db6c0978899b20db9401fa37a5219957296842fc
[deliverable/linux.git] / drivers / net / ethernet / brocade / bna / bnad.c
1 /*
2 * Linux network driver for Brocade Converged Network Adapter.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License (GPL) Version 2 as
6 * published by the Free Software Foundation
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13 /*
14 * Copyright (c) 2005-2010 Brocade Communications Systems, Inc.
15 * All rights reserved
16 * www.brocade.com
17 */
18 #include <linux/bitops.h>
19 #include <linux/netdevice.h>
20 #include <linux/skbuff.h>
21 #include <linux/etherdevice.h>
22 #include <linux/in.h>
23 #include <linux/ethtool.h>
24 #include <linux/if_vlan.h>
25 #include <linux/if_ether.h>
26 #include <linux/ip.h>
27 #include <linux/prefetch.h>
28
29 #include "bnad.h"
30 #include "bna.h"
31 #include "cna.h"
32
33 static DEFINE_MUTEX(bnad_fwimg_mutex);
34
35 /*
36 * Module params
37 */
38 static uint bnad_msix_disable;
39 module_param(bnad_msix_disable, uint, 0444);
40 MODULE_PARM_DESC(bnad_msix_disable, "Disable MSIX mode");
41
42 static uint bnad_ioc_auto_recover = 1;
43 module_param(bnad_ioc_auto_recover, uint, 0444);
44 MODULE_PARM_DESC(bnad_ioc_auto_recover, "Enable / Disable auto recovery");
45
46 /*
47 * Global variables
48 */
49 u32 bnad_rxqs_per_cq = 2;
50
51 static const u8 bnad_bcast_addr[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
52
53 /*
54 * Local MACROS
55 */
56 #define BNAD_TX_UNMAPQ_DEPTH (bnad->txq_depth * 2)
57
58 #define BNAD_RX_UNMAPQ_DEPTH (bnad->rxq_depth)
59
60 #define BNAD_GET_MBOX_IRQ(_bnad) \
61 (((_bnad)->cfg_flags & BNAD_CF_MSIX) ? \
62 ((_bnad)->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector) : \
63 ((_bnad)->pcidev->irq))
64
65 #define BNAD_FILL_UNMAPQ_MEM_REQ(_res_info, _num, _depth) \
66 do { \
67 (_res_info)->res_type = BNA_RES_T_MEM; \
68 (_res_info)->res_u.mem_info.mem_type = BNA_MEM_T_KVA; \
69 (_res_info)->res_u.mem_info.num = (_num); \
70 (_res_info)->res_u.mem_info.len = \
71 sizeof(struct bnad_unmap_q) + \
72 (sizeof(struct bnad_skb_unmap) * ((_depth) - 1)); \
73 } while (0)
74
75 #define BNAD_TXRX_SYNC_MDELAY 250 /* 250 msecs */
76
77 /*
78 * Reinitialize completions in CQ, once Rx is taken down
79 */
80 static void
81 bnad_cq_cmpl_init(struct bnad *bnad, struct bna_ccb *ccb)
82 {
83 struct bna_cq_entry *cmpl, *next_cmpl;
84 unsigned int wi_range, wis = 0, ccb_prod = 0;
85 int i;
86
87 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt, cmpl,
88 wi_range);
89
90 for (i = 0; i < ccb->q_depth; i++) {
91 wis++;
92 if (likely(--wi_range))
93 next_cmpl = cmpl + 1;
94 else {
95 BNA_QE_INDX_ADD(ccb_prod, wis, ccb->q_depth);
96 wis = 0;
97 BNA_CQ_QPGE_PTR_GET(ccb_prod, ccb->sw_qpt,
98 next_cmpl, wi_range);
99 }
100 cmpl->valid = 0;
101 cmpl = next_cmpl;
102 }
103 }
104
105 static u32
106 bnad_pci_unmap_skb(struct device *pdev, struct bnad_skb_unmap *array,
107 u32 index, u32 depth, struct sk_buff *skb, u32 frag)
108 {
109 int j;
110 array[index].skb = NULL;
111
112 dma_unmap_single(pdev, dma_unmap_addr(&array[index], dma_addr),
113 skb_headlen(skb), DMA_TO_DEVICE);
114 dma_unmap_addr_set(&array[index], dma_addr, 0);
115 BNA_QE_INDX_ADD(index, 1, depth);
116
117 for (j = 0; j < frag; j++) {
118 dma_unmap_page(pdev, dma_unmap_addr(&array[index], dma_addr),
119 skb_shinfo(skb)->frags[j].size, DMA_TO_DEVICE);
120 dma_unmap_addr_set(&array[index], dma_addr, 0);
121 BNA_QE_INDX_ADD(index, 1, depth);
122 }
123
124 return index;
125 }
126
127 /*
128 * Frees all pending Tx Bufs
129 * At this point no activity is expected on the Q,
130 * so DMA unmap & freeing is fine.
131 */
132 static void
133 bnad_free_all_txbufs(struct bnad *bnad,
134 struct bna_tcb *tcb)
135 {
136 u32 unmap_cons;
137 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
138 struct bnad_skb_unmap *unmap_array;
139 struct sk_buff *skb = NULL;
140 int q;
141
142 unmap_array = unmap_q->unmap_array;
143
144 for (q = 0; q < unmap_q->q_depth; q++) {
145 skb = unmap_array[q].skb;
146 if (!skb)
147 continue;
148
149 unmap_cons = q;
150 unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
151 unmap_cons, unmap_q->q_depth, skb,
152 skb_shinfo(skb)->nr_frags);
153
154 dev_kfree_skb_any(skb);
155 }
156 }
157
158 /* Data Path Handlers */
159
160 /*
161 * bnad_free_txbufs : Frees the Tx bufs on Tx completion
162 * Can be called in a) Interrupt context
163 * b) Sending context
164 * c) Tasklet context
165 */
166 static u32
167 bnad_free_txbufs(struct bnad *bnad,
168 struct bna_tcb *tcb)
169 {
170 u32 unmap_cons, sent_packets = 0, sent_bytes = 0;
171 u16 wis, updated_hw_cons;
172 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
173 struct bnad_skb_unmap *unmap_array;
174 struct sk_buff *skb;
175
176 /*
177 * Just return if TX is stopped. This check is useful
178 * when bnad_free_txbufs() runs out of a tasklet scheduled
179 * before bnad_cb_tx_cleanup() cleared BNAD_TXQ_TX_STARTED bit
180 * but this routine runs actually after the cleanup has been
181 * executed.
182 */
183 if (!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
184 return 0;
185
186 updated_hw_cons = *(tcb->hw_consumer_index);
187
188 wis = BNA_Q_INDEX_CHANGE(tcb->consumer_index,
189 updated_hw_cons, tcb->q_depth);
190
191 BUG_ON(!(wis <= BNA_QE_IN_USE_CNT(tcb, tcb->q_depth)));
192
193 unmap_array = unmap_q->unmap_array;
194 unmap_cons = unmap_q->consumer_index;
195
196 prefetch(&unmap_array[unmap_cons + 1]);
197 while (wis) {
198 skb = unmap_array[unmap_cons].skb;
199
200 sent_packets++;
201 sent_bytes += skb->len;
202 wis -= BNA_TXQ_WI_NEEDED(1 + skb_shinfo(skb)->nr_frags);
203
204 unmap_cons = bnad_pci_unmap_skb(&bnad->pcidev->dev, unmap_array,
205 unmap_cons, unmap_q->q_depth, skb,
206 skb_shinfo(skb)->nr_frags);
207
208 dev_kfree_skb_any(skb);
209 }
210
211 /* Update consumer pointers. */
212 tcb->consumer_index = updated_hw_cons;
213 unmap_q->consumer_index = unmap_cons;
214
215 tcb->txq->tx_packets += sent_packets;
216 tcb->txq->tx_bytes += sent_bytes;
217
218 return sent_packets;
219 }
220
221 /* Tx Free Tasklet function */
222 /* Frees for all the tcb's in all the Tx's */
223 /*
224 * Scheduled from sending context, so that
225 * the fat Tx lock is not held for too long
226 * in the sending context.
227 */
228 static void
229 bnad_tx_free_tasklet(unsigned long bnad_ptr)
230 {
231 struct bnad *bnad = (struct bnad *)bnad_ptr;
232 struct bna_tcb *tcb;
233 u32 acked = 0;
234 int i, j;
235
236 for (i = 0; i < bnad->num_tx; i++) {
237 for (j = 0; j < bnad->num_txq_per_tx; j++) {
238 tcb = bnad->tx_info[i].tcb[j];
239 if (!tcb)
240 continue;
241 if (((u16) (*tcb->hw_consumer_index) !=
242 tcb->consumer_index) &&
243 (!test_and_set_bit(BNAD_TXQ_FREE_SENT,
244 &tcb->flags))) {
245 acked = bnad_free_txbufs(bnad, tcb);
246 if (likely(test_bit(BNAD_TXQ_TX_STARTED,
247 &tcb->flags)))
248 bna_ib_ack(tcb->i_dbell, acked);
249 smp_mb__before_clear_bit();
250 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
251 }
252 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED,
253 &tcb->flags)))
254 continue;
255 if (netif_queue_stopped(bnad->netdev)) {
256 if (acked && netif_carrier_ok(bnad->netdev) &&
257 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
258 BNAD_NETIF_WAKE_THRESHOLD) {
259 netif_wake_queue(bnad->netdev);
260 /* TODO */
261 /* Counters for individual TxQs? */
262 BNAD_UPDATE_CTR(bnad,
263 netif_queue_wakeup);
264 }
265 }
266 }
267 }
268 }
269
270 static u32
271 bnad_tx(struct bnad *bnad, struct bna_tcb *tcb)
272 {
273 struct net_device *netdev = bnad->netdev;
274 u32 sent = 0;
275
276 if (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
277 return 0;
278
279 sent = bnad_free_txbufs(bnad, tcb);
280 if (sent) {
281 if (netif_queue_stopped(netdev) &&
282 netif_carrier_ok(netdev) &&
283 BNA_QE_FREE_CNT(tcb, tcb->q_depth) >=
284 BNAD_NETIF_WAKE_THRESHOLD) {
285 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)) {
286 netif_wake_queue(netdev);
287 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
288 }
289 }
290 }
291
292 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
293 bna_ib_ack(tcb->i_dbell, sent);
294
295 smp_mb__before_clear_bit();
296 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
297
298 return sent;
299 }
300
301 /* MSIX Tx Completion Handler */
302 static irqreturn_t
303 bnad_msix_tx(int irq, void *data)
304 {
305 struct bna_tcb *tcb = (struct bna_tcb *)data;
306 struct bnad *bnad = tcb->bnad;
307
308 bnad_tx(bnad, tcb);
309
310 return IRQ_HANDLED;
311 }
312
313 static void
314 bnad_reset_rcb(struct bnad *bnad, struct bna_rcb *rcb)
315 {
316 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
317
318 rcb->producer_index = 0;
319 rcb->consumer_index = 0;
320
321 unmap_q->producer_index = 0;
322 unmap_q->consumer_index = 0;
323 }
324
325 static void
326 bnad_free_all_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
327 {
328 struct bnad_unmap_q *unmap_q;
329 struct bnad_skb_unmap *unmap_array;
330 struct sk_buff *skb;
331 int unmap_cons;
332
333 unmap_q = rcb->unmap_q;
334 unmap_array = unmap_q->unmap_array;
335 for (unmap_cons = 0; unmap_cons < unmap_q->q_depth; unmap_cons++) {
336 skb = unmap_array[unmap_cons].skb;
337 if (!skb)
338 continue;
339 unmap_array[unmap_cons].skb = NULL;
340 dma_unmap_single(&bnad->pcidev->dev,
341 dma_unmap_addr(&unmap_array[unmap_cons],
342 dma_addr),
343 rcb->rxq->buffer_size,
344 DMA_FROM_DEVICE);
345 dev_kfree_skb(skb);
346 }
347 bnad_reset_rcb(bnad, rcb);
348 }
349
350 static void
351 bnad_alloc_n_post_rxbufs(struct bnad *bnad, struct bna_rcb *rcb)
352 {
353 u16 to_alloc, alloced, unmap_prod, wi_range;
354 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
355 struct bnad_skb_unmap *unmap_array;
356 struct bna_rxq_entry *rxent;
357 struct sk_buff *skb;
358 dma_addr_t dma_addr;
359
360 alloced = 0;
361 to_alloc =
362 BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth);
363
364 unmap_array = unmap_q->unmap_array;
365 unmap_prod = unmap_q->producer_index;
366
367 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent, wi_range);
368
369 while (to_alloc--) {
370 if (!wi_range)
371 BNA_RXQ_QPGE_PTR_GET(unmap_prod, rcb->sw_qpt, rxent,
372 wi_range);
373 skb = netdev_alloc_skb_ip_align(bnad->netdev,
374 rcb->rxq->buffer_size);
375 if (unlikely(!skb)) {
376 BNAD_UPDATE_CTR(bnad, rxbuf_alloc_failed);
377 rcb->rxq->rxbuf_alloc_failed++;
378 goto finishing;
379 }
380 unmap_array[unmap_prod].skb = skb;
381 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
382 rcb->rxq->buffer_size,
383 DMA_FROM_DEVICE);
384 dma_unmap_addr_set(&unmap_array[unmap_prod], dma_addr,
385 dma_addr);
386 BNA_SET_DMA_ADDR(dma_addr, &rxent->host_addr);
387 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
388
389 rxent++;
390 wi_range--;
391 alloced++;
392 }
393
394 finishing:
395 if (likely(alloced)) {
396 unmap_q->producer_index = unmap_prod;
397 rcb->producer_index = unmap_prod;
398 smp_mb();
399 if (likely(test_bit(BNAD_RXQ_STARTED, &rcb->flags)))
400 bna_rxq_prod_indx_doorbell(rcb);
401 }
402 }
403
404 static inline void
405 bnad_refill_rxq(struct bnad *bnad, struct bna_rcb *rcb)
406 {
407 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
408
409 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
410 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
411 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
412 bnad_alloc_n_post_rxbufs(bnad, rcb);
413 smp_mb__before_clear_bit();
414 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
415 }
416 }
417
418 static u32
419 bnad_poll_cq(struct bnad *bnad, struct bna_ccb *ccb, int budget)
420 {
421 struct bna_cq_entry *cmpl, *next_cmpl;
422 struct bna_rcb *rcb = NULL;
423 unsigned int wi_range, packets = 0, wis = 0;
424 struct bnad_unmap_q *unmap_q;
425 struct bnad_skb_unmap *unmap_array;
426 struct sk_buff *skb;
427 u32 flags, unmap_cons;
428 struct bna_pkt_rate *pkt_rt = &ccb->pkt_rate;
429 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
430
431 set_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
432
433 if (!test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)) {
434 clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
435 return 0;
436 }
437
438 prefetch(bnad->netdev);
439 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt, cmpl,
440 wi_range);
441 BUG_ON(!(wi_range <= ccb->q_depth));
442 while (cmpl->valid && packets < budget) {
443 packets++;
444 BNA_UPDATE_PKT_CNT(pkt_rt, ntohs(cmpl->length));
445
446 if (bna_is_small_rxq(cmpl->rxq_id))
447 rcb = ccb->rcb[1];
448 else
449 rcb = ccb->rcb[0];
450
451 unmap_q = rcb->unmap_q;
452 unmap_array = unmap_q->unmap_array;
