 netdev_features_t features)
458 {
459 netdev_features_t changed = features ^ dev->features;
460 netdev_features_t wanted = dev->wanted_features;
461 int ret = 0;
462
463 if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))
464 ret = bcmgenet_set_tx_csum(dev, wanted);
465 if (changed & (NETIF_F_RXCSUM))
466 ret = bcmgenet_set_rx_csum(dev, wanted);
467
468 return ret;
469 }
470
471 static u32 bcmgenet_get_msglevel(struct net_device *dev)
472 {
473 struct bcmgenet_priv *priv = netdev_priv(dev);
474
475 return priv->msg_enable;
476 }
477
478 static void bcmgenet_set_msglevel(struct net_device *dev, u32 level)
479 {
480 struct bcmgenet_priv *priv = netdev_priv(dev);
481
482 priv->msg_enable = level;
483 }
484
485 /* standard ethtool support functions. */
486 enum bcmgenet_stat_type {
487 BCMGENET_STAT_NETDEV = -1,
488 BCMGENET_STAT_MIB_RX,
489 BCMGENET_STAT_MIB_TX,
490 BCMGENET_STAT_RUNT,
491 BCMGENET_STAT_MISC,
492 BCMGENET_STAT_SOFT,
493 };
494
495 struct bcmgenet_stats {
496 char stat_string[ETH_GSTRING_LEN];
497 int stat_sizeof;
498 int stat_offset;
499 enum bcmgenet_stat_type type;
500 /* reg offset from UMAC base for misc counters */
501 u16 reg_offset;
502 };
503
504 #define STAT_NETDEV(m) { \
505 .stat_string = __stringify(m), \
506 .stat_sizeof = sizeof(((struct net_device_stats *)0)->m), \
507 .stat_offset = offsetof(struct net_device_stats, m), \
508 .type = BCMGENET_STAT_NETDEV, \
509 }
510
511 #define STAT_GENET_MIB(str, m, _type) { \
512 .stat_string = str, \
513 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
514 .stat_offset = offsetof(struct bcmgenet_priv, m), \
515 .type = _type, \
516 }
517
518 #define STAT_GENET_MIB_RX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_RX)
519 #define STAT_GENET_MIB_TX(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_MIB_TX)
520 #define STAT_GENET_RUNT(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_RUNT)
521 #define STAT_GENET_SOFT_MIB(str, m) STAT_GENET_MIB(str, m, BCMGENET_STAT_SOFT)
522
523 #define STAT_GENET_MISC(str, m, offset) { \
524 .stat_string = str, \
525 .stat_sizeof = sizeof(((struct bcmgenet_priv *)0)->m), \
526 .stat_offset = offsetof(struct bcmgenet_priv, m), \
527 .type = BCMGENET_STAT_MISC, \
528 .reg_offset = offset, \
529 }
530
531
532 /* There is a 0xC gap between the end of RX and beginning of TX stats and then
533 * between the end of TX stats and the beginning of the RX RUNT
534 */
535 #define BCMGENET_STAT_OFFSET 0xc
536
537 /* Hardware counters must be kept in sync because the order/offset
538 * is important here (order in structure declaration = order in hardware)
539 */
540 static const struct bcmgenet_stats bcmgenet_gstrings_stats[] = {
541 /* general stats */
542 STAT_NETDEV(rx_packets),
543 STAT_NETDEV(tx_packets),
544 STAT_NETDEV(rx_bytes),
545 STAT_NETDEV(tx_bytes),
546 STAT_NETDEV(rx_errors),
547 STAT_NETDEV(tx_errors),
548 STAT_NETDEV(rx_dropped),
549 STAT_NETDEV(tx_dropped),
550 STAT_NETDEV(multicast),
551 /* UniMAC RSV counters */
552 STAT_GENET_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64),
553 STAT_GENET_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127),
554 STAT_GENET_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255),
555 STAT_GENET_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511),
556 STAT_GENET_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023),
557 STAT_GENET_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518),
558 STAT_GENET_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv),
559 STAT_GENET_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047),
560 STAT_GENET_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095),
561 STAT_GENET_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216),
562 STAT_GENET_MIB_RX("rx_pkts", mib.rx.pkt),
563 STAT_GENET_MIB_RX("rx_bytes", mib.rx.bytes),
564 STAT_GENET_MIB_RX("rx_multicast", mib.rx.mca),
565 STAT_GENET_MIB_RX("rx_broadcast", mib.rx.bca),
566 STAT_GENET_MIB_RX("rx_fcs", mib.rx.fcs),
567 STAT_GENET_MIB_RX("rx_control", mib.rx.cf),
568 STAT_GENET_MIB_RX("rx_pause", mib.rx.pf),
569 STAT_GENET_MIB_RX("rx_unknown", mib.rx.uo),
570 STAT_GENET_MIB_RX("rx_align", mib.rx.aln),
571 STAT_GENET_MIB_RX("rx_outrange", mib.rx.flr),
572 STAT_GENET_MIB_RX("rx_code", mib.rx.cde),
573 STAT_GENET_MIB_RX("rx_carrier", mib.rx.fcr),
574 STAT_GENET_MIB_RX("rx_oversize", mib.rx.ovr),
575 STAT_GENET_MIB_RX("rx_jabber", mib.rx.jbr),
576 STAT_GENET_MIB_RX("rx_mtu_err", mib.rx.mtue),
577 STAT_GENET_MIB_RX("rx_good_pkts", mib.rx.pok),
578 STAT_GENET_MIB_RX("rx_unicast", mib.rx.uc),
579 STAT_GENET_MIB_RX("rx_ppp", mib.rx.ppp),
580 STAT_GENET_MIB_RX("rx_crc", mib.rx.rcrc),
581 /* UniMAC TSV counters */
582 STAT_GENET_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64),
583 STAT_GENET_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127),
584 STAT_GENET_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255),
585 STAT_GENET_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511),
586 STAT_GENET_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023),
587 STAT_GENET_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518),
588 STAT_GENET_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv),
589 STAT_GENET_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047),
590 STAT_GENET_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095),
591 STAT_GENET_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216),
592 STAT_GENET_MIB_TX("tx_pkts", mib.tx.pkts),
593 STAT_GENET_MIB_TX("tx_multicast", mib.tx.mca),
594 STAT_GENET_MIB_TX("tx_broadcast", mib.tx.bca),
595 STAT_GENET_MIB_TX("tx_pause", mib.tx.pf),
596 STAT_GENET_MIB_TX("tx_control", mib.tx.cf),
597 STAT_GENET_MIB_TX("tx_fcs_err", mib.tx.fcs),
598 STAT_GENET_MIB_TX("tx_oversize", mib.tx.ovr),
599 STAT_GENET_MIB_TX("tx_defer", mib.tx.drf),
600 STAT_GENET_MIB_TX("tx_excess_defer", mib.tx.edf),
601 STAT_GENET_MIB_TX("tx_single_col", mib.tx.scl),
602 STAT_GENET_MIB_TX("tx_multi_col", mib.tx.mcl),
603 STAT_GENET_MIB_TX("tx_late_col", mib.tx.lcl),
604 STAT_GENET_MIB_TX("tx_excess_col", mib.tx.ecl),
605 STAT_GENET_MIB_TX("tx_frags", mib.tx.frg),
606 STAT_GENET_MIB_TX("tx_total_col", mib.tx.ncl),
607 STAT_GENET_MIB_TX("tx_jabber", mib.tx.jbr),
608 STAT_GENET_MIB_TX("tx_bytes", mib.tx.bytes),
609 STAT_GENET_MIB_TX("tx_good_pkts", mib.tx.pok),
610 STAT_GENET_MIB_TX("tx_unicast", mib.tx.uc),
611 /* UniMAC RUNT counters */
612 STAT_GENET_RUNT("rx_runt_pkts", mib.rx_runt_cnt),
613 STAT_GENET_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs),
614 STAT_GENET_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align),
615 STAT_GENET_RUNT("rx_runt_bytes", mib.rx_runt_bytes),
616 /* Misc UniMAC counters */
617 STAT_GENET_MISC("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt,
618 UMAC_RBUF_OVFL_CNT),
619 STAT_GENET_MISC("rbuf_err_cnt", mib.rbuf_err_cnt, UMAC_RBUF_ERR_CNT),
620 STAT_GENET_MISC("mdf_err_cnt", mib.mdf_err_cnt, UMAC_MDF_ERR_CNT),
621 STAT_GENET_SOFT_MIB("alloc_rx_buff_failed", mib.alloc_rx_buff_failed),
622 STAT_GENET_SOFT_MIB("rx_dma_failed", mib.rx_dma_failed),
623 STAT_GENET_SOFT_MIB("tx_dma_failed", mib.tx_dma_failed),
624 };
625
626 #define BCMGENET_STATS_LEN ARRAY_SIZE(bcmgenet_gstrings_stats)
627
628 static void bcmgenet_get_drvinfo(struct net_device *dev,
629 struct ethtool_drvinfo *info)
630 {
631 strlcpy(info->driver, "bcmgenet", sizeof(info->driver));
632 strlcpy(info->version, "v2.0", sizeof(info->version));
633 info->n_stats = BCMGENET_STATS_LEN;
634 }
635
636 static int bcmgenet_get_sset_count(struct net_device *dev, int string_set)
637 {
638 switch (string_set) {
639 case ETH_SS_STATS:
640 return BCMGENET_STATS_LEN;
641 default:
642 return -EOPNOTSUPP;
643 }
644 }
645
646 static void bcmgenet_get_strings(struct net_device *dev, u32 stringset,
647 u8 *data)
648 {
649 int i;
650
651 switch (stringset) {
652 case ETH_SS_STATS:
653 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
654 memcpy(data + i * ETH_GSTRING_LEN,
655 bcmgenet_gstrings_stats[i].stat_string,
656 ETH_GSTRING_LEN);
657 }
658 break;
659 }
660 }
661
662 static void bcmgenet_update_mib_counters(struct bcmgenet_priv *priv)
663 {
664 int i, j = 0;
665
666 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
667 const struct bcmgenet_stats *s;
668 u8 offset = 0;
669 u32 val = 0;
670 char *p;
671
672 s = &bcmgenet_gstrings_stats[i];
673 switch (s->type) {
674 case BCMGENET_STAT_NETDEV:
675 case BCMGENET_STAT_SOFT:
676 continue;
677 case BCMGENET_STAT_MIB_RX:
678 case BCMGENET_STAT_MIB_TX:
679 case BCMGENET_STAT_RUNT:
680 if (s->type != BCMGENET_STAT_MIB_RX)
681 offset = BCMGENET_STAT_OFFSET;
682 val = bcmgenet_umac_readl(priv,
683 UMAC_MIB_START + j + offset);
684 break;
685 case BCMGENET_STAT_MISC:
686 val = bcmgenet_umac_readl(priv, s->reg_offset);
687 /* clear if overflowed */
688 if (val == ~0)
689 bcmgenet_umac_writel(priv, 0, s->reg_offset);
690 break;
691 }
692
693 j += s->stat_sizeof;
694 p = (char *)priv + s->stat_offset;
695 *(u32 *)p = val;
696 }
697 }
698
699 static void bcmgenet_get_ethtool_stats(struct net_device *dev,
700 struct ethtool_stats *stats,
701 u64 *data)
702 {
703 struct bcmgenet_priv *priv = netdev_priv(dev);
704 int i;
705
706 if (netif_running(dev))
707 bcmgenet_update_mib_counters(priv);
708
709 for (i = 0; i < BCMGENET_STATS_LEN; i++) {
710 const struct bcmgenet_stats *s;
711 char *p;
712
713 s = &bcmgenet_gstrings_stats[i];
714 if (s->type == BCMGENET_STAT_NETDEV)
715 p = (char *)&dev->stats;
