net: cavium: liquidio: constify pci_error_handlers structures
[deliverable/linux.git] / drivers / net / ethernet / cavium / liquidio / lio_main.c
1 /**********************************************************************
2 * Author: Cavium, Inc.
3 *
4 * Contact: support@cavium.com
5 * Please include "LiquidIO" in the subject.
6 *
7 * Copyright (c) 2003-2015 Cavium, Inc.
8 *
9 * This file is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License, Version 2, as
11 * published by the Free Software Foundation.
12 *
13 * This file is distributed in the hope that it will be useful, but
14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16 * NONINFRINGEMENT. See the GNU General Public License for more
17 * details.
18 *
19 * This file may also be available under a different license from Cavium.
20 * Contact Cavium, Inc. for more information
21 **********************************************************************/
22 #include <linux/version.h>
23 #include <linux/module.h>
24 #include <linux/crc32.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/pci.h>
27 #include <linux/pci_ids.h>
28 #include <linux/ip.h>
29 #include <net/ip.h>
30 #include <linux/ipv6.h>
31 #include <linux/net_tstamp.h>
32 #include <linux/if_vlan.h>
33 #include <linux/firmware.h>
34 #include <linux/ethtool.h>
35 #include <linux/ptp_clock_kernel.h>
36 #include <linux/types.h>
37 #include <linux/list.h>
38 #include <linux/workqueue.h>
39 #include <linux/interrupt.h>
40 #include "octeon_config.h"
41 #include "liquidio_common.h"
42 #include "octeon_droq.h"
43 #include "octeon_iq.h"
44 #include "response_manager.h"
45 #include "octeon_device.h"
46 #include "octeon_nic.h"
47 #include "octeon_main.h"
48 #include "octeon_network.h"
49 #include "cn66xx_regs.h"
50 #include "cn66xx_device.h"
51 #include "cn68xx_regs.h"
52 #include "cn68xx_device.h"
53 #include "liquidio_image.h"
54
55 MODULE_AUTHOR("Cavium Networks, <support@cavium.com>");
56 MODULE_DESCRIPTION("Cavium LiquidIO Intelligent Server Adapter Driver");
57 MODULE_LICENSE("GPL");
58 MODULE_VERSION(LIQUIDIO_VERSION);
59 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210SV_NAME LIO_FW_NAME_SUFFIX);
60 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_210NV_NAME LIO_FW_NAME_SUFFIX);
61 MODULE_FIRMWARE(LIO_FW_DIR LIO_FW_BASE_NAME LIO_410NV_NAME LIO_FW_NAME_SUFFIX);
62
63 static int ddr_timeout = 10000;
64 module_param(ddr_timeout, int, 0644);
65 MODULE_PARM_DESC(ddr_timeout,
66 "Number of milliseconds to wait for DDR initialization. 0 waits for ddr_timeout to be set to non-zero value before starting to check");
67
68 static u32 console_bitmask;
69 module_param(console_bitmask, int, 0644);
70 MODULE_PARM_DESC(console_bitmask,
71 "Bitmask indicating which consoles have debug output redirected to syslog.");
72
73 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
74
75 static int debug = -1;
76 module_param(debug, int, 0644);
77 MODULE_PARM_DESC(debug, "NETIF_MSG debug bits");
78
79 static char fw_type[LIO_MAX_FW_TYPE_LEN];
80 module_param_string(fw_type, fw_type, sizeof(fw_type), 0000);
81 MODULE_PARM_DESC(fw_type, "Type of firmware to be loaded. Default \"nic\"");
82
83 static int conf_type;
84 module_param(conf_type, int, 0);
85 MODULE_PARM_DESC(conf_type, "select octeon configuration 0 default 1 ovs");
86
87 /* Bit mask values for lio->ifstate */
88 #define LIO_IFSTATE_DROQ_OPS 0x01
89 #define LIO_IFSTATE_REGISTERED 0x02
90 #define LIO_IFSTATE_RUNNING 0x04
91 #define LIO_IFSTATE_RX_TIMESTAMP_ENABLED 0x08
92
93 /* Polling interval for determining when NIC application is alive */
94 #define LIQUIDIO_STARTER_POLL_INTERVAL_MS 100
95
96 /* runtime link query interval */
97 #define LIQUIDIO_LINK_QUERY_INTERVAL_MS 1000
98
99 struct liquidio_if_cfg_context {
100 int octeon_id;
101
102 wait_queue_head_t wc;
103
104 int cond;
105 };
106
107 struct liquidio_if_cfg_resp {
108 u64 rh;
109 struct liquidio_if_cfg_info cfg_info;
110 u64 status;
111 };
112
113 struct oct_link_status_resp {
114 u64 rh;
115 struct oct_link_info link_info;
116 u64 status;
117 };
118
119 struct oct_timestamp_resp {
120 u64 rh;
121 u64 timestamp;
122 u64 status;
123 };
124
125 #define OCT_TIMESTAMP_RESP_SIZE (sizeof(struct oct_timestamp_resp))
126
127 union tx_info {
128 u64 u64;
129 struct {
130 #ifdef __BIG_ENDIAN_BITFIELD
131 u16 gso_size;
132 u16 gso_segs;
133 u32 reserved;
134 #else
135 u32 reserved;
136 u16 gso_segs;
137 u16 gso_size;
138 #endif
139 } s;
140 };
141
142 /** Octeon device properties to be used by the NIC module.
143 * Each octeon device in the system will be represented
144 * by this structure in the NIC module.
145 */
146
147 #define OCTNIC_MAX_SG (MAX_SKB_FRAGS)
148
149 #define OCTNIC_GSO_MAX_HEADER_SIZE 128
150 #define OCTNIC_GSO_MAX_SIZE (GSO_MAX_SIZE - OCTNIC_GSO_MAX_HEADER_SIZE)
151
152 /** Structure of a node in list of gather components maintained by
153 * NIC driver for each network device.
154 */
155 struct octnic_gather {
156 /** List manipulation. Next and prev pointers. */
157 struct list_head list;
158
159 /** Size of the gather component at sg in bytes. */
160 int sg_size;
161
162 /** Number of bytes that sg was adjusted to make it 8B-aligned. */
163 int adjust;
164
165 /** Gather component that can accommodate max sized fragment list
166 * received from the IP layer.
167 */
168 struct octeon_sg_entry *sg;
169 };
170
171 /** This structure is used by NIC driver to store information required
172 * to free the sk_buff when the packet has been fetched by Octeon.
173 * Bytes offset below assume worst-case of a 64-bit system.
174 */
175 struct octnet_buf_free_info {
176 /** Bytes 1-8. Pointer to network device private structure. */
177 struct lio *lio;
178
179 /** Bytes 9-16. Pointer to sk_buff. */
180 struct sk_buff *skb;
181
182 /** Bytes 17-24. Pointer to gather list. */
183 struct octnic_gather *g;
184
185 /** Bytes 25-32. Physical address of skb->data or gather list. */
186 u64 dptr;
187
188 /** Bytes 33-47. Piggybacked soft command, if any */
189 struct octeon_soft_command *sc;
190 };
191
192 struct handshake {
193 struct completion init;
194 struct completion started;
195 struct pci_dev *pci_dev;
196 int init_ok;
197 int started_ok;
198 };
199
200 struct octeon_device_priv {
201 /** Tasklet structures for this device. */
202 struct tasklet_struct droq_tasklet;
203 unsigned long napi_mask;
204 };
205
206 static int octeon_device_init(struct octeon_device *);
207 static void liquidio_remove(struct pci_dev *pdev);
208 static int liquidio_probe(struct pci_dev *pdev,
209 const struct pci_device_id *ent);
210
211 static struct handshake handshake[MAX_OCTEON_DEVICES];
212 static struct completion first_stage;
213
214 static void octeon_droq_bh(unsigned long pdev)
215 {
216 int q_no;
217 int reschedule = 0;
218 struct octeon_device *oct = (struct octeon_device *)pdev;
219 struct octeon_device_priv *oct_priv =
220 (struct octeon_device_priv *)oct->priv;
221
222 /* for (q_no = 0; q_no < oct->num_oqs; q_no++) { */
223 for (q_no = 0; q_no < MAX_OCTEON_OUTPUT_QUEUES; q_no++) {
224 if (!(oct->io_qmask.oq & (1UL << q_no)))
225 continue;
226 reschedule |= octeon_droq_process_packets(oct, oct->droq[q_no],
227 MAX_PACKET_BUDGET);
228 }
229
230 if (reschedule)
231 tasklet_schedule(&oct_priv->droq_tasklet);
232 }
233
234 static int lio_wait_for_oq_pkts(struct octeon_device *oct)
235 {
236 struct octeon_device_priv *oct_priv =
237 (struct octeon_device_priv *)oct->priv;
238 int retry = 100, pkt_cnt = 0, pending_pkts = 0;
239 int i;
240
241 do {
242 pending_pkts = 0;
243
244 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
245 if (!(oct->io_qmask.oq & (1UL << i)))
246 continue;
247 pkt_cnt += octeon_droq_check_hw_for_pkts(oct,
248 oct->droq[i]);
249 }
250 if (pkt_cnt > 0) {
251 pending_pkts += pkt_cnt;
252 tasklet_schedule(&oct_priv->droq_tasklet);
253 }
254 pkt_cnt = 0;
255 schedule_timeout_uninterruptible(1);
256
257 } while (retry-- && pending_pkts);
258
259 return pkt_cnt;
260 }
261
262 void octeon_report_tx_completion_to_bql(void *txq, unsigned int pkts_compl,
263 unsigned int bytes_compl)
264 {
265 struct netdev_queue *netdev_queue = txq;
266
267 netdev_tx_completed_queue(netdev_queue, pkts_compl, bytes_compl);
268 }
269
270 void octeon_update_tx_completion_counters(void *buf, int reqtype,
271 unsigned int *pkts_compl,
272 unsigned int *bytes_compl)
273 {
274 struct octnet_buf_free_info *finfo;
275 struct sk_buff *skb = NULL;
276 struct octeon_soft_command *sc;
277
278 switch (reqtype) {
279 case REQTYPE_NORESP_NET:
280 case REQTYPE_NORESP_NET_SG:
281 finfo = buf;
282 skb = finfo->skb;
283 break;
284
285 case REQTYPE_RESP_NET_SG:
286 case REQTYPE_RESP_NET:
287 sc = buf;
288 skb = sc->callback_arg;
289 break;
290
291 default:
292 return;
293 }
294
295 (*pkts_compl)++;
296 *bytes_compl += skb->len;
297 }
298
299 void octeon_report_sent_bytes_to_bql(void *buf, int reqtype)
300 {
301 struct octnet_buf_free_info *finfo;
302 struct sk_buff *skb;
303 struct octeon_soft_command *sc;
304 struct netdev_queue *txq;
305
306 switch (reqtype) {
307 case REQTYPE_NORESP_NET:
308 case REQTYPE_NORESP_NET_SG:
309 finfo = buf;
310 skb = finfo->skb;
311 break;
312
313 case REQTYPE_RESP_NET_SG:
314 case REQTYPE_RESP_NET:
315 sc = buf;
316 skb = sc->callback_arg;
317 break;
318
319 default:
320 return;
321 }
322
323 txq = netdev_get_tx_queue(skb->dev, skb_get_queue_mapping(skb));
324 netdev_tx_sent_queue(txq, skb->len);
325 }
326
327 int octeon_console_debug_enabled(u32 console)
328 {
329 return (console_bitmask >> (console)) & 0x1;
330 }
331
332 /**
333 * \brief Forces all IO queues off on a given device
334 * @param oct Pointer to Octeon device
335 */
336 static void force_io_queues_off(struct octeon_device *oct)
337 {
338 if ((oct->chip_id == OCTEON_CN66XX) ||
339 (oct->chip_id == OCTEON_CN68XX)) {
340 /* Reset the Enable bits for Input Queues. */
341 octeon_write_csr(oct, CN6XXX_SLI_PKT_INSTR_ENB, 0);
342
343 /* Reset the Enable bits for Output Queues. */
344 octeon_write_csr(oct, CN6XXX_SLI_PKT_OUT_ENB, 0);
345 }
346 }
347
348 /**
349 * \brief wait for all pending requests to complete
350 * @param oct Pointer to Octeon device
351 *
352 * Called during shutdown sequence
353 */
354 static int wait_for_pending_requests(struct octeon_device *oct)
355 {
356 int i, pcount = 0;
357
358 for (i = 0; i < 100; i++) {
359 pcount =
360 atomic_read(&oct->response_list
361 [OCTEON_ORDERED_SC_LIST].pending_req_count);
362 if (pcount)
363 schedule_timeout_uninterruptible(HZ / 10);
364 else
365 break;
366 }
367
368 if (pcount)
369 return 1;
370
371 return 0;
372 }
373
374 /**
375 * \brief Cause device to go quiet so it can be safely removed/reset/etc
376 * @param oct Pointer to Octeon device
377 */
378 static inline void pcierror_quiesce_device(struct octeon_device *oct)
379 {
380 int i;
381
382 /* Disable the input and output queues now. No more packets will
383 * arrive from Octeon, but we should wait for all packet processing
384 * to finish.
385 */
386 force_io_queues_off(oct);
387
388 /* To allow for in-flight requests */
389 schedule_timeout_uninterruptible(100);
390
391 if (wait_for_pending_requests(oct))
392 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
393
394 /* Force all requests waiting to be fetched by OCTEON to complete. */
395 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
396 struct octeon_instr_queue *iq;
397
398 if (!(oct->io_qmask.iq & (1UL << i)))
399 continue;
400 iq = oct->instr_queue[i];
401
402 if (atomic_read(&iq->instr_pending)) {
403 spin_lock_bh(&iq->lock);
404 iq->fill_cnt = 0;
405 iq->octeon_read_index = iq->host_write_index;
406 iq->stats.instr_processed +=
407 atomic_read(&iq->instr_pending);
408 lio_process_iq_request_list(oct, iq);
409 spin_unlock_bh(&iq->lock);
410 }
411 }
412
413 /* Force all pending ordered list requests to time out. */
414 lio_process_ordered_list(oct, 1);
415
416 /* We do not need to wait for output queue packets to be processed. */
417 }
418
419 /**
420 * \brief Cleanup PCI AER uncorrectable error status
421 * @param dev Pointer to PCI device
422 */
423 static void cleanup_aer_uncorrect_error_status(struct pci_dev *dev)
424 {
425 int pos = 0x100;
426 u32 status, mask;
427
428 pr_info("%s :\n", __func__);
429
430 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, &status);
431 pci_read_config_dword(dev, pos + PCI_ERR_UNCOR_SEVER, &mask);
432 if (dev->error_state == pci_channel_io_normal)
433 status &= ~mask; /* Clear corresponding nonfatal bits */
434 else
435 status &= mask; /* Clear corresponding fatal bits */
436 pci_write_config_dword(dev, pos + PCI_ERR_UNCOR_STATUS, status);
437 }
438
439 /**
440 * \brief Stop all PCI IO to a given device
441 * @param dev Pointer to Octeon device
442 */
443 static void stop_pci_io(struct octeon_device *oct)
444 {
445 /* No more instructions will be forwarded. */
446 atomic_set(&oct->status, OCT_DEV_IN_RESET);
447
448 pci_disable_device(oct->pci_dev);
449
450 /* Disable interrupts */
451 oct->fn_list.disable_interrupt(oct->chip);
452
453 pcierror_quiesce_device(oct);
454
455 /* Release the interrupt line */
456 free_irq(oct->pci_dev->irq, oct);
457
458 if (oct->flags & LIO_FLAG_MSI_ENABLED)
459 pci_disable_msi(oct->pci_dev);
460
461 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
462 lio_get_state_string(&oct->status));
463
464 /* cn63xx_cleanup_aer_uncorrect_error_status(oct->pci_dev); */
465 /* making it a common function for all OCTEON models */
466 cleanup_aer_uncorrect_error_status(oct->pci_dev);
467 }
468
469 /**
470 * \brief called when PCI error is detected
471 * @param pdev Pointer to PCI device
472 * @param state The current pci connection state
473 *
474 * This function is called after a PCI bus error affecting
475 * this device has been detected.
476 */
477 static pci_ers_result_t liquidio_pcie_error_detected(struct pci_dev *pdev,
478 pci_channel_state_t state)
479 {
480 struct octeon_device *oct = pci_get_drvdata(pdev);
481
482 /* Non-correctable Non-fatal errors */
483 if (state == pci_channel_io_normal) {
484 dev_err(&oct->pci_dev->dev, "Non-correctable non-fatal error reported:\n");
485 cleanup_aer_uncorrect_error_status(oct->pci_dev);
486 return PCI_ERS_RESULT_CAN_RECOVER;
487 }
488
489 /* Non-correctable Fatal errors */
490 dev_err(&oct->pci_dev->dev, "Non-correctable FATAL reported by PCI AER driver\n");
491 stop_pci_io(oct);
492
493 /* Always return a DISCONNECT. There is no support for recovery but only
494 * for a clean shutdown.
