Merge remote-tracking branches 'regulator/topic/load', 'regulator/topic/max77802...
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for QLogic BR-series Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2014 Brocade Communications Systems, Inc.
15 * Copyright (c) 2014-2015 QLogic Corporation
16 * All rights reserved
17 * www.qlogic.com
18 */
19 #include <linux/bitops.h>
20 #include <linux/netdevice.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/in.h>
24 #include <linux/ethtool.h>
25 #include <linux/if_vlan.h>
26 #include <linux/if_ether.h>
27 #include <linux/ip.h>
28 #include <linux/prefetch.h>
29 #include <linux/module.h>
30
31 #include "bnad.h"
32 #include "bna.h"
33 #include "cna.h"
34
35 static DEFINE_MUTEX(bnad_fwimg_mutex);
36
37 /*
38 * Module params
39 */
40 static uint bnad_msix_disable;
41 module_param(bnad_msix_disable, uint, 0444);
42 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
43
44 static uint bnad_ioc_auto_recover = 1;
45 module_param(bnad_ioc_auto_recover, uint, 0444);
46 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
47
48 static uint bna_debugfs_enable = 1;
49 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
50 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
51 " Range[false:0|true:1]");
52
53 /*
54 * Global variables
55 */
56 static u32 bnad_rxqs_per_cq = 2;
57 static u32 bna_id;
58 static struct mutex bnad_list_mutex;
59 static LIST_HEAD(bnad_list);
60 static const u8 bnad_bcast_addr[] __aligned(2) =
61 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
62
63 /*
64 * Local MACROS
65 */
66 #define BNAD_GET_MBOX_IRQ(_bnad) \
67 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
68 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
69 ((_bnad)->pcidev->irq))
70
71 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
72 do { \
73 (_res_info)->res_type = BNA_RES_T_MEM; \
74 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
75 (_res_info)->res_u.mem_info.num = (_num); \
76 (_res_info)->res_u.mem_info.len = (_size); \
77 } while (0)
78
79 static void
80 bnad_add_to_list(struct bnad *bnad)
81 {
82 mutex_lock(&bnad_list_mutex);
83 list_add_tail(&bnad->list_entry, &bnad_list);
84 bnad->id = bna_id++;
85 mutex_unlock(&bnad_list_mutex);
86 }
87
88 static void
89 bnad_remove_from_list(struct bnad *bnad)
90 {
91 mutex_lock(&bnad_list_mutex);
92 list_del(&bnad->list_entry);
93 mutex_unlock(&bnad_list_mutex);
94 }
95
96 /*
97 * Reinitialize completions in CQ, once Rx is taken down
98 */
99 static void
100 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
101 {
102 struct bna_cq_entry *cmpl;
103 int i;
104
105 for (i = 0; i < ccb->q_depth; i++) {
106 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
107 cmpl->valid = 0;
108 }
109 }
110
111 /* Tx Datapath functions */
112
113
114 /* Caller should ensure that the entry at unmap_q[index] is valid */
115 static u32
116 bnad_tx_buff_unmap(struct bnad *bnad,
117 struct bnad_tx_unmap *unmap_q,
118 u32 q_depth, u32 index)
119 {
120 struct bnad_tx_unmap *unmap;
121 struct sk_buff *skb;
122 int vector, nvecs;
123
124 unmap = &unmap_q[index];
125 nvecs = unmap->nvecs;
126
127 skb = unmap->skb;
128 unmap->skb = NULL;
129 unmap->nvecs = 0;
130 dma_unmap_single(&bnad->pcidev->dev,
131 dma_unmap_addr(&unmap->vectors[0], dma_addr),
132 skb_headlen(skb), DMA_TO_DEVICE);
133 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
134 nvecs--;
135
136 vector = 0;
137 while (nvecs) {
138 vector++;
139 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
140 vector = 0;
141 BNA_QE_INDX_INC(index, q_depth);
142 unmap = &unmap_q[index];
143 }
144
145 dma_unmap_page(&bnad->pcidev->dev,
146 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
147 dma_unmap_len(&unmap->vectors[vector], dma_len),
148 DMA_TO_DEVICE);
149 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
150 nvecs--;
151 }
152
153 BNA_QE_INDX_INC(index, q_depth);
154
155 return index;
156 }
157
158 /*
159 * Frees all pending Tx Bufs
160 * At this point no activity is expected on the Q,
161 * so DMA unmap & freeing is fine.
162 */
163 static void
164 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
165 {
166 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
167 struct sk_buff *skb;
168 int i;
169
170 for (i = 0; i < tcb->q_depth; i++) {
171 skb = unmap_q[i].skb;
172 if (!skb)
173 continue;
174 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
175
176 dev_kfree_skb_any(skb);
177 }
178 }
179
180 /*
181 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
182 * Can be called in a) Interrupt context
183 * b) Sending context
184 */
185 static u32
186 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
187 {
188 u32 sent_packets = 0, sent_bytes = 0;
189 u32 wis, unmap_wis, hw_cons, cons, q_depth;
190 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
191 struct bnad_tx_unmap *unmap;
192 struct sk_buff *skb;
193
194 /* Just return if TX is stopped */
195 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
196 return 0;
197
198 hw_cons = *(tcb->hw_consumer_index);
199 cons = tcb->consumer_index;
200 q_depth = tcb->q_depth;
201
202 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
203 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
204
205 while (wis) {
206 unmap = &unmap_q[cons];
207
208 skb = unmap->skb;
209
210 sent_packets++;
211 sent_bytes += skb->len;
212
213 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
214 wis -= unmap_wis;
215
216 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
217 dev_kfree_skb_any(skb);
218 }
219
220 /* Update consumer pointers. */
221 tcb->consumer_index = hw_cons;
222
223 tcb->txq->tx_packets += sent_packets;
224 tcb->txq->tx_bytes += sent_bytes;
225
226 return sent_packets;
227 }
228
229 static u32
230 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
231 {
232 struct net_device *netdev = bnad->netdev;
233 u32 sent = 0;
234
235 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
236 return 0;
237
238 sent = bnad_txcmpl_process(bnad, tcb);
239 if (sent) {
240 if (netif_queue_stopped(netdev) &&
241 netif_carrier_ok(netdev) &&
242 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
243 BNAD_NETIF_WAKE_THRESHOLD) {
244 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
245 netif_wake_queue(netdev);
246 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
247 }
248 }
249 }
250
251 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
252 bna_ib_ack(tcb->i_dbell, sent);
253
254 smp_mb__before_atomic();
255 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
256
257 return sent;
258 }
259
260 /* MSIX Tx Completion Handler */
261 static irqreturn_t
262 bnad_msix_tx(int irq, void *data)
263 {
264 struct bna_tcb *tcb = (struct bna_tcb *)data;
265 struct bnad *bnad = tcb->bnad;
266
267 bnad_tx_complete(bnad, tcb);
268
269 return IRQ_HANDLED;
270 }
271
272 static inline void
273 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
274 {
275 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
276
277 unmap_q->reuse_pi = -1;
278 unmap_q->alloc_order = -1;
279 unmap_q->map_size = 0;
280 unmap_q->type = BNAD_RXBUF_NONE;
281 }
282
283 /* Default is page-based allocation. Multi-buffer support - TBD */
284 static int
285 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
286 {
287 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
288 int order;
289
290 bnad_rxq_alloc_uninit(bnad, rcb);
291
292 order = get_order(rcb->rxq->buffer_size);
293
294 unmap_q->type = BNAD_RXBUF_PAGE;
295
296 if (bna_is_small_rxq(rcb->id)) {
297 unmap_q->alloc_order = 0;
298 unmap_q->map_size = rcb->rxq->buffer_size;
299 } else {
300 if (rcb->rxq->multi_buffer) {
301 unmap_q->alloc_order = 0;
302 unmap_q->map_size = rcb->rxq->buffer_size;
303 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
304 } else {
305 unmap_q->alloc_order = order;
306 unmap_q->map_size =
307 (rcb->rxq->buffer_size > 2048) ?
308 PAGE_SIZE << order : 2048;
309 }
310 }
311
312 BUG_ON((PAGE_SIZE << order) % unmap_q->map_size);
313
314 return 0;
315 }
316
317 static inline void
318 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
319 {
320 if (!unmap->page)
321 return;
322
323 dma_unmap_page(&bnad->pcidev->dev,
324 dma_unmap_addr(&unmap->vector, dma_addr),
325 unmap->vector.len, DMA_FROM_DEVICE);
326 put_page(unmap->page);
327 unmap->page = NULL;
328 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
329 unmap->vector.len = 0;
330 }
331
332 static inline void
333 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
334 {
335 if (!unmap->skb)
336 return;
337
338 dma_unmap_single(&bnad->pcidev->dev,
339 dma_unmap_addr(&unmap->vector, dma_addr),
340 unmap->vector.len, DMA_FROM_DEVICE);
341 dev_kfree_skb_any(unmap->skb);
342 unmap->skb = NULL;
343 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
344 unmap->vector.len = 0;
345 }
346
347 static void
348 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
349 {
350 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
351 int i;
352
353 for (i = 0; i < rcb->q_depth; i++) {
354 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
355
356 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
357 bnad_rxq_cleanup_skb(bnad, unmap);
358 else
359 bnad_rxq_cleanup_page(bnad, unmap);
360 }
361 bnad_rxq_alloc_uninit(bnad, rcb);
362 }
363
364 static u32
365 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
366 {
367 u32 alloced, prod, q_depth;
368 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
369 struct bnad_rx_unmap *unmap, *prev;
370 struct bna_rxq_entry *rxent;
371 struct page *page;
372 u32 page_offset, alloc_size;
373 dma_addr_t dma_addr;
374
375 prod = rcb->producer_index;
376 q_depth = rcb->q_depth;
377
378 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
379 alloced = 0;
380
381 while (nalloc--) {
382 unmap = &unmap_q->unmap[prod];
383
384 if (unmap_q->reuse_pi < 0) {
385 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
386 unmap_q->alloc_order);
387 page_offset = 0;
388 } else {
389 prev = &unmap_q->unmap[unmap_q->reuse_pi];
390 page = prev->page;
391 page_offset = prev->page_offset + unmap_q->map_size;
392 get_page(page);
393 }
394
395 if (unlikely(!page)) {
396 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
397 rcb->rxq->rxbuf_alloc_failed++;
398 goto finishing;
399 }
400
401 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
402 unmap_q->map_size, DMA_FROM_DEVICE);
403 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
404 put_page(page);
405 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
406 rcb->rxq->rxbuf_map_failed++;
407 goto finishing;
408 }
409
410 unmap->page = page;
411 unmap->page_offset = page_offset;
412 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
413 unmap->vector.len = unmap_q->map_size;
414 page_offset += unmap_q->map_size;
415
416 if (page_offset < alloc_size)
417 unmap_q->reuse_pi = prod;
418 else
419 unmap_q->reuse_pi = -1;
420
421 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
422 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
423 BNA_QE_INDX_INC(prod, q_depth);
424 alloced++;
425 }
426
427 finishing:
428 if (likely(alloced)) {
429 rcb->producer_index = prod;
430 smp_mb();
431 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
432 bna_rxq_prod_indx_doorbell(rcb);
433 }
434
435 return alloced;
436 }
437
438 static u32
439 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
440 {
441 u32 alloced, prod, q_depth, buff_sz;
442 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
443 struct bnad_rx_unmap *unmap;
444 struct bna_rxq_entry *rxent;
445 struct sk_buff *skb;
446 dma_addr_t dma_addr;
447
448 buff_sz = rcb->rxq->buffer_size;
449 prod = rcb->producer_index;
450 q_depth = rcb->q_depth;
451
452 alloced = 0;
453 while (nalloc--) {
454 unmap = &unmap_q->unmap[prod];
455
456 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
457
458 if (unlikely(!skb)) {
459 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
460 rcb->rxq->rxbuf_alloc_failed++;
461 goto finishing;
462 }
463
464 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
465 buff_sz, DMA_FROM_DEVICE);
466 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
467 dev_kfree_skb_any(skb);
468 BNAD_UPDATE_CTR(bnad, rxbuf_map_failed);
469 rcb->rxq->rxbuf_map_failed++;
470 goto finishing;
471 }
472
473 unmap->skb = skb;
474 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
475 unmap->vector.len = buff_sz;
476
477 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
478 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
479 BNA_QE_INDX_INC(prod, q_depth);
480 alloced++;
481 }
482
483 finishing:
484 if (likely(alloced)) {
485 rcb->producer_index = prod;
486 smp_mb();
487 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
488 bna_rxq_prod_indx_doorbell(rcb);
489 }
490
491 return alloced;
492 }
493
494 static inline void
495 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
496 {
497 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
498 u32 to_alloc;
499
500 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
501 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
502 return;
503
504 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
505 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
506 else
507 bnad_rxq_refill_page(bnad, rcb, to_alloc);
508 }
509
510 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
511 BNA_CQ_EF_IPV6 | \
512 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
513 BNA_CQ_EF_L4_CKSUM_OK)
514
515 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
516 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
517 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
518 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
519 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
520 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
521 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
522 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
523
524 static void
525 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
526 u32 sop_ci, u32 nvecs)
527 {
528 struct bnad_rx_unmap_q *unmap_q;
529 struct bnad_rx_unmap *unmap;
530 u32 ci, vec;
531
532 unmap_q = rcb->unmap_q;
533 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
534 unmap = &unmap_q->unmap[ci];
535 BNA_QE_INDX_INC(ci, rcb->q_depth);
536
537 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
538 bnad_rxq_cleanup_skb(bnad, unmap);
539 else
540 bnad_rxq_cleanup_page(bnad, unmap);
541 }
542 }
543
544 static void
545 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
546 u32 sop_ci, u32 nvecs, u32 last_fraglen)
547 {
548 struct bnad *bnad;
549 u32 ci, vec, len, totlen = 0;
550 struct bnad_rx_unmap_q *unmap_q;
551 struct bnad_rx_unmap *unmap;
552
553 unmap_q = rcb->unmap_q;
554 bnad = rcb->bnad;
555
556 /* prefetch header */
557 prefetch(page_address(unmap_q->unmap[sop_ci].page) +
558 unmap_q->unmap[sop_ci].page_offset);
559
560 for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
561 unmap = &unmap_q->unmap[ci];
562 BNA_QE_INDX_INC(ci, rcb->q_depth);
563
564 dma_unmap_page(&bnad->pcidev->dev,
565 dma_unmap_addr(&unmap->vector, dma_addr),
566 unmap->vector.len, DMA_FROM_DEVICE);
567
568 len = (vec == nvecs) ?