716 else
717 p = (char *)priv;
718 p += s->stat_offset;
719 data[i] = *(u32 *)p;
720 }
721 }
722
723 static void bcmgenet_eee_enable_set(struct net_device *dev, bool enable)
724 {
725 struct bcmgenet_priv *priv = netdev_priv(dev);
726 u32 off = priv->hw_params->tbuf_offset + TBUF_ENERGY_CTRL;
727 u32 reg;
728
729 if (enable && !priv->clk_eee_enabled) {
730 clk_prepare_enable(priv->clk_eee);
731 priv->clk_eee_enabled = true;
732 }
733
734 reg = bcmgenet_umac_readl(priv, UMAC_EEE_CTRL);
735 if (enable)
736 reg |= EEE_EN;
737 else
738 reg &= ~EEE_EN;
739 bcmgenet_umac_writel(priv, reg, UMAC_EEE_CTRL);
740
741 /* Enable EEE and switch to a 27Mhz clock automatically */
742 reg = __raw_readl(priv->base + off);
743 if (enable)
744 reg |= TBUF_EEE_EN | TBUF_PM_EN;
745 else
746 reg &= ~(TBUF_EEE_EN | TBUF_PM_EN);
747 __raw_writel(reg, priv->base + off);
748
749 /* Do the same for thing for RBUF */
750 reg = bcmgenet_rbuf_readl(priv, RBUF_ENERGY_CTRL);
751 if (enable)
752 reg |= RBUF_EEE_EN | RBUF_PM_EN;
753 else
754 reg &= ~(RBUF_EEE_EN | RBUF_PM_EN);
755 bcmgenet_rbuf_writel(priv, reg, RBUF_ENERGY_CTRL);
756
757 if (!enable && priv->clk_eee_enabled) {
758 clk_disable_unprepare(priv->clk_eee);
759 priv->clk_eee_enabled = false;
760 }
761
762 priv->eee.eee_enabled = enable;
763 priv->eee.eee_active = enable;
764 }
765
766 static int bcmgenet_get_eee(struct net_device *dev, struct ethtool_eee *e)
767 {
768 struct bcmgenet_priv *priv = netdev_priv(dev);
769 struct ethtool_eee *p = &priv->eee;
770
771 if (GENET_IS_V1(priv))
772 return -EOPNOTSUPP;
773
774 e->eee_enabled = p->eee_enabled;
775 e->eee_active = p->eee_active;
776 e->tx_lpi_timer = bcmgenet_umac_readl(priv, UMAC_EEE_LPI_TIMER);
777
778 return phy_ethtool_get_eee(priv->phydev, e);
779 }
780
781 static int bcmgenet_set_eee(struct net_device *dev, struct ethtool_eee *e)
782 {
783 struct bcmgenet_priv *priv = netdev_priv(dev);
784 struct ethtool_eee *p = &priv->eee;
785 int ret = 0;
786
787 if (GENET_IS_V1(priv))
788 return -EOPNOTSUPP;
789
790 p->eee_enabled = e->eee_enabled;
791
792 if (!p->eee_enabled) {
793 bcmgenet_eee_enable_set(dev, false);
794 } else {
795 ret = phy_init_eee(priv->phydev, 0);
796 if (ret) {
797 netif_err(priv, hw, dev, "EEE initialization failed\n");
798 return ret;
799 }
800
801 bcmgenet_umac_writel(priv, e->tx_lpi_timer, UMAC_EEE_LPI_TIMER);
802 bcmgenet_eee_enable_set(dev, true);
803 }
804
805 return phy_ethtool_set_eee(priv->phydev, e);
806 }
807
808 static int bcmgenet_nway_reset(struct net_device *dev)
809 {
810 struct bcmgenet_priv *priv = netdev_priv(dev);
811
812 return genphy_restart_aneg(priv->phydev);
813 }
814
815 /* standard ethtool support functions. */
816 static struct ethtool_ops bcmgenet_ethtool_ops = {
817 .get_strings = bcmgenet_get_strings,
818 .get_sset_count = bcmgenet_get_sset_count,
819 .get_ethtool_stats = bcmgenet_get_ethtool_stats,
820 .get_settings = bcmgenet_get_settings,
821 .set_settings = bcmgenet_set_settings,
822 .get_drvinfo = bcmgenet_get_drvinfo,
823 .get_link = ethtool_op_get_link,
824 .get_msglevel = bcmgenet_get_msglevel,
825 .set_msglevel = bcmgenet_set_msglevel,
826 .get_wol = bcmgenet_get_wol,
827 .set_wol = bcmgenet_set_wol,
828 .get_eee = bcmgenet_get_eee,
829 .set_eee = bcmgenet_set_eee,
830 .nway_reset = bcmgenet_nway_reset,
831 };
832
833 /* Power down the unimac, based on mode. */
834 static void bcmgenet_power_down(struct bcmgenet_priv *priv,
835 enum bcmgenet_power_mode mode)
836 {
837 u32 reg;
838
839 switch (mode) {
840 case GENET_POWER_CABLE_SENSE:
841 phy_detach(priv->phydev);
842 break;
843
844 case GENET_POWER_WOL_MAGIC:
845 bcmgenet_wol_power_down_cfg(priv, mode);
846 break;
847
848 case GENET_POWER_PASSIVE:
849 /* Power down LED */
850 if (priv->hw_params->flags & GENET_HAS_EXT) {
851 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
852 reg |= (EXT_PWR_DOWN_PHY |
853 EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_BIAS);
854 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
855 }
856 break;
857 default:
858 break;
859 }
860 }
861
862 static void bcmgenet_power_up(struct bcmgenet_priv *priv,
863 enum bcmgenet_power_mode mode)
864 {
865 u32 reg;
866
867 if (!(priv->hw_params->flags & GENET_HAS_EXT))
868 return;
869
870 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
871
872 switch (mode) {
873 case GENET_POWER_PASSIVE:
874 reg &= ~(EXT_PWR_DOWN_DLL | EXT_PWR_DOWN_PHY |
875 EXT_PWR_DOWN_BIAS);
876 /* fallthrough */
877 case GENET_POWER_CABLE_SENSE:
878 /* enable APD */
879 reg |= EXT_PWR_DN_EN_LD;
880 break;
881 case GENET_POWER_WOL_MAGIC:
882 bcmgenet_wol_power_up_cfg(priv, mode);
883 return;
884 default:
885 break;
886 }
887
888 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
889
890 if (mode == GENET_POWER_PASSIVE)
891 bcmgenet_mii_reset(priv->dev);
892 }
893
894 /* ioctl handle special commands that are not present in ethtool. */
895 static int bcmgenet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
896 {
897 struct bcmgenet_priv *priv = netdev_priv(dev);
898 int val = 0;
899
900 if (!netif_running(dev))
901 return -EINVAL;
902
903 switch (cmd) {
904 case SIOCGMIIPHY:
905 case SIOCGMIIREG:
906 case SIOCSMIIREG:
907 if (!priv->phydev)
908 val = -ENODEV;
909 else
910 val = phy_mii_ioctl(priv->phydev, rq, cmd);
911 break;
912
913 default:
914 val = -EINVAL;
915 break;
916 }
917
918 return val;
919 }
920
921 static struct enet_cb *bcmgenet_get_txcb(struct bcmgenet_priv *priv,
922 struct bcmgenet_tx_ring *ring)
923 {
924 struct enet_cb *tx_cb_ptr;
925
926 tx_cb_ptr = ring->cbs;
927 tx_cb_ptr += ring->write_ptr - ring->cb_ptr;
928
929 /* Advancing local write pointer */
930 if (ring->write_ptr == ring->end_ptr)
931 ring->write_ptr = ring->cb_ptr;
932 else
933 ring->write_ptr++;
934
935 return tx_cb_ptr;
936 }
937
938 /* Simple helper to free a control block's resources */
939 static void bcmgenet_free_cb(struct enet_cb *cb)
940 {
941 dev_kfree_skb_any(cb->skb);
942 cb->skb = NULL;
943 dma_unmap_addr_set(cb, dma_addr, 0);
944 }
945
946 static inline void bcmgenet_tx_ring16_int_disable(struct bcmgenet_priv *priv,
947 struct bcmgenet_tx_ring *ring)
948 {
949 bcmgenet_intrl2_0_writel(priv,
950 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
951 INTRL2_CPU_MASK_SET);
952 }
953
954 static inline void bcmgenet_tx_ring16_int_enable(struct bcmgenet_priv *priv,
955 struct bcmgenet_tx_ring *ring)
956 {
957 bcmgenet_intrl2_0_writel(priv,
958 UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE,
959 INTRL2_CPU_MASK_CLEAR);
960 }
961
962 static inline void bcmgenet_tx_ring_int_enable(struct bcmgenet_priv *priv,
963 struct bcmgenet_tx_ring *ring)
964 {
965 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
966 INTRL2_CPU_MASK_CLEAR);
967 priv->int1_mask &= ~(1 << ring->index);
968 }
969
970 static inline void bcmgenet_tx_ring_int_disable(struct bcmgenet_priv *priv,
971 struct bcmgenet_tx_ring *ring)
972 {
973 bcmgenet_intrl2_1_writel(priv, (1 << ring->index),
974 INTRL2_CPU_MASK_SET);
975 priv->int1_mask |= (1 << ring->index);
976 }
977
978 /* Unlocked version of the reclaim routine */
979 static unsigned int __bcmgenet_tx_reclaim(struct net_device *dev,
980 struct bcmgenet_tx_ring *ring)
981 {
982 struct bcmgenet_priv *priv = netdev_priv(dev);
983 struct enet_cb *tx_cb_ptr;
984 struct netdev_queue *txq;
985 unsigned int pkts_compl = 0;
986 unsigned int c_index;
987 unsigned int txbds_ready;
988 unsigned int txbds_processed = 0;
989
990 /* Compute how many buffers are transmitted since last xmit call */
991 c_index = bcmgenet_tdma_ring_readl(priv, ring->index, TDMA_CONS_INDEX);
992 c_index &= DMA_C_INDEX_MASK;
993
994 if (likely(c_index >= ring->c_index))
995 txbds_ready = c_index - ring->c_index;
996 else
997 txbds_ready = (DMA_C_INDEX_MASK + 1) - ring->c_index + c_index;
998
999 netif_dbg(priv, tx_done, dev,
1000 "%s ring=%d old_c_index=%u c_index=%u txbds_ready=%u\n",
1001 __func__, ring->index, ring->c_index, c_index, txbds_ready);
1002
1003 /* Reclaim transmitted buffers */
1004 while (txbds_processed < txbds_ready) {
1005 tx_cb_ptr = &priv->tx_cbs[ring->clean_ptr];
1006 if (tx_cb_ptr->skb) {
1007 pkts_compl++;
1008 dev->stats.tx_packets++;
1009 dev->stats.tx_bytes += tx_cb_ptr->skb->len;
1010 dma_unmap_single(&dev->dev,
1011 dma_unmap_addr(tx_cb_ptr, dma_addr),
1012 tx_cb_ptr->skb->len,
1013 DMA_TO_DEVICE);
1014 bcmgenet_free_cb(tx_cb_ptr);
1015 } else if (dma_unmap_addr(tx_cb_ptr, dma_addr)) {
1016 dev->stats.tx_bytes +=
1017 dma_unmap_len(tx_cb_ptr, dma_len);
1018 dma_unmap_page(&dev->dev,
1019 dma_unmap_addr(tx_cb_ptr, dma_addr),
1020 dma_unmap_len(tx_cb_ptr, dma_len),
1021 DMA_TO_DEVICE);
1022 dma_unmap_addr_set(tx_cb_ptr, dma_addr, 0);
1023 }
1024
1025 txbds_processed++;
1026 if (likely(ring->clean_ptr < ring->end_ptr))
1027 ring->clean_ptr++;
1028 else
1029 ring->clean_ptr = ring->cb_ptr;
1030 }
1031
1032 ring->free_bds += txbds_processed;
1033 ring->c_index = (ring->c_index + txbds_processed) & DMA_C_INDEX_MASK;
1034
1035 if (ring->free_bds > (MAX_SKB_FRAGS + 1)) {
1036 txq = netdev_get_tx_queue(dev, ring->queue);
1037 if (netif_tx_queue_stopped(txq))
1038 netif_tx_wake_queue(txq);
1039 }
1040
1041 return pkts_compl;
1042 }
1043
1044 static unsigned int bcmgenet_tx_reclaim(struct net_device *dev,
1045 struct bcmgenet_tx_ring *ring)
1046 {
1047 unsigned int released;
1048 unsigned long flags;
1049
1050 spin_lock_irqsave(&ring->lock, flags);
1051 released = __bcmgenet_tx_reclaim(dev, ring);