453 unmap_cons = unmap_q->consumer_index;
454
455 skb = unmap_array[unmap_cons].skb;
456 BUG_ON(!(skb));
457 unmap_array[unmap_cons].skb = NULL;
458 dma_unmap_single(&bnad->pcidev->dev,
459 dma_unmap_addr(&unmap_array[unmap_cons],
460 dma_addr),
461 rcb->rxq->buffer_size,
462 DMA_FROM_DEVICE);
463 BNA_QE_INDX_ADD(unmap_q->consumer_index, 1, unmap_q->q_depth);
464
465 /* Should be more efficient ? Performance ? */
466 BNA_QE_INDX_ADD(rcb->consumer_index, 1, rcb->q_depth);
467
468 wis++;
469 if (likely(--wi_range))
470 next_cmpl = cmpl + 1;
471 else {
472 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
473 wis = 0;
474 BNA_CQ_QPGE_PTR_GET(ccb->producer_index, ccb->sw_qpt,
475 next_cmpl, wi_range);
476 BUG_ON(!(wi_range <= ccb->q_depth));
477 }
478 prefetch(next_cmpl);
479
480 flags = ntohl(cmpl->flags);
481 if (unlikely
482 (flags &
483 (BNA_CQ_EF_MAC_ERROR | BNA_CQ_EF_FCS_ERROR |
484 BNA_CQ_EF_TOO_LONG))) {
485 dev_kfree_skb_any(skb);
486 rcb->rxq->rx_packets_with_error++;
487 goto next;
488 }
489
490 skb_put(skb, ntohs(cmpl->length));
491 if (likely
492 ((bnad->netdev->features & NETIF_F_RXCSUM) &&
493 (((flags & BNA_CQ_EF_IPV4) &&
494 (flags & BNA_CQ_EF_L3_CKSUM_OK)) ||
495 (flags & BNA_CQ_EF_IPV6)) &&
496 (flags & (BNA_CQ_EF_TCP | BNA_CQ_EF_UDP)) &&
497 (flags & BNA_CQ_EF_L4_CKSUM_OK)))
498 skb->ip_summed = CHECKSUM_UNNECESSARY;
499 else
500 skb_checksum_none_assert(skb);
501
502 rcb->rxq->rx_packets++;
503 rcb->rxq->rx_bytes += skb->len;
504 skb->protocol = eth_type_trans(skb, bnad->netdev);
505
506 if (flags & BNA_CQ_EF_VLAN)
507 __vlan_hwaccel_put_tag(skb, ntohs(cmpl->vlan_tag));
508
509 if (skb->ip_summed == CHECKSUM_UNNECESSARY)
510 napi_gro_receive(&rx_ctrl->napi, skb);
511 else {
512 netif_receive_skb(skb);
513 }
514
515 next:
516 cmpl->valid = 0;
517 cmpl = next_cmpl;
518 }
519
520 BNA_QE_INDX_ADD(ccb->producer_index, wis, ccb->q_depth);
521
522 if (likely(test_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags)))
523 bna_ib_ack_disable_irq(ccb->i_dbell, packets);
524
525 bnad_refill_rxq(bnad, ccb->rcb[0]);
526 if (ccb->rcb[1])
527 bnad_refill_rxq(bnad, ccb->rcb[1]);
528
529 clear_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags);
530
531 return packets;
532 }
533
534 static void
535 bnad_netif_rx_schedule_poll(struct bnad *bnad, struct bna_ccb *ccb)
536 {
537 struct bnad_rx_ctrl *rx_ctrl = (struct bnad_rx_ctrl *)(ccb->ctrl);
538 struct napi_struct *napi = &rx_ctrl->napi;
539
540 if (likely(napi_schedule_prep(napi))) {
541 __napi_schedule(napi);
542 rx_ctrl->rx_schedule++;
543 }
544 }
545
546 /* MSIX Rx Path Handler */
547 static irqreturn_t
548 bnad_msix_rx(int irq, void *data)
549 {
550 struct bna_ccb *ccb = (struct bna_ccb *)data;
551
552 if (ccb) {
553 ((struct bnad_rx_ctrl *)(ccb->ctrl))->rx_intr_ctr++;
554 bnad_netif_rx_schedule_poll(ccb->bnad, ccb);
555 }
556
557 return IRQ_HANDLED;
558 }
559
560 /* Interrupt handlers */
561
562 /* Mbox Interrupt Handlers */
563 static irqreturn_t
564 bnad_msix_mbox_handler(int irq, void *data)
565 {
566 u32 intr_status;
567 unsigned long flags;
568 struct bnad *bnad = (struct bnad *)data;
569
570 spin_lock_irqsave(&bnad->bna_lock, flags);
571 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
572 spin_unlock_irqrestore(&bnad->bna_lock, flags);
573 return IRQ_HANDLED;
574 }
575
576 bna_intr_status_get(&bnad->bna, intr_status);
577
578 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
579 bna_mbox_handler(&bnad->bna, intr_status);
580
581 spin_unlock_irqrestore(&bnad->bna_lock, flags);
582
583 return IRQ_HANDLED;
584 }
585
586 static irqreturn_t
587 bnad_isr(int irq, void *data)
588 {
589 int i, j;
590 u32 intr_status;
591 unsigned long flags;
592 struct bnad *bnad = (struct bnad *)data;
593 struct bnad_rx_info *rx_info;
594 struct bnad_rx_ctrl *rx_ctrl;
595 struct bna_tcb *tcb = NULL;
596
597 spin_lock_irqsave(&bnad->bna_lock, flags);
598 if (unlikely(test_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags))) {
599 spin_unlock_irqrestore(&bnad->bna_lock, flags);
600 return IRQ_NONE;
601 }
602
603 bna_intr_status_get(&bnad->bna, intr_status);
604
605 if (unlikely(!intr_status)) {
606 spin_unlock_irqrestore(&bnad->bna_lock, flags);
607 return IRQ_NONE;
608 }
609
610 if (BNA_IS_MBOX_ERR_INTR(&bnad->bna, intr_status))
611 bna_mbox_handler(&bnad->bna, intr_status);
612
613 spin_unlock_irqrestore(&bnad->bna_lock, flags);
614
615 if (!BNA_IS_INTX_DATA_INTR(intr_status))
616 return IRQ_HANDLED;
617
618 /* Process data interrupts */
619 /* Tx processing */
620 for (i = 0; i < bnad->num_tx; i++) {
621 for (j = 0; j < bnad->num_txq_per_tx; j++) {
622 tcb = bnad->tx_info[i].tcb[j];
623 if (tcb && test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
624 bnad_tx(bnad, bnad->tx_info[i].tcb[j]);
625 }
626 }
627 /* Rx processing */
628 for (i = 0; i < bnad->num_rx; i++) {
629 rx_info = &bnad->rx_info[i];
630 if (!rx_info->rx)
631 continue;
632 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
633 rx_ctrl = &rx_info->rx_ctrl[j];
634 if (rx_ctrl->ccb)
635 bnad_netif_rx_schedule_poll(bnad,
636 rx_ctrl->ccb);
637 }
638 }
639 return IRQ_HANDLED;
640 }
641
642 /*
643 * Called in interrupt / callback context
644 * with bna_lock held, so cfg_flags access is OK
645 */
646 static void
647 bnad_enable_mbox_irq(struct bnad *bnad)
648 {
649 clear_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
650
651 BNAD_UPDATE_CTR(bnad, mbox_intr_enabled);
652 }
653
654 /*
655 * Called with bnad->bna_lock held b'cos of
656 * bnad->cfg_flags access.
657 */
658 static void
659 bnad_disable_mbox_irq(struct bnad *bnad)
660 {
661 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
662
663 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
664 }
665
666 static void
667 bnad_set_netdev_perm_addr(struct bnad *bnad)
668 {
669 struct net_device *netdev = bnad->netdev;
670
671 memcpy(netdev->perm_addr, &bnad->perm_addr, netdev->addr_len);
672 if (is_zero_ether_addr(netdev->dev_addr))
673 memcpy(netdev->dev_addr, &bnad->perm_addr, netdev->addr_len);
674 }
675
676 /* Control Path Handlers */
677
678 /* Callbacks */
679 void
680 bnad_cb_mbox_intr_enable(struct bnad *bnad)
681 {
682 bnad_enable_mbox_irq(bnad);
683 }
684
685 void
686 bnad_cb_mbox_intr_disable(struct bnad *bnad)
687 {
688 bnad_disable_mbox_irq(bnad);
689 }
690
691 void
692 bnad_cb_ioceth_ready(struct bnad *bnad)
693 {
694 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
695 complete(&bnad->bnad_completions.ioc_comp);
696 }
697
698 void
699 bnad_cb_ioceth_failed(struct bnad *bnad)
700 {
701 bnad->bnad_completions.ioc_comp_status = BNA_CB_FAIL;
702 complete(&bnad->bnad_completions.ioc_comp);
703 }
704
705 void
706 bnad_cb_ioceth_disabled(struct bnad *bnad)
707 {
708 bnad->bnad_completions.ioc_comp_status = BNA_CB_SUCCESS;
709 complete(&bnad->bnad_completions.ioc_comp);
710 }
711
712 static void
713 bnad_cb_enet_disabled(void *arg)
714 {
715 struct bnad *bnad = (struct bnad *)arg;
716
717 netif_carrier_off(bnad->netdev);
718 complete(&bnad->bnad_completions.enet_comp);
719 }
720
721 void
722 bnad_cb_ethport_link_status(struct bnad *bnad,
723 enum bna_link_status link_status)
724 {
725 bool link_up = 0;
726
727 link_up = (link_status == BNA_LINK_UP) || (link_status == BNA_CEE_UP);
728
729 if (link_status == BNA_CEE_UP) {
730 if (!test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
731 BNAD_UPDATE_CTR(bnad, cee_toggle);
732 set_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
733 } else {
734 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags))
735 BNAD_UPDATE_CTR(bnad, cee_toggle);
736 clear_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags);
737 }
738
739 if (link_up) {
740 if (!netif_carrier_ok(bnad->netdev)) {
741 uint tx_id, tcb_id;
742 printk(KERN_WARNING "bna: %s link up\n",
743 bnad->netdev->name);
744 netif_carrier_on(bnad->netdev);
745 BNAD_UPDATE_CTR(bnad, link_toggle);
746 for (tx_id = 0; tx_id < bnad->num_tx; tx_id++) {
747 for (tcb_id = 0; tcb_id < bnad->num_txq_per_tx;
748 tcb_id++) {
749 struct bna_tcb *tcb =
750 bnad->tx_info[tx_id].tcb[tcb_id];
751 u32 txq_id;
752 if (!tcb)
753 continue;
754
755 txq_id = tcb->id;
756
757 if (test_bit(BNAD_TXQ_TX_STARTED,
758 &tcb->flags)) {
759 /*
760 * Force an immediate
761 * Transmit Schedule */
762 printk(KERN_INFO "bna: %s %d "
763 "TXQ_STARTED\n",
764 bnad->netdev->name,
765 txq_id);
766 netif_wake_subqueue(
767 bnad->netdev,
768 txq_id);
769 BNAD_UPDATE_CTR(bnad,
770 netif_queue_wakeup);
771 } else {
772 netif_stop_subqueue(
773 bnad->netdev,
774 txq_id);
775 BNAD_UPDATE_CTR(bnad,
776 netif_queue_stop);
777 }
778 }
779 }
780 }
781 } else {
782 if (netif_carrier_ok(bnad->netdev)) {
783 printk(KERN_WARNING "bna: %s link down\n",
784 bnad->netdev->name);
785 netif_carrier_off(bnad->netdev);
786 BNAD_UPDATE_CTR(bnad, link_toggle);
787 }
788 }
789 }
790
791 static void
792 bnad_cb_tx_disabled(void *arg, struct bna_tx *tx)
793 {
794 struct bnad *bnad = (struct bnad *)arg;
795
796 complete(&bnad->bnad_completions.tx_comp);
797 }
798
799 static void
800 bnad_cb_tcb_setup(struct bnad *bnad, struct bna_tcb *tcb)
801 {
802 struct bnad_tx_info *tx_info =
803 (struct bnad_tx_info *)tcb->txq->tx->priv;
804 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
805
806 tx_info->tcb[tcb->id] = tcb;
807 unmap_q->producer_index = 0;
808 unmap_q->consumer_index = 0;
809 unmap_q->q_depth = BNAD_TX_UNMAPQ_DEPTH;
810 }
811
812 static void
813 bnad_cb_tcb_destroy(struct bnad *bnad, struct bna_tcb *tcb)
814 {
815 struct bnad_tx_info *tx_info =
816 (struct bnad_tx_info *)tcb->txq->tx->priv;
817 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
818
819 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
820 cpu_relax();
821
822 bnad_free_all_txbufs(bnad, tcb);
823
824 unmap_q->producer_index = 0;
825 unmap_q->consumer_index = 0;
826
827 smp_mb__before_clear_bit();
828 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
829
830 tx_info->tcb[tcb->id] = NULL;
831 }
832
833 static void
834 bnad_cb_rcb_setup(struct bnad *bnad, struct bna_rcb *rcb)
835 {
836 struct bnad_unmap_q *unmap_q = rcb->unmap_q;
837
838 unmap_q->producer_index = 0;
839 unmap_q->consumer_index = 0;
840 unmap_q->q_depth = BNAD_RX_UNMAPQ_DEPTH;
841 }
842
843 static void
844 bnad_cb_rcb_destroy(struct bnad *bnad, struct bna_rcb *rcb)
845 {
846 bnad_free_all_rxbufs(bnad, rcb);
847 }
848
849 static void
850 bnad_cb_ccb_setup(struct bnad *bnad, struct bna_ccb *ccb)
851 {
852 struct bnad_rx_info *rx_info =
853 (struct bnad_rx_info *)ccb->cq->rx->priv;
854
855 rx_info->rx_ctrl[ccb->id].ccb = ccb;
856 ccb->ctrl = &rx_info->rx_ctrl[ccb->id];
857 }
858
859 static void
860 bnad_cb_ccb_destroy(struct bnad *bnad, struct bna_ccb *ccb)
861 {
862 struct bnad_rx_info *rx_info =
863 (struct bnad_rx_info *)ccb->cq->rx->priv;
864
865 rx_info->rx_ctrl[ccb->id].ccb = NULL;
866 }
867
868 static void
869 bnad_cb_tx_stall(struct bnad *bnad, struct bna_tx *tx)
870 {
871 struct bnad_tx_info *tx_info =
872 (struct bnad_tx_info *)tx->priv;
873 struct bna_tcb *tcb;
874 u32 txq_id;
875 int i;
876
877 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
878 tcb = tx_info->tcb[i];
879 if (!tcb)
880 continue;
881 txq_id = tcb->id;
882 clear_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
883 netif_stop_subqueue(bnad->netdev, txq_id);
884 printk(KERN_INFO "bna: %s %d TXQ_STOPPED\n",
885 bnad->netdev->name, txq_id);
886 }
887 }
888
889 static void
890 bnad_cb_tx_resume(struct bnad *bnad, struct bna_tx *tx)
891 {
892 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
893 struct bna_tcb *tcb;
894 struct bnad_unmap_q *unmap_q;
895 u32 txq_id;
896 int i;
897
898 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
899 tcb = tx_info->tcb[i];
900 if (!tcb)
901 continue;
902 txq_id = tcb->id;
903
904 unmap_q = tcb->unmap_q;
905
906 if (test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))
907 continue;
908
909 while (test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags))
910 cpu_relax();
911
912 bnad_free_all_txbufs(bnad, tcb);
913
914 unmap_q->producer_index = 0;
915 unmap_q->consumer_index = 0;
916
917 smp_mb__before_clear_bit();
918 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
919
920 set_bit(BNAD_TXQ_TX_STARTED, &tcb->flags);
921
922 if (netif_carrier_ok(bnad->netdev)) {
923 printk(KERN_INFO "bna: %s %d TXQ_STARTED\n",
924 bnad->netdev->name, txq_id);
925 netif_wake_subqueue(bnad->netdev, txq_id);
926 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
927 }
928 }
929
930 /*
931 * Workaround for first ioceth enable failure & we
932 * get a 0 MAC address. We try to get the MAC address
933 * again here.