495 */
496 return PCI_ERS_RESULT_DISCONNECT;
497 }
498
499 /**
500 * \brief mmio handler
501 * @param pdev Pointer to PCI device
502 */
503 static pci_ers_result_t liquidio_pcie_mmio_enabled(struct pci_dev *pdev)
504 {
505 /* We should never hit this since we never ask for a reset for a Fatal
506 * Error. We always return DISCONNECT in io_error above.
507 * But play safe and return RECOVERED for now.
508 */
509 return PCI_ERS_RESULT_RECOVERED;
510 }
511
512 /**
513 * \brief called after the pci bus has been reset.
514 * @param pdev Pointer to PCI device
515 *
516 * Restart the card from scratch, as if from a cold-boot. Implementation
517 * resembles the first-half of the octeon_resume routine.
518 */
519 static pci_ers_result_t liquidio_pcie_slot_reset(struct pci_dev *pdev)
520 {
521 /* We should never hit this since we never ask for a reset for a Fatal
522 * Error. We always return DISCONNECT in io_error above.
523 * But play safe and return RECOVERED for now.
524 */
525 return PCI_ERS_RESULT_RECOVERED;
526 }
527
528 /**
529 * \brief called when traffic can start flowing again.
530 * @param pdev Pointer to PCI device
531 *
532 * This callback is called when the error recovery driver tells us that
533 * its OK to resume normal operation. Implementation resembles the
534 * second-half of the octeon_resume routine.
535 */
536 static void liquidio_pcie_resume(struct pci_dev *pdev)
537 {
538 /* Nothing to be done here. */
539 }
540
541 #ifdef CONFIG_PM
542 /**
543 * \brief called when suspending
544 * @param pdev Pointer to PCI device
545 * @param state state to suspend to
546 */
547 static int liquidio_suspend(struct pci_dev *pdev, pm_message_t state)
548 {
549 return 0;
550 }
551
552 /**
553 * \brief called when resuming
554 * @param pdev Pointer to PCI device
555 */
556 static int liquidio_resume(struct pci_dev *pdev)
557 {
558 return 0;
559 }
560 #endif
561
562 /* For PCI-E Advanced Error Recovery (AER) Interface */
563 static const struct pci_error_handlers liquidio_err_handler = {
564 .error_detected = liquidio_pcie_error_detected,
565 .mmio_enabled = liquidio_pcie_mmio_enabled,
566 .slot_reset = liquidio_pcie_slot_reset,
567 .resume = liquidio_pcie_resume,
568 };
569
570 static const struct pci_device_id liquidio_pci_tbl[] = {
571 { /* 68xx */
572 PCI_VENDOR_ID_CAVIUM, 0x91, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
573 },
574 { /* 66xx */
575 PCI_VENDOR_ID_CAVIUM, 0x92, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0
576 },
577 {
578 0, 0, 0, 0, 0, 0, 0
579 }
580 };
581 MODULE_DEVICE_TABLE(pci, liquidio_pci_tbl);
582
583 static struct pci_driver liquidio_pci_driver = {
584 .name = "LiquidIO",
585 .id_table = liquidio_pci_tbl,
586 .probe = liquidio_probe,
587 .remove = liquidio_remove,
588 .err_handler = &liquidio_err_handler, /* For AER */
589
590 #ifdef CONFIG_PM
591 .suspend = liquidio_suspend,
592 .resume = liquidio_resume,
593 #endif
594
595 };
596
597 /**
598 * \brief register PCI driver
599 */
600 static int liquidio_init_pci(void)
601 {
602 return pci_register_driver(&liquidio_pci_driver);
603 }
604
605 /**
606 * \brief unregister PCI driver
607 */
608 static void liquidio_deinit_pci(void)
609 {
610 pci_unregister_driver(&liquidio_pci_driver);
611 }
612
613 /**
614 * \brief check interface state
615 * @param lio per-network private data
616 * @param state_flag flag state to check
617 */
618 static inline int ifstate_check(struct lio *lio, int state_flag)
619 {
620 return atomic_read(&lio->ifstate) & state_flag;
621 }
622
623 /**
624 * \brief set interface state
625 * @param lio per-network private data
626 * @param state_flag flag state to set
627 */
628 static inline void ifstate_set(struct lio *lio, int state_flag)
629 {
630 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) | state_flag));
631 }
632
633 /**
634 * \brief clear interface state
635 * @param lio per-network private data
636 * @param state_flag flag state to clear
637 */
638 static inline void ifstate_reset(struct lio *lio, int state_flag)
639 {
640 atomic_set(&lio->ifstate, (atomic_read(&lio->ifstate) & ~(state_flag)));
641 }
642
643 /**
644 * \brief Stop Tx queues
645 * @param netdev network device
646 */
647 static inline void txqs_stop(struct net_device *netdev)
648 {
649 if (netif_is_multiqueue(netdev)) {
650 int i;
651
652 for (i = 0; i < netdev->num_tx_queues; i++)
653 netif_stop_subqueue(netdev, i);
654 } else {
655 netif_stop_queue(netdev);
656 }
657 }
658
659 /**
660 * \brief Start Tx queues
661 * @param netdev network device
662 */
663 static inline void txqs_start(struct net_device *netdev)
664 {
665 if (netif_is_multiqueue(netdev)) {
666 int i;
667
668 for (i = 0; i < netdev->num_tx_queues; i++)
669 netif_start_subqueue(netdev, i);
670 } else {
671 netif_start_queue(netdev);
672 }
673 }
674
675 /**
676 * \brief Wake Tx queues
677 * @param netdev network device
678 */
679 static inline void txqs_wake(struct net_device *netdev)
680 {
681 if (netif_is_multiqueue(netdev)) {
682 int i;
683
684 for (i = 0; i < netdev->num_tx_queues; i++)
685 netif_wake_subqueue(netdev, i);
686 } else {
687 netif_wake_queue(netdev);
688 }
689 }
690
691 /**
692 * \brief Stop Tx queue
693 * @param netdev network device
694 */
695 static void stop_txq(struct net_device *netdev)
696 {
697 txqs_stop(netdev);
698 }
699
700 /**
701 * \brief Start Tx queue
702 * @param netdev network device
703 */
704 static void start_txq(struct net_device *netdev)
705 {
706 struct lio *lio = GET_LIO(netdev);
707
708 if (lio->linfo.link.s.status) {
709 txqs_start(netdev);
710 return;
711 }
712 }
713
714 /**
715 * \brief Wake a queue
716 * @param netdev network device
717 * @param q which queue to wake
718 */
719 static inline void wake_q(struct net_device *netdev, int q)
720 {
721 if (netif_is_multiqueue(netdev))
722 netif_wake_subqueue(netdev, q);
723 else
724 netif_wake_queue(netdev);
725 }
726
727 /**
728 * \brief Stop a queue
729 * @param netdev network device
730 * @param q which queue to stop
731 */
732 static inline void stop_q(struct net_device *netdev, int q)
733 {
734 if (netif_is_multiqueue(netdev))
735 netif_stop_subqueue(netdev, q);
736 else
737 netif_stop_queue(netdev);
738 }
739
740 /**
741 * \brief Check Tx queue status, and take appropriate action
742 * @param lio per-network private data
743 * @returns 0 if full, number of queues woken up otherwise
744 */
745 static inline int check_txq_status(struct lio *lio)
746 {
747 int ret_val = 0;
748
749 if (netif_is_multiqueue(lio->netdev)) {
750 int numqs = lio->netdev->num_tx_queues;
751 int q, iq = 0;
752
753 /* check each sub-queue state */
754 for (q = 0; q < numqs; q++) {
755 iq = lio->linfo.txpciq[q & (lio->linfo.num_txpciq - 1)];
756 if (octnet_iq_is_full(lio->oct_dev, iq))
757 continue;
758 wake_q(lio->netdev, q);
759 ret_val++;
760 }
761 } else {
762 if (octnet_iq_is_full(lio->oct_dev, lio->txq))
763 return 0;
764 wake_q(lio->netdev, lio->txq);
765 ret_val = 1;
766 }
767 return ret_val;
768 }
769
770 /**
771 * Remove the node at the head of the list. The list would be empty at
772 * the end of this call if there are no more nodes in the list.
773 */
774 static inline struct list_head *list_delete_head(struct list_head *root)
775 {
776 struct list_head *node;
777
778 if ((root->prev == root) && (root->next == root))
779 node = NULL;
780 else
781 node = root->next;
782
783 if (node)
784 list_del(node);
785
786 return node;
787 }
788
789 /**
790 * \brief Delete gather list
791 * @param lio per-network private data
792 */
793 static void delete_glist(struct lio *lio)
794 {
795 struct octnic_gather *g;
796
797 do {
798 g = (struct octnic_gather *)
799 list_delete_head(&lio->glist);
800 if (g) {
801 if (g->sg)
802 kfree((void *)((unsigned long)g->sg -
803 g->adjust));
804 kfree(g);
805 }
806 } while (g);
807 }
808
809 /**
810 * \brief Setup gather list
811 * @param lio per-network private data
812 */
813 static int setup_glist(struct lio *lio)
814 {
815 int i;
816 struct octnic_gather *g;
817
818 INIT_LIST_HEAD(&lio->glist);
819
820 for (i = 0; i < lio->tx_qsize; i++) {
821 g = kzalloc(sizeof(*g), GFP_KERNEL);
822 if (!g)
823 break;
824
825 g->sg_size =
826 ((ROUNDUP4(OCTNIC_MAX_SG) >> 2) * OCT_SG_ENTRY_SIZE);
827
828 g->sg = kmalloc(g->sg_size + 8, GFP_KERNEL);
829 if (!g->sg) {
830 kfree(g);
831 break;
832 }
833
834 /* The gather component should be aligned on 64-bit boundary */
835 if (((unsigned long)g->sg) & 7) {
836 g->adjust = 8 - (((unsigned long)g->sg) & 7);
837 g->sg = (struct octeon_sg_entry *)
838 ((unsigned long)g->sg + g->adjust);
839 }
840 list_add_tail(&g->list, &lio->glist);
841 }
842
843 if (i == lio->tx_qsize)
844 return 0;
845
846 delete_glist(lio);
847 return 1;
848 }
849
850 /**
851 * \brief Print link information
852 * @param netdev network device
853 */
854 static void print_link_info(struct net_device *netdev)
855 {
856 struct lio *lio = GET_LIO(netdev);
857
858 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED) {
859 struct oct_link_info *linfo = &lio->linfo;
860
861 if (linfo->link.s.status) {
862 netif_info(lio, link, lio->netdev, "%d Mbps %s Duplex UP\n",
863 linfo->link.s.speed,
864 (linfo->link.s.duplex) ? "Full" : "Half");
865 } else {
866 netif_info(lio, link, lio->netdev, "Link Down\n");
867 }
868 }
869 }
870
871 /**
872 * \brief Update link status
873 * @param netdev network device
874 * @param ls link status structure
875 *
876 * Called on receipt of a link status response from the core application to
877 * update each interface's link status.
878 */
879 static inline void update_link_status(struct net_device *netdev,
880 union oct_link_status *ls)
881 {
882 struct lio *lio = GET_LIO(netdev);
883
884 if ((lio->intf_open) && (lio->linfo.link.u64 != ls->u64)) {
885 lio->linfo.link.u64 = ls->u64;
886
887 print_link_info(netdev);
888
889 if (lio->linfo.link.s.status) {
890 netif_carrier_on(netdev);
891 /* start_txq(netdev); */
892 txqs_wake(netdev);
893 } else {
894 netif_carrier_off(netdev);
895 stop_txq(netdev);
896 }
897 }
898 }
899
900 /**
901 * \brief Droq packet processor sceduler
902 * @param oct octeon device
903 */
904 static
905 void liquidio_schedule_droq_pkt_handlers(struct octeon_device *oct)
906 {
907 struct octeon_device_priv *oct_priv =
908 (struct octeon_device_priv *)oct->priv;
909 u64 oq_no;
910 struct octeon_droq *droq;
911
912 if (oct->int_status & OCT_DEV_INTR_PKT_DATA) {
913 for (oq_no = 0; oq_no < MAX_OCTEON_OUTPUT_QUEUES; oq_no++) {
914 if (!(oct->droq_intr & (1 << oq_no)))
915 continue;
916
917 droq = oct->droq[oq_no];
918
919 if (droq->ops.poll_mode) {
920 droq->ops.napi_fn(droq);
921 oct_priv->napi_mask |= (1 << oq_no);
922 } else {
923 tasklet_schedule(&oct_priv->droq_tasklet);
924 }
925 }
926 }
927 }
928
929 /**
930 * \brief Interrupt handler for octeon
931 * @param irq unused
932 * @param dev octeon device
933 */
934 static
935 irqreturn_t liquidio_intr_handler(int irq __attribute__((unused)), void *dev)
936 {
937 struct octeon_device *oct = (struct octeon_device *)dev;
938 irqreturn_t ret;
939
940 /* Disable our interrupts for the duration of ISR */
941 oct->fn_list.disable_interrupt(oct->chip);
942
943 ret = oct->fn_list.process_interrupt_regs(oct);
944
945 if (ret == IRQ_HANDLED)
946 liquidio_schedule_droq_pkt_handlers(oct);
947
948 /* Re-enable our interrupts */
949 if (!(atomic_read(&oct->status) == OCT_DEV_IN_RESET))
950 oct->fn_list.enable_interrupt(oct->chip);
951
952 return ret;
953 }
954
955 /**
956 * \brief Setup interrupt for octeon device
957 * @param oct octeon device
958 *
959 * Enable interrupt in Octeon device as given in the PCI interrupt mask.
960 */
961 static int octeon_setup_interrupt(struct octeon_device *oct)
962 {
963 int irqret, err;
964
965 err = pci_enable_msi(oct->pci_dev);
966 if (err)
967 dev_warn(&oct->pci_dev->dev, "Reverting to legacy interrupts. Error: %d\n",
968 err);
969 else
970 oct->flags |= LIO_FLAG_MSI_ENABLED;
971
972 irqret = request_irq(oct->pci_dev->irq, liquidio_intr_handler,
973 IRQF_SHARED, "octeon", oct);
974 if (irqret) {
975 if (oct->flags & LIO_FLAG_MSI_ENABLED)
976 pci_disable_msi(oct->pci_dev);
977 dev_err(&oct->pci_dev->dev, "Request IRQ failed with code: %d\n",
978 irqret);
979 return 1;
980 }
981
982 return 0;
983 }
984
985 /**
986 * \brief PCI probe handler
987 * @param pdev PCI device structure
988 * @param ent unused
989 */
990 static int liquidio_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
991 {
992 struct octeon_device *oct_dev = NULL;
993 struct handshake *hs;
994
995 oct_dev = octeon_allocate_device(pdev->device,
996 sizeof(struct octeon_device_priv));
997 if (!oct_dev) {
998 dev_err(&pdev->dev, "Unable to allocate device\n");
999 return -ENOMEM;
1000 }
1001
1002 dev_info(&pdev->dev, "Initializing device %x:%x.\n",
1003 (u32)pdev->vendor, (u32)pdev->device);
1004
1005 /* Assign octeon_device for this device to the private data area. */
1006 pci_set_drvdata(pdev, oct_dev);
1007
1008 /* set linux specific device pointer */
1009 oct_dev->pci_dev = (void *)pdev;
1010
1011 hs = &handshake[oct_dev->octeon_id];
1012 init_completion(&hs->init);
1013 init_completion(&hs->started);
1014 hs->pci_dev = pdev;
1015
1016 if (oct_dev->octeon_id == 0)
1017 /* first LiquidIO NIC is detected */
1018 complete(&first_stage);
1019
1020 if (octeon_device_init(oct_dev)) {
1021 liquidio_remove(pdev);
1022 return -ENOMEM;
1023 }
1024
1025 dev_dbg(&oct_dev->pci_dev->dev, "Device is ready\n");
1026
1027 return 0;
1028 }
1029
1030 /**
1031 *\brief Destroy resources associated with octeon device
1032 * @param pdev PCI device structure
1033 * @param ent unused
1034 */
1035 static void octeon_destroy_resources(struct octeon_device *oct)
1036 {
1037 int i;
1038 struct octeon_device_priv *oct_priv =
1039 (struct octeon_device_priv *)oct->priv;
1040
1041 struct handshake *hs;
1042
1043 switch (atomic_read(&oct->status)) {
1044 case OCT_DEV_RUNNING:
1045 case OCT_DEV_CORE_OK:
1046
1047 /* No more instructions will be forwarded. */
1048 atomic_set(&oct->status, OCT_DEV_IN_RESET);
1049
1050 oct->app_mode = CVM_DRV_INVALID_APP;
1051 dev_dbg(&oct->pci_dev->dev, "Device state is now %s\n",
1052 lio_get_state_string(&oct->status));
1053
1054 schedule_timeout_uninterruptible(HZ / 10);
1055
1056 /* fallthrough */
1057 case OCT_DEV_HOST_OK:
1058
1059 /* fallthrough */
1060 case OCT_DEV_CONSOLE_INIT_DONE:
1061 /* Remove any consoles */
1062 octeon_remove_consoles(oct);
1063
1064 /* fallthrough */
1065 case OCT_DEV_IO_QUEUES_DONE:
1066 if (wait_for_pending_requests(oct))
1067 dev_err(&oct->pci_dev->dev, "There were pending requests\n");
1068
1069 if (lio_wait_for_instr_fetch(oct))
1070 dev_err(&oct->pci_dev->dev, "IQ had pending instructions\n");
1071
1072 /* Disable the input and output queues now. No more packets will
1073 * arrive from Octeon, but we should wait for all packet
1074 * processing to finish.