569 last_fraglen : unmap->vector.len;
570 skb->truesize += unmap->vector.len;
571 totlen += len;
572
573 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
574 unmap->page, unmap->page_offset, len);
575
576 unmap->page = NULL;
577 unmap->vector.len = 0;
578 }
579
580 skb->len += totlen;
581 skb->data_len += totlen;
582 }
583
584 static inline void
585 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
586 struct bnad_rx_unmap *unmap, u32 len)
587 {
588 prefetch(skb->data);
589
590 dma_unmap_single(&bnad->pcidev->dev,
591 dma_unmap_addr(&unmap->vector, dma_addr),
592 unmap->vector.len, DMA_FROM_DEVICE);
593
594 skb_put(skb, len);
595 skb->protocol = eth_type_trans(skb, bnad->netdev);
596
597 unmap->skb = NULL;
598 unmap->vector.len = 0;
599 }
600
601 static u32
602 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
603 {
604 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
605 struct bna_rcb *rcb = NULL;
606 struct bnad_rx_unmap_q *unmap_q;
607 struct bnad_rx_unmap *unmap = NULL;
608 struct sk_buff *skb = NULL;
609 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
610 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
611 u32 packets = 0, len = 0, totlen = 0;
612 u32 pi, vec, sop_ci = 0, nvecs = 0;
613 u32 flags, masked_flags;
614
615 prefetch(bnad->netdev);
616
617 cq = ccb->sw_q;
618
619 while (packets < budget) {
620 cmpl = &cq[ccb->producer_index];
621 if (!cmpl->valid)
622 break;
623 /* The 'valid' field is set by the adapter, only after writing
624 * the other fields of completion entry. Hence, do not load
625 * other fields of completion entry *before* the 'valid' is
626 * loaded. Adding the rmb() here prevents the compiler and/or
627 * CPU from reordering the reads which would potentially result
628 * in reading stale values in completion entry.
629 */
630 rmb();
631
632 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
633
634 if (bna_is_small_rxq(cmpl->rxq_id))
635 rcb = ccb->rcb[1];
636 else
637 rcb = ccb->rcb[0];
638
639 unmap_q = rcb->unmap_q;
640
641 /* start of packet ci */
642 sop_ci = rcb->consumer_index;
643
644 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
645 unmap = &unmap_q->unmap[sop_ci];
646 skb = unmap->skb;
647 } else {
648 skb = napi_get_frags(&rx_ctrl->napi);
649 if (unlikely(!skb))
650 break;
651 }
652 prefetch(skb);
653
654 flags = ntohl(cmpl->flags);
655 len = ntohs(cmpl->length);
656 totlen = len;
657 nvecs = 1;
658
659 /* Check all the completions for this frame.
660 * busy-wait doesn't help much, break here.
661 */
662 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
663 (flags & BNA_CQ_EF_EOP) == 0) {
664 pi = ccb->producer_index;
665 do {
666 BNA_QE_INDX_INC(pi, ccb->q_depth);
667 next_cmpl = &cq[pi];
668
669 if (!next_cmpl->valid)
670 break;
671 /* The 'valid' field is set by the adapter, only
672 * after writing the other fields of completion
673 * entry. Hence, do not load other fields of
674 * completion entry *before* the 'valid' is
675 * loaded. Adding the rmb() here prevents the
676 * compiler and/or CPU from reordering the reads
677 * which would potentially result in reading
678 * stale values in completion entry.
679 */
680 rmb();
681
682 len = ntohs(next_cmpl->length);
683 flags = ntohl(next_cmpl->flags);
684
685 nvecs++;
686 totlen += len;
687 } while ((flags & BNA_CQ_EF_EOP) == 0);
688
689 if (!next_cmpl->valid)
690 break;
691 }
692 packets++;
693
694 /* TODO: BNA_CQ_EF_LOCAL ? */
695 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
696 BNA_CQ_EF_FCS_ERROR |
697 BNA_CQ_EF_TOO_LONG))) {
698 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
699 rcb->rxq->rx_packets_with_error++;
700
701 goto next;
702 }
703
704 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
705 bnad_cq_setup_skb(bnad, skb, unmap, len);
706 else
707 bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
708
709 rcb->rxq->rx_packets++;
710 rcb->rxq->rx_bytes += totlen;
711 ccb->bytes_per_intr += totlen;
712
713 masked_flags = flags & flags_cksum_prot_mask;
714
715 if (likely
716 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
717 ((masked_flags == flags_tcp4) ||
718 (masked_flags == flags_udp4) ||
719 (masked_flags == flags_tcp6) ||
720 (masked_flags == flags_udp6))))
721 skb->ip_summed = CHECKSUM_UNNECESSARY;
722 else
723 skb_checksum_none_assert(skb);
724
725 if ((flags & BNA_CQ_EF_VLAN) &&
726 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
727 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
728
729 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
730 netif_receive_skb(skb);
731 else
732 napi_gro_frags(&rx_ctrl->napi);
733
734 next:
735 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
736 for (vec = 0; vec < nvecs; vec++) {
737 cmpl = &cq[ccb->producer_index];
738 cmpl->valid = 0;
739 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
740 }
741 }
742
743 napi_gro_flush(&rx_ctrl->napi, false);
744 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
745 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
746
747 bnad_rxq_post(bnad, ccb->rcb[0]);
748 if (ccb->rcb[1])
749 bnad_rxq_post(bnad, ccb->rcb[1]);
750
751 return packets;
752 }
753
754 static void
755 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
756 {
757 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
758 struct napi_struct *napi = &rx_ctrl->napi;
759
760 if (likely(napi_schedule_prep(napi))) {
761 __napi_schedule(napi);
762 rx_ctrl->rx_schedule++;
763 }
764 }
765
766 /* MSIX Rx Path Handler */
767 static irqreturn_t
768 bnad_msix_rx(int irq, void *data)
769 {
770 struct bna_ccb *ccb = (struct bna_ccb *)data;
771
772 if (ccb) {
773 ((struct bnad_rx_ctrl *)ccb->ctrl)->rx_intr_ctr++;
774 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
775 }
776
777 return IRQ_HANDLED;
778 }
779
780 /* Interrupt handlers */
781
782 /* Mbox Interrupt Handlers */
783 static irqreturn_t
784 bnad_msix_mbox_handler(int irq, void *data)
785 {
786 u32 intr_status;
787 unsigned long flags;
788 struct bnad *bnad = (struct bnad *)data;
789
790 spin_lock_irqsave(&bnad->bna_lock, flags);
791 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
792 spin_unlock_irqrestore(&bnad->bna_lock, flags);
793 return IRQ_HANDLED;
794 }
795
796 bna_intr_status_get(&bnad->bna, intr_status);
797
798 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
799 bna_mbox_handler(&bnad->bna, intr_status);
800
801 spin_unlock_irqrestore(&bnad->bna_lock, flags);
802
803 return IRQ_HANDLED;
804 }
805
806 static irqreturn_t
807 bnad_isr(int irq, void *data)
808 {
809 int i, j;
810 u32 intr_status;
811 unsigned long flags;
812 struct bnad *bnad = (struct bnad *)data;
813 struct bnad_rx_info *rx_info;
814 struct bnad_rx_ctrl *rx_ctrl;
815 struct bna_tcb *tcb = NULL;
816
817 spin_lock_irqsave(&bnad->bna_lock, flags);
818 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
819 spin_unlock_irqrestore(&bnad->bna_lock, flags);
820 return IRQ_NONE;
821 }
822
823 bna_intr_status_get(&bnad->bna, intr_status);
824
825 if (unlikely(!intr_status)) {
826 spin_unlock_irqrestore(&bnad->bna_lock, flags);
827 return IRQ_NONE;
828 }
829
830 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
831 bna_mbox_handler(&bnad->bna, intr_status);
832
833 spin_unlock_irqrestore(&bnad->bna_lock, flags);
834
835 if (!BNA_IS_INTX_DATA_INTR(intr_status))
836 return IRQ_HANDLED;
837
838 /* Process data interrupts */
839 /* Tx processing */
840 for (i = 0; i < bnad->num_tx; i++) {
841 for (j = 0; j < bnad->num_txq_per_tx; j++) {
842 tcb = bnad->tx_info[i].tcb[j];
843 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
844 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
845 }
846 }
847 /* Rx processing */
848 for (i = 0; i < bnad->num_rx; i++) {
849 rx_info = &bnad->rx_info[i];
850 if (!rx_info->rx)
851 continue;
852 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
853 rx_ctrl = &rx_info->rx_ctrl[j];
854 if (rx_ctrl->ccb)
855 bnad_netif_rx_schedule_poll(bnad,
856 rx_ctrl->ccb);
857 }
858 }
859 return IRQ_HANDLED;
860 }
861
862 /*
863 * Called in interrupt / callback context
864 * with bna_lock held, so cfg_flags access is OK
865 */
866 static void
867 bnad_enable_mbox_irq(struct bnad *bnad)
868 {
869 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
870
871 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
872 }
873
874 /*
875 * Called with bnad->bna_lock held b'cos of
876 * bnad->cfg_flags access.
877 */
878 static void
879 bnad_disable_mbox_irq(struct bnad *bnad)
880 {
881 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
882
883 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
884 }
885
886 static void
887 bnad_set_netdev_perm_addr(struct bnad *bnad)
888 {
889 struct net_device *netdev = bnad->netdev;
890
891 ether_addr_copy(netdev->perm_addr, bnad->perm_addr);
892 if (is_zero_ether_addr(netdev->dev_addr))
893 ether_addr_copy(netdev->dev_addr, bnad->perm_addr);
894 }
895
896 /* Control Path Handlers */
897
898 /* Callbacks */
899 void
900 bnad_cb_mbox_intr_enable(struct bnad *bnad)
901 {
902 bnad_enable_mbox_irq(bnad);
903 }
904
905 void
906 bnad_cb_mbox_intr_disable(struct bnad *bnad)
907 {
908 bnad_disable_mbox_irq(bnad);
909 }
910
911 void
912 bnad_cb_ioceth_ready(struct bnad *bnad)
913 {
914 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
915 complete(&bnad->bnad_completions.ioc_comp);
916 }
917
918 void
919 bnad_cb_ioceth_failed(struct bnad *bnad)
920 {
921 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
922 complete(&bnad->bnad_completions.ioc_comp);
923 }
924
925 void
926 bnad_cb_ioceth_disabled(struct bnad *bnad)
927 {
928 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
929 complete(&bnad->bnad_completions.ioc_comp);
930 }
931
932 static void
933 bnad_cb_enet_disabled(void *arg)
934 {
935 struct bnad *bnad = (struct bnad *)arg;
936
937 netif_carrier_off(bnad->netdev);
938 complete(&bnad->bnad_completions.enet_comp);
939 }
940
941 void
942 bnad_cb_ethport_link_status(struct bnad *bnad,
943 enum bna_link_status link_status)
944 {
945 bool link_up = false;
946
947 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
948
949 if (link_status == BNA_CEE_UP) {
950 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
951 BNAD_UPDATE_CTR(bnad, cee_toggle);
952 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
953 } else {
954 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
955 BNAD_UPDATE_CTR(bnad, cee_toggle);
956 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
957 }
958
959 if (link_up) {
960 if (!netif_carrier_ok(bnad->netdev)) {
961 uint tx_id, tcb_id;
962 netdev_info(bnad->netdev, "link up\n");
963 netif_carrier_on(bnad->netdev);
964 BNAD_UPDATE_CTR(bnad, link_toggle);
965 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
966 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
967 tcb_id++) {
968 struct bna_tcb *tcb =
969 bnad->tx_info[tx_id].tcb[tcb_id];
970 u32 txq_id;
971 if (!tcb)
972 continue;
973
974 txq_id = tcb->id;
975
976 if (test_bit(BNAD_TXQ_TX_STARTED,
977 &tcb->flags)) {
978 /*
979 * Force an immediate
980 * Transmit Schedule */
981 netif_wake_subqueue(
982 bnad->netdev,
983 txq_id);
984 BNAD_UPDATE_CTR(bnad,
985 netif_queue_wakeup);
986 } else {
987 netif_stop_subqueue(
988 bnad->netdev,
989 txq_id);
990 BNAD_UPDATE_CTR(bnad,
991 netif_queue_stop);
992 }
993 }
994 }
995 }
996 } else {
997 if (netif_carrier_ok(bnad->netdev)) {
998 netdev_info(bnad->netdev, "link down\n");
999 netif_carrier_off(bnad->netdev);
1000 BNAD_UPDATE_CTR(bnad, link_toggle);
1001 }
1002 }
1003 }
1004
1005 static void
1006 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
1007 {
1008 struct bnad *bnad = (struct bnad *)arg;
1009
1010 complete(&bnad->bnad_completions.tx_comp);
1011 }
1012
1013 static void
1014 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1015 {
1016 struct bnad_tx_info *tx_info =
1017 (struct bnad_tx_info *)tcb->txq->tx->priv;
1018
1019 tcb->priv = tcb;
1020 tx_info->tcb[tcb->id] = tcb;
1021 }
1022
1023 static void
1024 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1025 {
1026 struct bnad_tx_info *tx_info =
1027 (struct bnad_tx_info *)tcb->txq->tx->priv;
1028
1029 tx_info->tcb[tcb->id] = NULL;
1030 tcb->priv = NULL;
1031 }
1032
1033 static void
1034 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1035 {
1036 struct bnad_rx_info *rx_info =
1037 (struct bnad_rx_info *)ccb->cq->rx->priv;
1038
1039 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1040 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1041 }
1042
1043 static void
1044 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1045 {
1046 struct bnad_rx_info *rx_info =
1047 (struct bnad_rx_info *)ccb->cq->rx->priv;
1048
1049 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1050 }
1051
1052 static void
1053 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1054 {
1055 struct bnad_tx_info *tx_info =
1056 (struct bnad_tx_info *)tx->priv;
1057 struct bna_tcb *tcb;
1058 u32 txq_id;
1059 int i;
1060
1061 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1062 tcb = tx_info->tcb[i];
1063 if (!tcb)
1064 continue;
1065 txq_id = tcb->id;
1066 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1067 netif_stop_subqueue(bnad->netdev, txq_id);
1068 }
1069 }
1070
1071 static void
1072 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1073 {
1074 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1075 struct bna_tcb *tcb;
1076 u32 txq_id;
1077 int i;
1078
1079 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1080 tcb = tx_info->tcb[i];
1081 if (!tcb)
1082 continue;
1083 txq_id = tcb->id;
1084
1085 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1086 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1087 BUG_ON(*(tcb->hw_consumer_index) != 0);
1088
1089 if (netif_carrier_ok(bnad->netdev)) {
1090 netif_wake_subqueue(bnad->netdev, txq_id);
1091 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1092 }
1093 }
1094
1095 /*
1096 * Workaround for first ioceth enable failure & we
1097 * get a 0 MAC address. We try to get the MAC address
1098 * again here.