1052 spin_unlock_irqrestore(&ring->lock, flags);
1053
1054 return released;
1055 }
1056
1057 static int bcmgenet_tx_poll(struct napi_struct *napi, int budget)
1058 {
1059 struct bcmgenet_tx_ring *ring =
1060 container_of(napi, struct bcmgenet_tx_ring, napi);
1061 unsigned int work_done = 0;
1062
1063 work_done = bcmgenet_tx_reclaim(ring->priv->dev, ring);
1064
1065 if (work_done == 0) {
1066 napi_complete(napi);
1067 ring->int_enable(ring->priv, ring);
1068
1069 return 0;
1070 }
1071
1072 return budget;
1073 }
1074
1075 static void bcmgenet_tx_reclaim_all(struct net_device *dev)
1076 {
1077 struct bcmgenet_priv *priv = netdev_priv(dev);
1078 int i;
1079
1080 if (netif_is_multiqueue(dev)) {
1081 for (i = 0; i < priv->hw_params->tx_queues; i++)
1082 bcmgenet_tx_reclaim(dev, &priv->tx_rings[i]);
1083 }
1084
1085 bcmgenet_tx_reclaim(dev, &priv->tx_rings[DESC_INDEX]);
1086 }
1087
1088 /* Transmits a single SKB (either head of a fragment or a single SKB)
1089 * caller must hold priv->lock
1090 */
1091 static int bcmgenet_xmit_single(struct net_device *dev,
1092 struct sk_buff *skb,
1093 u16 dma_desc_flags,
1094 struct bcmgenet_tx_ring *ring)
1095 {
1096 struct bcmgenet_priv *priv = netdev_priv(dev);
1097 struct device *kdev = &priv->pdev->dev;
1098 struct enet_cb *tx_cb_ptr;
1099 unsigned int skb_len;
1100 dma_addr_t mapping;
1101 u32 length_status;
1102 int ret;
1103
1104 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1105
1106 if (unlikely(!tx_cb_ptr))
1107 BUG();
1108
1109 tx_cb_ptr->skb = skb;
1110
1111 skb_len = skb_headlen(skb) < ETH_ZLEN ? ETH_ZLEN : skb_headlen(skb);
1112
1113 mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE);
1114 ret = dma_mapping_error(kdev, mapping);
1115 if (ret) {
1116 priv->mib.tx_dma_failed++;
1117 netif_err(priv, tx_err, dev, "Tx DMA map failed\n");
1118 dev_kfree_skb(skb);
1119 return ret;
1120 }
1121
1122 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1123 dma_unmap_len_set(tx_cb_ptr, dma_len, skb->len);
1124 length_status = (skb_len << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1125 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT) |
1126 DMA_TX_APPEND_CRC;
1127
1128 if (skb->ip_summed == CHECKSUM_PARTIAL)
1129 length_status |= DMA_TX_DO_CSUM;
1130
1131 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping, length_status);
1132
1133 /* Decrement total BD count and advance our write pointer */
1134 ring->free_bds -= 1;
1135 ring->prod_index += 1;
1136 ring->prod_index &= DMA_P_INDEX_MASK;
1137
1138 return 0;
1139 }
1140
1141 /* Transmit a SKB fragment */
1142 static int bcmgenet_xmit_frag(struct net_device *dev,
1143 skb_frag_t *frag,
1144 u16 dma_desc_flags,
1145 struct bcmgenet_tx_ring *ring)
1146 {
1147 struct bcmgenet_priv *priv = netdev_priv(dev);
1148 struct device *kdev = &priv->pdev->dev;
1149 struct enet_cb *tx_cb_ptr;
1150 dma_addr_t mapping;
1151 int ret;
1152
1153 tx_cb_ptr = bcmgenet_get_txcb(priv, ring);
1154
1155 if (unlikely(!tx_cb_ptr))
1156 BUG();
1157 tx_cb_ptr->skb = NULL;
1158
1159 mapping = skb_frag_dma_map(kdev, frag, 0,
1160 skb_frag_size(frag), DMA_TO_DEVICE);
1161 ret = dma_mapping_error(kdev, mapping);
1162 if (ret) {
1163 priv->mib.tx_dma_failed++;
1164 netif_err(priv, tx_err, dev, "%s: Tx DMA map failed\n",
1165 __func__);
1166 return ret;
1167 }
1168
1169 dma_unmap_addr_set(tx_cb_ptr, dma_addr, mapping);
1170 dma_unmap_len_set(tx_cb_ptr, dma_len, frag->size);
1171
1172 dmadesc_set(priv, tx_cb_ptr->bd_addr, mapping,
1173 (frag->size << DMA_BUFLENGTH_SHIFT) | dma_desc_flags |
1174 (priv->hw_params->qtag_mask << DMA_TX_QTAG_SHIFT));
1175
1176
1177 ring->free_bds -= 1;
1178 ring->prod_index += 1;
1179 ring->prod_index &= DMA_P_INDEX_MASK;
1180
1181 return 0;
1182 }
1183
1184 /* Reallocate the SKB to put enough headroom in front of it and insert
1185 * the transmit checksum offsets in the descriptors
1186 */
1187 static struct sk_buff *bcmgenet_put_tx_csum(struct net_device *dev,
1188 struct sk_buff *skb)
1189 {
1190 struct status_64 *status = NULL;
1191 struct sk_buff *new_skb;
1192 u16 offset;
1193 u8 ip_proto;
1194 u16 ip_ver;
1195 u32 tx_csum_info;
1196
1197 if (unlikely(skb_headroom(skb) < sizeof(*status))) {
1198 /* If 64 byte status block enabled, must make sure skb has
1199 * enough headroom for us to insert 64B status block.
1200 */
1201 new_skb = skb_realloc_headroom(skb, sizeof(*status));
1202 dev_kfree_skb(skb);
1203 if (!new_skb) {
1204 dev->stats.tx_errors++;
1205 dev->stats.tx_dropped++;
1206 return NULL;
1207 }
1208 skb = new_skb;
1209 }
1210
1211 skb_push(skb, sizeof(*status));
1212 status = (struct status_64 *)skb->data;
1213
1214 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1215 ip_ver = htons(skb->protocol);
1216 switch (ip_ver) {
1217 case ETH_P_IP:
1218 ip_proto = ip_hdr(skb)->protocol;
1219 break;
1220 case ETH_P_IPV6:
1221 ip_proto = ipv6_hdr(skb)->nexthdr;
1222 break;
1223 default:
1224 return skb;
1225 }
1226
1227 offset = skb_checksum_start_offset(skb) - sizeof(*status);
1228 tx_csum_info = (offset << STATUS_TX_CSUM_START_SHIFT) |
1229 (offset + skb->csum_offset);
1230
1231 /* Set the length valid bit for TCP and UDP and just set
1232 * the special UDP flag for IPv4, else just set to 0.
1233 */
1234 if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) {
1235 tx_csum_info |= STATUS_TX_CSUM_LV;
1236 if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP)
1237 tx_csum_info |= STATUS_TX_CSUM_PROTO_UDP;
1238 } else {
1239 tx_csum_info = 0;
1240 }
1241
1242 status->tx_csum_info = tx_csum_info;
1243 }
1244
1245 return skb;
1246 }
1247
1248 static netdev_tx_t bcmgenet_xmit(struct sk_buff *skb, struct net_device *dev)
1249 {
1250 struct bcmgenet_priv *priv = netdev_priv(dev);
1251 struct bcmgenet_tx_ring *ring = NULL;
1252 struct netdev_queue *txq;
1253 unsigned long flags = 0;
1254 int nr_frags, index;
1255 u16 dma_desc_flags;
1256 int ret;
1257 int i;
1258
1259 index = skb_get_queue_mapping(skb);
1260 /* Mapping strategy:
1261 * queue_mapping = 0, unclassified, packet xmited through ring16
1262 * queue_mapping = 1, goes to ring 0. (highest priority queue
1263 * queue_mapping = 2, goes to ring 1.
1264 * queue_mapping = 3, goes to ring 2.
1265 * queue_mapping = 4, goes to ring 3.
1266 */
1267 if (index == 0)
1268 index = DESC_INDEX;
1269 else
1270 index -= 1;
1271
1272 nr_frags = skb_shinfo(skb)->nr_frags;
1273 ring = &priv->tx_rings[index];
1274 txq = netdev_get_tx_queue(dev, ring->queue);
1275
1276 spin_lock_irqsave(&ring->lock, flags);
1277 if (ring->free_bds <= nr_frags + 1) {
1278 netif_tx_stop_queue(txq);
1279 netdev_err(dev, "%s: tx ring %d full when queue %d awake\n",
1280 __func__, index, ring->queue);
1281 ret = NETDEV_TX_BUSY;
1282 goto out;
1283 }
1284
1285 if (skb_padto(skb, ETH_ZLEN)) {
1286 ret = NETDEV_TX_OK;
1287 goto out;
1288 }
1289
1290 /* set the SKB transmit checksum */
1291 if (priv->desc_64b_en) {
1292 skb = bcmgenet_put_tx_csum(dev, skb);
1293 if (!skb) {
1294 ret = NETDEV_TX_OK;
1295 goto out;
1296 }
1297 }
1298
1299 dma_desc_flags = DMA_SOP;
1300 if (nr_frags == 0)
1301 dma_desc_flags |= DMA_EOP;
1302
1303 /* Transmit single SKB or head of fragment list */
1304 ret = bcmgenet_xmit_single(dev, skb, dma_desc_flags, ring);
1305 if (ret) {
1306 ret = NETDEV_TX_OK;
1307 goto out;
1308 }
1309
1310 /* xmit fragment */
1311 for (i = 0; i < nr_frags; i++) {
1312 ret = bcmgenet_xmit_frag(dev,
1313 &skb_shinfo(skb)->frags[i],
1314 (i == nr_frags - 1) ? DMA_EOP : 0,
1315 ring);
1316 if (ret) {
1317 ret = NETDEV_TX_OK;
1318 goto out;
1319 }
1320 }
1321
1322 skb_tx_timestamp(skb);
1323
1324 /* we kept a software copy of how much we should advance the TDMA
1325 * producer index, now write it down to the hardware
1326 */
1327 bcmgenet_tdma_ring_writel(priv, ring->index,
1328 ring->prod_index, TDMA_PROD_INDEX);
1329
1330 if (ring->free_bds <= (MAX_SKB_FRAGS + 1))
1331 netif_tx_stop_queue(txq);
1332
1333 out:
1334 spin_unlock_irqrestore(&ring->lock, flags);
1335
1336 return ret;
1337 }
1338
1339 static struct sk_buff *bcmgenet_rx_refill(struct bcmgenet_priv *priv,
1340 struct enet_cb *cb)
1341 {
1342 struct device *kdev = &priv->pdev->dev;
1343 struct sk_buff *skb;
1344 struct sk_buff *rx_skb;
1345 dma_addr_t mapping;
1346
1347 /* Allocate a new Rx skb */
1348 skb = netdev_alloc_skb(priv->dev, priv->rx_buf_len + SKB_ALIGNMENT);
1349 if (!skb) {
1350 priv->mib.alloc_rx_buff_failed++;
1351 netif_err(priv, rx_err, priv->dev,
1352 "%s: Rx skb allocation failed\n", __func__);
1353 return NULL;
1354 }
1355
1356 /* DMA-map the new Rx skb */
1357 mapping = dma_map_single(kdev, skb->data, priv->rx_buf_len,
1358 DMA_FROM_DEVICE);
1359 if (dma_mapping_error(kdev, mapping)) {
1360 priv->mib.rx_dma_failed++;
1361 dev_kfree_skb_any(skb);
1362 netif_err(priv, rx_err, priv->dev,
1363 "%s: Rx skb DMA mapping failed\n", __func__);
1364 return NULL;
1365 }
1366
1367 /* Grab the current Rx skb from the ring and DMA-unmap it */
1368 rx_skb = cb->skb;
1369 if (likely(rx_skb))
1370 dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr),
1371 priv->rx_buf_len, DMA_FROM_DEVICE);
1372
1373 /* Put the new Rx skb on the ring */
1374 cb->skb = skb;
1375 dma_unmap_addr_set(cb, dma_addr, mapping);
1376 dmadesc_set_addr(priv, cb->bd_addr, mapping);
1377
1378 /* Return the current Rx skb to caller */
1379 return rx_skb;
1380 }
1381
1382 /* bcmgenet_desc_rx - descriptor based rx process.
1383 * this could be called from bottom half, or from NAPI polling method.
