Merge branch 'pci/resource' into next
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28 #include <linux/module.h>
29
30 #include "bnad.h"
31 #include "bna.h"
32 #include "cna.h"
33
34 static DEFINE_MUTEX(bnad_fwimg_mutex);
35
36 /*
37 * Module params
38 */
39 static uint bnad_msix_disable;
40 module_param(bnad_msix_disable, uint, 0444);
41 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
42
43 static uint bnad_ioc_auto_recover = 1;
44 module_param(bnad_ioc_auto_recover, uint, 0444);
45 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
46
47 static uint bna_debugfs_enable = 1;
48 module_param(bna_debugfs_enable, uint, S_IRUGO | S_IWUSR);
49 MODULE_PARM_DESC(bna_debugfs_enable, "Enables debugfs feature, default=1,"
50 " Range[false:0|true:1]");
51
52 /*
53 * Global variables
54 */
55 static u32 bnad_rxqs_per_cq = 2;
56 static u32 bna_id;
57 static struct mutex bnad_list_mutex;
58 static LIST_HEAD(bnad_list);
59 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
60
61 /*
62 * Local MACROS
63 */
64 #define BNAD_GET_MBOX_IRQ(_bnad) \
65 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
66 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
67 ((_bnad)->pcidev->irq))
68
69 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _size) \
70 do { \
71 (_res_info)->res_type = BNA_RES_T_MEM; \
72 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
73 (_res_info)->res_u.mem_info.num = (_num); \
74 (_res_info)->res_u.mem_info.len = (_size); \
75 } while (0)
76
77 static void
78 bnad_add_to_list(struct bnad *bnad)
79 {
80 mutex_lock(&bnad_list_mutex);
81 list_add_tail(&bnad->list_entry, &bnad_list);
82 bnad->id = bna_id++;
83 mutex_unlock(&bnad_list_mutex);
84 }
85
86 static void
87 bnad_remove_from_list(struct bnad *bnad)
88 {
89 mutex_lock(&bnad_list_mutex);
90 list_del(&bnad->list_entry);
91 mutex_unlock(&bnad_list_mutex);
92 }
93
94 /*
95 * Reinitialize completions in CQ, once Rx is taken down
96 */
97 static void
98 bnad_cq_cleanup(struct bnad *bnad, struct bna_ccb *ccb)
99 {
100 struct bna_cq_entry *cmpl;
101 int i;
102
103 for (i = 0; i < ccb->q_depth; i++) {
104 cmpl = &((struct bna_cq_entry *)ccb->sw_q)[i];
105 cmpl->valid = 0;
106 }
107 }
108
109 /* Tx Datapath functions */
110
111
112 /* Caller should ensure that the entry at unmap_q[index] is valid */
113 static u32
114 bnad_tx_buff_unmap(struct bnad *bnad,
115 struct bnad_tx_unmap *unmap_q,
116 u32 q_depth, u32 index)
117 {
118 struct bnad_tx_unmap *unmap;
119 struct sk_buff *skb;
120 int vector, nvecs;
121
122 unmap = &unmap_q[index];
123 nvecs = unmap->nvecs;
124
125 skb = unmap->skb;
126 unmap->skb = NULL;
127 unmap->nvecs = 0;
128 dma_unmap_single(&bnad->pcidev->dev,
129 dma_unmap_addr(&unmap->vectors[0], dma_addr),
130 skb_headlen(skb), DMA_TO_DEVICE);
131 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, 0);
132 nvecs--;
133
134 vector = 0;
135 while (nvecs) {
136 vector++;
137 if (vector == BFI_TX_MAX_VECTORS_PER_WI) {
138 vector = 0;
139 BNA_QE_INDX_INC(index, q_depth);
140 unmap = &unmap_q[index];
141 }
142
143 dma_unmap_page(&bnad->pcidev->dev,
144 dma_unmap_addr(&unmap->vectors[vector], dma_addr),
145 dma_unmap_len(&unmap->vectors[vector], dma_len),
146 DMA_TO_DEVICE);
147 dma_unmap_addr_set(&unmap->vectors[vector], dma_addr, 0);
148 nvecs--;
149 }
150
151 BNA_QE_INDX_INC(index, q_depth);
152
153 return index;
154 }
155
156 /*
157 * Frees all pending Tx Bufs
158 * At this point no activity is expected on the Q,
159 * so DMA unmap & freeing is fine.
160 */
161 static void
162 bnad_txq_cleanup(struct bnad *bnad, struct bna_tcb *tcb)
163 {
164 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
165 struct sk_buff *skb;
166 int i;
167
168 for (i = 0; i < tcb->q_depth; i++) {
169 skb = unmap_q[i].skb;
170 if (!skb)
171 continue;
172 bnad_tx_buff_unmap(bnad, unmap_q, tcb->q_depth, i);
173
174 dev_kfree_skb_any(skb);
175 }
176 }
177
178 /*
179 * bnad_txcmpl_process : Frees the Tx bufs on Tx completion
180 * Can be called in a) Interrupt context
181 * b) Sending context
182 */
183 static u32
184 bnad_txcmpl_process(struct bnad *bnad, struct bna_tcb *tcb)
185 {
186 u32 sent_packets = 0, sent_bytes = 0;
187 u32 wis, unmap_wis, hw_cons, cons, q_depth;
188 struct bnad_tx_unmap *unmap_q = tcb->unmap_q;
189 struct bnad_tx_unmap *unmap;
190 struct sk_buff *skb;
191
192 /* Just return if TX is stopped */
193 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
194 return 0;
195
196 hw_cons = *(tcb->hw_consumer_index);
197 cons = tcb->consumer_index;
198 q_depth = tcb->q_depth;
199
200 wis = BNA_Q_INDEX_CHANGE(cons, hw_cons, q_depth);
201 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
202
203 while (wis) {
204 unmap = &unmap_q[cons];
205
206 skb = unmap->skb;
207
208 sent_packets++;
209 sent_bytes += skb->len;
210
211 unmap_wis = BNA_TXQ_WI_NEEDED(unmap->nvecs);
212 wis -= unmap_wis;
213
214 cons = bnad_tx_buff_unmap(bnad, unmap_q, q_depth, cons);
215 dev_kfree_skb_any(skb);
216 }
217
218 /* Update consumer pointers. */
219 tcb->consumer_index = hw_cons;
220
221 tcb->txq->tx_packets += sent_packets;
222 tcb->txq->tx_bytes += sent_bytes;
223
224 return sent_packets;
225 }
226
227 static u32
228 bnad_tx_complete(struct bnad *bnad, struct bna_tcb *tcb)
229 {
230 struct net_device *netdev = bnad->netdev;
231 u32 sent = 0;
232
233 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
234 return 0;
235
236 sent = bnad_txcmpl_process(bnad, tcb);
237 if (sent) {
238 if (netif_queue_stopped(netdev) &&
239 netif_carrier_ok(netdev) &&
240 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
241 BNAD_NETIF_WAKE_THRESHOLD) {
242 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
243 netif_wake_queue(netdev);
244 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
245 }
246 }
247 }
248
249 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
250 bna_ib_ack(tcb->i_dbell, sent);
251
252 smp_mb__before_clear_bit();
253 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
254
255 return sent;
256 }
257
258 /* MSIX Tx Completion Handler */
259 static irqreturn_t
260 bnad_msix_tx(int irq, void *data)
261 {
262 struct bna_tcb *tcb = (struct bna_tcb *)data;
263 struct bnad *bnad = tcb->bnad;
264
265 bnad_tx_complete(bnad, tcb);
266
267 return IRQ_HANDLED;
268 }
269
270 static inline void
271 bnad_rxq_alloc_uninit(struct bnad *bnad, struct bna_rcb *rcb)
272 {
273 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
274
275 unmap_q->reuse_pi = -1;
276 unmap_q->alloc_order = -1;
277 unmap_q->map_size = 0;
278 unmap_q->type = BNAD_RXBUF_NONE;
279 }
280
281 /* Default is page-based allocation. Multi-buffer support - TBD */
282 static int
283 bnad_rxq_alloc_init(struct bnad *bnad, struct bna_rcb *rcb)
284 {
285 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
286 int order;
287
288 bnad_rxq_alloc_uninit(bnad, rcb);
289
290 order = get_order(rcb->rxq->buffer_size);
291
292 unmap_q->type = BNAD_RXBUF_PAGE;
293
294 if (bna_is_small_rxq(rcb->id)) {
295 unmap_q->alloc_order = 0;
296 unmap_q->map_size = rcb->rxq->buffer_size;
297 } else {
298 if (rcb->rxq->multi_buffer) {
299 unmap_q->alloc_order = 0;
300 unmap_q->map_size = rcb->rxq->buffer_size;
301 unmap_q->type = BNAD_RXBUF_MULTI_BUFF;
302 } else {
303 unmap_q->alloc_order = order;
304 unmap_q->map_size =
305 (rcb->rxq->buffer_size > 2048) ?
306 PAGE_SIZE << order : 2048;
307 }
308 }
309
310 BUG_ON(((PAGE_SIZE << order) % unmap_q->map_size));
311
312 return 0;
313 }
314
315 static inline void
316 bnad_rxq_cleanup_page(struct bnad *bnad, struct bnad_rx_unmap *unmap)
317 {
318 if (!unmap->page)
319 return;
320
321 dma_unmap_page(&bnad->pcidev->dev,
322 dma_unmap_addr(&unmap->vector, dma_addr),
323 unmap->vector.len, DMA_FROM_DEVICE);
324 put_page(unmap->page);
325 unmap->page = NULL;
326 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
327 unmap->vector.len = 0;
328 }
329
330 static inline void
331 bnad_rxq_cleanup_skb(struct bnad *bnad, struct bnad_rx_unmap *unmap)
332 {
333 if (!unmap->skb)
334 return;
335
336 dma_unmap_single(&bnad->pcidev->dev,
337 dma_unmap_addr(&unmap->vector, dma_addr),
338 unmap->vector.len, DMA_FROM_DEVICE);
339 dev_kfree_skb_any(unmap->skb);
340 unmap->skb = NULL;
341 dma_unmap_addr_set(&unmap->vector, dma_addr, 0);
342 unmap->vector.len = 0;
343 }
344
345 static void
346 bnad_rxq_cleanup(struct bnad *bnad, struct bna_rcb *rcb)
347 {
348 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
349 int i;
350
351 for (i = 0; i < rcb->q_depth; i++) {
352 struct bnad_rx_unmap *unmap = &unmap_q->unmap[i];
353
354 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
355 bnad_rxq_cleanup_skb(bnad, unmap);
356 else
357 bnad_rxq_cleanup_page(bnad, unmap);
358 }
359 bnad_rxq_alloc_uninit(bnad, rcb);
360 }
361
362 static u32
363 bnad_rxq_refill_page(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
364 {
365 u32 alloced, prod, q_depth;
366 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
367 struct bnad_rx_unmap *unmap, *prev;
368 struct bna_rxq_entry *rxent;
369 struct page *page;
370 u32 page_offset, alloc_size;
371 dma_addr_t dma_addr;
372
373 prod = rcb->producer_index;
374 q_depth = rcb->q_depth;
375
376 alloc_size = PAGE_SIZE << unmap_q->alloc_order;
377 alloced = 0;
378
379 while (nalloc--) {
380 unmap = &unmap_q->unmap[prod];
381
382 if (unmap_q->reuse_pi < 0) {
383 page = alloc_pages(GFP_ATOMIC | __GFP_COMP,
384 unmap_q->alloc_order);
385 page_offset = 0;
386 } else {
387 prev = &unmap_q->unmap[unmap_q->reuse_pi];
388 page = prev->page;
389 page_offset = prev->page_offset + unmap_q->map_size;
390 get_page(page);
391 }
392
393 if (unlikely(!page)) {
394 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
395 rcb->rxq->rxbuf_alloc_failed++;
396 goto finishing;
397 }
398
399 dma_addr = dma_map_page(&bnad->pcidev->dev, page, page_offset,
400 unmap_q->map_size, DMA_FROM_DEVICE);
401
402 unmap->page = page;
403 unmap->page_offset = page_offset;
404 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
405 unmap->vector.len = unmap_q->map_size;
406 page_offset += unmap_q->map_size;
407
408 if (page_offset < alloc_size)
409 unmap_q->reuse_pi = prod;
410 else
411 unmap_q->reuse_pi = -1;
412
413 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
414 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
415 BNA_QE_INDX_INC(prod, q_depth);
416 alloced++;
417 }
418
419 finishing:
420 if (likely(alloced)) {
421 rcb->producer_index = prod;
422 smp_mb();
423 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
424 bna_rxq_prod_indx_doorbell(rcb);
425 }
426
427 return alloced;
428 }
429
430 static u32
431 bnad_rxq_refill_skb(struct bnad *bnad, struct bna_rcb *rcb, u32 nalloc)
432 {
433 u32 alloced, prod, q_depth, buff_sz;
434 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
435 struct bnad_rx_unmap *unmap;
436 struct bna_rxq_entry *rxent;
437 struct sk_buff *skb;
438 dma_addr_t dma_addr;
439
440 buff_sz = rcb->rxq->buffer_size;
441 prod = rcb->producer_index;
442 q_depth = rcb->q_depth;
443
444 alloced = 0;
445 while (nalloc--) {
446 unmap = &unmap_q->unmap[prod];
447
448 skb = netdev_alloc_skb_ip_align(bnad->netdev, buff_sz);
449
450 if (unlikely(!skb)) {
451 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
452 rcb->rxq->rxbuf_alloc_failed++;
453 goto finishing;
454 }
455 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
456 buff_sz, DMA_FROM_DEVICE);
457
458 unmap->skb = skb;
459 dma_unmap_addr_set(&unmap->vector, dma_addr, dma_addr);
460 unmap->vector.len = buff_sz;
461
462 rxent = &((struct bna_rxq_entry *)rcb->sw_q)[prod];
463 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
464 BNA_QE_INDX_INC(prod, q_depth);
465 alloced++;
466 }
467
468 finishing:
469 if (likely(alloced)) {
470 rcb->producer_index = prod;
471 smp_mb();
472 if (likely(test_bit(BNAD_RXQ_POST_OK, &rcb->flags)))
473 bna_rxq_prod_indx_doorbell(rcb);
474 }
475
476 return alloced;
477 }
478
479 static inline void
480 bnad_rxq_post(struct bnad *bnad, struct bna_rcb *rcb)
481 {
482 struct bnad_rx_unmap_q *unmap_q = rcb->unmap_q;
483 u32 to_alloc;
484
485 to_alloc = BNA_QE_FREE_CNT(rcb, rcb->q_depth);
486 if (!(to_alloc >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT))
487 return;
488
489 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
490 bnad_rxq_refill_skb(bnad, rcb, to_alloc);
491 else
492 bnad_rxq_refill_page(bnad, rcb, to_alloc);
493 }
494
495 #define flags_cksum_prot_mask (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
496 BNA_CQ_EF_IPV6 | \
497 BNA_CQ_EF_TCP | BNA_CQ_EF_UDP | \
498 BNA_CQ_EF_L4_CKSUM_OK)
499
500 #define flags_tcp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
501 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
502 #define flags_tcp6 (BNA_CQ_EF_IPV6 | \
503 BNA_CQ_EF_TCP | BNA_CQ_EF_L4_CKSUM_OK)
504 #define flags_udp4 (BNA_CQ_EF_IPV4 | BNA_CQ_EF_L3_CKSUM_OK | \
505 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
506 #define flags_udp6 (BNA_CQ_EF_IPV6 | \
507 BNA_CQ_EF_UDP | BNA_CQ_EF_L4_CKSUM_OK)
508
509 static void
510 bnad_cq_drop_packet(struct bnad *bnad, struct bna_rcb *rcb,
511 u32 sop_ci, u32 nvecs)
512 {
513 struct bnad_rx_unmap_q *unmap_q;
514 struct bnad_rx_unmap *unmap;
515 u32 ci, vec;
516
517 unmap_q = rcb->unmap_q;
518 for (vec = 0, ci = sop_ci; vec < nvecs; vec++) {
519 unmap = &unmap_q->unmap[ci];
520 BNA_QE_INDX_INC(ci, rcb->q_depth);
521
522 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
523 bnad_rxq_cleanup_skb(bnad, unmap);
524 else
525 bnad_rxq_cleanup_page(bnad, unmap);
526 }
527 }
528
529 static void
530 bnad_cq_setup_skb_frags(struct bna_rcb *rcb, struct sk_buff *skb,
531 u32 sop_ci, u32 nvecs, u32 last_fraglen)
532 {
533 struct bnad *bnad;
534 u32 ci, vec, len, totlen = 0;
535 struct bnad_rx_unmap_q *unmap_q;
536 struct bnad_rx_unmap *unmap;
537
538 unmap_q = rcb->unmap_q;
539 bnad = rcb->bnad;
540
541 /* prefetch header */
542 prefetch(page_address(unmap_q->unmap[sop_ci].page) +
543 unmap_q->unmap[sop_ci].page_offset);
544
545 for (vec = 1, ci = sop_ci; vec <= nvecs; vec++) {
546 unmap = &unmap_q->unmap[ci];
547 BNA_QE_INDX_INC(ci, rcb->q_depth);
548
549 dma_unmap_page(&bnad->pcidev->dev,
550 dma_unmap_addr(&unmap->vector, dma_addr),
551 unmap->vector.len, DMA_FROM_DEVICE);
552
553 len = (vec == nvecs) ?