934 */
935 if (is_zero_ether_addr(&bnad->perm_addr.mac[0])) {
936 bna_enet_perm_mac_get(&bnad->bna.enet, &bnad->perm_addr);
937 bnad_set_netdev_perm_addr(bnad);
938 }
939 }
940
941 static void
942 bnad_cb_tx_cleanup(struct bnad *bnad, struct bna_tx *tx)
943 {
944 struct bnad_tx_info *tx_info = (struct bnad_tx_info *)tx->priv;
945 struct bna_tcb *tcb;
946 int i;
947
948 for (i = 0; i < BNAD_MAX_TXQ_PER_TX; i++) {
949 tcb = tx_info->tcb[i];
950 if (!tcb)
951 continue;
952 }
953
954 mdelay(BNAD_TXRX_SYNC_MDELAY);
955 bna_tx_cleanup_complete(tx);
956 }
957
958 static void
959 bnad_cb_rx_cleanup(struct bnad *bnad, struct bna_rx *rx)
960 {
961 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
962 struct bna_ccb *ccb;
963 struct bnad_rx_ctrl *rx_ctrl;
964 int i;
965
966 mdelay(BNAD_TXRX_SYNC_MDELAY);
967
968 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
969 rx_ctrl = &rx_info->rx_ctrl[i];
970 ccb = rx_ctrl->ccb;
971 if (!ccb)
972 continue;
973
974 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[0]->flags);
975
976 if (ccb->rcb[1])
977 clear_bit(BNAD_RXQ_STARTED, &ccb->rcb[1]->flags);
978
979 while (test_bit(BNAD_FP_IN_RX_PATH, &rx_ctrl->flags))
980 cpu_relax();
981 }
982
983 bna_rx_cleanup_complete(rx);
984 }
985
986 static void
987 bnad_cb_rx_post(struct bnad *bnad, struct bna_rx *rx)
988 {
989 struct bnad_rx_info *rx_info = (struct bnad_rx_info *)rx->priv;
990 struct bna_ccb *ccb;
991 struct bna_rcb *rcb;
992 struct bnad_rx_ctrl *rx_ctrl;
993 struct bnad_unmap_q *unmap_q;
994 int i;
995 int j;
996
997 for (i = 0; i < BNAD_MAX_RXP_PER_RX; i++) {
998 rx_ctrl = &rx_info->rx_ctrl[i];
999 ccb = rx_ctrl->ccb;
1000 if (!ccb)
1001 continue;
1002
1003 bnad_cq_cmpl_init(bnad, ccb);
1004
1005 for (j = 0; j < BNAD_MAX_RXQ_PER_RXP; j++) {
1006 rcb = ccb->rcb[j];
1007 if (!rcb)
1008 continue;
1009 bnad_free_all_rxbufs(bnad, rcb);
1010
1011 set_bit(BNAD_RXQ_STARTED, &rcb->flags);
1012 unmap_q = rcb->unmap_q;
1013
1014 /* Now allocate & post buffers for this RCB */
1015 /* !!Allocation in callback context */
1016 if (!test_and_set_bit(BNAD_RXQ_REFILL, &rcb->flags)) {
1017 if (BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth)
1018 >> BNAD_RXQ_REFILL_THRESHOLD_SHIFT)
1019 bnad_alloc_n_post_rxbufs(bnad, rcb);
1020 smp_mb__before_clear_bit();
1021 clear_bit(BNAD_RXQ_REFILL, &rcb->flags);
1022 }
1023 }
1024 }
1025 }
1026
1027 static void
1028 bnad_cb_rx_disabled(void *arg, struct bna_rx *rx)
1029 {
1030 struct bnad *bnad = (struct bnad *)arg;
1031
1032 complete(&bnad->bnad_completions.rx_comp);
1033 }
1034
1035 static void
1036 bnad_cb_rx_mcast_add(struct bnad *bnad, struct bna_rx *rx)
1037 {
1038 bnad->bnad_completions.mcast_comp_status = BNA_CB_SUCCESS;
1039 complete(&bnad->bnad_completions.mcast_comp);
1040 }
1041
1042 void
1043 bnad_cb_stats_get(struct bnad *bnad, enum bna_cb_status status,
1044 struct bna_stats *stats)
1045 {
1046 if (status == BNA_CB_SUCCESS)
1047 BNAD_UPDATE_CTR(bnad, hw_stats_updates);
1048
1049 if (!netif_running(bnad->netdev) ||
1050 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1051 return;
1052
1053 mod_timer(&bnad->stats_timer,
1054 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1055 }
1056
1057 static void
1058 bnad_cb_enet_mtu_set(struct bnad *bnad)
1059 {
1060 bnad->bnad_completions.mtu_comp_status = BNA_CB_SUCCESS;
1061 complete(&bnad->bnad_completions.mtu_comp);
1062 }
1063
1064 /* Resource allocation, free functions */
1065
1066 static void
1067 bnad_mem_free(struct bnad *bnad,
1068 struct bna_mem_info *mem_info)
1069 {
1070 int i;
1071 dma_addr_t dma_pa;
1072
1073 if (mem_info->mdl == NULL)
1074 return;
1075
1076 for (i = 0; i < mem_info->num; i++) {
1077 if (mem_info->mdl[i].kva != NULL) {
1078 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1079 BNA_GET_DMA_ADDR(&(mem_info->mdl[i].dma),
1080 dma_pa);
1081 dma_free_coherent(&bnad->pcidev->dev,
1082 mem_info->mdl[i].len,
1083 mem_info->mdl[i].kva, dma_pa);
1084 } else
1085 kfree(mem_info->mdl[i].kva);
1086 }
1087 }
1088 kfree(mem_info->mdl);
1089 mem_info->mdl = NULL;
1090 }
1091
1092 static int
1093 bnad_mem_alloc(struct bnad *bnad,
1094 struct bna_mem_info *mem_info)
1095 {
1096 int i;
1097 dma_addr_t dma_pa;
1098
1099 if ((mem_info->num == 0) || (mem_info->len == 0)) {
1100 mem_info->mdl = NULL;
1101 return 0;
1102 }
1103
1104 mem_info->mdl = kcalloc(mem_info->num, sizeof(struct bna_mem_descr),
1105 GFP_KERNEL);
1106 if (mem_info->mdl == NULL)
1107 return -ENOMEM;
1108
1109 if (mem_info->mem_type == BNA_MEM_T_DMA) {
1110 for (i = 0; i < mem_info->num; i++) {
1111 mem_info->mdl[i].len = mem_info->len;
1112 mem_info->mdl[i].kva =
1113 dma_alloc_coherent(&bnad->pcidev->dev,
1114 mem_info->len, &dma_pa,
1115 GFP_KERNEL);
1116
1117 if (mem_info->mdl[i].kva == NULL)
1118 goto err_return;
1119
1120 BNA_SET_DMA_ADDR(dma_pa,
1121 &(mem_info->mdl[i].dma));
1122 }
1123 } else {
1124 for (i = 0; i < mem_info->num; i++) {
1125 mem_info->mdl[i].len = mem_info->len;
1126 mem_info->mdl[i].kva = kzalloc(mem_info->len,
1127 GFP_KERNEL);
1128 if (mem_info->mdl[i].kva == NULL)
1129 goto err_return;
1130 }
1131 }
1132
1133 return 0;
1134
1135 err_return:
1136 bnad_mem_free(bnad, mem_info);
1137 return -ENOMEM;
1138 }
1139
1140 /* Free IRQ for Mailbox */
1141 static void
1142 bnad_mbox_irq_free(struct bnad *bnad)
1143 {
1144 int irq;
1145 unsigned long flags;
1146
1147 spin_lock_irqsave(&bnad->bna_lock, flags);
1148 bnad_disable_mbox_irq(bnad);
1149 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1150
1151 irq = BNAD_GET_MBOX_IRQ(bnad);
1152 free_irq(irq, bnad);
1153 }
1154
1155 /*
1156 * Allocates IRQ for Mailbox, but keep it disabled
1157 * This will be enabled once we get the mbox enable callback
1158 * from bna
1159 */
1160 static int
1161 bnad_mbox_irq_alloc(struct bnad *bnad)
1162 {
1163 int err = 0;
1164 unsigned long irq_flags, flags;
1165 u32 irq;
1166 irq_handler_t irq_handler;
1167
1168 spin_lock_irqsave(&bnad->bna_lock, flags);
1169 if (bnad->cfg_flags & BNAD_CF_MSIX) {
1170 irq_handler = (irq_handler_t)bnad_msix_mbox_handler;
1171 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
1172 irq_flags = 0;
1173 } else {
1174 irq_handler = (irq_handler_t)bnad_isr;
1175 irq = bnad->pcidev->irq;
1176 irq_flags = IRQF_SHARED;
1177 }
1178
1179 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1180 sprintf(bnad->mbox_irq_name, "%s", BNAD_NAME);
1181
1182 /*
1183 * Set the Mbox IRQ disable flag, so that the IRQ handler
1184 * called from request_irq() for SHARED IRQs do not execute
1185 */
1186 set_bit(BNAD_RF_MBOX_IRQ_DISABLED, &bnad->run_flags);
1187
1188 BNAD_UPDATE_CTR(bnad, mbox_intr_disabled);
1189
1190 err = request_irq(irq, irq_handler, irq_flags,
1191 bnad->mbox_irq_name, bnad);
1192
1193 return err;
1194 }
1195
1196 static void
1197 bnad_txrx_irq_free(struct bnad *bnad, struct bna_intr_info *intr_info)
1198 {
1199 kfree(intr_info->idl);
1200 intr_info->idl = NULL;
1201 }
1202
1203 /* Allocates Interrupt Descriptor List for MSIX/INT-X vectors */
1204 static int
1205 bnad_txrx_irq_alloc(struct bnad *bnad, enum bnad_intr_source src,
1206 u32 txrx_id, struct bna_intr_info *intr_info)
1207 {
1208 int i, vector_start = 0;
1209 u32 cfg_flags;
1210 unsigned long flags;
1211
1212 spin_lock_irqsave(&bnad->bna_lock, flags);
1213 cfg_flags = bnad->cfg_flags;
1214 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1215
1216 if (cfg_flags & BNAD_CF_MSIX) {
1217 intr_info->intr_type = BNA_INTR_T_MSIX;
1218 intr_info->idl = kcalloc(intr_info->num,
1219 sizeof(struct bna_intr_descr),
1220 GFP_KERNEL);
1221 if (!intr_info->idl)
1222 return -ENOMEM;
1223
1224 switch (src) {
1225 case BNAD_INTR_TX:
1226 vector_start = BNAD_MAILBOX_MSIX_VECTORS + txrx_id;
1227 break;
1228
1229 case BNAD_INTR_RX:
1230 vector_start = BNAD_MAILBOX_MSIX_VECTORS +
1231 (bnad->num_tx * bnad->num_txq_per_tx) +
1232 txrx_id;
1233 break;
1234
1235 default:
1236 BUG();
1237 }
1238
1239 for (i = 0; i < intr_info->num; i++)
1240 intr_info->idl[i].vector = vector_start + i;
1241 } else {
1242 intr_info->intr_type = BNA_INTR_T_INTX;
1243 intr_info->num = 1;
1244 intr_info->idl = kcalloc(intr_info->num,
1245 sizeof(struct bna_intr_descr),
1246 GFP_KERNEL);
1247 if (!intr_info->idl)
1248 return -ENOMEM;
1249
1250 switch (src) {
1251 case BNAD_INTR_TX:
1252 intr_info->idl[0].vector = BNAD_INTX_TX_IB_BITMASK;
1253 break;
1254
1255 case BNAD_INTR_RX:
1256 intr_info->idl[0].vector = BNAD_INTX_RX_IB_BITMASK;
1257 break;
1258 }
1259 }
1260 return 0;
1261 }
1262
1263 /**
1264 * NOTE: Should be called for MSIX only
1265 * Unregisters Tx MSIX vector(s) from the kernel
1266 */
1267 static void
1268 bnad_tx_msix_unregister(struct bnad *bnad, struct bnad_tx_info *tx_info,
1269 int num_txqs)
1270 {
1271 int i;
1272 int vector_num;
1273
1274 for (i = 0; i < num_txqs; i++) {
1275 if (tx_info->tcb[i] == NULL)
1276 continue;
1277
1278 vector_num = tx_info->tcb[i]->intr_vector;
1279 free_irq(bnad->msix_table[vector_num].vector, tx_info->tcb[i]);
1280 }
1281 }
1282
1283 /**
1284 * NOTE: Should be called for MSIX only
1285 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1286 */
1287 static int
1288 bnad_tx_msix_register(struct bnad *bnad, struct bnad_tx_info *tx_info,
1289 u32 tx_id, int num_txqs)
1290 {
1291 int i;
1292 int err;
1293 int vector_num;
1294
1295 for (i = 0; i < num_txqs; i++) {
1296 vector_num = tx_info->tcb[i]->intr_vector;
1297 sprintf(tx_info->tcb[i]->name, "%s TXQ %d", bnad->netdev->name,
1298 tx_id + tx_info->tcb[i]->id);
1299 err = request_irq(bnad->msix_table[vector_num].vector,
1300 (irq_handler_t)bnad_msix_tx, 0,
1301 tx_info->tcb[i]->name,
1302 tx_info->tcb[i]);
1303 if (err)
1304 goto err_return;
1305 }
1306
1307 return 0;
1308
1309 err_return:
1310 if (i > 0)
1311 bnad_tx_msix_unregister(bnad, tx_info, (i - 1));
1312 return -1;
1313 }
1314
1315 /**
1316 * NOTE: Should be called for MSIX only
1317 * Unregisters Rx MSIX vector(s) from the kernel
1318 */
1319 static void
1320 bnad_rx_msix_unregister(struct bnad *bnad, struct bnad_rx_info *rx_info,
1321 int num_rxps)
1322 {
1323 int i;
1324 int vector_num;
1325
1326 for (i = 0; i < num_rxps; i++) {
1327 if (rx_info->rx_ctrl[i].ccb == NULL)
1328 continue;
1329
1330 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1331 free_irq(bnad->msix_table[vector_num].vector,
1332 rx_info->rx_ctrl[i].ccb);
1333 }
1334 }
1335
1336 /**
1337 * NOTE: Should be called for MSIX only
1338 * Registers Tx MSIX vector(s) and ISR(s), cookie with the kernel
1339 */
1340 static int
1341 bnad_rx_msix_register(struct bnad *bnad, struct bnad_rx_info *rx_info,
1342 u32 rx_id, int num_rxps)
1343 {
1344 int i;
1345 int err;
1346 int vector_num;
1347
1348 for (i = 0; i < num_rxps; i++) {
1349 vector_num = rx_info->rx_ctrl[i].ccb->intr_vector;
1350 sprintf(rx_info->rx_ctrl[i].ccb->name, "%s CQ %d",
1351 bnad->netdev->name,
1352 rx_id + rx_info->rx_ctrl[i].ccb->id);
1353 err = request_irq(bnad->msix_table[vector_num].vector,
1354 (irq_handler_t)bnad_msix_rx, 0,
1355 rx_info->rx_ctrl[i].ccb->name,
1356 rx_info->rx_ctrl[i].ccb);
1357 if (err)
1358 goto err_return;
1359 }
1360
1361 return 0;
1362
1363 err_return:
1364 if (i > 0)
1365 bnad_rx_msix_unregister(bnad, rx_info, (i - 1));
1366 return -1;
1367 }
1368
1369 /* Free Tx object Resources */
1370 static void
1371 bnad_tx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1372 {
1373 int i;
1374
1375 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1376 if (res_info[i].res_type == BNA_RES_T_MEM)
1377 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1378 else if (res_info[i].res_type == BNA_RES_T_INTR)
1379 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1380 }
1381 }
1382
1383 /* Allocates memory and interrupt resources for Tx object */
1384 static int
1385 bnad_tx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1386 u32 tx_id)
1387 {
1388 int i, err = 0;
1389
1390 for (i = 0; i < BNA_TX_RES_T_MAX; i++) {
1391 if (res_info[i].res_type == BNA_RES_T_MEM)
1392 err = bnad_mem_alloc(bnad,