1384 */
1385 static unsigned int bcmgenet_desc_rx(struct bcmgenet_priv *priv,
1386 unsigned int index,
1387 unsigned int budget)
1388 {
1389 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1390 struct net_device *dev = priv->dev;
1391 struct enet_cb *cb;
1392 struct sk_buff *skb;
1393 u32 dma_length_status;
1394 unsigned long dma_flag;
1395 int len;
1396 unsigned int rxpktprocessed = 0, rxpkttoprocess;
1397 unsigned int p_index;
1398 unsigned int discards;
1399 unsigned int chksum_ok = 0;
1400
1401 p_index = bcmgenet_rdma_ring_readl(priv, index, RDMA_PROD_INDEX);
1402
1403 discards = (p_index >> DMA_P_INDEX_DISCARD_CNT_SHIFT) &
1404 DMA_P_INDEX_DISCARD_CNT_MASK;
1405 if (discards > ring->old_discards) {
1406 discards = discards - ring->old_discards;
1407 dev->stats.rx_missed_errors += discards;
1408 dev->stats.rx_errors += discards;
1409 ring->old_discards += discards;
1410
1411 /* Clear HW register when we reach 75% of maximum 0xFFFF */
1412 if (ring->old_discards >= 0xC000) {
1413 ring->old_discards = 0;
1414 bcmgenet_rdma_ring_writel(priv, index, 0,
1415 RDMA_PROD_INDEX);
1416 }
1417 }
1418
1419 p_index &= DMA_P_INDEX_MASK;
1420
1421 if (likely(p_index >= ring->c_index))
1422 rxpkttoprocess = p_index - ring->c_index;
1423 else
1424 rxpkttoprocess = (DMA_C_INDEX_MASK + 1) - ring->c_index +
1425 p_index;
1426
1427 netif_dbg(priv, rx_status, dev,
1428 "RDMA: rxpkttoprocess=%d\n", rxpkttoprocess);
1429
1430 while ((rxpktprocessed < rxpkttoprocess) &&
1431 (rxpktprocessed < budget)) {
1432 cb = &priv->rx_cbs[ring->read_ptr];
1433 skb = bcmgenet_rx_refill(priv, cb);
1434
1435 if (unlikely(!skb)) {
1436 dev->stats.rx_dropped++;
1437 dev->stats.rx_errors++;
1438 goto next;
1439 }
1440
1441 if (!priv->desc_64b_en) {
1442 dma_length_status =
1443 dmadesc_get_length_status(priv, cb->bd_addr);
1444 } else {
1445 struct status_64 *status;
1446
1447 status = (struct status_64 *)skb->data;
1448 dma_length_status = status->length_status;
1449 }
1450
1451 /* DMA flags and length are still valid no matter how
1452 * we got the Receive Status Vector (64B RSB or register)
1453 */
1454 dma_flag = dma_length_status & 0xffff;
1455 len = dma_length_status >> DMA_BUFLENGTH_SHIFT;
1456
1457 netif_dbg(priv, rx_status, dev,
1458 "%s:p_ind=%d c_ind=%d read_ptr=%d len_stat=0x%08x\n",
1459 __func__, p_index, ring->c_index,
1460 ring->read_ptr, dma_length_status);
1461
1462 if (unlikely(!(dma_flag & DMA_EOP) || !(dma_flag & DMA_SOP))) {
1463 netif_err(priv, rx_status, dev,
1464 "dropping fragmented packet!\n");
1465 dev->stats.rx_dropped++;
1466 dev->stats.rx_errors++;
1467 dev_kfree_skb_any(skb);
1468 goto next;
1469 }
1470
1471 /* report errors */
1472 if (unlikely(dma_flag & (DMA_RX_CRC_ERROR |
1473 DMA_RX_OV |
1474 DMA_RX_NO |
1475 DMA_RX_LG |
1476 DMA_RX_RXER))) {
1477 netif_err(priv, rx_status, dev, "dma_flag=0x%x\n",
1478 (unsigned int)dma_flag);
1479 if (dma_flag & DMA_RX_CRC_ERROR)
1480 dev->stats.rx_crc_errors++;
1481 if (dma_flag & DMA_RX_OV)
1482 dev->stats.rx_over_errors++;
1483 if (dma_flag & DMA_RX_NO)
1484 dev->stats.rx_frame_errors++;
1485 if (dma_flag & DMA_RX_LG)
1486 dev->stats.rx_length_errors++;
1487 dev->stats.rx_dropped++;
1488 dev->stats.rx_errors++;
1489 dev_kfree_skb_any(skb);
1490 goto next;
1491 } /* error packet */
1492
1493 chksum_ok = (dma_flag & priv->dma_rx_chk_bit) &&
1494 priv->desc_rxchk_en;
1495
1496 skb_put(skb, len);
1497 if (priv->desc_64b_en) {
1498 skb_pull(skb, 64);
1499 len -= 64;
1500 }
1501
1502 if (likely(chksum_ok))
1503 skb->ip_summed = CHECKSUM_UNNECESSARY;
1504
1505 /* remove hardware 2bytes added for IP alignment */
1506 skb_pull(skb, 2);
1507 len -= 2;
1508
1509 if (priv->crc_fwd_en) {
1510 skb_trim(skb, len - ETH_FCS_LEN);
1511 len -= ETH_FCS_LEN;
1512 }
1513
1514 /*Finish setting up the received SKB and send it to the kernel*/
1515 skb->protocol = eth_type_trans(skb, priv->dev);
1516 dev->stats.rx_packets++;
1517 dev->stats.rx_bytes += len;
1518 if (dma_flag & DMA_RX_MULT)
1519 dev->stats.multicast++;
1520
1521 /* Notify kernel */
1522 napi_gro_receive(&priv->napi, skb);
1523 netif_dbg(priv, rx_status, dev, "pushed up to kernel\n");
1524
1525 next:
1526 rxpktprocessed++;
1527 if (likely(ring->read_ptr < ring->end_ptr))
1528 ring->read_ptr++;
1529 else
1530 ring->read_ptr = ring->cb_ptr;
1531
1532 ring->c_index = (ring->c_index + 1) & DMA_C_INDEX_MASK;
1533 bcmgenet_rdma_ring_writel(priv, index, ring->c_index, RDMA_CONS_INDEX);
1534 }
1535
1536 return rxpktprocessed;
1537 }
1538
1539 /* Assign skb to RX DMA descriptor. */
1540 static int bcmgenet_alloc_rx_buffers(struct bcmgenet_priv *priv,
1541 struct bcmgenet_rx_ring *ring)
1542 {
1543 struct enet_cb *cb;
1544 struct sk_buff *skb;
1545 int i;
1546
1547 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
1548
1549 /* loop here for each buffer needing assign */
1550 for (i = 0; i < ring->size; i++) {
1551 cb = ring->cbs + i;
1552 skb = bcmgenet_rx_refill(priv, cb);
1553 if (skb)
1554 dev_kfree_skb_any(skb);
1555 if (!cb->skb)
1556 return -ENOMEM;
1557 }
1558
1559 return 0;
1560 }
1561
1562 static void bcmgenet_free_rx_buffers(struct bcmgenet_priv *priv)
1563 {
1564 struct enet_cb *cb;
1565 int i;
1566
1567 for (i = 0; i < priv->num_rx_bds; i++) {
1568 cb = &priv->rx_cbs[i];
1569
1570 if (dma_unmap_addr(cb, dma_addr)) {
1571 dma_unmap_single(&priv->dev->dev,
1572 dma_unmap_addr(cb, dma_addr),
1573 priv->rx_buf_len, DMA_FROM_DEVICE);
1574 dma_unmap_addr_set(cb, dma_addr, 0);
1575 }
1576
1577 if (cb->skb)
1578 bcmgenet_free_cb(cb);
1579 }
1580 }
1581
1582 static void umac_enable_set(struct bcmgenet_priv *priv, u32 mask, bool enable)
1583 {
1584 u32 reg;
1585
1586 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1587 if (enable)
1588 reg |= mask;
1589 else
1590 reg &= ~mask;
1591 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
1592
1593 /* UniMAC stops on a packet boundary, wait for a full-size packet
1594 * to be processed
1595 */
1596 if (enable == 0)
1597 usleep_range(1000, 2000);
1598 }
1599
1600 static int reset_umac(struct bcmgenet_priv *priv)
1601 {
1602 struct device *kdev = &priv->pdev->dev;
1603 unsigned int timeout = 0;
1604 u32 reg;
1605
1606 /* 7358a0/7552a0: bad default in RBUF_FLUSH_CTRL.umac_sw_rst */
1607 bcmgenet_rbuf_ctrl_set(priv, 0);
1608 udelay(10);
1609
1610 /* disable MAC while updating its registers */
1611 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1612
1613 /* issue soft reset, wait for it to complete */
1614 bcmgenet_umac_writel(priv, CMD_SW_RESET, UMAC_CMD);
1615 while (timeout++ < 1000) {
1616 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
1617 if (!(reg & CMD_SW_RESET))
1618 return 0;
1619
1620 udelay(1);
1621 }
1622
1623 if (timeout == 1000) {
1624 dev_err(kdev,
1625 "timeout waiting for MAC to come out of reset\n");
1626 return -ETIMEDOUT;
1627 }
1628
1629 return 0;
1630 }
1631
1632 static void bcmgenet_intr_disable(struct bcmgenet_priv *priv)
1633 {
1634 /* Mask all interrupts.*/
1635 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1636 bcmgenet_intrl2_0_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1637 bcmgenet_intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1638 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_MASK_SET);
1639 bcmgenet_intrl2_1_writel(priv, 0xFFFFFFFF, INTRL2_CPU_CLEAR);
1640 bcmgenet_intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR);
1641 }
1642
1643 static int init_umac(struct bcmgenet_priv *priv)
1644 {
1645 struct device *kdev = &priv->pdev->dev;
1646 int ret;
1647 u32 reg, cpu_mask_clear;
1648 int index;
1649
1650 dev_dbg(&priv->pdev->dev, "bcmgenet: init_umac\n");
1651
1652 ret = reset_umac(priv);
1653 if (ret)
1654 return ret;
1655
1656 bcmgenet_umac_writel(priv, 0, UMAC_CMD);
1657 /* clear tx/rx counter */
1658 bcmgenet_umac_writel(priv,
1659 MIB_RESET_RX | MIB_RESET_TX | MIB_RESET_RUNT,
1660 UMAC_MIB_CTRL);
1661 bcmgenet_umac_writel(priv, 0, UMAC_MIB_CTRL);
1662
1663 bcmgenet_umac_writel(priv, ENET_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN);
1664
1665 /* init rx registers, enable ip header optimization */
1666 reg = bcmgenet_rbuf_readl(priv, RBUF_CTRL);
1667 reg |= RBUF_ALIGN_2B;
1668 bcmgenet_rbuf_writel(priv, reg, RBUF_CTRL);
1669
1670 if (!GENET_IS_V1(priv) && !GENET_IS_V2(priv))
1671 bcmgenet_rbuf_writel(priv, 1, RBUF_TBUF_SIZE_CTRL);
1672
1673 bcmgenet_intr_disable(priv);
1674
1675 cpu_mask_clear = UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_TXDMA_BDONE;
1676
1677 dev_dbg(kdev, "%s:Enabling RXDMA_BDONE interrupt\n", __func__);
1678
1679 /* Monitor cable plug/unplugged event for internal PHY */
1680 if (phy_is_internal(priv->phydev)) {
1681 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1682 } else if (priv->ext_phy) {
1683 cpu_mask_clear |= (UMAC_IRQ_LINK_DOWN | UMAC_IRQ_LINK_UP);
1684 } else if (priv->phy_interface == PHY_INTERFACE_MODE_MOCA) {
1685 reg = bcmgenet_bp_mc_get(priv);
1686 reg |= BIT(priv->hw_params->bp_in_en_shift);
1687
1688 /* bp_mask: back pressure mask */
1689 if (netif_is_multiqueue(priv->dev))
1690 reg |= priv->hw_params->bp_in_mask;
1691 else
1692 reg &= ~priv->hw_params->bp_in_mask;
1693 bcmgenet_bp_mc_set(priv, reg);
1694 }
1695
1696 /* Enable MDIO interrupts on GENET v3+ */
1697 if (priv->hw_params->flags & GENET_HAS_MDIO_INTR)
1698 cpu_mask_clear |= UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR;
1699
1700 bcmgenet_intrl2_0_writel(priv, cpu_mask_clear, INTRL2_CPU_MASK_CLEAR);
1701
1702 for (index = 0; index < priv->hw_params->tx_queues; index++)
1703 bcmgenet_intrl2_1_writel(priv, (1 << index),
1704 INTRL2_CPU_MASK_CLEAR);
1705
1706 /* Enable rx/tx engine.*/
1707 dev_dbg(kdev, "done init umac\n");
1708
1709 return 0;
1710 }
1711
1712 /* Initialize a Tx ring along with corresponding hardware registers */
1713 static void bcmgenet_init_tx_ring(struct bcmgenet_priv *priv,
1714 unsigned int index, unsigned int size,
1715 unsigned int start_ptr, unsigned int end_ptr)
1716 {
1717 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1718 u32 words_per_bd = WORDS_PER_BD(priv);
1719 u32 flow_period_val = 0;
1720
1721 spin_lock_init(&ring->lock);
1722 ring->priv = priv;
1723 netif_napi_add(priv->dev, &ring->napi, bcmgenet_tx_poll, 64);
1724 ring->index = index;
1725 if (index == DESC_INDEX) {
1726 ring->queue = 0;
1727 ring->int_enable = bcmgenet_tx_ring16_int_enable;
1728 ring->int_disable = bcmgenet_tx_ring16_int_disable;
1729 } else {
1730 ring->queue = index + 1;
1731 ring->int_enable = bcmgenet_tx_ring_int_enable;
1732 ring->int_disable = bcmgenet_tx_ring_int_disable;
1733 }
1734 ring->cbs = priv->tx_cbs + start_ptr;
1735 ring->size = size;
1736 ring->clean_ptr = start_ptr;
1737 ring->c_index = 0;
1738 ring->free_bds = size;
1739 ring->write_ptr = start_ptr;
1740 ring->cb_ptr = start_ptr;
1741 ring->end_ptr = end_ptr - 1;
1742 ring->prod_index = 0;
1743
1744 /* Set flow period for ring != 16 */
1745 if (index != DESC_INDEX)
1746 flow_period_val = ENET_MAX_MTU_SIZE << 16;
1747
1748 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_PROD_INDEX);
1749 bcmgenet_tdma_ring_writel(priv, index, 0, TDMA_CONS_INDEX);
1750 bcmgenet_tdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1751 /* Disable rate control for now */
1752 bcmgenet_tdma_ring_writel(priv, index, flow_period_val,
1753 TDMA_FLOW_PERIOD);
1754 bcmgenet_tdma_ring_writel(priv, index,
1755 ((size << DMA_RING_SIZE_SHIFT) |
1756 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1757
1758 /* Set start and end address, read and write pointers */
1759 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1760 DMA_START_ADDR);
1761 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1762 TDMA_READ_PTR);
1763 bcmgenet_tdma_ring_writel(priv, index, start_ptr * words_per_bd,
1764 TDMA_WRITE_PTR);
1765 bcmgenet_tdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1766 DMA_END_ADDR);
1767
1768 napi_enable(&ring->napi);
1769 }
1770
1771 static void bcmgenet_fini_tx_ring(struct bcmgenet_priv *priv,
1772 unsigned int index)
1773 {
1774 struct bcmgenet_tx_ring *ring = &priv->tx_rings[index];
1775
1776 napi_disable(&ring->napi);
1777 netif_napi_del(&ring->napi);
1778 }
1779
1780 /* Initialize a RDMA ring */
1781 static int bcmgenet_init_rx_ring(struct bcmgenet_priv *priv,
1782 unsigned int index, unsigned int size,
1783 unsigned int start_ptr, unsigned int end_ptr)
1784 {
1785 struct bcmgenet_rx_ring *ring = &priv->rx_rings[index];
1786 u32 words_per_bd = WORDS_PER_BD(priv);
1787 int ret;
1788
1789 ring->index = index;
1790 ring->cbs = priv->rx_cbs + start_ptr;
1791 ring->size = size;
1792 ring->c_index = 0;
1793 ring->read_ptr = start_ptr;
1794 ring->cb_ptr = start_ptr;
1795 ring->end_ptr = end_ptr - 1;
1796
1797 ret = bcmgenet_alloc_rx_buffers(priv, ring);
1798 if (ret)
1799 return ret;
1800
1801 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_PROD_INDEX);
1802 bcmgenet_rdma_ring_writel(priv, index, 0, RDMA_CONS_INDEX);
1803 bcmgenet_rdma_ring_writel(priv, index, 1, DMA_MBUF_DONE_THRESH);
1804 bcmgenet_rdma_ring_writel(priv, index,
1805 ((size << DMA_RING_SIZE_SHIFT) |
1806 RX_BUF_LENGTH), DMA_RING_BUF_SIZE);
1807 bcmgenet_rdma_ring_writel(priv, index,
1808 (DMA_FC_THRESH_LO <<
1809 DMA_XOFF_THRESHOLD_SHIFT) |
1810 DMA_FC_THRESH_HI, RDMA_XON_XOFF_THRESH);
1811
1812 /* Set start and end address, read and write pointers */
1813 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1814 DMA_START_ADDR);
1815 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1816 RDMA_READ_PTR);
1817 bcmgenet_rdma_ring_writel(priv, index, start_ptr * words_per_bd,
1818 RDMA_WRITE_PTR);
1819 bcmgenet_rdma_ring_writel(priv, index, end_ptr * words_per_bd - 1,
1820 DMA_END_ADDR);
1821
1822 return ret;
1823 }
1824
1825 /* Initialize Tx queues
1826 *
1827 * Queues 0-3 are priority-based, each one has 32 descriptors,
1828 * with queue 0 being the highest priority queue.
