bna: fix sparse warnings/errors
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35
36 /*
37 * Module params
38 */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
51
52 /*
53 * Global variables
54 */
55 u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60
61 /*
62 * Local MACROS
63 */
64 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
65
66 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
67
68 #define BNAD_GET_MBOX_IRQ(_bnad) \
69 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
70 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
71 ((_bnad)->pcidev->irq))
72
73 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth) \
74 do { \
75 (_res_info)->res_type = BNA_RES_T_MEM; \
76 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
77 (_res_info)->res_u.mem_info.num = (_num); \
78 (_res_info)->res_u.mem_info.len = \
79 sizeof(struct bnad_unmap_q) + \
80 (sizeof(struct bnad_skb_unmap) * ((_depth) - 1)); \
81 } while (0)
82
83 #define BNAD_TXRX_SYNC_MDELAY 250 /* 250 msecs */
84
85 static void
86 bnad_add_to_list(struct bnad *bnad)
87 {
88 mutex_lock(&bnad_list_mutex);
89 list_add_tail(&bnad->list_entry, &bnad_list);
90 bnad->id = bna_id++;
91 mutex_unlock(&bnad_list_mutex);
92 }
93
94 static void
95 bnad_remove_from_list(struct bnad *bnad)
96 {
97 mutex_lock(&bnad_list_mutex);
98 list_del(&bnad->list_entry);
99 mutex_unlock(&bnad_list_mutex);
100 }
101
102 /*
103 * Reinitialize completions in CQ, once Rx is taken down
104 */
105 static void
106 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
107 {
108 struct bna_cq_entry *cmpl, *next_cmpl;
109 unsigned int wi_range, wis = 0, ccb_prod = 0;
110 int i;
111
112 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
113 wi_range);
114
115 for (i = 0; i < ccb->q_depth; i++) {
116 wis++;
117 if (likely(--wi_range))
118 next_cmpl = cmpl + 1;
119 else {
120 BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
121 wis = 0;
122 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
123 next_cmpl, wi_range);
124 }
125 cmpl->valid = 0;
126 cmpl = next_cmpl;
127 }
128 }
129
130 static u32
131 bnad_pci_unmap_skb(struct device *pdev, struct bnad_skb_unmap *array,
132 u32 index, u32 depth, struct sk_buff *skb, u32 frag)
133 {
134 int j;
135 array[index].skb = NULL;
136
137 dma_unmap_single(pdev, dma_unmap_addr(&array[index], dma_addr),
138 skb_headlen(skb), DMA_TO_DEVICE);
139 dma_unmap_addr_set(&array[index], dma_addr, 0);
140 BNA_QE_INDX_ADD(index, 1, depth);
141
142 for (j = 0; j < frag; j++) {
143 dma_unmap_page(pdev, dma_unmap_addr(&array[index], dma_addr),
144 skb_frag_size(&skb_shinfo(skb)->frags[j]), DMA_TO_DEVICE);
145 dma_unmap_addr_set(&array[index], dma_addr, 0);
146 BNA_QE_INDX_ADD(index, 1, depth);
147 }
148
149 return index;
150 }
151
152 /*
153 * Frees all pending Tx Bufs
154 * At this point no activity is expected on the Q,
155 * so DMA unmap & freeing is fine.
156 */
157 static void
158 bnad_free_all_txbufs(struct bnad *bnad,
159 struct bna_tcb *tcb)
160 {
161 u32 unmap_cons;
162 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
163 struct bnad_skb_unmap *unmap_array;
164 struct sk_buff *skb = NULL;
165 int q;
166
167 unmap_array = unmap_q->unmap_array;
168
169 for (q = 0; q < unmap_q->q_depth; q++) {
170 skb = unmap_array[q].skb;
171 if (!skb)
172 continue;
173
174 unmap_cons = q;
175 unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
176 unmap_cons, unmap_q->q_depth, skb,
177 skb_shinfo(skb)->nr_frags);
178
179 dev_kfree_skb_any(skb);
180 }
181 }
182
183 /* Data Path Handlers */
184
185 /*
186 * bnad_free_txbufs : Frees the Tx bufs on Tx completion
187 * Can be called in a) Interrupt context
188 * b) Sending context
189 * c) Tasklet context
190 */
191 static u32
192 bnad_free_txbufs(struct bnad *bnad,
193 struct bna_tcb *tcb)
194 {
195 u32 unmap_cons, sent_packets = 0, sent_bytes = 0;
196 u16 wis, updated_hw_cons;
197 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
198 struct bnad_skb_unmap *unmap_array;
199 struct sk_buff *skb;
200
201 /*
202 * Just return if TX is stopped. This check is useful
203 * when bnad_free_txbufs() runs out of a tasklet scheduled
204 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
205 * but this routine runs actually after the cleanup has been
206 * executed.
207 */
208 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
209 return 0;
210
211 updated_hw_cons = *(tcb->hw_consumer_index);
212
213 wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
214 updated_hw_cons, tcb->q_depth);
215
216 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
217
218 unmap_array = unmap_q->unmap_array;
219 unmap_cons = unmap_q->consumer_index;
220
221 prefetch(&unmap_array[unmap_cons + 1]);
222 while (wis) {
223 skb = unmap_array[unmap_cons].skb;
224
225 sent_packets++;
226 sent_bytes += skb->len;
227 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
228
229 unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
230 unmap_cons, unmap_q->q_depth, skb,
231 skb_shinfo(skb)->nr_frags);
232
233 dev_kfree_skb_any(skb);
234 }
235
236 /* Update consumer pointers. */
237 tcb->consumer_index = updated_hw_cons;
238 unmap_q->consumer_index = unmap_cons;
239
240 tcb->txq->tx_packets += sent_packets;
241 tcb->txq->tx_bytes += sent_bytes;
242
243 return sent_packets;
244 }
245
246 /* Tx Free Tasklet function */
247 /* Frees for all the tcb's in all the Tx's */
248 /*
249 * Scheduled from sending context, so that
250 * the fat Tx lock is not held for too long
251 * in the sending context.
252 */
253 static void
254 bnad_tx_free_tasklet(unsigned long bnad_ptr)
255 {
256 struct bnad *bnad = (struct bnad *)bnad_ptr;
257 struct bna_tcb *tcb;
258 u32 acked = 0;
259 int i, j;
260
261 for (i = 0; i < bnad->num_tx; i++) {
262 for (j = 0; j < bnad->num_txq_per_tx; j++) {
263 tcb = bnad->tx_info[i].tcb[j];
264 if (!tcb)
265 continue;
266 if (((u16) (*tcb->hw_consumer_index) !=
267 tcb->consumer_index) &&
268 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
269 &tcb->flags))) {
270 acked = bnad_free_txbufs(bnad, tcb);
271 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
272 &tcb->flags)))
273 bna_ib_ack(tcb->i_dbell, acked);
274 smp_mb__before_clear_bit();
275 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
276 }
277 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
278 &tcb->flags)))
279 continue;
280 if (netif_queue_stopped(bnad->netdev)) {
281 if (acked && netif_carrier_ok(bnad->netdev) &&
282 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
283 BNAD_NETIF_WAKE_THRESHOLD) {
284 netif_wake_queue(bnad->netdev);
285 /* TODO */
286 /* Counters for individual TxQs? */
287 BNAD_UPDATE_CTR(bnad,
288 netif_queue_wakeup);
289 }
290 }
291 }
292 }
293 }
294
295 static u32
296 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
297 {
298 struct net_device *netdev = bnad->netdev;
299 u32 sent = 0;
300
301 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
302 return 0;
303
304 sent = bnad_free_txbufs(bnad, tcb);
305 if (sent) {
306 if (netif_queue_stopped(netdev) &&
307 netif_carrier_ok(netdev) &&
308 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
309 BNAD_NETIF_WAKE_THRESHOLD) {
310 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
311 netif_wake_queue(netdev);
312 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
313 }
314 }
315 }
316
317 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
318 bna_ib_ack(tcb->i_dbell, sent);
319
320 smp_mb__before_clear_bit();
321 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
322
323 return sent;
324 }
325
326 /* MSIX Tx Completion Handler */
327 static irqreturn_t
328 bnad_msix_tx(int irq, void *data)
329 {
330 struct bna_tcb *tcb = (struct bna_tcb *)data;
331 struct bnad *bnad = tcb->bnad;
332
333 bnad_tx(bnad, tcb);
334
335 return IRQ_HANDLED;
336 }
337
338 static void
339 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
340 {
341 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
342
343 rcb->producer_index = 0;
344 rcb->consumer_index = 0;
345
346 unmap_q->producer_index = 0;
347 unmap_q->consumer_index = 0;
348 }
349
350 static void
351 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
352 {
353 struct bnad_unmap_q *unmap_q;
354 struct bnad_skb_unmap *unmap_array;
355 struct sk_buff *skb;
356 int unmap_cons;
357
358 unmap_q = rcb->unmap_q;
359 unmap_array = unmap_q->unmap_array;
360 for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
361 skb = unmap_array[unmap_cons].skb;
362 if (!skb)
363 continue;
364 unmap_array[unmap_cons].skb = NULL;
365 dma_unmap_single(&bnad->pcidev->dev,
366 dma_unmap_addr(&unmap_array[unmap_cons],
367 dma_addr),
368 rcb->rxq->buffer_size,
369 DMA_FROM_DEVICE);
370 dev_kfree_skb(skb);
371 }
372 bnad_reset_rcb(bnad, rcb);
373 }
374
375 static void
376 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
377 {
378 u16 to_alloc, alloced, unmap_prod, wi_range;
379 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
380 struct bnad_skb_unmap *unmap_array;
381 struct bna_rxq_entry *rxent;
382 struct sk_buff *skb;
383 dma_addr_t dma_addr;
384
385 alloced = 0;
386 to_alloc =
387 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
388
389 unmap_array = unmap_q->unmap_array;
390 unmap_prod = unmap_q->producer_index;
391
392 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
393
394 while (to_alloc--) {
395 if (!wi_range)
396 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
397 wi_range);
398 skb = netdev_alloc_skb_ip_align(bnad->netdev,
399 rcb->rxq->buffer_size);
400 if (unlikely(!skb)) {
401 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
402 rcb->rxq->rxbuf_alloc_failed++;
403 goto finishing;
404 }
405 unmap_array[unmap_prod].skb = skb;
406 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
407 rcb->rxq->buffer_size,
408 DMA_FROM_DEVICE);
409 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
410 dma_addr);
411 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
412 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
413
414 rxent++;
415 wi_range--;
416 alloced++;
417 }
418
419 finishing:
420 if (likely(alloced)) {
421 unmap_q->producer_index = unmap_prod;
422 rcb->producer_index = unmap_prod;
423 smp_mb();
424 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
425 bna_rxq_prod_indx_doorbell(rcb);
426 }
427 }
428
429 static inline void
430 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
431 {
432 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
433
434 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
435 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
436 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
437 bnad_alloc_n_post_rxbufs(bnad, rcb);
438 smp_mb__before_clear_bit();
439 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
440 }
441 }
442
443 static u32
444 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
445 {
446 struct bna_cq_entry *cmpl, *next_cmpl;
447 struct bna_rcb *rcb = NULL;
448 unsigned int wi_range, packets = 0, wis = 0;
449 struct bnad_unmap_q *unmap_q;
450 struct bnad_skb_unmap *unmap_array;
451 struct sk_buff *skb;
452 u32 flags, unmap_cons;
453 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
454 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
455
456 set_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
457
458 if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)) {
459 clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
460 return 0;
461 }
462
463 prefetch(bnad->netdev);
464 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
465 wi_range);
466 BUG_ON(!(wi_range <= ccb->q_depth));
467 while (cmpl->valid && packets < budget) {
468 packets++;
469 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
470
471 if (bna_is_small_rxq(cmpl->rxq_id))
472 rcb = ccb->rcb[1];
473 else
474 rcb = ccb->rcb[0];
475
476 unmap_q = rcb->unmap_q;
477 unmap_array = unmap_q->unmap_array;
478 unmap_cons = unmap_q->consumer_index;
479
480 skb = unmap_array[unmap_cons].skb;
481 BUG_ON(!(skb));
482 unmap_array[unmap_cons].skb = NULL;
483 dma_unmap_single(&bnad->pcidev->dev,
484 dma_unmap_addr(&unmap_array[unmap_cons],
485 dma_addr),
486 rcb->rxq->buffer_size,
487 DMA_FROM_DEVICE);
488 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