1075 */
1076 oct->fn_list.disable_io_queues(oct);
1077
1078 if (lio_wait_for_oq_pkts(oct))
1079 dev_err(&oct->pci_dev->dev, "OQ had pending packets\n");
1080
1081 /* Disable interrupts */
1082 oct->fn_list.disable_interrupt(oct->chip);
1083
1084 /* Release the interrupt line */
1085 free_irq(oct->pci_dev->irq, oct);
1086
1087 if (oct->flags & LIO_FLAG_MSI_ENABLED)
1088 pci_disable_msi(oct->pci_dev);
1089
1090 /* Soft reset the octeon device before exiting */
1091 oct->fn_list.soft_reset(oct);
1092
1093 /* Disable the device, releasing the PCI INT */
1094 pci_disable_device(oct->pci_dev);
1095
1096 /* fallthrough */
1097 case OCT_DEV_IN_RESET:
1098 case OCT_DEV_DROQ_INIT_DONE:
1099 /*atomic_set(&oct->status, OCT_DEV_DROQ_INIT_DONE);*/
1100 mdelay(100);
1101 for (i = 0; i < MAX_OCTEON_OUTPUT_QUEUES; i++) {
1102 if (!(oct->io_qmask.oq & (1UL << i)))
1103 continue;
1104 octeon_delete_droq(oct, i);
1105 }
1106
1107 /* Force any pending handshakes to complete */
1108 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
1109 hs = &handshake[i];
1110
1111 if (hs->pci_dev) {
1112 handshake[oct->octeon_id].init_ok = 0;
1113 complete(&handshake[oct->octeon_id].init);
1114 handshake[oct->octeon_id].started_ok = 0;
1115 complete(&handshake[oct->octeon_id].started);
1116 }
1117 }
1118
1119 /* fallthrough */
1120 case OCT_DEV_RESP_LIST_INIT_DONE:
1121 octeon_delete_response_list(oct);
1122
1123 /* fallthrough */
1124 case OCT_DEV_SC_BUFF_POOL_INIT_DONE:
1125 octeon_free_sc_buffer_pool(oct);
1126
1127 /* fallthrough */
1128 case OCT_DEV_INSTR_QUEUE_INIT_DONE:
1129 for (i = 0; i < MAX_OCTEON_INSTR_QUEUES; i++) {
1130 if (!(oct->io_qmask.iq & (1UL << i)))
1131 continue;
1132 octeon_delete_instr_queue(oct, i);
1133 }
1134
1135 /* fallthrough */
1136 case OCT_DEV_DISPATCH_INIT_DONE:
1137 octeon_delete_dispatch_list(oct);
1138 cancel_delayed_work_sync(&oct->nic_poll_work.work);
1139
1140 /* fallthrough */
1141 case OCT_DEV_PCI_MAP_DONE:
1142 octeon_unmap_pci_barx(oct, 0);
1143 octeon_unmap_pci_barx(oct, 1);
1144
1145 /* fallthrough */
1146 case OCT_DEV_BEGIN_STATE:
1147 /* Nothing to be done here either */
1148 break;
1149 } /* end switch(oct->status) */
1150
1151 tasklet_kill(&oct_priv->droq_tasklet);
1152 }
1153
1154 /**
1155 * \brief Send Rx control command
1156 * @param lio per-network private data
1157 * @param start_stop whether to start or stop
1158 */
1159 static void send_rx_ctrl_cmd(struct lio *lio, int start_stop)
1160 {
1161 struct octnic_ctrl_pkt nctrl;
1162 struct octnic_ctrl_params nparams;
1163
1164 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
1165
1166 nctrl.ncmd.s.cmd = OCTNET_CMD_RX_CTL;
1167 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
1168 nctrl.ncmd.s.param2 = start_stop;
1169 nctrl.netpndev = (u64)lio->netdev;
1170
1171 nparams.resp_order = OCTEON_RESP_NORESPONSE;
1172
1173 if (octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams) < 0)
1174 netif_info(lio, rx_err, lio->netdev, "Failed to send RX Control message\n");
1175 }
1176
1177 /**
1178 * \brief Destroy NIC device interface
1179 * @param oct octeon device
1180 * @param ifidx which interface to destroy
1181 *
1182 * Cleanup associated with each interface for an Octeon device when NIC
1183 * module is being unloaded or if initialization fails during load.
1184 */
1185 static void liquidio_destroy_nic_device(struct octeon_device *oct, int ifidx)
1186 {
1187 struct net_device *netdev = oct->props[ifidx].netdev;
1188 struct lio *lio;
1189
1190 if (!netdev) {
1191 dev_err(&oct->pci_dev->dev, "%s No netdevice ptr for index %d\n",
1192 __func__, ifidx);
1193 return;
1194 }
1195
1196 lio = GET_LIO(netdev);
1197
1198 dev_dbg(&oct->pci_dev->dev, "NIC device cleanup\n");
1199
1200 send_rx_ctrl_cmd(lio, 0);
1201
1202 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING)
1203 txqs_stop(netdev);
1204
1205 if (atomic_read(&lio->ifstate) & LIO_IFSTATE_REGISTERED)
1206 unregister_netdev(netdev);
1207
1208 delete_glist(lio);
1209
1210 free_netdev(netdev);
1211
1212 oct->props[ifidx].netdev = NULL;
1213 }
1214
1215 /**
1216 * \brief Stop complete NIC functionality
1217 * @param oct octeon device
1218 */
1219 static int liquidio_stop_nic_module(struct octeon_device *oct)
1220 {
1221 int i, j;
1222 struct lio *lio;
1223
1224 dev_dbg(&oct->pci_dev->dev, "Stopping network interfaces\n");
1225 if (!oct->ifcount) {
1226 dev_err(&oct->pci_dev->dev, "Init for Octeon was not completed\n");
1227 return 1;
1228 }
1229
1230 for (i = 0; i < oct->ifcount; i++) {
1231 lio = GET_LIO(oct->props[i].netdev);
1232 for (j = 0; j < lio->linfo.num_rxpciq; j++)
1233 octeon_unregister_droq_ops(oct, lio->linfo.rxpciq[j]);
1234 }
1235
1236 for (i = 0; i < oct->ifcount; i++)
1237 liquidio_destroy_nic_device(oct, i);
1238
1239 dev_dbg(&oct->pci_dev->dev, "Network interfaces stopped\n");
1240 return 0;
1241 }
1242
1243 /**
1244 * \brief Cleans up resources at unload time
1245 * @param pdev PCI device structure
1246 */
1247 static void liquidio_remove(struct pci_dev *pdev)
1248 {
1249 struct octeon_device *oct_dev = pci_get_drvdata(pdev);
1250
1251 dev_dbg(&oct_dev->pci_dev->dev, "Stopping device\n");
1252
1253 if (oct_dev->app_mode && (oct_dev->app_mode == CVM_DRV_NIC_APP))
1254 liquidio_stop_nic_module(oct_dev);
1255
1256 /* Reset the octeon device and cleanup all memory allocated for
1257 * the octeon device by driver.
1258 */
1259 octeon_destroy_resources(oct_dev);
1260
1261 dev_info(&oct_dev->pci_dev->dev, "Device removed\n");
1262
1263 /* This octeon device has been removed. Update the global
1264 * data structure to reflect this. Free the device structure.
1265 */
1266 octeon_free_device_mem(oct_dev);
1267 }
1268
1269 /**
1270 * \brief Identify the Octeon device and to map the BAR address space
1271 * @param oct octeon device
1272 */
1273 static int octeon_chip_specific_setup(struct octeon_device *oct)
1274 {
1275 u32 dev_id, rev_id;
1276 int ret = 1;
1277
1278 pci_read_config_dword(oct->pci_dev, 0, &dev_id);
1279 pci_read_config_dword(oct->pci_dev, 8, &rev_id);
1280 oct->rev_id = rev_id & 0xff;
1281
1282 switch (dev_id) {
1283 case OCTEON_CN68XX_PCIID:
1284 oct->chip_id = OCTEON_CN68XX;
1285 ret = lio_setup_cn68xx_octeon_device(oct);
1286 break;
1287
1288 case OCTEON_CN66XX_PCIID:
1289 oct->chip_id = OCTEON_CN66XX;
1290 ret = lio_setup_cn66xx_octeon_device(oct);
1291 break;
1292 default:
1293 dev_err(&oct->pci_dev->dev, "Unknown device found (dev_id: %x)\n",
1294 dev_id);
1295 }
1296
1297 if (!ret)
1298 dev_info(&oct->pci_dev->dev, "CN68XX PASS%d.%d %s\n",
1299 OCTEON_MAJOR_REV(oct),
1300 OCTEON_MINOR_REV(oct),
1301 octeon_get_conf(oct)->card_name);
1302
1303 return ret;
1304 }
1305
1306 /**
1307 * \brief PCI initialization for each Octeon device.
1308 * @param oct octeon device
1309 */
1310 static int octeon_pci_os_setup(struct octeon_device *oct)
1311 {
1312 /* setup PCI stuff first */
1313 if (pci_enable_device(oct->pci_dev)) {
1314 dev_err(&oct->pci_dev->dev, "pci_enable_device failed\n");
1315 return 1;
1316 }
1317
1318 if (dma_set_mask_and_coherent(&oct->pci_dev->dev, DMA_BIT_MASK(64))) {
1319 dev_err(&oct->pci_dev->dev, "Unexpected DMA device capability\n");
1320 return 1;
1321 }
1322
1323 /* Enable PCI DMA Master. */
1324 pci_set_master(oct->pci_dev);
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * \brief Check Tx queue state for a given network buffer
1331 * @param lio per-network private data
1332 * @param skb network buffer
1333 */
1334 static inline int check_txq_state(struct lio *lio, struct sk_buff *skb)
1335 {
1336 int q = 0, iq = 0;
1337
1338 if (netif_is_multiqueue(lio->netdev)) {
1339 q = skb->queue_mapping;
1340 iq = lio->linfo.txpciq[(q & (lio->linfo.num_txpciq - 1))];
1341 } else {
1342 iq = lio->txq;
1343 }
1344
1345 if (octnet_iq_is_full(lio->oct_dev, iq))
1346 return 0;
1347 wake_q(lio->netdev, q);
1348 return 1;
1349 }
1350
1351 /**
1352 * \brief Unmap and free network buffer
1353 * @param buf buffer
1354 */
1355 static void free_netbuf(void *buf)
1356 {
1357 struct sk_buff *skb;
1358 struct octnet_buf_free_info *finfo;
1359 struct lio *lio;
1360
1361 finfo = (struct octnet_buf_free_info *)buf;
1362 skb = finfo->skb;
1363 lio = finfo->lio;
1364
1365 dma_unmap_single(&lio->oct_dev->pci_dev->dev, finfo->dptr, skb->len,
1366 DMA_TO_DEVICE);
1367
1368 check_txq_state(lio, skb);
1369
1370 recv_buffer_free((struct sk_buff *)skb);
1371 }
1372
1373 /**
1374 * \brief Unmap and free gather buffer
1375 * @param buf buffer
1376 */
1377 static void free_netsgbuf(void *buf)
1378 {
1379 struct octnet_buf_free_info *finfo;
1380 struct sk_buff *skb;
1381 struct lio *lio;
1382 struct octnic_gather *g;
1383 int i, frags;
1384
1385 finfo = (struct octnet_buf_free_info *)buf;
1386 skb = finfo->skb;
1387 lio = finfo->lio;
1388 g = finfo->g;
1389 frags = skb_shinfo(skb)->nr_frags;
1390
1391 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1392 g->sg[0].ptr[0], (skb->len - skb->data_len),
1393 DMA_TO_DEVICE);
1394
1395 i = 1;
1396 while (frags--) {
1397 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1398
1399 pci_unmap_page((lio->oct_dev)->pci_dev,
1400 g->sg[(i >> 2)].ptr[(i & 3)],
1401 frag->size, DMA_TO_DEVICE);
1402 i++;
1403 }
1404
1405 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1406 finfo->dptr, g->sg_size,
1407 DMA_TO_DEVICE);
1408
1409 spin_lock(&lio->lock);
1410 list_add_tail(&g->list, &lio->glist);
1411 spin_unlock(&lio->lock);
1412
1413 check_txq_state(lio, skb); /* mq support: sub-queue state check */
1414
1415 recv_buffer_free((struct sk_buff *)skb);
1416 }
1417
1418 /**
1419 * \brief Unmap and free gather buffer with response
1420 * @param buf buffer
1421 */
1422 static void free_netsgbuf_with_resp(void *buf)
1423 {
1424 struct octeon_soft_command *sc;
1425 struct octnet_buf_free_info *finfo;
1426 struct sk_buff *skb;
1427 struct lio *lio;
1428 struct octnic_gather *g;
1429 int i, frags;
1430
1431 sc = (struct octeon_soft_command *)buf;
1432 skb = (struct sk_buff *)sc->callback_arg;
1433 finfo = (struct octnet_buf_free_info *)&skb->cb;
1434
1435 lio = finfo->lio;
1436 g = finfo->g;
1437 frags = skb_shinfo(skb)->nr_frags;
1438
1439 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1440 g->sg[0].ptr[0], (skb->len - skb->data_len),
1441 DMA_TO_DEVICE);
1442
1443 i = 1;
1444 while (frags--) {
1445 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1446
1447 pci_unmap_page((lio->oct_dev)->pci_dev,
1448 g->sg[(i >> 2)].ptr[(i & 3)],
1449 frag->size, DMA_TO_DEVICE);
1450 i++;
1451 }
1452
1453 dma_unmap_single(&lio->oct_dev->pci_dev->dev,
1454 finfo->dptr, g->sg_size,
1455 DMA_TO_DEVICE);
1456
1457 spin_lock(&lio->lock);
1458 list_add_tail(&g->list, &lio->glist);
1459 spin_unlock(&lio->lock);
1460
1461 /* Don't free the skb yet */
1462
1463 check_txq_state(lio, skb);
1464 }
1465
1466 /**
1467 * \brief Adjust ptp frequency
1468 * @param ptp PTP clock info
1469 * @param ppb how much to adjust by, in parts-per-billion
1470 */
1471 static int liquidio_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
1472 {
1473 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1474 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1475 u64 comp, delta;
1476 unsigned long flags;
1477 bool neg_adj = false;
1478
1479 if (ppb < 0) {
1480 neg_adj = true;
1481 ppb = -ppb;
1482 }
1483
1484 /* The hardware adds the clock compensation value to the
1485 * PTP clock on every coprocessor clock cycle, so we
1486 * compute the delta in terms of coprocessor clocks.