1829 *
1830 * Queue 16 is the default Tx queue with
1831 * GENET_Q16_TX_BD_CNT = 256 - 4 * 32 = 128 descriptors.
1832 *
1833 * The transmit control block pool is then partitioned as follows:
1834 * - Tx queue 0 uses tx_cbs[0..31]
1835 * - Tx queue 1 uses tx_cbs[32..63]
1836 * - Tx queue 2 uses tx_cbs[64..95]
1837 * - Tx queue 3 uses tx_cbs[96..127]
1838 * - Tx queue 16 uses tx_cbs[128..255]
1839 */
1840 static void bcmgenet_init_tx_queues(struct net_device *dev)
1841 {
1842 struct bcmgenet_priv *priv = netdev_priv(dev);
1843 u32 i, dma_enable;
1844 u32 dma_ctrl, ring_cfg;
1845 u32 dma_priority[3] = {0, 0, 0};
1846
1847 dma_ctrl = bcmgenet_tdma_readl(priv, DMA_CTRL);
1848 dma_enable = dma_ctrl & DMA_EN;
1849 dma_ctrl &= ~DMA_EN;
1850 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1851
1852 dma_ctrl = 0;
1853 ring_cfg = 0;
1854
1855 /* Enable strict priority arbiter mode */
1856 bcmgenet_tdma_writel(priv, DMA_ARBITER_SP, DMA_ARB_CTRL);
1857
1858 /* Initialize Tx priority queues */
1859 for (i = 0; i < priv->hw_params->tx_queues; i++) {
1860 bcmgenet_init_tx_ring(priv, i, priv->hw_params->tx_bds_per_q,
1861 i * priv->hw_params->tx_bds_per_q,
1862 (i + 1) * priv->hw_params->tx_bds_per_q);
1863 ring_cfg |= (1 << i);
1864 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1865 dma_priority[DMA_PRIO_REG_INDEX(i)] |=
1866 ((GENET_Q0_PRIORITY + i) << DMA_PRIO_REG_SHIFT(i));
1867 }
1868
1869 /* Initialize Tx default queue 16 */
1870 bcmgenet_init_tx_ring(priv, DESC_INDEX, GENET_Q16_TX_BD_CNT,
1871 priv->hw_params->tx_queues *
1872 priv->hw_params->tx_bds_per_q,
1873 TOTAL_DESC);
1874 ring_cfg |= (1 << DESC_INDEX);
1875 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1876 dma_priority[DMA_PRIO_REG_INDEX(DESC_INDEX)] |=
1877 ((GENET_Q0_PRIORITY + priv->hw_params->tx_queues) <<
1878 DMA_PRIO_REG_SHIFT(DESC_INDEX));
1879
1880 /* Set Tx queue priorities */
1881 bcmgenet_tdma_writel(priv, dma_priority[0], DMA_PRIORITY_0);
1882 bcmgenet_tdma_writel(priv, dma_priority[1], DMA_PRIORITY_1);
1883 bcmgenet_tdma_writel(priv, dma_priority[2], DMA_PRIORITY_2);
1884
1885 /* Enable Tx queues */
1886 bcmgenet_tdma_writel(priv, ring_cfg, DMA_RING_CFG);
1887
1888 /* Enable Tx DMA */
1889 if (dma_enable)
1890 dma_ctrl |= DMA_EN;
1891 bcmgenet_tdma_writel(priv, dma_ctrl, DMA_CTRL);
1892 }
1893
1894 /* Initialize Rx queues
1895 *
1896 * Queues 0-15 are priority queues. Hardware Filtering Block (HFB) can be
1897 * used to direct traffic to these queues.
1898 *
1899 * Queue 16 is the default Rx queue with GENET_Q16_RX_BD_CNT descriptors.
1900 */
1901 static int bcmgenet_init_rx_queues(struct net_device *dev)
1902 {
1903 struct bcmgenet_priv *priv = netdev_priv(dev);
1904 u32 i;
1905 u32 dma_enable;
1906 u32 dma_ctrl;
1907 u32 ring_cfg;
1908 int ret;
1909
1910 dma_ctrl = bcmgenet_rdma_readl(priv, DMA_CTRL);
1911 dma_enable = dma_ctrl & DMA_EN;
1912 dma_ctrl &= ~DMA_EN;
1913 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
1914
1915 dma_ctrl = 0;
1916 ring_cfg = 0;
1917
1918 /* Initialize Rx priority queues */
1919 for (i = 0; i < priv->hw_params->rx_queues; i++) {
1920 ret = bcmgenet_init_rx_ring(priv, i,
1921 priv->hw_params->rx_bds_per_q,
1922 i * priv->hw_params->rx_bds_per_q,
1923 (i + 1) *
1924 priv->hw_params->rx_bds_per_q);
1925 if (ret)
1926 return ret;
1927
1928 ring_cfg |= (1 << i);
1929 dma_ctrl |= (1 << (i + DMA_RING_BUF_EN_SHIFT));
1930 }
1931
1932 /* Initialize Rx default queue 16 */
1933 ret = bcmgenet_init_rx_ring(priv, DESC_INDEX, GENET_Q16_RX_BD_CNT,
1934 priv->hw_params->rx_queues *
1935 priv->hw_params->rx_bds_per_q,
1936 TOTAL_DESC);
1937 if (ret)
1938 return ret;
1939
1940 ring_cfg |= (1 << DESC_INDEX);
1941 dma_ctrl |= (1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT));
1942
1943 /* Enable rings */
1944 bcmgenet_rdma_writel(priv, ring_cfg, DMA_RING_CFG);
1945
1946 /* Configure ring as descriptor ring and re-enable DMA if enabled */
1947 if (dma_enable)
1948 dma_ctrl |= DMA_EN;
1949 bcmgenet_rdma_writel(priv, dma_ctrl, DMA_CTRL);
1950
1951 return 0;
1952 }
1953
1954 static int bcmgenet_dma_teardown(struct bcmgenet_priv *priv)
1955 {
1956 int ret = 0;
1957 int timeout = 0;
1958 u32 reg;
1959
1960 /* Disable TDMA to stop add more frames in TX DMA */
1961 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
1962 reg &= ~DMA_EN;
1963 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
1964
1965 /* Check TDMA status register to confirm TDMA is disabled */
1966 while (timeout++ < DMA_TIMEOUT_VAL) {
1967 reg = bcmgenet_tdma_readl(priv, DMA_STATUS);
1968 if (reg & DMA_DISABLED)
1969 break;
1970
1971 udelay(1);
1972 }
1973
1974 if (timeout == DMA_TIMEOUT_VAL) {
1975 netdev_warn(priv->dev, "Timed out while disabling TX DMA\n");
1976 ret = -ETIMEDOUT;
1977 }
1978
1979 /* Wait 10ms for packet drain in both tx and rx dma */
1980 usleep_range(10000, 20000);
1981
1982 /* Disable RDMA */
1983 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
1984 reg &= ~DMA_EN;
1985 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
1986
1987 timeout = 0;
1988 /* Check RDMA status register to confirm RDMA is disabled */
1989 while (timeout++ < DMA_TIMEOUT_VAL) {
1990 reg = bcmgenet_rdma_readl(priv, DMA_STATUS);
1991 if (reg & DMA_DISABLED)
1992 break;
1993
1994 udelay(1);
1995 }
1996
1997 if (timeout == DMA_TIMEOUT_VAL) {
1998 netdev_warn(priv->dev, "Timed out while disabling RX DMA\n");
1999 ret = -ETIMEDOUT;
2000 }
2001
2002 return ret;
2003 }
2004
2005 static void __bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2006 {
2007 int i;
2008
2009 /* disable DMA */
2010 bcmgenet_dma_teardown(priv);
2011
2012 for (i = 0; i < priv->num_tx_bds; i++) {
2013 if (priv->tx_cbs[i].skb != NULL) {
2014 dev_kfree_skb(priv->tx_cbs[i].skb);
2015 priv->tx_cbs[i].skb = NULL;
2016 }
2017 }
2018
2019 bcmgenet_free_rx_buffers(priv);
2020 kfree(priv->rx_cbs);
2021 kfree(priv->tx_cbs);
2022 }
2023
2024 static void bcmgenet_fini_dma(struct bcmgenet_priv *priv)
2025 {
2026 int i;
2027
2028 bcmgenet_fini_tx_ring(priv, DESC_INDEX);
2029
2030 for (i = 0; i < priv->hw_params->tx_queues; i++)
2031 bcmgenet_fini_tx_ring(priv, i);
2032
2033 __bcmgenet_fini_dma(priv);
2034 }
2035
2036 /* init_edma: Initialize DMA control register */
2037 static int bcmgenet_init_dma(struct bcmgenet_priv *priv)
2038 {
2039 int ret;
2040 unsigned int i;
2041 struct enet_cb *cb;
2042
2043 netif_dbg(priv, hw, priv->dev, "%s\n", __func__);
2044
2045 /* Init rDma */
2046 bcmgenet_rdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2047
2048 /* Initialize common Rx ring structures */
2049 priv->rx_bds = priv->base + priv->hw_params->rdma_offset;
2050 priv->num_rx_bds = TOTAL_DESC;
2051 priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct enet_cb),
2052 GFP_KERNEL);
2053 if (!priv->rx_cbs)
2054 return -ENOMEM;
2055
2056 for (i = 0; i < priv->num_rx_bds; i++) {
2057 cb = priv->rx_cbs + i;
2058 cb->bd_addr = priv->rx_bds + i * DMA_DESC_SIZE;
2059 }
2060
2061 /* Initialize Rx queues */
2062 ret = bcmgenet_init_rx_queues(priv->dev);
2063 if (ret) {
2064 netdev_err(priv->dev, "failed to initialize Rx queues\n");
2065 bcmgenet_free_rx_buffers(priv);
2066 kfree(priv->rx_cbs);
2067 return ret;
2068 }
2069
2070 /* Init tDma */
2071 bcmgenet_tdma_writel(priv, DMA_MAX_BURST_LENGTH, DMA_SCB_BURST_SIZE);
2072
2073 /* Initialize common TX ring structures */
2074 priv->tx_bds = priv->base + priv->hw_params->tdma_offset;
2075 priv->num_tx_bds = TOTAL_DESC;
2076 priv->tx_cbs = kcalloc(priv->num_tx_bds, sizeof(struct enet_cb),
2077 GFP_KERNEL);
2078 if (!priv->tx_cbs) {
2079 __bcmgenet_fini_dma(priv);
2080 return -ENOMEM;
2081 }
2082
2083 for (i = 0; i < priv->num_tx_bds; i++) {
2084 cb = priv->tx_cbs + i;
2085 cb->bd_addr = priv->tx_bds + i * DMA_DESC_SIZE;
2086 }
2087
2088 /* Initialize Tx queues */
2089 bcmgenet_init_tx_queues(priv->dev);
2090
2091 return 0;
2092 }
2093
2094 /* NAPI polling method*/
2095 static int bcmgenet_poll(struct napi_struct *napi, int budget)
2096 {
2097 struct bcmgenet_priv *priv = container_of(napi,
2098 struct bcmgenet_priv, napi);
2099 unsigned int work_done;
2100
2101 work_done = bcmgenet_desc_rx(priv, DESC_INDEX, budget);
2102
2103 if (work_done < budget) {
2104 napi_complete(napi);
2105 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2106 INTRL2_CPU_MASK_CLEAR);
2107 }
2108
2109 return work_done;
2110 }
2111
2112 /* Interrupt bottom half */
2113 static void bcmgenet_irq_task(struct work_struct *work)
2114 {
2115 struct bcmgenet_priv *priv = container_of(
2116 work, struct bcmgenet_priv, bcmgenet_irq_work);
2117
2118 netif_dbg(priv, intr, priv->dev, "%s\n", __func__);
2119
2120 if (priv->irq0_stat & UMAC_IRQ_MPD_R) {
2121 priv->irq0_stat &= ~UMAC_IRQ_MPD_R;
2122 netif_dbg(priv, wol, priv->dev,
2123 "magic packet detected, waking up\n");
2124 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2125 }
2126
2127 /* Link UP/DOWN event */
2128 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2129 (priv->irq0_stat & (UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN))) {
2130 phy_mac_interrupt(priv->phydev,
2131 priv->irq0_stat & UMAC_IRQ_LINK_UP);
2132 priv->irq0_stat &= ~(UMAC_IRQ_LINK_UP|UMAC_IRQ_LINK_DOWN);
2133 }
2134 }
2135
2136 /* bcmgenet_isr1: interrupt handler for ring buffer. */
2137 static irqreturn_t bcmgenet_isr1(int irq, void *dev_id)
2138 {
2139 struct bcmgenet_priv *priv = dev_id;
2140 struct bcmgenet_tx_ring *ring;
2141 unsigned int index;
2142
2143 /* Save irq status for bottom-half processing. */
2144 priv->irq1_stat =
2145 bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_STAT) &
2146 ~bcmgenet_intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS);
2147 /* clear interrupts */
2148 bcmgenet_intrl2_1_writel(priv, priv->irq1_stat, INTRL2_CPU_CLEAR);
2149
2150 netif_dbg(priv, intr, priv->dev,
2151 "%s: IRQ=0x%x\n", __func__, priv->irq1_stat);
2152
2153 /* Check the MBDONE interrupts.