489
490 /* Should be more efficient ? Performance ? */
491 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
492
493 wis++;
494 if (likely(--wi_range))
495 next_cmpl = cmpl + 1;
496 else {
497 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
498 wis = 0;
499 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
500 next_cmpl, wi_range);
501 BUG_ON(!(wi_range <= ccb->q_depth));
502 }
503 prefetch(next_cmpl);
504
505 flags = ntohl(cmpl->flags);
506 if (unlikely
507 (flags &
508 (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
509 BNA_CQ_EF_TOO_LONG))) {
510 dev_kfree_skb_any(skb);
511 rcb->rxq->rx_packets_with_error++;
512 goto next;
513 }
514
515 skb_put(skb, ntohs(cmpl->length));
516 if (likely
517 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
518 (((flags & BNA_CQ_EF_IPV4) &&
519 (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
520 (flags & BNA_CQ_EF_IPV6)) &&
521 (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
522 (flags & BNA_CQ_EF_L4_CKSUM_OK)))
523 skb->ip_summed = CHECKSUM_UNNECESSARY;
524 else
525 skb_checksum_none_assert(skb);
526
527 rcb->rxq->rx_packets++;
528 rcb->rxq->rx_bytes += skb->len;
529 skb->protocol = eth_type_trans(skb, bnad->netdev);
530
531 if (flags & BNA_CQ_EF_VLAN)
532 __vlan_hwaccel_put_tag(skb, ntohs(cmpl->vlan_tag));
533
534 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
535 napi_gro_receive(&rx_ctrl->napi, skb);
536 else {
537 netif_receive_skb(skb);
538 }
539
540 next:
541 cmpl->valid = 0;
542 cmpl = next_cmpl;
543 }
544
545 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
546
547 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
548 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
549
550 bnad_refill_rxq(bnad, ccb->rcb[0]);
551 if (ccb->rcb[1])
552 bnad_refill_rxq(bnad, ccb->rcb[1]);
553
554 clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
555
556 return packets;
557 }
558
559 static void
560 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
561 {
562 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
563 struct napi_struct *napi = &rx_ctrl->napi;
564
565 if (likely(napi_schedule_prep(napi))) {
566 __napi_schedule(napi);
567 rx_ctrl->rx_schedule++;
568 }
569 }
570
571 /* MSIX Rx Path Handler */
572 static irqreturn_t
573 bnad_msix_rx(int irq, void *data)
574 {
575 struct bna_ccb *ccb = (struct bna_ccb *)data;
576
577 if (ccb) {
578 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
579 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
580 }
581
582 return IRQ_HANDLED;
583 }
584
585 /* Interrupt handlers */
586
587 /* Mbox Interrupt Handlers */
588 static irqreturn_t
589 bnad_msix_mbox_handler(int irq, void *data)
590 {
591 u32 intr_status;
592 unsigned long flags;
593 struct bnad *bnad = (struct bnad *)data;
594
595 spin_lock_irqsave(&bnad->bna_lock, flags);
596 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
597 spin_unlock_irqrestore(&bnad->bna_lock, flags);
598 return IRQ_HANDLED;
599 }
600
601 bna_intr_status_get(&bnad->bna, intr_status);
602
603 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
604 bna_mbox_handler(&bnad->bna, intr_status);
605
606 spin_unlock_irqrestore(&bnad->bna_lock, flags);
607
608 return IRQ_HANDLED;
609 }
610
611 static irqreturn_t
612 bnad_isr(int irq, void *data)
613 {
614 int i, j;
615 u32 intr_status;
616 unsigned long flags;
617 struct bnad *bnad = (struct bnad *)data;
618 struct bnad_rx_info *rx_info;
619 struct bnad_rx_ctrl *rx_ctrl;
620 struct bna_tcb *tcb = NULL;
621
622 spin_lock_irqsave(&bnad->bna_lock, flags);
623 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
624 spin_unlock_irqrestore(&bnad->bna_lock, flags);
625 return IRQ_NONE;
626 }
627
628 bna_intr_status_get(&bnad->bna, intr_status);
629
630 if (unlikely(!intr_status)) {
631 spin_unlock_irqrestore(&bnad->bna_lock, flags);
632 return IRQ_NONE;
633 }
634
635 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
636 bna_mbox_handler(&bnad->bna, intr_status);
637
638 spin_unlock_irqrestore(&bnad->bna_lock, flags);
639
640 if (!BNA_IS_INTX_DATA_INTR(intr_status))
641 return IRQ_HANDLED;
642
643 /* Process data interrupts */
644 /* Tx processing */
645 for (i = 0; i < bnad->num_tx; i++) {
646 for (j = 0; j < bnad->num_txq_per_tx; j++) {
647 tcb = bnad->tx_info[i].tcb[j];
648 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
649 bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
650 }
651 }
652 /* Rx processing */
653 for (i = 0; i < bnad->num_rx; i++) {
654 rx_info = &bnad->rx_info[i];
655 if (!rx_info->rx)
656 continue;
657 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
658 rx_ctrl = &rx_info->rx_ctrl[j];
659 if (rx_ctrl->ccb)
660 bnad_netif_rx_schedule_poll(bnad,
661 rx_ctrl->ccb);
662 }
663 }
664 return IRQ_HANDLED;
665 }
666
667 /*
668 * Called in interrupt / callback context
669 * with bna_lock held, so cfg_flags access is OK
670 */
671 static void
672 bnad_enable_mbox_irq(struct bnad *bnad)
673 {
674 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
675
676 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
677 }
678
679 /*
680 * Called with bnad->bna_lock held b'cos of
681 * bnad->cfg_flags access.
682 */
683 static void
684 bnad_disable_mbox_irq(struct bnad *bnad)
685 {
686 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
687
688 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
689 }
690
691 static void
692 bnad_set_netdev_perm_addr(struct bnad *bnad)
693 {
694 struct net_device *netdev = bnad->netdev;
695
696 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
697 if (is_zero_ether_addr(netdev->dev_addr))
698 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
699 }
700
701 /* Control Path Handlers */
702
703 /* Callbacks */
704 void
705 bnad_cb_mbox_intr_enable(struct bnad *bnad)
706 {
707 bnad_enable_mbox_irq(bnad);
708 }
709
710 void
711 bnad_cb_mbox_intr_disable(struct bnad *bnad)
712 {
713 bnad_disable_mbox_irq(bnad);
714 }
715
716 void
717 bnad_cb_ioceth_ready(struct bnad *bnad)
718 {
719 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
720 complete(&bnad->bnad_completions.ioc_comp);
721 }
722
723 void
724 bnad_cb_ioceth_failed(struct bnad *bnad)
725 {
726 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
727 complete(&bnad->bnad_completions.ioc_comp);
728 }
729
730 void
731 bnad_cb_ioceth_disabled(struct bnad *bnad)
732 {
733 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
734 complete(&bnad->bnad_completions.ioc_comp);
735 }
736
737 static void
738 bnad_cb_enet_disabled(void *arg)
739 {
740 struct bnad *bnad = (struct bnad *)arg;
741
742 netif_carrier_off(bnad->netdev);
743 complete(&bnad->bnad_completions.enet_comp);
744 }
745
746 void
747 bnad_cb_ethport_link_status(struct bnad *bnad,
748 enum bna_link_status link_status)
749 {
750 bool link_up = false;
751
752 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
753
754 if (link_status == BNA_CEE_UP) {
755 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
756 BNAD_UPDATE_CTR(bnad, cee_toggle);
757 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
758 } else {
759 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
760 BNAD_UPDATE_CTR(bnad, cee_toggle);
761 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
762 }
763
764 if (link_up) {
765 if (!netif_carrier_ok(bnad->netdev)) {
766 uint tx_id, tcb_id;
767 printk(KERN_WARNING "bna: %s link up\n",
768 bnad->netdev->name);
769 netif_carrier_on(bnad->netdev);
770 BNAD_UPDATE_CTR(bnad, link_toggle);
771 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
772 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
773 tcb_id++) {
774 struct bna_tcb *tcb =
775 bnad->tx_info[tx_id].tcb[tcb_id];
776 u32 txq_id;
777 if (!tcb)
778 continue;
779
780 txq_id = tcb->id;
781
782 if (test_bit(BNAD_TXQ_TX_STARTED,
783 &tcb->flags)) {
784 /*
785 * Force an immediate
786 * Transmit Schedule */
787 printk(KERN_INFO "bna: %s %d "
788 "TXQ_STARTED\n",
789 bnad->netdev->name,
790 txq_id);
791 netif_wake_subqueue(
792 bnad->netdev,
793 txq_id);
794 BNAD_UPDATE_CTR(bnad,
795 netif_queue_wakeup);
796 } else {
797 netif_stop_subqueue(
798 bnad->netdev,
799 txq_id);
800 BNAD_UPDATE_CTR(bnad,
801 netif_queue_stop);
802 }
803 }
804 }
805 }
806 } else {
807 if (netif_carrier_ok(bnad->netdev)) {
808 printk(KERN_WARNING "bna: %s link down\n",
809 bnad->netdev->name);
810 netif_carrier_off(bnad->netdev);
811 BNAD_UPDATE_CTR(bnad, link_toggle);
812 }
813 }
814 }
815
816 static void
817 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
818 {
819 struct bnad *bnad = (struct bnad *)arg;
820
821 complete(&bnad->bnad_completions.tx_comp);
822 }
823
824 static void
825 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
826 {
827 struct bnad_tx_info *tx_info =
828 (struct bnad_tx_info *)tcb->txq->tx->priv;
829 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
830
831 tx_info->tcb[tcb->id] = tcb;
832 unmap_q->producer_index = 0;
833 unmap_q->consumer_index = 0;
834 unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
835 }
836
837 static void
838 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
839 {
840 struct bnad_tx_info *tx_info =
841 (struct bnad_tx_info *)tcb->txq->tx->priv;
842 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
843
844 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
845 cpu_relax();
846
847 bnad_free_all_txbufs(bnad, tcb);
848
849 unmap_q->producer_index = 0;
850 unmap_q->consumer_index = 0;
851
852 smp_mb__before_clear_bit();
853 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
854
855 tx_info->tcb[tcb->id] = NULL;
856 }
857
858 static void
859 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
860 {
861 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
862
863 unmap_q->producer_index = 0;
864 unmap_q->consumer_index = 0;
865 unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
866 }
867
868 static void
869 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
870 {
871 bnad_free_all_rxbufs(bnad, rcb);
872 }
873
874 static void
875 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
876 {
877 struct bnad_rx_info *rx_info =
878 (struct bnad_rx_info *)ccb->cq->rx->priv;
879
880 rx_info->rx_ctrl[ccb->id].ccb = ccb;
881 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
882 }
883
884 static void
885 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
886 {
887 struct bnad_rx_info *rx_info =
888 (struct bnad_rx_info *)ccb->cq->rx->priv;
889
890 rx_info->rx_ctrl[ccb->id].ccb = NULL;
891 }
892
893 static void
894 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
895 {
896 struct bnad_tx_info *tx_info =
897 (struct bnad_tx_info *)tx->priv;
898 struct bna_tcb *tcb;
899 u32 txq_id;
900 int i;
901
902 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
903 tcb = tx_info->tcb[i];
904 if (!tcb)
905 continue;
906 txq_id = tcb->id;
907 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
908 netif_stop_subqueue(bnad->netdev, txq_id);
909 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
910 bnad->netdev->name, txq_id);
911 }
912 }
913
914 static void
915 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
916 {
917 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
918 struct bna_tcb *tcb;
919 struct bnad_unmap_q *unmap_q;
920 u32 txq_id;
921 int i;
922
923 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
924 tcb = tx_info->tcb[i];
925 if (!tcb)
926 continue;
927 txq_id = tcb->id;
928
929 unmap_q = tcb->unmap_q;
930
931 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
932 continue;
933
934 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
935 cpu_relax();
936
937 bnad_free_all_txbufs(bnad, tcb);
938
939 unmap_q->producer_index = 0;
940 unmap_q->consumer_index = 0;
941
942 smp_mb__before_clear_bit();
943 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
944
945 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
946
947 if (netif_carrier_ok(bnad->netdev)) {
948 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
949 bnad->netdev->name, txq_id);
950 netif_wake_subqueue(bnad->netdev, txq_id);
951 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
952 }
953 }
954
955 /*
956 * Workaround for first ioceth enable failure & we
957 * get a 0 MAC address. We try to get the MAC address
958 * again here.