1393 &res_info[i].res_u.mem_info);
1394 else if (res_info[i].res_type == BNA_RES_T_INTR)
1395 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_TX, tx_id,
1396 &res_info[i].res_u.intr_info);
1397 if (err)
1398 goto err_return;
1399 }
1400 return 0;
1401
1402 err_return:
1403 bnad_tx_res_free(bnad, res_info);
1404 return err;
1405 }
1406
1407 /* Free Rx object Resources */
1408 static void
1409 bnad_rx_res_free(struct bnad *bnad, struct bna_res_info *res_info)
1410 {
1411 int i;
1412
1413 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1414 if (res_info[i].res_type == BNA_RES_T_MEM)
1415 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
1416 else if (res_info[i].res_type == BNA_RES_T_INTR)
1417 bnad_txrx_irq_free(bnad, &res_info[i].res_u.intr_info);
1418 }
1419 }
1420
1421 /* Allocates memory and interrupt resources for Rx object */
1422 static int
1423 bnad_rx_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
1424 uint rx_id)
1425 {
1426 int i, err = 0;
1427
1428 /* All memory needs to be allocated before setup_ccbs */
1429 for (i = 0; i < BNA_RX_RES_T_MAX; i++) {
1430 if (res_info[i].res_type == BNA_RES_T_MEM)
1431 err = bnad_mem_alloc(bnad,
1432 &res_info[i].res_u.mem_info);
1433 else if (res_info[i].res_type == BNA_RES_T_INTR)
1434 err = bnad_txrx_irq_alloc(bnad, BNAD_INTR_RX, rx_id,
1435 &res_info[i].res_u.intr_info);
1436 if (err)
1437 goto err_return;
1438 }
1439 return 0;
1440
1441 err_return:
1442 bnad_rx_res_free(bnad, res_info);
1443 return err;
1444 }
1445
1446 /* Timer callbacks */
1447 /* a) IOC timer */
1448 static void
1449 bnad_ioc_timeout(unsigned long data)
1450 {
1451 struct bnad *bnad = (struct bnad *)data;
1452 unsigned long flags;
1453
1454 spin_lock_irqsave(&bnad->bna_lock, flags);
1455 bfa_nw_ioc_timeout((void *) &bnad->bna.ioceth.ioc);
1456 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1457 }
1458
1459 static void
1460 bnad_ioc_hb_check(unsigned long data)
1461 {
1462 struct bnad *bnad = (struct bnad *)data;
1463 unsigned long flags;
1464
1465 spin_lock_irqsave(&bnad->bna_lock, flags);
1466 bfa_nw_ioc_hb_check((void *) &bnad->bna.ioceth.ioc);
1467 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1468 }
1469
1470 static void
1471 bnad_iocpf_timeout(unsigned long data)
1472 {
1473 struct bnad *bnad = (struct bnad *)data;
1474 unsigned long flags;
1475
1476 spin_lock_irqsave(&bnad->bna_lock, flags);
1477 bfa_nw_iocpf_timeout((void *) &bnad->bna.ioceth.ioc);
1478 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1479 }
1480
1481 static void
1482 bnad_iocpf_sem_timeout(unsigned long data)
1483 {
1484 struct bnad *bnad = (struct bnad *)data;
1485 unsigned long flags;
1486
1487 spin_lock_irqsave(&bnad->bna_lock, flags);
1488 bfa_nw_iocpf_sem_timeout((void *) &bnad->bna.ioceth.ioc);
1489 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1490 }
1491
1492 /*
1493 * All timer routines use bnad->bna_lock to protect against
1494 * the following race, which may occur in case of no locking:
1495 * Time CPU m CPU n
1496 * 0 1 = test_bit
1497 * 1 clear_bit
1498 * 2 del_timer_sync
1499 * 3 mod_timer
1500 */
1501
1502 /* b) Dynamic Interrupt Moderation Timer */
1503 static void
1504 bnad_dim_timeout(unsigned long data)
1505 {
1506 struct bnad *bnad = (struct bnad *)data;
1507 struct bnad_rx_info *rx_info;
1508 struct bnad_rx_ctrl *rx_ctrl;
1509 int i, j;
1510 unsigned long flags;
1511
1512 if (!netif_carrier_ok(bnad->netdev))
1513 return;
1514
1515 spin_lock_irqsave(&bnad->bna_lock, flags);
1516 for (i = 0; i < bnad->num_rx; i++) {
1517 rx_info = &bnad->rx_info[i];
1518 if (!rx_info->rx)
1519 continue;
1520 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
1521 rx_ctrl = &rx_info->rx_ctrl[j];
1522 if (!rx_ctrl->ccb)
1523 continue;
1524 bna_rx_dim_update(rx_ctrl->ccb);
1525 }
1526 }
1527
1528 /* Check for BNAD_CF_DIM_ENABLED, does not eleminate a race */
1529 if (test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags))
1530 mod_timer(&bnad->dim_timer,
1531 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1532 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1533 }
1534
1535 /* c) Statistics Timer */
1536 static void
1537 bnad_stats_timeout(unsigned long data)
1538 {
1539 struct bnad *bnad = (struct bnad *)data;
1540 unsigned long flags;
1541
1542 if (!netif_running(bnad->netdev) ||
1543 !test_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1544 return;
1545
1546 spin_lock_irqsave(&bnad->bna_lock, flags);
1547 bna_hw_stats_get(&bnad->bna);
1548 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1549 }
1550
1551 /*
1552 * Set up timer for DIM
1553 * Called with bnad->bna_lock held
1554 */
1555 void
1556 bnad_dim_timer_start(struct bnad *bnad)
1557 {
1558 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1559 !test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1560 setup_timer(&bnad->dim_timer, bnad_dim_timeout,
1561 (unsigned long)bnad);
1562 set_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1563 mod_timer(&bnad->dim_timer,
1564 jiffies + msecs_to_jiffies(BNAD_DIM_TIMER_FREQ));
1565 }
1566 }
1567
1568 /*
1569 * Set up timer for statistics
1570 * Called with mutex_lock(&bnad->conf_mutex) held
1571 */
1572 static void
1573 bnad_stats_timer_start(struct bnad *bnad)
1574 {
1575 unsigned long flags;
1576
1577 spin_lock_irqsave(&bnad->bna_lock, flags);
1578 if (!test_and_set_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags)) {
1579 setup_timer(&bnad->stats_timer, bnad_stats_timeout,
1580 (unsigned long)bnad);
1581 mod_timer(&bnad->stats_timer,
1582 jiffies + msecs_to_jiffies(BNAD_STATS_TIMER_FREQ));
1583 }
1584 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1585 }
1586
1587 /*
1588 * Stops the stats timer
1589 * Called with mutex_lock(&bnad->conf_mutex) held
1590 */
1591 static void
1592 bnad_stats_timer_stop(struct bnad *bnad)
1593 {
1594 int to_del = 0;
1595 unsigned long flags;
1596
1597 spin_lock_irqsave(&bnad->bna_lock, flags);
1598 if (test_and_clear_bit(BNAD_RF_STATS_TIMER_RUNNING, &bnad->run_flags))
1599 to_del = 1;
1600 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1601 if (to_del)
1602 del_timer_sync(&bnad->stats_timer);
1603 }
1604
1605 /* Utilities */
1606
1607 static void
1608 bnad_netdev_mc_list_get(struct net_device *netdev, u8 *mc_list)
1609 {
1610 int i = 1; /* Index 0 has broadcast address */
1611 struct netdev_hw_addr *mc_addr;
1612
1613 netdev_for_each_mc_addr(mc_addr, netdev) {
1614 memcpy(&mc_list[i * ETH_ALEN], &mc_addr->addr[0],
1615 ETH_ALEN);
1616 i++;
1617 }
1618 }
1619
1620 static int
1621 bnad_napi_poll_rx(struct napi_struct *napi, int budget)
1622 {
1623 struct bnad_rx_ctrl *rx_ctrl =
1624 container_of(napi, struct bnad_rx_ctrl, napi);
1625 struct bnad *bnad = rx_ctrl->bnad;
1626 int rcvd = 0;
1627
1628 rx_ctrl->rx_poll_ctr++;
1629
1630 if (!netif_carrier_ok(bnad->netdev))
1631 goto poll_exit;
1632
1633 rcvd = bnad_poll_cq(bnad, rx_ctrl->ccb, budget);
1634 if (rcvd >= budget)
1635 return rcvd;
1636
1637 poll_exit:
1638 napi_complete(napi);
1639
1640 rx_ctrl->rx_complete++;
1641
1642 if (rx_ctrl->ccb)
1643 bnad_enable_rx_irq_unsafe(rx_ctrl->ccb);
1644
1645 return rcvd;
1646 }
1647
1648 #define BNAD_NAPI_POLL_QUOTA 64
1649 static void
1650 bnad_napi_init(struct bnad *bnad, u32 rx_id)
1651 {
1652 struct bnad_rx_ctrl *rx_ctrl;
1653 int i;
1654
1655 /* Initialize & enable NAPI */
1656 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1657 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1658 netif_napi_add(bnad->netdev, &rx_ctrl->napi,
1659 bnad_napi_poll_rx, BNAD_NAPI_POLL_QUOTA);
1660 }
1661 }
1662
1663 static void
1664 bnad_napi_enable(struct bnad *bnad, u32 rx_id)
1665 {
1666 struct bnad_rx_ctrl *rx_ctrl;
1667 int i;
1668
1669 /* Initialize & enable NAPI */
1670 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1671 rx_ctrl = &bnad->rx_info[rx_id].rx_ctrl[i];
1672
1673 napi_enable(&rx_ctrl->napi);
1674 }
1675 }
1676
1677 static void
1678 bnad_napi_disable(struct bnad *bnad, u32 rx_id)
1679 {
1680 int i;
1681
1682 /* First disable and then clean up */
1683 for (i = 0; i < bnad->num_rxp_per_rx; i++) {
1684 napi_disable(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1685 netif_napi_del(&bnad->rx_info[rx_id].rx_ctrl[i].napi);
1686 }
1687 }
1688
1689 /* Should be held with conf_lock held */
1690 void
1691 bnad_cleanup_tx(struct bnad *bnad, u32 tx_id)
1692 {
1693 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1694 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1695 unsigned long flags;
1696
1697 if (!tx_info->tx)
1698 return;
1699
1700 init_completion(&bnad->bnad_completions.tx_comp);
1701 spin_lock_irqsave(&bnad->bna_lock, flags);
1702 bna_tx_disable(tx_info->tx, BNA_HARD_CLEANUP, bnad_cb_tx_disabled);
1703 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1704 wait_for_completion(&bnad->bnad_completions.tx_comp);
1705
1706 if (tx_info->tcb[0]->intr_type == BNA_INTR_T_MSIX)
1707 bnad_tx_msix_unregister(bnad, tx_info,
1708 bnad->num_txq_per_tx);
1709
1710 if (0 == tx_id)
1711 tasklet_kill(&bnad->tx_free_tasklet);
1712
1713 spin_lock_irqsave(&bnad->bna_lock, flags);
1714 bna_tx_destroy(tx_info->tx);
1715 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1716
1717 tx_info->tx = NULL;
1718 tx_info->tx_id = 0;
1719
1720 bnad_tx_res_free(bnad, res_info);
1721 }
1722
1723 /* Should be held with conf_lock held */
1724 int
1725 bnad_setup_tx(struct bnad *bnad, u32 tx_id)
1726 {
1727 int err;
1728 struct bnad_tx_info *tx_info = &bnad->tx_info[tx_id];
1729 struct bna_res_info *res_info = &bnad->tx_res_info[tx_id].res_info[0];
1730 struct bna_intr_info *intr_info =
1731 &res_info[BNA_TX_RES_INTR_T_TXCMPL].res_u.intr_info;
1732 struct bna_tx_config *tx_config = &bnad->tx_config[tx_id];
1733 static const struct bna_tx_event_cbfn tx_cbfn = {
1734 .tcb_setup_cbfn = bnad_cb_tcb_setup,
1735 .tcb_destroy_cbfn = bnad_cb_tcb_destroy,
1736 .tx_stall_cbfn = bnad_cb_tx_stall,
1737 .tx_resume_cbfn = bnad_cb_tx_resume,
1738 .tx_cleanup_cbfn = bnad_cb_tx_cleanup,
1739 };
1740
1741 struct bna_tx *tx;
1742 unsigned long flags;
1743
1744 tx_info->tx_id = tx_id;
1745
1746 /* Initialize the Tx object configuration */
1747 tx_config->num_txq = bnad->num_txq_per_tx;
1748 tx_config->txq_depth = bnad->txq_depth;
1749 tx_config->tx_type = BNA_TX_T_REGULAR;
1750 tx_config->coalescing_timeo = bnad->tx_coalescing_timeo;
1751
1752 /* Get BNA's resource requirement for one tx object */
1753 spin_lock_irqsave(&bnad->bna_lock, flags);
1754 bna_tx_res_req(bnad->num_txq_per_tx,
1755 bnad->txq_depth, res_info);
1756 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1757
1758 /* Fill Unmap Q memory requirements */
1759 BNAD_FILL_UNMAPQ_MEM_REQ(
1760 &res_info[BNA_TX_RES_MEM_T_UNMAPQ],
1761 bnad->num_txq_per_tx,
1762 BNAD_TX_UNMAPQ_DEPTH);
1763
1764 /* Allocate resources */
1765 err = bnad_tx_res_alloc(bnad, res_info, tx_id);
1766 if (err)
1767 return err;
1768
1769 /* Ask BNA to create one Tx object, supplying required resources */
1770 spin_lock_irqsave(&bnad->bna_lock, flags);
1771 tx = bna_tx_create(&bnad->bna, bnad, tx_config, &tx_cbfn, res_info,
1772 tx_info);
1773 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1774 if (!tx)
1775 goto err_return;
1776 tx_info->tx = tx;
1777
1778 /* Register ISR for the Tx object */
1779 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1780 err = bnad_tx_msix_register(bnad, tx_info,
1781 tx_id, bnad->num_txq_per_tx);
1782 if (err)
1783 goto err_return;
1784 }
1785
1786 spin_lock_irqsave(&bnad->bna_lock, flags);
1787 bna_tx_enable(tx);
1788 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1789
1790 return 0;
1791
1792 err_return:
1793 bnad_tx_res_free(bnad, res_info);
1794 return err;
1795 }
1796
1797 /* Setup the rx config for bna_rx_create */
1798 /* bnad decides the configuration */
1799 static void
1800 bnad_init_rx_config(struct bnad *bnad, struct bna_rx_config *rx_config)
1801 {
1802 rx_config->rx_type = BNA_RX_T_REGULAR;
1803 rx_config->num_paths = bnad->num_rxp_per_rx;