1099 */
1100 if (is_zero_ether_addr(bnad->perm_addr)) {
1101 bna_enet_perm_mac_get(&bnad->bna.enet, bnad->perm_addr);
1102 bnad_set_netdev_perm_addr(bnad);
1103 }
1104 }
1105
1106 /*
1107 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1108 */
1109 static void
1110 bnad_tx_cleanup(struct delayed_work *work)
1111 {
1112 struct bnad_tx_info *tx_info =
1113 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1114 struct bnad *bnad = NULL;
1115 struct bna_tcb *tcb;
1116 unsigned long flags;
1117 u32 i, pending = 0;
1118
1119 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1120 tcb = tx_info->tcb[i];
1121 if (!tcb)
1122 continue;
1123
1124 bnad = tcb->bnad;
1125
1126 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1127 pending++;
1128 continue;
1129 }
1130
1131 bnad_txq_cleanup(bnad, tcb);
1132
1133 smp_mb__before_atomic();
1134 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1135 }
1136
1137 if (pending) {
1138 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1139 msecs_to_jiffies(1));
1140 return;
1141 }
1142
1143 spin_lock_irqsave(&bnad->bna_lock, flags);
1144 bna_tx_cleanup_complete(tx_info->tx);
1145 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1146 }
1147
1148 static void
1149 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1150 {
1151 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1152 struct bna_tcb *tcb;
1153 int i;
1154
1155 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1156 tcb = tx_info->tcb[i];
1157 if (!tcb)
1158 continue;
1159 }
1160
1161 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1162 }
1163
1164 static void
1165 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1166 {
1167 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1168 struct bna_ccb *ccb;
1169 struct bnad_rx_ctrl *rx_ctrl;
1170 int i;
1171
1172 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1173 rx_ctrl = &rx_info->rx_ctrl[i];
1174 ccb = rx_ctrl->ccb;
1175 if (!ccb)
1176 continue;
1177
1178 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1179
1180 if (ccb->rcb[1])
1181 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1182 }
1183 }
1184
1185 /*
1186 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1187 */
1188 static void
1189 bnad_rx_cleanup(void *work)
1190 {
1191 struct bnad_rx_info *rx_info =
1192 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1193 struct bnad_rx_ctrl *rx_ctrl;
1194 struct bnad *bnad = NULL;
1195 unsigned long flags;
1196 u32 i;
1197
1198 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1199 rx_ctrl = &rx_info->rx_ctrl[i];
1200
1201 if (!rx_ctrl->ccb)
1202 continue;
1203
1204 bnad = rx_ctrl->ccb->bnad;
1205
1206 /*
1207 * Wait till the poll handler has exited
1208 * and nothing can be scheduled anymore
1209 */
1210 napi_disable(&rx_ctrl->napi);
1211
1212 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1213 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1214 if (rx_ctrl->ccb->rcb[1])
1215 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1216 }
1217
1218 spin_lock_irqsave(&bnad->bna_lock, flags);
1219 bna_rx_cleanup_complete(rx_info->rx);
1220 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1221 }
1222
1223 static void
1224 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1225 {
1226 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1227 struct bna_ccb *ccb;
1228 struct bnad_rx_ctrl *rx_ctrl;
1229 int i;
1230
1231 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1232 rx_ctrl = &rx_info->rx_ctrl[i];
1233 ccb = rx_ctrl->ccb;
1234 if (!ccb)
1235 continue;
1236
1237 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1238
1239 if (ccb->rcb[1])
1240 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1241 }
1242
1243 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1244 }
1245
1246 static void
1247 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1248 {
1249 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1250 struct bna_ccb *ccb;
1251 struct bna_rcb *rcb;
1252 struct bnad_rx_ctrl *rx_ctrl;
1253 int i, j;
1254
1255 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1256 rx_ctrl = &rx_info->rx_ctrl[i];
1257 ccb = rx_ctrl->ccb;
1258 if (!ccb)
1259 continue;
1260
1261 napi_enable(&rx_ctrl->napi);
1262
1263 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1264 rcb = ccb->rcb[j];
1265 if (!rcb)
1266 continue;
1267
1268 bnad_rxq_alloc_init(bnad, rcb);
1269 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1270 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1271 bnad_rxq_post(bnad, rcb);
1272 }
1273 }
1274 }
1275
1276 static void
1277 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1278 {
1279 struct bnad *bnad = (struct bnad *)arg;
1280
1281 complete(&bnad->bnad_completions.rx_comp);
1282 }
1283
1284 static void
1285 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1286 {
1287 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1288 complete(&bnad->bnad_completions.mcast_comp);
1289 }
1290
1291 void
1292 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1293 struct bna_stats *stats)
1294 {
1295 if (status == BNA_CB_SUCCESS)
1296 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1297
1298 if (!netif_running(bnad->netdev) ||
1299 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1300 return;
1301
1302 mod_timer(&bnad->stats_timer,
1303 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1304 }
1305
1306 static void
1307 bnad_cb_enet_mtu_set(struct bnad *bnad)
1308 {
1309 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1310 complete(&bnad->bnad_completions.mtu_comp);
1311 }
1312
1313 void
1314 bnad_cb_completion(void *arg, enum bfa_status status)
1315 {
1316 struct bnad_iocmd_comp *iocmd_comp =
1317 (struct bnad_iocmd_comp *)arg;
1318
1319 iocmd_comp->comp_status = (u32) status;
1320 complete(&iocmd_comp->comp);
1321 }
1322
1323 /* Resource allocation, free functions */
1324
1325 static void
1326 bnad_mem_free(struct bnad *bnad,
1327 struct bna_mem_info *mem_info)
1328 {
1329 int i;
1330 dma_addr_t dma_pa;
1331
1332 if (mem_info->mdl == NULL)
1333 return;
1334
1335 for (i = 0; i < mem_info->num; i++) {
1336 if (mem_info->mdl[i].kva != NULL) {
1337 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1338 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1339 dma_pa);
1340 dma_free_coherent(&bnad->pcidev->dev,
1341 mem_info->mdl[i].len,
1342 mem_info->mdl[i].kva, dma_pa);
1343 } else
1344 kfree(mem_info->mdl[i].kva);
1345 }
1346 }
1347 kfree(mem_info->mdl);
1348 mem_info->mdl = NULL;
1349 }
1350
1351 static int
1352 bnad_mem_alloc(struct bnad *bnad,
1353 struct bna_mem_info *mem_info)
1354 {
1355 int i;
1356 dma_addr_t dma_pa;
1357
1358 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1359 mem_info->mdl = NULL;
1360 return 0;
1361 }
1362
1363 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1364 GFP_KERNEL);
1365 if (mem_info->mdl == NULL)
1366 return -ENOMEM;
1367
1368 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1369 for (i = 0; i < mem_info->num; i++) {
1370 mem_info->mdl[i].len = mem_info->len;
1371 mem_info->mdl[i].kva =
1372 dma_alloc_coherent(&bnad->pcidev->dev,
1373 mem_info->len, &dma_pa,
1374 GFP_KERNEL);
1375 if (mem_info->mdl[i].kva == NULL)
1376 goto err_return;
1377
1378 BNA_SET_DMA_ADDR(dma_pa,
1379 &(mem_info->mdl[i].dma));
1380 }
1381 } else {
1382 for (i = 0; i < mem_info->num; i++) {
1383 mem_info->mdl[i].len = mem_info->len;
1384 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1385 GFP_KERNEL);
1386 if (mem_info->mdl[i].kva == NULL)
1387 goto err_return;
1388 }
1389 }
1390
1391 return 0;
1392
1393 err_return:
1394 bnad_mem_free(bnad, mem_info);
1395 return -ENOMEM;
1396 }
1397
1398 /* Free IRQ for Mailbox */
1399 static void
1400 bnad_mbox_irq_free(struct bnad *bnad)
1401 {
1402 int irq;
1403 unsigned long flags;
1404
1405 spin_lock_irqsave(&bnad->bna_lock, flags);
1406 bnad_disable_mbox_irq(bnad);
1407 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1408
1409 irq = BNAD_GET_MBOX_IRQ(bnad);
1410 free_irq(irq, bnad);
1411 }
1412
1413 /*
1414 * Allocates IRQ for Mailbox, but keep it disabled
1415 * This will be enabled once we get the mbox enable callback
1416 * from bna
1417 */
1418 static int
1419 bnad_mbox_irq_alloc(struct bnad *bnad)
1420 {
1421 int err = 0;
1422 unsigned long irq_flags, flags;
1423 u32 irq;
1424 irq_handler_t irq_handler;
1425
1426 spin_lock_irqsave(&bnad->bna_lock, flags);
1427 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1428 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1429 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1430 irq_flags = 0;
1431 } else {
1432 irq_handler = (irq_handler_t)bnad_isr;
1433 irq = bnad->pcidev->irq;
1434 irq_flags = IRQF_SHARED;
1435 }
1436
1437 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1438 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1439
1440 /*
1441 * Set the Mbox IRQ disable flag, so that the IRQ handler
1442 * called from request_irq() for SHARED IRQs do not execute
1443 */
1444 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1445
1446 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1447
1448 err = request_irq(irq, irq_handler, irq_flags,
1449 bnad->mbox_irq_name, bnad);
1450
1451 return err;
1452 }
1453
1454 static void
1455 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1456 {
1457 kfree(intr_info->idl);
1458 intr_info->idl = NULL;
1459 }
1460
1461 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1462 static int
1463 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1464 u32 txrx_id, struct bna_intr_info *intr_info)
1465 {
1466 int i, vector_start = 0;
1467 u32 cfg_flags;
1468 unsigned long flags;
1469
1470 spin_lock_irqsave(&bnad->bna_lock, flags);
1471 cfg_flags = bnad->cfg_flags;
1472 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1473
1474 if (cfg_flags & BNAD_CF_MSIX) {
1475 intr_info->intr_type = BNA_INTR_T_MSIX;
1476 intr_info->idl = kcalloc(intr_info->num,
1477 sizeof(struct bna_intr_descr),
1478 GFP_KERNEL);
1479 if (!intr_info->idl)
1480 return -ENOMEM;
1481
1482 switch (src) {
1483 case BNAD_INTR_TX:
1484 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1485 break;
1486
1487 case BNAD_INTR_RX:
1488 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1489 (bnad->num_tx * bnad->num_txq_per_tx) +
1490 txrx_id;
1491 break;
1492
1493 default:
1494 BUG();
1495 }
1496
1497 for (i = 0; i < intr_info->num; i++)
1498 intr_info->idl[i].vector = vector_start + i;
1499 } else {
1500 intr_info->intr_type = BNA_INTR_T_INTX;
1501 intr_info->num = 1;
1502 intr_info->idl = kcalloc(intr_info->num,
1503 sizeof(struct bna_intr_descr),
1504 GFP_KERNEL);
1505 if (!intr_info->idl)
1506 return -ENOMEM;
1507
1508 switch (src) {
1509 case BNAD_INTR_TX:
1510 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1511 break;
1512
1513 case BNAD_INTR_RX:
1514 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1515 break;
1516 }
1517 }
1518 return 0;
1519 }
1520
1521 /* NOTE: Should be called for MSIX only
1522 * Unregisters Tx MSIX vector(s) from the kernel
1523 */
1524 static void
1525 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1526 int num_txqs)
1527 {
1528 int i;
1529 int vector_num;
1530
1531 for (i = 0; i < num_txqs; i++) {
1532 if (tx_info->tcb[i] == NULL)
1533 continue;
1534
1535 vector_num = tx_info->tcb[i]->intr_vector;
1536 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1537 }
1538 }
1539
1540 /* NOTE: Should be called for MSIX only
1541 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1542 */
1543 static int
1544 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1545 u32 tx_id, int num_txqs)
1546 {
1547 int i;
1548 int err;
1549 int vector_num;
1550
1551 for (i = 0; i < num_txqs; i++) {
1552 vector_num = tx_info->tcb[i]->intr_vector;
1553 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1554 tx_id + tx_info->tcb[i]->id);
1555 err = request_irq(bnad->msix_table[vector_num].vector,
1556 (irq_handler_t)bnad_msix_tx, 0,
1557 tx_info->tcb[i]->name,
1558 tx_info->tcb[i]);
1559 if (err)
1560 goto err_return;
1561 }
1562
1563 return 0;
1564
1565 err_return:
1566 if (i > 0)
1567 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1568 return -1;
1569 }
1570
1571 /* NOTE: Should be called for MSIX only
1572 * Unregisters Rx MSIX vector(s) from the kernel
1573 */
1574 static void
1575 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1576 int num_rxps)
1577 {
1578 int i;
1579 int vector_num;
1580
1581 for (i = 0; i < num_rxps; i++) {
1582 if (rx_info->rx_ctrl[i].ccb == NULL)
1583 continue;
1584
1585 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1586 free_irq(bnad->msix_table[vector_num].vector,
1587 rx_info->rx_ctrl[i].ccb);
1588 }
1589 }
1590
1591 /* NOTE: Should be called for MSIX only
1592 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1593 */
1594 static int
1595 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1596 u32 rx_id, int num_rxps)
1597 {
1598 int i;
1599 int err;
1600 int vector_num;
1601
1602 for (i = 0; i < num_rxps; i++) {
1603 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1604 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1605 bnad->netdev->name,
1606 rx_id + rx_info->rx_ctrl[i].ccb->id);
1607 err = request_irq(bnad->msix_table[vector_num].vector,
1608 (irq_handler_t)bnad_msix_rx, 0,
1609 rx_info->rx_ctrl[i].ccb->name,
1610 rx_info->rx_ctrl[i].ccb);
1611 if (err)
1612 goto err_return;
1613 }
1614
1615 return 0;
1616
1617 err_return:
1618 if (i > 0)
1619 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1620 return -1;
1621 }
1622
1623 /* Free Tx object Resources */
1624 static void
1625 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1626 {
1627 int i;
1628