959 */
960 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
961 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
962 bnad_set_netdev_perm_addr(bnad);
963 }
964 }
965
966 static void
967 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
968 {
969 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
970 struct bna_tcb *tcb;
971 int i;
972
973 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
974 tcb = tx_info->tcb[i];
975 if (!tcb)
976 continue;
977 }
978
979 mdelay(BNAD_TXRX_SYNC_MDELAY);
980 bna_tx_cleanup_complete(tx);
981 }
982
983 static void
984 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
985 {
986 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
987 struct bna_ccb *ccb;
988 struct bnad_rx_ctrl *rx_ctrl;
989 int i;
990
991 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
992 rx_ctrl = &rx_info->rx_ctrl[i];
993 ccb = rx_ctrl->ccb;
994 if (!ccb)
995 continue;
996
997 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
998
999 if (ccb->rcb[1])
1000 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1001 }
1002 }
1003
1004 static void
1005 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1006 {
1007 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1008 struct bna_ccb *ccb;
1009 struct bnad_rx_ctrl *rx_ctrl;
1010 int i;
1011
1012 mdelay(BNAD_TXRX_SYNC_MDELAY);
1013
1014 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1015 rx_ctrl = &rx_info->rx_ctrl[i];
1016 ccb = rx_ctrl->ccb;
1017 if (!ccb)
1018 continue;
1019
1020 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1021
1022 if (ccb->rcb[1])
1023 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1024
1025 while (test_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags))
1026 cpu_relax();
1027 }
1028
1029 bna_rx_cleanup_complete(rx);
1030 }
1031
1032 static void
1033 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1034 {
1035 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1036 struct bna_ccb *ccb;
1037 struct bna_rcb *rcb;
1038 struct bnad_rx_ctrl *rx_ctrl;
1039 struct bnad_unmap_q *unmap_q;
1040 int i;
1041 int j;
1042
1043 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1044 rx_ctrl = &rx_info->rx_ctrl[i];
1045 ccb = rx_ctrl->ccb;
1046 if (!ccb)
1047 continue;
1048
1049 bnad_cq_cmpl_init(bnad, ccb);
1050
1051 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1052 rcb = ccb->rcb[j];
1053 if (!rcb)
1054 continue;
1055 bnad_free_all_rxbufs(bnad, rcb);
1056
1057 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1058 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1059 unmap_q = rcb->unmap_q;
1060
1061 /* Now allocate & post buffers for this RCB */
1062 /* !!Allocation in callback context */
1063 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
1064 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
1065 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
1066 bnad_alloc_n_post_rxbufs(bnad, rcb);
1067 smp_mb__before_clear_bit();
1068 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
1069 }
1070 }
1071 }
1072 }
1073
1074 static void
1075 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1076 {
1077 struct bnad *bnad = (struct bnad *)arg;
1078
1079 complete(&bnad->bnad_completions.rx_comp);
1080 }
1081
1082 static void
1083 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1084 {
1085 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1086 complete(&bnad->bnad_completions.mcast_comp);
1087 }
1088
1089 void
1090 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1091 struct bna_stats *stats)
1092 {
1093 if (status == BNA_CB_SUCCESS)
1094 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1095
1096 if (!netif_running(bnad->netdev) ||
1097 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1098 return;
1099
1100 mod_timer(&bnad->stats_timer,
1101 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1102 }
1103
1104 static void
1105 bnad_cb_enet_mtu_set(struct bnad *bnad)
1106 {
1107 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1108 complete(&bnad->bnad_completions.mtu_comp);
1109 }
1110
1111 void
1112 bnad_cb_completion(void *arg, enum bfa_status status)
1113 {
1114 struct bnad_iocmd_comp *iocmd_comp =
1115 (struct bnad_iocmd_comp *)arg;
1116
1117 iocmd_comp->comp_status = (u32) status;
1118 complete(&iocmd_comp->comp);
1119 }
1120
1121 /* Resource allocation, free functions */
1122
1123 static void
1124 bnad_mem_free(struct bnad *bnad,
1125 struct bna_mem_info *mem_info)
1126 {
1127 int i;
1128 dma_addr_t dma_pa;
1129
1130 if (mem_info->mdl == NULL)
1131 return;
1132
1133 for (i = 0; i < mem_info->num; i++) {
1134 if (mem_info->mdl[i].kva != NULL) {
1135 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1136 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1137 dma_pa);
1138 dma_free_coherent(&bnad->pcidev->dev,
1139 mem_info->mdl[i].len,
1140 mem_info->mdl[i].kva, dma_pa);
1141 } else
1142 kfree(mem_info->mdl[i].kva);
1143 }
1144 }
1145 kfree(mem_info->mdl);
1146 mem_info->mdl = NULL;
1147 }
1148
1149 static int
1150 bnad_mem_alloc(struct bnad *bnad,
1151 struct bna_mem_info *mem_info)
1152 {
1153 int i;
1154 dma_addr_t dma_pa;
1155
1156 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1157 mem_info->mdl = NULL;
1158 return 0;
1159 }
1160
1161 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1162 GFP_KERNEL);
1163 if (mem_info->mdl == NULL)
1164 return -ENOMEM;
1165
1166 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1167 for (i = 0; i < mem_info->num; i++) {
1168 mem_info->mdl[i].len = mem_info->len;
1169 mem_info->mdl[i].kva =
1170 dma_alloc_coherent(&bnad->pcidev->dev,
1171 mem_info->len, &dma_pa,
1172 GFP_KERNEL);
1173
1174 if (mem_info->mdl[i].kva == NULL)
1175 goto err_return;
1176
1177 BNA_SET_DMA_ADDR(dma_pa,
1178 &(mem_info->mdl[i].dma));
1179 }
1180 } else {
1181 for (i = 0; i < mem_info->num; i++) {
1182 mem_info->mdl[i].len = mem_info->len;
1183 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1184 GFP_KERNEL);
1185 if (mem_info->mdl[i].kva == NULL)
1186 goto err_return;
1187 }
1188 }
1189
1190 return 0;
1191
1192 err_return:
1193 bnad_mem_free(bnad, mem_info);
1194 return -ENOMEM;
1195 }
1196
1197 /* Free IRQ for Mailbox */
1198 static void
1199 bnad_mbox_irq_free(struct bnad *bnad)
1200 {
1201 int irq;
1202 unsigned long flags;
1203
1204 spin_lock_irqsave(&bnad->bna_lock, flags);
1205 bnad_disable_mbox_irq(bnad);
1206 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1207
1208 irq = BNAD_GET_MBOX_IRQ(bnad);
1209 free_irq(irq, bnad);
1210 }
1211
1212 /*
1213 * Allocates IRQ for Mailbox, but keep it disabled
1214 * This will be enabled once we get the mbox enable callback
1215 * from bna
1216 */
1217 static int
1218 bnad_mbox_irq_alloc(struct bnad *bnad)
1219 {
1220 int err = 0;
1221 unsigned long irq_flags, flags;
1222 u32 irq;
1223 irq_handler_t irq_handler;
1224
1225 spin_lock_irqsave(&bnad->bna_lock, flags);
1226 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1227 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1228 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1229 irq_flags = 0;
1230 } else {
1231 irq_handler = (irq_handler_t)bnad_isr;
1232 irq = bnad->pcidev->irq;
1233 irq_flags = IRQF_SHARED;
1234 }
1235
1236 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1237 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1238
1239 /*
1240 * Set the Mbox IRQ disable flag, so that the IRQ handler
1241 * called from request_irq() for SHARED IRQs do not execute
1242 */
1243 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1244
1245 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1246
1247 err = request_irq(irq, irq_handler, irq_flags,
1248 bnad->mbox_irq_name, bnad);
1249
1250 return err;
1251 }
1252
1253 static void
1254 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1255 {
1256 kfree(intr_info->idl);
1257 intr_info->idl = NULL;
1258 }
1259
1260 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1261 static int
1262 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1263 u32 txrx_id, struct bna_intr_info *intr_info)
1264 {
1265 int i, vector_start = 0;
1266 u32 cfg_flags;
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&bnad->bna_lock, flags);
1270 cfg_flags = bnad->cfg_flags;
1271 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1272
1273 if (cfg_flags & BNAD_CF_MSIX) {
1274 intr_info->intr_type = BNA_INTR_T_MSIX;
1275 intr_info->idl = kcalloc(intr_info->num,
1276 sizeof(struct bna_intr_descr),
1277 GFP_KERNEL);
1278 if (!intr_info->idl)
1279 return -ENOMEM;
1280
1281 switch (src) {
1282 case BNAD_INTR_TX:
1283 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1284 break;
1285
1286 case BNAD_INTR_RX:
1287 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1288 (bnad->num_tx * bnad->num_txq_per_tx) +
1289 txrx_id;
1290 break;
1291
1292 default:
1293 BUG();
1294 }
1295
1296 for (i = 0; i < intr_info->num; i++)
1297 intr_info->idl[i].vector = vector_start + i;
1298 } else {
1299 intr_info->intr_type = BNA_INTR_T_INTX;
1300 intr_info->num = 1;
1301 intr_info->idl = kcalloc(intr_info->num,
1302 sizeof(struct bna_intr_descr),
1303 GFP_KERNEL);
1304 if (!intr_info->idl)
1305 return -ENOMEM;
1306
1307 switch (src) {
1308 case BNAD_INTR_TX:
1309 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1310 break;
1311
1312 case BNAD_INTR_RX:
1313 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1314 break;
1315 }
1316 }
1317 return 0;
1318 }
1319
1320 /**
1321 * NOTE: Should be called for MSIX only
1322 * Unregisters Tx MSIX vector(s) from the kernel
1323 */
1324 static void
1325 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1326 int num_txqs)
1327 {
1328 int i;
1329 int vector_num;
1330
1331 for (i = 0; i < num_txqs; i++) {
1332 if (tx_info->tcb[i] == NULL)
1333 continue;
1334
1335 vector_num = tx_info->tcb[i]->intr_vector;
1336 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1337 }
1338 }
1339
1340 /**
1341 * NOTE: Should be called for MSIX only
1342 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1343 */
1344 static int
1345 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1346 u32 tx_id, int num_txqs)
1347 {
1348 int i;
1349 int err;
1350 int vector_num;
1351
1352 for (i = 0; i < num_txqs; i++) {
1353 vector_num = tx_info->tcb[i]->intr_vector;
1354 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1355 tx_id + tx_info->tcb[i]->id);
1356 err = request_irq(bnad->msix_table[vector_num].vector,
1357 (irq_handler_t)bnad_msix_tx, 0,
1358 tx_info->tcb[i]->name,
1359 tx_info->tcb[i]);
1360 if (err)
1361 goto err_return;
1362 }
1363
1364 return 0;
1365
1366 err_return:
1367 if (i > 0)
1368 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1369 return -1;
1370 }
1371
1372 /**
1373 * NOTE: Should be called for MSIX only
1374 * Unregisters Rx MSIX vector(s) from the kernel
1375 */
1376 static void
1377 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1378 int num_rxps)
1379 {
1380 int i;
1381 int vector_num;
1382
1383 for (i = 0; i < num_rxps; i++) {
1384 if (rx_info->rx_ctrl[i].ccb == NULL)
1385 continue;
1386
1387 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1388 free_irq(bnad->msix_table[vector_num].vector,
1389 rx_info->rx_ctrl[i].ccb);
1390 }
1391 }
1392
1393 /**
1394 * NOTE: Should be called for MSIX only
1395 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1396 */
1397 static int
1398 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1399 u32 rx_id, int num_rxps)
1400 {
1401 int i;
1402 int err;
1403 int vector_num;
1404
1405 for (i = 0; i < num_rxps; i++) {
1406 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1407 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1408 bnad->netdev->name,
1409 rx_id + rx_info->rx_ctrl[i].ccb->id);
1410 err = request_irq(bnad->msix_table[vector_num].vector,
1411 (irq_handler_t)bnad_msix_rx, 0,
1412 rx_info->rx_ctrl[i].ccb->name,
1413 rx_info->rx_ctrl[i].ccb);
1414 if (err)
1415 goto err_return;
1416 }
1417
1418 return 0;
1419
1420 err_return:
1421 if (i > 0)
1422 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1423 return -1;
1424 }
1425
1426 /* Free Tx object Resources */
1427 static void
1428 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1429 {
1430 int i;
1431
1432 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1433 if (res_info[i].res_type == BNA_RES_T_MEM)