1804 rx_config->coalescing_timeo = bnad->rx_coalescing_timeo;
1805
1806 if (bnad->num_rxp_per_rx > 1) {
1807 rx_config->rss_status = BNA_STATUS_T_ENABLED;
1808 rx_config->rss_config.hash_type =
1809 (BFI_ENET_RSS_IPV6 |
1810 BFI_ENET_RSS_IPV6_TCP |
1811 BFI_ENET_RSS_IPV4 |
1812 BFI_ENET_RSS_IPV4_TCP);
1813 rx_config->rss_config.hash_mask =
1814 bnad->num_rxp_per_rx - 1;
1815 get_random_bytes(rx_config->rss_config.toeplitz_hash_key,
1816 sizeof(rx_config->rss_config.toeplitz_hash_key));
1817 } else {
1818 rx_config->rss_status = BNA_STATUS_T_DISABLED;
1819 memset(&rx_config->rss_config, 0,
1820 sizeof(rx_config->rss_config));
1821 }
1822 rx_config->rxp_type = BNA_RXP_SLR;
1823 rx_config->q_depth = bnad->rxq_depth;
1824
1825 rx_config->small_buff_size = BFI_SMALL_RXBUF_SIZE;
1826
1827 rx_config->vlan_strip_status = BNA_STATUS_T_ENABLED;
1828 }
1829
1830 static void
1831 bnad_rx_ctrl_init(struct bnad *bnad, u32 rx_id)
1832 {
1833 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1834 int i;
1835
1836 for (i = 0; i < bnad->num_rxp_per_rx; i++)
1837 rx_info->rx_ctrl[i].bnad = bnad;
1838 }
1839
1840 /* Called with mutex_lock(&bnad->conf_mutex) held */
1841 void
1842 bnad_cleanup_rx(struct bnad *bnad, u32 rx_id)
1843 {
1844 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1845 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1846 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1847 unsigned long flags;
1848 int to_del = 0;
1849
1850 if (!rx_info->rx)
1851 return;
1852
1853 if (0 == rx_id) {
1854 spin_lock_irqsave(&bnad->bna_lock, flags);
1855 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED &&
1856 test_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags)) {
1857 clear_bit(BNAD_RF_DIM_TIMER_RUNNING, &bnad->run_flags);
1858 to_del = 1;
1859 }
1860 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1861 if (to_del)
1862 del_timer_sync(&bnad->dim_timer);
1863 }
1864
1865 init_completion(&bnad->bnad_completions.rx_comp);
1866 spin_lock_irqsave(&bnad->bna_lock, flags);
1867 bna_rx_disable(rx_info->rx, BNA_HARD_CLEANUP, bnad_cb_rx_disabled);
1868 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1869 wait_for_completion(&bnad->bnad_completions.rx_comp);
1870
1871 if (rx_info->rx_ctrl[0].ccb->intr_type == BNA_INTR_T_MSIX)
1872 bnad_rx_msix_unregister(bnad, rx_info, rx_config->num_paths);
1873
1874 bnad_napi_disable(bnad, rx_id);
1875
1876 spin_lock_irqsave(&bnad->bna_lock, flags);
1877 bna_rx_destroy(rx_info->rx);
1878
1879 rx_info->rx = NULL;
1880 rx_info->rx_id = 0;
1881 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1882
1883 bnad_rx_res_free(bnad, res_info);
1884 }
1885
1886 /* Called with mutex_lock(&bnad->conf_mutex) held */
1887 int
1888 bnad_setup_rx(struct bnad *bnad, u32 rx_id)
1889 {
1890 int err;
1891 struct bnad_rx_info *rx_info = &bnad->rx_info[rx_id];
1892 struct bna_res_info *res_info = &bnad->rx_res_info[rx_id].res_info[0];
1893 struct bna_intr_info *intr_info =
1894 &res_info[BNA_RX_RES_T_INTR].res_u.intr_info;
1895 struct bna_rx_config *rx_config = &bnad->rx_config[rx_id];
1896 static const struct bna_rx_event_cbfn rx_cbfn = {
1897 .rcb_setup_cbfn = bnad_cb_rcb_setup,
1898 .rcb_destroy_cbfn = bnad_cb_rcb_destroy,
1899 .ccb_setup_cbfn = bnad_cb_ccb_setup,
1900 .ccb_destroy_cbfn = bnad_cb_ccb_destroy,
1901 .rx_cleanup_cbfn = bnad_cb_rx_cleanup,
1902 .rx_post_cbfn = bnad_cb_rx_post,
1903 };
1904 struct bna_rx *rx;
1905 unsigned long flags;
1906
1907 rx_info->rx_id = rx_id;
1908
1909 /* Initialize the Rx object configuration */
1910 bnad_init_rx_config(bnad, rx_config);
1911
1912 /* Get BNA's resource requirement for one Rx object */
1913 spin_lock_irqsave(&bnad->bna_lock, flags);
1914 bna_rx_res_req(rx_config, res_info);
1915 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1916
1917 /* Fill Unmap Q memory requirements */
1918 BNAD_FILL_UNMAPQ_MEM_REQ(
1919 &res_info[BNA_RX_RES_MEM_T_UNMAPQ],
1920 rx_config->num_paths +
1921 ((rx_config->rxp_type == BNA_RXP_SINGLE) ? 0 :
1922 rx_config->num_paths), BNAD_RX_UNMAPQ_DEPTH);
1923
1924 /* Allocate resource */
1925 err = bnad_rx_res_alloc(bnad, res_info, rx_id);
1926 if (err)
1927 return err;
1928
1929 bnad_rx_ctrl_init(bnad, rx_id);
1930
1931 /* Ask BNA to create one Rx object, supplying required resources */
1932 spin_lock_irqsave(&bnad->bna_lock, flags);
1933 rx = bna_rx_create(&bnad->bna, bnad, rx_config, &rx_cbfn, res_info,
1934 rx_info);
1935 if (!rx) {
1936 err = -ENOMEM;
1937 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1938 goto err_return;
1939 }
1940 rx_info->rx = rx;
1941 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1942
1943 /*
1944 * Init NAPI, so that state is set to NAPI_STATE_SCHED,
1945 * so that IRQ handler cannot schedule NAPI at this point.
1946 */
1947 bnad_napi_init(bnad, rx_id);
1948
1949 /* Register ISR for the Rx object */
1950 if (intr_info->intr_type == BNA_INTR_T_MSIX) {
1951 err = bnad_rx_msix_register(bnad, rx_info, rx_id,
1952 rx_config->num_paths);
1953 if (err)
1954 goto err_return;
1955 }
1956
1957 spin_lock_irqsave(&bnad->bna_lock, flags);
1958 if (0 == rx_id) {
1959 /* Set up Dynamic Interrupt Moderation Vector */
1960 if (bnad->cfg_flags & BNAD_CF_DIM_ENABLED)
1961 bna_rx_dim_reconfig(&bnad->bna, bna_napi_dim_vector);
1962
1963 /* Enable VLAN filtering only on the default Rx */
1964 bna_rx_vlanfilter_enable(rx);
1965
1966 /* Start the DIM timer */
1967 bnad_dim_timer_start(bnad);
1968 }
1969
1970 bna_rx_enable(rx);
1971 spin_unlock_irqrestore(&bnad->bna_lock, flags);
1972
1973 /* Enable scheduling of NAPI */
1974 bnad_napi_enable(bnad, rx_id);
1975
1976 return 0;
1977
1978 err_return:
1979 bnad_cleanup_rx(bnad, rx_id);
1980 return err;
1981 }
1982
1983 /* Called with conf_lock & bnad->bna_lock held */
1984 void
1985 bnad_tx_coalescing_timeo_set(struct bnad *bnad)
1986 {
1987 struct bnad_tx_info *tx_info;
1988
1989 tx_info = &bnad->tx_info[0];
1990 if (!tx_info->tx)
1991 return;
1992
1993 bna_tx_coalescing_timeo_set(tx_info->tx, bnad->tx_coalescing_timeo);
1994 }
1995
1996 /* Called with conf_lock & bnad->bna_lock held */
1997 void
1998 bnad_rx_coalescing_timeo_set(struct bnad *bnad)
1999 {
2000 struct bnad_rx_info *rx_info;
2001 int i;
2002
2003 for (i = 0; i < bnad->num_rx; i++) {
2004 rx_info = &bnad->rx_info[i];
2005 if (!rx_info->rx)
2006 continue;
2007 bna_rx_coalescing_timeo_set(rx_info->rx,
2008 bnad->rx_coalescing_timeo);
2009 }
2010 }
2011
2012 /*
2013 * Called with bnad->bna_lock held
2014 */
2015 int
2016 bnad_mac_addr_set_locked(struct bnad *bnad, u8 *mac_addr)
2017 {
2018 int ret;
2019
2020 if (!is_valid_ether_addr(mac_addr))
2021 return -EADDRNOTAVAIL;
2022
2023 /* If datapath is down, pretend everything went through */
2024 if (!bnad->rx_info[0].rx)
2025 return 0;
2026
2027 ret = bna_rx_ucast_set(bnad->rx_info[0].rx, mac_addr, NULL);
2028 if (ret != BNA_CB_SUCCESS)
2029 return -EADDRNOTAVAIL;
2030
2031 return 0;
2032 }
2033
2034 /* Should be called with conf_lock held */
2035 int
2036 bnad_enable_default_bcast(struct bnad *bnad)
2037 {
2038 struct bnad_rx_info *rx_info = &bnad->rx_info[0];
2039 int ret;
2040 unsigned long flags;
2041
2042 init_completion(&bnad->bnad_completions.mcast_comp);
2043
2044 spin_lock_irqsave(&bnad->bna_lock, flags);
2045 ret = bna_rx_mcast_add(rx_info->rx, (u8 *)bnad_bcast_addr,
2046 bnad_cb_rx_mcast_add);
2047 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2048
2049 if (ret == BNA_CB_SUCCESS)
2050 wait_for_completion(&bnad->bnad_completions.mcast_comp);
2051 else
2052 return -ENODEV;
2053
2054 if (bnad->bnad_completions.mcast_comp_status != BNA_CB_SUCCESS)
2055 return -ENODEV;
2056
2057 return 0;
2058 }
2059
2060 /* Called with mutex_lock(&bnad->conf_mutex) held */
2061 void
2062 bnad_restore_vlans(struct bnad *bnad, u32 rx_id)
2063 {
2064 u16 vid;
2065 unsigned long flags;
2066
2067 for_each_set_bit(vid, bnad->active_vlans, VLAN_N_VID) {
2068 spin_lock_irqsave(&bnad->bna_lock, flags);
2069 bna_rx_vlan_add(bnad->rx_info[rx_id].rx, vid);
2070 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2071 }
2072 }
2073
2074 /* Statistics utilities */
2075 void
2076 bnad_netdev_qstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2077 {
2078 int i, j;
2079
2080 for (i = 0; i < bnad->num_rx; i++) {
2081 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
2082 if (bnad->rx_info[i].rx_ctrl[j].ccb) {
2083 stats->rx_packets += bnad->rx_info[i].
2084 rx_ctrl[j].ccb->rcb[0]->rxq->rx_packets;
2085 stats->rx_bytes += bnad->rx_info[i].
2086 rx_ctrl[j].ccb->rcb[0]->rxq->rx_bytes;
2087 if (bnad->rx_info[i].rx_ctrl[j].ccb->rcb[1] &&
2088 bnad->rx_info[i].rx_ctrl[j].ccb->
2089 rcb[1]->rxq) {
2090 stats->rx_packets +=
2091 bnad->rx_info[i].rx_ctrl[j].
2092 ccb->rcb[1]->rxq->rx_packets;
2093 stats->rx_bytes +=
2094 bnad->rx_info[i].rx_ctrl[j].
2095 ccb->rcb[1]->rxq->rx_bytes;
2096 }
2097 }
2098 }
2099 }
2100 for (i = 0; i < bnad->num_tx; i++) {
2101 for (j = 0; j < bnad->num_txq_per_tx; j++) {
2102 if (bnad->tx_info[i].tcb[j]) {
2103 stats->tx_packets +=
2104 bnad->tx_info[i].tcb[j]->txq->tx_packets;
2105 stats->tx_bytes +=
2106 bnad->tx_info[i].tcb[j]->txq->tx_bytes;
2107 }
2108 }
2109 }
2110 }
2111
2112 /*
2113 * Must be called with the bna_lock held.
2114 */
2115 void
2116 bnad_netdev_hwstats_fill(struct bnad *bnad, struct rtnl_link_stats64 *stats)
2117 {
2118 struct bfi_enet_stats_mac *mac_stats;
2119 u32 bmap;
2120 int i;
2121
2122 mac_stats = &bnad->stats.bna_stats->hw_stats.mac_stats;
2123 stats->rx_errors =
2124 mac_stats->rx_fcs_error + mac_stats->rx_alignment_error +
2125 mac_stats->rx_frame_length_error + mac_stats->rx_code_error +
2126 mac_stats->rx_undersize;
2127 stats->tx_errors = mac_stats->tx_fcs_error +
2128 mac_stats->tx_undersize;
2129 stats->rx_dropped = mac_stats->rx_drop;
2130 stats->tx_dropped = mac_stats->tx_drop;
2131 stats->multicast = mac_stats->rx_multicast;
2132 stats->collisions = mac_stats->tx_total_collision;
2133
2134 stats->rx_length_errors = mac_stats->rx_frame_length_error;
2135
2136 /* receive ring buffer overflow ?? */
2137
2138 stats->rx_crc_errors = mac_stats->rx_fcs_error;
2139 stats->rx_frame_errors = mac_stats->rx_alignment_error;
2140 /* recv'r fifo overrun */
2141 bmap = bna_rx_rid_mask(&bnad->bna);
2142 for (i = 0; bmap; i++) {
2143 if (bmap & 1) {
2144 stats->rx_fifo_errors +=
2145 bnad->stats.bna_stats->
2146 hw_stats.rxf_stats[i].frame_drops;
2147 break;
2148 }
2149 bmap >>= 1;
2150 }
2151 }
2152
2153 static void
2154 bnad_mbox_irq_sync(struct bnad *bnad)
2155 {
2156 u32 irq;
2157 unsigned long flags;
2158
2159 spin_lock_irqsave(&bnad->bna_lock, flags);
2160 if (bnad->cfg_flags & BNAD_CF_MSIX)
2161 irq = bnad->msix_table[BNAD_MAILBOX_MSIX_INDEX].vector;
2162 else
2163 irq = bnad->pcidev->irq;
2164 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2165
2166 synchronize_irq(irq);
2167 }
2168
2169 /* Utility used by bnad_start_xmit, for doing TSO */
2170 static int
2171 bnad_tso_prepare(struct bnad *bnad, struct sk_buff *skb)
2172 {
2173 int err;
2174
2175 if (skb_header_cloned(skb)) {
2176 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2177 if (err) {
2178 BNAD_UPDATE_CTR(bnad, tso_err);
2179 return err;
2180 }
2181 }
2182
2183 /*
2184 * For TSO, the TCP checksum field is seeded with pseudo-header sum
2185 * excluding the length field.
2186 */
2187 if (skb->protocol == htons(ETH_P_IP)) {
2188 struct iphdr *iph = ip_hdr(skb);
2189
2190 /* Do we really need these? */
2191 iph->tot_len = 0;
2192 iph->check = 0;
2193
2194 tcp_hdr(skb)->check =
2195 ~csum_tcpudp_magic(iph->saddr, iph->daddr, 0,
2196 IPPROTO_TCP, 0);
2197 BNAD_UPDATE_CTR(bnad, tso4);
2198 } else {
2199 struct ipv6hdr *ipv6h = ipv6_hdr(skb);
2200
2201 ipv6h->payload_len = 0;
2202 tcp_hdr(skb)->check =
2203 ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr, 0,
2204 IPPROTO_TCP, 0);
2205 BNAD_UPDATE_CTR(bnad, tso6);
2206 }
2207
2208 return 0;
2209 }
2210
2211 /*
2212 * Initialize Q numbers depending on Rx Paths
2213 * Called with bnad->bna_lock held, because of cfg_flags
2214 * access.