554 last_fraglen : unmap->vector.len;
555 totlen += len;
556
557 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
558 unmap->page, unmap->page_offset, len);
559
560 unmap->page = NULL;
561 unmap->vector.len = 0;
562 }
563
564 skb->len += totlen;
565 skb->data_len += totlen;
566 skb->truesize += totlen;
567 }
568
569 static inline void
570 bnad_cq_setup_skb(struct bnad *bnad, struct sk_buff *skb,
571 struct bnad_rx_unmap *unmap, u32 len)
572 {
573 prefetch(skb->data);
574
575 dma_unmap_single(&bnad->pcidev->dev,
576 dma_unmap_addr(&unmap->vector, dma_addr),
577 unmap->vector.len, DMA_FROM_DEVICE);
578
579 skb_put(skb, len);
580 skb->protocol = eth_type_trans(skb, bnad->netdev);
581
582 unmap->skb = NULL;
583 unmap->vector.len = 0;
584 }
585
586 static u32
587 bnad_cq_process(struct bnad *bnad, struct bna_ccb *ccb, int budget)
588 {
589 struct bna_cq_entry *cq, *cmpl, *next_cmpl;
590 struct bna_rcb *rcb = NULL;
591 struct bnad_rx_unmap_q *unmap_q;
592 struct bnad_rx_unmap *unmap = NULL;
593 struct sk_buff *skb = NULL;
594 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
595 struct bnad_rx_ctrl *rx_ctrl = ccb->ctrl;
596 u32 packets = 0, len = 0, totlen = 0;
597 u32 pi, vec, sop_ci = 0, nvecs = 0;
598 u32 flags, masked_flags;
599
600 prefetch(bnad->netdev);
601
602 cq = ccb->sw_q;
603 cmpl = &cq[ccb->producer_index];
604
605 while (packets < budget) {
606 if (!cmpl->valid)
607 break;
608 /* The 'valid' field is set by the adapter, only after writing
609 * the other fields of completion entry. Hence, do not load
610 * other fields of completion entry *before* the 'valid' is
611 * loaded. Adding the rmb() here prevents the compiler and/or
612 * CPU from reordering the reads which would potentially result
613 * in reading stale values in completion entry.
614 */
615 rmb();
616
617 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
618
619 if (bna_is_small_rxq(cmpl->rxq_id))
620 rcb = ccb->rcb[1];
621 else
622 rcb = ccb->rcb[0];
623
624 unmap_q = rcb->unmap_q;
625
626 /* start of packet ci */
627 sop_ci = rcb->consumer_index;
628
629 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type)) {
630 unmap = &unmap_q->unmap[sop_ci];
631 skb = unmap->skb;
632 } else {
633 skb = napi_get_frags(&rx_ctrl->napi);
634 if (unlikely(!skb))
635 break;
636 }
637 prefetch(skb);
638
639 flags = ntohl(cmpl->flags);
640 len = ntohs(cmpl->length);
641 totlen = len;
642 nvecs = 1;
643
644 /* Check all the completions for this frame.
645 * busy-wait doesn't help much, break here.
646 */
647 if (BNAD_RXBUF_IS_MULTI_BUFF(unmap_q->type) &&
648 (flags & BNA_CQ_EF_EOP) == 0) {
649 pi = ccb->producer_index;
650 do {
651 BNA_QE_INDX_INC(pi, ccb->q_depth);
652 next_cmpl = &cq[pi];
653
654 if (!next_cmpl->valid)
655 break;
656 /* The 'valid' field is set by the adapter, only
657 * after writing the other fields of completion
658 * entry. Hence, do not load other fields of
659 * completion entry *before* the 'valid' is
660 * loaded. Adding the rmb() here prevents the
661 * compiler and/or CPU from reordering the reads
662 * which would potentially result in reading
663 * stale values in completion entry.
664 */
665 rmb();
666
667 len = ntohs(next_cmpl->length);
668 flags = ntohl(next_cmpl->flags);
669
670 nvecs++;
671 totlen += len;
672 } while ((flags & BNA_CQ_EF_EOP) == 0);
673
674 if (!next_cmpl->valid)
675 break;
676 }
677
678 /* TODO: BNA_CQ_EF_LOCAL ? */
679 if (unlikely(flags & (BNA_CQ_EF_MAC_ERROR |
680 BNA_CQ_EF_FCS_ERROR |
681 BNA_CQ_EF_TOO_LONG))) {
682 bnad_cq_drop_packet(bnad, rcb, sop_ci, nvecs);
683 rcb->rxq->rx_packets_with_error++;
684
685 goto next;
686 }
687
688 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
689 bnad_cq_setup_skb(bnad, skb, unmap, len);
690 else
691 bnad_cq_setup_skb_frags(rcb, skb, sop_ci, nvecs, len);
692
693 packets++;
694 rcb->rxq->rx_packets++;
695 rcb->rxq->rx_bytes += totlen;
696 ccb->bytes_per_intr += totlen;
697
698 masked_flags = flags & flags_cksum_prot_mask;
699
700 if (likely
701 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
702 ((masked_flags == flags_tcp4) ||
703 (masked_flags == flags_udp4) ||
704 (masked_flags == flags_tcp6) ||
705 (masked_flags == flags_udp6))))
706 skb->ip_summed = CHECKSUM_UNNECESSARY;
707 else
708 skb_checksum_none_assert(skb);
709
710 if (flags & BNA_CQ_EF_VLAN)
711 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cmpl->vlan_tag));
712
713 if (BNAD_RXBUF_IS_SK_BUFF(unmap_q->type))
714 netif_receive_skb(skb);
715 else
716 napi_gro_frags(&rx_ctrl->napi);
717
718 next:
719 BNA_QE_INDX_ADD(rcb->consumer_index, nvecs, rcb->q_depth);
720 for (vec = 0; vec < nvecs; vec++) {
721 cmpl = &cq[ccb->producer_index];
722 cmpl->valid = 0;
723 BNA_QE_INDX_INC(ccb->producer_index, ccb->q_depth);
724 }
725 cmpl = &cq[ccb->producer_index];
726 }
727
728 napi_gro_flush(&rx_ctrl->napi, false);
729 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
730 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
731
732 bnad_rxq_post(bnad, ccb->rcb[0]);
733 if (ccb->rcb[1])
734 bnad_rxq_post(bnad, ccb->rcb[1]);
735
736 return packets;
737 }
738
739 static void
740 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
741 {
742 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
743 struct napi_struct *napi = &rx_ctrl->napi;
744
745 if (likely(napi_schedule_prep(napi))) {
746 __napi_schedule(napi);
747 rx_ctrl->rx_schedule++;
748 }
749 }
750
751 /* MSIX Rx Path Handler */
752 static irqreturn_t
753 bnad_msix_rx(int irq, void *data)
754 {
755 struct bna_ccb *ccb = (struct bna_ccb *)data;
756
757 if (ccb) {
758 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
759 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
760 }
761
762 return IRQ_HANDLED;
763 }
764
765 /* Interrupt handlers */
766
767 /* Mbox Interrupt Handlers */
768 static irqreturn_t
769 bnad_msix_mbox_handler(int irq, void *data)
770 {
771 u32 intr_status;
772 unsigned long flags;
773 struct bnad *bnad = (struct bnad *)data;
774
775 spin_lock_irqsave(&bnad->bna_lock, flags);
776 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
777 spin_unlock_irqrestore(&bnad->bna_lock, flags);
778 return IRQ_HANDLED;
779 }
780
781 bna_intr_status_get(&bnad->bna, intr_status);
782
783 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
784 bna_mbox_handler(&bnad->bna, intr_status);
785
786 spin_unlock_irqrestore(&bnad->bna_lock, flags);
787
788 return IRQ_HANDLED;
789 }
790
791 static irqreturn_t
792 bnad_isr(int irq, void *data)
793 {
794 int i, j;
795 u32 intr_status;
796 unsigned long flags;
797 struct bnad *bnad = (struct bnad *)data;
798 struct bnad_rx_info *rx_info;
799 struct bnad_rx_ctrl *rx_ctrl;
800 struct bna_tcb *tcb = NULL;
801
802 spin_lock_irqsave(&bnad->bna_lock, flags);
803 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
804 spin_unlock_irqrestore(&bnad->bna_lock, flags);
805 return IRQ_NONE;
806 }
807
808 bna_intr_status_get(&bnad->bna, intr_status);
809
810 if (unlikely(!intr_status)) {
811 spin_unlock_irqrestore(&bnad->bna_lock, flags);
812 return IRQ_NONE;
813 }
814
815 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
816 bna_mbox_handler(&bnad->bna, intr_status);
817
818 spin_unlock_irqrestore(&bnad->bna_lock, flags);
819
820 if (!BNA_IS_INTX_DATA_INTR(intr_status))
821 return IRQ_HANDLED;
822
823 /* Process data interrupts */
824 /* Tx processing */
825 for (i = 0; i < bnad->num_tx; i++) {
826 for (j = 0; j < bnad->num_txq_per_tx; j++) {
827 tcb = bnad->tx_info[i].tcb[j];
828 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
829 bnad_tx_complete(bnad, bnad->tx_info[i].tcb[j]);
830 }
831 }
832 /* Rx processing */
833 for (i = 0; i < bnad->num_rx; i++) {
834 rx_info = &bnad->rx_info[i];
835 if (!rx_info->rx)
836 continue;
837 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
838 rx_ctrl = &rx_info->rx_ctrl[j];
839 if (rx_ctrl->ccb)
840 bnad_netif_rx_schedule_poll(bnad,
841 rx_ctrl->ccb);
842 }
843 }
844 return IRQ_HANDLED;
845 }
846
847 /*
848 * Called in interrupt / callback context
849 * with bna_lock held, so cfg_flags access is OK
850 */
851 static void
852 bnad_enable_mbox_irq(struct bnad *bnad)
853 {
854 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
855
856 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
857 }
858
859 /*
860 * Called with bnad->bna_lock held b'cos of
861 * bnad->cfg_flags access.