1434 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1435 else if (res_info[i].res_type == BNA_RES_T_INTR)
1436 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1437 }
1438 }
1439
1440 /* Allocates memory and interrupt resources for Tx object */
1441 static int
1442 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1443 u32 tx_id)
1444 {
1445 int i, err = 0;
1446
1447 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1448 if (res_info[i].res_type == BNA_RES_T_MEM)
1449 err = bnad_mem_alloc(bnad,
1450 &res_info[i].res_u.mem_info);
1451 else if (res_info[i].res_type == BNA_RES_T_INTR)
1452 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1453 &res_info[i].res_u.intr_info);
1454 if (err)
1455 goto err_return;
1456 }
1457 return 0;
1458
1459 err_return:
1460 bnad_tx_res_free(bnad, res_info);
1461 return err;
1462 }
1463
1464 /* Free Rx object Resources */
1465 static void
1466 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1467 {
1468 int i;
1469
1470 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1471 if (res_info[i].res_type == BNA_RES_T_MEM)
1472 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1473 else if (res_info[i].res_type == BNA_RES_T_INTR)
1474 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1475 }
1476 }
1477
1478 /* Allocates memory and interrupt resources for Rx object */
1479 static int
1480 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1481 uint rx_id)
1482 {
1483 int i, err = 0;
1484
1485 /* All memory needs to be allocated before setup_ccbs */
1486 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1487 if (res_info[i].res_type == BNA_RES_T_MEM)
1488 err = bnad_mem_alloc(bnad,
1489 &res_info[i].res_u.mem_info);
1490 else if (res_info[i].res_type == BNA_RES_T_INTR)
1491 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1492 &res_info[i].res_u.intr_info);
1493 if (err)
1494 goto err_return;
1495 }
1496 return 0;
1497
1498 err_return:
1499 bnad_rx_res_free(bnad, res_info);
1500 return err;
1501 }
1502
1503 /* Timer callbacks */
1504 /* a) IOC timer */
1505 static void
1506 bnad_ioc_timeout(unsigned long data)
1507 {
1508 struct bnad *bnad = (struct bnad *)data;
1509 unsigned long flags;
1510
1511 spin_lock_irqsave(&bnad->bna_lock, flags);
1512 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1513 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1514 }
1515
1516 static void
1517 bnad_ioc_hb_check(unsigned long data)
1518 {
1519 struct bnad *bnad = (struct bnad *)data;
1520 unsigned long flags;
1521
1522 spin_lock_irqsave(&bnad->bna_lock, flags);
1523 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1524 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1525 }
1526
1527 static void
1528 bnad_iocpf_timeout(unsigned long data)
1529 {
1530 struct bnad *bnad = (struct bnad *)data;
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&bnad->bna_lock, flags);
1534 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1535 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1536 }
1537
1538 static void
1539 bnad_iocpf_sem_timeout(unsigned long data)
1540 {
1541 struct bnad *bnad = (struct bnad *)data;
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&bnad->bna_lock, flags);
1545 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1546 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1547 }
1548
1549 /*
1550 * All timer routines use bnad->bna_lock to protect against
1551 * the following race, which may occur in case of no locking:
1552 * Time CPU m CPU n
1553 * 0 1 = test_bit
1554 * 1 clear_bit
1555 * 2 del_timer_sync
1556 * 3 mod_timer
1557 */
1558
1559 /* b) Dynamic Interrupt Moderation Timer */
1560 static void
1561 bnad_dim_timeout(unsigned long data)
1562 {
1563 struct bnad *bnad = (struct bnad *)data;
1564 struct bnad_rx_info *rx_info;
1565 struct bnad_rx_ctrl *rx_ctrl;
1566 int i, j;
1567 unsigned long flags;
1568
1569 if (!netif_carrier_ok(bnad->netdev))
1570 return;
1571
1572 spin_lock_irqsave(&bnad->bna_lock, flags);
1573 for (i = 0; i < bnad->num_rx; i++) {
1574 rx_info = &bnad->rx_info[i];
1575 if (!rx_info->rx)
1576 continue;
1577 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1578 rx_ctrl = &rx_info->rx_ctrl[j];
1579 if (!rx_ctrl->ccb)
1580 continue;
1581 bna_rx_dim_update(rx_ctrl->ccb);
1582 }
1583 }
1584
1585 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1586 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1587 mod_timer(&bnad->dim_timer,
1588 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1589 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1590 }
1591
1592 /* c) Statistics Timer */
1593 static void
1594 bnad_stats_timeout(unsigned long data)
1595 {
1596 struct bnad *bnad = (struct bnad *)data;
1597 unsigned long flags;
1598
1599 if (!netif_running(bnad->netdev) ||
1600 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1601 return;
1602
1603 spin_lock_irqsave(&bnad->bna_lock, flags);
1604 bna_hw_stats_get(&bnad->bna);
1605 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1606 }
1607
1608 /*
1609 * Set up timer for DIM
1610 * Called with bnad->bna_lock held
1611 */
1612 void
1613 bnad_dim_timer_start(struct bnad *bnad)
1614 {
1615 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1616 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1617 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1618 (unsigned long)bnad);
1619 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1620 mod_timer(&bnad->dim_timer,
1621 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1622 }
1623 }
1624
1625 /*
1626 * Set up timer for statistics
1627 * Called with mutex_lock(&bnad->conf_mutex) held
1628 */
1629 static void
1630 bnad_stats_timer_start(struct bnad *bnad)
1631 {
1632 unsigned long flags;
1633
1634 spin_lock_irqsave(&bnad->bna_lock, flags);
1635 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1636 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1637 (unsigned long)bnad);
1638 mod_timer(&bnad->stats_timer,
1639 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1640 }
1641 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1642 }
1643
1644 /*
1645 * Stops the stats timer
1646 * Called with mutex_lock(&bnad->conf_mutex) held
1647 */
1648 static void
1649 bnad_stats_timer_stop(struct bnad *bnad)
1650 {
1651 int to_del = 0;
1652 unsigned long flags;
1653
1654 spin_lock_irqsave(&bnad->bna_lock, flags);
1655 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1656 to_del = 1;
1657 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1658 if (to_del)
1659 del_timer_sync(&bnad->stats_timer);
1660 }
1661
1662 /* Utilities */
1663
1664 static void
1665 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1666 {
1667 int i = 1; /* Index 0 has broadcast address */
1668 struct netdev_hw_addr *mc_addr;
1669
1670 netdev_for_each_mc_addr(mc_addr, netdev) {
1671 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1672 ETH_ALEN);
1673 i++;
1674 }
1675 }
1676
1677 static int
1678 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1679 {
1680 struct bnad_rx_ctrl *rx_ctrl =
1681 container_of(napi, struct bnad_rx_ctrl, napi);
1682 struct bnad *bnad = rx_ctrl->bnad;
1683 int rcvd = 0;
1684
1685 rx_ctrl->rx_poll_ctr++;
1686
1687 if (!netif_carrier_ok(bnad->netdev))
1688 goto poll_exit;
1689
1690 rcvd = bnad_poll_cq(bnad, rx_ctrl->ccb, budget);
1691 if (rcvd >= budget)
1692 return rcvd;
1693
1694 poll_exit:
1695 napi_complete(napi);
1696
1697 rx_ctrl->rx_complete++;
1698
1699 if (rx_ctrl->ccb)
1700 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1701
1702 return rcvd;
1703 }
1704
1705 #define BNAD_NAPI_POLL_QUOTA 64
1706 static void
1707 bnad_napi_init(struct bnad *bnad, u32 rx_id)
1708 {
1709 struct bnad_rx_ctrl *rx_ctrl;
1710 int i;
1711
1712 /* Initialize & enable NAPI */
1713 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1714 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1715 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1716 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1717 }
1718 }
1719
1720 static void
1721 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1722 {
1723 struct bnad_rx_ctrl *rx_ctrl;
1724 int i;
1725
1726 /* Initialize & enable NAPI */
1727 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1728 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1729
1730 napi_enable(&rx_ctrl->napi);
1731 }
1732 }
1733
1734 static void
1735 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1736 {
1737 int i;
1738
1739 /* First disable and then clean up */
1740 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1741 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1742 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1743 }
1744 }
1745
1746 /* Should be held with conf_lock held */
1747 void
1748 bnad_cleanup_tx(struct bnad *bnad, u32 tx_id)
1749 {
1750 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1751 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1752 unsigned long flags;
1753
1754 if (!tx_info->tx)
1755 return;
1756
1757 init_completion(&bnad->bnad_completions.tx_comp);
1758 spin_lock_irqsave(&bnad->bna_lock, flags);
1759 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1760 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1761 wait_for_completion(&bnad->bnad_completions.tx_comp);
1762
1763 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1764 bnad_tx_msix_unregister(bnad, tx_info,
1765 bnad->num_txq_per_tx);
1766
1767 if (0 == tx_id)
1768 tasklet_kill(&bnad->tx_free_tasklet);
1769
1770 spin_lock_irqsave(&bnad->bna_lock, flags);
1771 bna_tx_destroy(tx_info->tx);
1772 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1773
1774 tx_info->tx = NULL;
1775 tx_info->tx_id = 0;
1776
1777 bnad_tx_res_free(bnad, res_info);
1778 }
1779
1780 /* Should be held with conf_lock held */
1781 int
1782 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1783 {
1784 int err;
1785 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1786 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1787 struct bna_intr_info *intr_info =
1788 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1789 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1790 static const struct bna_tx_event_cbfn tx_cbfn = {
1791 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1792 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1793 .tx_stall_cbfn = bnad_cb_tx_stall,
1794 .tx_resume_cbfn = bnad_cb_tx_resume,
1795 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1796 };
1797
1798 struct bna_tx *tx;
1799 unsigned long flags;
1800
1801 tx_info->tx_id = tx_id;
1802
1803 /* Initialize the Tx object configuration */
1804 tx_config->num_txq = bnad->num_txq_per_tx;
1805 tx_config->txq_depth = bnad->txq_depth;
1806 tx_config->tx_type = BNA_TX_T_REGULAR;
1807 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1808
1809 /* Get BNA's resource requirement for one tx object */
1810 spin_lock_irqsave(&bnad->bna_lock, flags);
1811 bna_tx_res_req(bnad->num_txq_per_tx,
1812 bnad->txq_depth, res_info);
1813 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1814
1815 /* Fill Unmap Q memory requirements */
1816 BNAD_FILL_UNMAPQ_MEM_REQ(
1817 &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1818 bnad->num_txq_per_tx,
1819 BNAD_TX_UNMAPQ_DEPTH);
1820
1821 /* Allocate resources */
1822 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1823 if (err)
1824 return err;
1825
1826 /* Ask BNA to create one Tx object, supplying required resources */
1827 spin_lock_irqsave(&bnad->bna_lock, flags);
1828 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1829 tx_info);
1830 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1831 if (!tx)
1832 goto err_return;
1833 tx_info->tx = tx;
1834
1835 /* Register ISR for the Tx object */
1836 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1837 err = bnad_tx_msix_register(bnad, tx_info,
1838 tx_id, bnad->num_txq_per_tx);
1839 if (err)
1840 goto err_return;
1841 }
1842
1843 spin_lock_irqsave(&bnad->bna_lock, flags);
1844 bna_tx_enable(tx);
1845 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1846
1847 return 0;
1848
1849 err_return:
1850 bnad_tx_res_free(bnad, res_info);
1851 return err;
1852 }
1853
1854 /* Setup the rx config for bna_rx_create */
1855 /* bnad decides the configuration */