1629 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1630 if (res_info[i].res_type == BNA_RES_T_MEM)
1631 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1632 else if (res_info[i].res_type == BNA_RES_T_INTR)
1633 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1634 }
1635 }
1636
1637 /* Allocates memory and interrupt resources for Tx object */
1638 static int
1639 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1640 u32 tx_id)
1641 {
1642 int i, err = 0;
1643
1644 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1645 if (res_info[i].res_type == BNA_RES_T_MEM)
1646 err = bnad_mem_alloc(bnad,
1647 &res_info[i].res_u.mem_info);
1648 else if (res_info[i].res_type == BNA_RES_T_INTR)
1649 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1650 &res_info[i].res_u.intr_info);
1651 if (err)
1652 goto err_return;
1653 }
1654 return 0;
1655
1656 err_return:
1657 bnad_tx_res_free(bnad, res_info);
1658 return err;
1659 }
1660
1661 /* Free Rx object Resources */
1662 static void
1663 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1664 {
1665 int i;
1666
1667 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1668 if (res_info[i].res_type == BNA_RES_T_MEM)
1669 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1670 else if (res_info[i].res_type == BNA_RES_T_INTR)
1671 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1672 }
1673 }
1674
1675 /* Allocates memory and interrupt resources for Rx object */
1676 static int
1677 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1678 uint rx_id)
1679 {
1680 int i, err = 0;
1681
1682 /* All memory needs to be allocated before setup_ccbs */
1683 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1684 if (res_info[i].res_type == BNA_RES_T_MEM)
1685 err = bnad_mem_alloc(bnad,
1686 &res_info[i].res_u.mem_info);
1687 else if (res_info[i].res_type == BNA_RES_T_INTR)
1688 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1689 &res_info[i].res_u.intr_info);
1690 if (err)
1691 goto err_return;
1692 }
1693 return 0;
1694
1695 err_return:
1696 bnad_rx_res_free(bnad, res_info);
1697 return err;
1698 }
1699
1700 /* Timer callbacks */
1701 /* a) IOC timer */
1702 static void
1703 bnad_ioc_timeout(unsigned long data)
1704 {
1705 struct bnad *bnad = (struct bnad *)data;
1706 unsigned long flags;
1707
1708 spin_lock_irqsave(&bnad->bna_lock, flags);
1709 bfa_nw_ioc_timeout(&bnad->bna.ioceth.ioc);
1710 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1711 }
1712
1713 static void
1714 bnad_ioc_hb_check(unsigned long data)
1715 {
1716 struct bnad *bnad = (struct bnad *)data;
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&bnad->bna_lock, flags);
1720 bfa_nw_ioc_hb_check(&bnad->bna.ioceth.ioc);
1721 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1722 }
1723
1724 static void
1725 bnad_iocpf_timeout(unsigned long data)
1726 {
1727 struct bnad *bnad = (struct bnad *)data;
1728 unsigned long flags;
1729
1730 spin_lock_irqsave(&bnad->bna_lock, flags);
1731 bfa_nw_iocpf_timeout(&bnad->bna.ioceth.ioc);
1732 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1733 }
1734
1735 static void
1736 bnad_iocpf_sem_timeout(unsigned long data)
1737 {
1738 struct bnad *bnad = (struct bnad *)data;
1739 unsigned long flags;
1740
1741 spin_lock_irqsave(&bnad->bna_lock, flags);
1742 bfa_nw_iocpf_sem_timeout(&bnad->bna.ioceth.ioc);
1743 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1744 }
1745
1746 /*
1747 * All timer routines use bnad->bna_lock to protect against
1748 * the following race, which may occur in case of no locking:
1749 * Time CPU m CPU n
1750 * 0 1 = test_bit
1751 * 1 clear_bit
1752 * 2 del_timer_sync
1753 * 3 mod_timer
1754 */
1755
1756 /* b) Dynamic Interrupt Moderation Timer */
1757 static void
1758 bnad_dim_timeout(unsigned long data)
1759 {
1760 struct bnad *bnad = (struct bnad *)data;
1761 struct bnad_rx_info *rx_info;
1762 struct bnad_rx_ctrl *rx_ctrl;
1763 int i, j;
1764 unsigned long flags;
1765
1766 if (!netif_carrier_ok(bnad->netdev))
1767 return;
1768
1769 spin_lock_irqsave(&bnad->bna_lock, flags);
1770 for (i = 0; i < bnad->num_rx; i++) {
1771 rx_info = &bnad->rx_info[i];
1772 if (!rx_info->rx)
1773 continue;
1774 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1775 rx_ctrl = &rx_info->rx_ctrl[j];
1776 if (!rx_ctrl->ccb)
1777 continue;
1778 bna_rx_dim_update(rx_ctrl->ccb);
1779 }
1780 }
1781
1782 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1783 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1784 mod_timer(&bnad->dim_timer,
1785 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1786 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1787 }
1788
1789 /* c) Statistics Timer */
1790 static void
1791 bnad_stats_timeout(unsigned long data)
1792 {
1793 struct bnad *bnad = (struct bnad *)data;
1794 unsigned long flags;
1795
1796 if (!netif_running(bnad->netdev) ||
1797 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1798 return;
1799
1800 spin_lock_irqsave(&bnad->bna_lock, flags);
1801 bna_hw_stats_get(&bnad->bna);
1802 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1803 }
1804
1805 /*
1806 * Set up timer for DIM
1807 * Called with bnad->bna_lock held
1808 */
1809 void
1810 bnad_dim_timer_start(struct bnad *bnad)
1811 {
1812 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1813 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1814 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1815 (unsigned long)bnad);
1816 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1817 mod_timer(&bnad->dim_timer,
1818 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1819 }
1820 }
1821
1822 /*
1823 * Set up timer for statistics
1824 * Called with mutex_lock(&bnad->conf_mutex) held
1825 */
1826 static void
1827 bnad_stats_timer_start(struct bnad *bnad)
1828 {
1829 unsigned long flags;
1830
1831 spin_lock_irqsave(&bnad->bna_lock, flags);
1832 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1833 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1834 (unsigned long)bnad);
1835 mod_timer(&bnad->stats_timer,
1836 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1837 }
1838 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1839 }
1840
1841 /*
1842 * Stops the stats timer
1843 * Called with mutex_lock(&bnad->conf_mutex) held
1844 */
1845 static void
1846 bnad_stats_timer_stop(struct bnad *bnad)
1847 {
1848 int to_del = 0;
1849 unsigned long flags;
1850
1851 spin_lock_irqsave(&bnad->bna_lock, flags);
1852 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1853 to_del = 1;
1854 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1855 if (to_del)
1856 del_timer_sync(&bnad->stats_timer);
1857 }
1858
1859 /* Utilities */
1860
1861 static void
1862 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1863 {
1864 int i = 1; /* Index 0 has broadcast address */
1865 struct netdev_hw_addr *mc_addr;
1866
1867 netdev_for_each_mc_addr(mc_addr, netdev) {
1868 ether_addr_copy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0]);
1869 i++;
1870 }
1871 }
1872
1873 static int
1874 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1875 {
1876 struct bnad_rx_ctrl *rx_ctrl =
1877 container_of(napi, struct bnad_rx_ctrl, napi);
1878 struct bnad *bnad = rx_ctrl->bnad;
1879 int rcvd = 0;
1880
1881 rx_ctrl->rx_poll_ctr++;
1882
1883 if (!netif_carrier_ok(bnad->netdev))
1884 goto poll_exit;
1885
1886 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1887 if (rcvd >= budget)
1888 return rcvd;
1889
1890 poll_exit:
1891 napi_complete(napi);
1892
1893 rx_ctrl->rx_complete++;
1894
1895 if (rx_ctrl->ccb)
1896 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1897
1898 return rcvd;
1899 }
1900
1901 #define BNAD_NAPI_POLL_QUOTA 64
1902 static void
1903 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1904 {
1905 struct bnad_rx_ctrl *rx_ctrl;
1906 int i;
1907
1908 /* Initialize & enable NAPI */
1909 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1910 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1911 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1912 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1913 }
1914 }
1915
1916 static void
1917 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1918 {
1919 int i;
1920
1921 /* First disable and then clean up */
1922 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1923 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1924 }
1925
1926 /* Should be held with conf_lock held */
1927 void
1928 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1929 {
1930 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1931 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1932 unsigned long flags;
1933
1934 if (!tx_info->tx)
1935 return;
1936
1937 init_completion(&bnad->bnad_completions.tx_comp);
1938 spin_lock_irqsave(&bnad->bna_lock, flags);
1939 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1940 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1941 wait_for_completion(&bnad->bnad_completions.tx_comp);
1942
1943 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1944 bnad_tx_msix_unregister(bnad, tx_info,
1945 bnad->num_txq_per_tx);
1946
1947 spin_lock_irqsave(&bnad->bna_lock, flags);
1948 bna_tx_destroy(tx_info->tx);
1949 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1950
1951 tx_info->tx = NULL;
1952 tx_info->tx_id = 0;
1953
1954 bnad_tx_res_free(bnad, res_info);
1955 }
1956
1957 /* Should be held with conf_lock held */
1958 int
1959 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1960 {
1961 int err;
1962 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1963 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1964 struct bna_intr_info *intr_info =
1965 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1966 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1967 static const struct bna_tx_event_cbfn tx_cbfn = {
1968 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1969 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1970 .tx_stall_cbfn = bnad_cb_tx_stall,
1971 .tx_resume_cbfn = bnad_cb_tx_resume,
1972 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1973 };
1974
1975 struct bna_tx *tx;
1976 unsigned long flags;
1977
1978 tx_info->tx_id = tx_id;
1979
1980 /* Initialize the Tx object configuration */
1981 tx_config->num_txq = bnad->num_txq_per_tx;
1982 tx_config->txq_depth = bnad->txq_depth;
1983 tx_config->tx_type = BNA_TX_T_REGULAR;
1984 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1985
1986 /* Get BNA's resource requirement for one tx object */
1987 spin_lock_irqsave(&bnad->bna_lock, flags);
1988 bna_tx_res_req(bnad->num_txq_per_tx,
1989 bnad->txq_depth, res_info);
1990 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1991
1992 /* Fill Unmap Q memory requirements */
1993 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1994 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1995 bnad->txq_depth));
1996
1997 /* Allocate resources */
1998 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1999 if (err)
2000 return err;
2001
2002 /* Ask BNA to create one Tx object, supplying required resources */
2003 spin_lock_irqsave(&bnad->bna_lock, flags);
2004 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2005 tx_info);
2006 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2007 if (!tx) {
2008 err = -ENOMEM;
2009 goto err_return;
2010 }
2011 tx_info->tx = tx;
2012
2013 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2014 (work_func_t)bnad_tx_cleanup);
2015
2016 /* Register ISR for the Tx object */
2017 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2018 err = bnad_tx_msix_register(bnad, tx_info,
2019 tx_id, bnad->num_txq_per_tx);
2020 if (err)
2021 goto cleanup_tx;
2022 }
2023
2024 spin_lock_irqsave(&bnad->bna_lock, flags);
2025 bna_tx_enable(tx);
2026 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2027
2028 return 0;
2029
2030 cleanup_tx:
2031 spin_lock_irqsave(&bnad->bna_lock, flags);
2032 bna_tx_destroy(tx_info->tx);
2033 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2034 tx_info->tx = NULL;
2035 tx_info->tx_id = 0;
2036 err_return:
2037 bnad_tx_res_free(bnad, res_info);
2038 return err;
2039 }
2040
2041 /* Setup the rx config for bna_rx_create */
2042 /* bnad decides the configuration */
2043 static void
2044 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2045 {
2046 memset(rx_config, 0, sizeof(*rx_config));
2047 rx_config->rx_type = BNA_RX_T_REGULAR;
2048 rx_config->num_paths = bnad->num_rxp_per_rx;
2049 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2050
2051 if (bnad->num_rxp_per_rx > 1) {
2052 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2053 rx_config->rss_config.hash_type =
2054 (BFI_ENET_RSS_IPV6 |
2055 BFI_ENET_RSS_IPV6_TCP |
2056 BFI_ENET_RSS_IPV4 |
2057 BFI_ENET_RSS_IPV4_TCP);
2058 rx_config->rss_config.hash_mask =
2059 bnad->num_rxp_per_rx - 1;
2060 netdev_rss_key_fill(rx_config->rss_config.toeplitz_hash_key,
2061 sizeof(rx_config->rss_config.toeplitz_hash_key));
2062 } else {
2063 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2064 memset(&rx_config->rss_config, 0,
2065 sizeof(rx_config->rss_config));
2066 }
2067
2068 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2069 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2070
2071 /* BNA_RXP_SINGLE - one data-buffer queue
2072 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2073 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2074 */
2075 /* TODO: configurable param for queue type */
2076 rx_config->rxp_type = BNA_RXP_SLR;
2077
2078 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2079 rx_config->frame_size > 4096) {
2080 /* though size_routing_enable is set in SLR,
2081 * small packets may get routed to same rxq.