862 */
863 static void
864 bnad_disable_mbox_irq(struct bnad *bnad)
865 {
866 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
867
868 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
869 }
870
871 static void
872 bnad_set_netdev_perm_addr(struct bnad *bnad)
873 {
874 struct net_device *netdev = bnad->netdev;
875
876 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
877 if (is_zero_ether_addr(netdev->dev_addr))
878 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
879 }
880
881 /* Control Path Handlers */
882
883 /* Callbacks */
884 void
885 bnad_cb_mbox_intr_enable(struct bnad *bnad)
886 {
887 bnad_enable_mbox_irq(bnad);
888 }
889
890 void
891 bnad_cb_mbox_intr_disable(struct bnad *bnad)
892 {
893 bnad_disable_mbox_irq(bnad);
894 }
895
896 void
897 bnad_cb_ioceth_ready(struct bnad *bnad)
898 {
899 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
900 complete(&bnad->bnad_completions.ioc_comp);
901 }
902
903 void
904 bnad_cb_ioceth_failed(struct bnad *bnad)
905 {
906 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
907 complete(&bnad->bnad_completions.ioc_comp);
908 }
909
910 void
911 bnad_cb_ioceth_disabled(struct bnad *bnad)
912 {
913 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
914 complete(&bnad->bnad_completions.ioc_comp);
915 }
916
917 static void
918 bnad_cb_enet_disabled(void *arg)
919 {
920 struct bnad *bnad = (struct bnad *)arg;
921
922 netif_carrier_off(bnad->netdev);
923 complete(&bnad->bnad_completions.enet_comp);
924 }
925
926 void
927 bnad_cb_ethport_link_status(struct bnad *bnad,
928 enum bna_link_status link_status)
929 {
930 bool link_up = false;
931
932 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
933
934 if (link_status == BNA_CEE_UP) {
935 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
936 BNAD_UPDATE_CTR(bnad, cee_toggle);
937 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
938 } else {
939 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
940 BNAD_UPDATE_CTR(bnad, cee_toggle);
941 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
942 }
943
944 if (link_up) {
945 if (!netif_carrier_ok(bnad->netdev)) {
946 uint tx_id, tcb_id;
947 printk(KERN_WARNING "bna: %s link up\n",
948 bnad->netdev->name);
949 netif_carrier_on(bnad->netdev);
950 BNAD_UPDATE_CTR(bnad, link_toggle);
951 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
952 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
953 tcb_id++) {
954 struct bna_tcb *tcb =
955 bnad->tx_info[tx_id].tcb[tcb_id];
956 u32 txq_id;
957 if (!tcb)
958 continue;
959
960 txq_id = tcb->id;
961
962 if (test_bit(BNAD_TXQ_TX_STARTED,
963 &tcb->flags)) {
964 /*
965 * Force an immediate
966 * Transmit Schedule */
967 printk(KERN_INFO "bna: %s %d "
968 "TXQ_STARTED\n",
969 bnad->netdev->name,
970 txq_id);
971 netif_wake_subqueue(
972 bnad->netdev,
973 txq_id);
974 BNAD_UPDATE_CTR(bnad,
975 netif_queue_wakeup);
976 } else {
977 netif_stop_subqueue(
978 bnad->netdev,
979 txq_id);
980 BNAD_UPDATE_CTR(bnad,
981 netif_queue_stop);
982 }
983 }
984 }
985 }
986 } else {
987 if (netif_carrier_ok(bnad->netdev)) {
988 printk(KERN_WARNING "bna: %s link down\n",
989 bnad->netdev->name);
990 netif_carrier_off(bnad->netdev);
991 BNAD_UPDATE_CTR(bnad, link_toggle);
992 }
993 }
994 }
995
996 static void
997 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
998 {
999 struct bnad *bnad = (struct bnad *)arg;
1000
1001 complete(&bnad->bnad_completions.tx_comp);
1002 }
1003
1004 static void
1005 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
1006 {
1007 struct bnad_tx_info *tx_info =
1008 (struct bnad_tx_info *)tcb->txq->tx->priv;
1009
1010 tcb->priv = tcb;
1011 tx_info->tcb[tcb->id] = tcb;
1012 }
1013
1014 static void
1015 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
1016 {
1017 struct bnad_tx_info *tx_info =
1018 (struct bnad_tx_info *)tcb->txq->tx->priv;
1019
1020 tx_info->tcb[tcb->id] = NULL;
1021 tcb->priv = NULL;
1022 }
1023
1024 static void
1025 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
1026 {
1027 struct bnad_rx_info *rx_info =
1028 (struct bnad_rx_info *)ccb->cq->rx->priv;
1029
1030 rx_info->rx_ctrl[ccb->id].ccb = ccb;
1031 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
1032 }
1033
1034 static void
1035 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
1036 {
1037 struct bnad_rx_info *rx_info =
1038 (struct bnad_rx_info *)ccb->cq->rx->priv;
1039
1040 rx_info->rx_ctrl[ccb->id].ccb = NULL;
1041 }
1042
1043 static void
1044 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
1045 {
1046 struct bnad_tx_info *tx_info =
1047 (struct bnad_tx_info *)tx->priv;
1048 struct bna_tcb *tcb;
1049 u32 txq_id;
1050 int i;
1051
1052 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1053 tcb = tx_info->tcb[i];
1054 if (!tcb)
1055 continue;
1056 txq_id = tcb->id;
1057 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1058 netif_stop_subqueue(bnad->netdev, txq_id);
1059 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
1060 bnad->netdev->name, txq_id);
1061 }
1062 }
1063
1064 static void
1065 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
1066 {
1067 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1068 struct bna_tcb *tcb;
1069 u32 txq_id;
1070 int i;
1071
1072 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1073 tcb = tx_info->tcb[i];
1074 if (!tcb)
1075 continue;
1076 txq_id = tcb->id;
1077
1078 BUG_ON(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags));
1079 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
1080 BUG_ON(*(tcb->hw_consumer_index) != 0);
1081
1082 if (netif_carrier_ok(bnad->netdev)) {
1083 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
1084 bnad->netdev->name, txq_id);
1085 netif_wake_subqueue(bnad->netdev, txq_id);
1086 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
1087 }
1088 }
1089
1090 /*
1091 * Workaround for first ioceth enable failure & we
1092 * get a 0 MAC address. We try to get the MAC address
1093 * again here.
1094 */
1095 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
1096 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
1097 bnad_set_netdev_perm_addr(bnad);
1098 }
1099 }
1100
1101 /*
1102 * Free all TxQs buffers and then notify TX_E_CLEANUP_DONE to Tx fsm.
1103 */
1104 static void
1105 bnad_tx_cleanup(struct delayed_work *work)
1106 {
1107 struct bnad_tx_info *tx_info =
1108 container_of(work, struct bnad_tx_info, tx_cleanup_work);
1109 struct bnad *bnad = NULL;
1110 struct bna_tcb *tcb;
1111 unsigned long flags;
1112 u32 i, pending = 0;
1113
1114 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1115 tcb = tx_info->tcb[i];
1116 if (!tcb)
1117 continue;
1118
1119 bnad = tcb->bnad;
1120
1121 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
1122 pending++;
1123 continue;
1124 }
1125
1126 bnad_txq_cleanup(bnad, tcb);
1127
1128 smp_mb__before_clear_bit();
1129 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
1130 }
1131
1132 if (pending) {
1133 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work,
1134 msecs_to_jiffies(1));
1135 return;
1136 }
1137
1138 spin_lock_irqsave(&bnad->bna_lock, flags);
1139 bna_tx_cleanup_complete(tx_info->tx);
1140 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1141 }
1142
1143 static void
1144 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
1145 {
1146 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
1147 struct bna_tcb *tcb;
1148 int i;
1149
1150 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
1151 tcb = tx_info->tcb[i];
1152 if (!tcb)
1153 continue;
1154 }
1155
1156 queue_delayed_work(bnad->work_q, &tx_info->tx_cleanup_work, 0);
1157 }
1158
1159 static void
1160 bnad_cb_rx_stall(struct bnad *bnad, struct bna_rx *rx)
1161 {
1162 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1163 struct bna_ccb *ccb;
1164 struct bnad_rx_ctrl *rx_ctrl;
1165 int i;
1166
1167 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1168 rx_ctrl = &rx_info->rx_ctrl[i];
1169 ccb = rx_ctrl->ccb;
1170 if (!ccb)
1171 continue;
1172
1173 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[0]->flags);
1174
1175 if (ccb->rcb[1])
1176 clear_bit(BNAD_RXQ_POST_OK, &ccb->rcb[1]->flags);
1177 }
1178 }
1179
1180 /*
1181 * Free all RxQs buffers and then notify RX_E_CLEANUP_DONE to Rx fsm.
1182 */
1183 static void
1184 bnad_rx_cleanup(void *work)
1185 {
1186 struct bnad_rx_info *rx_info =
1187 container_of(work, struct bnad_rx_info, rx_cleanup_work);
1188 struct bnad_rx_ctrl *rx_ctrl;
1189 struct bnad *bnad = NULL;
1190 unsigned long flags;
1191 u32 i;
1192
1193 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1194 rx_ctrl = &rx_info->rx_ctrl[i];
1195
1196 if (!rx_ctrl->ccb)
1197 continue;
1198
1199 bnad = rx_ctrl->ccb->bnad;
1200
1201 /*
1202 * Wait till the poll handler has exited
1203 * and nothing can be scheduled anymore
1204 */
1205 napi_disable(&rx_ctrl->napi);
1206
1207 bnad_cq_cleanup(bnad, rx_ctrl->ccb);
1208 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[0]);
1209 if (rx_ctrl->ccb->rcb[1])
1210 bnad_rxq_cleanup(bnad, rx_ctrl->ccb->rcb[1]);
1211 }
1212
1213 spin_lock_irqsave(&bnad->bna_lock, flags);
1214 bna_rx_cleanup_complete(rx_info->rx);
1215 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1216 }
1217
1218 static void
1219 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
1220 {
1221 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1222 struct bna_ccb *ccb;
1223 struct bnad_rx_ctrl *rx_ctrl;
1224 int i;
1225
1226 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1227 rx_ctrl = &rx_info->rx_ctrl[i];
1228 ccb = rx_ctrl->ccb;
1229 if (!ccb)
1230 continue;
1231
1232 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
1233
1234 if (ccb->rcb[1])
1235 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
1236 }
1237
1238 queue_work(bnad->work_q, &rx_info->rx_cleanup_work);
1239 }
1240
1241 static void
1242 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
1243 {
1244 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
1245 struct bna_ccb *ccb;
1246 struct bna_rcb *rcb;
1247 struct bnad_rx_ctrl *rx_ctrl;
1248 int i, j;
1249
1250 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
1251 rx_ctrl = &rx_info->rx_ctrl[i];
1252 ccb = rx_ctrl->ccb;
1253 if (!ccb)
1254 continue;
1255
1256 napi_enable(&rx_ctrl->napi);
1257
1258 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1259 rcb = ccb->rcb[j];
1260 if (!rcb)
1261 continue;
1262
1263 bnad_rxq_alloc_init(bnad, rcb);
1264 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1265 set_bit(BNAD_RXQ_POST_OK, &rcb->flags);
1266 bnad_rxq_post(bnad, rcb);
1267 }
1268 }
1269 }
1270
1271 static void
1272 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1273 {
1274 struct bnad *bnad = (struct bnad *)arg;
1275
1276 complete(&bnad->bnad_completions.rx_comp);
1277 }
1278
1279 static void
1280 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1281 {
1282 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1283 complete(&bnad->bnad_completions.mcast_comp);
1284 }
1285
1286 void
1287 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1288 struct bna_stats *stats)
1289 {
1290 if (status == BNA_CB_SUCCESS)
1291 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1292
1293 if (!netif_running(bnad->netdev) ||
1294 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1295 return;
1296
1297 mod_timer(&bnad->stats_timer,
1298 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1299 }
1300
1301 static void
1302 bnad_cb_enet_mtu_set(struct bnad *bnad)
1303 {
1304 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1305 complete(&bnad->bnad_completions.mtu_comp);
1306 }
1307
1308 void
1309 bnad_cb_completion(void *arg, enum bfa_status status)
1310 {
1311 struct bnad_iocmd_comp *iocmd_comp =
1312 (struct bnad_iocmd_comp *)arg;
1313
1314 iocmd_comp->comp_status = (u32) status;
1315 complete(&iocmd_comp->comp);
1316 }
1317
1318 /* Resource allocation, free functions */
1319
1320 static void
1321 bnad_mem_free(struct bnad *bnad,
1322 struct bna_mem_info *mem_info)
1323 {
1324 int i;
1325 dma_addr_t dma_pa;
1326
1327 if (mem_info->mdl == NULL)
1328 return;
1329
1330 for (i = 0; i < mem_info->num; i++) {
1331 if (mem_info->mdl[i].kva != NULL) {
1332 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1333 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1334 dma_pa);
1335 dma_free_coherent(&bnad->pcidev->dev,
1336 mem_info->mdl[i].len,
1337 mem_info->mdl[i].kva, dma_pa);
1338 } else
1339 kfree(mem_info->mdl[i].kva);
1340 }
1341 }
1342 kfree(mem_info->mdl);
1343 mem_info->mdl = NULL;
1344 }
1345
1346 static int
1347 bnad_mem_alloc(struct bnad *bnad,
1348 struct bna_mem_info *mem_info)
1349 {
1350 int i;
1351 dma_addr_t dma_pa;
1352
1353 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1354 mem_info->mdl = NULL;
1355 return 0;
1356 }
1357
1358 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1359 GFP_KERNEL);
1360 if (mem_info->mdl == NULL)
1361 return -ENOMEM;
1362
1363 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1364 for (i = 0; i < mem_info->num; i++) {
1365 mem_info->mdl[i].len = mem_info->len;
1366 mem_info->mdl[i].kva =
1367 dma_alloc_coherent(&bnad->pcidev->dev,
1368 mem_info->len, &dma_pa,
1369 GFP_KERNEL);
1370 if (mem_info->mdl[i].kva == NULL)
1371 goto err_return;
1372
1373 BNA_SET_DMA_ADDR(dma_pa,
1374 &(mem_info->mdl[i].dma));
1375 }
1376 } else {
1377 for (i = 0; i < mem_info->num; i++) {
1378 mem_info->mdl[i].len = mem_info->len;
1379 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1380 GFP_KERNEL);
1381 if (mem_info->mdl[i].kva == NULL)
1382 goto err_return;
1383 }
1384 }
1385
1386 return 0;
1387
1388 err_return:
1389 bnad_mem_free(bnad, mem_info);
1390 return -ENOMEM;
1391 }
1392
1393 /* Free IRQ for Mailbox */
1394 static void
1395 bnad_mbox_irq_free(struct bnad *bnad)
1396 {
1397 int irq;
1398 unsigned long flags;
1399
1400 spin_lock_irqsave(&bnad->bna_lock, flags);
1401 bnad_disable_mbox_irq(bnad);
1402 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1403
1404 irq = BNAD_GET_MBOX_IRQ(bnad);
1405 free_irq(irq, bnad);
1406 }
1407
1408 /*
1409 * Allocates IRQ for Mailbox, but keep it disabled
1410 * This will be enabled once we get the mbox enable callback
1411 * from bna
1412 */
1413 static int
1414 bnad_mbox_irq_alloc(struct bnad *bnad)
1415 {
1416 int err = 0;
1417 unsigned long irq_flags, flags;
1418 u32 irq;
1419 irq_handler_t irq_handler;
1420
1421 spin_lock_irqsave(&bnad->bna_lock, flags);
1422 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1423 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1424 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1425 irq_flags = 0;
1426 } else {
1427 irq_handler = (irq_handler_t)bnad_isr;
1428 irq = bnad->pcidev->irq;
1429 irq_flags = IRQF_SHARED;
1430 }
1431
1432 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1433 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1434
1435 /*
1436 * Set the Mbox IRQ disable flag, so that the IRQ handler
1437 * called from request_irq() for SHARED IRQs do not execute
1438 */
1439 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1440
1441 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1442
1443 err = request_irq(irq, irq_handler, irq_flags,
1444 bnad->mbox_irq_name, bnad);
1445
1446 return err;
1447 }
1448
1449 static void
1450 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1451 {
1452 kfree(intr_info->idl);
1453 intr_info->idl = NULL;
1454 }
1455
1456 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1457 static int
1458 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1459 u32 txrx_id, struct bna_intr_info *intr_info)
1460 {
1461 int i, vector_start = 0;
1462 u32 cfg_flags;
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(&bnad->bna_lock, flags);
1466 cfg_flags = bnad->cfg_flags;
1467 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1468
1469 if (cfg_flags & BNAD_CF_MSIX) {
1470 intr_info->intr_type = BNA_INTR_T_MSIX;
1471 intr_info->idl = kcalloc(intr_info->num,
1472 sizeof(struct bna_intr_descr),
1473 GFP_KERNEL);
1474 if (!intr_info->idl)
1475 return -ENOMEM;
1476
1477 switch (src) {
1478 case BNAD_INTR_TX:
1479 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1480 break;
1481
1482 case BNAD_INTR_RX:
1483 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1484 (bnad->num_tx * bnad->num_txq_per_tx) +
1485 txrx_id;
1486 break;
1487
1488 default:
1489 BUG();
1490 }
1491
1492 for (i = 0; i < intr_info->num; i++)
1493 intr_info->idl[i].vector = vector_start + i;
1494 } else {
1495 intr_info->intr_type = BNA_INTR_T_INTX;
1496 intr_info->num = 1;
1497 intr_info->idl = kcalloc(intr_info->num,
1498 sizeof(struct bna_intr_descr),
1499 GFP_KERNEL);
1500 if (!intr_info->idl)
1501 return -ENOMEM;
1502