1856 static void
1857 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1858 {
1859 rx_config->rx_type = BNA_RX_T_REGULAR;
1860 rx_config->num_paths = bnad->num_rxp_per_rx;
1861 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1862
1863 if (bnad->num_rxp_per_rx > 1) {
1864 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1865 rx_config->rss_config.hash_type =
1866 (BFI_ENET_RSS_IPV6 |
1867 BFI_ENET_RSS_IPV6_TCP |
1868 BFI_ENET_RSS_IPV4 |
1869 BFI_ENET_RSS_IPV4_TCP);
1870 rx_config->rss_config.hash_mask =
1871 bnad->num_rxp_per_rx - 1;
1872 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1873 sizeof(rx_config->rss_config.toeplitz_hash_key));
1874 } else {
1875 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1876 memset(&rx_config->rss_config, 0,
1877 sizeof(rx_config->rss_config));
1878 }
1879 rx_config->rxp_type = BNA_RXP_SLR;
1880 rx_config->q_depth = bnad->rxq_depth;
1881
1882 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1883
1884 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1885 }
1886
1887 static void
1888 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1889 {
1890 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1891 int i;
1892
1893 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1894 rx_info->rx_ctrl[i].bnad = bnad;
1895 }
1896
1897 /* Called with mutex_lock(&bnad->conf_mutex) held */
1898 void
1899 bnad_cleanup_rx(struct bnad *bnad, u32 rx_id)
1900 {
1901 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1902 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1903 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1904 unsigned long flags;
1905 int to_del = 0;
1906
1907 if (!rx_info->rx)
1908 return;
1909
1910 if (0 == rx_id) {
1911 spin_lock_irqsave(&bnad->bna_lock, flags);
1912 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1913 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1914 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1915 to_del = 1;
1916 }
1917 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1918 if (to_del)
1919 del_timer_sync(&bnad->dim_timer);
1920 }
1921
1922 init_completion(&bnad->bnad_completions.rx_comp);
1923 spin_lock_irqsave(&bnad->bna_lock, flags);
1924 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1925 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1926 wait_for_completion(&bnad->bnad_completions.rx_comp);
1927
1928 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1929 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1930
1931 bnad_napi_disable(bnad, rx_id);
1932
1933 spin_lock_irqsave(&bnad->bna_lock, flags);
1934 bna_rx_destroy(rx_info->rx);
1935
1936 rx_info->rx = NULL;
1937 rx_info->rx_id = 0;
1938 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1939
1940 bnad_rx_res_free(bnad, res_info);
1941 }
1942
1943 /* Called with mutex_lock(&bnad->conf_mutex) held */
1944 int
1945 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
1946 {
1947 int err;
1948 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1949 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1950 struct bna_intr_info *intr_info =
1951 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1952 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1953 static const struct bna_rx_event_cbfn rx_cbfn = {
1954 .rcb_setup_cbfn = bnad_cb_rcb_setup,
1955 .rcb_destroy_cbfn = bnad_cb_rcb_destroy,
1956 .ccb_setup_cbfn = bnad_cb_ccb_setup,
1957 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
1958 .rx_stall_cbfn = bnad_cb_rx_stall,
1959 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
1960 .rx_post_cbfn = bnad_cb_rx_post,
1961 };
1962 struct bna_rx *rx;
1963 unsigned long flags;
1964
1965 rx_info->rx_id = rx_id;
1966
1967 /* Initialize the Rx object configuration */
1968 bnad_init_rx_config(bnad, rx_config);
1969
1970 /* Get BNA's resource requirement for one Rx object */
1971 spin_lock_irqsave(&bnad->bna_lock, flags);
1972 bna_rx_res_req(rx_config, res_info);
1973 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1974
1975 /* Fill Unmap Q memory requirements */
1976 BNAD_FILL_UNMAPQ_MEM_REQ(
1977 &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1978 rx_config->num_paths +
1979 ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1980 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1981
1982 /* Allocate resource */
1983 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1984 if (err)
1985 return err;
1986
1987 bnad_rx_ctrl_init(bnad, rx_id);
1988
1989 /* Ask BNA to create one Rx object, supplying required resources */
1990 spin_lock_irqsave(&bnad->bna_lock, flags);
1991 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1992 rx_info);
1993 if (!rx) {
1994 err = -ENOMEM;
1995 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1996 goto err_return;
1997 }
1998 rx_info->rx = rx;
1999 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2000
2001 /*
2002 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2003 * so that IRQ handler cannot schedule NAPI at this point.
2004 */
2005 bnad_napi_init(bnad, rx_id);
2006
2007 /* Register ISR for the Rx object */
2008 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2009 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2010 rx_config->num_paths);
2011 if (err)
2012 goto err_return;
2013 }
2014
2015 spin_lock_irqsave(&bnad->bna_lock, flags);
2016 if (0 == rx_id) {
2017 /* Set up Dynamic Interrupt Moderation Vector */
2018 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2019 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2020
2021 /* Enable VLAN filtering only on the default Rx */
2022 bna_rx_vlanfilter_enable(rx);
2023
2024 /* Start the DIM timer */
2025 bnad_dim_timer_start(bnad);
2026 }
2027
2028 bna_rx_enable(rx);
2029 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2030
2031 /* Enable scheduling of NAPI */
2032 bnad_napi_enable(bnad, rx_id);
2033
2034 return 0;
2035
2036 err_return:
2037 bnad_cleanup_rx(bnad, rx_id);
2038 return err;
2039 }
2040
2041 /* Called with conf_lock & bnad->bna_lock held */
2042 void
2043 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2044 {
2045 struct bnad_tx_info *tx_info;
2046
2047 tx_info = &bnad->tx_info[0];
2048 if (!tx_info->tx)
2049 return;
2050
2051 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2052 }
2053
2054 /* Called with conf_lock & bnad->bna_lock held */
2055 void
2056 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2057 {
2058 struct bnad_rx_info *rx_info;
2059 int i;
2060
2061 for (i = 0; i < bnad->num_rx; i++) {
2062 rx_info = &bnad->rx_info[i];
2063 if (!rx_info->rx)
2064 continue;
2065 bna_rx_coalescing_timeo_set(rx_info->rx,
2066 bnad->rx_coalescing_timeo);
2067 }
2068 }
2069
2070 /*
2071 * Called with bnad->bna_lock held
2072 */
2073 int
2074 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2075 {
2076 int ret;
2077
2078 if (!is_valid_ether_addr(mac_addr))
2079 return -EADDRNOTAVAIL;
2080
2081 /* If datapath is down, pretend everything went through */
2082 if (!bnad->rx_info[0].rx)
2083 return 0;
2084
2085 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2086 if (ret != BNA_CB_SUCCESS)
2087 return -EADDRNOTAVAIL;
2088
2089 return 0;
2090 }
2091
2092 /* Should be called with conf_lock held */
2093 int
2094 bnad_enable_default_bcast(struct bnad *bnad)
2095 {
2096 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2097 int ret;
2098 unsigned long flags;
2099
2100 init_completion(&bnad->bnad_completions.mcast_comp);
2101
2102 spin_lock_irqsave(&bnad->bna_lock, flags);
2103 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2104 bnad_cb_rx_mcast_add);
2105 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2106
2107 if (ret == BNA_CB_SUCCESS)
2108 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2109 else
2110 return -ENODEV;
2111
2112 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2113 return -ENODEV;
2114
2115 return 0;
2116 }
2117
2118 /* Called with mutex_lock(&bnad->conf_mutex) held */
2119 void
2120 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2121 {
2122 u16 vid;
2123 unsigned long flags;
2124
2125 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2126 spin_lock_irqsave(&bnad->bna_lock, flags);
2127 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2128 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2129 }
2130 }
2131
2132 /* Statistics utilities */
2133 void
2134 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2135 {
2136 int i, j;
2137
2138 for (i = 0; i < bnad->num_rx; i++) {
2139 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2140 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2141 stats->rx_packets += bnad->rx_info[i].
2142 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2143 stats->rx_bytes += bnad->rx_info[i].
2144 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2145 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2146 bnad->rx_info[i].rx_ctrl[j].ccb->
2147 rcb[1]->rxq) {
2148 stats->rx_packets +=
2149 bnad->rx_info[i].rx_ctrl[j].
2150 ccb->rcb[1]->rxq->rx_packets;
2151 stats->rx_bytes +=
2152 bnad->rx_info[i].rx_ctrl[j].
2153 ccb->rcb[1]->rxq->rx_bytes;
2154 }
2155 }
2156 }
2157 }
2158 for (i = 0; i < bnad->num_tx; i++) {
2159 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2160 if (bnad->tx_info[i].tcb[j]) {
2161 stats->tx_packets +=
2162 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2163 stats->tx_bytes +=
2164 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2165 }
2166 }
2167 }
2168 }
2169
2170 /*
2171 * Must be called with the bna_lock held.
2172 */
2173 void
2174 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2175 {
2176 struct bfi_enet_stats_mac *mac_stats;
2177 u32 bmap;
2178 int i;
2179
2180 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2181 stats->rx_errors =
2182 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2183 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2184 mac_stats->rx_undersize;
2185 stats->tx_errors = mac_stats->tx_fcs_error +
2186 mac_stats->tx_undersize;
2187 stats->rx_dropped = mac_stats->rx_drop;
2188 stats->tx_dropped = mac_stats->tx_drop;
2189 stats->multicast = mac_stats->rx_multicast;
2190 stats->collisions = mac_stats->tx_total_collision;
2191
2192 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2193
2194 /* receive ring buffer overflow ?? */
2195
2196 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2197 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2198 /* recv'r fifo overrun */
2199 bmap = bna_rx_rid_mask(&bnad->bna);
2200 for (i = 0; bmap; i++) {
2201 if (bmap & 1) {
2202 stats->rx_fifo_errors +=
2203 bnad->stats.bna_stats->
2204 hw_stats.rxf_stats[i].frame_drops;
2205 break;
2206 }
2207 bmap >>= 1;
2208 }
2209 }
2210
2211 static void
2212 bnad_mbox_irq_sync(struct bnad *bnad)
2213 {
2214 u32 irq;
2215 unsigned long flags;
2216
2217 spin_lock_irqsave(&bnad->bna_lock, flags);
2218 if (bnad->cfg_flags & BNAD_CF_MSIX)
2219 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2220 else
2221 irq = bnad->pcidev->irq;
2222 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2223
2224 synchronize_irq(irq);
2225 }
2226
2227 /* Utility used by bnad_start_xmit, for doing TSO */
2228 static int
2229 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2230 {
2231 int err;
2232
2233 if (skb_header_cloned(skb)) {
2234 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2235 if (err) {
2236 BNAD_UPDATE_CTR(bnad, tso_err);
2237 return err;
2238 }
2239 }
2240
2241 /*
2242 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2243 * excluding the length field.
2244 */
2245 if (skb->protocol == htons(ETH_P_IP)) {
2246 struct iphdr *iph = ip_hdr(skb);
2247
2248 /* Do we really need these? */
2249 iph->tot_len = 0;
2250 iph->check = 0;
2251
2252 tcp_hdr(skb)->check =
2253 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2254 IPPROTO_TCP, 0);
2255 BNAD_UPDATE_CTR(bnad, tso4);
2256 } else {
2257 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2258
2259 ipv6h->payload_len = 0;
2260 tcp_hdr(skb)->check =
2261 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2262 IPPROTO_TCP, 0);
2263 BNAD_UPDATE_CTR(bnad, tso6);
2264 }
2265
2266 return 0;
2267 }
2268
2269 /*
2270 * Initialize Q numbers depending on Rx Paths
2271 * Called with bnad->bna_lock held, because of cfg_flags
2272 * access.