2215 */
2216 static void
2217 bnad_q_num_init(struct bnad *bnad)
2218 {
2219 int rxps;
2220
2221 rxps = min((uint)num_online_cpus(),
2222 (uint)(BNAD_MAX_RX * BNAD_MAX_RXP_PER_RX));
2223
2224 if (!(bnad->cfg_flags & BNAD_CF_MSIX))
2225 rxps = 1; /* INTx */
2226
2227 bnad->num_rx = 1;
2228 bnad->num_tx = 1;
2229 bnad->num_rxp_per_rx = rxps;
2230 bnad->num_txq_per_tx = BNAD_TXQ_NUM;
2231 }
2232
2233 /*
2234 * Adjusts the Q numbers, given a number of msix vectors
2235 * Give preference to RSS as opposed to Tx priority Queues,
2236 * in such a case, just use 1 Tx Q
2237 * Called with bnad->bna_lock held b'cos of cfg_flags access
2238 */
2239 static void
2240 bnad_q_num_adjust(struct bnad *bnad, int msix_vectors, int temp)
2241 {
2242 bnad->num_txq_per_tx = 1;
2243 if ((msix_vectors >= (bnad->num_tx * bnad->num_txq_per_tx) +
2244 bnad_rxqs_per_cq + BNAD_MAILBOX_MSIX_VECTORS) &&
2245 (bnad->cfg_flags & BNAD_CF_MSIX)) {
2246 bnad->num_rxp_per_rx = msix_vectors -
2247 (bnad->num_tx * bnad->num_txq_per_tx) -
2248 BNAD_MAILBOX_MSIX_VECTORS;
2249 } else
2250 bnad->num_rxp_per_rx = 1;
2251 }
2252
2253 /* Enable / disable ioceth */
2254 static int
2255 bnad_ioceth_disable(struct bnad *bnad)
2256 {
2257 unsigned long flags;
2258 int err = 0;
2259
2260 spin_lock_irqsave(&bnad->bna_lock, flags);
2261 init_completion(&bnad->bnad_completions.ioc_comp);
2262 bna_ioceth_disable(&bnad->bna.ioceth, BNA_HARD_CLEANUP);
2263 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2264
2265 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2266 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2267
2268 err = bnad->bnad_completions.ioc_comp_status;
2269 return err;
2270 }
2271
2272 static int
2273 bnad_ioceth_enable(struct bnad *bnad)
2274 {
2275 int err = 0;
2276 unsigned long flags;
2277
2278 spin_lock_irqsave(&bnad->bna_lock, flags);
2279 init_completion(&bnad->bnad_completions.ioc_comp);
2280 bnad->bnad_completions.ioc_comp_status = BNA_CB_WAITING;
2281 bna_ioceth_enable(&bnad->bna.ioceth);
2282 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2283
2284 wait_for_completion_timeout(&bnad->bnad_completions.ioc_comp,
2285 msecs_to_jiffies(BNAD_IOCETH_TIMEOUT));
2286
2287 err = bnad->bnad_completions.ioc_comp_status;
2288
2289 return err;
2290 }
2291
2292 /* Free BNA resources */
2293 static void
2294 bnad_res_free(struct bnad *bnad, struct bna_res_info *res_info,
2295 u32 res_val_max)
2296 {
2297 int i;
2298
2299 for (i = 0; i < res_val_max; i++)
2300 bnad_mem_free(bnad, &res_info[i].res_u.mem_info);
2301 }
2302
2303 /* Allocates memory and interrupt resources for BNA */
2304 static int
2305 bnad_res_alloc(struct bnad *bnad, struct bna_res_info *res_info,
2306 u32 res_val_max)
2307 {
2308 int i, err;
2309
2310 for (i = 0; i < res_val_max; i++) {
2311 err = bnad_mem_alloc(bnad, &res_info[i].res_u.mem_info);
2312 if (err)
2313 goto err_return;
2314 }
2315 return 0;
2316
2317 err_return:
2318 bnad_res_free(bnad, res_info, res_val_max);
2319 return err;
2320 }
2321
2322 /* Interrupt enable / disable */
2323 static void
2324 bnad_enable_msix(struct bnad *bnad)
2325 {
2326 int i, ret;
2327 unsigned long flags;
2328
2329 spin_lock_irqsave(&bnad->bna_lock, flags);
2330 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2331 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2332 return;
2333 }
2334 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2335
2336 if (bnad->msix_table)
2337 return;
2338
2339 bnad->msix_table =
2340 kcalloc(bnad->msix_num, sizeof(struct msix_entry), GFP_KERNEL);
2341
2342 if (!bnad->msix_table)
2343 goto intx_mode;
2344
2345 for (i = 0; i < bnad->msix_num; i++)
2346 bnad->msix_table[i].entry = i;
2347
2348 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table, bnad->msix_num);
2349 if (ret > 0) {
2350 /* Not enough MSI-X vectors. */
2351 pr_warn("BNA: %d MSI-X vectors allocated < %d requested\n",
2352 ret, bnad->msix_num);
2353
2354 spin_lock_irqsave(&bnad->bna_lock, flags);
2355 /* ret = #of vectors that we got */
2356 bnad_q_num_adjust(bnad, (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2,
2357 (ret - BNAD_MAILBOX_MSIX_VECTORS) / 2);
2358 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2359
2360 bnad->msix_num = BNAD_NUM_TXQ + BNAD_NUM_RXP +
2361 BNAD_MAILBOX_MSIX_VECTORS;
2362
2363 if (bnad->msix_num > ret)
2364 goto intx_mode;
2365
2366 /* Try once more with adjusted numbers */
2367 /* If this fails, fall back to INTx */
2368 ret = pci_enable_msix(bnad->pcidev, bnad->msix_table,
2369 bnad->msix_num);
2370 if (ret)
2371 goto intx_mode;
2372
2373 } else if (ret < 0)
2374 goto intx_mode;
2375
2376 pci_intx(bnad->pcidev, 0);
2377
2378 return;
2379
2380 intx_mode:
2381 pr_warn("BNA: MSI-X enable failed - operating in INTx mode\n");
2382
2383 kfree(bnad->msix_table);
2384 bnad->msix_table = NULL;
2385 bnad->msix_num = 0;
2386 spin_lock_irqsave(&bnad->bna_lock, flags);
2387 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2388 bnad_q_num_init(bnad);
2389 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2390 }
2391
2392 static void
2393 bnad_disable_msix(struct bnad *bnad)
2394 {
2395 u32 cfg_flags;
2396 unsigned long flags;
2397
2398 spin_lock_irqsave(&bnad->bna_lock, flags);
2399 cfg_flags = bnad->cfg_flags;
2400 if (bnad->cfg_flags & BNAD_CF_MSIX)
2401 bnad->cfg_flags &= ~BNAD_CF_MSIX;
2402 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2403
2404 if (cfg_flags & BNAD_CF_MSIX) {
2405 pci_disable_msix(bnad->pcidev);
2406 kfree(bnad->msix_table);
2407 bnad->msix_table = NULL;
2408 }
2409 }
2410
2411 /* Netdev entry points */
2412 static int
2413 bnad_open(struct net_device *netdev)
2414 {
2415 int err;
2416 struct bnad *bnad = netdev_priv(netdev);
2417 struct bna_pause_config pause_config;
2418 int mtu;
2419 unsigned long flags;
2420
2421 mutex_lock(&bnad->conf_mutex);
2422
2423 /* Tx */
2424 err = bnad_setup_tx(bnad, 0);
2425 if (err)
2426 goto err_return;
2427
2428 /* Rx */
2429 err = bnad_setup_rx(bnad, 0);
2430 if (err)
2431 goto cleanup_tx;
2432
2433 /* Port */
2434 pause_config.tx_pause = 0;
2435 pause_config.rx_pause = 0;
2436
2437 mtu = ETH_HLEN + VLAN_HLEN + bnad->netdev->mtu + ETH_FCS_LEN;
2438
2439 spin_lock_irqsave(&bnad->bna_lock, flags);
2440 bna_enet_mtu_set(&bnad->bna.enet, mtu, NULL);
2441 bna_enet_pause_config(&bnad->bna.enet, &pause_config, NULL);
2442 bna_enet_enable(&bnad->bna.enet);
2443 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2444
2445 /* Enable broadcast */
2446 bnad_enable_default_bcast(bnad);
2447
2448 /* Restore VLANs, if any */
2449 bnad_restore_vlans(bnad, 0);
2450
2451 /* Set the UCAST address */
2452 spin_lock_irqsave(&bnad->bna_lock, flags);
2453 bnad_mac_addr_set_locked(bnad, netdev->dev_addr);
2454 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2455
2456 /* Start the stats timer */
2457 bnad_stats_timer_start(bnad);
2458
2459 mutex_unlock(&bnad->conf_mutex);
2460
2461 return 0;
2462
2463 cleanup_tx:
2464 bnad_cleanup_tx(bnad, 0);
2465
2466 err_return:
2467 mutex_unlock(&bnad->conf_mutex);
2468 return err;
2469 }
2470
2471 static int
2472 bnad_stop(struct net_device *netdev)
2473 {
2474 struct bnad *bnad = netdev_priv(netdev);
2475 unsigned long flags;
2476
2477 mutex_lock(&bnad->conf_mutex);
2478
2479 /* Stop the stats timer */
2480 bnad_stats_timer_stop(bnad);
2481
2482 init_completion(&bnad->bnad_completions.enet_comp);
2483
2484 spin_lock_irqsave(&bnad->bna_lock, flags);
2485 bna_enet_disable(&bnad->bna.enet, BNA_HARD_CLEANUP,
2486 bnad_cb_enet_disabled);
2487 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2488
2489 wait_for_completion(&bnad->bnad_completions.enet_comp);
2490
2491 bnad_cleanup_tx(bnad, 0);
2492 bnad_cleanup_rx(bnad, 0);
2493
2494 /* Synchronize mailbox IRQ */
2495 bnad_mbox_irq_sync(bnad);
2496
2497 mutex_unlock(&bnad->conf_mutex);
2498
2499 return 0;
2500 }
2501
2502 /* TX */
2503 /*
2504 * bnad_start_xmit : Netdev entry point for Transmit
2505 * Called under lock held by net_device
2506 */
2507 static netdev_tx_t
2508 bnad_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2509 {
2510 struct bnad *bnad = netdev_priv(netdev);
2511 u32 txq_id = 0;
2512 struct bna_tcb *tcb = bnad->tx_info[0].tcb[txq_id];
2513
2514 u16 txq_prod, vlan_tag = 0;
2515 u32 unmap_prod, wis, wis_used, wi_range;
2516 u32 vectors, vect_id, i, acked;
2517 int err;
2518 unsigned int len;
2519 u32 gso_size;
2520
2521 struct bnad_unmap_q *unmap_q = tcb->unmap_q;
2522 dma_addr_t dma_addr;
2523 struct bna_txq_entry *txqent;
2524 u16 flags;
2525
2526 if (unlikely(skb->len <= ETH_HLEN)) {
2527 dev_kfree_skb(skb);
2528 BNAD_UPDATE_CTR(bnad, tx_skb_too_short);
2529 return NETDEV_TX_OK;
2530 }
2531 if (unlikely(skb_headlen(skb) > BFI_TX_MAX_DATA_PER_VECTOR)) {
2532 dev_kfree_skb(skb);
2533 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_too_long);
2534 return NETDEV_TX_OK;
2535 }
2536 if (unlikely(skb_headlen(skb) == 0)) {
2537 dev_kfree_skb(skb);
2538 BNAD_UPDATE_CTR(bnad, tx_skb_headlen_zero);
2539 return NETDEV_TX_OK;
2540 }
2541
2542 /*
2543 * Takes care of the Tx that is scheduled between clearing the flag
2544 * and the netif_tx_stop_all_queues() call.
2545 */
2546 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags))) {
2547 dev_kfree_skb(skb);
2548 BNAD_UPDATE_CTR(bnad, tx_skb_stopping);
2549 return NETDEV_TX_OK;
2550 }
2551
2552 vectors = 1 + skb_shinfo(skb)->nr_frags;
2553 if (unlikely(vectors > BFI_TX_MAX_VECTORS_PER_PKT)) {
2554 dev_kfree_skb(skb);
2555 BNAD_UPDATE_CTR(bnad, tx_skb_max_vectors);
2556 return NETDEV_TX_OK;
2557 }
2558 wis = BNA_TXQ_WI_NEEDED(vectors); /* 4 vectors per work item */
2559 acked = 0;
2560 if (unlikely(wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2561 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2562 if ((u16) (*tcb->hw_consumer_index) !=
2563 tcb->consumer_index &&
2564 !test_and_set_bit(BNAD_TXQ_FREE_SENT, &tcb->flags)) {
2565 acked = bnad_free_txbufs(bnad, tcb);
2566 if (likely(test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2567 bna_ib_ack(tcb->i_dbell, acked);
2568 smp_mb__before_clear_bit();
2569 clear_bit(BNAD_TXQ_FREE_SENT, &tcb->flags);
2570 } else {
2571 netif_stop_queue(netdev);
2572 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2573 }
2574
2575 smp_mb();
2576 /*
2577 * Check again to deal with race condition between
2578 * netif_stop_queue here, and netif_wake_queue in
2579 * interrupt handler which is not inside netif tx lock.