1503 switch (src) {
1504 case BNAD_INTR_TX:
1505 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1506 break;
1507
1508 case BNAD_INTR_RX:
1509 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1510 break;
1511 }
1512 }
1513 return 0;
1514 }
1515
1516 /* NOTE: Should be called for MSIX only
1517 * Unregisters Tx MSIX vector(s) from the kernel
1518 */
1519 static void
1520 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1521 int num_txqs)
1522 {
1523 int i;
1524 int vector_num;
1525
1526 for (i = 0; i < num_txqs; i++) {
1527 if (tx_info->tcb[i] == NULL)
1528 continue;
1529
1530 vector_num = tx_info->tcb[i]->intr_vector;
1531 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1532 }
1533 }
1534
1535 /* NOTE: Should be called for MSIX only
1536 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1537 */
1538 static int
1539 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1540 u32 tx_id, int num_txqs)
1541 {
1542 int i;
1543 int err;
1544 int vector_num;
1545
1546 for (i = 0; i < num_txqs; i++) {
1547 vector_num = tx_info->tcb[i]->intr_vector;
1548 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1549 tx_id + tx_info->tcb[i]->id);
1550 err = request_irq(bnad->msix_table[vector_num].vector,
1551 (irq_handler_t)bnad_msix_tx, 0,
1552 tx_info->tcb[i]->name,
1553 tx_info->tcb[i]);
1554 if (err)
1555 goto err_return;
1556 }
1557
1558 return 0;
1559
1560 err_return:
1561 if (i > 0)
1562 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1563 return -1;
1564 }
1565
1566 /* NOTE: Should be called for MSIX only
1567 * Unregisters Rx MSIX vector(s) from the kernel
1568 */
1569 static void
1570 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1571 int num_rxps)
1572 {
1573 int i;
1574 int vector_num;
1575
1576 for (i = 0; i < num_rxps; i++) {
1577 if (rx_info->rx_ctrl[i].ccb == NULL)
1578 continue;
1579
1580 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1581 free_irq(bnad->msix_table[vector_num].vector,
1582 rx_info->rx_ctrl[i].ccb);
1583 }
1584 }
1585
1586 /* NOTE: Should be called for MSIX only
1587 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1588 */
1589 static int
1590 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1591 u32 rx_id, int num_rxps)
1592 {
1593 int i;
1594 int err;
1595 int vector_num;
1596
1597 for (i = 0; i < num_rxps; i++) {
1598 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1599 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1600 bnad->netdev->name,
1601 rx_id + rx_info->rx_ctrl[i].ccb->id);
1602 err = request_irq(bnad->msix_table[vector_num].vector,
1603 (irq_handler_t)bnad_msix_rx, 0,
1604 rx_info->rx_ctrl[i].ccb->name,
1605 rx_info->rx_ctrl[i].ccb);
1606 if (err)
1607 goto err_return;
1608 }
1609
1610 return 0;
1611
1612 err_return:
1613 if (i > 0)
1614 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1615 return -1;
1616 }
1617
1618 /* Free Tx object Resources */
1619 static void
1620 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1621 {
1622 int i;
1623
1624 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1625 if (res_info[i].res_type == BNA_RES_T_MEM)
1626 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1627 else if (res_info[i].res_type == BNA_RES_T_INTR)
1628 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1629 }
1630 }
1631
1632 /* Allocates memory and interrupt resources for Tx object */
1633 static int
1634 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1635 u32 tx_id)
1636 {
1637 int i, err = 0;
1638
1639 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1640 if (res_info[i].res_type == BNA_RES_T_MEM)
1641 err = bnad_mem_alloc(bnad,
1642 &res_info[i].res_u.mem_info);
1643 else if (res_info[i].res_type == BNA_RES_T_INTR)
1644 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1645 &res_info[i].res_u.intr_info);
1646 if (err)
1647 goto err_return;
1648 }
1649 return 0;
1650
1651 err_return:
1652 bnad_tx_res_free(bnad, res_info);
1653 return err;
1654 }
1655
1656 /* Free Rx object Resources */
1657 static void
1658 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1659 {
1660 int i;
1661
1662 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1663 if (res_info[i].res_type == BNA_RES_T_MEM)
1664 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1665 else if (res_info[i].res_type == BNA_RES_T_INTR)
1666 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1667 }
1668 }
1669
1670 /* Allocates memory and interrupt resources for Rx object */
1671 static int
1672 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1673 uint rx_id)
1674 {
1675 int i, err = 0;
1676
1677 /* All memory needs to be allocated before setup_ccbs */
1678 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1679 if (res_info[i].res_type == BNA_RES_T_MEM)
1680 err = bnad_mem_alloc(bnad,
1681 &res_info[i].res_u.mem_info);
1682 else if (res_info[i].res_type == BNA_RES_T_INTR)
1683 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1684 &res_info[i].res_u.intr_info);
1685 if (err)
1686 goto err_return;
1687 }
1688 return 0;
1689
1690 err_return:
1691 bnad_rx_res_free(bnad, res_info);
1692 return err;
1693 }
1694
1695 /* Timer callbacks */
1696 /* a) IOC timer */
1697 static void
1698 bnad_ioc_timeout(unsigned long data)
1699 {
1700 struct bnad *bnad = (struct bnad *)data;
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&bnad->bna_lock, flags);
1704 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1705 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1706 }
1707
1708 static void
1709 bnad_ioc_hb_check(unsigned long data)
1710 {
1711 struct bnad *bnad = (struct bnad *)data;
1712 unsigned long flags;
1713
1714 spin_lock_irqsave(&bnad->bna_lock, flags);
1715 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1716 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1717 }
1718
1719 static void
1720 bnad_iocpf_timeout(unsigned long data)
1721 {
1722 struct bnad *bnad = (struct bnad *)data;
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&bnad->bna_lock, flags);
1726 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1727 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1728 }
1729
1730 static void
1731 bnad_iocpf_sem_timeout(unsigned long data)
1732 {
1733 struct bnad *bnad = (struct bnad *)data;
1734 unsigned long flags;
1735
1736 spin_lock_irqsave(&bnad->bna_lock, flags);
1737 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1738 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1739 }
1740
1741 /*
1742 * All timer routines use bnad->bna_lock to protect against
1743 * the following race, which may occur in case of no locking:
1744 * Time CPU m CPU n
1745 * 0 1 = test_bit
1746 * 1 clear_bit
1747 * 2 del_timer_sync
1748 * 3 mod_timer
1749 */
1750
1751 /* b) Dynamic Interrupt Moderation Timer */
1752 static void
1753 bnad_dim_timeout(unsigned long data)
1754 {
1755 struct bnad *bnad = (struct bnad *)data;
1756 struct bnad_rx_info *rx_info;
1757 struct bnad_rx_ctrl *rx_ctrl;
1758 int i, j;
1759 unsigned long flags;
1760
1761 if (!netif_carrier_ok(bnad->netdev))
1762 return;
1763
1764 spin_lock_irqsave(&bnad->bna_lock, flags);
1765 for (i = 0; i < bnad->num_rx; i++) {
1766 rx_info = &bnad->rx_info[i];
1767 if (!rx_info->rx)
1768 continue;
1769 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1770 rx_ctrl = &rx_info->rx_ctrl[j];
1771 if (!rx_ctrl->ccb)
1772 continue;
1773 bna_rx_dim_update(rx_ctrl->ccb);
1774 }
1775 }
1776
1777 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1778 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1779 mod_timer(&bnad->dim_timer,
1780 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1781 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1782 }
1783
1784 /* c) Statistics Timer */
1785 static void
1786 bnad_stats_timeout(unsigned long data)
1787 {
1788 struct bnad *bnad = (struct bnad *)data;
1789 unsigned long flags;
1790
1791 if (!netif_running(bnad->netdev) ||
1792 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1793 return;
1794
1795 spin_lock_irqsave(&bnad->bna_lock, flags);
1796 bna_hw_stats_get(&bnad->bna);
1797 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1798 }
1799
1800 /*
1801 * Set up timer for DIM
1802 * Called with bnad->bna_lock held
1803 */
1804 void
1805 bnad_dim_timer_start(struct bnad *bnad)
1806 {
1807 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1808 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1809 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1810 (unsigned long)bnad);
1811 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1812 mod_timer(&bnad->dim_timer,
1813 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1814 }
1815 }
1816
1817 /*
1818 * Set up timer for statistics
1819 * Called with mutex_lock(&bnad->conf_mutex) held
1820 */
1821 static void
1822 bnad_stats_timer_start(struct bnad *bnad)
1823 {
1824 unsigned long flags;
1825
1826 spin_lock_irqsave(&bnad->bna_lock, flags);
1827 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1828 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1829 (unsigned long)bnad);
1830 mod_timer(&bnad->stats_timer,
1831 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1832 }
1833 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1834 }
1835
1836 /*
1837 * Stops the stats timer
1838 * Called with mutex_lock(&bnad->conf_mutex) held
1839 */
1840 static void
1841 bnad_stats_timer_stop(struct bnad *bnad)
1842 {
1843 int to_del = 0;
1844 unsigned long flags;
1845
1846 spin_lock_irqsave(&bnad->bna_lock, flags);
1847 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1848 to_del = 1;
1849 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1850 if (to_del)
1851 del_timer_sync(&bnad->stats_timer);
1852 }
1853
1854 /* Utilities */
1855
1856 static void
1857 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1858 {
1859 int i = 1; /* Index 0 has broadcast address */
1860 struct netdev_hw_addr *mc_addr;
1861
1862 netdev_for_each_mc_addr(mc_addr, netdev) {
1863 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1864 ETH_ALEN);
1865 i++;
1866 }
1867 }
1868
1869 static int
1870 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1871 {
1872 struct bnad_rx_ctrl *rx_ctrl =
1873 container_of(napi, struct bnad_rx_ctrl, napi);
1874 struct bnad *bnad = rx_ctrl->bnad;
1875 int rcvd = 0;
1876
1877 rx_ctrl->rx_poll_ctr++;
1878
1879 if (!netif_carrier_ok(bnad->netdev))
1880 goto poll_exit;
1881
1882 rcvd = bnad_cq_process(bnad, rx_ctrl->ccb, budget);
1883 if (rcvd >= budget)
1884 return rcvd;
1885
1886 poll_exit:
1887 napi_complete(napi);
1888
1889 rx_ctrl->rx_complete++;
1890
1891 if (rx_ctrl->ccb)
1892 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1893
1894 return rcvd;
1895 }
1896
1897 #define BNAD_NAPI_POLL_QUOTA 64
1898 static void
1899 bnad_napi_add(struct bnad *bnad, u32 rx_id)
1900 {
1901 struct bnad_rx_ctrl *rx_ctrl;
1902 int i;
1903
1904 /* Initialize & enable NAPI */
1905 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1906 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1907 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1908 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1909 }
1910 }
1911
1912 static void
1913 bnad_napi_delete(struct bnad *bnad, u32 rx_id)
1914 {
1915 int i;
1916
1917 /* First disable and then clean up */
1918 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1919 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1920 }
1921
1922 /* Should be held with conf_lock held */
1923 void
1924 bnad_destroy_tx(struct bnad *bnad, u32 tx_id)
1925 {
1926 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1927 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1928 unsigned long flags;
1929
1930 if (!tx_info->tx)
1931 return;
1932
1933 init_completion(&bnad->bnad_completions.tx_comp);
1934 spin_lock_irqsave(&bnad->bna_lock, flags);
1935 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1936 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1937 wait_for_completion(&bnad->bnad_completions.tx_comp);
1938
1939 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1940 bnad_tx_msix_unregister(bnad, tx_info,
1941 bnad->num_txq_per_tx);
1942
1943 spin_lock_irqsave(&bnad->bna_lock, flags);
1944 bna_tx_destroy(tx_info->tx);
1945 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1946
1947 tx_info->tx = NULL;
1948 tx_info->tx_id = 0;
1949
1950 bnad_tx_res_free(bnad, res_info);
1951 }
1952
1953 /* Should be held with conf_lock held */
1954 int
1955 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1956 {
1957 int err;
1958 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1959 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1960 struct bna_intr_info *intr_info =
1961 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1962 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1963 static const struct bna_tx_event_cbfn tx_cbfn = {
1964 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1965 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1966 .tx_stall_cbfn = bnad_cb_tx_stall,
1967 .tx_resume_cbfn = bnad_cb_tx_resume,
1968 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1969 };
1970
1971 struct bna_tx *tx;
1972 unsigned long flags;
1973
1974 tx_info->tx_id = tx_id;
1975
1976 /* Initialize the Tx object configuration */
1977 tx_config->num_txq = bnad->num_txq_per_tx;
1978 tx_config->txq_depth = bnad->txq_depth;
1979 tx_config->tx_type = BNA_TX_T_REGULAR;
1980 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1981
1982 /* Get BNA's resource requirement for one tx object */
1983 spin_lock_irqsave(&bnad->bna_lock, flags);
1984 bna_tx_res_req(bnad->num_txq_per_tx,
1985 bnad->txq_depth, res_info);
1986 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1987
1988 /* Fill Unmap Q memory requirements */
1989 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1990 bnad->num_txq_per_tx, (sizeof(struct bnad_tx_unmap) *
1991 bnad->txq_depth));
1992
1993 /* Allocate resources */
1994 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1995 if (err)
1996 return err;
1997
1998 /* Ask BNA to create one Tx object, supplying required resources */
1999 spin_lock_irqsave(&bnad->bna_lock, flags);
2000 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
2001 tx_info);
2002 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2003 if (!tx) {
2004 err = -ENOMEM;
2005 goto err_return;
2006 }
2007 tx_info->tx = tx;
2008
2009 INIT_DELAYED_WORK(&tx_info->tx_cleanup_work,
2010 (work_func_t)bnad_tx_cleanup);
2011
2012 /* Register ISR for the Tx object */
2013 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2014 err = bnad_tx_msix_register(bnad, tx_info,
2015 tx_id, bnad->num_txq_per_tx);
2016 if (err)
2017 goto cleanup_tx;
2018 }
2019
2020 spin_lock_irqsave(&bnad->bna_lock, flags);
2021 bna_tx_enable(tx);
2022 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2023
2024 return 0;
2025
2026 cleanup_tx:
2027 spin_lock_irqsave(&bnad->bna_lock, flags);
2028 bna_tx_destroy(tx_info->tx);
2029 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2030 tx_info->tx = NULL;
2031 tx_info->tx_id = 0;
2032 err_return:
2033 bnad_tx_res_free(bnad, res_info);
2034 return err;
2035 }
2036
2037 /* Setup the rx config for bna_rx_create */
2038 /* bnad decides the configuration */
2039 static void
2040 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
2041 {
2042 memset(rx_config, 0, sizeof(*rx_config));
2043 rx_config->rx_type = BNA_RX_T_REGULAR;
2044 rx_config->num_paths = bnad->num_rxp_per_rx;
2045 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
2046
2047 if (bnad->num_rxp_per_rx > 1) {
2048 rx_config->rss_status = BNA_STATUS_T_ENABLED;
2049 rx_config->rss_config.hash_type =
2050 (BFI_ENET_RSS_IPV6 |
2051 BFI_ENET_RSS_IPV6_TCP |
2052 BFI_ENET_RSS_IPV4 |
2053 BFI_ENET_RSS_IPV4_TCP);
2054 rx_config->rss_config.hash_mask =
2055 bnad->num_rxp_per_rx - 1;
2056 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
2057 sizeof(rx_config->rss_config.toeplitz_hash_key));
2058 } else {
2059 rx_config->rss_status = BNA_STATUS_T_DISABLED;
2060 memset(&rx_config->rss_config, 0,
2061 sizeof(rx_config->rss_config));
2062 }
2063
2064 rx_config->frame_size = BNAD_FRAME_SIZE(bnad->netdev->mtu);
2065 rx_config->q0_multi_buf = BNA_STATUS_T_DISABLED;
2066
2067 /* BNA_RXP_SINGLE - one data-buffer queue
2068 * BNA_RXP_SLR - one small-buffer and one large-buffer queues
2069 * BNA_RXP_HDS - one header-buffer and one data-buffer queues
2070 */
2071 /* TODO: configurable param for queue type */
2072 rx_config->rxp_type = BNA_RXP_SLR;
2073
2074 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
2075 rx_config->frame_size > 4096) {
2076 /* though size_routing_enable is set in SLR,
2077 * small packets may get routed to same rxq.