2273 */
2274 static void
2275 bnad_q_num_init(struct bnad *bnad)
2276 {
2277 int rxps;
2278
2279 rxps = min((uint)num_online_cpus(),
2280 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2281
2282 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2283 rxps = 1; /* INTx */
2284
2285 bnad->num_rx = 1;
2286 bnad->num_tx = 1;
2287 bnad->num_rxp_per_rx = rxps;
2288 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2289 }
2290
2291 /*
2292 * Adjusts the Q numbers, given a number of msix vectors
2293 * Give preference to RSS as opposed to Tx priority Queues,
2294 * in such a case, just use 1 Tx Q
2295 * Called with bnad->bna_lock held b'cos of cfg_flags access
2296 */
2297 static void
2298 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2299 {
2300 bnad->num_txq_per_tx = 1;
2301 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2302 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2303 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2304 bnad->num_rxp_per_rx = msix_vectors -
2305 (bnad->num_tx * bnad->num_txq_per_tx) -
2306 BNAD_MAILBOX_MSIX_VECTORS;
2307 } else
2308 bnad->num_rxp_per_rx = 1;
2309 }
2310
2311 /* Enable / disable ioceth */
2312 static int
2313 bnad_ioceth_disable(struct bnad *bnad)
2314 {
2315 unsigned long flags;
2316 int err = 0;
2317
2318 spin_lock_irqsave(&bnad->bna_lock, flags);
2319 init_completion(&bnad->bnad_completions.ioc_comp);
2320 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2321 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2322
2323 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2324 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2325
2326 err = bnad->bnad_completions.ioc_comp_status;
2327 return err;
2328 }
2329
2330 static int
2331 bnad_ioceth_enable(struct bnad *bnad)
2332 {
2333 int err = 0;
2334 unsigned long flags;
2335
2336 spin_lock_irqsave(&bnad->bna_lock, flags);
2337 init_completion(&bnad->bnad_completions.ioc_comp);
2338 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2339 bna_ioceth_enable(&bnad->bna.ioceth);
2340 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2341
2342 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2343 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2344
2345 err = bnad->bnad_completions.ioc_comp_status;
2346
2347 return err;
2348 }
2349
2350 /* Free BNA resources */
2351 static void
2352 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2353 u32 res_val_max)
2354 {
2355 int i;
2356
2357 for (i = 0; i < res_val_max; i++)
2358 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2359 }
2360
2361 /* Allocates memory and interrupt resources for BNA */
2362 static int
2363 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2364 u32 res_val_max)
2365 {
2366 int i, err;
2367
2368 for (i = 0; i < res_val_max; i++) {
2369 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2370 if (err)
2371 goto err_return;
2372 }
2373 return 0;
2374
2375 err_return:
2376 bnad_res_free(bnad, res_info, res_val_max);
2377 return err;
2378 }
2379
2380 /* Interrupt enable / disable */
2381 static void
2382 bnad_enable_msix(struct bnad *bnad)
2383 {
2384 int i, ret;
2385 unsigned long flags;
2386
2387 spin_lock_irqsave(&bnad->bna_lock, flags);
2388 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2389 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2390 return;
2391 }
2392 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2393
2394 if (bnad->msix_table)
2395 return;
2396
2397 bnad->msix_table =
2398 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2399
2400 if (!bnad->msix_table)
2401 goto intx_mode;
2402
2403 for (i = 0; i < bnad->msix_num; i++)
2404 bnad->msix_table[i].entry = i;
2405
2406 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2407 if (ret > 0) {
2408 /* Not enough MSI-X vectors. */
2409 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2410 ret, bnad->msix_num);
2411
2412 spin_lock_irqsave(&bnad->bna_lock, flags);
2413 /* ret = #of vectors that we got */
2414 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2415 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2416 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2417
2418 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2419 BNAD_MAILBOX_MSIX_VECTORS;
2420
2421 if (bnad->msix_num > ret)
2422 goto intx_mode;
2423
2424 /* Try once more with adjusted numbers */
2425 /* If this fails, fall back to INTx */
2426 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2427 bnad->msix_num);
2428 if (ret)
2429 goto intx_mode;
2430
2431 } else if (ret < 0)
2432 goto intx_mode;
2433
2434 pci_intx(bnad->pcidev, 0);
2435
2436 return;
2437
2438 intx_mode:
2439 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2440
2441 kfree(bnad->msix_table);
2442 bnad->msix_table = NULL;
2443 bnad->msix_num = 0;
2444 spin_lock_irqsave(&bnad->bna_lock, flags);
2445 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2446 bnad_q_num_init(bnad);
2447 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2448 }
2449
2450 static void
2451 bnad_disable_msix(struct bnad *bnad)
2452 {
2453 u32 cfg_flags;
2454 unsigned long flags;
2455
2456 spin_lock_irqsave(&bnad->bna_lock, flags);
2457 cfg_flags = bnad->cfg_flags;
2458 if (bnad->cfg_flags & BNAD_CF_MSIX)
2459 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2460 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2461
2462 if (cfg_flags & BNAD_CF_MSIX) {
2463 pci_disable_msix(bnad->pcidev);
2464 kfree(bnad->msix_table);
2465 bnad->msix_table = NULL;
2466 }
2467 }
2468
2469 /* Netdev entry points */
2470 static int
2471 bnad_open(struct net_device *netdev)
2472 {
2473 int err;
2474 struct bnad *bnad = netdev_priv(netdev);
2475 struct bna_pause_config pause_config;
2476 int mtu;
2477 unsigned long flags;
2478
2479 mutex_lock(&bnad->conf_mutex);
2480
2481 /* Tx */
2482 err = bnad_setup_tx(bnad, 0);
2483 if (err)
2484 goto err_return;
2485
2486 /* Rx */
2487 err = bnad_setup_rx(bnad, 0);
2488 if (err)
2489 goto cleanup_tx;
2490
2491 /* Port */
2492 pause_config.tx_pause = 0;
2493 pause_config.rx_pause = 0;
2494
2495 mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2496
2497 spin_lock_irqsave(&bnad->bna_lock, flags);
2498 bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2499 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2500 bna_enet_enable(&bnad->bna.enet);
2501 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2502
2503 /* Enable broadcast */
2504 bnad_enable_default_bcast(bnad);
2505
2506 /* Restore VLANs, if any */
2507 bnad_restore_vlans(bnad, 0);
2508
2509 /* Set the UCAST address */
2510 spin_lock_irqsave(&bnad->bna_lock, flags);
2511 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2512 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2513
2514 /* Start the stats timer */
2515 bnad_stats_timer_start(bnad);
2516
2517 mutex_unlock(&bnad->conf_mutex);
2518
2519 return 0;
2520
2521 cleanup_tx:
2522 bnad_cleanup_tx(bnad, 0);
2523
2524 err_return:
2525 mutex_unlock(&bnad->conf_mutex);
2526 return err;
2527 }
2528
2529 static int
2530 bnad_stop(struct net_device *netdev)
2531 {
2532 struct bnad *bnad = netdev_priv(netdev);
2533 unsigned long flags;
2534
2535 mutex_lock(&bnad->conf_mutex);
2536
2537 /* Stop the stats timer */
2538 bnad_stats_timer_stop(bnad);
2539
2540 init_completion(&bnad->bnad_completions.enet_comp);
2541
2542 spin_lock_irqsave(&bnad->bna_lock, flags);
2543 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2544 bnad_cb_enet_disabled);
2545 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2546
2547 wait_for_completion(&bnad->bnad_completions.enet_comp);
2548
2549 bnad_cleanup_tx(bnad, 0);
2550 bnad_cleanup_rx(bnad, 0);
2551
2552 /* Synchronize mailbox IRQ */
2553 bnad_mbox_irq_sync(bnad);
2554
2555 mutex_unlock(&bnad->conf_mutex);
2556
2557 return 0;
2558 }
2559
2560 /* TX */
2561 /*
2562 * bnad_start_xmit : Netdev entry point for Transmit
2563 * Called under lock held by net_device
2564 */
2565 static netdev_tx_t
2566 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2567 {
2568 struct bnad *bnad = netdev_priv(netdev);
2569 u32 txq_id = 0;
2570 struct bna_tcb *tcb = bnad->tx_info[0].tcb[txq_id];
2571
2572 u16 txq_prod, vlan_tag = 0;
2573 u32 unmap_prod, wis, wis_used, wi_range;
2574 u32 vectors, vect_id, i, acked;
2575 int err;
2576 unsigned int len;
2577 u32 gso_size;
2578
2579 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
2580 dma_addr_t dma_addr;
2581 struct bna_txq_entry *txqent;
2582 u16 flags;
2583
2584 if (unlikely(skb->len <= ETH_HLEN)) {
2585 dev_kfree_skb(skb);
2586 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2587 return NETDEV_TX_OK;
2588 }
2589 if (unlikely(skb_headlen(skb) > BFI_TX_MAX_DATA_PER_VECTOR)) {
2590 dev_kfree_skb(skb);
2591 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_too_long);
2592 return NETDEV_TX_OK;
2593 }
2594 if (unlikely(skb_headlen(skb) == 0)) {
2595 dev_kfree_skb(skb);
2596 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2597 return NETDEV_TX_OK;
2598 }
2599
2600 /*
2601 * Takes care of the Tx that is scheduled between clearing the flag
2602 * and the netif_tx_stop_all_queues() call.
2603 */
2604 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2605 dev_kfree_skb(skb);
2606 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2607 return NETDEV_TX_OK;
2608 }
2609
2610 vectors = 1 + skb_shinfo(skb)->nr_frags;
2611 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2612 dev_kfree_skb(skb);
2613 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2614 return NETDEV_TX_OK;
2615 }
2616 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2617 acked = 0;
2618 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2619 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2620 if ((u16) (*tcb->hw_consumer_index) !=
2621 tcb->consumer_index &&
2622 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2623 acked = bnad_free_txbufs(bnad, tcb);
2624 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2625 bna_ib_ack(tcb->i_dbell, acked);
2626 smp_mb__before_clear_bit();
2627 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2628 } else {
2629 netif_stop_queue(netdev);
2630 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2631 }
2632
2633 smp_mb();
2634 /*
2635 * Check again to deal with race condition between
2636 * netif_stop_queue here, and netif_wake_queue in
2637 * interrupt handler which is not inside netif tx lock.