1487 */
1488 delta = (u64)ppb << 32;
1489 do_div(delta, oct->coproc_clock_rate);
1490
1491 spin_lock_irqsave(&lio->ptp_lock, flags);
1492 comp = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_COMP);
1493 if (neg_adj)
1494 comp -= delta;
1495 else
1496 comp += delta;
1497 lio_pci_writeq(oct, comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1498 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1499
1500 return 0;
1501 }
1502
1503 /**
1504 * \brief Adjust ptp time
1505 * @param ptp PTP clock info
1506 * @param delta how much to adjust by, in nanosecs
1507 */
1508 static int liquidio_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
1509 {
1510 unsigned long flags;
1511 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1512
1513 spin_lock_irqsave(&lio->ptp_lock, flags);
1514 lio->ptp_adjust += delta;
1515 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1516
1517 return 0;
1518 }
1519
1520 /**
1521 * \brief Get hardware clock time, including any adjustment
1522 * @param ptp PTP clock info
1523 * @param ts timespec
1524 */
1525 static int liquidio_ptp_gettime(struct ptp_clock_info *ptp,
1526 struct timespec64 *ts)
1527 {
1528 u64 ns;
1529 u32 remainder;
1530 unsigned long flags;
1531 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1532 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1533
1534 spin_lock_irqsave(&lio->ptp_lock, flags);
1535 ns = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_HI);
1536 ns += lio->ptp_adjust;
1537 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1538
1539 ts->tv_sec = div_u64_rem(ns, 1000000000ULL, &remainder);
1540 ts->tv_nsec = remainder;
1541
1542 return 0;
1543 }
1544
1545 /**
1546 * \brief Set hardware clock time. Reset adjustment
1547 * @param ptp PTP clock info
1548 * @param ts timespec
1549 */
1550 static int liquidio_ptp_settime(struct ptp_clock_info *ptp,
1551 const struct timespec64 *ts)
1552 {
1553 u64 ns;
1554 unsigned long flags;
1555 struct lio *lio = container_of(ptp, struct lio, ptp_info);
1556 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1557
1558 ns = timespec_to_ns(ts);
1559
1560 spin_lock_irqsave(&lio->ptp_lock, flags);
1561 lio_pci_writeq(oct, ns, CN6XXX_MIO_PTP_CLOCK_HI);
1562 lio->ptp_adjust = 0;
1563 spin_unlock_irqrestore(&lio->ptp_lock, flags);
1564
1565 return 0;
1566 }
1567
1568 /**
1569 * \brief Check if PTP is enabled
1570 * @param ptp PTP clock info
1571 * @param rq request
1572 * @param on is it on
1573 */
1574 static int liquidio_ptp_enable(struct ptp_clock_info *ptp,
1575 struct ptp_clock_request *rq, int on)
1576 {
1577 return -EOPNOTSUPP;
1578 }
1579
1580 /**
1581 * \brief Open PTP clock source
1582 * @param netdev network device
1583 */
1584 static void oct_ptp_open(struct net_device *netdev)
1585 {
1586 struct lio *lio = GET_LIO(netdev);
1587 struct octeon_device *oct = (struct octeon_device *)lio->oct_dev;
1588
1589 spin_lock_init(&lio->ptp_lock);
1590
1591 snprintf(lio->ptp_info.name, 16, "%s", netdev->name);
1592 lio->ptp_info.owner = THIS_MODULE;
1593 lio->ptp_info.max_adj = 250000000;
1594 lio->ptp_info.n_alarm = 0;
1595 lio->ptp_info.n_ext_ts = 0;
1596 lio->ptp_info.n_per_out = 0;
1597 lio->ptp_info.pps = 0;
1598 lio->ptp_info.adjfreq = liquidio_ptp_adjfreq;
1599 lio->ptp_info.adjtime = liquidio_ptp_adjtime;
1600 lio->ptp_info.gettime64 = liquidio_ptp_gettime;
1601 lio->ptp_info.settime64 = liquidio_ptp_settime;
1602 lio->ptp_info.enable = liquidio_ptp_enable;
1603
1604 lio->ptp_adjust = 0;
1605
1606 lio->ptp_clock = ptp_clock_register(&lio->ptp_info,
1607 &oct->pci_dev->dev);
1608
1609 if (IS_ERR(lio->ptp_clock))
1610 lio->ptp_clock = NULL;
1611 }
1612
1613 /**
1614 * \brief Init PTP clock
1615 * @param oct octeon device
1616 */
1617 static void liquidio_ptp_init(struct octeon_device *oct)
1618 {
1619 u64 clock_comp, cfg;
1620
1621 clock_comp = (u64)NSEC_PER_SEC << 32;
1622 do_div(clock_comp, oct->coproc_clock_rate);
1623 lio_pci_writeq(oct, clock_comp, CN6XXX_MIO_PTP_CLOCK_COMP);
1624
1625 /* Enable */
1626 cfg = lio_pci_readq(oct, CN6XXX_MIO_PTP_CLOCK_CFG);
1627 lio_pci_writeq(oct, cfg | 0x01, CN6XXX_MIO_PTP_CLOCK_CFG);
1628 }
1629
1630 /**
1631 * \brief Load firmware to device
1632 * @param oct octeon device
1633 *
1634 * Maps device to firmware filename, requests firmware, and downloads it
1635 */
1636 static int load_firmware(struct octeon_device *oct)
1637 {
1638 int ret = 0;
1639 const struct firmware *fw;
1640 char fw_name[LIO_MAX_FW_FILENAME_LEN];
1641 char *tmp_fw_type;
1642
1643 if (strncmp(fw_type, LIO_FW_NAME_TYPE_NONE,
1644 sizeof(LIO_FW_NAME_TYPE_NONE)) == 0) {
1645 dev_info(&oct->pci_dev->dev, "Skipping firmware load\n");
1646 return ret;
1647 }
1648
1649 if (fw_type[0] == '\0')
1650 tmp_fw_type = LIO_FW_NAME_TYPE_NIC;
1651 else
1652 tmp_fw_type = fw_type;
1653
1654 sprintf(fw_name, "%s%s%s_%s%s", LIO_FW_DIR, LIO_FW_BASE_NAME,
1655 octeon_get_conf(oct)->card_name, tmp_fw_type,
1656 LIO_FW_NAME_SUFFIX);
1657
1658 ret = request_firmware(&fw, fw_name, &oct->pci_dev->dev);
1659 if (ret) {
1660 dev_err(&oct->pci_dev->dev, "Request firmware failed. Could not find file %s.\n.",
1661 fw_name);
1662 return ret;
1663 }
1664
1665 ret = octeon_download_firmware(oct, fw->data, fw->size);
1666
1667 release_firmware(fw);
1668
1669 return ret;
1670 }
1671
1672 /**
1673 * \brief Setup output queue
1674 * @param oct octeon device
1675 * @param q_no which queue
1676 * @param num_descs how many descriptors
1677 * @param desc_size size of each descriptor
1678 * @param app_ctx application context
1679 */
1680 static int octeon_setup_droq(struct octeon_device *oct, int q_no, int num_descs,
1681 int desc_size, void *app_ctx)
1682 {
1683 int ret_val = 0;
1684
1685 dev_dbg(&oct->pci_dev->dev, "Creating Droq: %d\n", q_no);
1686 /* droq creation and local register settings. */
1687 ret_val = octeon_create_droq(oct, q_no, num_descs, desc_size, app_ctx);
1688 if (ret_val == -1)
1689 return ret_val;
1690
1691 if (ret_val == 1) {
1692 dev_dbg(&oct->pci_dev->dev, "Using default droq %d\n", q_no);
1693 return 0;
1694 }
1695 /* tasklet creation for the droq */
1696
1697 /* Enable the droq queues */
1698 octeon_set_droq_pkt_op(oct, q_no, 1);
1699
1700 /* Send Credit for Octeon Output queues. Credits are always
1701 * sent after the output queue is enabled.
1702 */
1703 writel(oct->droq[q_no]->max_count,
1704 oct->droq[q_no]->pkts_credit_reg);
1705
1706 return ret_val;
1707 }
1708
1709 /**
1710 * \brief Callback for getting interface configuration
1711 * @param status status of request
1712 * @param buf pointer to resp structure
1713 */
1714 static void if_cfg_callback(struct octeon_device *oct,
1715 u32 status,
1716 void *buf)
1717 {
1718 struct octeon_soft_command *sc = (struct octeon_soft_command *)buf;
1719 struct liquidio_if_cfg_resp *resp;
1720 struct liquidio_if_cfg_context *ctx;
1721
1722 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
1723 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
1724
1725 oct = lio_get_device(ctx->octeon_id);
1726 if (resp->status)
1727 dev_err(&oct->pci_dev->dev, "nic if cfg instruction failed. Status: %llx\n",
1728 CVM_CAST64(resp->status));
1729 ACCESS_ONCE(ctx->cond) = 1;
1730
1731 /* This barrier is required to be sure that the response has been
1732 * written fully before waking up the handler
1733 */
1734 wmb();
1735
1736 wake_up_interruptible(&ctx->wc);
1737 }
1738
1739 /**
1740 * \brief Select queue based on hash
1741 * @param dev Net device
1742 * @param skb sk_buff structure
1743 * @returns selected queue number
1744 */
1745 static u16 select_q(struct net_device *dev, struct sk_buff *skb,
1746 void *accel_priv, select_queue_fallback_t fallback)
1747 {
1748 int qindex;
1749 struct lio *lio;
1750
1751 lio = GET_LIO(dev);
1752 /* select queue on chosen queue_mapping or core */
1753 qindex = skb_rx_queue_recorded(skb) ?
1754 skb_get_rx_queue(skb) : smp_processor_id();
1755 return (u16)(qindex & (lio->linfo.num_txpciq - 1));
1756 }
1757
1758 /** Routine to push packets arriving on Octeon interface upto network layer.
1759 * @param oct_id - octeon device id.
1760 * @param skbuff - skbuff struct to be passed to network layer.
1761 * @param len - size of total data received.
1762 * @param rh - Control header associated with the packet
1763 * @param param - additional control data with the packet
1764 */
1765 static void
1766 liquidio_push_packet(u32 octeon_id,
1767 void *skbuff,
1768 u32 len,
1769 union octeon_rh *rh,
1770 void *param)
1771 {
1772 struct napi_struct *napi = param;
1773 struct octeon_device *oct = lio_get_device(octeon_id);
1774 struct sk_buff *skb = (struct sk_buff *)skbuff;
1775 struct skb_shared_hwtstamps *shhwtstamps;
1776 u64 ns;
1777 struct net_device *netdev =
1778 (struct net_device *)oct->props[rh->r_dh.link].netdev;
1779 struct octeon_droq *droq = container_of(param, struct octeon_droq,
1780 napi);
1781 if (netdev) {
1782 int packet_was_received;
1783 struct lio *lio = GET_LIO(netdev);
1784
1785 /* Do not proceed if the interface is not in RUNNING state. */
1786 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING)) {
1787 recv_buffer_free(skb);
1788 droq->stats.rx_dropped++;
1789 return;
1790 }
1791
1792 skb->dev = netdev;
1793
1794 if (rh->r_dh.has_hwtstamp) {
1795 /* timestamp is included from the hardware at the
1796 * beginning of the packet.
1797 */
1798 if (ifstate_check(lio,
1799 LIO_IFSTATE_RX_TIMESTAMP_ENABLED)) {
1800 /* Nanoseconds are in the first 64-bits
1801 * of the packet.
1802 */
1803 memcpy(&ns, (skb->data), sizeof(ns));
1804 shhwtstamps = skb_hwtstamps(skb);
1805 shhwtstamps->hwtstamp =
1806 ns_to_ktime(ns + lio->ptp_adjust);
1807 }
1808 skb_pull(skb, sizeof(ns));
1809 }
1810
1811 skb->protocol = eth_type_trans(skb, skb->dev);
1812
1813 if ((netdev->features & NETIF_F_RXCSUM) &&
1814 (rh->r_dh.csum_verified == CNNIC_CSUM_VERIFIED))
1815 /* checksum has already been verified */
1816 skb->ip_summed = CHECKSUM_UNNECESSARY;
1817 else
1818 skb->ip_summed = CHECKSUM_NONE;
1819
1820 packet_was_received = napi_gro_receive(napi, skb) != GRO_DROP;
1821
1822 if (packet_was_received) {
1823 droq->stats.rx_bytes_received += len;
1824 droq->stats.rx_pkts_received++;
1825 netdev->last_rx = jiffies;
1826 } else {
1827 droq->stats.rx_dropped++;
1828 netif_info(lio, rx_err, lio->netdev,
1829 "droq:%d error rx_dropped:%llu\n",
1830 droq->q_no, droq->stats.rx_dropped);
1831 }
1832
1833 } else {
1834 recv_buffer_free(skb);
1835 }
1836 }
1837
1838 /**
1839 * \brief wrapper for calling napi_schedule
1840 * @param param parameters to pass to napi_schedule
1841 *
1842 * Used when scheduling on different CPUs
1843 */
1844 static void napi_schedule_wrapper(void *param)
1845 {
1846 struct napi_struct *napi = param;
1847
1848 napi_schedule(napi);
1849 }
1850
1851 /**
1852 * \brief callback when receive interrupt occurs and we are in NAPI mode
1853 * @param arg pointer to octeon output queue
1854 */
1855 static void liquidio_napi_drv_callback(void *arg)
1856 {
1857 struct octeon_droq *droq = arg;
1858 int this_cpu = smp_processor_id();
1859
1860 if (droq->cpu_id == this_cpu) {
1861 napi_schedule(&droq->napi);
1862 } else {
1863 struct call_single_data *csd = &droq->csd;
1864
1865 csd->func = napi_schedule_wrapper;
1866 csd->info = &droq->napi;
1867 csd->flags = 0;
1868
1869 smp_call_function_single_async(droq->cpu_id, csd);
1870 }
1871 }
1872
1873 /**
1874 * \brief Main NAPI poll function
1875 * @param droq octeon output queue
1876 * @param budget maximum number of items to process
1877 */
1878 static int liquidio_napi_do_rx(struct octeon_droq *droq, int budget)
1879 {
1880 int work_done;
1881 struct lio *lio = GET_LIO(droq->napi.dev);
1882 struct octeon_device *oct = lio->oct_dev;
1883
1884 work_done = octeon_process_droq_poll_cmd(oct, droq->q_no,
1885 POLL_EVENT_PROCESS_PKTS,
1886 budget);
1887 if (work_done < 0) {
1888 netif_info(lio, rx_err, lio->netdev,
1889 "Receive work_done < 0, rxq:%d\n", droq->q_no);
1890 goto octnet_napi_finish;
1891 }
1892
1893 if (work_done > budget)
1894 dev_err(&oct->pci_dev->dev, ">>>> %s work_done: %d budget: %d\n",
1895 __func__, work_done, budget);
1896
1897 return work_done;
1898
1899 octnet_napi_finish:
1900 napi_complete(&droq->napi);
1901 octeon_process_droq_poll_cmd(oct, droq->q_no, POLL_EVENT_ENABLE_INTR,
1902 0);
1903 return 0;
1904 }
1905
1906 /**
1907 * \brief Entry point for NAPI polling
1908 * @param napi NAPI structure
1909 * @param budget maximum number of items to process
1910 */
1911 static int liquidio_napi_poll(struct napi_struct *napi, int budget)
1912 {
1913 struct octeon_droq *droq;
1914 int work_done;
1915
1916 droq = container_of(napi, struct octeon_droq, napi);
1917
1918 work_done = liquidio_napi_do_rx(droq, budget);
1919
1920 if (work_done < budget) {
1921 napi_complete(napi);
1922 octeon_process_droq_poll_cmd(droq->oct_dev, droq->q_no,
1923 POLL_EVENT_ENABLE_INTR, 0);
1924 return 0;
1925 }
1926
1927 return work_done;
1928 }
1929
1930 /**
1931 * \brief Setup input and output queues
1932 * @param octeon_dev octeon device
1933 * @param net_device Net device
1934 *
1935 * Note: Queues are with respect to the octeon device. Thus
1936 * an input queue is for egress packets, and output queues
1937 * are for ingress packets.