2078 * set buf_size to 2048 instead of PAGE_SIZE.
2079 */
2080 rx_config->q0_buf_size = 2048;
2081 /* this should be in multiples of 2 */
2082 rx_config->q0_num_vecs = 4;
2083 rx_config->q0_depth = bnad->rxq_depth * rx_config->q0_num_vecs;
2084 rx_config->q0_multi_buf = BNA_STATUS_T_ENABLED;
2085 } else {
2086 rx_config->q0_buf_size = rx_config->frame_size;
2087 rx_config->q0_num_vecs = 1;
2088 rx_config->q0_depth = bnad->rxq_depth;
2089 }
2090
2091 /* initialize for q1 for BNA_RXP_SLR/BNA_RXP_HDS */
2092 if (rx_config->rxp_type == BNA_RXP_SLR) {
2093 rx_config->q1_depth = bnad->rxq_depth;
2094 rx_config->q1_buf_size = BFI_SMALL_RXBUF_SIZE;
2095 }
2096
2097 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
2098 }
2099
2100 static void
2101 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
2102 {
2103 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2104 int i;
2105
2106 for (i = 0; i < bnad->num_rxp_per_rx; i++)
2107 rx_info->rx_ctrl[i].bnad = bnad;
2108 }
2109
2110 /* Called with mutex_lock(&bnad->conf_mutex) held */
2111 static u32
2112 bnad_reinit_rx(struct bnad *bnad)
2113 {
2114 struct net_device *netdev = bnad->netdev;
2115 u32 err = 0, current_err = 0;
2116 u32 rx_id = 0, count = 0;
2117 unsigned long flags;
2118
2119 /* destroy and create new rx objects */
2120 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2121 if (!bnad->rx_info[rx_id].rx)
2122 continue;
2123 bnad_destroy_rx(bnad, rx_id);
2124 }
2125
2126 spin_lock_irqsave(&bnad->bna_lock, flags);
2127 bna_enet_mtu_set(&bnad->bna.enet,
2128 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2129 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2130
2131 for (rx_id = 0; rx_id < bnad->num_rx; rx_id++) {
2132 count++;
2133 current_err = bnad_setup_rx(bnad, rx_id);
2134 if (current_err && !err) {
2135 err = current_err;
2136 pr_err("RXQ:%u setup failed\n", rx_id);
2137 }
2138 }
2139
2140 /* restore rx configuration */
2141 if (bnad->rx_info[0].rx && !err) {
2142 bnad_restore_vlans(bnad, 0);
2143 bnad_enable_default_bcast(bnad);
2144 spin_lock_irqsave(&bnad->bna_lock, flags);
2145 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2146 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2147 bnad_set_rx_mode(netdev);
2148 }
2149
2150 return count;
2151 }
2152
2153 /* Called with bnad_conf_lock() held */
2154 void
2155 bnad_destroy_rx(struct bnad *bnad, u32 rx_id)
2156 {
2157 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2158 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2159 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2160 unsigned long flags;
2161 int to_del = 0;
2162
2163 if (!rx_info->rx)
2164 return;
2165
2166 if (0 == rx_id) {
2167 spin_lock_irqsave(&bnad->bna_lock, flags);
2168 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
2169 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
2170 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
2171 to_del = 1;
2172 }
2173 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2174 if (to_del)
2175 del_timer_sync(&bnad->dim_timer);
2176 }
2177
2178 init_completion(&bnad->bnad_completions.rx_comp);
2179 spin_lock_irqsave(&bnad->bna_lock, flags);
2180 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
2181 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2182 wait_for_completion(&bnad->bnad_completions.rx_comp);
2183
2184 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
2185 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
2186
2187 bnad_napi_delete(bnad, rx_id);
2188
2189 spin_lock_irqsave(&bnad->bna_lock, flags);
2190 bna_rx_destroy(rx_info->rx);
2191
2192 rx_info->rx = NULL;
2193 rx_info->rx_id = 0;
2194 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2195
2196 bnad_rx_res_free(bnad, res_info);
2197 }
2198
2199 /* Called with mutex_lock(&bnad->conf_mutex) held */
2200 int
2201 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
2202 {
2203 int err;
2204 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
2205 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
2206 struct bna_intr_info *intr_info =
2207 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
2208 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
2209 static const struct bna_rx_event_cbfn rx_cbfn = {
2210 .rcb_setup_cbfn = NULL,
2211 .rcb_destroy_cbfn = NULL,
2212 .ccb_setup_cbfn = bnad_cb_ccb_setup,
2213 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
2214 .rx_stall_cbfn = bnad_cb_rx_stall,
2215 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
2216 .rx_post_cbfn = bnad_cb_rx_post,
2217 };
2218 struct bna_rx *rx;
2219 unsigned long flags;
2220
2221 rx_info->rx_id = rx_id;
2222
2223 /* Initialize the Rx object configuration */
2224 bnad_init_rx_config(bnad, rx_config);
2225
2226 /* Get BNA's resource requirement for one Rx object */
2227 spin_lock_irqsave(&bnad->bna_lock, flags);
2228 bna_rx_res_req(rx_config, res_info);
2229 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2230
2231 /* Fill Unmap Q memory requirements */
2232 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPDQ],
2233 rx_config->num_paths,
2234 (rx_config->q0_depth *
2235 sizeof(struct bnad_rx_unmap)) +
2236 sizeof(struct bnad_rx_unmap_q));
2237
2238 if (rx_config->rxp_type != BNA_RXP_SINGLE) {
2239 BNAD_FILL_UNMAPQ_MEM_REQ(&res_info[BNA_RX_RES_MEM_T_UNMAPHQ],
2240 rx_config->num_paths,
2241 (rx_config->q1_depth *
2242 sizeof(struct bnad_rx_unmap) +
2243 sizeof(struct bnad_rx_unmap_q)));
2244 }
2245 /* Allocate resource */
2246 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
2247 if (err)
2248 return err;
2249
2250 bnad_rx_ctrl_init(bnad, rx_id);
2251
2252 /* Ask BNA to create one Rx object, supplying required resources */
2253 spin_lock_irqsave(&bnad->bna_lock, flags);
2254 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
2255 rx_info);
2256 if (!rx) {
2257 err = -ENOMEM;
2258 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2259 goto err_return;
2260 }
2261 rx_info->rx = rx;
2262 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2263
2264 INIT_WORK(&rx_info->rx_cleanup_work,
2265 (work_func_t)(bnad_rx_cleanup));
2266
2267 /*
2268 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
2269 * so that IRQ handler cannot schedule NAPI at this point.
2270 */
2271 bnad_napi_add(bnad, rx_id);
2272
2273 /* Register ISR for the Rx object */
2274 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
2275 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
2276 rx_config->num_paths);
2277 if (err)
2278 goto err_return;
2279 }
2280
2281 spin_lock_irqsave(&bnad->bna_lock, flags);
2282 if (0 == rx_id) {
2283 /* Set up Dynamic Interrupt Moderation Vector */
2284 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
2285 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
2286
2287 /* Enable VLAN filtering only on the default Rx */
2288 bna_rx_vlanfilter_enable(rx);
2289
2290 /* Start the DIM timer */
2291 bnad_dim_timer_start(bnad);
2292 }
2293
2294 bna_rx_enable(rx);
2295 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2296
2297 return 0;
2298
2299 err_return:
2300 bnad_destroy_rx(bnad, rx_id);
2301 return err;
2302 }
2303
2304 /* Called with conf_lock & bnad->bna_lock held */
2305 void
2306 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
2307 {
2308 struct bnad_tx_info *tx_info;
2309
2310 tx_info = &bnad->tx_info[0];
2311 if (!tx_info->tx)
2312 return;
2313
2314 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
2315 }
2316
2317 /* Called with conf_lock & bnad->bna_lock held */
2318 void
2319 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
2320 {
2321 struct bnad_rx_info *rx_info;
2322 int i;
2323
2324 for (i = 0; i < bnad->num_rx; i++) {
2325 rx_info = &bnad->rx_info[i];
2326 if (!rx_info->rx)
2327 continue;
2328 bna_rx_coalescing_timeo_set(rx_info->rx,
2329 bnad->rx_coalescing_timeo);
2330 }
2331 }
2332
2333 /*
2334 * Called with bnad->bna_lock held
2335 */
2336 int
2337 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2338 {
2339 int ret;
2340
2341 if (!is_valid_ether_addr(mac_addr))
2342 return -EADDRNOTAVAIL;
2343
2344 /* If datapath is down, pretend everything went through */
2345 if (!bnad->rx_info[0].rx)
2346 return 0;
2347
2348 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2349 if (ret != BNA_CB_SUCCESS)
2350 return -EADDRNOTAVAIL;
2351
2352 return 0;
2353 }
2354
2355 /* Should be called with conf_lock held */
2356 int
2357 bnad_enable_default_bcast(struct bnad *bnad)
2358 {
2359 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2360 int ret;
2361 unsigned long flags;
2362
2363 init_completion(&bnad->bnad_completions.mcast_comp);
2364
2365 spin_lock_irqsave(&bnad->bna_lock, flags);
2366 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2367 bnad_cb_rx_mcast_add);
2368 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2369
2370 if (ret == BNA_CB_SUCCESS)
2371 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2372 else
2373 return -ENODEV;
2374
2375 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2376 return -ENODEV;
2377
2378 return 0;
2379 }
2380
2381 /* Called with mutex_lock(&bnad->conf_mutex) held */
2382 void
2383 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2384 {
2385 u16 vid;
2386 unsigned long flags;
2387
2388 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2389 spin_lock_irqsave(&bnad->bna_lock, flags);
2390 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2391 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2392 }
2393 }
2394
2395 /* Statistics utilities */
2396 void
2397 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2398 {
2399 int i, j;
2400
2401 for (i = 0; i < bnad->num_rx; i++) {
2402 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2403 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2404 stats->rx_packets += bnad->rx_info[i].
2405 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2406 stats->rx_bytes += bnad->rx_info[i].
2407 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2408 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2409 bnad->rx_info[i].rx_ctrl[j].ccb->
2410 rcb[1]->rxq) {
2411 stats->rx_packets +=
2412 bnad->rx_info[i].rx_ctrl[j].
2413 ccb->rcb[1]->rxq->rx_packets;
2414 stats->rx_bytes +=
2415 bnad->rx_info[i].rx_ctrl[j].
2416 ccb->rcb[1]->rxq->rx_bytes;
2417 }
2418 }
2419 }
2420 }
2421 for (i = 0; i < bnad->num_tx; i++) {
2422 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2423 if (bnad->tx_info[i].tcb[j]) {
2424 stats->tx_packets +=
2425 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2426 stats->tx_bytes +=
2427 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2428 }
2429 }
2430 }
2431 }
2432
2433 /*
2434 * Must be called with the bna_lock held.
