Merge back intel_pstate fixes for v4.6.
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bna_hw_defs.h
1 /*
2 * Linux network driver for QLogic BR-series Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15 * Copyright (c) 2014-2015 QLogic Corporation
16 * All rights reserved
17 * www.qlogic.com
18 */
19
20 /* File for interrupt macros and functions */
21
22 #ifndef __BNA_HW_DEFS_H__
23 #define __BNA_HW_DEFS_H__
24
25 #include "bfi_reg.h"
26
27 /* SW imposed limits */
28
29 #define BFI_ENET_DEF_TXQ 1
30 #define BFI_ENET_DEF_RXP 1
31 #define BFI_ENET_DEF_UCAM 1
32 #define BFI_ENET_DEF_RITSZ 1
33
34 #define BFI_ENET_MAX_MCAM 256
35
36 #define BFI_INVALID_RID -1
37
38 #define BFI_IBIDX_SIZE 4
39
40 #define BFI_VLAN_WORD_SHIFT 5 /* 32 bits */
41 #define BFI_VLAN_WORD_MASK 0x1F
42 #define BFI_VLAN_BLOCK_SHIFT 9 /* 512 bits */
43 #define BFI_VLAN_BMASK_ALL 0xFF
44
45 #define BFI_COALESCING_TIMER_UNIT 5 /* 5us */
46 #define BFI_MAX_COALESCING_TIMEO 0xFF /* in 5us units */
47 #define BFI_MAX_INTERPKT_COUNT 0xFF
48 #define BFI_MAX_INTERPKT_TIMEO 0xF /* in 0.5us units */
49 #define BFI_TX_COALESCING_TIMEO 20 /* 20 * 5 = 100us */
50 #define BFI_TX_INTERPKT_COUNT 12 /* Pkt Cnt = 12 */
51 #define BFI_TX_INTERPKT_TIMEO 15 /* 15 * 0.5 = 7.5us */
52 #define BFI_RX_COALESCING_TIMEO 12 /* 12 * 5 = 60us */
53 #define BFI_RX_INTERPKT_COUNT 6 /* Pkt Cnt = 6 */
54 #define BFI_RX_INTERPKT_TIMEO 3 /* 3 * 0.5 = 1.5us */
55
56 #define BFI_TXQ_WI_SIZE 64 /* bytes */
57 #define BFI_RXQ_WI_SIZE 8 /* bytes */
58 #define BFI_CQ_WI_SIZE 16 /* bytes */
59 #define BFI_TX_MAX_WRR_QUOTA 0xFFF
60
61 #define BFI_TX_MAX_VECTORS_PER_WI 4
62 #define BFI_TX_MAX_VECTORS_PER_PKT 0xFF
63 #define BFI_TX_MAX_DATA_PER_VECTOR 0xFFFF
64 #define BFI_TX_MAX_DATA_PER_PKT 0xFFFFFF
65
66 /* Small Q buffer size */
67 #define BFI_SMALL_RXBUF_SIZE 128
68
69 #define BFI_TX_MAX_PRIO 8
70 #define BFI_TX_PRIO_MAP_ALL 0xFF
71
72 /*
73 *
74 * Register definitions and macros
75 *
76 */
77
78 #define BNA_PCI_REG_CT_ADDRSZ (0x40000)
79
80 #define ct_reg_addr_init(_bna, _pcidev) \
81 { \
82 struct bna_reg_offset reg_offset[] = \
83 {{HOSTFN0_INT_STATUS, HOSTFN0_INT_MSK}, \
84 {HOSTFN1_INT_STATUS, HOSTFN1_INT_MSK}, \
85 {HOSTFN2_INT_STATUS, HOSTFN2_INT_MSK}, \
86 {HOSTFN3_INT_STATUS, HOSTFN3_INT_MSK} }; \
87 \
88 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
89 reg_offset[(_pcidev)->pci_func].fn_int_status;\
90 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
91 reg_offset[(_pcidev)->pci_func].fn_int_mask;\
92 }
93
94 #define ct_bit_defn_init(_bna, _pcidev) \
95 { \
96 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0 | \
97 __HFN_INT_MBOX_LPU1); \
98 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0 | \
99 __HFN_INT_MBOX_LPU1); \
100 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK); \
101 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK); \
102 (_bna)->bits.halt_status_bits = __HFN_INT_LL_HALT; \
103 (_bna)->bits.halt_mask_bits = __HFN_INT_LL_HALT; \
104 }
105
106 #define ct2_reg_addr_init(_bna, _pcidev) \
107 { \
108 (_bna)->regs.fn_int_status = (_pcidev)->pci_bar_kva + \
109 CT2_HOSTFN_INT_STATUS; \
110 (_bna)->regs.fn_int_mask = (_pcidev)->pci_bar_kva + \
111 CT2_HOSTFN_INTR_MASK; \
112 }
113