2154 * packet is done, reclaim descriptors
2155 */
2156 for (index = 0; index < priv->hw_params->tx_queues; index++) {
2157 if (!(priv->irq1_stat & BIT(index)))
2158 continue;
2159
2160 ring = &priv->tx_rings[index];
2161
2162 if (likely(napi_schedule_prep(&ring->napi))) {
2163 ring->int_disable(priv, ring);
2164 __napi_schedule(&ring->napi);
2165 }
2166 }
2167
2168 return IRQ_HANDLED;
2169 }
2170
2171 /* bcmgenet_isr0: Handle various interrupts. */
2172 static irqreturn_t bcmgenet_isr0(int irq, void *dev_id)
2173 {
2174 struct bcmgenet_priv *priv = dev_id;
2175
2176 /* Save irq status for bottom-half processing. */
2177 priv->irq0_stat =
2178 bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_STAT) &
2179 ~bcmgenet_intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS);
2180 /* clear interrupts */
2181 bcmgenet_intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR);
2182
2183 netif_dbg(priv, intr, priv->dev,
2184 "IRQ=0x%x\n", priv->irq0_stat);
2185
2186 if (priv->irq0_stat & (UMAC_IRQ_RXDMA_BDONE | UMAC_IRQ_RXDMA_PDONE)) {
2187 /* We use NAPI(software interrupt throttling, if
2188 * Rx Descriptor throttling is not used.
2189 * Disable interrupt, will be enabled in the poll method.
2190 */
2191 if (likely(napi_schedule_prep(&priv->napi))) {
2192 bcmgenet_intrl2_0_writel(priv, UMAC_IRQ_RXDMA_BDONE,
2193 INTRL2_CPU_MASK_SET);
2194 __napi_schedule(&priv->napi);
2195 }
2196 }
2197 if (priv->irq0_stat &
2198 (UMAC_IRQ_TXDMA_BDONE | UMAC_IRQ_TXDMA_PDONE)) {
2199 struct bcmgenet_tx_ring *ring = &priv->tx_rings[DESC_INDEX];
2200
2201 if (likely(napi_schedule_prep(&ring->napi))) {
2202 ring->int_disable(priv, ring);
2203 __napi_schedule(&ring->napi);
2204 }
2205 }
2206 if (priv->irq0_stat & (UMAC_IRQ_PHY_DET_R |
2207 UMAC_IRQ_PHY_DET_F |
2208 UMAC_IRQ_LINK_UP |
2209 UMAC_IRQ_LINK_DOWN |
2210 UMAC_IRQ_HFB_SM |
2211 UMAC_IRQ_HFB_MM |
2212 UMAC_IRQ_MPD_R)) {
2213 /* all other interested interrupts handled in bottom half */
2214 schedule_work(&priv->bcmgenet_irq_work);
2215 }
2216
2217 if ((priv->hw_params->flags & GENET_HAS_MDIO_INTR) &&
2218 priv->irq0_stat & (UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR)) {
2219 priv->irq0_stat &= ~(UMAC_IRQ_MDIO_DONE | UMAC_IRQ_MDIO_ERROR);
2220 wake_up(&priv->wq);
2221 }
2222
2223 return IRQ_HANDLED;
2224 }
2225
2226 static irqreturn_t bcmgenet_wol_isr(int irq, void *dev_id)
2227 {
2228 struct bcmgenet_priv *priv = dev_id;
2229
2230 pm_wakeup_event(&priv->pdev->dev, 0);
2231
2232 return IRQ_HANDLED;
2233 }
2234
2235 static void bcmgenet_umac_reset(struct bcmgenet_priv *priv)
2236 {
2237 u32 reg;
2238
2239 reg = bcmgenet_rbuf_ctrl_get(priv);
2240 reg |= BIT(1);
2241 bcmgenet_rbuf_ctrl_set(priv, reg);
2242 udelay(10);
2243
2244 reg &= ~BIT(1);
2245 bcmgenet_rbuf_ctrl_set(priv, reg);
2246 udelay(10);
2247 }
2248
2249 static void bcmgenet_set_hw_addr(struct bcmgenet_priv *priv,
2250 unsigned char *addr)
2251 {
2252 bcmgenet_umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) |
2253 (addr[2] << 8) | addr[3], UMAC_MAC0);
2254 bcmgenet_umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1);
2255 }
2256
2257 /* Returns a reusable dma control register value */
2258 static u32 bcmgenet_dma_disable(struct bcmgenet_priv *priv)
2259 {
2260 u32 reg;
2261 u32 dma_ctrl;
2262
2263 /* disable DMA */
2264 dma_ctrl = 1 << (DESC_INDEX + DMA_RING_BUF_EN_SHIFT) | DMA_EN;
2265 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2266 reg &= ~dma_ctrl;
2267 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2268
2269 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2270 reg &= ~dma_ctrl;
2271 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2272
2273 bcmgenet_umac_writel(priv, 1, UMAC_TX_FLUSH);
2274 udelay(10);
2275 bcmgenet_umac_writel(priv, 0, UMAC_TX_FLUSH);
2276
2277 return dma_ctrl;
2278 }
2279
2280 static void bcmgenet_enable_dma(struct bcmgenet_priv *priv, u32 dma_ctrl)
2281 {
2282 u32 reg;
2283
2284 reg = bcmgenet_rdma_readl(priv, DMA_CTRL);
2285 reg |= dma_ctrl;
2286 bcmgenet_rdma_writel(priv, reg, DMA_CTRL);
2287
2288 reg = bcmgenet_tdma_readl(priv, DMA_CTRL);
2289 reg |= dma_ctrl;
2290 bcmgenet_tdma_writel(priv, reg, DMA_CTRL);
2291 }
2292
2293 static void bcmgenet_netif_start(struct net_device *dev)
2294 {
2295 struct bcmgenet_priv *priv = netdev_priv(dev);
2296
2297 /* Start the network engine */
2298 napi_enable(&priv->napi);
2299
2300 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, true);
2301
2302 if (phy_is_internal(priv->phydev))
2303 bcmgenet_power_up(priv, GENET_POWER_PASSIVE);
2304
2305 netif_tx_start_all_queues(dev);
2306
2307 phy_start(priv->phydev);
2308 }
2309
2310 static int bcmgenet_open(struct net_device *dev)
2311 {
2312 struct bcmgenet_priv *priv = netdev_priv(dev);
2313 unsigned long dma_ctrl;
2314 u32 reg;
2315 int ret;
2316
2317 netif_dbg(priv, ifup, dev, "bcmgenet_open\n");
2318
2319 /* Turn on the clock */
2320 if (!IS_ERR(priv->clk))
2321 clk_prepare_enable(priv->clk);
2322
2323 /* take MAC out of reset */
2324 bcmgenet_umac_reset(priv);
2325
2326 ret = init_umac(priv);
2327 if (ret)
2328 goto err_clk_disable;
2329
2330 /* disable ethernet MAC while updating its registers */
2331 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2332
2333 /* Make sure we reflect the value of CRC_CMD_FWD */
2334 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2335 priv->crc_fwd_en = !!(reg & CMD_CRC_FWD);
2336
2337 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2338
2339 if (phy_is_internal(priv->phydev)) {
2340 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2341 reg |= EXT_ENERGY_DET_MASK;
2342 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2343 }
2344
2345 /* Disable RX/TX DMA and flush TX queues */
2346 dma_ctrl = bcmgenet_dma_disable(priv);
2347
2348 /* Reinitialize TDMA and RDMA and SW housekeeping */
2349 ret = bcmgenet_init_dma(priv);
2350 if (ret) {
2351 netdev_err(dev, "failed to initialize DMA\n");
2352 goto err_fini_dma;
2353 }
2354
2355 /* Always enable ring 16 - descriptor ring */
2356 bcmgenet_enable_dma(priv, dma_ctrl);
2357
2358 ret = request_irq(priv->irq0, bcmgenet_isr0, IRQF_SHARED,
2359 dev->name, priv);
2360 if (ret < 0) {
2361 netdev_err(dev, "can't request IRQ %d\n", priv->irq0);
2362 goto err_fini_dma;
2363 }
2364
2365 ret = request_irq(priv->irq1, bcmgenet_isr1, IRQF_SHARED,
2366 dev->name, priv);
2367 if (ret < 0) {
2368 netdev_err(dev, "can't request IRQ %d\n", priv->irq1);
2369 goto err_irq0;
2370 }
2371
2372 /* Re-configure the port multiplexer towards the PHY device */
2373 bcmgenet_mii_config(priv->dev, false);
2374
2375 phy_connect_direct(dev, priv->phydev, bcmgenet_mii_setup,
2376 priv->phy_interface);
2377
2378 bcmgenet_netif_start(dev);
2379
2380 return 0;
2381
2382 err_irq0:
2383 free_irq(priv->irq0, dev);
2384 err_fini_dma:
2385 bcmgenet_fini_dma(priv);
2386 err_clk_disable:
2387 if (!IS_ERR(priv->clk))
2388 clk_disable_unprepare(priv->clk);
2389 return ret;
2390 }
2391
2392 static void bcmgenet_netif_stop(struct net_device *dev)
2393 {
2394 struct bcmgenet_priv *priv = netdev_priv(dev);
2395
2396 netif_tx_stop_all_queues(dev);
2397 napi_disable(&priv->napi);
2398 phy_stop(priv->phydev);
2399
2400 bcmgenet_intr_disable(priv);
2401
2402 /* Wait for pending work items to complete. Since interrupts are
2403 * disabled no new work will be scheduled.