2638 */
2639 if (likely
2640 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2641 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2642 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2643 return NETDEV_TX_BUSY;
2644 } else {
2645 netif_wake_queue(netdev);
2646 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2647 }
2648 }
2649
2650 unmap_prod = unmap_q->producer_index;
2651 flags = 0;
2652
2653 txq_prod = tcb->producer_index;
2654 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2655 txqent->hdr.wi.reserved = 0;
2656 txqent->hdr.wi.num_vectors = vectors;
2657
2658 if (vlan_tx_tag_present(skb)) {
2659 vlan_tag = (u16) vlan_tx_tag_get(skb);
2660 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2661 }
2662 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2663 vlan_tag =
2664 (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2665 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2666 }
2667
2668 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2669
2670 if (skb_is_gso(skb)) {
2671 gso_size = skb_shinfo(skb)->gso_size;
2672
2673 if (unlikely(gso_size > netdev->mtu)) {
2674 dev_kfree_skb(skb);
2675 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2676 return NETDEV_TX_OK;
2677 }
2678 if (unlikely((gso_size + skb_transport_offset(skb) +
2679 tcp_hdrlen(skb)) >= skb->len)) {
2680 txqent->hdr.wi.opcode =
2681 __constant_htons(BNA_TXQ_WI_SEND);
2682 txqent->hdr.wi.lso_mss = 0;
2683 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2684 } else {
2685 txqent->hdr.wi.opcode =
2686 __constant_htons(BNA_TXQ_WI_SEND_LSO);
2687 txqent->hdr.wi.lso_mss = htons(gso_size);
2688 }
2689
2690 err = bnad_tso_prepare(bnad, skb);
2691 if (unlikely(err)) {
2692 dev_kfree_skb(skb);
2693 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2694 return NETDEV_TX_OK;
2695 }
2696 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2697 txqent->hdr.wi.l4_hdr_size_n_offset =
2698 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2699 (tcp_hdrlen(skb) >> 2,
2700 skb_transport_offset(skb)));
2701 } else {
2702 txqent->hdr.wi.opcode = __constant_htons(BNA_TXQ_WI_SEND);
2703 txqent->hdr.wi.lso_mss = 0;
2704
2705 if (unlikely(skb->len > (netdev->mtu + ETH_HLEN))) {
2706 dev_kfree_skb(skb);
2707 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2708 return NETDEV_TX_OK;
2709 }
2710
2711 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2712 u8 proto = 0;
2713
2714 if (skb->protocol == __constant_htons(ETH_P_IP))
2715 proto = ip_hdr(skb)->protocol;
2716 else if (skb->protocol ==
2717 __constant_htons(ETH_P_IPV6)) {
2718 /* nexthdr may not be TCP immediately. */
2719 proto = ipv6_hdr(skb)->nexthdr;
2720 }
2721 if (proto == IPPROTO_TCP) {
2722 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2723 txqent->hdr.wi.l4_hdr_size_n_offset =
2724 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2725 (0, skb_transport_offset(skb)));
2726
2727 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2728
2729 if (unlikely(skb_headlen(skb) <
2730 skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2731 dev_kfree_skb(skb);
2732 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2733 return NETDEV_TX_OK;
2734 }
2735
2736 } else if (proto == IPPROTO_UDP) {
2737 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2738 txqent->hdr.wi.l4_hdr_size_n_offset =
2739 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2740 (0, skb_transport_offset(skb)));
2741
2742 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2743 if (unlikely(skb_headlen(skb) <
2744 skb_transport_offset(skb) +
2745 sizeof(struct udphdr))) {
2746 dev_kfree_skb(skb);
2747 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2748 return NETDEV_TX_OK;
2749 }
2750 } else {
2751 dev_kfree_skb(skb);
2752 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2753 return NETDEV_TX_OK;
2754 }
2755 } else {
2756 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2757 }
2758 }
2759
2760 txqent->hdr.wi.flags = htons(flags);
2761
2762 txqent->hdr.wi.frame_length = htonl(skb->len);
2763
2764 unmap_q->unmap_array[unmap_prod].skb = skb;
2765 len = skb_headlen(skb);
2766 txqent->vector[0].length = htons(len);
2767 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2768 skb_headlen(skb), DMA_TO_DEVICE);
2769 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2770 dma_addr);
2771
2772 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2773 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2774
2775 vect_id = 0;
2776 wis_used = 1;
2777
2778 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2779 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2780 u16 size = skb_frag_size(frag);
2781
2782 if (unlikely(size == 0)) {
2783 unmap_prod = unmap_q->producer_index;
2784
2785 unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2786 unmap_q->unmap_array,
2787 unmap_prod, unmap_q->q_depth, skb,
2788 i);
2789 dev_kfree_skb(skb);
2790 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2791 return NETDEV_TX_OK;
2792 }
2793
2794 len += size;
2795
2796 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2797 vect_id = 0;
2798 if (--wi_range)
2799 txqent++;
2800 else {
2801 BNA_QE_INDX_ADD(txq_prod, wis_used,
2802 tcb->q_depth);
2803 wis_used = 0;
2804 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2805 txqent, wi_range);
2806 }
2807 wis_used++;
2808 txqent->hdr.wi_ext.opcode =
2809 __constant_htons(BNA_TXQ_WI_EXTENSION);
2810 }
2811
2812 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2813 txqent->vector[vect_id].length = htons(size);
2814 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2815 0, size, DMA_TO_DEVICE);
2816 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2817 dma_addr);
2818 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2819 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2820 }
2821
2822 if (unlikely(len != skb->len)) {
2823 unmap_prod = unmap_q->producer_index;
2824
2825 unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2826 unmap_q->unmap_array, unmap_prod,
2827 unmap_q->q_depth, skb,
2828 skb_shinfo(skb)->nr_frags);
2829 dev_kfree_skb(skb);
2830 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2831 return NETDEV_TX_OK;
2832 }
2833
2834 unmap_q->producer_index = unmap_prod;
2835 BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2836 tcb->producer_index = txq_prod;
2837
2838 smp_mb();
2839
2840 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2841 return NETDEV_TX_OK;
2842
2843 bna_txq_prod_indx_doorbell(tcb);
2844 smp_mb();
2845
2846 if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2847 tasklet_schedule(&bnad->tx_free_tasklet);
2848
2849 return NETDEV_TX_OK;
2850 }
2851
2852 /*
2853 * Used spin_lock to synchronize reading of stats structures, which
2854 * is written by BNA under the same lock.
2855 */
2856 static struct rtnl_link_stats64 *
2857 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2858 {
2859 struct bnad *bnad = netdev_priv(netdev);
2860 unsigned long flags;
2861
2862 spin_lock_irqsave(&bnad->bna_lock, flags);
2863
2864 bnad_netdev_qstats_fill(bnad, stats);
2865 bnad_netdev_hwstats_fill(bnad, stats);
2866
2867 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2868
2869 return stats;
2870 }
2871
2872 void
2873 bnad_set_rx_mode(struct net_device *netdev)
2874 {
2875 struct bnad *bnad = netdev_priv(netdev);
2876 u32 new_mask, valid_mask;
2877 unsigned long flags;
2878
2879 spin_lock_irqsave(&bnad->bna_lock, flags);
2880
2881 new_mask = valid_mask = 0;
2882
2883 if (netdev->flags & IFF_PROMISC) {
2884 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2885 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2886 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2887 bnad->cfg_flags |= BNAD_CF_PROMISC;
2888 }
2889 } else {
2890 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2891 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2892 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2893 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2894 }
2895 }
2896
2897 if (netdev->flags & IFF_ALLMULTI) {
2898 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2899 new_mask |= BNA_RXMODE_ALLMULTI;
2900 valid_mask |= BNA_RXMODE_ALLMULTI;
2901 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2902 }
2903 } else {
2904 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2905 new_mask &= ~BNA_RXMODE_ALLMULTI;
2906 valid_mask |= BNA_RXMODE_ALLMULTI;
2907 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2908 }
2909 }
2910
2911 if (bnad->rx_info[0].rx == NULL)
2912 goto unlock;
2913
2914 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2915
2916 if (!netdev_mc_empty(netdev)) {
2917 u8 *mcaddr_list;
2918 int mc_count = netdev_mc_count(netdev);
2919
2920 /* Index 0 holds the broadcast address */
2921 mcaddr_list =
2922 kzalloc((mc_count + 1) * ETH_ALEN,
2923 GFP_ATOMIC);
2924 if (!mcaddr_list)
2925 goto unlock;
2926
2927 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2928
2929 /* Copy rest of the MC addresses */
2930 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2931
2932 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2933 mcaddr_list, NULL);
2934
2935 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2936 kfree(mcaddr_list);
2937 }
2938 unlock:
2939 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2940 }
2941
2942 /*
2943 * bna_lock is used to sync writes to netdev->addr
2944 * conf_lock cannot be used since this call may be made
2945 * in a non-blocking context.
2946 */
2947 static int
2948 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2949 {
2950 int err;
2951 struct bnad *bnad = netdev_priv(netdev);
2952 struct sockaddr *sa = (struct sockaddr *)mac_addr;
2953 unsigned long flags;
2954
2955 spin_lock_irqsave(&bnad->bna_lock, flags);
2956
2957 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2958
2959 if (!err)
2960 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2961
2962 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2963
2964 return err;
2965 }
2966
2967 static int
2968 bnad_mtu_set(struct bnad *bnad, int mtu)
2969 {
2970 unsigned long flags;
2971
2972 init_completion(&bnad->bnad_completions.mtu_comp);
2973
2974 spin_lock_irqsave(&bnad->bna_lock, flags);
2975 bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
2976 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2977
2978 wait_for_completion(&bnad->bnad_completions.mtu_comp);
2979
2980 return bnad->bnad_completions.mtu_comp_status;
2981 }
2982
2983 static int
2984 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2985 {
2986 int err, mtu = netdev->mtu;
2987 struct bnad *bnad = netdev_priv(netdev);
2988
2989 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2990 return -EINVAL;
2991
2992 mutex_lock(&bnad->conf_mutex);
2993
2994 netdev->mtu = new_mtu;
2995
2996 mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
2997 err = bnad_mtu_set(bnad, mtu);
2998 if (err)
2999 err = -EBUSY;
3000
3001 mutex_unlock(&bnad->conf_mutex);
3002 return err;
3003 }
3004
3005 static int
3006 bnad_vlan_rx_add_vid(struct net_device *netdev,
3007 unsigned short vid)
3008 {
3009 struct bnad *bnad = netdev_priv(netdev);
3010 unsigned long flags;
3011
3012 if (!bnad->rx_info[0].rx)
3013 return 0;
3014
3015 mutex_lock(&bnad->conf_mutex);
3016
3017 spin_lock_irqsave(&bnad->bna_lock, flags);
3018 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3019 set_bit(vid, bnad->active_vlans);
3020 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3021
3022 mutex_unlock(&bnad->conf_mutex);
3023
3024 return 0;
3025 }
3026
3027 static int
3028 bnad_vlan_rx_kill_vid(struct net_device *netdev,
3029 unsigned short vid)
3030 {
3031 struct bnad *bnad = netdev_priv(netdev);
3032 unsigned long flags;
3033
3034 if (!bnad->rx_info[0].rx)
3035 return 0;
3036
3037 mutex_lock(&bnad->conf_mutex);
3038
3039 spin_lock_irqsave(&bnad->bna_lock, flags);
3040 clear_bit(vid, bnad->active_vlans);
3041 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3042 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3043
3044 mutex_unlock(&bnad->conf_mutex);
3045
3046 return 0;
3047 }
3048
3049 #ifdef CONFIG_NET_POLL_CONTROLLER
3050 static void
3051 bnad_netpoll(struct net_device *netdev)
3052 {
3053 struct bnad *bnad = netdev_priv(netdev);
3054 struct bnad_rx_info *rx_info;
3055 struct bnad_rx_ctrl *rx_ctrl;
3056 u32 curr_mask;
3057 int i, j;
3058
3059 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3060 bna_intx_disable(&bnad->bna, curr_mask);
3061 bnad_isr(bnad->pcidev->irq, netdev);
3062 bna_intx_enable(&bnad->bna, curr_mask);
3063 } else {
3064 /*
3065 * Tx processing may happen in sending context, so no need
3066 * to explicitly process completions here
3067 */
3068
3069 /* Rx processing */
3070 for (i = 0; i < bnad->num_rx; i++) {
3071 rx_info = &bnad->rx_info[i];
3072 if (!rx_info->rx)
3073 continue;
3074 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3075 rx_ctrl = &rx_info->rx_ctrl[j];
3076 if (rx_ctrl->ccb)
3077 bnad_netif_rx_schedule_poll(bnad,
3078 rx_ctrl->ccb);
3079 }
3080 }
3081 }
3082 }
3083 #endif
3084
3085 static const struct net_device_ops bnad_netdev_ops = {
3086 .ndo_open = bnad_open,
3087 .ndo_stop = bnad_stop,
3088 .ndo_start_xmit = bnad_start_xmit,
3089 .ndo_get_stats64 = bnad_get_stats64,
3090 .ndo_set_rx_mode = bnad_set_rx_mode,
3091 .ndo_validate_addr = eth_validate_addr,
3092 .ndo_set_mac_address = bnad_set_mac_address,
3093 .ndo_change_mtu = bnad_change_mtu,
3094 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3095 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3096 #ifdef CONFIG_NET_POLL_CONTROLLER
3097 .ndo_poll_controller = bnad_netpoll
3098 #endif
3099 };
3100
3101 static void
3102 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3103 {
3104 struct net_device *netdev = bnad->netdev;
3105
3106 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3107 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3108 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
3109
3110 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3111 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3112 NETIF_F_TSO | NETIF_F_TSO6;
3113
3114 netdev->features |= netdev->hw_features |
3115 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
3116
3117 if (using_dac)
3118 netdev->features |= NETIF_F_HIGHDMA;
3119
3120 netdev->mem_start = bnad->mmio_start;
3121 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3122
3123 netdev->netdev_ops = &bnad_netdev_ops;
3124 bnad_set_ethtool_ops(netdev);
3125 }
3126
3127 /*
3128 * 1. Initialize the bnad structure
3129 * 2. Setup netdev pointer in pci_dev
3130 * 3. Initialze Tx free tasklet
3131 * 4. Initialize no. of TxQ & CQs & MSIX vectors
3132 */
3133 static int
3134 bnad_init(struct bnad *bnad,
3135 struct pci_dev *pdev, struct net_device *netdev)
3136 {
3137 unsigned long flags;
3138
3139 SET_NETDEV_DEV(netdev, &pdev->dev);
3140 pci_set_drvdata(pdev, netdev);
3141
3142 bnad->netdev = netdev;
3143 bnad->pcidev = pdev;
3144 bnad->mmio_start = pci_resource_start(pdev, 0);
3145 bnad->mmio_len = pci_resource_len(pdev, 0);
3146 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3147 if (!bnad->bar0) {
3148 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3149 pci_set_drvdata(pdev, NULL);
3150 return -ENOMEM;
3151 }
3152 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3153 (unsigned long long) bnad->mmio_len);
3154
3155 spin_lock_irqsave(&bnad->bna_lock, flags);
3156 if (!bnad_msix_disable)
3157 bnad->cfg_flags = BNAD_CF_MSIX;
3158
3159 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3160
3161 bnad_q_num_init(bnad);
3162 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3163
3164 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3165 (bnad->num_rx * bnad->num_rxp_per_rx) +
3166 BNAD_MAILBOX_MSIX_VECTORS;
3167
3168 bnad->txq_depth = BNAD_TXQ_DEPTH;
3169 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3170
3171 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3172 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3173
3174 tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
3175 (unsigned long)bnad);
3176
3177 return 0;
3178 }
3179
3180 /*
3181 * Must be called after bnad_pci_uninit()
3182 * so that iounmap() and pci_set_drvdata(NULL)
3183 * happens only after PCI uninitialization.