1938 */
1939 static inline int setup_io_queues(struct octeon_device *octeon_dev,
1940 struct net_device *net_device)
1941 {
1942 static int first_time = 1;
1943 static struct octeon_droq_ops droq_ops;
1944 static int cpu_id;
1945 static int cpu_id_modulus;
1946 struct octeon_droq *droq;
1947 struct napi_struct *napi;
1948 int q, q_no, retval = 0;
1949 struct lio *lio;
1950 int num_tx_descs;
1951
1952 lio = GET_LIO(net_device);
1953 if (first_time) {
1954 first_time = 0;
1955 memset(&droq_ops, 0, sizeof(struct octeon_droq_ops));
1956
1957 droq_ops.fptr = liquidio_push_packet;
1958
1959 droq_ops.poll_mode = 1;
1960 droq_ops.napi_fn = liquidio_napi_drv_callback;
1961 cpu_id = 0;
1962 cpu_id_modulus = num_present_cpus();
1963 }
1964
1965 /* set up DROQs. */
1966 for (q = 0; q < lio->linfo.num_rxpciq; q++) {
1967 q_no = lio->linfo.rxpciq[q];
1968
1969 retval = octeon_setup_droq(octeon_dev, q_no,
1970 CFG_GET_NUM_RX_DESCS_NIC_IF
1971 (octeon_get_conf(octeon_dev),
1972 lio->ifidx),
1973 CFG_GET_NUM_RX_BUF_SIZE_NIC_IF
1974 (octeon_get_conf(octeon_dev),
1975 lio->ifidx), NULL);
1976 if (retval) {
1977 dev_err(&octeon_dev->pci_dev->dev,
1978 " %s : Runtime DROQ(RxQ) creation failed.\n",
1979 __func__);
1980 return 1;
1981 }
1982
1983 droq = octeon_dev->droq[q_no];
1984 napi = &droq->napi;
1985 netif_napi_add(net_device, napi, liquidio_napi_poll, 64);
1986
1987 /* designate a CPU for this droq */
1988 droq->cpu_id = cpu_id;
1989 cpu_id++;
1990 if (cpu_id >= cpu_id_modulus)
1991 cpu_id = 0;
1992
1993 octeon_register_droq_ops(octeon_dev, q_no, &droq_ops);
1994 }
1995
1996 /* set up IQs. */
1997 for (q = 0; q < lio->linfo.num_txpciq; q++) {
1998 num_tx_descs = CFG_GET_NUM_TX_DESCS_NIC_IF(octeon_get_conf
1999 (octeon_dev),
2000 lio->ifidx);
2001 retval = octeon_setup_iq(octeon_dev, lio->linfo.txpciq[q],
2002 num_tx_descs,
2003 netdev_get_tx_queue(net_device, q));
2004 if (retval) {
2005 dev_err(&octeon_dev->pci_dev->dev,
2006 " %s : Runtime IQ(TxQ) creation failed.\n",
2007 __func__);
2008 return 1;
2009 }
2010 }
2011
2012 return 0;
2013 }
2014
2015 /**
2016 * \brief Poll routine for checking transmit queue status
2017 * @param work work_struct data structure
2018 */
2019 static void octnet_poll_check_txq_status(struct work_struct *work)
2020 {
2021 struct cavium_wk *wk = (struct cavium_wk *)work;
2022 struct lio *lio = (struct lio *)wk->ctxptr;
2023
2024 if (!ifstate_check(lio, LIO_IFSTATE_RUNNING))
2025 return;
2026
2027 check_txq_status(lio);
2028 queue_delayed_work(lio->txq_status_wq.wq,
2029 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2030 }
2031
2032 /**
2033 * \brief Sets up the txq poll check
2034 * @param netdev network device
2035 */
2036 static inline void setup_tx_poll_fn(struct net_device *netdev)
2037 {
2038 struct lio *lio = GET_LIO(netdev);
2039 struct octeon_device *oct = lio->oct_dev;
2040
2041 lio->txq_status_wq.wq = create_workqueue("txq-status");
2042 if (!lio->txq_status_wq.wq) {
2043 dev_err(&oct->pci_dev->dev, "unable to create cavium txq status wq\n");
2044 return;
2045 }
2046 INIT_DELAYED_WORK(&lio->txq_status_wq.wk.work,
2047 octnet_poll_check_txq_status);
2048 lio->txq_status_wq.wk.ctxptr = lio;
2049 queue_delayed_work(lio->txq_status_wq.wq,
2050 &lio->txq_status_wq.wk.work, msecs_to_jiffies(1));
2051 }
2052
2053 /**
2054 * \brief Net device open for LiquidIO
2055 * @param netdev network device
2056 */
2057 static int liquidio_open(struct net_device *netdev)
2058 {
2059 struct lio *lio = GET_LIO(netdev);
2060 struct octeon_device *oct = lio->oct_dev;
2061 struct napi_struct *napi, *n;
2062
2063 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2064 napi_enable(napi);
2065
2066 oct_ptp_open(netdev);
2067
2068 ifstate_set(lio, LIO_IFSTATE_RUNNING);
2069 setup_tx_poll_fn(netdev);
2070 start_txq(netdev);
2071
2072 netif_info(lio, ifup, lio->netdev, "Interface Open, ready for traffic\n");
2073 try_module_get(THIS_MODULE);
2074
2075 /* tell Octeon to start forwarding packets to host */
2076 send_rx_ctrl_cmd(lio, 1);
2077
2078 /* Ready for link status updates */
2079 lio->intf_open = 1;
2080
2081 dev_info(&oct->pci_dev->dev, "%s interface is opened\n",
2082 netdev->name);
2083
2084 return 0;
2085 }
2086
2087 /**
2088 * \brief Net device stop for LiquidIO
2089 * @param netdev network device
2090 */
2091 static int liquidio_stop(struct net_device *netdev)
2092 {
2093 struct napi_struct *napi, *n;
2094 struct lio *lio = GET_LIO(netdev);
2095 struct octeon_device *oct = lio->oct_dev;
2096
2097 netif_info(lio, ifdown, lio->netdev, "Stopping interface!\n");
2098 /* Inform that netif carrier is down */
2099 lio->intf_open = 0;
2100 lio->linfo.link.s.status = 0;
2101
2102 netif_carrier_off(netdev);
2103
2104 /* tell Octeon to stop forwarding packets to host */
2105 send_rx_ctrl_cmd(lio, 0);
2106
2107 cancel_delayed_work_sync(&lio->txq_status_wq.wk.work);
2108 flush_workqueue(lio->txq_status_wq.wq);
2109 destroy_workqueue(lio->txq_status_wq.wq);
2110
2111 if (lio->ptp_clock) {
2112 ptp_clock_unregister(lio->ptp_clock);
2113 lio->ptp_clock = NULL;
2114 }
2115
2116 ifstate_reset(lio, LIO_IFSTATE_RUNNING);
2117
2118 /* This is a hack that allows DHCP to continue working. */
2119 set_bit(__LINK_STATE_START, &lio->netdev->state);
2120
2121 list_for_each_entry_safe(napi, n, &netdev->napi_list, dev_list)
2122 napi_disable(napi);
2123
2124 txqs_stop(netdev);
2125
2126 dev_info(&oct->pci_dev->dev, "%s interface is stopped\n", netdev->name);
2127 module_put(THIS_MODULE);
2128
2129 return 0;
2130 }
2131
2132 void liquidio_link_ctrl_cmd_completion(void *nctrl_ptr)
2133 {
2134 struct octnic_ctrl_pkt *nctrl = (struct octnic_ctrl_pkt *)nctrl_ptr;
2135 struct net_device *netdev = (struct net_device *)nctrl->netpndev;
2136 struct lio *lio = GET_LIO(netdev);
2137 struct octeon_device *oct = lio->oct_dev;
2138
2139 switch (nctrl->ncmd.s.cmd) {
2140 case OCTNET_CMD_CHANGE_DEVFLAGS:
2141 case OCTNET_CMD_SET_MULTI_LIST:
2142 break;
2143
2144 case OCTNET_CMD_CHANGE_MACADDR:
2145 /* If command is successful, change the MACADDR. */
2146 netif_info(lio, probe, lio->netdev, " MACAddr changed to 0x%llx\n",
2147 CVM_CAST64(nctrl->udd[0]));
2148 dev_info(&oct->pci_dev->dev, "%s MACAddr changed to 0x%llx\n",
2149 netdev->name, CVM_CAST64(nctrl->udd[0]));
2150 memcpy(netdev->dev_addr, ((u8 *)&nctrl->udd[0]) + 2, ETH_ALEN);
2151 break;
2152
2153 case OCTNET_CMD_CHANGE_MTU:
2154 /* If command is successful, change the MTU. */
2155 netif_info(lio, probe, lio->netdev, " MTU Changed from %d to %d\n",
2156 netdev->mtu, nctrl->ncmd.s.param2);
2157 dev_info(&oct->pci_dev->dev, "%s MTU Changed from %d to %d\n",
2158 netdev->name, netdev->mtu,
2159 nctrl->ncmd.s.param2);
2160 netdev->mtu = nctrl->ncmd.s.param2;
2161 break;
2162
2163 case OCTNET_CMD_GPIO_ACCESS:
2164 netif_info(lio, probe, lio->netdev, "LED Flashing visual identification\n");
2165
2166 break;
2167
2168 case OCTNET_CMD_LRO_ENABLE:
2169 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2170 break;
2171
2172 case OCTNET_CMD_LRO_DISABLE:
2173 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2174 netdev->name);
2175 break;
2176
2177 case OCTNET_CMD_VERBOSE_ENABLE:
2178 dev_info(&oct->pci_dev->dev, "%s LRO Enabled\n", netdev->name);
2179 break;
2180
2181 case OCTNET_CMD_VERBOSE_DISABLE:
2182 dev_info(&oct->pci_dev->dev, "%s LRO Disabled\n",
2183 netdev->name);
2184 break;
2185
2186 case OCTNET_CMD_SET_SETTINGS:
2187 dev_info(&oct->pci_dev->dev, "%s settings changed\n",
2188 netdev->name);
2189
2190 break;
2191
2192 default:
2193 dev_err(&oct->pci_dev->dev, "%s Unknown cmd %d\n", __func__,
2194 nctrl->ncmd.s.cmd);
2195 }
2196 }
2197
2198 /**
2199 * \brief Converts a mask based on net device flags
2200 * @param netdev network device
2201 *
2202 * This routine generates a octnet_ifflags mask from the net device flags
2203 * received from the OS.
2204 */
2205 static inline enum octnet_ifflags get_new_flags(struct net_device *netdev)
2206 {
2207 enum octnet_ifflags f = OCTNET_IFFLAG_UNICAST;
2208
2209 if (netdev->flags & IFF_PROMISC)
2210 f |= OCTNET_IFFLAG_PROMISC;
2211
2212 if (netdev->flags & IFF_ALLMULTI)
2213 f |= OCTNET_IFFLAG_ALLMULTI;
2214
2215 if (netdev->flags & IFF_MULTICAST) {
2216 f |= OCTNET_IFFLAG_MULTICAST;
2217
2218 /* Accept all multicast addresses if there are more than we
2219 * can handle
2220 */
2221 if (netdev_mc_count(netdev) > MAX_OCTEON_MULTICAST_ADDR)
2222 f |= OCTNET_IFFLAG_ALLMULTI;
2223 }
2224
2225 if (netdev->flags & IFF_BROADCAST)
2226 f |= OCTNET_IFFLAG_BROADCAST;
2227
2228 return f;
2229 }
2230
2231 /**
2232 * \brief Net device set_multicast_list
2233 * @param netdev network device
2234 */
2235 static void liquidio_set_mcast_list(struct net_device *netdev)
2236 {
2237 struct lio *lio = GET_LIO(netdev);
2238 struct octeon_device *oct = lio->oct_dev;
2239 struct octnic_ctrl_pkt nctrl;
2240 struct octnic_ctrl_params nparams;
2241 struct netdev_hw_addr *ha;
2242 u64 *mc;
2243 int ret, i;
2244 int mc_count = min(netdev_mc_count(netdev), MAX_OCTEON_MULTICAST_ADDR);
2245
2246 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2247
2248 /* Create a ctrl pkt command to be sent to core app. */
2249 nctrl.ncmd.u64 = 0;
2250 nctrl.ncmd.s.cmd = OCTNET_CMD_SET_MULTI_LIST;
2251 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2252 nctrl.ncmd.s.param2 = get_new_flags(netdev);
2253 nctrl.ncmd.s.param3 = mc_count;
2254 nctrl.ncmd.s.more = mc_count;
2255 nctrl.netpndev = (u64)netdev;
2256 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2257
2258 /* copy all the addresses into the udd */
2259 i = 0;
2260 mc = &nctrl.udd[0];
2261 netdev_for_each_mc_addr(ha, netdev) {
2262 *mc = 0;
2263 memcpy(((u8 *)mc) + 2, ha->addr, ETH_ALEN);
2264 /* no need to swap bytes */
2265
2266 if (++mc > &nctrl.udd[mc_count])
2267 break;
2268 }
2269
2270 /* Apparently, any activity in this call from the kernel has to
2271 * be atomic. So we won't wait for response.
2272 */
2273 nctrl.wait_time = 0;
2274
2275 nparams.resp_order = OCTEON_RESP_NORESPONSE;
2276
2277 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2278 if (ret < 0) {
2279 dev_err(&oct->pci_dev->dev, "DEVFLAGS change failed in core (ret: 0x%x)\n",
2280 ret);
2281 }
2282 }
2283
2284 /**
2285 * \brief Net device set_mac_address
2286 * @param netdev network device
2287 */
2288 static int liquidio_set_mac(struct net_device *netdev, void *p)
2289 {
2290 int ret = 0;
2291 struct lio *lio = GET_LIO(netdev);
2292 struct octeon_device *oct = lio->oct_dev;
2293 struct sockaddr *addr = (struct sockaddr *)p;
2294 struct octnic_ctrl_pkt nctrl;
2295 struct octnic_ctrl_params nparams;
2296
2297 if ((!is_valid_ether_addr(addr->sa_data)) ||
2298 (ifstate_check(lio, LIO_IFSTATE_RUNNING)))
2299 return -EADDRNOTAVAIL;
2300
2301 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2302
2303 nctrl.ncmd.u64 = 0;
2304 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MACADDR;
2305 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2306 nctrl.ncmd.s.param2 = 0;
2307 nctrl.ncmd.s.more = 1;
2308 nctrl.netpndev = (u64)netdev;
2309 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2310 nctrl.wait_time = 100;
2311
2312 nctrl.udd[0] = 0;
2313 /* The MAC Address is presented in network byte order. */
2314 memcpy((u8 *)&nctrl.udd[0] + 2, addr->sa_data, ETH_ALEN);
2315
2316 nparams.resp_order = OCTEON_RESP_ORDERED;
2317
2318 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2319 if (ret < 0) {
2320 dev_err(&oct->pci_dev->dev, "MAC Address change failed\n");
2321 return -ENOMEM;
2322 }
2323 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2324 memcpy(((u8 *)&lio->linfo.hw_addr) + 2, addr->sa_data, ETH_ALEN);
2325
2326 return 0;
2327 }
2328
2329 /**
2330 * \brief Net device get_stats
2331 * @param netdev network device
2332 */
2333 static struct net_device_stats *liquidio_get_stats(struct net_device *netdev)
2334 {
2335 struct lio *lio = GET_LIO(netdev);
2336 struct net_device_stats *stats = &netdev->stats;
2337 struct octeon_device *oct;
2338 u64 pkts = 0, drop = 0, bytes = 0;
2339 struct oct_droq_stats *oq_stats;
2340 struct oct_iq_stats *iq_stats;
2341 int i, iq_no, oq_no;
2342
2343 oct = lio->oct_dev;
2344
2345 for (i = 0; i < lio->linfo.num_txpciq; i++) {
2346 iq_no = lio->linfo.txpciq[i];
2347 iq_stats = &oct->instr_queue[iq_no]->stats;
2348 pkts += iq_stats->tx_done;
2349 drop += iq_stats->tx_dropped;
2350 bytes += iq_stats->tx_tot_bytes;
2351 }
2352
2353 stats->tx_packets = pkts;
2354 stats->tx_bytes = bytes;
2355 stats->tx_dropped = drop;
2356
2357 pkts = 0;
2358 drop = 0;
2359 bytes = 0;
2360
2361 for (i = 0; i < lio->linfo.num_rxpciq; i++) {
2362 oq_no = lio->linfo.rxpciq[i];
2363 oq_stats = &oct->droq[oq_no]->stats;
2364 pkts += oq_stats->rx_pkts_received;
2365 drop += (oq_stats->rx_dropped +
2366 oq_stats->dropped_nodispatch +
2367 oq_stats->dropped_toomany +
2368 oq_stats->dropped_nomem);
2369 bytes += oq_stats->rx_bytes_received;
2370 }
2371
2372 stats->rx_bytes = bytes;
2373 stats->rx_packets = pkts;
2374 stats->rx_dropped = drop;
2375
2376 return stats;
2377 }
2378
2379 /**
2380 * \brief Net device change_mtu
2381 * @param netdev network device
2382 */
2383 static int liquidio_change_mtu(struct net_device *netdev, int new_mtu)
2384 {
2385 struct lio *lio = GET_LIO(netdev);
2386 struct octeon_device *oct = lio->oct_dev;
2387 struct octnic_ctrl_pkt nctrl;
2388 struct octnic_ctrl_params nparams;
2389 int max_frm_size = new_mtu + OCTNET_FRM_HEADER_SIZE;
2390 int ret = 0;
2391
2392 /* Limit the MTU to make sure the ethernet packets are between 64 bytes
2393 * and 65535 bytes
2394 */
2395 if ((max_frm_size < OCTNET_MIN_FRM_SIZE) ||
2396 (max_frm_size > OCTNET_MAX_FRM_SIZE)) {
2397 dev_err(&oct->pci_dev->dev, "Invalid MTU: %d\n", new_mtu);