2404 */
2405 cancel_work_sync(&priv->bcmgenet_irq_work);
2406
2407 priv->old_link = -1;
2408 priv->old_speed = -1;
2409 priv->old_duplex = -1;
2410 priv->old_pause = -1;
2411 }
2412
2413 static int bcmgenet_close(struct net_device *dev)
2414 {
2415 struct bcmgenet_priv *priv = netdev_priv(dev);
2416 int ret;
2417
2418 netif_dbg(priv, ifdown, dev, "bcmgenet_close\n");
2419
2420 bcmgenet_netif_stop(dev);
2421
2422 /* Really kill the PHY state machine and disconnect from it */
2423 phy_disconnect(priv->phydev);
2424
2425 /* Disable MAC receive */
2426 umac_enable_set(priv, CMD_RX_EN, false);
2427
2428 ret = bcmgenet_dma_teardown(priv);
2429 if (ret)
2430 return ret;
2431
2432 /* Disable MAC transmit. TX DMA disabled have to done before this */
2433 umac_enable_set(priv, CMD_TX_EN, false);
2434
2435 /* tx reclaim */
2436 bcmgenet_tx_reclaim_all(dev);
2437 bcmgenet_fini_dma(priv);
2438
2439 free_irq(priv->irq0, priv);
2440 free_irq(priv->irq1, priv);
2441
2442 if (phy_is_internal(priv->phydev))
2443 bcmgenet_power_down(priv, GENET_POWER_PASSIVE);
2444
2445 if (!IS_ERR(priv->clk))
2446 clk_disable_unprepare(priv->clk);
2447
2448 return 0;
2449 }
2450
2451 static void bcmgenet_timeout(struct net_device *dev)
2452 {
2453 struct bcmgenet_priv *priv = netdev_priv(dev);
2454
2455 netif_dbg(priv, tx_err, dev, "bcmgenet_timeout\n");
2456
2457 dev->trans_start = jiffies;
2458
2459 dev->stats.tx_errors++;
2460
2461 netif_tx_wake_all_queues(dev);
2462 }
2463
2464 #define MAX_MC_COUNT 16
2465
2466 static inline void bcmgenet_set_mdf_addr(struct bcmgenet_priv *priv,
2467 unsigned char *addr,
2468 int *i,
2469 int *mc)
2470 {
2471 u32 reg;
2472
2473 bcmgenet_umac_writel(priv, addr[0] << 8 | addr[1],
2474 UMAC_MDF_ADDR + (*i * 4));
2475 bcmgenet_umac_writel(priv, addr[2] << 24 | addr[3] << 16 |
2476 addr[4] << 8 | addr[5],
2477 UMAC_MDF_ADDR + ((*i + 1) * 4));
2478 reg = bcmgenet_umac_readl(priv, UMAC_MDF_CTRL);
2479 reg |= (1 << (MAX_MC_COUNT - *mc));
2480 bcmgenet_umac_writel(priv, reg, UMAC_MDF_CTRL);
2481 *i += 2;
2482 (*mc)++;
2483 }
2484
2485 static void bcmgenet_set_rx_mode(struct net_device *dev)
2486 {
2487 struct bcmgenet_priv *priv = netdev_priv(dev);
2488 struct netdev_hw_addr *ha;
2489 int i, mc;
2490 u32 reg;
2491
2492 netif_dbg(priv, hw, dev, "%s: %08X\n", __func__, dev->flags);
2493
2494 /* Promiscuous mode */
2495 reg = bcmgenet_umac_readl(priv, UMAC_CMD);
2496 if (dev->flags & IFF_PROMISC) {
2497 reg |= CMD_PROMISC;
2498 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2499 bcmgenet_umac_writel(priv, 0, UMAC_MDF_CTRL);
2500 return;
2501 } else {
2502 reg &= ~CMD_PROMISC;
2503 bcmgenet_umac_writel(priv, reg, UMAC_CMD);
2504 }
2505
2506 /* UniMac doesn't support ALLMULTI */
2507 if (dev->flags & IFF_ALLMULTI) {
2508 netdev_warn(dev, "ALLMULTI is not supported\n");
2509 return;
2510 }
2511
2512 /* update MDF filter */
2513 i = 0;
2514 mc = 0;
2515 /* Broadcast */
2516 bcmgenet_set_mdf_addr(priv, dev->broadcast, &i, &mc);
2517 /* my own address.*/
2518 bcmgenet_set_mdf_addr(priv, dev->dev_addr, &i, &mc);
2519 /* Unicast list*/
2520 if (netdev_uc_count(dev) > (MAX_MC_COUNT - mc))
2521 return;
2522
2523 if (!netdev_uc_empty(dev))
2524 netdev_for_each_uc_addr(ha, dev)
2525 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2526 /* Multicast */
2527 if (netdev_mc_empty(dev) || netdev_mc_count(dev) >= (MAX_MC_COUNT - mc))
2528 return;
2529
2530 netdev_for_each_mc_addr(ha, dev)
2531 bcmgenet_set_mdf_addr(priv, ha->addr, &i, &mc);
2532 }
2533
2534 /* Set the hardware MAC address. */
2535 static int bcmgenet_set_mac_addr(struct net_device *dev, void *p)
2536 {
2537 struct sockaddr *addr = p;
2538
2539 /* Setting the MAC address at the hardware level is not possible
2540 * without disabling the UniMAC RX/TX enable bits.
2541 */
2542 if (netif_running(dev))
2543 return -EBUSY;
2544
2545 ether_addr_copy(dev->dev_addr, addr->sa_data);
2546
2547 return 0;
2548 }
2549
2550 static const struct net_device_ops bcmgenet_netdev_ops = {
2551 .ndo_open = bcmgenet_open,
2552 .ndo_stop = bcmgenet_close,
2553 .ndo_start_xmit = bcmgenet_xmit,
2554 .ndo_tx_timeout = bcmgenet_timeout,
2555 .ndo_set_rx_mode = bcmgenet_set_rx_mode,
2556 .ndo_set_mac_address = bcmgenet_set_mac_addr,
2557 .ndo_do_ioctl = bcmgenet_ioctl,
2558 .ndo_set_features = bcmgenet_set_features,
2559 };
2560
2561 /* Array of GENET hardware parameters/characteristics */
2562 static struct bcmgenet_hw_params bcmgenet_hw_params[] = {
2563 [GENET_V1] = {
2564 .tx_queues = 0,
2565 .tx_bds_per_q = 0,
2566 .rx_queues = 0,
2567 .rx_bds_per_q = 0,
2568 .bp_in_en_shift = 16,
2569 .bp_in_mask = 0xffff,
2570 .hfb_filter_cnt = 16,
2571 .qtag_mask = 0x1F,
2572 .hfb_offset = 0x1000,
2573 .rdma_offset = 0x2000,
2574 .tdma_offset = 0x3000,
2575 .words_per_bd = 2,
2576 },
2577 [GENET_V2] = {
2578 .tx_queues = 4,
2579 .tx_bds_per_q = 32,
2580 .rx_queues = 0,
2581 .rx_bds_per_q = 0,
2582 .bp_in_en_shift = 16,
2583 .bp_in_mask = 0xffff,
2584 .hfb_filter_cnt = 16,
2585 .qtag_mask = 0x1F,
2586 .tbuf_offset = 0x0600,
2587 .hfb_offset = 0x1000,
2588 .hfb_reg_offset = 0x2000,
2589 .rdma_offset = 0x3000,
2590 .tdma_offset = 0x4000,
2591 .words_per_bd = 2,
2592 .flags = GENET_HAS_EXT,
2593 },
2594 [GENET_V3] = {
2595 .tx_queues = 4,
2596 .tx_bds_per_q = 32,
2597 .rx_queues = 0,
2598 .rx_bds_per_q = 0,
2599 .bp_in_en_shift = 17,
2600 .bp_in_mask = 0x1ffff,
2601 .hfb_filter_cnt = 48,
2602 .qtag_mask = 0x3F,
2603 .tbuf_offset = 0x0600,
2604 .hfb_offset = 0x8000,
2605 .hfb_reg_offset = 0xfc00,
2606 .rdma_offset = 0x10000,
2607 .tdma_offset = 0x11000,
2608 .words_per_bd = 2,
2609 .flags = GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2610 },
2611 [GENET_V4] = {
2612 .tx_queues = 4,
2613 .tx_bds_per_q = 32,
2614 .rx_queues = 0,
2615 .rx_bds_per_q = 0,
2616 .bp_in_en_shift = 17,
2617 .bp_in_mask = 0x1ffff,
2618 .hfb_filter_cnt = 48,
2619 .qtag_mask = 0x3F,
2620 .tbuf_offset = 0x0600,
2621 .hfb_offset = 0x8000,
2622 .hfb_reg_offset = 0xfc00,
2623 .rdma_offset = 0x2000,
2624 .tdma_offset = 0x4000,
2625 .words_per_bd = 3,
2626 .flags = GENET_HAS_40BITS | GENET_HAS_EXT | GENET_HAS_MDIO_INTR,
2627 },
2628 };
2629
2630 /* Infer hardware parameters from the detected GENET version */
2631 static void bcmgenet_set_hw_params(struct bcmgenet_priv *priv)
2632 {
2633 struct bcmgenet_hw_params *params;
2634 u32 reg;
2635 u8 major;
2636 u16 gphy_rev;
2637
2638 if (GENET_IS_V4(priv)) {
2639 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2640 genet_dma_ring_regs = genet_dma_ring_regs_v4;
2641 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2642 priv->version = GENET_V4;
2643 } else if (GENET_IS_V3(priv)) {
2644 bcmgenet_dma_regs = bcmgenet_dma_regs_v3plus;
2645 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2646 priv->dma_rx_chk_bit = DMA_RX_CHK_V3PLUS;
2647 priv->version = GENET_V3;
2648 } else if (GENET_IS_V2(priv)) {
2649 bcmgenet_dma_regs = bcmgenet_dma_regs_v2;
2650 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2651 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2652 priv->version = GENET_V2;
2653 } else if (GENET_IS_V1(priv)) {
2654 bcmgenet_dma_regs = bcmgenet_dma_regs_v1;
2655 genet_dma_ring_regs = genet_dma_ring_regs_v123;
2656 priv->dma_rx_chk_bit = DMA_RX_CHK_V12;
2657 priv->version = GENET_V1;
2658 }
2659
2660 /* enum genet_version starts at 1 */
2661 priv->hw_params = &bcmgenet_hw_params[priv->version];
2662 params = priv->hw_params;
2663
2664 /* Read GENET HW version */
2665 reg = bcmgenet_sys_readl(priv, SYS_REV_CTRL);
2666 major = (reg >> 24 & 0x0f);
2667 if (major == 5)
2668 major = 4;
2669 else if (major == 0)
2670 major = 1;
2671 if (major != priv->version) {
2672 dev_err(&priv->pdev->dev,
2673 "GENET version mismatch, got: %d, configured for: %d\n",
2674 major, priv->version);
2675 }
2676
2677 /* Print the GENET core version */
2678 dev_info(&priv->pdev->dev, "GENET " GENET_VER_FMT,
2679 major, (reg >> 16) & 0x0f, reg & 0xffff);
2680
2681 /* Store the integrated PHY revision for the MDIO probing function
2682 * to pass this information to the PHY driver. The PHY driver expects
2683 * to find the PHY major revision in bits 15:8 while the GENET register
2684 * stores that information in bits 7:0, account for that.
2685 *
2686 * On newer chips, starting with PHY revision G0, a new scheme is
2687 * deployed similar to the Starfighter 2 switch with GPHY major
2688 * revision in bits 15:8 and patch level in bits 7:0. Major revision 0
2689 * is reserved as well as special value 0x01ff, we have a small
2690 * heuristic to check for the new GPHY revision and re-arrange things
2691 * so the GPHY driver is happy.