2435 */
2436 void
2437 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2438 {
2439 struct bfi_enet_stats_mac *mac_stats;
2440 u32 bmap;
2441 int i;
2442
2443 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2444 stats->rx_errors =
2445 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2446 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2447 mac_stats->rx_undersize;
2448 stats->tx_errors = mac_stats->tx_fcs_error +
2449 mac_stats->tx_undersize;
2450 stats->rx_dropped = mac_stats->rx_drop;
2451 stats->tx_dropped = mac_stats->tx_drop;
2452 stats->multicast = mac_stats->rx_multicast;
2453 stats->collisions = mac_stats->tx_total_collision;
2454
2455 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2456
2457 /* receive ring buffer overflow ?? */
2458
2459 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2460 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2461 /* recv'r fifo overrun */
2462 bmap = bna_rx_rid_mask(&bnad->bna);
2463 for (i = 0; bmap; i++) {
2464 if (bmap & 1) {
2465 stats->rx_fifo_errors +=
2466 bnad->stats.bna_stats->
2467 hw_stats.rxf_stats[i].frame_drops;
2468 break;
2469 }
2470 bmap >>= 1;
2471 }
2472 }
2473
2474 static void
2475 bnad_mbox_irq_sync(struct bnad *bnad)
2476 {
2477 u32 irq;
2478 unsigned long flags;
2479
2480 spin_lock_irqsave(&bnad->bna_lock, flags);
2481 if (bnad->cfg_flags & BNAD_CF_MSIX)
2482 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2483 else
2484 irq = bnad->pcidev->irq;
2485 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2486
2487 synchronize_irq(irq);
2488 }
2489
2490 /* Utility used by bnad_start_xmit, for doing TSO */
2491 static int
2492 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2493 {
2494 int err;
2495
2496 if (skb_header_cloned(skb)) {
2497 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2498 if (err) {
2499 BNAD_UPDATE_CTR(bnad, tso_err);
2500 return err;
2501 }
2502 }
2503
2504 /*
2505 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2506 * excluding the length field.
2507 */
2508 if (skb->protocol == htons(ETH_P_IP)) {
2509 struct iphdr *iph = ip_hdr(skb);
2510
2511 /* Do we really need these? */
2512 iph->tot_len = 0;
2513 iph->check = 0;
2514
2515 tcp_hdr(skb)->check =
2516 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2517 IPPROTO_TCP, 0);
2518 BNAD_UPDATE_CTR(bnad, tso4);
2519 } else {
2520 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2521
2522 ipv6h->payload_len = 0;
2523 tcp_hdr(skb)->check =
2524 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2525 IPPROTO_TCP, 0);
2526 BNAD_UPDATE_CTR(bnad, tso6);
2527 }
2528
2529 return 0;
2530 }
2531
2532 /*
2533 * Initialize Q numbers depending on Rx Paths
2534 * Called with bnad->bna_lock held, because of cfg_flags
2535 * access.
2536 */
2537 static void
2538 bnad_q_num_init(struct bnad *bnad)
2539 {
2540 int rxps;
2541
2542 rxps = min((uint)num_online_cpus(),
2543 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2544
2545 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2546 rxps = 1; /* INTx */
2547
2548 bnad->num_rx = 1;
2549 bnad->num_tx = 1;
2550 bnad->num_rxp_per_rx = rxps;
2551 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2552 }
2553
2554 /*
2555 * Adjusts the Q numbers, given a number of msix vectors
2556 * Give preference to RSS as opposed to Tx priority Queues,
2557 * in such a case, just use 1 Tx Q
2558 * Called with bnad->bna_lock held b'cos of cfg_flags access
2559 */
2560 static void
2561 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2562 {
2563 bnad->num_txq_per_tx = 1;
2564 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2565 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2566 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2567 bnad->num_rxp_per_rx = msix_vectors -
2568 (bnad->num_tx * bnad->num_txq_per_tx) -
2569 BNAD_MAILBOX_MSIX_VECTORS;
2570 } else
2571 bnad->num_rxp_per_rx = 1;
2572 }
2573
2574 /* Enable / disable ioceth */
2575 static int
2576 bnad_ioceth_disable(struct bnad *bnad)
2577 {
2578 unsigned long flags;
2579 int err = 0;
2580
2581 spin_lock_irqsave(&bnad->bna_lock, flags);
2582 init_completion(&bnad->bnad_completions.ioc_comp);
2583 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2584 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2585
2586 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2587 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2588
2589 err = bnad->bnad_completions.ioc_comp_status;
2590 return err;
2591 }
2592
2593 static int
2594 bnad_ioceth_enable(struct bnad *bnad)
2595 {
2596 int err = 0;
2597 unsigned long flags;
2598
2599 spin_lock_irqsave(&bnad->bna_lock, flags);
2600 init_completion(&bnad->bnad_completions.ioc_comp);
2601 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2602 bna_ioceth_enable(&bnad->bna.ioceth);
2603 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2604
2605 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2606 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2607
2608 err = bnad->bnad_completions.ioc_comp_status;
2609
2610 return err;
2611 }
2612
2613 /* Free BNA resources */
2614 static void
2615 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2616 u32 res_val_max)
2617 {
2618 int i;
2619
2620 for (i = 0; i < res_val_max; i++)
2621 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2622 }
2623
2624 /* Allocates memory and interrupt resources for BNA */
2625 static int
2626 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2627 u32 res_val_max)
2628 {
2629 int i, err;
2630
2631 for (i = 0; i < res_val_max; i++) {
2632 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2633 if (err)
2634 goto err_return;
2635 }
2636 return 0;
2637
2638 err_return:
2639 bnad_res_free(bnad, res_info, res_val_max);
2640 return err;
2641 }
2642
2643 /* Interrupt enable / disable */
2644 static void
2645 bnad_enable_msix(struct bnad *bnad)
2646 {
2647 int i, ret;
2648 unsigned long flags;
2649
2650 spin_lock_irqsave(&bnad->bna_lock, flags);
2651 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2652 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2653 return;
2654 }
2655 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2656
2657 if (bnad->msix_table)
2658 return;
2659
2660 bnad->msix_table =
2661 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2662
2663 if (!bnad->msix_table)
2664 goto intx_mode;
2665
2666 for (i = 0; i < bnad->msix_num; i++)
2667 bnad->msix_table[i].entry = i;
2668
2669 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2670 if (ret > 0) {
2671 /* Not enough MSI-X vectors. */
2672 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2673 ret, bnad->msix_num);
2674
2675 spin_lock_irqsave(&bnad->bna_lock, flags);
2676 /* ret = #of vectors that we got */
2677 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2678 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2679 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2680
2681 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2682 BNAD_MAILBOX_MSIX_VECTORS;
2683
2684 if (bnad->msix_num > ret)
2685 goto intx_mode;
2686
2687 /* Try once more with adjusted numbers */
2688 /* If this fails, fall back to INTx */
2689 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2690 bnad->msix_num);
2691 if (ret)
2692 goto intx_mode;
2693
2694 } else if (ret < 0)
2695 goto intx_mode;
2696
2697 pci_intx(bnad->pcidev, 0);
2698
2699 return;
2700
2701 intx_mode:
2702 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2703
2704 kfree(bnad->msix_table);
2705 bnad->msix_table = NULL;
2706 bnad->msix_num = 0;
2707 spin_lock_irqsave(&bnad->bna_lock, flags);
2708 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2709 bnad_q_num_init(bnad);
2710 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2711 }
2712
2713 static void
2714 bnad_disable_msix(struct bnad *bnad)
2715 {
2716 u32 cfg_flags;
2717 unsigned long flags;
2718
2719 spin_lock_irqsave(&bnad->bna_lock, flags);
2720 cfg_flags = bnad->cfg_flags;
2721 if (bnad->cfg_flags & BNAD_CF_MSIX)
2722 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2723 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2724
2725 if (cfg_flags & BNAD_CF_MSIX) {
2726 pci_disable_msix(bnad->pcidev);
2727 kfree(bnad->msix_table);
2728 bnad->msix_table = NULL;
2729 }
2730 }
2731
2732 /* Netdev entry points */
2733 static int
2734 bnad_open(struct net_device *netdev)
2735 {
2736 int err;
2737 struct bnad *bnad = netdev_priv(netdev);
2738 struct bna_pause_config pause_config;
2739 unsigned long flags;
2740
2741 mutex_lock(&bnad->conf_mutex);
2742
2743 /* Tx */
2744 err = bnad_setup_tx(bnad, 0);
2745 if (err)
2746 goto err_return;
2747
2748 /* Rx */
2749 err = bnad_setup_rx(bnad, 0);
2750 if (err)
2751 goto cleanup_tx;
2752
2753 /* Port */
2754 pause_config.tx_pause = 0;
2755 pause_config.rx_pause = 0;
2756
2757 spin_lock_irqsave(&bnad->bna_lock, flags);
2758 bna_enet_mtu_set(&bnad->bna.enet,
2759 BNAD_FRAME_SIZE(bnad->netdev->mtu), NULL);
2760 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2761 bna_enet_enable(&bnad->bna.enet);
2762 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2763
2764 /* Enable broadcast */
2765 bnad_enable_default_bcast(bnad);
2766
2767 /* Restore VLANs, if any */
2768 bnad_restore_vlans(bnad, 0);
2769
2770 /* Set the UCAST address */
2771 spin_lock_irqsave(&bnad->bna_lock, flags);
2772 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2773 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2774
2775 /* Start the stats timer */
2776 bnad_stats_timer_start(bnad);
2777
2778 mutex_unlock(&bnad->conf_mutex);
2779
2780 return 0;
2781
2782 cleanup_tx:
2783 bnad_destroy_tx(bnad, 0);
2784
2785 err_return:
2786 mutex_unlock(&bnad->conf_mutex);
2787 return err;
2788 }
2789
2790 static int
2791 bnad_stop(struct net_device *netdev)
2792 {
2793 struct bnad *bnad = netdev_priv(netdev);
2794 unsigned long flags;
2795
2796 mutex_lock(&bnad->conf_mutex);
2797
2798 /* Stop the stats timer */
2799 bnad_stats_timer_stop(bnad);
2800
2801 init_completion(&bnad->bnad_completions.enet_comp);
2802
2803 spin_lock_irqsave(&bnad->bna_lock, flags);
2804 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2805 bnad_cb_enet_disabled);
2806 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2807
2808 wait_for_completion(&bnad->bnad_completions.enet_comp);
2809
2810 bnad_destroy_tx(bnad, 0);
2811 bnad_destroy_rx(bnad, 0);
2812
2813 /* Synchronize mailbox IRQ */
2814 bnad_mbox_irq_sync(bnad);
2815
2816 mutex_unlock(&bnad->conf_mutex);
2817
2818 return 0;
2819 }
2820
2821 /* TX */
2822 /* Returns 0 for success */
2823 static int
2824 bnad_txq_wi_prepare(struct bnad *bnad, struct bna_tcb *tcb,
2825 struct sk_buff *skb, struct bna_txq_entry *txqent)
2826 {
2827 u16 flags = 0;
2828 u32 gso_size;
2829 u16 vlan_tag = 0;
2830
2831 if (vlan_tx_tag_present(skb)) {
2832 vlan_tag = (u16)vlan_tx_tag_get(skb);
2833 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2834 }
2835 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2836 vlan_tag = ((tcb->priority & 0x7) << VLAN_PRIO_SHIFT)
2837 | (vlan_tag & 0x1fff);
2838 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2839 }
2840 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2841
2842 if (skb_is_gso(skb)) {
2843 gso_size = skb_shinfo(skb)->gso_size;
2844 if (unlikely(gso_size > bnad->netdev->mtu)) {
2845 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2846 return -EINVAL;
2847 }
2848 if (unlikely((gso_size + skb_transport_offset(skb) +
2849 tcp_hdrlen(skb)) >= skb->len)) {
2850 txqent->hdr.wi.opcode =
2851 __constant_htons(BNA_TXQ_WI_SEND);
2852 txqent->hdr.wi.lso_mss = 0;
2853 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2854 } else {
2855 txqent->hdr.wi.opcode =
2856 __constant_htons(BNA_TXQ_WI_SEND_LSO);
2857 txqent->hdr.wi.lso_mss = htons(gso_size);
2858 }
2859
2860 if (bnad_tso_prepare(bnad, skb)) {
2861 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2862 return -EINVAL;
2863 }
2864
2865 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2866 txqent->hdr.wi.l4_hdr_size_n_offset =
2867 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET(
2868 tcp_hdrlen(skb) >> 2, skb_transport_offset(skb)));
2869 } else {
2870 txqent->hdr.wi.opcode = __constant_htons(BNA_TXQ_WI_SEND);
2871 txqent->hdr.wi.lso_mss = 0;
2872
2873 if (unlikely(skb->len > (bnad->netdev->mtu + ETH_HLEN))) {
2874 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2875 return -EINVAL;
2876 }
2877
2878 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2879 u8 proto = 0;
2880
2881 if (skb->protocol == __constant_htons(ETH_P_IP))
2882 proto = ip_hdr(skb)->protocol;
2883 #ifdef NETIF_F_IPV6_CSUM
2884 else if (skb->protocol ==
2885 __constant_htons(ETH_P_IPV6)) {
2886 /* nexthdr may not be TCP immediately. */
2887 proto = ipv6_hdr(skb)->nexthdr;
2888 }
2889 #endif
2890 if (proto == IPPROTO_TCP) {
2891 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2892 txqent->hdr.wi.l4_hdr_size_n_offset =
2893 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2894 (0, skb_transport_offset(skb)));
2895
2896 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2897
2898 if (unlikely(skb_headlen(skb) <
2899 skb_transport_offset(skb) +
2900 tcp_hdrlen(skb))) {
2901 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2902 return -EINVAL;
2903 }
2904 } else if (proto == IPPROTO_UDP) {
2905 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2906 txqent->hdr.wi.l4_hdr_size_n_offset =
2907 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2908 (0, skb_transport_offset(skb)));
2909
2910 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2911 if (unlikely(skb_headlen(skb) <
2912 skb_transport_offset(skb) +
2913 sizeof(struct udphdr))) {
2914 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2915 return -EINVAL;
2916 }
2917 } else {
2918
2919 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2920 return -EINVAL;
2921 }
2922 } else
2923 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2924 }
2925
2926 txqent->hdr.wi.flags = htons(flags);
2927 txqent->hdr.wi.frame_length = htonl(skb->len);
2928
2929 return 0;
2930 }
2931
2932 /*
2933 * bnad_start_xmit : Netdev entry point for Transmit
2934 * Called under lock held by net_device
2935 */
2936 static netdev_tx_t
2937 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2938 {
2939 struct bnad *bnad = netdev_priv(netdev);
2940 u32 txq_id = 0;
2941 struct bna_tcb *tcb = NULL;
2942 struct bnad_tx_unmap *unmap_q, *unmap, *head_unmap;
2943 u32 prod, q_depth, vect_id;
2944 u32 wis, vectors, len;
2945 int i;
2946 dma_addr_t dma_addr;
2947 struct bna_txq_entry *txqent;
2948
2949 len = skb_headlen(skb);
2950
2951 /* Sanity checks for the skb */
2952
2953 if (unlikely(skb->len <= ETH_HLEN)) {
2954 dev_kfree_skb(skb);
2955 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2956 return NETDEV_TX_OK;
2957 }
2958 if (unlikely(len > BFI_TX_MAX_DATA_PER_VECTOR)) {
2959 dev_kfree_skb(skb);
2960 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2961 return NETDEV_TX_OK;
2962 }
2963 if (unlikely(len == 0)) {
2964 dev_kfree_skb(skb);
2965 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2966 return NETDEV_TX_OK;
2967 }
2968
2969 tcb = bnad->tx_info[0].tcb[txq_id];
2970
2971 /*
2972 * Takes care of the Tx that is scheduled between clearing the flag
2973 * and the netif_tx_stop_all_queues() call.