2398 dev_err(&oct->pci_dev->dev, "Valid range %d and %d\n",
2399 (OCTNET_MIN_FRM_SIZE - OCTNET_FRM_HEADER_SIZE),
2400 (OCTNET_MAX_FRM_SIZE - OCTNET_FRM_HEADER_SIZE));
2401 return -EINVAL;
2402 }
2403
2404 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2405
2406 nctrl.ncmd.u64 = 0;
2407 nctrl.ncmd.s.cmd = OCTNET_CMD_CHANGE_MTU;
2408 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2409 nctrl.ncmd.s.param2 = new_mtu;
2410 nctrl.wait_time = 100;
2411 nctrl.netpndev = (u64)netdev;
2412 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2413
2414 nparams.resp_order = OCTEON_RESP_ORDERED;
2415
2416 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2417 if (ret < 0) {
2418 dev_err(&oct->pci_dev->dev, "Failed to set MTU\n");
2419 return -1;
2420 }
2421
2422 lio->mtu = new_mtu;
2423
2424 return 0;
2425 }
2426
2427 /**
2428 * \brief Handler for SIOCSHWTSTAMP ioctl
2429 * @param netdev network device
2430 * @param ifr interface request
2431 * @param cmd command
2432 */
2433 static int hwtstamp_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2434 {
2435 struct hwtstamp_config conf;
2436 struct lio *lio = GET_LIO(netdev);
2437
2438 if (copy_from_user(&conf, ifr->ifr_data, sizeof(conf)))
2439 return -EFAULT;
2440
2441 if (conf.flags)
2442 return -EINVAL;
2443
2444 switch (conf.tx_type) {
2445 case HWTSTAMP_TX_ON:
2446 case HWTSTAMP_TX_OFF:
2447 break;
2448 default:
2449 return -ERANGE;
2450 }
2451
2452 switch (conf.rx_filter) {
2453 case HWTSTAMP_FILTER_NONE:
2454 break;
2455 case HWTSTAMP_FILTER_ALL:
2456 case HWTSTAMP_FILTER_SOME:
2457 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2458 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2459 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2460 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2461 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2462 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2463 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2464 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2465 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2466 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2467 case HWTSTAMP_FILTER_PTP_V2_SYNC:
2468 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2469 conf.rx_filter = HWTSTAMP_FILTER_ALL;
2470 break;
2471 default:
2472 return -ERANGE;
2473 }
2474
2475 if (conf.rx_filter == HWTSTAMP_FILTER_ALL)
2476 ifstate_set(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2477
2478 else
2479 ifstate_reset(lio, LIO_IFSTATE_RX_TIMESTAMP_ENABLED);
2480
2481 return copy_to_user(ifr->ifr_data, &conf, sizeof(conf)) ? -EFAULT : 0;
2482 }
2483
2484 /**
2485 * \brief ioctl handler
2486 * @param netdev network device
2487 * @param ifr interface request
2488 * @param cmd command
2489 */
2490 static int liquidio_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2491 {
2492 switch (cmd) {
2493 case SIOCSHWTSTAMP:
2494 return hwtstamp_ioctl(netdev, ifr, cmd);
2495 default:
2496 return -EOPNOTSUPP;
2497 }
2498 }
2499
2500 /**
2501 * \brief handle a Tx timestamp response
2502 * @param status response status
2503 * @param buf pointer to skb
2504 */
2505 static void handle_timestamp(struct octeon_device *oct,
2506 u32 status,
2507 void *buf)
2508 {
2509 struct octnet_buf_free_info *finfo;
2510 struct octeon_soft_command *sc;
2511 struct oct_timestamp_resp *resp;
2512 struct lio *lio;
2513 struct sk_buff *skb = (struct sk_buff *)buf;
2514
2515 finfo = (struct octnet_buf_free_info *)skb->cb;
2516 lio = finfo->lio;
2517 sc = finfo->sc;
2518 oct = lio->oct_dev;
2519 resp = (struct oct_timestamp_resp *)sc->virtrptr;
2520
2521 if (status != OCTEON_REQUEST_DONE) {
2522 dev_err(&oct->pci_dev->dev, "Tx timestamp instruction failed. Status: %llx\n",
2523 CVM_CAST64(status));
2524 resp->timestamp = 0;
2525 }
2526
2527 octeon_swap_8B_data(&resp->timestamp, 1);
2528
2529 if (unlikely((skb_shinfo(skb)->tx_flags | SKBTX_IN_PROGRESS) != 0)) {
2530 struct skb_shared_hwtstamps ts;
2531 u64 ns = resp->timestamp;
2532
2533 netif_info(lio, tx_done, lio->netdev,
2534 "Got resulting SKBTX_HW_TSTAMP skb=%p ns=%016llu\n",
2535 skb, (unsigned long long)ns);
2536 ts.hwtstamp = ns_to_ktime(ns + lio->ptp_adjust);
2537 skb_tstamp_tx(skb, &ts);
2538 }
2539
2540 octeon_free_soft_command(oct, sc);
2541 recv_buffer_free(skb);
2542 }
2543
2544 /* \brief Send a data packet that will be timestamped
2545 * @param oct octeon device
2546 * @param ndata pointer to network data
2547 * @param finfo pointer to private network data
2548 */
2549 static inline int send_nic_timestamp_pkt(struct octeon_device *oct,
2550 struct octnic_data_pkt *ndata,
2551 struct octnet_buf_free_info *finfo,
2552 int xmit_more)
2553 {
2554 int retval;
2555 struct octeon_soft_command *sc;
2556 struct octeon_instr_ih *ih;
2557 struct octeon_instr_rdp *rdp;
2558 struct lio *lio;
2559 int ring_doorbell;
2560
2561 lio = finfo->lio;
2562
2563 sc = octeon_alloc_soft_command_resp(oct, &ndata->cmd,
2564 sizeof(struct oct_timestamp_resp));
2565 finfo->sc = sc;
2566
2567 if (!sc) {
2568 dev_err(&oct->pci_dev->dev, "No memory for timestamped data packet\n");
2569 return IQ_SEND_FAILED;
2570 }
2571
2572 if (ndata->reqtype == REQTYPE_NORESP_NET)
2573 ndata->reqtype = REQTYPE_RESP_NET;
2574 else if (ndata->reqtype == REQTYPE_NORESP_NET_SG)
2575 ndata->reqtype = REQTYPE_RESP_NET_SG;
2576
2577 sc->callback = handle_timestamp;
2578 sc->callback_arg = finfo->skb;
2579 sc->iq_no = ndata->q_no;
2580
2581 ih = (struct octeon_instr_ih *)&sc->cmd.ih;
2582 rdp = (struct octeon_instr_rdp *)&sc->cmd.rdp;
2583
2584 ring_doorbell = !xmit_more;
2585 retval = octeon_send_command(oct, sc->iq_no, ring_doorbell, &sc->cmd,
2586 sc, ih->dlengsz, ndata->reqtype);
2587
2588 if (retval) {
2589 dev_err(&oct->pci_dev->dev, "timestamp data packet failed status: %x\n",
2590 retval);
2591 octeon_free_soft_command(oct, sc);
2592 } else {
2593 netif_info(lio, tx_queued, lio->netdev, "Queued timestamp packet\n");
2594 }
2595
2596 return retval;
2597 }
2598
2599 static inline int is_ipv4(struct sk_buff *skb)
2600 {
2601 return (skb->protocol == htons(ETH_P_IP)) &&
2602 (ip_hdr(skb)->version == 4);
2603 }
2604
2605 static inline int is_vlan(struct sk_buff *skb)
2606 {
2607 return skb->protocol == htons(ETH_P_8021Q);
2608 }
2609
2610 static inline int is_ip_fragmented(struct sk_buff *skb)
2611 {
2612 /* The Don't fragment and Reserved flag fields are ignored.
2613 * IP is fragmented if
2614 * - the More fragments bit is set (indicating this IP is a fragment
2615 * with more to follow; the current offset could be 0 ).
2616 * - ths offset field is non-zero.
2617 */
2618 return (ip_hdr(skb)->frag_off & htons(IP_MF | IP_OFFSET)) ? 1 : 0;
2619 }
2620
2621 static inline int is_ipv6(struct sk_buff *skb)
2622 {
2623 return (skb->protocol == htons(ETH_P_IPV6)) &&
2624 (ipv6_hdr(skb)->version == 6);
2625 }
2626
2627 static inline int is_with_extn_hdr(struct sk_buff *skb)
2628 {
2629 return (ipv6_hdr(skb)->nexthdr != IPPROTO_TCP) &&
2630 (ipv6_hdr(skb)->nexthdr != IPPROTO_UDP);
2631 }
2632
2633 static inline int is_tcpudp(struct sk_buff *skb)
2634 {
2635 return (ip_hdr(skb)->protocol == IPPROTO_TCP) ||
2636 (ip_hdr(skb)->protocol == IPPROTO_UDP);
2637 }
2638
2639 static inline u32 get_ipv4_5tuple_tag(struct sk_buff *skb)
2640 {
2641 u32 tag;
2642 struct iphdr *iphdr = ip_hdr(skb);
2643
2644 tag = crc32(0, &iphdr->protocol, 1);
2645 tag = crc32(tag, (u8 *)&iphdr->saddr, 8);
2646 tag = crc32(tag, skb_transport_header(skb), 4);
2647 return tag;
2648 }
2649
2650 static inline u32 get_ipv6_5tuple_tag(struct sk_buff *skb)
2651 {
2652 u32 tag;
2653 struct ipv6hdr *ipv6hdr = ipv6_hdr(skb);
2654
2655 tag = crc32(0, &ipv6hdr->nexthdr, 1);
2656 tag = crc32(tag, (u8 *)&ipv6hdr->saddr, 32);
2657 tag = crc32(tag, skb_transport_header(skb), 4);
2658 return tag;
2659 }
2660
2661 /** \brief Transmit networks packets to the Octeon interface
2662 * @param skbuff skbuff struct to be passed to network layer.
2663 * @param netdev pointer to network device
2664 * @returns whether the packet was transmitted to the device okay or not
2665 * (NETDEV_TX_OK or NETDEV_TX_BUSY)
2666 */
2667 static int liquidio_xmit(struct sk_buff *skb, struct net_device *netdev)
2668 {
2669 struct lio *lio;
2670 struct octnet_buf_free_info *finfo;
2671 union octnic_cmd_setup cmdsetup;
2672 struct octnic_data_pkt ndata;
2673 struct octeon_device *oct;
2674 struct oct_iq_stats *stats;
2675 int cpu = 0, status = 0;
2676 int q_idx = 0, iq_no = 0;
2677 int xmit_more;
2678 u32 tag = 0;
2679
2680 lio = GET_LIO(netdev);
2681 oct = lio->oct_dev;
2682
2683 if (netif_is_multiqueue(netdev)) {
2684 cpu = skb->queue_mapping;
2685 q_idx = (cpu & (lio->linfo.num_txpciq - 1));
2686 iq_no = lio->linfo.txpciq[q_idx];
2687 } else {
2688 iq_no = lio->txq;
2689 }
2690
2691 stats = &oct->instr_queue[iq_no]->stats;
2692
2693 /* Check for all conditions in which the current packet cannot be
2694 * transmitted.
2695 */
2696 if (!(atomic_read(&lio->ifstate) & LIO_IFSTATE_RUNNING) ||
2697 (!lio->linfo.link.s.status) ||
2698 (skb->len <= 0)) {
2699 netif_info(lio, tx_err, lio->netdev,
2700 "Transmit failed link_status : %d\n",
2701 lio->linfo.link.s.status);
2702 goto lio_xmit_failed;
2703 }
2704
2705 /* Use space in skb->cb to store info used to unmap and
2706 * free the buffers.
2707 */
2708 finfo = (struct octnet_buf_free_info *)skb->cb;
2709 finfo->lio = lio;
2710 finfo->skb = skb;
2711 finfo->sc = NULL;
2712
2713 /* Prepare the attributes for the data to be passed to OSI. */
2714 memset(&ndata, 0, sizeof(struct octnic_data_pkt));
2715
2716 ndata.buf = (void *)finfo;
2717
2718 ndata.q_no = iq_no;
2719
2720 if (netif_is_multiqueue(netdev)) {
2721 if (octnet_iq_is_full(oct, ndata.q_no)) {
2722 /* defer sending if queue is full */
2723 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2724 ndata.q_no);
2725 stats->tx_iq_busy++;
2726 return NETDEV_TX_BUSY;
2727 }
2728 } else {
2729 if (octnet_iq_is_full(oct, lio->txq)) {
2730 /* defer sending if queue is full */
2731 stats->tx_iq_busy++;
2732 netif_info(lio, tx_err, lio->netdev, "Transmit failed iq:%d full\n",
2733 ndata.q_no);
2734 return NETDEV_TX_BUSY;
2735 }
2736 }
2737 /* pr_info(" XMIT - valid Qs: %d, 1st Q no: %d, cpu: %d, q_no:%d\n",
2738 * lio->linfo.num_txpciq, lio->txq, cpu, ndata.q_no );
2739 */
2740
2741 ndata.datasize = skb->len;
2742
2743 cmdsetup.u64 = 0;
2744 cmdsetup.s.ifidx = lio->linfo.ifidx;
2745
2746 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2747 if (is_ipv4(skb) && !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2748 tag = get_ipv4_5tuple_tag(skb);
2749
2750 cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2751
2752 if (ip_hdr(skb)->ihl > 5)
2753 cmdsetup.s.ipv4opts_ipv6exthdr =
2754 OCT_PKT_PARAM_IPV4OPTS;
2755
2756 } else if (is_ipv6(skb)) {
2757 tag = get_ipv6_5tuple_tag(skb);
2758
2759 cmdsetup.s.cksum_offset = sizeof(struct ethhdr) + 1;
2760
2761 if (is_with_extn_hdr(skb))
2762 cmdsetup.s.ipv4opts_ipv6exthdr =
2763 OCT_PKT_PARAM_IPV6EXTHDR;
2764
2765 } else if (is_vlan(skb)) {
2766 if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2767 == htons(ETH_P_IP) &&
2768 !is_ip_fragmented(skb) && is_tcpudp(skb)) {
2769 tag = get_ipv4_5tuple_tag(skb);
2770
2771 cmdsetup.s.cksum_offset =
2772 sizeof(struct vlan_ethhdr) + 1;
2773
2774 if (ip_hdr(skb)->ihl > 5)
2775 cmdsetup.s.ipv4opts_ipv6exthdr =
2776 OCT_PKT_PARAM_IPV4OPTS;
2777
2778 } else if (vlan_eth_hdr(skb)->h_vlan_encapsulated_proto
2779 == htons(ETH_P_IPV6)) {
2780 tag = get_ipv6_5tuple_tag(skb);
2781
2782 cmdsetup.s.cksum_offset =
2783 sizeof(struct vlan_ethhdr) + 1;
2784
2785 if (is_with_extn_hdr(skb))
2786 cmdsetup.s.ipv4opts_ipv6exthdr =
2787 OCT_PKT_PARAM_IPV6EXTHDR;
2788 }
2789 }
2790 }
2791 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
2792 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2793 cmdsetup.s.timestamp = 1;
2794 }
2795
2796 if (skb_shinfo(skb)->nr_frags == 0) {
2797 cmdsetup.s.u.datasize = skb->len;
2798 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2799 /* Offload checksum calculation for TCP/UDP packets */
2800 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2801 skb->data,
2802 skb->len,
2803 DMA_TO_DEVICE);
2804 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2805 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 1\n",
2806 __func__);
2807 return NETDEV_TX_BUSY;
2808 }
2809
2810 finfo->dptr = ndata.cmd.dptr;
2811
2812 ndata.reqtype = REQTYPE_NORESP_NET;
2813
2814 } else {
2815 int i, frags;
2816 struct skb_frag_struct *frag;
2817 struct octnic_gather *g;
2818
2819 spin_lock(&lio->lock);
2820 g = (struct octnic_gather *)list_delete_head(&lio->glist);
2821 spin_unlock(&lio->lock);
2822
2823 if (!g) {
2824 netif_info(lio, tx_err, lio->netdev,
2825 "Transmit scatter gather: glist null!\n");
2826 goto lio_xmit_failed;
2827 }
2828
2829 cmdsetup.s.gather = 1;
2830 cmdsetup.s.u.gatherptrs = (skb_shinfo(skb)->nr_frags + 1);
2831 octnet_prepare_pci_cmd(&ndata.cmd, &cmdsetup, tag);
2832
2833 memset(g->sg, 0, g->sg_size);
2834
2835 g->sg[0].ptr[0] = dma_map_single(&oct->pci_dev->dev,
2836 skb->data,
2837 (skb->len - skb->data_len),
2838 DMA_TO_DEVICE);
2839 if (dma_mapping_error(&oct->pci_dev->dev, g->sg[0].ptr[0])) {
2840 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 2\n",
2841 __func__);
2842 return NETDEV_TX_BUSY;
2843 }
2844 add_sg_size(&g->sg[0], (skb->len - skb->data_len), 0);
2845
2846 frags = skb_shinfo(skb)->nr_frags;
2847 i = 1;
2848 while (frags--) {
2849 frag = &skb_shinfo(skb)->frags[i - 1];
2850
2851 g->sg[(i >> 2)].ptr[(i & 3)] =
2852 dma_map_page(&oct->pci_dev->dev,
2853 frag->page.p,
2854 frag->page_offset,
2855 frag->size,
2856 DMA_TO_DEVICE);
2857