3184 */
3185 static void
3186 bnad_uninit(struct bnad *bnad)
3187 {
3188 if (bnad->bar0)
3189 iounmap(bnad->bar0);
3190 pci_set_drvdata(bnad->pcidev, NULL);
3191 }
3192
3193 /*
3194 * Initialize locks
3195 a) Per ioceth mutes used for serializing configuration
3196 changes from OS interface
3197 b) spin lock used to protect bna state machine
3198 */
3199 static void
3200 bnad_lock_init(struct bnad *bnad)
3201 {
3202 spin_lock_init(&bnad->bna_lock);
3203 mutex_init(&bnad->conf_mutex);
3204 mutex_init(&bnad_list_mutex);
3205 }
3206
3207 static void
3208 bnad_lock_uninit(struct bnad *bnad)
3209 {
3210 mutex_destroy(&bnad->conf_mutex);
3211 mutex_destroy(&bnad_list_mutex);
3212 }
3213
3214 /* PCI Initialization */
3215 static int
3216 bnad_pci_init(struct bnad *bnad,
3217 struct pci_dev *pdev, bool *using_dac)
3218 {
3219 int err;
3220
3221 err = pci_enable_device(pdev);
3222 if (err)
3223 return err;
3224 err = pci_request_regions(pdev, BNAD_NAME);
3225 if (err)
3226 goto disable_device;
3227 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3228 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3229 *using_dac = true;
3230 } else {
3231 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3232 if (err) {
3233 err = dma_set_coherent_mask(&pdev->dev,
3234 DMA_BIT_MASK(32));
3235 if (err)
3236 goto release_regions;
3237 }
3238 *using_dac = false;
3239 }
3240 pci_set_master(pdev);
3241 return 0;
3242
3243 release_regions:
3244 pci_release_regions(pdev);
3245 disable_device:
3246 pci_disable_device(pdev);
3247
3248 return err;
3249 }
3250
3251 static void
3252 bnad_pci_uninit(struct pci_dev *pdev)
3253 {
3254 pci_release_regions(pdev);
3255 pci_disable_device(pdev);
3256 }
3257
3258 static int __devinit
3259 bnad_pci_probe(struct pci_dev *pdev,
3260 const struct pci_device_id *pcidev_id)
3261 {
3262 bool using_dac;
3263 int err;
3264 struct bnad *bnad;
3265 struct bna *bna;
3266 struct net_device *netdev;
3267 struct bfa_pcidev pcidev_info;
3268 unsigned long flags;
3269
3270 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3271 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3272
3273 mutex_lock(&bnad_fwimg_mutex);
3274 if (!cna_get_firmware_buf(pdev)) {
3275 mutex_unlock(&bnad_fwimg_mutex);
3276 pr_warn("Failed to load Firmware Image!\n");
3277 return -ENODEV;
3278 }
3279 mutex_unlock(&bnad_fwimg_mutex);
3280
3281 /*
3282 * Allocates sizeof(struct net_device + struct bnad)
3283 * bnad = netdev->priv
3284 */
3285 netdev = alloc_etherdev(sizeof(struct bnad));
3286 if (!netdev) {
3287 dev_err(&pdev->dev, "netdev allocation failed\n");
3288 err = -ENOMEM;
3289 return err;
3290 }
3291 bnad = netdev_priv(netdev);
3292 bnad_lock_init(bnad);
3293 bnad_add_to_list(bnad);
3294
3295 mutex_lock(&bnad->conf_mutex);
3296 /*
3297 * PCI initialization
3298 * Output : using_dac = 1 for 64 bit DMA
3299 * = 0 for 32 bit DMA
3300 */
3301 err = bnad_pci_init(bnad, pdev, &using_dac);
3302 if (err)
3303 goto unlock_mutex;
3304
3305 /*
3306 * Initialize bnad structure
3307 * Setup relation between pci_dev & netdev
3308 * Init Tx free tasklet
3309 */
3310 err = bnad_init(bnad, pdev, netdev);
3311 if (err)
3312 goto pci_uninit;
3313
3314 /* Initialize netdev structure, set up ethtool ops */
3315 bnad_netdev_init(bnad, using_dac);
3316
3317 /* Set link to down state */
3318 netif_carrier_off(netdev);
3319
3320 /* Setup the debugfs node for this bfad */
3321 if (bna_debugfs_enable)
3322 bnad_debugfs_init(bnad);
3323
3324 /* Get resource requirement form bna */
3325 spin_lock_irqsave(&bnad->bna_lock, flags);
3326 bna_res_req(&bnad->res_info[0]);
3327 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3328
3329 /* Allocate resources from bna */
3330 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3331 if (err)
3332 goto drv_uninit;
3333
3334 bna = &bnad->bna;
3335
3336 /* Setup pcidev_info for bna_init() */
3337 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3338 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3339 pcidev_info.device_id = bnad->pcidev->device;
3340 pcidev_info.pci_bar_kva = bnad->bar0;
3341
3342 spin_lock_irqsave(&bnad->bna_lock, flags);
3343 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3344 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3345
3346 bnad->stats.bna_stats = &bna->stats;
3347
3348 bnad_enable_msix(bnad);
3349 err = bnad_mbox_irq_alloc(bnad);
3350 if (err)
3351 goto res_free;
3352
3353
3354 /* Set up timers */
3355 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3356 ((unsigned long)bnad));
3357 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3358 ((unsigned long)bnad));
3359 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3360 ((unsigned long)bnad));
3361 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3362 ((unsigned long)bnad));
3363
3364 /* Now start the timer before calling IOC */
3365 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3366 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3367
3368 /*
3369 * Start the chip
3370 * If the call back comes with error, we bail out.
3371 * This is a catastrophic error.
3372 */
3373 err = bnad_ioceth_enable(bnad);
3374 if (err) {
3375 pr_err("BNA: Initialization failed err=%d\n",
3376 err);
3377 goto probe_success;
3378 }
3379
3380 spin_lock_irqsave(&bnad->bna_lock, flags);
3381 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3382 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3383 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3384 bna_attr(bna)->num_rxp - 1);
3385 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3386 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3387 err = -EIO;
3388 }
3389 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3390 if (err)
3391 goto disable_ioceth;
3392
3393 spin_lock_irqsave(&bnad->bna_lock, flags);
3394 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3395 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3396
3397 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3398 if (err) {
3399 err = -EIO;
3400 goto disable_ioceth;
3401 }
3402
3403 spin_lock_irqsave(&bnad->bna_lock, flags);
3404 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3405 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3406
3407 /* Get the burnt-in mac */
3408 spin_lock_irqsave(&bnad->bna_lock, flags);
3409 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3410 bnad_set_netdev_perm_addr(bnad);
3411 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3412
3413 mutex_unlock(&bnad->conf_mutex);
3414
3415 /* Finally, reguister with net_device layer */
3416 err = register_netdev(netdev);
3417 if (err) {
3418 pr_err("BNA : Registering with netdev failed\n");
3419 goto probe_uninit;
3420 }
3421 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3422
3423 return 0;
3424
3425 probe_success:
3426 mutex_unlock(&bnad->conf_mutex);
3427 return 0;
3428
3429 probe_uninit:
3430 mutex_lock(&bnad->conf_mutex);
3431 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3432 disable_ioceth:
3433 bnad_ioceth_disable(bnad);
3434 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3435 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3436 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3437 spin_lock_irqsave(&bnad->bna_lock, flags);
3438 bna_uninit(bna);
3439 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3440 bnad_mbox_irq_free(bnad);
3441 bnad_disable_msix(bnad);
3442 res_free:
3443 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3444 drv_uninit:
3445 /* Remove the debugfs node for this bnad */
3446 kfree(bnad->regdata);
3447 bnad_debugfs_uninit(bnad);
3448 bnad_uninit(bnad);
3449 pci_uninit:
3450 bnad_pci_uninit(pdev);
3451 unlock_mutex:
3452 mutex_unlock(&bnad->conf_mutex);
3453 bnad_remove_from_list(bnad);
3454 bnad_lock_uninit(bnad);
3455 free_netdev(netdev);
3456 return err;
3457 }
3458
3459 static void __devexit
3460 bnad_pci_remove(struct pci_dev *pdev)
3461 {
3462 struct net_device *netdev = pci_get_drvdata(pdev);
3463 struct bnad *bnad;
3464 struct bna *bna;
3465 unsigned long flags;
3466
3467 if (!netdev)
3468 return;
3469
3470 pr_info("%s bnad_pci_remove\n", netdev->name);
3471 bnad = netdev_priv(netdev);
3472 bna = &bnad->bna;
3473
3474 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3475 unregister_netdev(netdev);
3476
3477 mutex_lock(&bnad->conf_mutex);
3478 bnad_ioceth_disable(bnad);
3479 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3480 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3481 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3482 spin_lock_irqsave(&bnad->bna_lock, flags);
3483 bna_uninit(bna);
3484 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3485
3486 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3487 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3488 bnad_mbox_irq_free(bnad);
3489 bnad_disable_msix(bnad);
3490 bnad_pci_uninit(pdev);
3491 mutex_unlock(&bnad->conf_mutex);
3492 bnad_remove_from_list(bnad);
3493 bnad_lock_uninit(bnad);
3494 /* Remove the debugfs node for this bnad */
3495 kfree(bnad->regdata);
3496 bnad_debugfs_uninit(bnad);
3497 bnad_uninit(bnad);
3498 free_netdev(netdev);
3499 }
3500
3501 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3502 {
3503 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3504 PCI_DEVICE_ID_BROCADE_CT),
3505 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3506 .class_mask = 0xffff00
3507 },
3508 {
3509 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3510 BFA_PCI_DEVICE_ID_CT2),
3511 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3512 .class_mask = 0xffff00
3513 },
3514 {0, },
3515 };
3516
3517 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3518
3519 static struct pci_driver bnad_pci_driver = {
3520 .name = BNAD_NAME,
3521 .id_table = bnad_pci_id_table,
3522 .probe = bnad_pci_probe,
3523 .remove = __devexit_p(bnad_pci_remove),
3524 };
3525
3526 static int __init
3527 bnad_module_init(void)
3528 {
3529 int err;
3530
3531 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3532 BNAD_VERSION);
3533
3534 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3535
3536 err = pci_register_driver(&bnad_pci_driver);
3537 if (err < 0) {
3538 pr_err("bna : PCI registration failed in module init "
3539 "(%d)\n", err);
3540 return err;
3541 }
3542
3543 return 0;
3544 }
3545
3546 static void __exit
3547 bnad_module_exit(void)
3548 {
3549 pci_unregister_driver(&bnad_pci_driver);
3550
3551 if (bfi_fw)
3552 release_firmware(bfi_fw);
3553 }
3554
3555 module_init(bnad_module_init);
3556 module_exit(bnad_module_exit);
3557
3558 MODULE_AUTHOR("Brocade");
3559 MODULE_LICENSE("GPL");
3560 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3561 MODULE_VERSION(BNAD_VERSION);
3562 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3563 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
This page took 0.113795 seconds and 5 git commands to generate.