2974 */
2975 if (unlikely(!tcb || !test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2976 dev_kfree_skb(skb);
2977 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2978 return NETDEV_TX_OK;
2979 }
2980
2981 q_depth = tcb->q_depth;
2982 prod = tcb->producer_index;
2983 unmap_q = tcb->unmap_q;
2984
2985 vectors = 1 + skb_shinfo(skb)->nr_frags;
2986 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2987
2988 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2989 dev_kfree_skb(skb);
2990 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2991 return NETDEV_TX_OK;
2992 }
2993
2994 /* Check for available TxQ resources */
2995 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
2996 if ((*tcb->hw_consumer_index != tcb->consumer_index) &&
2997 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2998 u32 sent;
2999 sent = bnad_txcmpl_process(bnad, tcb);
3000 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3001 bna_ib_ack(tcb->i_dbell, sent);
3002 smp_mb__before_clear_bit();
3003 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
3004 } else {
3005 netif_stop_queue(netdev);
3006 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3007 }
3008
3009 smp_mb();
3010 /*
3011 * Check again to deal with race condition between
3012 * netif_stop_queue here, and netif_wake_queue in
3013 * interrupt handler which is not inside netif tx lock.
3014 */
3015 if (likely(wis > BNA_QE_FREE_CNT(tcb, q_depth))) {
3016 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
3017 return NETDEV_TX_BUSY;
3018 } else {
3019 netif_wake_queue(netdev);
3020 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
3021 }
3022 }
3023
3024 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3025 head_unmap = &unmap_q[prod];
3026
3027 /* Program the opcode, flags, frame_len, num_vectors in WI */
3028 if (bnad_txq_wi_prepare(bnad, tcb, skb, txqent)) {
3029 dev_kfree_skb(skb);
3030 return NETDEV_TX_OK;
3031 }
3032 txqent->hdr.wi.reserved = 0;
3033 txqent->hdr.wi.num_vectors = vectors;
3034
3035 head_unmap->skb = skb;
3036 head_unmap->nvecs = 0;
3037
3038 /* Program the vectors */
3039 unmap = head_unmap;
3040 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
3041 len, DMA_TO_DEVICE);
3042 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
3043 txqent->vector[0].length = htons(len);
3044 dma_unmap_addr_set(&unmap->vectors[0], dma_addr, dma_addr);
3045 head_unmap->nvecs++;
3046
3047 for (i = 0, vect_id = 0; i < vectors - 1; i++) {
3048 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
3049 u32 size = skb_frag_size(frag);
3050
3051 if (unlikely(size == 0)) {
3052 /* Undo the changes starting at tcb->producer_index */
3053 bnad_tx_buff_unmap(bnad, unmap_q, q_depth,
3054 tcb->producer_index);
3055 dev_kfree_skb(skb);
3056 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
3057 return NETDEV_TX_OK;
3058 }
3059
3060 len += size;
3061
3062 vect_id++;
3063 if (vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
3064 vect_id = 0;
3065 BNA_QE_INDX_INC(prod, q_depth);
3066 txqent = &((struct bna_txq_entry *)tcb->sw_q)[prod];
3067 txqent->hdr.wi_ext.opcode =
3068 __constant_htons(BNA_TXQ_WI_EXTENSION);
3069 unmap = &unmap_q[prod];
3070 }
3071
3072 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
3073 0, size, DMA_TO_DEVICE);
3074 dma_unmap_len_set(&unmap->vectors[vect_id], dma_len, size);
3075 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
3076 txqent->vector[vect_id].length = htons(size);
3077 dma_unmap_addr_set(&unmap->vectors[vect_id], dma_addr,
3078 dma_addr);
3079 head_unmap->nvecs++;
3080 }
3081
3082 if (unlikely(len != skb->len)) {
3083 /* Undo the changes starting at tcb->producer_index */
3084 bnad_tx_buff_unmap(bnad, unmap_q, q_depth, tcb->producer_index);
3085 dev_kfree_skb(skb);
3086 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
3087 return NETDEV_TX_OK;
3088 }
3089
3090 BNA_QE_INDX_INC(prod, q_depth);
3091 tcb->producer_index = prod;
3092
3093 smp_mb();
3094
3095 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
3096 return NETDEV_TX_OK;
3097
3098 skb_tx_timestamp(skb);
3099
3100 bna_txq_prod_indx_doorbell(tcb);
3101 smp_mb();
3102
3103 return NETDEV_TX_OK;
3104 }
3105
3106 /*
3107 * Used spin_lock to synchronize reading of stats structures, which
3108 * is written by BNA under the same lock.
3109 */
3110 static struct rtnl_link_stats64 *
3111 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
3112 {
3113 struct bnad *bnad = netdev_priv(netdev);
3114 unsigned long flags;
3115
3116 spin_lock_irqsave(&bnad->bna_lock, flags);
3117
3118 bnad_netdev_qstats_fill(bnad, stats);
3119 bnad_netdev_hwstats_fill(bnad, stats);
3120
3121 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3122
3123 return stats;
3124 }
3125
3126 static void
3127 bnad_set_rx_ucast_fltr(struct bnad *bnad)
3128 {
3129 struct net_device *netdev = bnad->netdev;
3130 int uc_count = netdev_uc_count(netdev);
3131 enum bna_cb_status ret;
3132 u8 *mac_list;
3133 struct netdev_hw_addr *ha;
3134 int entry;
3135
3136 if (netdev_uc_empty(bnad->netdev)) {
3137 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3138 return;
3139 }
3140
3141 if (uc_count > bna_attr(&bnad->bna)->num_ucmac)
3142 goto mode_default;
3143
3144 mac_list = kzalloc(uc_count * ETH_ALEN, GFP_ATOMIC);
3145 if (mac_list == NULL)
3146 goto mode_default;
3147
3148 entry = 0;
3149 netdev_for_each_uc_addr(ha, netdev) {
3150 memcpy(&mac_list[entry * ETH_ALEN],
3151 &ha->addr[0], ETH_ALEN);
3152 entry++;
3153 }
3154
3155 ret = bna_rx_ucast_listset(bnad->rx_info[0].rx, entry,
3156 mac_list, NULL);
3157 kfree(mac_list);
3158
3159 if (ret != BNA_CB_SUCCESS)
3160 goto mode_default;
3161
3162 return;
3163
3164 /* ucast packets not in UCAM are routed to default function */
3165 mode_default:
3166 bnad->cfg_flags |= BNAD_CF_DEFAULT;
3167 bna_rx_ucast_listset(bnad->rx_info[0].rx, 0, NULL, NULL);
3168 }
3169
3170 static void
3171 bnad_set_rx_mcast_fltr(struct bnad *bnad)
3172 {
3173 struct net_device *netdev = bnad->netdev;
3174 int mc_count = netdev_mc_count(netdev);
3175 enum bna_cb_status ret;
3176 u8 *mac_list;
3177
3178 if (netdev->flags & IFF_ALLMULTI)
3179 goto mode_allmulti;
3180
3181 if (netdev_mc_empty(netdev))
3182 return;
3183
3184 if (mc_count > bna_attr(&bnad->bna)->num_mcmac)
3185 goto mode_allmulti;
3186
3187 mac_list = kzalloc((mc_count + 1) * ETH_ALEN, GFP_ATOMIC);
3188
3189 if (mac_list == NULL)
3190 goto mode_allmulti;
3191
3192 memcpy(&mac_list[0], &bnad_bcast_addr[0], ETH_ALEN);
3193
3194 /* copy rest of the MCAST addresses */
3195 bnad_netdev_mc_list_get(netdev, mac_list);
3196 ret = bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
3197 mac_list, NULL);
3198 kfree(mac_list);
3199
3200 if (ret != BNA_CB_SUCCESS)
3201 goto mode_allmulti;
3202
3203 return;
3204
3205 mode_allmulti:
3206 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
3207 bna_rx_mcast_delall(bnad->rx_info[0].rx, NULL);
3208 }
3209
3210 void
3211 bnad_set_rx_mode(struct net_device *netdev)
3212 {
3213 struct bnad *bnad = netdev_priv(netdev);
3214 enum bna_rxmode new_mode, mode_mask;
3215 unsigned long flags;
3216
3217 spin_lock_irqsave(&bnad->bna_lock, flags);
3218
3219 if (bnad->rx_info[0].rx == NULL) {
3220 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3221 return;
3222 }
3223
3224 /* clear bnad flags to update it with new settings */
3225 bnad->cfg_flags &= ~(BNAD_CF_PROMISC | BNAD_CF_DEFAULT |
3226 BNAD_CF_ALLMULTI);
3227
3228 new_mode = 0;
3229 if (netdev->flags & IFF_PROMISC) {
3230 new_mode |= BNAD_RXMODE_PROMISC_DEFAULT;
3231 bnad->cfg_flags |= BNAD_CF_PROMISC;
3232 } else {
3233 bnad_set_rx_mcast_fltr(bnad);
3234
3235 if (bnad->cfg_flags & BNAD_CF_ALLMULTI)
3236 new_mode |= BNA_RXMODE_ALLMULTI;
3237
3238 bnad_set_rx_ucast_fltr(bnad);
3239
3240 if (bnad->cfg_flags & BNAD_CF_DEFAULT)
3241 new_mode |= BNA_RXMODE_DEFAULT;
3242 }
3243
3244 mode_mask = BNA_RXMODE_PROMISC | BNA_RXMODE_DEFAULT |
3245 BNA_RXMODE_ALLMULTI;
3246 bna_rx_mode_set(bnad->rx_info[0].rx, new_mode, mode_mask, NULL);
3247
3248 if (bnad->cfg_flags & BNAD_CF_PROMISC)
3249 bna_rx_vlan_strip_disable(bnad->rx_info[0].rx);
3250 else
3251 bna_rx_vlan_strip_enable(bnad->rx_info[0].rx);
3252
3253 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3254 }
3255
3256 /*
3257 * bna_lock is used to sync writes to netdev->addr
3258 * conf_lock cannot be used since this call may be made
3259 * in a non-blocking context.
3260 */
3261 static int
3262 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
3263 {
3264 int err;
3265 struct bnad *bnad = netdev_priv(netdev);
3266 struct sockaddr *sa = (struct sockaddr *)mac_addr;
3267 unsigned long flags;
3268
3269 spin_lock_irqsave(&bnad->bna_lock, flags);
3270
3271 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
3272
3273 if (!err)
3274 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
3275
3276 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3277
3278 return err;
3279 }
3280
3281 static int
3282 bnad_mtu_set(struct bnad *bnad, int frame_size)
3283 {
3284 unsigned long flags;
3285
3286 init_completion(&bnad->bnad_completions.mtu_comp);
3287
3288 spin_lock_irqsave(&bnad->bna_lock, flags);
3289 bna_enet_mtu_set(&bnad->bna.enet, frame_size, bnad_cb_enet_mtu_set);
3290 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3291
3292 wait_for_completion(&bnad->bnad_completions.mtu_comp);
3293
3294 return bnad->bnad_completions.mtu_comp_status;
3295 }
3296
3297 static int
3298 bnad_change_mtu(struct net_device *netdev, int new_mtu)
3299 {
3300 int err, mtu;
3301 struct bnad *bnad = netdev_priv(netdev);
3302 u32 rx_count = 0, frame, new_frame;
3303
3304 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
3305 return -EINVAL;
3306
3307 mutex_lock(&bnad->conf_mutex);
3308
3309 mtu = netdev->mtu;
3310 netdev->mtu = new_mtu;
3311
3312 frame = BNAD_FRAME_SIZE(mtu);
3313 new_frame = BNAD_FRAME_SIZE(new_mtu);
3314
3315 /* check if multi-buffer needs to be enabled */
3316 if (BNAD_PCI_DEV_IS_CAT2(bnad) &&
3317 netif_running(bnad->netdev)) {
3318 /* only when transition is over 4K */
3319 if ((frame <= 4096 && new_frame > 4096) ||
3320 (frame > 4096 && new_frame <= 4096))
3321 rx_count = bnad_reinit_rx(bnad);
3322 }
3323
3324 /* rx_count > 0 - new rx created
3325 * - Linux set err = 0 and return
3326 */
3327 err = bnad_mtu_set(bnad, new_frame);
3328 if (err)
3329 err = -EBUSY;
3330
3331 mutex_unlock(&bnad->conf_mutex);
3332 return err;
3333 }
3334
3335 static int
3336 bnad_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3337 {
3338 struct bnad *bnad = netdev_priv(netdev);
3339 unsigned long flags;
3340
3341 if (!bnad->rx_info[0].rx)
3342 return 0;
3343
3344 mutex_lock(&bnad->conf_mutex);
3345
3346 spin_lock_irqsave(&bnad->bna_lock, flags);
3347 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
3348 set_bit(vid, bnad->active_vlans);
3349 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3350
3351 mutex_unlock(&bnad->conf_mutex);
3352
3353 return 0;
3354 }
3355
3356 static int
3357 bnad_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3358 {
3359 struct bnad *bnad = netdev_priv(netdev);
3360 unsigned long flags;
3361
3362 if (!bnad->rx_info[0].rx)
3363 return 0;
3364
3365 mutex_lock(&bnad->conf_mutex);
3366
3367 spin_lock_irqsave(&bnad->bna_lock, flags);
3368 clear_bit(vid, bnad->active_vlans);
3369 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
3370 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3371
3372 mutex_unlock(&bnad->conf_mutex);
3373
3374 return 0;
3375 }
3376
3377 #ifdef CONFIG_NET_POLL_CONTROLLER
3378 static void
3379 bnad_netpoll(struct net_device *netdev)
3380 {
3381 struct bnad *bnad = netdev_priv(netdev);
3382 struct bnad_rx_info *rx_info;
3383 struct bnad_rx_ctrl *rx_ctrl;
3384 u32 curr_mask;
3385 int i, j;
3386
3387 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
3388 bna_intx_disable(&bnad->bna, curr_mask);
3389 bnad_isr(bnad->pcidev->irq, netdev);
3390 bna_intx_enable(&bnad->bna, curr_mask);
3391 } else {
3392 /*
3393 * Tx processing may happen in sending context, so no need
3394 * to explicitly process completions here
3395 */
3396
3397 /* Rx processing */
3398 for (i = 0; i < bnad->num_rx; i++) {
3399 rx_info = &bnad->rx_info[i];
3400 if (!rx_info->rx)
3401 continue;
3402 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3403 rx_ctrl = &rx_info->rx_ctrl[j];
3404 if (rx_ctrl->ccb)
3405 bnad_netif_rx_schedule_poll(bnad,
3406 rx_ctrl->ccb);
3407 }
3408 }
3409 }
3410 }
3411 #endif
3412
3413 static const struct net_device_ops bnad_netdev_ops = {
3414 .ndo_open = bnad_open,
3415 .ndo_stop = bnad_stop,
3416 .ndo_start_xmit = bnad_start_xmit,
3417 .ndo_get_stats64 = bnad_get_stats64,
3418 .ndo_set_rx_mode = bnad_set_rx_mode,
3419 .ndo_validate_addr = eth_validate_addr,
3420 .ndo_set_mac_address = bnad_set_mac_address,
3421 .ndo_change_mtu = bnad_change_mtu,
3422 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3423 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3424 #ifdef CONFIG_NET_POLL_CONTROLLER
3425 .ndo_poll_controller = bnad_netpoll
3426 #endif
3427 };
3428
3429 static void
3430 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3431 {
3432 struct net_device *netdev = bnad->netdev;
3433
3434 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3435 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3436 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_CTAG_TX;
3437
3438 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3439 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3440 NETIF_F_TSO | NETIF_F_TSO6;
3441
3442 netdev->features |= netdev->hw_features |
3443 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
3444
3445 if (using_dac)
3446 netdev->features |= NETIF_F_HIGHDMA;
3447
3448 netdev->mem_start = bnad->mmio_start;
3449 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3450
3451 netdev->netdev_ops = &bnad_netdev_ops;
3452 bnad_set_ethtool_ops(netdev);
3453 }
3454
3455 /*
3456 * 1. Initialize the bnad structure
3457 * 2. Setup netdev pointer in pci_dev
3458 * 3. Initialize no. of TxQ & CQs & MSIX vectors
3459 * 4. Initialize work queue.
