net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb / sge.c
1 /*****************************************************************************
2 * *
3 * File: sge.c *
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40 #include "common.h"
41
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/pci.h>
45 #include <linux/ktime.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
51 #include <linux/mm.h>
52 #include <linux/tcp.h>
53 #include <linux/ip.h>
54 #include <linux/in.h>
55 #include <linux/if_arp.h>
56 #include <linux/slab.h>
57 #include <linux/prefetch.h>
58
59 #include "cpl5_cmd.h"
60 #include "sge.h"
61 #include "regs.h"
62 #include "espi.h"
63
64 /* This belongs in if_ether.h */
65 #define ETH_P_CPL5 0xf
66
67 #define SGE_CMDQ_N 2
68 #define SGE_FREELQ_N 2
69 #define SGE_CMDQ0_E_N 1024
70 #define SGE_CMDQ1_E_N 128
71 #define SGE_FREEL_SIZE 4096
72 #define SGE_JUMBO_FREEL_SIZE 512
73 #define SGE_FREEL_REFILL_THRESH 16
74 #define SGE_RESPQ_E_N 1024
75 #define SGE_INTRTIMER_NRES 1000
76 #define SGE_RX_SM_BUF_SIZE 1536
77 #define SGE_TX_DESC_MAX_PLEN 16384
78
79 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
80
81 /*
82 * Period of the TX buffer reclaim timer. This timer does not need to run
83 * frequently as TX buffers are usually reclaimed by new TX packets.
84 */
85 #define TX_RECLAIM_PERIOD (HZ / 4)
86
87 #define M_CMD_LEN 0x7fffffff
88 #define V_CMD_LEN(v) (v)
89 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
90 #define V_CMD_GEN1(v) ((v) << 31)
91 #define V_CMD_GEN2(v) (v)
92 #define F_CMD_DATAVALID (1 << 1)
93 #define F_CMD_SOP (1 << 2)
94 #define V_CMD_EOP(v) ((v) << 3)
95
96 /*
97 * Command queue, receive buffer list, and response queue descriptors.
98 */
99 #if defined(__BIG_ENDIAN_BITFIELD)
100 struct cmdQ_e {
101 u32 addr_lo;
102 u32 len_gen;
103 u32 flags;
104 u32 addr_hi;
105 };
106
107 struct freelQ_e {
108 u32 addr_lo;
109 u32 len_gen;
110 u32 gen2;
111 u32 addr_hi;
112 };
113
114 struct respQ_e {
115 u32 Qsleeping : 4;
116 u32 Cmdq1CreditReturn : 5;
117 u32 Cmdq1DmaComplete : 5;
118 u32 Cmdq0CreditReturn : 5;
119 u32 Cmdq0DmaComplete : 5;
120 u32 FreelistQid : 2;
121 u32 CreditValid : 1;
122 u32 DataValid : 1;
123 u32 Offload : 1;
124 u32 Eop : 1;
125 u32 Sop : 1;
126 u32 GenerationBit : 1;
127 u32 BufferLength;
128 };
129 #elif defined(__LITTLE_ENDIAN_BITFIELD)
130 struct cmdQ_e {
131 u32 len_gen;
132 u32 addr_lo;
133 u32 addr_hi;
134 u32 flags;
135 };
136
137 struct freelQ_e {
138 u32 len_gen;
139 u32 addr_lo;
140 u32 addr_hi;
141 u32 gen2;
142 };
143
144 struct respQ_e {
145 u32 BufferLength;
146 u32 GenerationBit : 1;
147 u32 Sop : 1;
148 u32 Eop : 1;
149 u32 Offload : 1;
150 u32 DataValid : 1;
151 u32 CreditValid : 1;
152 u32 FreelistQid : 2;
153 u32 Cmdq0DmaComplete : 5;
154 u32 Cmdq0CreditReturn : 5;
155 u32 Cmdq1DmaComplete : 5;
156 u32 Cmdq1CreditReturn : 5;
157 u32 Qsleeping : 4;
158 } ;
159 #endif
160
161 /*
162 * SW Context Command and Freelist Queue Descriptors
163 */
164 struct cmdQ_ce {
165 struct sk_buff *skb;
166 DEFINE_DMA_UNMAP_ADDR(dma_addr);
167 DEFINE_DMA_UNMAP_LEN(dma_len);
168 };
169
170 struct freelQ_ce {
171 struct sk_buff *skb;
172 DEFINE_DMA_UNMAP_ADDR(dma_addr);
173 DEFINE_DMA_UNMAP_LEN(dma_len);
174 };
175
176 /*
177 * SW command, freelist and response rings
178 */
179 struct cmdQ {
180 unsigned long status; /* HW DMA fetch status */
181 unsigned int in_use; /* # of in-use command descriptors */
182 unsigned int size; /* # of descriptors */
183 unsigned int processed; /* total # of descs HW has processed */
184 unsigned int cleaned; /* total # of descs SW has reclaimed */
185 unsigned int stop_thres; /* SW TX queue suspend threshold */
186 u16 pidx; /* producer index (SW) */
187 u16 cidx; /* consumer index (HW) */
188 u8 genbit; /* current generation (=valid) bit */
189 u8 sop; /* is next entry start of packet? */
190 struct cmdQ_e *entries; /* HW command descriptor Q */