2082 * set buf_size to 2048 instead of PAGE_SIZE.
2083 */
2084 rx_config->q0_buf_size = 2048;
2085 /* this should be in multiples of 2 */
2086 rx_config->q0_num_vecs = 4;
2087 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2088 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2089 } else {
2090 rx_config->q0_buf_size = rx_config->frame_size;
2091 rx_config->q0_num_vecs = 1;
2092 rx_config->q0_depth = bnad->rxq_depth;
2093 }
2094
2095 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2096 if (rx_config->rxp_type == BNA_RXP_SLR) {
2097 rx_config->q1_depth = bnad->rxq_depth;
2098 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2099 }
2100
2101 rx_config->vlan_strip_status =
2102 (bnad->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) ?
2103 BNA_STATUS_T_ENABLED : BNA_STATUS_T_DISABLED;
2104 }
2105
2106 static void
2107 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2108 {
2109 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2110 int i;
2111
2112 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2113 rx_info->rx_ctrl[i].bnad = bnad;
2114 }
2115
2116 /* Called with mutex_lock(&bnad->conf_mutex) held */
2117 static u32
2118 bnad_reinit_rx(struct bnad *bnad)
2119 {
2120 struct net_device *netdev = bnad->netdev;
2121 u32 err = 0, current_err = 0;
2122 u32 rx_id = 0, count = 0;
2123 unsigned long flags;
2124
2125 /* destroy and create new rx objects */
2126 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2127 if (!bnad->rx_info[rx_id].rx)
2128 continue;
2129 bnad_destroy_rx(bnad, rx_id);
2130 }
2131
2132 spin_lock_irqsave(&bnad->bna_lock, flags);
2133 bna_enet_mtu_set(&bnad->bna.enet,
2134 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2135 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2136
2137 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2138 count++;
2139 current_err = bnad_setup_rx(bnad, rx_id);
2140 if (current_err && !err) {
2141 err = current_err;
2142 netdev_err(netdev, "RXQ:%u setup failed\n", rx_id);
2143 }
2144 }
2145
2146 /* restore rx configuration */
2147 if (bnad->rx_info[0].rx && !err) {
2148 bnad_restore_vlans(bnad, 0);
2149 bnad_enable_default_bcast(bnad);
2150 spin_lock_irqsave(&bnad->bna_lock, flags);
2151 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2152 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2153 bnad_set_rx_mode(netdev);
2154 }
2155
2156 return count;
2157 }
2158
2159 /* Called with bnad_conf_lock() held */
2160 void
2161 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2162 {
2163 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2164 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2165 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2166 unsigned long flags;
2167 int to_del = 0;
2168
2169 if (!rx_info->rx)
2170 return;
2171
2172 if (0 == rx_id) {
2173 spin_lock_irqsave(&bnad->bna_lock, flags);
2174 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2175 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2176 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2177 to_del = 1;
2178 }
2179 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2180 if (to_del)
2181 del_timer_sync(&bnad->dim_timer);
2182 }
2183
2184 init_completion(&bnad->bnad_completions.rx_comp);
2185 spin_lock_irqsave(&bnad->bna_lock, flags);
2186 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2187 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2188 wait_for_completion(&bnad->bnad_completions.rx_comp);
2189
2190 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2191 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2192
2193 bnad_napi_delete(bnad, rx_id);
2194
2195 spin_lock_irqsave(&bnad->bna_lock, flags);
2196 bna_rx_destroy(rx_info->rx);
2197
2198 rx_info->rx = NULL;
2199 rx_info->rx_id = 0;
2200 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2201
2202 bnad_rx_res_free(bnad, res_info);
2203 }
2204
2205 /* Called with mutex_lock(&bnad->conf_mutex) held */
2206 int
2207 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2208 {
2209 int err;
2210 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2211 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2212 struct bna_intr_info *intr_info =
2213 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2214 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2215 static const struct bna_rx_event_cbfn rx_cbfn = {
2216 .rcb_setup_cbfn = NULL,
2217 .rcb_destroy_cbfn = NULL,
2218 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2219 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2220 .rx_stall_cbfn = bnad_cb_rx_stall,
2221 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2222 .rx_post_cbfn = bnad_cb_rx_post,
2223 };
2224 struct bna_rx *rx;
2225 unsigned long flags;
2226
2227 rx_info->rx_id = rx_id;
2228
2229 /* Initialize the Rx object configuration */
2230 bnad_init_rx_config(bnad, rx_config);
2231
2232 /* Get BNA's resource requirement for one Rx object */
2233 spin_lock_irqsave(&bnad->bna_lock, flags);
2234 bna_rx_res_req(rx_config, res_info);
2235 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2236
2237 /* Fill Unmap Q memory requirements */
2238 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2239 rx_config->num_paths,
2240 (rx_config->q0_depth *
2241 sizeof(struct bnad_rx_unmap)) +
2242 sizeof(struct bnad_rx_unmap_q));
2243
2244 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2245 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2246 rx_config->num_paths,
2247 (rx_config->q1_depth *
2248 sizeof(struct bnad_rx_unmap) +
2249 sizeof(struct bnad_rx_unmap_q)));
2250 }
2251 /* Allocate resource */
2252 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2253 if (err)
2254 return err;
2255
2256 bnad_rx_ctrl_init(bnad, rx_id);
2257
2258 /* Ask BNA to create one Rx object, supplying required resources */
2259 spin_lock_irqsave(&bnad->bna_lock, flags);
2260 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2261 rx_info);
2262 if (!rx) {
2263 err = -ENOMEM;
2264 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2265 goto err_return;
2266 }
2267 rx_info->rx = rx;
2268 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2269
2270 INIT_WORK(&rx_info->rx_cleanup_work,
2271 (work_func_t)(bnad_rx_cleanup));
2272
2273 /*
2274 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2275 * so that IRQ handler cannot schedule NAPI at this point.
2276 */
2277 bnad_napi_add(bnad, rx_id);
2278
2279 /* Register ISR for the Rx object */
2280 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2281 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2282 rx_config->num_paths);
2283 if (err)
2284 goto err_return;
2285 }
2286
2287 spin_lock_irqsave(&bnad->bna_lock, flags);
2288 if (0 == rx_id) {
2289 /* Set up Dynamic Interrupt Moderation Vector */
2290 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2291 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2292
2293 /* Enable VLAN filtering only on the default Rx */
2294 bna_rx_vlanfilter_enable(rx);
2295
2296 /* Start the DIM timer */
2297 bnad_dim_timer_start(bnad);
2298 }
2299
2300 bna_rx_enable(rx);
2301 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2302
2303 return 0;
2304
2305 err_return:
2306 bnad_destroy_rx(bnad, rx_id);
2307 return err;
2308 }
2309
2310 /* Called with conf_lock & bnad->bna_lock held */
2311 void
2312 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2313 {
2314 struct bnad_tx_info *tx_info;
2315
2316 tx_info = &bnad->tx_info[0];
2317 if (!tx_info->tx)
2318 return;
2319
2320 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2321 }
2322
2323 /* Called with conf_lock & bnad->bna_lock held */
2324 void
2325 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2326 {
2327 struct bnad_rx_info *rx_info;
2328 int i;
2329
2330 for (i = 0; i < bnad->num_rx; i++) {
2331 rx_info = &bnad->rx_info[i];
2332 if (!rx_info->rx)
2333 continue;
2334 bna_rx_coalescing_timeo_set(rx_info->rx,
2335 bnad->rx_coalescing_timeo);
2336 }
2337 }
2338
2339 /*
2340 * Called with bnad->bna_lock held
2341 */
2342 int
2343 bnad_mac_addr_set_locked(struct bnad *bnad, const u8 *mac_addr)
2344 {
2345 int ret;
2346
2347 if (!is_valid_ether_addr(mac_addr))
2348 return -EADDRNOTAVAIL;
2349
2350 /* If datapath is down, pretend everything went through */
2351 if (!bnad->rx_info[0].rx)
2352 return 0;
2353
2354 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr);
2355 if (ret != BNA_CB_SUCCESS)
2356 return -EADDRNOTAVAIL;
2357
2358 return 0;
2359 }
2360
2361 /* Should be called with conf_lock held */
2362 int
2363 bnad_enable_default_bcast(struct bnad *bnad)
2364 {
2365 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2366 int ret;
2367 unsigned long flags;
2368
2369 init_completion(&bnad->bnad_completions.mcast_comp);
2370
2371 spin_lock_irqsave(&bnad->bna_lock, flags);
2372 ret = bna_rx_mcast_add(rx_info->rx, bnad_bcast_addr,
2373 bnad_cb_rx_mcast_add);
2374 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2375
2376 if (ret == BNA_CB_SUCCESS)
2377 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2378 else
2379 return -ENODEV;
2380
2381 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2382 return -ENODEV;
2383
2384 return 0;
2385 }
2386
2387 /* Called with mutex_lock(&bnad->conf_mutex) held */
2388 void
2389 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2390 {
2391 u16 vid;
2392 unsigned long flags;
2393
2394 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2395 spin_lock_irqsave(&bnad->bna_lock, flags);
2396 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2397 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2398 }
2399 }
2400
2401 /* Statistics utilities */
2402 void
2403 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2404 {
2405 int i, j;
2406
2407 for (i = 0; i < bnad->num_rx; i++) {
2408 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2409 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2410 stats->rx_packets += bnad->rx_info[i].
2411 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2412 stats->rx_bytes += bnad->rx_info[i].
2413 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2414 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2415 bnad->rx_info[i].rx_ctrl[j].ccb->
2416 rcb[1]->rxq) {
2417 stats->rx_packets +=
2418 bnad->rx_info[i].rx_ctrl[j].
2419 ccb->rcb[1]->rxq->rx_packets;
2420 stats->rx_bytes +=
2421 bnad->rx_info[i].rx_ctrl[j].
2422 ccb->rcb[1]->rxq->rx_bytes;
2423 }
2424 }
2425 }
2426 }
2427 for (i = 0; i < bnad->num_tx; i++) {
2428 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2429 if (bnad->tx_info[i].tcb[j]) {
2430 stats->tx_packets +=
2431 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2432 stats->tx_bytes +=
2433 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2434 }
2435 }
2436 }
2437 }
2438
2439 /*
2440 * Must be called with the bna_lock held.
2441 */
2442 void
2443 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2444 {
2445 struct bfi_enet_stats_mac *mac_stats;
2446 u32 bmap;
2447 int i;
2448
2449 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2450 stats->rx_errors =
2451 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2452 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2453 mac_stats->rx_undersize;
2454 stats->tx_errors = mac_stats->tx_fcs_error +
2455 mac_stats->tx_undersize;
2456 stats->rx_dropped = mac_stats->rx_drop;
2457 stats->tx_dropped = mac_stats->tx_drop;
2458 stats->multicast = mac_stats->rx_multicast;
2459 stats->collisions = mac_stats->tx_total_collision;
2460
2461 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2462
2463 /* receive ring buffer overflow ?? */
2464
2465 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2466 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2467 /* recv'r fifo overrun */
2468 bmap = bna_rx_rid_mask(&bnad->bna);
2469 for (i = 0; bmap; i++) {
2470 if (bmap & 1) {
2471 stats->rx_fifo_errors +=
2472 bnad->stats.bna_stats->
2473 hw_stats.rxf_stats[i].frame_drops;
2474 break;
2475 }
2476 bmap >>= 1;
2477 }
2478 }
2479
2480 static void
2481 bnad_mbox_irq_sync(struct bnad *bnad)
2482 {
2483 u32 irq;
2484 unsigned long flags;
2485
2486 spin_lock_irqsave(&bnad->bna_lock, flags);
2487 if (bnad->cfg_flags & BNAD_CF_MSIX)
2488 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2489 else
2490 irq = bnad->pcidev->irq;
2491 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2492
2493 synchronize_irq(irq);
2494 }
2495
2496 /* Utility used by bnad_start_xmit, for doing TSO */
2497 static int
2498 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2499 {
2500 int err;
2501
2502 err = skb_cow_head(skb, 0);
2503 if (err < 0) {
2504 BNAD_UPDATE_CTR(bnad, tso_err);
2505 return err;
2506 }
2507
2508 /*
2509 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2510 * excluding the length field.