114 #define ct2_bit_defn_init(_bna, _pcidev) \
115 { \
116 (_bna)->bits.mbox_status_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
117 __HFN_INT_MBOX_LPU1_CT2); \
118 (_bna)->bits.mbox_mask_bits = (__HFN_INT_MBOX_LPU0_CT2 | \
119 __HFN_INT_MBOX_LPU1_CT2); \
120 (_bna)->bits.error_status_bits = (__HFN_INT_ERR_MASK_CT2); \
121 (_bna)->bits.error_mask_bits = (__HFN_INT_ERR_MASK_CT2); \
122 (_bna)->bits.halt_status_bits = __HFN_INT_CPQ_HALT_CT2; \
123 (_bna)->bits.halt_mask_bits = __HFN_INT_CPQ_HALT_CT2; \
124 }
125
126 #define bna_reg_addr_init(_bna, _pcidev) \
127 { \
128 switch ((_pcidev)->device_id) { \
129 case PCI_DEVICE_ID_BROCADE_CT: \
130 ct_reg_addr_init((_bna), (_pcidev)); \
131 ct_bit_defn_init((_bna), (_pcidev)); \
132 break; \
133 case BFA_PCI_DEVICE_ID_CT2: \
134 ct2_reg_addr_init((_bna), (_pcidev)); \
135 ct2_bit_defn_init((_bna), (_pcidev)); \
136 break; \
137 } \
138 }
139
140 #define bna_port_id_get(_bna) ((_bna)->ioceth.ioc.port_id)
141
142 /* Interrupt related bits, flags and macros */
143
144 #define IB_STATUS_BITS 0x0000ffff
145
146 #define BNA_IS_MBOX_INTR(_bna, _intr_status) \
147 ((_intr_status) & (_bna)->bits.mbox_status_bits)
148
149 #define BNA_IS_HALT_INTR(_bna, _intr_status) \
150 ((_intr_status) & (_bna)->bits.halt_status_bits)
151
152 #define BNA_IS_ERR_INTR(_bna, _intr_status) \
153 ((_intr_status) & (_bna)->bits.error_status_bits)
154
155 #define BNA_IS_MBOX_ERR_INTR(_bna, _intr_status) \
156 (BNA_IS_MBOX_INTR(_bna, _intr_status) | \
157 BNA_IS_ERR_INTR(_bna, _intr_status))
158
159 #define BNA_IS_INTX_DATA_INTR(_intr_status) \
160 ((_intr_status) & IB_STATUS_BITS)
161
162 #define bna_halt_clear(_bna) \
163 do { \
164 u32 init_halt; \
165 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
166 init_halt &= ~__FW_INIT_HALT_P; \
167 writel(init_halt, (_bna)->ioceth.ioc.ioc_regs.ll_halt); \
168 init_halt = readl((_bna)->ioceth.ioc.ioc_regs.ll_halt); \
169 } while (0)
170
171 #define bna_intx_disable(_bna, _cur_mask) \
172 { \
173 (_cur_mask) = readl((_bna)->regs.fn_int_mask); \
174 writel(0xffffffff, (_bna)->regs.fn_int_mask); \
175 }
176
177 #define bna_intx_enable(bna, new_mask) \
178 writel((new_mask), (bna)->regs.fn_int_mask)
179 #define bna_mbox_intr_disable(bna) \
180 do { \
181 u32 mask; \
182 mask = readl((bna)->regs.fn_int_mask); \
183 writel((mask | (bna)->bits.mbox_mask_bits | \
184 (bna)->bits.error_mask_bits), (bna)->regs.fn_int_mask); \
185 mask = readl((bna)->regs.fn_int_mask); \
186 } while (0)
187
188 #define bna_mbox_intr_enable(bna) \
189 do { \
190 u32 mask; \
191 mask = readl((bna)->regs.fn_int_mask); \
192 writel((mask & ~((bna)->bits.mbox_mask_bits | \
193 (bna)->bits.error_mask_bits)), (bna)->regs.fn_int_mask);\
194 mask = readl((bna)->regs.fn_int_mask); \
195 } while (0)
196
197 #define bna_intr_status_get(_bna, _status) \
198 { \
199 (_status) = readl((_bna)->regs.fn_int_status); \
200 if (_status) { \
201 writel(((_status) & ~(_bna)->bits.mbox_status_bits), \
202 (_bna)->regs.fn_int_status); \
203 } \
204 }
205
206 /*
207 * MAX ACK EVENTS : No. of acks that can be accumulated in driver,
208 * before acking to h/w. The no. of bits is 16 in the doorbell register,
209 * however we keep this limited to 15 bits.