191 struct cmdQ_ce *centries; /* SW command context descriptor Q */
192 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
193 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
194 };
195
196 struct freelQ {
197 unsigned int credits; /* # of available RX buffers */
198 unsigned int size; /* free list capacity */
199 u16 pidx; /* producer index (SW) */
200 u16 cidx; /* consumer index (HW) */
201 u16 rx_buffer_size; /* Buffer size on this free list */
202 u16 dma_offset; /* DMA offset to align IP headers */
203 u16 recycleq_idx; /* skb recycle q to use */
204 u8 genbit; /* current generation (=valid) bit */
205 struct freelQ_e *entries; /* HW freelist descriptor Q */
206 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
207 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
208 };
209
210 struct respQ {
211 unsigned int credits; /* credits to be returned to SGE */
212 unsigned int size; /* # of response Q descriptors */
213 u16 cidx; /* consumer index (SW) */
214 u8 genbit; /* current generation(=valid) bit */
215 struct respQ_e *entries; /* HW response descriptor Q */
216 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
217 };
218
219 /* Bit flags for cmdQ.status */
220 enum {
221 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
222 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
223 };
224
225 /* T204 TX SW scheduler */
226
227 /* Per T204 TX port */
228 struct sched_port {
229 unsigned int avail; /* available bits - quota */
230 unsigned int drain_bits_per_1024ns; /* drain rate */
231 unsigned int speed; /* drain rate, mbps */
232 unsigned int mtu; /* mtu size */
233 struct sk_buff_head skbq; /* pending skbs */
234 };
235
236 /* Per T204 device */
237 struct sched {
238 ktime_t last_updated; /* last time quotas were computed */
239 unsigned int max_avail; /* max bits to be sent to any port */
240 unsigned int port; /* port index (round robin ports) */
241 unsigned int num; /* num skbs in per port queues */
242 struct sched_port p[MAX_NPORTS];
243 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
244 };
245 static void restart_sched(unsigned long);
246
247
248 /*
249 * Main SGE data structure
250 *
251 * Interrupts are handled by a single CPU and it is likely that on a MP system
252 * the application is migrated to another CPU. In that scenario, we try to
253 * separate the RX(in irq context) and TX state in order to decrease memory
254 * contention.
255 */
256 struct sge {
257 struct adapter *adapter; /* adapter backpointer */
258 struct net_device *netdev; /* netdevice backpointer */
259 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
260 struct respQ respQ; /* response Q */
261 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
262 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
263 unsigned int jumbo_fl; /* jumbo freelist Q index */
264 unsigned int intrtimer_nres; /* no-resource interrupt timer */
265 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
266 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
267 struct timer_list espibug_timer;
268 unsigned long espibug_timeout;
269 struct sk_buff *espibug_skb[MAX_NPORTS];
270 u32 sge_control; /* shadow value of sge control reg */
271 struct sge_intr_counts stats;
272 struct sge_port_stats __percpu *port_stats[MAX_NPORTS];
273 struct sched *tx_sched;
274 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
275 };
276
277 static const u8 ch_mac_addr[ETH_ALEN] = {
278 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
279 };
280
281 /*
282 * stop tasklet and free all pending skb's
283 */
284 static void tx_sched_stop(struct sge *sge)
285 {
286 struct sched *s = sge->tx_sched;
287 int i;
288
289 tasklet_kill(&s->sched_tsk);
290
291 for (i = 0; i < MAX_NPORTS; i++)
292 __skb_queue_purge(&s->p[s->port].skbq);
293 }
294
295 /*
296 * t1_sched_update_parms() is called when the MTU or link speed changes. It
297 * re-computes scheduler parameters to scope with the change.