2511 */
2512 if (vlan_get_protocol(skb) == htons(ETH_P_IP)) {
2513 struct iphdr *iph = ip_hdr(skb);
2514
2515 /* Do we really need these? */
2516 iph->tot_len = 0;
2517 iph->check = 0;
2518
2519 tcp_hdr(skb)->check =
2520 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2521 IPPROTO_TCP, 0);
2522 BNAD_UPDATE_CTR(bnad, tso4);
2523 } else {
2524 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2525
2526 ipv6h->payload_len = 0;
2527 tcp_hdr(skb)->check =
2528 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2529 IPPROTO_TCP, 0);
2530 BNAD_UPDATE_CTR(bnad, tso6);
2531 }
2532
2533 return 0;
2534 }
2535
2536 /*
2537 * Initialize Q numbers depending on Rx Paths
2538 * Called with bnad->bna_lock held, because of cfg_flags
2539 * access.
2540 */
2541 static void
2542 bnad_q_num_init(struct bnad *bnad)
2543 {
2544 int rxps;
2545
2546 rxps = min((uint)num_online_cpus(),
2547 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2548
2549 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2550 rxps = 1; /* INTx */
2551
2552 bnad->num_rx = 1;
2553 bnad->num_tx = 1;
2554 bnad->num_rxp_per_rx = rxps;
2555 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2556 }
2557
2558 /*
2559 * Adjusts the Q numbers, given a number of msix vectors
2560 * Give preference to RSS as opposed to Tx priority Queues,
2561 * in such a case, just use 1 Tx Q
2562 * Called with bnad->bna_lock held b'cos of cfg_flags access
2563 */
2564 static void
2565 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2566 {
2567 bnad->num_txq_per_tx = 1;
2568 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2569 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2570 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2571 bnad->num_rxp_per_rx = msix_vectors -
2572 (bnad->num_tx * bnad->num_txq_per_tx) -
2573 BNAD_MAILBOX_MSIX_VECTORS;
2574 } else
2575 bnad->num_rxp_per_rx = 1;
2576 }
2577
2578 /* Enable / disable ioceth */
2579 static int
2580 bnad_ioceth_disable(struct bnad *bnad)
2581 {
2582 unsigned long flags;
2583 int err = 0;
2584
2585 spin_lock_irqsave(&bnad->bna_lock, flags);
2586 init_completion(&bnad->bnad_completions.ioc_comp);
2587 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2588 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2589
2590 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2591 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2592
2593 err = bnad->bnad_completions.ioc_comp_status;
2594 return err;
2595 }
2596
2597 static int
2598 bnad_ioceth_enable(struct bnad *bnad)
2599 {
2600 int err = 0;
2601 unsigned long flags;
2602
2603 spin_lock_irqsave(&bnad->bna_lock, flags);
2604 init_completion(&bnad->bnad_completions.ioc_comp);
2605 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2606 bna_ioceth_enable(&bnad->bna.ioceth);
2607 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2608
2609 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2610 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2611
2612 err = bnad->bnad_completions.ioc_comp_status;
2613
2614 return err;
2615 }
2616
2617 /* Free BNA resources */
2618 static void
2619 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2620 u32 res_val_max)
2621 {
2622 int i;
2623
2624 for (i = 0; i < res_val_max; i++)
2625 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2626 }
2627
2628 /* Allocates memory and interrupt resources for BNA */
2629 static int
2630 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2631 u32 res_val_max)
2632 {
2633 int i, err;
2634
2635 for (i = 0; i < res_val_max; i++) {
2636 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2637 if (err)
2638 goto err_return;
2639 }
2640 return 0;
2641
2642 err_return:
2643 bnad_res_free(bnad, res_info, res_val_max);
2644 return err;
2645 }
2646
2647 /* Interrupt enable / disable */
2648 static void
2649 bnad_enable_msix(struct bnad *bnad)
2650 {
2651 int i, ret;
2652 unsigned long flags;
2653
2654 spin_lock_irqsave(&bnad->bna_lock, flags);
2655 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2656 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2657 return;
2658 }
2659 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2660
2661 if (bnad->msix_table)
2662 return;
2663
2664 bnad->msix_table =
2665 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2666
2667 if (!bnad->msix_table)
2668 goto intx_mode;
2669
2670 for (i = 0; i < bnad->msix_num; i++)
2671 bnad->msix_table[i].entry = i;
2672
2673 ret = pci_enable_msix_range(bnad->pcidev, bnad->msix_table,
2674 1, bnad->msix_num);
2675 if (ret < 0) {
2676 goto intx_mode;
2677 } else if (ret < bnad->msix_num) {
2678 dev_warn(&bnad->pcidev->dev,
2679 "%d MSI-X vectors allocated < %d requested\n",
2680 ret, bnad->msix_num);
2681
2682 spin_lock_irqsave(&bnad->bna_lock, flags);
2683 /* ret = #of vectors that we got */
2684 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2685 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2686 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2687
2688 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2689 BNAD_MAILBOX_MSIX_VECTORS;
2690
2691 if (bnad->msix_num > ret) {
2692 pci_disable_msix(bnad->pcidev);
2693 goto intx_mode;
2694 }
2695 }
2696
2697 pci_intx(bnad->pcidev, 0);
2698
2699 return;
2700
2701 intx_mode:
2702 dev_warn(&bnad->pcidev->dev,
2703 "MSI-X enable failed - operating in INTx mode\n");
2704
2705 kfree(bnad->msix_table);
2706 bnad->msix_table = NULL;
2707 bnad->msix_num = 0;
2708 spin_lock_irqsave(&bnad->bna_lock, flags);
2709 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2710 bnad_q_num_init(bnad);
2711 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2712 }
2713
2714 static void
2715 bnad_disable_msix(struct bnad *bnad)
2716 {
2717 u32 cfg_flags;
2718 unsigned long flags;
2719
2720 spin_lock_irqsave(&bnad->bna_lock, flags);
2721 cfg_flags = bnad->cfg_flags;
2722 if (bnad->cfg_flags & BNAD_CF_MSIX)
2723 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2724 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2725
2726 if (cfg_flags & BNAD_CF_MSIX) {
2727 pci_disable_msix(bnad->pcidev);
2728 kfree(bnad->msix_table);
2729 bnad->msix_table = NULL;
2730 }
2731 }
2732
2733 /* Netdev entry points */
2734 static int
2735 bnad_open(struct net_device *netdev)
2736 {
2737 int err;
2738 struct bnad *bnad = netdev_priv(netdev);
2739 struct bna_pause_config pause_config;
2740 unsigned long flags;
2741
2742 mutex_lock(&bnad->conf_mutex);
2743
2744 /* Tx */
2745 err = bnad_setup_tx(bnad, 0);
2746 if (err)
2747 goto err_return;
2748
2749 /* Rx */
2750 err = bnad_setup_rx(bnad, 0);
2751 if (err)
2752 goto cleanup_tx;
2753
2754 /* Port */
2755 pause_config.tx_pause = 0;
2756 pause_config.rx_pause = 0;
2757
2758 spin_lock_irqsave(&bnad->bna_lock, flags);
2759 bna_enet_mtu_set(&bnad->bna.enet,
2760 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2761 bna_enet_pause_config(&bnad->bna.enet, &pause_config);
2762 bna_enet_enable(&bnad->bna.enet);
2763 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2764
2765 /* Enable broadcast */
2766 bnad_enable_default_bcast(bnad);
2767
2768 /* Restore VLANs, if any */
2769 bnad_restore_vlans(bnad, 0);
2770
2771 /* Set the UCAST address */
2772 spin_lock_irqsave(&bnad->bna_lock, flags);
2773 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2774 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2775
2776 /* Start the stats timer */
2777 bnad_stats_timer_start(bnad);
2778
2779 mutex_unlock(&bnad->conf_mutex);
2780
2781 return 0;
2782
2783 cleanup_tx:
2784 bnad_destroy_tx(bnad, 0);
2785
2786 err_return:
2787 mutex_unlock(&bnad->conf_mutex);
2788 return err;
2789 }
2790
2791 static int
2792 bnad_stop(struct net_device *netdev)
2793 {
2794 struct bnad *bnad = netdev_priv(netdev);
2795 unsigned long flags;
2796
2797 mutex_lock(&bnad->conf_mutex);
2798
2799 /* Stop the stats timer */
2800 bnad_stats_timer_stop(bnad);
2801
2802 init_completion(&bnad->bnad_completions.enet_comp);
2803
2804 spin_lock_irqsave(&bnad->bna_lock, flags);
2805 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2806 bnad_cb_enet_disabled);
2807 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2808
2809 wait_for_completion(&bnad->bnad_completions.enet_comp);
2810
2811 bnad_destroy_tx(bnad, 0);
2812 bnad_destroy_rx(bnad, 0);
2813
2814 /* Synchronize mailbox IRQ */
2815 bnad_mbox_irq_sync(bnad);
2816
2817 mutex_unlock(&bnad->conf_mutex);
2818
2819 return 0;
2820 }
2821
2822 /* TX */
2823 /* Returns 0 for success */
2824 static int
2825 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2826 struct sk_buff *skb, struct bna_txq_entry *txqent)
2827 {
2828 u16 flags = 0;
2829 u32 gso_size;
2830 u16 vlan_tag = 0;
2831
2832 if (skb_vlan_tag_present(skb)) {
2833 vlan_tag = (u16)skb_vlan_tag_get(skb);
2834 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2835 }
2836 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2837 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2838 | (vlan_tag & 0x1fff);
2839 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2840 }
2841 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2842
2843 if (skb_is_gso(skb)) {
2844 gso_size = skb_shinfo(skb)->gso_size;
2845 if (unlikely(gso_size > bnad->netdev->mtu)) {
2846 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2847 return -EINVAL;
2848 }
2849 if (unlikely((gso_size + skb_transport_offset(skb) +
2850 tcp_hdrlen(skb)) >= skb->len)) {
2851 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2852 txqent->hdr.wi.lso_mss = 0;
2853 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2854 } else {
2855 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND_LSO);
2856 txqent->hdr.wi.lso_mss = htons(gso_size);
2857 }
2858
2859 if (bnad_tso_prepare(bnad, skb)) {
2860 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2861 return -EINVAL;
2862 }
2863
2864 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2865 txqent->hdr.wi.l4_hdr_size_n_offset =
2866 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2867 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2868 } else {
2869 txqent->hdr.wi.opcode = htons(BNA_TXQ_WI_SEND);
2870 txqent->hdr.wi.lso_mss = 0;
2871
2872 if (unlikely(skb->len > (bnad->netdev->mtu + VLAN_ETH_HLEN))) {
2873 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2874 return -EINVAL;
2875 }
2876
2877 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2878 __be16 net_proto = vlan_get_protocol(skb);
2879 u8 proto = 0;
2880
2881 if (net_proto == htons(ETH_P_IP))
2882 proto = ip_hdr(skb)->protocol;
2883 #ifdef NETIF_F_IPV6_CSUM
2884 else if (net_proto == htons(ETH_P_IPV6)) {
2885 /* nexthdr may not be TCP immediately. */
2886 proto = ipv6_hdr(skb)->nexthdr;
2887 }
2888 #endif
2889 if (proto == IPPROTO_TCP) {
2890 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2891 txqent->hdr.wi.l4_hdr_size_n_offset =
2892 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2893 (0, skb_transport_offset(skb)));
2894
2895 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2896
2897 if (unlikely(skb_headlen(skb) <
2898 skb_transport_offset(skb) +
2899 tcp_hdrlen(skb))) {
2900 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2901 return -EINVAL;
2902 }
2903 } else if (proto == IPPROTO_UDP) {
2904 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2905 txqent->hdr.wi.l4_hdr_size_n_offset =
2906 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2907 (0, skb_transport_offset(skb)));
2908
2909 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2910 if (unlikely(skb_headlen(skb) <
2911 skb_transport_offset(skb) +
2912 sizeof(struct udphdr))) {
2913 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2914 return -EINVAL;
2915 }
2916 } else {
2917
2918 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2919 return -EINVAL;
2920 }
2921 } else
2922 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2923 }
2924
2925 txqent->hdr.wi.flags = htons(flags);
2926 txqent->hdr.wi.frame_length = htonl(skb->len);
2927
2928 return 0;
2929 }
2930
2931 /*
2932 * bnad_start_xmit : Netdev entry point for Transmit
2933 * Called under lock held by net_device
2934 */
2935 static netdev_tx_t
2936 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2937 {
2938 struct bnad *bnad = netdev_priv(netdev);
2939 u32 txq_id = 0;
2940 struct bna_tcb *tcb = NULL;
2941 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2942 u32 prod, q_depth, vect_id;
2943 u32 wis, vectors, len;
2944 int i;
2945 dma_addr_t dma_addr;
2946 struct bna_txq_entry *txqent;
2947
2948 len = skb_headlen(skb);
2949
2950 /* Sanity checks for the skb */
2951
2952 if (unlikely(skb->len <= ETH_HLEN)) {
2953 dev_kfree_skb_any(skb);
2954 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2955 return NETDEV_TX_OK;
2956 }
2957 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2958 dev_kfree_skb_any(skb);
2959 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2960 return NETDEV_TX_OK;
2961 }
2962 if (unlikely(len == 0)) {
2963 dev_kfree_skb_any(skb);
2964 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2965 return NETDEV_TX_OK;
2966 }
2967
2968 tcb = bnad->tx_info[0].tcb[txq_id];
2969
2970 /*
2971 * Takes care of the Tx that is scheduled between clearing the flag
2972 * and the netif_tx_stop_all_queues() call.