2580 */
2581 if (likely
2582 (wis > BNA_QE_FREE_CNT(tcb, tcb->q_depth) ||
2583 vectors > BNA_QE_FREE_CNT(unmap_q, unmap_q->q_depth))) {
2584 BNAD_UPDATE_CTR(bnad, netif_queue_stop);
2585 return NETDEV_TX_BUSY;
2586 } else {
2587 netif_wake_queue(netdev);
2588 BNAD_UPDATE_CTR(bnad, netif_queue_wakeup);
2589 }
2590 }
2591
2592 unmap_prod = unmap_q->producer_index;
2593 flags = 0;
2594
2595 txq_prod = tcb->producer_index;
2596 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt, txqent, wi_range);
2597 txqent->hdr.wi.reserved = 0;
2598 txqent->hdr.wi.num_vectors = vectors;
2599
2600 if (vlan_tx_tag_present(skb)) {
2601 vlan_tag = (u16) vlan_tx_tag_get(skb);
2602 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2603 }
2604 if (test_bit(BNAD_RF_CEE_RUNNING, &bnad->run_flags)) {
2605 vlan_tag =
2606 (tcb->priority & 0x7) << 13 | (vlan_tag & 0x1fff);
2607 flags |= (BNA_TXQ_WI_CF_INS_PRIO | BNA_TXQ_WI_CF_INS_VLAN);
2608 }
2609
2610 txqent->hdr.wi.vlan_tag = htons(vlan_tag);
2611
2612 if (skb_is_gso(skb)) {
2613 gso_size = skb_shinfo(skb)->gso_size;
2614
2615 if (unlikely(gso_size > netdev->mtu)) {
2616 dev_kfree_skb(skb);
2617 BNAD_UPDATE_CTR(bnad, tx_skb_mss_too_long);
2618 return NETDEV_TX_OK;
2619 }
2620 if (unlikely((gso_size + skb_transport_offset(skb) +
2621 tcp_hdrlen(skb)) >= skb->len)) {
2622 txqent->hdr.wi.opcode =
2623 __constant_htons(BNA_TXQ_WI_SEND);
2624 txqent->hdr.wi.lso_mss = 0;
2625 BNAD_UPDATE_CTR(bnad, tx_skb_tso_too_short);
2626 } else {
2627 txqent->hdr.wi.opcode =
2628 __constant_htons(BNA_TXQ_WI_SEND_LSO);
2629 txqent->hdr.wi.lso_mss = htons(gso_size);
2630 }
2631
2632 err = bnad_tso_prepare(bnad, skb);
2633 if (unlikely(err)) {
2634 dev_kfree_skb(skb);
2635 BNAD_UPDATE_CTR(bnad, tx_skb_tso_prepare);
2636 return NETDEV_TX_OK;
2637 }
2638 flags |= (BNA_TXQ_WI_CF_IP_CKSUM | BNA_TXQ_WI_CF_TCP_CKSUM);
2639 txqent->hdr.wi.l4_hdr_size_n_offset =
2640 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2641 (tcp_hdrlen(skb) >> 2,
2642 skb_transport_offset(skb)));
2643 } else {
2644 txqent->hdr.wi.opcode = __constant_htons(BNA_TXQ_WI_SEND);
2645 txqent->hdr.wi.lso_mss = 0;
2646
2647 if (unlikely(skb->len > (netdev->mtu + ETH_HLEN))) {
2648 dev_kfree_skb(skb);
2649 BNAD_UPDATE_CTR(bnad, tx_skb_non_tso_too_long);
2650 return NETDEV_TX_OK;
2651 }
2652
2653 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2654 u8 proto = 0;
2655
2656 if (skb->protocol == __constant_htons(ETH_P_IP))
2657 proto = ip_hdr(skb)->protocol;
2658 else if (skb->protocol ==
2659 __constant_htons(ETH_P_IPV6)) {
2660 /* nexthdr may not be TCP immediately. */
2661 proto = ipv6_hdr(skb)->nexthdr;
2662 }
2663 if (proto == IPPROTO_TCP) {
2664 flags |= BNA_TXQ_WI_CF_TCP_CKSUM;
2665 txqent->hdr.wi.l4_hdr_size_n_offset =
2666 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2667 (0, skb_transport_offset(skb)));
2668
2669 BNAD_UPDATE_CTR(bnad, tcpcsum_offload);
2670
2671 if (unlikely(skb_headlen(skb) <
2672 skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2673 dev_kfree_skb(skb);
2674 BNAD_UPDATE_CTR(bnad, tx_skb_tcp_hdr);
2675 return NETDEV_TX_OK;
2676 }
2677
2678 } else if (proto == IPPROTO_UDP) {
2679 flags |= BNA_TXQ_WI_CF_UDP_CKSUM;
2680 txqent->hdr.wi.l4_hdr_size_n_offset =
2681 htons(BNA_TXQ_WI_L4_HDR_N_OFFSET
2682 (0, skb_transport_offset(skb)));
2683
2684 BNAD_UPDATE_CTR(bnad, udpcsum_offload);
2685 if (unlikely(skb_headlen(skb) <
2686 skb_transport_offset(skb) +
2687 sizeof(struct udphdr))) {
2688 dev_kfree_skb(skb);
2689 BNAD_UPDATE_CTR(bnad, tx_skb_udp_hdr);
2690 return NETDEV_TX_OK;
2691 }
2692 } else {
2693 dev_kfree_skb(skb);
2694 BNAD_UPDATE_CTR(bnad, tx_skb_csum_err);
2695 return NETDEV_TX_OK;
2696 }
2697 } else {
2698 txqent->hdr.wi.l4_hdr_size_n_offset = 0;
2699 }
2700 }
2701
2702 txqent->hdr.wi.flags = htons(flags);
2703
2704 txqent->hdr.wi.frame_length = htonl(skb->len);
2705
2706 unmap_q->unmap_array[unmap_prod].skb = skb;
2707 len = skb_headlen(skb);
2708 txqent->vector[0].length = htons(len);
2709 dma_addr = dma_map_single(&bnad->pcidev->dev, skb->data,
2710 skb_headlen(skb), DMA_TO_DEVICE);
2711 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2712 dma_addr);
2713
2714 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[0].host_addr);
2715 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2716
2717 vect_id = 0;
2718 wis_used = 1;
2719
2720 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2721 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i];
2722 u16 size = frag->size;
2723
2724 if (unlikely(size == 0)) {
2725 unmap_prod = unmap_q->producer_index;
2726
2727 unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2728 unmap_q->unmap_array,
2729 unmap_prod, unmap_q->q_depth, skb,
2730 i);
2731 dev_kfree_skb(skb);
2732 BNAD_UPDATE_CTR(bnad, tx_skb_frag_zero);
2733 return NETDEV_TX_OK;
2734 }
2735
2736 len += size;
2737
2738 if (++vect_id == BFI_TX_MAX_VECTORS_PER_WI) {
2739 vect_id = 0;
2740 if (--wi_range)
2741 txqent++;
2742 else {
2743 BNA_QE_INDX_ADD(txq_prod, wis_used,
2744 tcb->q_depth);
2745 wis_used = 0;
2746 BNA_TXQ_QPGE_PTR_GET(txq_prod, tcb->sw_qpt,
2747 txqent, wi_range);
2748 }
2749 wis_used++;
2750 txqent->hdr.wi_ext.opcode =
2751 __constant_htons(BNA_TXQ_WI_EXTENSION);
2752 }
2753
2754 BUG_ON(!(size <= BFI_TX_MAX_DATA_PER_VECTOR));
2755 txqent->vector[vect_id].length = htons(size);
2756 dma_addr = skb_frag_dma_map(&bnad->pcidev->dev, frag,
2757 0, size, DMA_TO_DEVICE);
2758 dma_unmap_addr_set(&unmap_q->unmap_array[unmap_prod], dma_addr,
2759 dma_addr);
2760 BNA_SET_DMA_ADDR(dma_addr, &txqent->vector[vect_id].host_addr);
2761 BNA_QE_INDX_ADD(unmap_prod, 1, unmap_q->q_depth);
2762 }
2763
2764 if (unlikely(len != skb->len)) {
2765 unmap_prod = unmap_q->producer_index;
2766
2767 unmap_prod = bnad_pci_unmap_skb(&bnad->pcidev->dev,
2768 unmap_q->unmap_array, unmap_prod,
2769 unmap_q->q_depth, skb,
2770 skb_shinfo(skb)->nr_frags);
2771 dev_kfree_skb(skb);
2772 BNAD_UPDATE_CTR(bnad, tx_skb_len_mismatch);
2773 return NETDEV_TX_OK;
2774 }
2775
2776 unmap_q->producer_index = unmap_prod;
2777 BNA_QE_INDX_ADD(txq_prod, wis_used, tcb->q_depth);
2778 tcb->producer_index = txq_prod;
2779
2780 smp_mb();
2781
2782 if (unlikely(!test_bit(BNAD_TXQ_TX_STARTED, &tcb->flags)))
2783 return NETDEV_TX_OK;
2784
2785 bna_txq_prod_indx_doorbell(tcb);
2786 smp_mb();
2787
2788 if ((u16) (*tcb->hw_consumer_index) != tcb->consumer_index)
2789 tasklet_schedule(&bnad->tx_free_tasklet);
2790
2791 return NETDEV_TX_OK;
2792 }
2793
2794 /*
2795 * Used spin_lock to synchronize reading of stats structures, which
2796 * is written by BNA under the same lock.
2797 */
2798 static struct rtnl_link_stats64 *
2799 bnad_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
2800 {
2801 struct bnad *bnad = netdev_priv(netdev);
2802 unsigned long flags;
2803
2804 spin_lock_irqsave(&bnad->bna_lock, flags);
2805
2806 bnad_netdev_qstats_fill(bnad, stats);
2807 bnad_netdev_hwstats_fill(bnad, stats);
2808
2809 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2810
2811 return stats;
2812 }
2813
2814 void
2815 bnad_set_rx_mode(struct net_device *netdev)
2816 {
2817 struct bnad *bnad = netdev_priv(netdev);
2818 u32 new_mask, valid_mask;
2819 unsigned long flags;
2820
2821 spin_lock_irqsave(&bnad->bna_lock, flags);
2822
2823 new_mask = valid_mask = 0;
2824
2825 if (netdev->flags & IFF_PROMISC) {
2826 if (!(bnad->cfg_flags & BNAD_CF_PROMISC)) {
2827 new_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2828 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2829 bnad->cfg_flags |= BNAD_CF_PROMISC;
2830 }
2831 } else {
2832 if (bnad->cfg_flags & BNAD_CF_PROMISC) {
2833 new_mask = ~BNAD_RXMODE_PROMISC_DEFAULT;
2834 valid_mask = BNAD_RXMODE_PROMISC_DEFAULT;
2835 bnad->cfg_flags &= ~BNAD_CF_PROMISC;
2836 }
2837 }
2838
2839 if (netdev->flags & IFF_ALLMULTI) {
2840 if (!(bnad->cfg_flags & BNAD_CF_ALLMULTI)) {
2841 new_mask |= BNA_RXMODE_ALLMULTI;
2842 valid_mask |= BNA_RXMODE_ALLMULTI;
2843 bnad->cfg_flags |= BNAD_CF_ALLMULTI;
2844 }
2845 } else {
2846 if (bnad->cfg_flags & BNAD_CF_ALLMULTI) {
2847 new_mask &= ~BNA_RXMODE_ALLMULTI;
2848 valid_mask |= BNA_RXMODE_ALLMULTI;
2849 bnad->cfg_flags &= ~BNAD_CF_ALLMULTI;
2850 }
2851 }
2852
2853 if (bnad->rx_info[0].rx == NULL)
2854 goto unlock;
2855
2856 bna_rx_mode_set(bnad->rx_info[0].rx, new_mask, valid_mask, NULL);
2857
2858 if (!netdev_mc_empty(netdev)) {
2859 u8 *mcaddr_list;
2860 int mc_count = netdev_mc_count(netdev);
2861
2862 /* Index 0 holds the broadcast address */
2863 mcaddr_list =
2864 kzalloc((mc_count + 1) * ETH_ALEN,
2865 GFP_ATOMIC);
2866 if (!mcaddr_list)
2867 goto unlock;
2868
2869 memcpy(&mcaddr_list[0], &bnad_bcast_addr[0], ETH_ALEN);
2870
2871 /* Copy rest of the MC addresses */
2872 bnad_netdev_mc_list_get(netdev, mcaddr_list);
2873
2874 bna_rx_mcast_listset(bnad->rx_info[0].rx, mc_count + 1,
2875 mcaddr_list, NULL);
2876
2877 /* Should we enable BNAD_CF_ALLMULTI for err != 0 ? */
2878 kfree(mcaddr_list);
2879 }
2880 unlock:
2881 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2882 }
2883
2884 /*
2885 * bna_lock is used to sync writes to netdev->addr
2886 * conf_lock cannot be used since this call may be made
2887 * in a non-blocking context.
2888 */
2889 static int
2890 bnad_set_mac_address(struct net_device *netdev, void *mac_addr)
2891 {
2892 int err;
2893 struct bnad *bnad = netdev_priv(netdev);
2894 struct sockaddr *sa = (struct sockaddr *)mac_addr;
2895 unsigned long flags;
2896
2897 spin_lock_irqsave(&bnad->bna_lock, flags);
2898
2899 err = bnad_mac_addr_set_locked(bnad, sa->sa_data);
2900
2901 if (!err)
2902 memcpy(netdev->dev_addr, sa->sa_data, netdev->addr_len);
2903
2904 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2905
2906 return err;
2907 }
2908
2909 static int
2910 bnad_mtu_set(struct bnad *bnad, int mtu)
2911 {
2912 unsigned long flags;
2913
2914 init_completion(&bnad->bnad_completions.mtu_comp);
2915
2916 spin_lock_irqsave(&bnad->bna_lock, flags);
2917 bna_enet_mtu_set(&bnad->bna.enet, mtu, bnad_cb_enet_mtu_set);
2918 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2919
2920 wait_for_completion(&bnad->bnad_completions.mtu_comp);
2921
2922 return bnad->bnad_completions.mtu_comp_status;
2923 }
2924
2925 static int
2926 bnad_change_mtu(struct net_device *netdev, int new_mtu)
2927 {
2928 int err, mtu = netdev->mtu;
2929 struct bnad *bnad = netdev_priv(netdev);
2930
2931 if (new_mtu + ETH_HLEN < ETH_ZLEN || new_mtu > BNAD_JUMBO_MTU)
2932 return -EINVAL;
2933
2934 mutex_lock(&bnad->conf_mutex);
2935
2936 netdev->mtu = new_mtu;
2937
2938 mtu = ETH_HLEN + VLAN_HLEN + new_mtu + ETH_FCS_LEN;
2939 err = bnad_mtu_set(bnad, mtu);
2940 if (err)
2941 err = -EBUSY;
2942
2943 mutex_unlock(&bnad->conf_mutex);
2944 return err;
2945 }
2946
2947 static void
2948 bnad_vlan_rx_add_vid(struct net_device *netdev,
2949 unsigned short vid)
2950 {
2951 struct bnad *bnad = netdev_priv(netdev);
2952 unsigned long flags;
2953
2954 if (!bnad->rx_info[0].rx)
2955 return;
2956
2957 mutex_lock(&bnad->conf_mutex);
2958
2959 spin_lock_irqsave(&bnad->bna_lock, flags);
2960 bna_rx_vlan_add(bnad->rx_info[0].rx, vid);
2961 set_bit(vid, bnad->active_vlans);
2962 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2963
2964 mutex_unlock(&bnad->conf_mutex);
2965 }
2966
2967 static void
2968 bnad_vlan_rx_kill_vid(struct net_device *netdev,
2969 unsigned short vid)
2970 {
2971 struct bnad *bnad = netdev_priv(netdev);
2972 unsigned long flags;
2973
2974 if (!bnad->rx_info[0].rx)
2975 return;
2976
2977 mutex_lock(&bnad->conf_mutex);
2978
2979 spin_lock_irqsave(&bnad->bna_lock, flags);
2980 clear_bit(vid, bnad->active_vlans);
2981 bna_rx_vlan_del(bnad->rx_info[0].rx, vid);
2982 spin_unlock_irqrestore(&bnad->bna_lock, flags);
2983
2984 mutex_unlock(&bnad->conf_mutex);
2985 }
2986
2987 #ifdef CONFIG_NET_POLL_CONTROLLER
2988 static void
2989 bnad_netpoll(struct net_device *netdev)
2990 {
2991 struct bnad *bnad = netdev_priv(netdev);
2992 struct bnad_rx_info *rx_info;
2993 struct bnad_rx_ctrl *rx_ctrl;
2994 u32 curr_mask;
2995 int i, j;
2996
2997 if (!(bnad->cfg_flags & BNAD_CF_MSIX)) {
2998 bna_intx_disable(&bnad->bna, curr_mask);
2999 bnad_isr(bnad->pcidev->irq, netdev);
3000 bna_intx_enable(&bnad->bna, curr_mask);
3001 } else {
3002 /*
3003 * Tx processing may happen in sending context, so no need
3004 * to explicitly process completions here
3005 */
3006
3007 /* Rx processing */
3008 for (i = 0; i < bnad->num_rx; i++) {
3009 rx_info = &bnad->rx_info[i];
3010 if (!rx_info->rx)
3011 continue;
3012 for (j = 0; j < bnad->num_rxp_per_rx; j++) {
3013 rx_ctrl = &rx_info->rx_ctrl[j];
3014 if (rx_ctrl->ccb)
3015 bnad_netif_rx_schedule_poll(bnad,
3016 rx_ctrl->ccb);
3017 }
3018 }
3019 }
3020 }
3021 #endif
3022
3023 static const struct net_device_ops bnad_netdev_ops = {
3024 .ndo_open = bnad_open,
3025 .ndo_stop = bnad_stop,
3026 .ndo_start_xmit = bnad_start_xmit,
3027 .ndo_get_stats64 = bnad_get_stats64,
3028 .ndo_set_rx_mode = bnad_set_rx_mode,
3029 .ndo_validate_addr = eth_validate_addr,
3030 .ndo_set_mac_address = bnad_set_mac_address,
3031 .ndo_change_mtu = bnad_change_mtu,
3032 .ndo_vlan_rx_add_vid = bnad_vlan_rx_add_vid,
3033 .ndo_vlan_rx_kill_vid = bnad_vlan_rx_kill_vid,
3034 #ifdef CONFIG_NET_POLL_CONTROLLER
3035 .ndo_poll_controller = bnad_netpoll
3036 #endif
3037 };
3038
3039 static void
3040 bnad_netdev_init(struct bnad *bnad, bool using_dac)
3041 {
3042 struct net_device *netdev = bnad->netdev;
3043
3044 netdev->hw_features = NETIF_F_SG | NETIF_F_RXCSUM |
3045 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3046 NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_HW_VLAN_TX;
3047
3048 netdev->vlan_features = NETIF_F_SG | NETIF_F_HIGHDMA |
3049 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3050 NETIF_F_TSO | NETIF_F_TSO6;
3051
3052 netdev->features |= netdev->hw_features |
3053 NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
3054
3055 if (using_dac)
3056 netdev->features |= NETIF_F_HIGHDMA;
3057
3058 netdev->mem_start = bnad->mmio_start;
3059 netdev->mem_end = bnad->mmio_start + bnad->mmio_len - 1;
3060
3061 netdev->netdev_ops = &bnad_netdev_ops;
3062 bnad_set_ethtool_ops(netdev);
3063 }
3064
3065 /*
3066 * 1. Initialize the bnad structure
3067 * 2. Setup netdev pointer in pci_dev
3068 * 3. Initialze Tx free tasklet
3069 * 4. Initialize no. of TxQ & CQs & MSIX vectors
3070 */
3071 static int
3072 bnad_init(struct bnad *bnad,
3073 struct pci_dev *pdev, struct net_device *netdev)
3074 {
3075 unsigned long flags;
3076
3077 SET_NETDEV_DEV(netdev, &pdev->dev);
3078 pci_set_drvdata(pdev, netdev);
3079
3080 bnad->netdev = netdev;
3081 bnad->pcidev = pdev;
3082 bnad->mmio_start = pci_resource_start(pdev, 0);
3083 bnad->mmio_len = pci_resource_len(pdev, 0);
3084 bnad->bar0 = ioremap_nocache(bnad->mmio_start, bnad->mmio_len);
3085 if (!bnad->bar0) {
3086 dev_err(&pdev->dev, "ioremap for bar0 failed\n");
3087 pci_set_drvdata(pdev, NULL);
3088 return -ENOMEM;
3089 }
3090 pr_info("bar0 mapped to %p, len %llu\n", bnad->bar0,
3091 (unsigned long long) bnad->mmio_len);
3092
3093 spin_lock_irqsave(&bnad->bna_lock, flags);
3094 if (!bnad_msix_disable)
3095 bnad->cfg_flags = BNAD_CF_MSIX;
3096
3097 bnad->cfg_flags |= BNAD_CF_DIM_ENABLED;
3098
3099 bnad_q_num_init(bnad);
3100 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3101
3102 bnad->msix_num = (bnad->num_tx * bnad->num_txq_per_tx) +
3103 (bnad->num_rx * bnad->num_rxp_per_rx) +
3104 BNAD_MAILBOX_MSIX_VECTORS;
3105
3106 bnad->txq_depth = BNAD_TXQ_DEPTH;
3107 bnad->rxq_depth = BNAD_RXQ_DEPTH;
3108
3109 bnad->tx_coalescing_timeo = BFI_TX_COALESCING_TIMEO;
3110 bnad->rx_coalescing_timeo = BFI_RX_COALESCING_TIMEO;
3111
3112 tasklet_init(&bnad->tx_free_tasklet, bnad_tx_free_tasklet,
3113 (unsigned long)bnad);
3114
3115 return 0;
3116 }
3117
3118 /*
3119 * Must be called after bnad_pci_uninit()
3120 * so that iounmap() and pci_set_drvdata(NULL)
3121 * happens only after PCI uninitialization.