210 * This is because around the edge of 64K boundary (16 bits), one
211 * single poll can make the accumulated ACK counter cross the 64K boundary,
212 * causing problems, when we try to ack with a value greater than 64K.
213 * 15 bits (32K) should be large enough to accumulate, anyways, and the max.
214 * acked events to h/w can be (32K + max poll weight) (currently 64).
215 */
216 #define BNA_IB_MAX_ACK_EVENTS BIT(15)
217
218 /* These macros build the data portion of the TxQ/RxQ doorbell */
219 #define BNA_DOORBELL_Q_PRD_IDX(_pi) (0x80000000 | (_pi))
220 #define BNA_DOORBELL_Q_STOP (0x40000000)
221
222 /* These macros build the data portion of the IB doorbell */
223 #define BNA_DOORBELL_IB_INT_ACK(_timeout, _events) \
224 (0x80000000 | ((_timeout) << 16) | (_events))
225 #define BNA_DOORBELL_IB_INT_DISABLE (0x40000000)
226
227 /* Set the coalescing timer for the given ib */
228 #define bna_ib_coalescing_timer_set(_i_dbell, _cls_timer) \
229 ((_i_dbell)->doorbell_ack = BNA_DOORBELL_IB_INT_ACK((_cls_timer), 0));
230
231 /* Acks 'events' # of events for a given ib while disabling interrupts */
232 #define bna_ib_ack_disable_irq(_i_dbell, _events) \
233 (writel(BNA_DOORBELL_IB_INT_ACK(0, (_events)), \
234 (_i_dbell)->doorbell_addr));
235
236 /* Acks 'events' # of events for a given ib */
237 #define bna_ib_ack(_i_dbell, _events) \
238 (writel(((_i_dbell)->doorbell_ack | (_events)), \
239 (_i_dbell)->doorbell_addr));
240
241 #define bna_ib_start(_bna, _ib, _is_regular) \
242 { \
243 u32 intx_mask; \
244 struct bna_ib *ib = _ib; \
245 if ((ib->intr_type == BNA_INTR_T_INTX)) { \
246 bna_intx_disable((_bna), intx_mask); \
247 intx_mask &= ~(ib->intr_vector); \
248 bna_intx_enable((_bna), intx_mask); \
249 } \
250 bna_ib_coalescing_timer_set(&ib->door_bell, \
251 ib->coalescing_timeo); \
252 if (_is_regular) \
253 bna_ib_ack(&ib->door_bell, 0); \
254 }
255
256 #define bna_ib_stop(_bna, _ib) \
257 { \
258 u32 intx_mask; \
259 struct bna_ib *ib = _ib; \
260 writel(BNA_DOORBELL_IB_INT_DISABLE, \
261 ib->door_bell.doorbell_addr); \
262 if (ib->intr_type == BNA_INTR_T_INTX) { \
263 bna_intx_disable((_bna), intx_mask); \
264 intx_mask |= ib->intr_vector; \
265 bna_intx_enable((_bna), intx_mask); \
266 } \
267 }
268
269 #define bna_txq_prod_indx_doorbell(_tcb) \
270 (writel(BNA_DOORBELL_Q_PRD_IDX((_tcb)->producer_index), \
271 (_tcb)->q_dbell));
272
273 #define bna_rxq_prod_indx_doorbell(_rcb) \
274 (writel(BNA_DOORBELL_Q_PRD_IDX((_rcb)->producer_index), \
275 (_rcb)->q_dbell));
276
277 /* TxQ, RxQ, CQ related bits, offsets, macros */
278
279 /* TxQ Entry Opcodes */
280 #define BNA_TXQ_WI_SEND (0x402) /* Single Frame Transmission */
281 #define BNA_TXQ_WI_SEND_LSO (0x403) /* Multi-Frame Transmission */
282 #define BNA_TXQ_WI_EXTENSION (0x104) /* Extension WI */
283
284 /* TxQ Entry Control Flags */
285 #define BNA_TXQ_WI_CF_FCOE_CRC BIT(8)
286 #define BNA_TXQ_WI_CF_IPID_MODE BIT(5)
287 #define BNA_TXQ_WI_CF_INS_PRIO BIT(4)
288 #define BNA_TXQ_WI_CF_INS_VLAN BIT(3)
289 #define BNA_TXQ_WI_CF_UDP_CKSUM BIT(2)
290 #define BNA_TXQ_WI_CF_TCP_CKSUM BIT(1)