2973 */
2974 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2975 dev_kfree_skb_any(skb);
2976 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2977 return NETDEV_TX_OK;
2978 }
2979
2980 q_depth = tcb->q_depth;
2981 prod = tcb->producer_index;
2982 unmap_q = tcb->unmap_q;
2983
2984 vectors = 1 + skb_shinfo(skb)->nr_frags;
2985 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2986
2987 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2988 dev_kfree_skb_any(skb);
2989 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2990 return NETDEV_TX_OK;
2991 }
2992
2993 /* Check for available TxQ resources */
2994 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2995 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2996 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2997 u32 sent;
2998 sent = bnad_txcmpl_process(bnad, tcb);
2999 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3000 bna_ib_ack(tcb->i_dbell, sent);
3001 smp_mb__before_atomic();
3002 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
3003 } else {
3004 netif_stop_queue(netdev);
3005 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3006 }
3007
3008 smp_mb();
3009 /*
3010 * Check again to deal with race condition between
3011 * netif_stop_queue here, and netif_wake_queue in
3012 * interrupt handler which is not inside netif tx lock.
3013 */
3014 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3015 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3016 return NETDEV_TX_BUSY;
3017 } else {
3018 netif_wake_queue(netdev);
3019 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3020 }
3021 }
3022
3023 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3024 head_unmap = &unmap_q[prod];
3025
3026 /* Program the opcode, flags, frame_len, num_vectors in WI */
3027 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3028 dev_kfree_skb_any(skb);
3029 return NETDEV_TX_OK;
3030 }
3031 txqent->hdr.wi.reserved = 0;
3032 txqent->hdr.wi.num_vectors = vectors;
3033
3034 head_unmap->skb = skb;
3035 head_unmap->nvecs = 0;
3036
3037 /* Program the vectors */
3038 unmap = head_unmap;
3039 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3040 len, DMA_TO_DEVICE);
3041 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3042 dev_kfree_skb_any(skb);
3043 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3044 return NETDEV_TX_OK;
3045 }
3046 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3047 txqent->vector[0].length = htons(len);
3048 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3049 head_unmap->nvecs++;
3050
3051 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3052 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3053 u32 size = skb_frag_size(frag);
3054
3055 if (unlikely(size == 0)) {
3056 /* Undo the changes starting at tcb->producer_index */
3057 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3058 tcb->producer_index);
3059 dev_kfree_skb_any(skb);
3060 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3061 return NETDEV_TX_OK;
3062 }
3063
3064 len += size;
3065
3066 vect_id++;
3067 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3068 vect_id = 0;
3069 BNA_QE_INDX_INC(prod, q_depth);
3070 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3071 txqent->hdr.wi_ext.opcode = htons(BNA_TXQ_WI_EXTENSION);
3072 unmap = &unmap_q[prod];
3073 }
3074
3075 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3076 0, size, DMA_TO_DEVICE);
3077 if (dma_mapping_error(&bnad->pcidev->dev, dma_addr)) {
3078 /* Undo the changes starting at tcb->producer_index */
3079 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3080 tcb->producer_index);
3081 dev_kfree_skb_any(skb);
3082 BNAD_UPDATE_CTR(bnad, tx_skb_map_failed);
3083 return NETDEV_TX_OK;
3084 }
3085
3086 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3087 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3088 txqent->vector[vect_id].length = htons(size);
3089 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3090 dma_addr);
3091 head_unmap->nvecs++;
3092 }
3093
3094 if (unlikely(len != skb->len)) {
3095 /* Undo the changes starting at tcb->producer_index */
3096 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3097 dev_kfree_skb_any(skb);
3098 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3099 return NETDEV_TX_OK;
3100 }
3101
3102 BNA_QE_INDX_INC(prod, q_depth);
3103 tcb->producer_index = prod;
3104
3105 smp_mb();
3106
3107 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3108 return NETDEV_TX_OK;
3109
3110 skb_tx_timestamp(skb);
3111
3112 bna_txq_prod_indx_doorbell(tcb);
3113 smp_mb();
3114
3115 return NETDEV_TX_OK;
3116 }
3117
3118 /*
3119 * Used spin_lock to synchronize reading of stats structures, which
3120 * is written by BNA under the same lock.
3121 */
3122 static struct rtnl_link_stats64 *
3123 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3124 {
3125 struct bnad *bnad = netdev_priv(netdev);
3126 unsigned long flags;
3127
3128 spin_lock_irqsave(&bnad->bna_lock, flags);
3129
3130 bnad_netdev_qstats_fill(bnad, stats);
3131 bnad_netdev_hwstats_fill(bnad, stats);
3132
3133 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3134
3135 return stats;
3136 }
3137
3138 static void
3139 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3140 {
3141 struct net_device *netdev = bnad->netdev;
3142 int uc_count = netdev_uc_count(netdev);
3143 enum bna_cb_status ret;
3144 u8 *mac_list;
3145 struct netdev_hw_addr *ha;
3146 int entry;
3147
3148 if (netdev_uc_empty(bnad->netdev)) {
3149 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3150 return;
3151 }
3152
3153 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3154 goto mode_default;
3155
3156 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3157 if (mac_list == NULL)
3158 goto mode_default;
3159
3160 entry = 0;
3161 netdev_for_each_uc_addr(ha, netdev) {
3162 ether_addr_copy(&mac_list[entry * ETH_ALEN], &ha->addr[0]);
3163 entry++;
3164 }
3165
3166 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry, mac_list);
3167 kfree(mac_list);
3168
3169 if (ret != BNA_CB_SUCCESS)
3170 goto mode_default;
3171
3172 return;
3173
3174 /* ucast packets not in UCAM are routed to default function */
3175 mode_default:
3176 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3177 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL);
3178 }
3179
3180 static void
3181 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3182 {
3183 struct net_device *netdev = bnad->netdev;
3184 int mc_count = netdev_mc_count(netdev);
3185 enum bna_cb_status ret;
3186 u8 *mac_list;
3187
3188 if (netdev->flags & IFF_ALLMULTI)
3189 goto mode_allmulti;
3190
3191 if (netdev_mc_empty(netdev))
3192 return;
3193
3194 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3195 goto mode_allmulti;
3196
3197 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3198
3199 if (mac_list == NULL)
3200 goto mode_allmulti;
3201
3202 ether_addr_copy(&mac_list[0], &bnad_bcast_addr[0]);
3203
3204 /* copy rest of the MCAST addresses */
3205 bnad_netdev_mc_list_get(netdev, mac_list);
3206 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1, mac_list);
3207 kfree(mac_list);
3208
3209 if (ret != BNA_CB_SUCCESS)
3210 goto mode_allmulti;
3211
3212 return;
3213
3214 mode_allmulti:
3215 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3216 bna_rx_mcast_delall(bnad->rx_info[0].rx);
3217 }
3218
3219 void
3220 bnad_set_rx_mode(struct net_device *netdev)
3221 {
3222 struct bnad *bnad = netdev_priv(netdev);
3223 enum bna_rxmode new_mode, mode_mask;
3224 unsigned long flags;
3225
3226 spin_lock_irqsave(&bnad->bna_lock, flags);
3227
3228 if (bnad->rx_info[0].rx == NULL) {
3229 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3230 return;
3231 }
3232
3233 /* clear bnad flags to update it with new settings */
3234 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3235 BNAD_CF_ALLMULTI);
3236
3237 new_mode = 0;
3238 if (netdev->flags & IFF_PROMISC) {
3239 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3240 bnad->cfg_flags |= BNAD_CF_PROMISC;
3241 } else {
3242 bnad_set_rx_mcast_fltr(bnad);
3243
3244 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3245 new_mode |= BNA_RXMODE_ALLMULTI;
3246
3247 bnad_set_rx_ucast_fltr(bnad);
3248
3249 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3250 new_mode |= BNA_RXMODE_DEFAULT;
3251 }
3252
3253 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3254 BNA_RXMODE_ALLMULTI;
3255 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask);
3256
3257 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3258 }
3259
3260 /*
3261 * bna_lock is used to sync writes to netdev->addr
3262 * conf_lock cannot be used since this call may be made
3263 * in a non-blocking context.
3264 */
3265 static int
3266 bnad_set_mac_address(struct net_device *netdev, void *addr)
3267 {
3268 int err;
3269 struct bnad *bnad = netdev_priv(netdev);
3270 struct sockaddr *sa = (struct sockaddr *)addr;
3271 unsigned long flags;
3272
3273 spin_lock_irqsave(&bnad->bna_lock, flags);
3274
3275 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3276 if (!err)
3277 ether_addr_copy(netdev->dev_addr, sa->sa_data);
3278
3279 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3280
3281 return err;
3282 }
3283
3284 static int
3285 bnad_mtu_set(struct bnad *bnad, int frame_size)
3286 {
3287 unsigned long flags;
3288
3289 init_completion(&bnad->bnad_completions.mtu_comp);
3290
3291 spin_lock_irqsave(&bnad->bna_lock, flags);
3292 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3293 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3294
3295 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3296
3297 return bnad->bnad_completions.mtu_comp_status;
3298 }
3299
3300 static int
3301 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3302 {
3303 int err, mtu;
3304 struct bnad *bnad = netdev_priv(netdev);
3305 u32 rx_count = 0, frame, new_frame;
3306
3307 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3308 return -EINVAL;
3309
3310 mutex_lock(&bnad->conf_mutex);
3311
3312 mtu = netdev->mtu;
3313 netdev->mtu = new_mtu;
3314
3315 frame = BNAD_FRAME_SIZE(mtu);
3316 new_frame = BNAD_FRAME_SIZE(new_mtu);
3317
3318 /* check if multi-buffer needs to be enabled */
3319 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3320 netif_running(bnad->netdev)) {
3321 /* only when transition is over 4K */
3322 if ((frame <= 4096 && new_frame > 4096) ||
3323 (frame > 4096 && new_frame <= 4096))
3324 rx_count = bnad_reinit_rx(bnad);
3325 }
3326
3327 /* rx_count > 0 - new rx created
3328 * - Linux set err = 0 and return
3329 */
3330 err = bnad_mtu_set(bnad, new_frame);
3331 if (err)
3332 err = -EBUSY;
3333
3334 mutex_unlock(&bnad->conf_mutex);
3335 return err;
3336 }
3337
3338 static int
3339 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3340 {
3341 struct bnad *bnad = netdev_priv(netdev);
3342 unsigned long flags;
3343
3344 if (!bnad->rx_info[0].rx)
3345 return 0;
3346
3347 mutex_lock(&bnad->conf_mutex);
3348
3349 spin_lock_irqsave(&bnad->bna_lock, flags);
3350 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3351 set_bit(vid, bnad->active_vlans);
3352 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3353
3354 mutex_unlock(&bnad->conf_mutex);
3355
3356 return 0;
3357 }
3358
3359 static int
3360 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3361 {
3362 struct bnad *bnad = netdev_priv(netdev);
3363 unsigned long flags;
3364
3365 if (!bnad->rx_info[0].rx)
3366 return 0;
3367
3368 mutex_lock(&bnad->conf_mutex);
3369
3370 spin_lock_irqsave(&bnad->bna_lock, flags);
3371 clear_bit(vid, bnad->active_vlans);
3372 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3373 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3374
3375 mutex_unlock(&bnad->conf_mutex);
3376
3377 return 0;
3378 }
3379
3380 static int bnad_set_features(struct net_device *dev, netdev_features_t features)
3381 {
3382 struct bnad *bnad = netdev_priv(dev);
3383 netdev_features_t changed = features ^ dev->features;
3384
3385 if ((changed & NETIF_F_HW_VLAN_CTAG_RX) && netif_running(dev)) {
3386 unsigned long flags;
3387
3388 spin_lock_irqsave(&bnad->bna_lock, flags);
3389
3390 if (features & NETIF_F_HW_VLAN_CTAG_RX)
3391 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3392 else
3393 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3394
3395 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3396 }
3397
3398 return 0;
3399 }
3400
3401 #ifdef CONFIG_NET_POLL_CONTROLLER
3402 static void
3403 bnad_netpoll(struct net_device *netdev)
3404 {
3405 struct bnad *bnad = netdev_priv(netdev);
3406 struct bnad_rx_info *rx_info;
3407 struct bnad_rx_ctrl *rx_ctrl;
3408 u32 curr_mask;
3409 int i, j;
3410
3411 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3412 bna_intx_disable(&bnad->bna, curr_mask);
3413 bnad_isr(bnad->pcidev->irq, netdev);
3414 bna_intx_enable(&bnad->bna, curr_mask);
3415 } else {
3416 /*
3417 * Tx processing may happen in sending context, so no need
3418 * to explicitly process completions here
3419 */
3420
3421 /* Rx processing */
3422 for (i = 0; i < bnad->num_rx; i++) {
3423 rx_info = &bnad->rx_info[i];
3424 if (!rx_info->rx)
3425 continue;
3426 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3427 rx_ctrl = &rx_info->rx_ctrl[j];
3428 if (rx_ctrl->ccb)
3429 bnad_netif_rx_schedule_poll(bnad,
3430 rx_ctrl->ccb);
3431 }
3432 }
3433 }
3434 }
3435 #endif
3436
3437 static const struct net_device_ops bnad_netdev_ops = {
3438 .ndo_open = bnad_open,
3439 .ndo_stop = bnad_stop,
3440 .ndo_start_xmit = bnad_start_xmit,
3441 .ndo_get_stats64 = bnad_get_stats64,
3442 .ndo_set_rx_mode = bnad_set_rx_mode,
3443 .ndo_validate_addr = eth_validate_addr,
3444 .ndo_set_mac_address = bnad_set_mac_address,
3445 .ndo_change_mtu = bnad_change_mtu,
3446 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3447 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3448 .ndo_set_features = bnad_set_features,
3449 #ifdef CONFIG_NET_POLL_CONTROLLER
3450 .ndo_poll_controller = bnad_netpoll
3451 #endif
3452 };
3453
3454 static void
3455 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3456 {
3457 struct net_device *netdev = bnad->netdev;
3458
3459 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3460 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3461 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX |
3462 NETIF_F_HW_VLAN_CTAG_RX;
3463
3464 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3465 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3466 NETIF_F_TSO | NETIF_F_TSO6;
3467
3468 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_CTAG_FILTER;
3469
3470 if (using_dac)
3471 netdev->features |= NETIF_F_HIGHDMA;
3472
3473 netdev->mem_start = bnad->mmio_start;
3474 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3475
3476 netdev->netdev_ops = &bnad_netdev_ops;
3477 bnad_set_ethtool_ops(netdev);
3478 }
3479
3480 /*
3481 * 1. Initialize the bnad structure
3482 * 2. Setup netdev pointer in pci_dev
3483 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3484 * 4. Initialize work queue.