3122 */
3123 static void
3124 bnad_uninit(struct bnad *bnad)
3125 {
3126 if (bnad->bar0)
3127 iounmap(bnad->bar0);
3128 pci_set_drvdata(bnad->pcidev, NULL);
3129 }
3130
3131 /*
3132 * Initialize locks
3133 a) Per ioceth mutes used for serializing configuration
3134 changes from OS interface
3135 b) spin lock used to protect bna state machine
3136 */
3137 static void
3138 bnad_lock_init(struct bnad *bnad)
3139 {
3140 spin_lock_init(&bnad->bna_lock);
3141 mutex_init(&bnad->conf_mutex);
3142 }
3143
3144 static void
3145 bnad_lock_uninit(struct bnad *bnad)
3146 {
3147 mutex_destroy(&bnad->conf_mutex);
3148 }
3149
3150 /* PCI Initialization */
3151 static int
3152 bnad_pci_init(struct bnad *bnad,
3153 struct pci_dev *pdev, bool *using_dac)
3154 {
3155 int err;
3156
3157 err = pci_enable_device(pdev);
3158 if (err)
3159 return err;
3160 err = pci_request_regions(pdev, BNAD_NAME);
3161 if (err)
3162 goto disable_device;
3163 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)) &&
3164 !dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64))) {
3165 *using_dac = 1;
3166 } else {
3167 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
3168 if (err) {
3169 err = dma_set_coherent_mask(&pdev->dev,
3170 DMA_BIT_MASK(32));
3171 if (err)
3172 goto release_regions;
3173 }
3174 *using_dac = 0;
3175 }
3176 pci_set_master(pdev);
3177 return 0;
3178
3179 release_regions:
3180 pci_release_regions(pdev);
3181 disable_device:
3182 pci_disable_device(pdev);
3183
3184 return err;
3185 }
3186
3187 static void
3188 bnad_pci_uninit(struct pci_dev *pdev)
3189 {
3190 pci_release_regions(pdev);
3191 pci_disable_device(pdev);
3192 }
3193
3194 static int __devinit
3195 bnad_pci_probe(struct pci_dev *pdev,
3196 const struct pci_device_id *pcidev_id)
3197 {
3198 bool using_dac;
3199 int err;
3200 struct bnad *bnad;
3201 struct bna *bna;
3202 struct net_device *netdev;
3203 struct bfa_pcidev pcidev_info;
3204 unsigned long flags;
3205
3206 pr_info("bnad_pci_probe : (0x%p, 0x%p) PCI Func : (%d)\n",
3207 pdev, pcidev_id, PCI_FUNC(pdev->devfn));
3208
3209 mutex_lock(&bnad_fwimg_mutex);
3210 if (!cna_get_firmware_buf(pdev)) {
3211 mutex_unlock(&bnad_fwimg_mutex);
3212 pr_warn("Failed to load Firmware Image!\n");
3213 return -ENODEV;
3214 }
3215 mutex_unlock(&bnad_fwimg_mutex);
3216
3217 /*
3218 * Allocates sizeof(struct net_device + struct bnad)
3219 * bnad = netdev->priv
3220 */
3221 netdev = alloc_etherdev(sizeof(struct bnad));
3222 if (!netdev) {
3223 dev_err(&pdev->dev, "netdev allocation failed\n");
3224 err = -ENOMEM;
3225 return err;
3226 }
3227 bnad = netdev_priv(netdev);
3228
3229 bnad_lock_init(bnad);
3230
3231 mutex_lock(&bnad->conf_mutex);
3232 /*
3233 * PCI initialization
3234 * Output : using_dac = 1 for 64 bit DMA
3235 * = 0 for 32 bit DMA
3236 */
3237 err = bnad_pci_init(bnad, pdev, &using_dac);
3238 if (err)
3239 goto unlock_mutex;
3240
3241 /*
3242 * Initialize bnad structure
3243 * Setup relation between pci_dev & netdev
3244 * Init Tx free tasklet
3245 */
3246 err = bnad_init(bnad, pdev, netdev);
3247 if (err)
3248 goto pci_uninit;
3249
3250 /* Initialize netdev structure, set up ethtool ops */
3251 bnad_netdev_init(bnad, using_dac);
3252
3253 /* Set link to down state */
3254 netif_carrier_off(netdev);
3255
3256 /* Get resource requirement form bna */
3257 spin_lock_irqsave(&bnad->bna_lock, flags);
3258 bna_res_req(&bnad->res_info[0]);
3259 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3260
3261 /* Allocate resources from bna */
3262 err = bnad_res_alloc(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3263 if (err)
3264 goto drv_uninit;
3265
3266 bna = &bnad->bna;
3267
3268 /* Setup pcidev_info for bna_init() */
3269 pcidev_info.pci_slot = PCI_SLOT(bnad->pcidev->devfn);
3270 pcidev_info.pci_func = PCI_FUNC(bnad->pcidev->devfn);
3271 pcidev_info.device_id = bnad->pcidev->device;
3272 pcidev_info.pci_bar_kva = bnad->bar0;
3273
3274 spin_lock_irqsave(&bnad->bna_lock, flags);
3275 bna_init(bna, bnad, &pcidev_info, &bnad->res_info[0]);
3276 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3277
3278 bnad->stats.bna_stats = &bna->stats;
3279
3280 bnad_enable_msix(bnad);
3281 err = bnad_mbox_irq_alloc(bnad);
3282 if (err)
3283 goto res_free;
3284
3285
3286 /* Set up timers */
3287 setup_timer(&bnad->bna.ioceth.ioc.ioc_timer, bnad_ioc_timeout,
3288 ((unsigned long)bnad));
3289 setup_timer(&bnad->bna.ioceth.ioc.hb_timer, bnad_ioc_hb_check,
3290 ((unsigned long)bnad));
3291 setup_timer(&bnad->bna.ioceth.ioc.iocpf_timer, bnad_iocpf_timeout,
3292 ((unsigned long)bnad));
3293 setup_timer(&bnad->bna.ioceth.ioc.sem_timer, bnad_iocpf_sem_timeout,
3294 ((unsigned long)bnad));
3295
3296 /* Now start the timer before calling IOC */
3297 mod_timer(&bnad->bna.ioceth.ioc.iocpf_timer,
3298 jiffies + msecs_to_jiffies(BNA_IOC_TIMER_FREQ));
3299
3300 /*
3301 * Start the chip
3302 * If the call back comes with error, we bail out.
3303 * This is a catastrophic error.
3304 */
3305 err = bnad_ioceth_enable(bnad);
3306 if (err) {
3307 pr_err("BNA: Initialization failed err=%d\n",
3308 err);
3309 goto probe_success;
3310 }
3311
3312 spin_lock_irqsave(&bnad->bna_lock, flags);
3313 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3314 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1)) {
3315 bnad_q_num_adjust(bnad, bna_attr(bna)->num_txq - 1,
3316 bna_attr(bna)->num_rxp - 1);
3317 if (bna_num_txq_set(bna, BNAD_NUM_TXQ + 1) ||
3318 bna_num_rxp_set(bna, BNAD_NUM_RXP + 1))
3319 err = -EIO;
3320 }
3321 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3322 if (err)
3323 goto disable_ioceth;
3324
3325 spin_lock_irqsave(&bnad->bna_lock, flags);
3326 bna_mod_res_req(&bnad->bna, &bnad->mod_res_info[0]);
3327 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3328
3329 err = bnad_res_alloc(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3330 if (err) {
3331 err = -EIO;
3332 goto disable_ioceth;
3333 }
3334
3335 spin_lock_irqsave(&bnad->bna_lock, flags);
3336 bna_mod_init(&bnad->bna, &bnad->mod_res_info[0]);
3337 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3338
3339 /* Get the burnt-in mac */
3340 spin_lock_irqsave(&bnad->bna_lock, flags);
3341 bna_enet_perm_mac_get(&bna->enet, &bnad->perm_addr);
3342 bnad_set_netdev_perm_addr(bnad);
3343 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3344
3345 mutex_unlock(&bnad->conf_mutex);
3346
3347 /* Finally, reguister with net_device layer */
3348 err = register_netdev(netdev);
3349 if (err) {
3350 pr_err("BNA : Registering with netdev failed\n");
3351 goto probe_uninit;
3352 }
3353 set_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags);
3354
3355 return 0;
3356
3357 probe_success:
3358 mutex_unlock(&bnad->conf_mutex);
3359 return 0;
3360
3361 probe_uninit:
3362 mutex_lock(&bnad->conf_mutex);
3363 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3364 disable_ioceth:
3365 bnad_ioceth_disable(bnad);
3366 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3367 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3368 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3369 spin_lock_irqsave(&bnad->bna_lock, flags);
3370 bna_uninit(bna);
3371 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3372 bnad_mbox_irq_free(bnad);
3373 bnad_disable_msix(bnad);
3374 res_free:
3375 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3376 drv_uninit:
3377 bnad_uninit(bnad);
3378 pci_uninit:
3379 bnad_pci_uninit(pdev);
3380 unlock_mutex:
3381 mutex_unlock(&bnad->conf_mutex);
3382 bnad_lock_uninit(bnad);
3383 free_netdev(netdev);
3384 return err;
3385 }
3386
3387 static void __devexit
3388 bnad_pci_remove(struct pci_dev *pdev)
3389 {
3390 struct net_device *netdev = pci_get_drvdata(pdev);
3391 struct bnad *bnad;
3392 struct bna *bna;
3393 unsigned long flags;
3394
3395 if (!netdev)
3396 return;
3397
3398 pr_info("%s bnad_pci_remove\n", netdev->name);
3399 bnad = netdev_priv(netdev);
3400 bna = &bnad->bna;
3401
3402 if (test_and_clear_bit(BNAD_RF_NETDEV_REGISTERED, &bnad->run_flags))
3403 unregister_netdev(netdev);
3404
3405 mutex_lock(&bnad->conf_mutex);
3406 bnad_ioceth_disable(bnad);
3407 del_timer_sync(&bnad->bna.ioceth.ioc.ioc_timer);
3408 del_timer_sync(&bnad->bna.ioceth.ioc.sem_timer);
3409 del_timer_sync(&bnad->bna.ioceth.ioc.hb_timer);
3410 spin_lock_irqsave(&bnad->bna_lock, flags);
3411 bna_uninit(bna);
3412 spin_unlock_irqrestore(&bnad->bna_lock, flags);
3413
3414 bnad_res_free(bnad, &bnad->mod_res_info[0], BNA_MOD_RES_T_MAX);
3415 bnad_res_free(bnad, &bnad->res_info[0], BNA_RES_T_MAX);
3416 bnad_mbox_irq_free(bnad);
3417 bnad_disable_msix(bnad);
3418 bnad_pci_uninit(pdev);
3419 mutex_unlock(&bnad->conf_mutex);
3420 bnad_lock_uninit(bnad);
3421 bnad_uninit(bnad);
3422 free_netdev(netdev);
3423 }
3424
3425 static DEFINE_PCI_DEVICE_TABLE(bnad_pci_id_table) = {
3426 {
3427 PCI_DEVICE(PCI_VENDOR_ID_BROCADE,
3428 PCI_DEVICE_ID_BROCADE_CT),
3429 .class = PCI_CLASS_NETWORK_ETHERNET << 8,
3430 .class_mask = 0xffff00
3431 }, {0, }
3432 };
3433
3434 MODULE_DEVICE_TABLE(pci, bnad_pci_id_table);
3435
3436 static struct pci_driver bnad_pci_driver = {
3437 .name = BNAD_NAME,
3438 .id_table = bnad_pci_id_table,
3439 .probe = bnad_pci_probe,
3440 .remove = __devexit_p(bnad_pci_remove),
3441 };
3442
3443 static int __init
3444 bnad_module_init(void)
3445 {
3446 int err;
3447
3448 pr_info("Brocade 10G Ethernet driver - version: %s\n",
3449 BNAD_VERSION);
3450
3451 bfa_nw_ioc_auto_recover(bnad_ioc_auto_recover);
3452
3453 err = pci_register_driver(&bnad_pci_driver);
3454 if (err < 0) {
3455 pr_err("bna : PCI registration failed in module init "
3456 "(%d)\n", err);
3457 return err;
3458 }
3459
3460 return 0;
3461 }
3462
3463 static void __exit
3464 bnad_module_exit(void)
3465 {
3466 pci_unregister_driver(&bnad_pci_driver);
3467
3468 if (bfi_fw)
3469 release_firmware(bfi_fw);
3470 }
3471
3472 module_init(bnad_module_init);
3473 module_exit(bnad_module_exit);
3474
3475 MODULE_AUTHOR("Brocade");
3476 MODULE_LICENSE("GPL");
3477 MODULE_DESCRIPTION("Brocade 10G PCIe Ethernet driver");
3478 MODULE_VERSION(BNAD_VERSION);
3479 MODULE_FIRMWARE(CNA_FW_FILE_CT);
This page took 0.096657 seconds and 4 git commands to generate.