298 */
299 unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
300 unsigned int mtu, unsigned int speed)
301 {
302 struct sched *s = sge->tx_sched;
303 struct sched_port *p = &s->p[port];
304 unsigned int max_avail_segs;
305
306 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
307 if (speed)
308 p->speed = speed;
309 if (mtu)
310 p->mtu = mtu;
311
312 if (speed || mtu) {
313 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
314 do_div(drain, (p->mtu + 50) * 1000);
315 p->drain_bits_per_1024ns = (unsigned int) drain;
316
317 if (p->speed < 1000)
318 p->drain_bits_per_1024ns =
319 90 * p->drain_bits_per_1024ns / 100;
320 }
321
322 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
323 p->drain_bits_per_1024ns -= 16;
324 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
325 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
326 } else {
327 s->max_avail = 16384;
328 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
329 }
330
331 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
332 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
333 p->speed, s->max_avail, max_avail_segs,
334 p->drain_bits_per_1024ns);
335
336 return max_avail_segs * (p->mtu - 40);
337 }
338
339 #if 0
340
341 /*
342 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
343 * data that can be pushed per port.
344 */
345 void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
346 {
347 struct sched *s = sge->tx_sched;
348 unsigned int i;
349
350 s->max_avail = val;
351 for (i = 0; i < MAX_NPORTS; i++)
352 t1_sched_update_parms(sge, i, 0, 0);
353 }
354
355 /*
356 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
357 * is draining.
358 */
359 void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
360 unsigned int val)
361 {
362 struct sched *s = sge->tx_sched;
363 struct sched_port *p = &s->p[port];
364 p->drain_bits_per_1024ns = val * 1024 / 1000;
365 t1_sched_update_parms(sge, port, 0, 0);
366 }
367
368 #endif /* 0 */
369
370 /*
371 * tx_sched_init() allocates resources and does basic initialization.
372 */
373 static int tx_sched_init(struct sge *sge)
374 {
375 struct sched *s;
376 int i;
377
378 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
379 if (!s)
380 return -ENOMEM;
381
382 pr_debug("tx_sched_init\n");
383 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
384 sge->tx_sched = s;
385
386 for (i = 0; i < MAX_NPORTS; i++) {
387 skb_queue_head_init(&s->p[i].skbq);
388 t1_sched_update_parms(sge, i, 1500, 1000);
389 }
390
391 return 0;
392 }
393
394 /*
395 * sched_update_avail() computes the delta since the last time it was called
396 * and updates the per port quota (number of bits that can be sent to the any
397 * port).
398 */
399 static inline int sched_update_avail(struct sge *sge)
400 {
401 struct sched *s = sge->tx_sched;
402 ktime_t now = ktime_get();
403 unsigned int i;
404 long long delta_time_ns;
405
406 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
407
408 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
409 if (delta_time_ns < 15000)
410 return 0;
411
412 for (i = 0; i < MAX_NPORTS; i++) {
413 struct sched_port *p = &s->p[i];
414 unsigned int delta_avail;
415
416 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
417 p->avail = min(p->avail + delta_avail, s->max_avail);
418 }
419
420 s->last_updated = now;
421
422 return 1;
423 }
424
425 /*
426 * sched_skb() is called from two different places. In the tx path, any
427 * packet generating load on an output port will call sched_skb()
428 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
429 * context (skb == NULL).
430 * The scheduler only returns a skb (which will then be sent) if the
431 * length of the skb is <= the current quota of the output port.
432 */
433 static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
434 unsigned int credits)
435 {
436 struct sched *s = sge->tx_sched;
437 struct sk_buff_head *skbq;
438 unsigned int i, len, update = 1;
439
440 pr_debug("sched_skb %p\n", skb);
441 if (!skb) {
442 if (!s->num)
443 return NULL;
444 } else {
445 skbq = &s->p[skb->dev->if_port].skbq;
446 __skb_queue_tail(skbq, skb);
447 s->num++;
448 skb = NULL;
449 }
450
451 if (credits < MAX_SKB_FRAGS + 1)
452 goto out;
453
454 again:
455 for (i = 0; i < MAX_NPORTS; i++) {
456 s->port = (s->port + 1) & (MAX_NPORTS - 1);
457 skbq = &s->p[s->port].skbq;
458
459 skb = skb_peek(skbq);
460
461 if (!skb)
462 continue;
463
464 len = skb->len;
465 if (len <= s->p[s->port].avail) {
466 s->p[s->port].avail -= len;
467 s->num--;
468 __skb_unlink(skb, skbq);
469 goto out;
470 }
471 skb = NULL;
472 }
473
474 if (update-- && sched_update_avail(sge))
475 goto again;
476
477 out:
478 /* If there are more pending skbs, we use the hardware to schedule us
479 * again.