3460 */
3461 static int
3462 bnad_init(struct bnad *bnad,
3463 struct pci_dev *pdev, struct net_device *netdev)
3464 {
3465 unsigned long flags;
3466
3467 SET_NETDEV_DEV(netdev, &pdev->dev);
3468 pci_set_drvdata(pdev, netdev);
3469
3470 bnad->netdev = netdev;
3471 bnad->pcidev = pdev;
3472 bnad->mmio_start = pci_resource_start(pdev, 0);
3473 bnad->mmio_len = pci_resource_len(pdev, 0);
3474 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3475 if (!bnad->bar0) {
3476 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3477 return -ENOMEM;
3478 }
3479 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3480 (unsigned long long) bnad->mmio_len);
3481
3482 spin_lock_irqsave(&bnad->bna_lock, flags);
3483 if (!bnad_msix_disable)
3484 bnad->cfg_flags = BNAD_CF_MSIX;
3485
3486 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3487
3488 bnad_q_num_init(bnad);
3489 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3490
3491 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3492 (bnad->num_rx * bnad->num_rxp_per_rx) +
3493 BNAD_MAILBOX_MSIX_VECTORS;
3494
3495 bnad->txq_depth = BNAD_TXQ_DEPTH;
3496 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3497
3498 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3499 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3500
3501 sprintf(bnad->wq_name, "%s_wq_%d", BNAD_NAME, bnad->id);
3502 bnad->work_q = create_singlethread_workqueue(bnad->wq_name);
3503 if (!bnad->work_q) {
3504 iounmap(bnad->bar0);
3505 return -ENOMEM;
3506 }
3507
3508 return 0;
3509 }
3510
3511 /*
3512 * Must be called after bnad_pci_uninit()
3513 * so that iounmap() and pci_set_drvdata(NULL)
3514 * happens only after PCI uninitialization.
3515 */
3516 static void
3517 bnad_uninit(struct bnad *bnad)
3518 {
3519 if (bnad->work_q) {
3520 flush_workqueue(bnad->work_q);
3521 destroy_workqueue(bnad->work_q);
3522 bnad->work_q = NULL;
3523 }
3524
3525 if (bnad->bar0)
3526 iounmap(bnad->bar0);
3527 }
3528
3529 /*
3530 * Initialize locks
3531 a) Per ioceth mutes used for serializing configuration
3532 changes from OS interface
3533 b) spin lock used to protect bna state machine
3534 */
3535 static void
3536 bnad_lock_init(struct bnad *bnad)
3537 {
3538 spin_lock_init(&bnad->bna_lock);
3539 mutex_init(&bnad->conf_mutex);
3540 mutex_init(&bnad_list_mutex);
3541 }
3542
3543 static void
3544 bnad_lock_uninit(struct bnad *bnad)
3545 {
3546 mutex_destroy(&bnad->conf_mutex);
3547 mutex_destroy(&bnad_list_mutex);
3548 }
3549
3550 /* PCI Initialization */
3551 static int
3552 bnad_pci_init(struct bnad *bnad,
3553 struct pci_dev *pdev, bool *using_dac)
3554 {
3555 int err;
3556
3557 err = pci_enable_device(pdev);
3558 if (err)
3559 return err;
3560 err = pci_request_regions(pdev, BNAD_NAME);
3561 if (err)
3562 goto disable_device;
3563 if (!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
3564 *using_dac = true;
3565 } else {
3566 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3567 if (err)
3568 goto release_regions;
3569 *using_dac = false;
3570 }
3571 pci_set_master(pdev);
3572 return 0;
3573
3574 release_regions:
3575 pci_release_regions(pdev);
3576 disable_device:
3577 pci_disable_device(pdev);
3578
3579 return err;
3580 }
3581
3582 static void
3583 bnad_pci_uninit(struct pci_dev *pdev)
3584 {
3585 pci_release_regions(pdev);
3586 pci_disable_device(pdev);
3587 }
3588
3589 static int
3590 bnad_pci_probe(struct pci_dev *pdev,
3591 const struct pci_device_id *pcidev_id)
3592 {
3593 bool using_dac;
3594 int err;
3595 struct bnad *bnad;
3596 struct bna *bna;
3597 struct net_device *netdev;
3598 struct bfa_pcidev pcidev_info;
3599 unsigned long flags;
3600
3601 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3602 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3603
3604 mutex_lock(&bnad_fwimg_mutex);
3605 if (!cna_get_firmware_buf(pdev)) {
3606 mutex_unlock(&bnad_fwimg_mutex);
3607 pr_warn("Failed to load Firmware Image!\n");
3608 return -ENODEV;
3609 }
3610 mutex_unlock(&bnad_fwimg_mutex);
3611
3612 /*
3613 * Allocates sizeof(struct net_device + struct bnad)
3614 * bnad = netdev->priv
3615 */
3616 netdev = alloc_etherdev(sizeof(struct bnad));
3617 if (!netdev) {
3618 err = -ENOMEM;
3619 return err;
3620 }
3621 bnad = netdev_priv(netdev);
3622 bnad_lock_init(bnad);
3623 bnad_add_to_list(bnad);
3624
3625 mutex_lock(&bnad->conf_mutex);
3626 /*
3627 * PCI initialization
3628 * Output : using_dac = 1 for 64 bit DMA
3629 * = 0 for 32 bit DMA
3630 */
3631 using_dac = false;
3632 err = bnad_pci_init(bnad, pdev, &using_dac);
3633 if (err)
3634 goto unlock_mutex;
3635
3636 /*
3637 * Initialize bnad structure
3638 * Setup relation between pci_dev & netdev
3639 */
3640 err = bnad_init(bnad, pdev, netdev);
3641 if (err)
3642 goto pci_uninit;
3643
3644 /* Initialize netdev structure, set up ethtool ops */
3645 bnad_netdev_init(bnad, using_dac);
3646
3647 /* Set link to down state */
3648 netif_carrier_off(netdev);
3649
3650 /* Setup the debugfs node for this bfad */
3651 if (bna_debugfs_enable)
3652 bnad_debugfs_init(bnad);
3653
3654 /* Get resource requirement form bna */
3655 spin_lock_irqsave(&bnad->bna_lock, flags);
3656 bna_res_req(&bnad->res_info[0]);
3657 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3658
3659 /* Allocate resources from bna */
3660 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3661 if (err)
3662 goto drv_uninit;
3663
3664 bna = &bnad->bna;
3665
3666 /* Setup pcidev_info for bna_init() */
3667 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3668 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3669 pcidev_info.device_id = bnad->pcidev->device;
3670 pcidev_info.pci_bar_kva = bnad->bar0;
3671
3672 spin_lock_irqsave(&bnad->bna_lock, flags);
3673 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3674 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3675
3676 bnad->stats.bna_stats = &bna->stats;
3677
3678 bnad_enable_msix(bnad);
3679 err = bnad_mbox_irq_alloc(bnad);
3680 if (err)
3681 goto res_free;
3682
3683 /* Set up timers */
3684 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3685 ((unsigned long)bnad));
3686 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3687 ((unsigned long)bnad));
3688 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3689 ((unsigned long)bnad));
3690 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3691 ((unsigned long)bnad));
3692
3693 /* Now start the timer before calling IOC */
3694 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3695 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3696
3697 /*
3698 * Start the chip
3699 * If the call back comes with error, we bail out.
3700 * This is a catastrophic error.
3701 */
3702 err = bnad_ioceth_enable(bnad);
3703 if (err) {
3704 pr_err("BNA: Initialization failed err=%d\n",
3705 err);
3706 goto probe_success;
3707 }
3708
3709 spin_lock_irqsave(&bnad->bna_lock, flags);
3710 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3711 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3712 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3713 bna_attr(bna)->num_rxp - 1);
3714 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3715 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3716 err = -EIO;
3717 }
3718 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3719 if (err)
3720 goto disable_ioceth;
3721
3722 spin_lock_irqsave(&bnad->bna_lock, flags);
3723 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3724 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3725
3726 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3727 if (err) {
3728 err = -EIO;
3729 goto disable_ioceth;
3730 }
3731
3732 spin_lock_irqsave(&bnad->bna_lock, flags);
3733 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3734 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3735
3736 /* Get the burnt-in mac */
3737 spin_lock_irqsave(&bnad->bna_lock, flags);
3738 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3739 bnad_set_netdev_perm_addr(bnad);
3740 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3741
3742 mutex_unlock(&bnad->conf_mutex);
3743
3744 /* Finally, reguister with net_device layer */
3745 err = register_netdev(netdev);
3746 if (err) {
3747 pr_err("BNA : Registering with netdev failed\n");
3748 goto probe_uninit;
3749 }
3750 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3751
3752 return 0;
3753
3754 probe_success:
3755 mutex_unlock(&bnad->conf_mutex);
3756 return 0;
3757
3758 probe_uninit:
3759 mutex_lock(&bnad->conf_mutex);
3760 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3761 disable_ioceth:
3762 bnad_ioceth_disable(bnad);
3763 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3764 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3765 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3766 spin_lock_irqsave(&bnad->bna_lock, flags);
3767 bna_uninit(bna);
3768 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3769 bnad_mbox_irq_free(bnad);
3770 bnad_disable_msix(bnad);
3771 res_free:
3772 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3773 drv_uninit:
3774 /* Remove the debugfs node for this bnad */
3775 kfree(bnad->regdata);
3776 bnad_debugfs_uninit(bnad);
3777 bnad_uninit(bnad);
3778 pci_uninit:
3779 bnad_pci_uninit(pdev);
3780 unlock_mutex:
3781 mutex_unlock(&bnad->conf_mutex);
3782 bnad_remove_from_list(bnad);
3783 bnad_lock_uninit(bnad);
3784 free_netdev(netdev);
3785 return err;
3786 }
3787
3788 static void
3789 bnad_pci_remove(struct pci_dev *pdev)
3790 {
3791 struct net_device *netdev = pci_get_drvdata(pdev);
3792 struct bnad *bnad;
3793 struct bna *bna;
3794 unsigned long flags;
3795
3796 if (!netdev)
3797 return;
3798
3799 pr_info("%s bnad_pci_remove\n", netdev->name);
3800 bnad = netdev_priv(netdev);
3801 bna = &bnad->bna;
3802
3803 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3804 unregister_netdev(netdev);
3805
3806 mutex_lock(&bnad->conf_mutex);
3807 bnad_ioceth_disable(bnad);
3808 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3809 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3810 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3811 spin_lock_irqsave(&bnad->bna_lock, flags);
3812 bna_uninit(bna);
3813 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3814
3815 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3816 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3817 bnad_mbox_irq_free(bnad);
3818 bnad_disable_msix(bnad);
3819 bnad_pci_uninit(pdev);
3820 mutex_unlock(&bnad->conf_mutex);
3821 bnad_remove_from_list(bnad);
3822 bnad_lock_uninit(bnad);
3823 /* Remove the debugfs node for this bnad */
3824 kfree(bnad->regdata);
3825 bnad_debugfs_uninit(bnad);
3826 bnad_uninit(bnad);
3827 free_netdev(netdev);
3828 }
3829
3830 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3831 {
3832 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3833 PCI_DEVICE_ID_BROCADE_CT),
3834 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3835 .class_mask = 0xffff00
3836 },
3837 {
3838 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3839 BFA_PCI_DEVICE_ID_CT2),
3840 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3841 .class_mask = 0xffff00
3842 },
3843 {0, },
3844 };
3845
3846 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3847
3848 static struct pci_driver bnad_pci_driver = {
3849 .name = BNAD_NAME,
3850 .id_table = bnad_pci_id_table,
3851 .probe = bnad_pci_probe,
3852 .remove = bnad_pci_remove,
3853 };
3854
3855 static int __init
3856 bnad_module_init(void)
3857 {
3858 int err;
3859
3860 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3861 BNAD_VERSION);
3862
3863 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3864
3865 err = pci_register_driver(&bnad_pci_driver);
3866 if (err < 0) {
3867 pr_err("bna : PCI registration failed in module init "
3868 "(%d)\n", err);
3869 return err;
3870 }
3871
3872 return 0;
3873 }
3874
3875 static void __exit
3876 bnad_module_exit(void)
3877 {
3878 pci_unregister_driver(&bnad_pci_driver);
3879 release_firmware(bfi_fw);
3880 }
3881
3882 module_init(bnad_module_init);
3883 module_exit(bnad_module_exit);
3884
3885 MODULE_AUTHOR("Brocade");
3886 MODULE_LICENSE("GPL");
3887 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3888 MODULE_VERSION(BNAD_VERSION);
3889 MODULE_FIRMWARE(CNA_FW_FILE_CT);
3890 MODULE_FIRMWARE(CNA_FW_FILE_CT2);
This page took 0.2564 seconds and 5 git commands to generate.