2858 add_sg_size(&g->sg[(i >> 2)], frag->size, (i & 3));
2859 i++;
2860 }
2861
2862 ndata.cmd.dptr = dma_map_single(&oct->pci_dev->dev,
2863 g->sg, g->sg_size,
2864 DMA_TO_DEVICE);
2865 if (dma_mapping_error(&oct->pci_dev->dev, ndata.cmd.dptr)) {
2866 dev_err(&oct->pci_dev->dev, "%s DMA mapping error 3\n",
2867 __func__);
2868 dma_unmap_single(&oct->pci_dev->dev, g->sg[0].ptr[0],
2869 skb->len - skb->data_len,
2870 DMA_TO_DEVICE);
2871 return NETDEV_TX_BUSY;
2872 }
2873
2874 finfo->dptr = ndata.cmd.dptr;
2875 finfo->g = g;
2876
2877 ndata.reqtype = REQTYPE_NORESP_NET_SG;
2878 }
2879
2880 if (skb_shinfo(skb)->gso_size) {
2881 struct octeon_instr_irh *irh =
2882 (struct octeon_instr_irh *)&ndata.cmd.irh;
2883 union tx_info *tx_info = (union tx_info *)&ndata.cmd.ossp[0];
2884
2885 irh->len = 1; /* to indicate that ossp[0] contains tx_info */
2886 tx_info->s.gso_size = skb_shinfo(skb)->gso_size;
2887 tx_info->s.gso_segs = skb_shinfo(skb)->gso_segs;
2888 }
2889
2890 xmit_more = skb->xmit_more;
2891
2892 if (unlikely(cmdsetup.s.timestamp))
2893 status = send_nic_timestamp_pkt(oct, &ndata, finfo, xmit_more);
2894 else
2895 status = octnet_send_nic_data_pkt(oct, &ndata, xmit_more);
2896 if (status == IQ_SEND_FAILED)
2897 goto lio_xmit_failed;
2898
2899 netif_info(lio, tx_queued, lio->netdev, "Transmit queued successfully\n");
2900
2901 if (status == IQ_SEND_STOP)
2902 stop_q(lio->netdev, q_idx);
2903
2904 netdev->trans_start = jiffies;
2905
2906 stats->tx_done++;
2907 stats->tx_tot_bytes += skb->len;
2908
2909 return NETDEV_TX_OK;
2910
2911 lio_xmit_failed:
2912 stats->tx_dropped++;
2913 netif_info(lio, tx_err, lio->netdev, "IQ%d Transmit dropped:%llu\n",
2914 iq_no, stats->tx_dropped);
2915 dma_unmap_single(&oct->pci_dev->dev, ndata.cmd.dptr,
2916 ndata.datasize, DMA_TO_DEVICE);
2917 recv_buffer_free(skb);
2918 return NETDEV_TX_OK;
2919 }
2920
2921 /** \brief Network device Tx timeout
2922 * @param netdev pointer to network device
2923 */
2924 static void liquidio_tx_timeout(struct net_device *netdev)
2925 {
2926 struct lio *lio;
2927
2928 lio = GET_LIO(netdev);
2929
2930 netif_info(lio, tx_err, lio->netdev,
2931 "Transmit timeout tx_dropped:%ld, waking up queues now!!\n",
2932 netdev->stats.tx_dropped);
2933 netdev->trans_start = jiffies;
2934 txqs_wake(netdev);
2935 }
2936
2937 int liquidio_set_feature(struct net_device *netdev, int cmd)
2938 {
2939 struct lio *lio = GET_LIO(netdev);
2940 struct octeon_device *oct = lio->oct_dev;
2941 struct octnic_ctrl_pkt nctrl;
2942 struct octnic_ctrl_params nparams;
2943 int ret = 0;
2944
2945 memset(&nctrl, 0, sizeof(struct octnic_ctrl_pkt));
2946
2947 nctrl.ncmd.u64 = 0;
2948 nctrl.ncmd.s.cmd = cmd;
2949 nctrl.ncmd.s.param1 = lio->linfo.ifidx;
2950 nctrl.ncmd.s.param2 = OCTNIC_LROIPV4 | OCTNIC_LROIPV6;
2951 nctrl.wait_time = 100;
2952 nctrl.netpndev = (u64)netdev;
2953 nctrl.cb_fn = liquidio_link_ctrl_cmd_completion;
2954
2955 nparams.resp_order = OCTEON_RESP_NORESPONSE;
2956
2957 ret = octnet_send_nic_ctrl_pkt(lio->oct_dev, &nctrl, nparams);
2958 if (ret < 0) {
2959 dev_err(&oct->pci_dev->dev, "Feature change failed in core (ret: 0x%x)\n",
2960 ret);
2961 }
2962 return ret;
2963 }
2964
2965 /** \brief Net device fix features
2966 * @param netdev pointer to network device
2967 * @param request features requested
2968 * @returns updated features list
2969 */
2970 static netdev_features_t liquidio_fix_features(struct net_device *netdev,
2971 netdev_features_t request)
2972 {
2973 struct lio *lio = netdev_priv(netdev);
2974
2975 if ((request & NETIF_F_RXCSUM) &&
2976 !(lio->dev_capability & NETIF_F_RXCSUM))
2977 request &= ~NETIF_F_RXCSUM;
2978
2979 if ((request & NETIF_F_HW_CSUM) &&
2980 !(lio->dev_capability & NETIF_F_HW_CSUM))
2981 request &= ~NETIF_F_HW_CSUM;
2982
2983 if ((request & NETIF_F_TSO) && !(lio->dev_capability & NETIF_F_TSO))
2984 request &= ~NETIF_F_TSO;
2985
2986 if ((request & NETIF_F_TSO6) && !(lio->dev_capability & NETIF_F_TSO6))
2987 request &= ~NETIF_F_TSO6;
2988
2989 if ((request & NETIF_F_LRO) && !(lio->dev_capability & NETIF_F_LRO))
2990 request &= ~NETIF_F_LRO;
2991
2992 /*Disable LRO if RXCSUM is off */
2993 if (!(request & NETIF_F_RXCSUM) && (netdev->features & NETIF_F_LRO) &&
2994 (lio->dev_capability & NETIF_F_LRO))
2995 request &= ~NETIF_F_LRO;
2996
2997 return request;
2998 }
2999
3000 /** \brief Net device set features
3001 * @param netdev pointer to network device
3002 * @param features features to enable/disable
3003 */
3004 static int liquidio_set_features(struct net_device *netdev,
3005 netdev_features_t features)
3006 {
3007 struct lio *lio = netdev_priv(netdev);
3008
3009 if (!((netdev->features ^ features) & NETIF_F_LRO))
3010 return 0;
3011
3012 if ((features & NETIF_F_LRO) && (lio->dev_capability & NETIF_F_LRO))
3013 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3014 else if (!(features & NETIF_F_LRO) &&
3015 (lio->dev_capability & NETIF_F_LRO))
3016 liquidio_set_feature(netdev, OCTNET_CMD_LRO_DISABLE);
3017
3018 return 0;
3019 }
3020
3021 static struct net_device_ops lionetdevops = {
3022 .ndo_open = liquidio_open,
3023 .ndo_stop = liquidio_stop,
3024 .ndo_start_xmit = liquidio_xmit,
3025 .ndo_get_stats = liquidio_get_stats,
3026 .ndo_set_mac_address = liquidio_set_mac,
3027 .ndo_set_rx_mode = liquidio_set_mcast_list,
3028 .ndo_tx_timeout = liquidio_tx_timeout,
3029 .ndo_change_mtu = liquidio_change_mtu,
3030 .ndo_do_ioctl = liquidio_ioctl,
3031 .ndo_fix_features = liquidio_fix_features,
3032 .ndo_set_features = liquidio_set_features,
3033 };
3034
3035 /** \brief Entry point for the liquidio module
3036 */
3037 static int __init liquidio_init(void)
3038 {
3039 int i;
3040 struct handshake *hs;
3041
3042 init_completion(&first_stage);
3043
3044 octeon_init_device_list(conf_type);
3045
3046 if (liquidio_init_pci())
3047 return -EINVAL;
3048
3049 wait_for_completion_timeout(&first_stage, msecs_to_jiffies(1000));
3050
3051 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3052 hs = &handshake[i];
3053 if (hs->pci_dev) {
3054 wait_for_completion(&hs->init);
3055 if (!hs->init_ok) {
3056 /* init handshake failed */
3057 dev_err(&hs->pci_dev->dev,
3058 "Failed to init device\n");
3059 liquidio_deinit_pci();
3060 return -EIO;
3061 }
3062 }
3063 }
3064
3065 for (i = 0; i < MAX_OCTEON_DEVICES; i++) {
3066 hs = &handshake[i];
3067 if (hs->pci_dev) {
3068 wait_for_completion_timeout(&hs->started,
3069 msecs_to_jiffies(30000));
3070 if (!hs->started_ok) {
3071 /* starter handshake failed */
3072 dev_err(&hs->pci_dev->dev,
3073 "Firmware failed to start\n");
3074 liquidio_deinit_pci();
3075 return -EIO;
3076 }
3077 }
3078 }
3079
3080 return 0;
3081 }
3082
3083 static int lio_nic_info(struct octeon_recv_info *recv_info, void *buf)
3084 {
3085 struct octeon_device *oct = (struct octeon_device *)buf;
3086 struct octeon_recv_pkt *recv_pkt = recv_info->recv_pkt;
3087 int ifidx = 0;
3088 union oct_link_status *ls;
3089 int i;
3090
3091 if ((recv_pkt->buffer_size[0] != sizeof(*ls)) ||
3092 (recv_pkt->rh.r_nic_info.ifidx > oct->ifcount)) {
3093 dev_err(&oct->pci_dev->dev, "Malformed NIC_INFO, len=%d, ifidx=%d\n",
3094 recv_pkt->buffer_size[0],
3095 recv_pkt->rh.r_nic_info.ifidx);
3096 goto nic_info_err;
3097 }
3098
3099 ifidx = recv_pkt->rh.r_nic_info.ifidx;
3100 ls = (union oct_link_status *)get_rbd(recv_pkt->buffer_ptr[0]);
3101
3102 octeon_swap_8B_data((u64 *)ls, (sizeof(union oct_link_status)) >> 3);
3103
3104 update_link_status(oct->props[ifidx].netdev, ls);
3105
3106 nic_info_err:
3107 for (i = 0; i < recv_pkt->buffer_count; i++)
3108 recv_buffer_free(recv_pkt->buffer_ptr[i]);
3109 octeon_free_recv_info(recv_info);
3110 return 0;
3111 }
3112
3113 /**
3114 * \brief Setup network interfaces
3115 * @param octeon_dev octeon device
3116 *
3117 * Called during init time for each device. It assumes the NIC
3118 * is already up and running. The link information for each
3119 * interface is passed in link_info.
3120 */
3121 static int setup_nic_devices(struct octeon_device *octeon_dev)
3122 {
3123 struct lio *lio = NULL;
3124 struct net_device *netdev;
3125 u8 mac[6], i, j;
3126 struct octeon_soft_command *sc;
3127 struct liquidio_if_cfg_context *ctx;
3128 struct liquidio_if_cfg_resp *resp;
3129 struct octdev_props *props;
3130 int retval, num_iqueues, num_oqueues, q_no;
3131 u64 q_mask;
3132 int num_cpus = num_online_cpus();
3133 union oct_nic_if_cfg if_cfg;
3134 unsigned int base_queue;
3135 unsigned int gmx_port_id;
3136 u32 resp_size, ctx_size;
3137
3138 /* This is to handle link status changes */
3139 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3140 OPCODE_NIC_INFO,
3141 lio_nic_info, octeon_dev);
3142
3143 /* REQTYPE_RESP_NET and REQTYPE_SOFT_COMMAND do not have free functions.
3144 * They are handled directly.
3145 */
3146 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET,
3147 free_netbuf);
3148
3149 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_NORESP_NET_SG,
3150 free_netsgbuf);
3151
3152 octeon_register_reqtype_free_fn(octeon_dev, REQTYPE_RESP_NET_SG,
3153 free_netsgbuf_with_resp);
3154
3155 for (i = 0; i < octeon_dev->ifcount; i++) {
3156 resp_size = sizeof(struct liquidio_if_cfg_resp);
3157 ctx_size = sizeof(struct liquidio_if_cfg_context);
3158 sc = (struct octeon_soft_command *)
3159 octeon_alloc_soft_command(octeon_dev, 0,
3160 resp_size, ctx_size);
3161 resp = (struct liquidio_if_cfg_resp *)sc->virtrptr;
3162 ctx = (struct liquidio_if_cfg_context *)sc->ctxptr;
3163
3164 num_iqueues =
3165 CFG_GET_NUM_TXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3166 num_oqueues =
3167 CFG_GET_NUM_RXQS_NIC_IF(octeon_get_conf(octeon_dev), i);
3168 base_queue =
3169 CFG_GET_BASE_QUE_NIC_IF(octeon_get_conf(octeon_dev), i);
3170 gmx_port_id =
3171 CFG_GET_GMXID_NIC_IF(octeon_get_conf(octeon_dev), i);
3172 if (num_iqueues > num_cpus)
3173 num_iqueues = num_cpus;
3174 if (num_oqueues > num_cpus)
3175 num_oqueues = num_cpus;
3176 dev_dbg(&octeon_dev->pci_dev->dev,
3177 "requesting config for interface %d, iqs %d, oqs %d\n",
3178 i, num_iqueues, num_oqueues);
3179 ACCESS_ONCE(ctx->cond) = 0;
3180 ctx->octeon_id = lio_get_device_id(octeon_dev);
3181 init_waitqueue_head(&ctx->wc);
3182
3183 if_cfg.u64 = 0;
3184 if_cfg.s.num_iqueues = num_iqueues;
3185 if_cfg.s.num_oqueues = num_oqueues;
3186 if_cfg.s.base_queue = base_queue;
3187 if_cfg.s.gmx_port_id = gmx_port_id;
3188 octeon_prepare_soft_command(octeon_dev, sc, OPCODE_NIC,
3189 OPCODE_NIC_IF_CFG, i,
3190 if_cfg.u64, 0);
3191
3192 sc->callback = if_cfg_callback;
3193 sc->callback_arg = sc;
3194 sc->wait_time = 1000;
3195
3196 retval = octeon_send_soft_command(octeon_dev, sc);
3197 if (retval) {
3198 dev_err(&octeon_dev->pci_dev->dev,
3199 "iq/oq config failed status: %x\n",
3200 retval);
3201 /* Soft instr is freed by driver in case of failure. */
3202 goto setup_nic_dev_fail;
3203 }
3204
3205 /* Sleep on a wait queue till the cond flag indicates that the
3206 * response arrived or timed-out.
3207 */
3208 sleep_cond(&ctx->wc, &ctx->cond);
3209 retval = resp->status;
3210 if (retval) {
3211 dev_err(&octeon_dev->pci_dev->dev, "iq/oq config failed\n");
3212 goto setup_nic_dev_fail;
3213 }
3214
3215 octeon_swap_8B_data((u64 *)(&resp->cfg_info),
3216 (sizeof(struct liquidio_if_cfg_info)) >> 3);
3217
3218 num_iqueues = hweight64(resp->cfg_info.iqmask);
3219 num_oqueues = hweight64(resp->cfg_info.oqmask);
3220
3221 if (!(num_iqueues) || !(num_oqueues)) {
3222 dev_err(&octeon_dev->pci_dev->dev,
3223 "Got bad iqueues (%016llx) or oqueues (%016llx) from firmware.\n",
3224 resp->cfg_info.iqmask,
3225 resp->cfg_info.oqmask);
3226 goto setup_nic_dev_fail;
3227 }
3228 dev_dbg(&octeon_dev->pci_dev->dev,
3229 "interface %d, iqmask %016llx, oqmask %016llx, numiqueues %d, numoqueues %d\n",
3230 i, resp->cfg_info.iqmask, resp->cfg_info.oqmask,
3231 num_iqueues, num_oqueues);
3232 netdev = alloc_etherdev_mq(LIO_SIZE, num_iqueues);
3233
3234 if (!netdev) {
3235 dev_err(&octeon_dev->pci_dev->dev, "Device allocation failed\n");
3236 goto setup_nic_dev_fail;
3237 }
3238
3239 props = &octeon_dev->props[i];
3240 props->netdev = netdev;
3241
3242 if (num_iqueues > 1)
3243 lionetdevops.ndo_select_queue = select_q;
3244
3245 /* Associate the routines that will handle different
3246 * netdev tasks.
3247 */
3248 netdev->netdev_ops = &lionetdevops;
3249
3250 lio = GET_LIO(netdev);
3251
3252 memset(lio, 0, sizeof(struct lio));
3253
3254 lio->linfo.ifidx = resp->cfg_info.ifidx;
3255 lio->ifidx = resp->cfg_info.ifidx;
3256
3257 lio->linfo.num_rxpciq = num_oqueues;
3258 lio->linfo.num_txpciq = num_iqueues;
3259 q_mask = resp->cfg_info.oqmask;
3260 /* q_mask is 0-based and already verified mask is nonzero */
3261 for (j = 0; j < num_oqueues; j++) {
3262 q_no = __ffs64(q_mask);
3263 q_mask &= (~(1UL << q_no));
3264 lio->linfo.rxpciq[j] = q_no;
3265 }
3266 q_mask = resp->cfg_info.iqmask;
3267 for (j = 0; j < num_iqueues; j++) {
3268 q_no = __ffs64(q_mask);
3269 q_mask &= (~(1UL << q_no));
3270 lio->linfo.txpciq[j] = q_no;
3271 }
3272 lio->linfo.hw_addr = resp->cfg_info.linfo.hw_addr;
3273 lio->linfo.gmxport = resp->cfg_info.linfo.gmxport;
3274 lio->linfo.link.u64 = resp->cfg_info.linfo.link.u64;
3275
3276 lio->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
3277
3278 lio->dev_capability = NETIF_F_HIGHDMA
3279 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3280 | NETIF_F_SG | NETIF_F_RXCSUM
3281 | NETIF_F_TSO | NETIF_F_TSO6
3282 | NETIF_F_LRO;
3283 netif_set_gso_max_size(netdev, OCTNIC_GSO_MAX_SIZE);
3284
3285 netdev->features = lio->dev_capability;
3286 netdev->vlan_features = lio->dev_capability;
3287
3288 netdev->hw_features = lio->dev_capability;
3289
3290 /* Point to the properties for octeon device to which this
3291 * interface belongs.