3485 */
3486 static int
3487 bnad_init(struct bnad *bnad,
3488 struct pci_dev *pdev, struct net_device *netdev)
3489 {
3490 unsigned long flags;
3491
3492 SET_NETDEV_DEV(netdev, &pdev->dev);
3493 pci_set_drvdata(pdev, netdev);
3494
3495 bnad->netdev = netdev;
3496 bnad->pcidev = pdev;
3497 bnad->mmio_start = pci_resource_start(pdev, 0);
3498 bnad->mmio_len = pci_resource_len(pdev, 0);
3499 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3500 if (!bnad->bar0) {
3501 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3502 return -ENOMEM;
3503 }
3504 dev_info(&pdev->dev, "bar0 mapped to %p, len %llu\n", bnad->bar0,
3505 (unsigned long long) bnad->mmio_len);
3506
3507 spin_lock_irqsave(&bnad->bna_lock, flags);
3508 if (!bnad_msix_disable)
3509 bnad->cfg_flags = BNAD_CF_MSIX;
3510
3511 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3512
3513 bnad_q_num_init(bnad);
3514 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3515
3516 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3517 (bnad->num_rx * bnad->num_rxp_per_rx) +
3518 BNAD_MAILBOX_MSIX_VECTORS;
3519
3520 bnad->txq_depth = BNAD_TXQ_DEPTH;
3521 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3522
3523 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3524 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3525
3526 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3527 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3528 if (!bnad->work_q) {
3529 iounmap(bnad->bar0);
3530 return -ENOMEM;
3531 }
3532
3533 return 0;
3534 }
3535
3536 /*
3537 * Must be called after bnad_pci_uninit()
3538 * so that iounmap() and pci_set_drvdata(NULL)
3539 * happens only after PCI uninitialization.
3540 */
3541 static void
3542 bnad_uninit(struct bnad *bnad)
3543 {
3544 if (bnad->work_q) {
3545 flush_workqueue(bnad->work_q);
3546 destroy_workqueue(bnad->work_q);
3547 bnad->work_q = NULL;
3548 }
3549
3550 if (bnad->bar0)
3551 iounmap(bnad->bar0);
3552 }
3553
3554 /*
3555 * Initialize locks
3556 a) Per ioceth mutes used for serializing configuration
3557 changes from OS interface
3558 b) spin lock used to protect bna state machine
3559 */
3560 static void
3561 bnad_lock_init(struct bnad *bnad)
3562 {
3563 spin_lock_init(&bnad->bna_lock);
3564 mutex_init(&bnad->conf_mutex);
3565 mutex_init(&bnad_list_mutex);
3566 }
3567
3568 static void
3569 bnad_lock_uninit(struct bnad *bnad)
3570 {
3571 mutex_destroy(&bnad->conf_mutex);
3572 mutex_destroy(&bnad_list_mutex);
3573 }
3574
3575 /* PCI Initialization */
3576 static int
3577 bnad_pci_init(struct bnad *bnad,
3578 struct pci_dev *pdev, bool *using_dac)
3579 {
3580 int err;
3581
3582 err = pci_enable_device(pdev);
3583 if (err)
3584 return err;
3585 err = pci_request_regions(pdev, BNAD_NAME);
3586 if (err)
3587 goto disable_device;
3588 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3589 *using_dac = true;
3590 } else {
3591 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3592 if (err)
3593 goto release_regions;
3594 *using_dac = false;
3595 }
3596 pci_set_master(pdev);
3597 return 0;
3598
3599 release_regions:
3600 pci_release_regions(pdev);
3601 disable_device:
3602 pci_disable_device(pdev);
3603
3604 return err;
3605 }
3606
3607 static void
3608 bnad_pci_uninit(struct pci_dev *pdev)
3609 {
3610 pci_release_regions(pdev);
3611 pci_disable_device(pdev);
3612 }
3613
3614 static int
3615 bnad_pci_probe(struct pci_dev *pdev,
3616 const struct pci_device_id *pcidev_id)
3617 {
3618 bool using_dac;
3619 int err;
3620 struct bnad *bnad;
3621 struct bna *bna;
3622 struct net_device *netdev;
3623 struct bfa_pcidev pcidev_info;
3624 unsigned long flags;
3625
3626 mutex_lock(&bnad_fwimg_mutex);
3627 if (!cna_get_firmware_buf(pdev)) {
3628 mutex_unlock(&bnad_fwimg_mutex);
3629 dev_err(&pdev->dev, "failed to load firmware image!\n");
3630 return -ENODEV;
3631 }
3632 mutex_unlock(&bnad_fwimg_mutex);
3633
3634 /*
3635 * Allocates sizeof(struct net_device + struct bnad)
3636 * bnad = netdev->priv
3637 */
3638 netdev = alloc_etherdev(sizeof(struct bnad));
3639 if (!netdev) {
3640 err = -ENOMEM;
3641 return err;
3642 }
3643 bnad = netdev_priv(netdev);
3644 bnad_lock_init(bnad);
3645 bnad_add_to_list(bnad);
3646
3647 mutex_lock(&bnad->conf_mutex);
3648 /*
3649 * PCI initialization
3650 * Output : using_dac = 1 for 64 bit DMA
3651 * = 0 for 32 bit DMA
3652 */
3653 using_dac = false;
3654 err = bnad_pci_init(bnad, pdev, &using_dac);
3655 if (err)
3656 goto unlock_mutex;
3657
3658 /*
3659 * Initialize bnad structure
3660 * Setup relation between pci_dev & netdev
3661 */
3662 err = bnad_init(bnad, pdev, netdev);
3663 if (err)
3664 goto pci_uninit;
3665
3666 /* Initialize netdev structure, set up ethtool ops */
3667 bnad_netdev_init(bnad, using_dac);
3668
3669 /* Set link to down state */
3670 netif_carrier_off(netdev);
3671
3672 /* Setup the debugfs node for this bfad */
3673 if (bna_debugfs_enable)
3674 bnad_debugfs_init(bnad);
3675
3676 /* Get resource requirement form bna */
3677 spin_lock_irqsave(&bnad->bna_lock, flags);
3678 bna_res_req(&bnad->res_info[0]);
3679 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3680
3681 /* Allocate resources from bna */
3682 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3683 if (err)
3684 goto drv_uninit;
3685
3686 bna = &bnad->bna;
3687
3688 /* Setup pcidev_info for bna_init() */
3689 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3690 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3691 pcidev_info.device_id = bnad->pcidev->device;
3692 pcidev_info.pci_bar_kva = bnad->bar0;
3693
3694 spin_lock_irqsave(&bnad->bna_lock, flags);
3695 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3696 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3697
3698 bnad->stats.bna_stats = &bna->stats;
3699
3700 bnad_enable_msix(bnad);
3701 err = bnad_mbox_irq_alloc(bnad);
3702 if (err)
3703 goto res_free;
3704
3705 /* Set up timers */
3706 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3707 (unsigned long)bnad);
3708 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3709 (unsigned long)bnad);
3710 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3711 (unsigned long)bnad);
3712 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3713 (unsigned long)bnad);
3714
3715 /*
3716 * Start the chip
3717 * If the call back comes with error, we bail out.
3718 * This is a catastrophic error.
3719 */
3720 err = bnad_ioceth_enable(bnad);
3721 if (err) {
3722 dev_err(&pdev->dev, "initialization failed err=%d\n", err);
3723 goto probe_success;
3724 }
3725
3726 spin_lock_irqsave(&bnad->bna_lock, flags);
3727 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3728 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3729 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3730 bna_attr(bna)->num_rxp - 1);
3731 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3732 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3733 err = -EIO;
3734 }
3735 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3736 if (err)
3737 goto disable_ioceth;
3738
3739 spin_lock_irqsave(&bnad->bna_lock, flags);
3740 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3741 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3742
3743 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3744 if (err) {
3745 err = -EIO;
3746 goto disable_ioceth;
3747 }
3748
3749 spin_lock_irqsave(&bnad->bna_lock, flags);
3750 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3751 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3752
3753 /* Get the burnt-in mac */
3754 spin_lock_irqsave(&bnad->bna_lock, flags);
3755 bna_enet_perm_mac_get(&bna->enet, bnad->perm_addr);
3756 bnad_set_netdev_perm_addr(bnad);
3757 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3758
3759 mutex_unlock(&bnad->conf_mutex);
3760
3761 /* Finally, reguister with net_device layer */
3762 err = register_netdev(netdev);
3763 if (err) {
3764 dev_err(&pdev->dev, "registering net device failed\n");
3765 goto probe_uninit;
3766 }
3767 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3768
3769 return 0;
3770
3771 probe_success:
3772 mutex_unlock(&bnad->conf_mutex);
3773 return 0;
3774
3775 probe_uninit:
3776 mutex_lock(&bnad->conf_mutex);
3777 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3778 disable_ioceth:
3779 bnad_ioceth_disable(bnad);
3780 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3781 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3782 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3783 spin_lock_irqsave(&bnad->bna_lock, flags);
3784 bna_uninit(bna);
3785 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3786 bnad_mbox_irq_free(bnad);
3787 bnad_disable_msix(bnad);
3788 res_free:
3789 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3790 drv_uninit:
3791 /* Remove the debugfs node for this bnad */
3792 kfree(bnad->regdata);
3793 bnad_debugfs_uninit(bnad);
3794 bnad_uninit(bnad);
3795 pci_uninit:
3796 bnad_pci_uninit(pdev);
3797 unlock_mutex:
3798 mutex_unlock(&bnad->conf_mutex);
3799 bnad_remove_from_list(bnad);
3800 bnad_lock_uninit(bnad);
3801 free_netdev(netdev);
3802 return err;
3803 }
3804
3805 static void
3806 bnad_pci_remove(struct pci_dev *pdev)
3807 {
3808 struct net_device *netdev = pci_get_drvdata(pdev);
3809 struct bnad *bnad;
3810 struct bna *bna;
3811 unsigned long flags;
3812
3813 if (!netdev)
3814 return;
3815
3816 bnad = netdev_priv(netdev);
3817 bna = &bnad->bna;
3818
3819 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3820 unregister_netdev(netdev);
3821
3822 mutex_lock(&bnad->conf_mutex);
3823 bnad_ioceth_disable(bnad);
3824 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3825 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3826 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3827 spin_lock_irqsave(&bnad->bna_lock, flags);
3828 bna_uninit(bna);
3829 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3830
3831 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3832 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3833 bnad_mbox_irq_free(bnad);
3834 bnad_disable_msix(bnad);
3835 bnad_pci_uninit(pdev);
3836 mutex_unlock(&bnad->conf_mutex);
3837 bnad_remove_from_list(bnad);
3838 bnad_lock_uninit(bnad);
3839 /* Remove the debugfs node for this bnad */
3840 kfree(bnad->regdata);
3841 bnad_debugfs_uninit(bnad);
3842 bnad_uninit(bnad);
3843 free_netdev(netdev);
3844 }
3845
3846 static const struct pci_device_id bnad_pci_id_table[] = {
3847 {
3848 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3849 PCI_DEVICE_ID_BROCADE_CT),
3850 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3851 .class_mask = 0xffff00
3852 },
3853 {
3854 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3855 BFA_PCI_DEVICE_ID_CT2),
3856 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3857 .class_mask = 0xffff00
3858 },
3859 {0, },
3860 };
3861
3862 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3863
3864 static struct pci_driver bnad_pci_driver = {
3865 .name = BNAD_NAME,
3866 .id_table = bnad_pci_id_table,
3867 .probe = bnad_pci_probe,
3868 .remove = bnad_pci_remove,
3869 };
3870
3871 static int __init
3872 bnad_module_init(void)
3873 {
3874 int err;
3875
3876 pr_info("bna: QLogic BR-series 10G Ethernet driver - version: %s\n",
3877 BNAD_VERSION);
3878
3879 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3880
3881 err = pci_register_driver(&bnad_pci_driver);
3882 if (err < 0) {
3883 pr_err("bna: PCI driver registration failed err=%d\n", err);
3884 return err;
3885 }
3886
3887 return 0;
3888 }
3889
3890 static void __exit
3891 bnad_module_exit(void)
3892 {
3893 pci_unregister_driver(&bnad_pci_driver);
3894 release_firmware(bfi_fw);
3895 }
3896
3897 module_init(bnad_module_init);
3898 module_exit(bnad_module_exit);
3899
3900 MODULE_AUTHOR("Brocade");
3901 MODULE_LICENSE("GPL");
3902 MODULE_DESCRIPTION("QLogic BR-series 10G PCIe Ethernet driver");
3903 MODULE_VERSION(BNAD_VERSION);
3904 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3905 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
This page took 0.144912 seconds and 5 git commands to generate.