291 #define BNA_TXQ_WI_CF_IP_CKSUM BIT(0)
292
293 #define BNA_TXQ_WI_L4_HDR_N_OFFSET(_hdr_size, _offset) \
294 (((_hdr_size) << 10) | ((_offset) & 0x3FF))
295
296 /*
297 * Completion Q defines
298 */
299 /* CQ Entry Flags */
300 #define BNA_CQ_EF_MAC_ERROR BIT(0)
301 #define BNA_CQ_EF_FCS_ERROR BIT(1)
302 #define BNA_CQ_EF_TOO_LONG BIT(2)
303 #define BNA_CQ_EF_FC_CRC_OK BIT(3)
304
305 #define BNA_CQ_EF_RSVD1 BIT(4)
306 #define BNA_CQ_EF_L4_CKSUM_OK BIT(5)
307 #define BNA_CQ_EF_L3_CKSUM_OK BIT(6)
308 #define BNA_CQ_EF_HDS_HEADER BIT(7)
309
310 #define BNA_CQ_EF_UDP BIT(8)
311 #define BNA_CQ_EF_TCP BIT(9)
312 #define BNA_CQ_EF_IP_OPTIONS BIT(10)
313 #define BNA_CQ_EF_IPV6 BIT(11)
314
315 #define BNA_CQ_EF_IPV4 BIT(12)
316 #define BNA_CQ_EF_VLAN BIT(13)
317 #define BNA_CQ_EF_RSS BIT(14)
318 #define BNA_CQ_EF_RSVD2 BIT(15)
319
320 #define BNA_CQ_EF_MCAST_MATCH BIT(16)
321 #define BNA_CQ_EF_MCAST BIT(17)
322 #define BNA_CQ_EF_BCAST BIT(18)
323 #define BNA_CQ_EF_REMOTE BIT(19)
324
325 #define BNA_CQ_EF_LOCAL BIT(20)
326 /* CAT2 ASIC does not use bit 21 as per the SPEC.
327 * Bit 31 is set in every end of frame completion
328 */
329 #define BNA_CQ_EF_EOP BIT(31)
330
331 /* Data structures */
332
333 struct bna_reg_offset {
334 u32 fn_int_status;
335 u32 fn_int_mask;
336 };
337
338 struct bna_bit_defn {
339 u32 mbox_status_bits;
340 u32 mbox_mask_bits;
341 u32 error_status_bits;
342 u32 error_mask_bits;
343 u32 halt_status_bits;
344 u32 halt_mask_bits;
345 };
346
347 struct bna_reg {
348 void __iomem *fn_int_status;
349 void __iomem *fn_int_mask;
350 };
351
352 /* TxQ Vector (a.k.a. Tx-Buffer Descriptor) */
353 struct bna_dma_addr {
354 u32 msb;
355 u32 lsb;
356 };
357
358 struct bna_txq_wi_vector {
359 u16 reserved;
360 u16 length; /* Only 14 LSB are valid */
361 struct bna_dma_addr host_addr; /* Tx-Buf DMA addr */
362 };
363
364 /* TxQ Entry Structure
365 *
366 * BEWARE: Load values into this structure with correct endianness.
367 */
368 struct bna_txq_entry {
369 union {
370 struct {
371 u8 reserved;
372 u8 num_vectors; /* number of vectors present */
373 u16 opcode; /* Either */
374 /* BNA_TXQ_WI_SEND or */
375 /* BNA_TXQ_WI_SEND_LSO */
376 u16 flags; /* OR of all the flags */
377 u16 l4_hdr_size_n_offset;
378 u16 vlan_tag;
379 u16 lso_mss; /* Only 14 LSB are valid */
380 u32 frame_length; /* Only 24 LSB are valid */
381 } wi;
382
383 struct {
384 u16 reserved;
385 u16 opcode; /* Must be */
386 /* BNA_TXQ_WI_EXTENSION */
387 u32 reserved2[3]; /* Place holder for */
388 /* removed vector (12 bytes) */
389 } wi_ext;
390 } hdr;
391 struct bna_txq_wi_vector vector[4];
392 };
393
394 /* RxQ Entry Structure */
395 struct bna_rxq_entry { /* Rx-Buffer */
396 struct bna_dma_addr host_addr; /* Rx-Buffer DMA address */
397 };
398
399 /* CQ Entry Structure */
400 struct bna_cq_entry {
401 u32 flags;
402 u16 vlan_tag;
403 u16 length;
404 u32 rss_hash;
405 u8 valid;
406 u8 reserved1;
407 u8 reserved2;
408 u8 rxq_id;
409 };
410
411 #endif /* __BNA_HW_DEFS_H__ */
This page took 0.051072 seconds and 5 git commands to generate.