3292 */
3293 lio->oct_dev = octeon_dev;
3294 lio->octprops = props;
3295 lio->netdev = netdev;
3296 spin_lock_init(&lio->lock);
3297
3298 dev_dbg(&octeon_dev->pci_dev->dev,
3299 "if%d gmx: %d hw_addr: 0x%llx\n", i,
3300 lio->linfo.gmxport, CVM_CAST64(lio->linfo.hw_addr));
3301
3302 /* 64-bit swap required on LE machines */
3303 octeon_swap_8B_data(&lio->linfo.hw_addr, 1);
3304 for (j = 0; j < 6; j++)
3305 mac[j] = *((u8 *)(((u8 *)&lio->linfo.hw_addr) + 2 + j));
3306
3307 /* Copy MAC Address to OS network device structure */
3308
3309 ether_addr_copy(netdev->dev_addr, mac);
3310
3311 if (setup_io_queues(octeon_dev, netdev)) {
3312 dev_err(&octeon_dev->pci_dev->dev, "I/O queues creation failed\n");
3313 goto setup_nic_dev_fail;
3314 }
3315
3316 ifstate_set(lio, LIO_IFSTATE_DROQ_OPS);
3317
3318 /* By default all interfaces on a single Octeon uses the same
3319 * tx and rx queues
3320 */
3321 lio->txq = lio->linfo.txpciq[0];
3322 lio->rxq = lio->linfo.rxpciq[0];
3323
3324 lio->tx_qsize = octeon_get_tx_qsize(octeon_dev, lio->txq);
3325 lio->rx_qsize = octeon_get_rx_qsize(octeon_dev, lio->rxq);
3326
3327 if (setup_glist(lio)) {
3328 dev_err(&octeon_dev->pci_dev->dev,
3329 "Gather list allocation failed\n");
3330 goto setup_nic_dev_fail;
3331 }
3332
3333 /* Register ethtool support */
3334 liquidio_set_ethtool_ops(netdev);
3335
3336 liquidio_set_feature(netdev, OCTNET_CMD_LRO_ENABLE);
3337
3338 if ((debug != -1) && (debug & NETIF_MSG_HW))
3339 liquidio_set_feature(netdev, OCTNET_CMD_VERBOSE_ENABLE);
3340
3341 /* Register the network device with the OS */
3342 if (register_netdev(netdev)) {
3343 dev_err(&octeon_dev->pci_dev->dev, "Device registration failed\n");
3344 goto setup_nic_dev_fail;
3345 }
3346
3347 dev_dbg(&octeon_dev->pci_dev->dev,
3348 "Setup NIC ifidx:%d mac:%02x%02x%02x%02x%02x%02x\n",
3349 i, mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
3350 netif_carrier_off(netdev);
3351
3352 if (lio->linfo.link.s.status) {
3353 netif_carrier_on(netdev);
3354 start_txq(netdev);
3355 } else {
3356 netif_carrier_off(netdev);
3357 }
3358
3359 ifstate_set(lio, LIO_IFSTATE_REGISTERED);
3360
3361 dev_dbg(&octeon_dev->pci_dev->dev,
3362 "NIC ifidx:%d Setup successful\n", i);
3363
3364 octeon_free_soft_command(octeon_dev, sc);
3365 }
3366
3367 return 0;
3368
3369 setup_nic_dev_fail:
3370
3371 octeon_free_soft_command(octeon_dev, sc);
3372
3373 while (i--) {
3374 dev_err(&octeon_dev->pci_dev->dev,
3375 "NIC ifidx:%d Setup failed\n", i);
3376 liquidio_destroy_nic_device(octeon_dev, i);
3377 }
3378 return -ENODEV;
3379 }
3380
3381 /**
3382 * \brief initialize the NIC
3383 * @param oct octeon device
3384 *
3385 * This initialization routine is called once the Octeon device application is
3386 * up and running
3387 */
3388 static int liquidio_init_nic_module(struct octeon_device *oct)
3389 {
3390 struct oct_intrmod_cfg *intrmod_cfg;
3391 int retval = 0;
3392 int num_nic_ports = CFG_GET_NUM_NIC_PORTS(octeon_get_conf(oct));
3393
3394 dev_dbg(&oct->pci_dev->dev, "Initializing network interfaces\n");
3395
3396 /* only default iq and oq were initialized
3397 * initialize the rest as well
3398 */
3399 /* run port_config command for each port */
3400 oct->ifcount = num_nic_ports;
3401
3402 memset(oct->props, 0,
3403 sizeof(struct octdev_props) * num_nic_ports);
3404
3405 retval = setup_nic_devices(oct);
3406 if (retval) {
3407 dev_err(&oct->pci_dev->dev, "Setup NIC devices failed\n");
3408 goto octnet_init_failure;
3409 }
3410
3411 liquidio_ptp_init(oct);
3412
3413 /* Initialize interrupt moderation params */
3414 intrmod_cfg = &((struct octeon_device *)oct)->intrmod;
3415 intrmod_cfg->intrmod_enable = 1;
3416 intrmod_cfg->intrmod_check_intrvl = LIO_INTRMOD_CHECK_INTERVAL;
3417 intrmod_cfg->intrmod_maxpkt_ratethr = LIO_INTRMOD_MAXPKT_RATETHR;
3418 intrmod_cfg->intrmod_minpkt_ratethr = LIO_INTRMOD_MINPKT_RATETHR;
3419 intrmod_cfg->intrmod_maxcnt_trigger = LIO_INTRMOD_MAXCNT_TRIGGER;
3420 intrmod_cfg->intrmod_maxtmr_trigger = LIO_INTRMOD_MAXTMR_TRIGGER;
3421 intrmod_cfg->intrmod_mintmr_trigger = LIO_INTRMOD_MINTMR_TRIGGER;
3422 intrmod_cfg->intrmod_mincnt_trigger = LIO_INTRMOD_MINCNT_TRIGGER;
3423
3424 dev_dbg(&oct->pci_dev->dev, "Network interfaces ready\n");
3425
3426 return retval;
3427
3428 octnet_init_failure:
3429
3430 oct->ifcount = 0;
3431
3432 return retval;
3433 }
3434
3435 /**
3436 * \brief starter callback that invokes the remaining initialization work after
3437 * the NIC is up and running.
3438 * @param octptr work struct work_struct
3439 */
3440 static void nic_starter(struct work_struct *work)
3441 {
3442 struct octeon_device *oct;
3443 struct cavium_wk *wk = (struct cavium_wk *)work;
3444
3445 oct = (struct octeon_device *)wk->ctxptr;
3446
3447 if (atomic_read(&oct->status) == OCT_DEV_RUNNING)
3448 return;
3449
3450 /* If the status of the device is CORE_OK, the core
3451 * application has reported its application type. Call
3452 * any registered handlers now and move to the RUNNING
3453 * state.
3454 */
3455 if (atomic_read(&oct->status) != OCT_DEV_CORE_OK) {
3456 schedule_delayed_work(&oct->nic_poll_work.work,
3457 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3458 return;
3459 }
3460
3461 atomic_set(&oct->status, OCT_DEV_RUNNING);
3462
3463 if (oct->app_mode && oct->app_mode == CVM_DRV_NIC_APP) {
3464 dev_dbg(&oct->pci_dev->dev, "Starting NIC module\n");
3465
3466 if (liquidio_init_nic_module(oct))
3467 dev_err(&oct->pci_dev->dev, "NIC initialization failed\n");
3468 else
3469 handshake[oct->octeon_id].started_ok = 1;
3470 } else {
3471 dev_err(&oct->pci_dev->dev,
3472 "Unexpected application running on NIC (%d). Check firmware.\n",
3473 oct->app_mode);
3474 }
3475
3476 complete(&handshake[oct->octeon_id].started);
3477 }
3478
3479 /**
3480 * \brief Device initialization for each Octeon device that is probed
3481 * @param octeon_dev octeon device
3482 */
3483 static int octeon_device_init(struct octeon_device *octeon_dev)
3484 {
3485 int j, ret;
3486 struct octeon_device_priv *oct_priv =
3487 (struct octeon_device_priv *)octeon_dev->priv;
3488 atomic_set(&octeon_dev->status, OCT_DEV_BEGIN_STATE);
3489
3490 /* Enable access to the octeon device and make its DMA capability
3491 * known to the OS.
3492 */
3493 if (octeon_pci_os_setup(octeon_dev))
3494 return 1;
3495
3496 /* Identify the Octeon type and map the BAR address space. */
3497 if (octeon_chip_specific_setup(octeon_dev)) {
3498 dev_err(&octeon_dev->pci_dev->dev, "Chip specific setup failed\n");
3499 return 1;
3500 }
3501
3502 atomic_set(&octeon_dev->status, OCT_DEV_PCI_MAP_DONE);
3503
3504 octeon_dev->app_mode = CVM_DRV_INVALID_APP;
3505
3506 /* Do a soft reset of the Octeon device. */
3507 if (octeon_dev->fn_list.soft_reset(octeon_dev))
3508 return 1;
3509
3510 /* Initialize the dispatch mechanism used to push packets arriving on
3511 * Octeon Output queues.
3512 */
3513 if (octeon_init_dispatch_list(octeon_dev))
3514 return 1;
3515
3516 octeon_register_dispatch_fn(octeon_dev, OPCODE_NIC,
3517 OPCODE_NIC_CORE_DRV_ACTIVE,
3518 octeon_core_drv_init,
3519 octeon_dev);
3520
3521 INIT_DELAYED_WORK(&octeon_dev->nic_poll_work.work, nic_starter);
3522 octeon_dev->nic_poll_work.ctxptr = (void *)octeon_dev;
3523 schedule_delayed_work(&octeon_dev->nic_poll_work.work,
3524 LIQUIDIO_STARTER_POLL_INTERVAL_MS);
3525
3526 atomic_set(&octeon_dev->status, OCT_DEV_DISPATCH_INIT_DONE);
3527
3528 octeon_set_io_queues_off(octeon_dev);
3529
3530 /* Setup the data structures that manage this Octeon's Input queues. */
3531 if (octeon_setup_instr_queues(octeon_dev)) {
3532 dev_err(&octeon_dev->pci_dev->dev,
3533 "instruction queue initialization failed\n");
3534 /* On error, release any previously allocated queues */
3535 for (j = 0; j < octeon_dev->num_iqs; j++)
3536 octeon_delete_instr_queue(octeon_dev, j);
3537 return 1;
3538 }
3539 atomic_set(&octeon_dev->status, OCT_DEV_INSTR_QUEUE_INIT_DONE);
3540
3541 /* Initialize soft command buffer pool
3542 */
3543 if (octeon_setup_sc_buffer_pool(octeon_dev)) {
3544 dev_err(&octeon_dev->pci_dev->dev, "sc buffer pool allocation failed\n");
3545 return 1;
3546 }
3547 atomic_set(&octeon_dev->status, OCT_DEV_SC_BUFF_POOL_INIT_DONE);
3548
3549 /* Initialize lists to manage the requests of different types that
3550 * arrive from user & kernel applications for this octeon device.
3551 */
3552 if (octeon_setup_response_list(octeon_dev)) {
3553 dev_err(&octeon_dev->pci_dev->dev, "Response list allocation failed\n");
3554 return 1;
3555 }
3556 atomic_set(&octeon_dev->status, OCT_DEV_RESP_LIST_INIT_DONE);
3557
3558 if (octeon_setup_output_queues(octeon_dev)) {
3559 dev_err(&octeon_dev->pci_dev->dev, "Output queue initialization failed\n");
3560 /* Release any previously allocated queues */
3561 for (j = 0; j < octeon_dev->num_oqs; j++)
3562 octeon_delete_droq(octeon_dev, j);
3563 }
3564
3565 atomic_set(&octeon_dev->status, OCT_DEV_DROQ_INIT_DONE);
3566
3567 /* The input and output queue registers were setup earlier (the queues
3568 * were not enabled). Any additional registers that need to be
3569 * programmed should be done now.
3570 */
3571 ret = octeon_dev->fn_list.setup_device_regs(octeon_dev);
3572 if (ret) {
3573 dev_err(&octeon_dev->pci_dev->dev,
3574 "Failed to configure device registers\n");
3575 return ret;
3576 }
3577
3578 /* Initialize the tasklet that handles output queue packet processing.*/
3579 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing droq tasklet\n");
3580 tasklet_init(&oct_priv->droq_tasklet, octeon_droq_bh,
3581 (unsigned long)octeon_dev);
3582
3583 /* Setup the interrupt handler and record the INT SUM register address
3584 */
3585 octeon_setup_interrupt(octeon_dev);
3586
3587 /* Enable Octeon device interrupts */
3588 octeon_dev->fn_list.enable_interrupt(octeon_dev->chip);
3589
3590 /* Enable the input and output queues for this Octeon device */
3591 octeon_dev->fn_list.enable_io_queues(octeon_dev);
3592
3593 atomic_set(&octeon_dev->status, OCT_DEV_IO_QUEUES_DONE);
3594
3595 dev_dbg(&octeon_dev->pci_dev->dev, "Waiting for DDR initialization...\n");
3596
3597 if (ddr_timeout == 0) {
3598 dev_info(&octeon_dev->pci_dev->dev,
3599 "WAITING. Set ddr_timeout to non-zero value to proceed with initialization.\n");
3600 }
3601
3602 schedule_timeout_uninterruptible(HZ * LIO_RESET_SECS);
3603
3604 /* Wait for the octeon to initialize DDR after the soft-reset. */
3605 ret = octeon_wait_for_ddr_init(octeon_dev, &ddr_timeout);
3606 if (ret) {
3607 dev_err(&octeon_dev->pci_dev->dev,
3608 "DDR not initialized. Please confirm that board is configured to boot from Flash, ret: %d\n",
3609 ret);
3610 return 1;
3611 }
3612
3613 if (octeon_wait_for_bootloader(octeon_dev, 1000) != 0) {
3614 dev_err(&octeon_dev->pci_dev->dev, "Board not responding\n");
3615 return 1;
3616 }
3617
3618 dev_dbg(&octeon_dev->pci_dev->dev, "Initializing consoles\n");
3619 ret = octeon_init_consoles(octeon_dev);
3620 if (ret) {
3621 dev_err(&octeon_dev->pci_dev->dev, "Could not access board consoles\n");
3622 return 1;
3623 }
3624 ret = octeon_add_console(octeon_dev, 0);
3625 if (ret) {
3626 dev_err(&octeon_dev->pci_dev->dev, "Could not access board console\n");
3627 return 1;
3628 }
3629
3630 atomic_set(&octeon_dev->status, OCT_DEV_CONSOLE_INIT_DONE);
3631
3632 dev_dbg(&octeon_dev->pci_dev->dev, "Loading firmware\n");
3633 ret = load_firmware(octeon_dev);
3634 if (ret) {
3635 dev_err(&octeon_dev->pci_dev->dev, "Could not load firmware to board\n");
3636 return 1;
3637 }
3638
3639 handshake[octeon_dev->octeon_id].init_ok = 1;
3640 complete(&handshake[octeon_dev->octeon_id].init);
3641
3642 atomic_set(&octeon_dev->status, OCT_DEV_HOST_OK);
3643
3644 /* Send Credit for Octeon Output queues. Credits are always sent after
3645 * the output queue is enabled.
3646 */
3647 for (j = 0; j < octeon_dev->num_oqs; j++)
3648 writel(octeon_dev->droq[j]->max_count,
3649 octeon_dev->droq[j]->pkts_credit_reg);
3650
3651 /* Packets can start arriving on the output queues from this point. */
3652
3653 return 0;
3654 }
3655
3656 /**
3657 * \brief Exits the module
3658 */
3659 static void __exit liquidio_exit(void)
3660 {
3661 liquidio_deinit_pci();
3662
3663 pr_info("LiquidIO network module is now unloaded\n");
3664 }
3665
3666 module_init(liquidio_init);
3667 module_exit(liquidio_exit);
This page took 0.113201 seconds and 5 git commands to generate.