2692 */
2693 gphy_rev = reg & 0xffff;
2694
2695 /* This is the good old scheme, just GPHY major, no minor nor patch */
2696 if ((gphy_rev & 0xf0) != 0)
2697 priv->gphy_rev = gphy_rev << 8;
2698
2699 /* This is the new scheme, GPHY major rolls over with 0x10 = rev G0 */
2700 else if ((gphy_rev & 0xff00) != 0)
2701 priv->gphy_rev = gphy_rev;
2702
2703 /* This is reserved so should require special treatment */
2704 else if (gphy_rev == 0 || gphy_rev == 0x01ff) {
2705 pr_warn("Invalid GPHY revision detected: 0x%04x\n", gphy_rev);
2706 return;
2707 }
2708
2709 #ifdef CONFIG_PHYS_ADDR_T_64BIT
2710 if (!(params->flags & GENET_HAS_40BITS))
2711 pr_warn("GENET does not support 40-bits PA\n");
2712 #endif
2713
2714 pr_debug("Configuration for version: %d\n"
2715 "TXq: %1d, TXqBDs: %1d, RXq: %1d, RXqBDs: %1d\n"
2716 "BP << en: %2d, BP msk: 0x%05x\n"
2717 "HFB count: %2d, QTAQ msk: 0x%05x\n"
2718 "TBUF: 0x%04x, HFB: 0x%04x, HFBreg: 0x%04x\n"
2719 "RDMA: 0x%05x, TDMA: 0x%05x\n"
2720 "Words/BD: %d\n",
2721 priv->version,
2722 params->tx_queues, params->tx_bds_per_q,
2723 params->rx_queues, params->rx_bds_per_q,
2724 params->bp_in_en_shift, params->bp_in_mask,
2725 params->hfb_filter_cnt, params->qtag_mask,
2726 params->tbuf_offset, params->hfb_offset,
2727 params->hfb_reg_offset,
2728 params->rdma_offset, params->tdma_offset,
2729 params->words_per_bd);
2730 }
2731
2732 static const struct of_device_id bcmgenet_match[] = {
2733 { .compatible = "brcm,genet-v1", .data = (void *)GENET_V1 },
2734 { .compatible = "brcm,genet-v2", .data = (void *)GENET_V2 },
2735 { .compatible = "brcm,genet-v3", .data = (void *)GENET_V3 },
2736 { .compatible = "brcm,genet-v4", .data = (void *)GENET_V4 },
2737 { },
2738 };
2739
2740 static int bcmgenet_probe(struct platform_device *pdev)
2741 {
2742 struct bcmgenet_platform_data *pd = pdev->dev.platform_data;
2743 struct device_node *dn = pdev->dev.of_node;
2744 const struct of_device_id *of_id = NULL;
2745 struct bcmgenet_priv *priv;
2746 struct net_device *dev;
2747 const void *macaddr;
2748 struct resource *r;
2749 int err = -EIO;
2750
2751 /* Up to GENET_MAX_MQ_CNT + 1 TX queues and RX queues */
2752 dev = alloc_etherdev_mqs(sizeof(*priv), GENET_MAX_MQ_CNT + 1,
2753 GENET_MAX_MQ_CNT + 1);
2754 if (!dev) {
2755 dev_err(&pdev->dev, "can't allocate net device\n");
2756 return -ENOMEM;
2757 }
2758
2759 if (dn) {
2760 of_id = of_match_node(bcmgenet_match, dn);
2761 if (!of_id)
2762 return -EINVAL;
2763 }
2764
2765 priv = netdev_priv(dev);
2766 priv->irq0 = platform_get_irq(pdev, 0);
2767 priv->irq1 = platform_get_irq(pdev, 1);
2768 priv->wol_irq = platform_get_irq(pdev, 2);
2769 if (!priv->irq0 || !priv->irq1) {
2770 dev_err(&pdev->dev, "can't find IRQs\n");
2771 err = -EINVAL;
2772 goto err;
2773 }
2774
2775 if (dn) {
2776 macaddr = of_get_mac_address(dn);
2777 if (!macaddr) {
2778 dev_err(&pdev->dev, "can't find MAC address\n");
2779 err = -EINVAL;
2780 goto err;
2781 }
2782 } else {
2783 macaddr = pd->mac_address;
2784 }
2785
2786 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2787 priv->base = devm_ioremap_resource(&pdev->dev, r);
2788 if (IS_ERR(priv->base)) {
2789 err = PTR_ERR(priv->base);
2790 goto err;
2791 }
2792
2793 SET_NETDEV_DEV(dev, &pdev->dev);
2794 dev_set_drvdata(&pdev->dev, dev);
2795 ether_addr_copy(dev->dev_addr, macaddr);
2796 dev->watchdog_timeo = 2 * HZ;
2797 dev->ethtool_ops = &bcmgenet_ethtool_ops;
2798 dev->netdev_ops = &bcmgenet_netdev_ops;
2799 netif_napi_add(dev, &priv->napi, bcmgenet_poll, 64);
2800
2801 priv->msg_enable = netif_msg_init(-1, GENET_MSG_DEFAULT);
2802
2803 /* Set hardware features */
2804 dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM |
2805 NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
2806
2807 /* Request the WOL interrupt and advertise suspend if available */
2808 priv->wol_irq_disabled = true;
2809 err = devm_request_irq(&pdev->dev, priv->wol_irq, bcmgenet_wol_isr, 0,
2810 dev->name, priv);
2811 if (!err)
2812 device_set_wakeup_capable(&pdev->dev, 1);
2813
2814 /* Set the needed headroom to account for any possible
2815 * features enabling/disabling at runtime
2816 */
2817 dev->needed_headroom += 64;
2818
2819 netdev_boot_setup_check(dev);
2820
2821 priv->dev = dev;
2822 priv->pdev = pdev;
2823 if (of_id)
2824 priv->version = (enum bcmgenet_version)of_id->data;
2825 else
2826 priv->version = pd->genet_version;
2827
2828 priv->clk = devm_clk_get(&priv->pdev->dev, "enet");
2829 if (IS_ERR(priv->clk))
2830 dev_warn(&priv->pdev->dev, "failed to get enet clock\n");
2831
2832 if (!IS_ERR(priv->clk))
2833 clk_prepare_enable(priv->clk);
2834
2835 bcmgenet_set_hw_params(priv);
2836
2837 /* Mii wait queue */
2838 init_waitqueue_head(&priv->wq);
2839 /* Always use RX_BUF_LENGTH (2KB) buffer for all chips */
2840 priv->rx_buf_len = RX_BUF_LENGTH;
2841 INIT_WORK(&priv->bcmgenet_irq_work, bcmgenet_irq_task);
2842
2843 priv->clk_wol = devm_clk_get(&priv->pdev->dev, "enet-wol");
2844 if (IS_ERR(priv->clk_wol))
2845 dev_warn(&priv->pdev->dev, "failed to get enet-wol clock\n");
2846
2847 priv->clk_eee = devm_clk_get(&priv->pdev->dev, "enet-eee");
2848 if (IS_ERR(priv->clk_eee)) {
2849 dev_warn(&priv->pdev->dev, "failed to get enet-eee clock\n");
2850 priv->clk_eee = NULL;
2851 }
2852
2853 err = reset_umac(priv);
2854 if (err)
2855 goto err_clk_disable;
2856
2857 err = bcmgenet_mii_init(dev);
2858 if (err)
2859 goto err_clk_disable;
2860
2861 /* setup number of real queues + 1 (GENET_V1 has 0 hardware queues
2862 * just the ring 16 descriptor based TX
2863 */
2864 netif_set_real_num_tx_queues(priv->dev, priv->hw_params->tx_queues + 1);
2865 netif_set_real_num_rx_queues(priv->dev, priv->hw_params->rx_queues + 1);
2866
2867 /* libphy will determine the link state */
2868 netif_carrier_off(dev);
2869
2870 /* Turn off the main clock, WOL clock is handled separately */
2871 if (!IS_ERR(priv->clk))
2872 clk_disable_unprepare(priv->clk);
2873
2874 err = register_netdev(dev);
2875 if (err)
2876 goto err;
2877
2878 return err;
2879
2880 err_clk_disable:
2881 if (!IS_ERR(priv->clk))
2882 clk_disable_unprepare(priv->clk);
2883 err:
2884 free_netdev(dev);
2885 return err;
2886 }
2887
2888 static int bcmgenet_remove(struct platform_device *pdev)
2889 {
2890 struct bcmgenet_priv *priv = dev_to_priv(&pdev->dev);
2891
2892 dev_set_drvdata(&pdev->dev, NULL);
2893 unregister_netdev(priv->dev);
2894 bcmgenet_mii_exit(priv->dev);
2895 free_netdev(priv->dev);
2896
2897 return 0;
2898 }
2899
2900 #ifdef CONFIG_PM_SLEEP
2901 static int bcmgenet_suspend(struct device *d)
2902 {
2903 struct net_device *dev = dev_get_drvdata(d);
2904 struct bcmgenet_priv *priv = netdev_priv(dev);
2905 int ret;
2906
2907 if (!netif_running(dev))
2908 return 0;
2909
2910 bcmgenet_netif_stop(dev);
2911
2912 phy_suspend(priv->phydev);
2913
2914 netif_device_detach(dev);
2915
2916 /* Disable MAC receive */
2917 umac_enable_set(priv, CMD_RX_EN, false);
2918
2919 ret = bcmgenet_dma_teardown(priv);
2920 if (ret)
2921 return ret;
2922
2923 /* Disable MAC transmit. TX DMA disabled have to done before this */
2924 umac_enable_set(priv, CMD_TX_EN, false);
2925
2926 /* tx reclaim */
2927 bcmgenet_tx_reclaim_all(dev);
2928 bcmgenet_fini_dma(priv);
2929
2930 /* Prepare the device for Wake-on-LAN and switch to the slow clock */
2931 if (device_may_wakeup(d) && priv->wolopts) {
2932 bcmgenet_power_down(priv, GENET_POWER_WOL_MAGIC);
2933 clk_prepare_enable(priv->clk_wol);
2934 }
2935
2936 /* Turn off the clocks */
2937 clk_disable_unprepare(priv->clk);
2938
2939 return 0;
2940 }
2941
2942 static int bcmgenet_resume(struct device *d)
2943 {
2944 struct net_device *dev = dev_get_drvdata(d);
2945 struct bcmgenet_priv *priv = netdev_priv(dev);
2946 unsigned long dma_ctrl;
2947 int ret;
2948 u32 reg;
2949
2950 if (!netif_running(dev))
2951 return 0;
2952
2953 /* Turn on the clock */
2954 ret = clk_prepare_enable(priv->clk);
2955 if (ret)
2956 return ret;
2957
2958 bcmgenet_umac_reset(priv);
2959
2960 ret = init_umac(priv);
2961 if (ret)
2962 goto out_clk_disable;
2963
2964 /* From WOL-enabled suspend, switch to regular clock */
2965 if (priv->wolopts)
2966 clk_disable_unprepare(priv->clk_wol);
2967
2968 phy_init_hw(priv->phydev);
2969 /* Speed settings must be restored */
2970 bcmgenet_mii_config(priv->dev, false);
2971
2972 /* disable ethernet MAC while updating its registers */
2973 umac_enable_set(priv, CMD_TX_EN | CMD_RX_EN, false);
2974
2975 bcmgenet_set_hw_addr(priv, dev->dev_addr);
2976
2977 if (phy_is_internal(priv->phydev)) {
2978 reg = bcmgenet_ext_readl(priv, EXT_EXT_PWR_MGMT);
2979 reg |= EXT_ENERGY_DET_MASK;
2980 bcmgenet_ext_writel(priv, reg, EXT_EXT_PWR_MGMT);
2981 }
2982
2983 if (priv->wolopts)
2984 bcmgenet_power_up(priv, GENET_POWER_WOL_MAGIC);
2985
2986 /* Disable RX/TX DMA and flush TX queues */
2987 dma_ctrl = bcmgenet_dma_disable(priv);
2988
2989 /* Reinitialize TDMA and RDMA and SW housekeeping */
2990 ret = bcmgenet_init_dma(priv);
2991 if (ret) {
2992 netdev_err(dev, "failed to initialize DMA\n");
2993 goto out_clk_disable;
2994 }
2995
2996 /* Always enable ring 16 - descriptor ring */
2997 bcmgenet_enable_dma(priv, dma_ctrl);
2998
2999 netif_device_attach(dev);
3000
3001 phy_resume(priv->phydev);
3002
3003 if (priv->eee.eee_enabled)
3004 bcmgenet_eee_enable_set(dev, true);
3005
3006 bcmgenet_netif_start(dev);
3007
3008 return 0;
3009
3010 out_clk_disable:
3011 clk_disable_unprepare(priv->clk);
3012 return ret;
3013 }
3014 #endif /* CONFIG_PM_SLEEP */
3015
3016 static SIMPLE_DEV_PM_OPS(bcmgenet_pm_ops, bcmgenet_suspend, bcmgenet_resume);
3017
3018 static struct platform_driver bcmgenet_driver = {
3019 .probe = bcmgenet_probe,
3020 .remove = bcmgenet_remove,
3021 .driver = {
3022 .name = "bcmgenet",
3023 .of_match_table = bcmgenet_match,
3024 .pm = &bcmgenet_pm_ops,
3025 },
3026 };
3027 module_platform_driver(bcmgenet_driver);
3028
3029 MODULE_AUTHOR("Broadcom Corporation");
3030 MODULE_DESCRIPTION("Broadcom GENET Ethernet controller driver");
3031 MODULE_ALIAS("platform:bcmgenet");
3032 MODULE_LICENSE("GPL");
This page took 0.114091 seconds and 5 git commands to generate.