480 */
481 if (s->num && !skb) {
482 struct cmdQ *q = &sge->cmdQ[0];
483 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
484 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
485 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
486 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
487 }
488 }
489 pr_debug("sched_skb ret %p\n", skb);
490
491 return skb;
492 }
493
494 /*
495 * PIO to indicate that memory mapped Q contains valid descriptor(s).
496 */
497 static inline void doorbell_pio(struct adapter *adapter, u32 val)
498 {
499 wmb();
500 writel(val, adapter->regs + A_SG_DOORBELL);
501 }
502
503 /*
504 * Frees all RX buffers on the freelist Q. The caller must make sure that
505 * the SGE is turned off before calling this function.
506 */
507 static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
508 {
509 unsigned int cidx = q->cidx;
510
511 while (q->credits--) {
512 struct freelQ_ce *ce = &q->centries[cidx];
513
514 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
515 dma_unmap_len(ce, dma_len),
516 PCI_DMA_FROMDEVICE);
517 dev_kfree_skb(ce->skb);
518 ce->skb = NULL;
519 if (++cidx == q->size)
520 cidx = 0;
521 }
522 }
523
524 /*
525 * Free RX free list and response queue resources.
526 */
527 static void free_rx_resources(struct sge *sge)
528 {
529 struct pci_dev *pdev = sge->adapter->pdev;
530 unsigned int size, i;
531
532 if (sge->respQ.entries) {
533 size = sizeof(struct respQ_e) * sge->respQ.size;
534 pci_free_consistent(pdev, size, sge->respQ.entries,
535 sge->respQ.dma_addr);
536 }
537
538 for (i = 0; i < SGE_FREELQ_N; i++) {
539 struct freelQ *q = &sge->freelQ[i];
540
541 if (q->centries) {
542 free_freelQ_buffers(pdev, q);
543 kfree(q->centries);
544 }
545 if (q->entries) {
546 size = sizeof(struct freelQ_e) * q->size;
547 pci_free_consistent(pdev, size, q->entries,
548 q->dma_addr);
549 }
550 }
551 }
552
553 /*
554 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
555 * response queue.
556 */
557 static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
558 {
559 struct pci_dev *pdev = sge->adapter->pdev;
560 unsigned int size, i;
561
562 for (i = 0; i < SGE_FREELQ_N; i++) {
563 struct freelQ *q = &sge->freelQ[i];
564
565 q->genbit = 1;
566 q->size = p->freelQ_size[i];
567 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
568 size = sizeof(struct freelQ_e) * q->size;
569 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
570 if (!q->entries)
571 goto err_no_mem;
572
573 size = sizeof(struct freelQ_ce) * q->size;
574 q->centries = kzalloc(size, GFP_KERNEL);
575 if (!q->centries)
576 goto err_no_mem;
577 }
578
579 /*
580 * Calculate the buffer sizes for the two free lists. FL0 accommodates
581 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
582 * including all the sk_buff overhead.
583 *
584 * Note: For T2 FL0 and FL1 are reversed.
585 */
586 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
587 sizeof(struct cpl_rx_data) +
588 sge->freelQ[!sge->jumbo_fl].dma_offset;
589
590 size = (16 * 1024) -
591 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
592
593 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
594
595 /*
596 * Setup which skb recycle Q should be used when recycling buffers from
597 * each free list.
598 */
599 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
600 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
601
602 sge->respQ.genbit = 1;
603 sge->respQ.size = SGE_RESPQ_E_N;
604 sge->respQ.credits = 0;
605 size = sizeof(struct respQ_e) * sge->respQ.size;
606 sge->respQ.entries =
607 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
608 if (!sge->respQ.entries)
609 goto err_no_mem;
610 return 0;
611
612 err_no_mem:
613 free_rx_resources(sge);
614 return -ENOMEM;
615 }
616
617 /*
618 * Reclaims n TX descriptors and frees the buffers associated with them.
619 */
620 static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
621 {
622 struct cmdQ_ce *ce;
623 struct pci_dev *pdev = sge->adapter->pdev;
624 unsigned int cidx = q->cidx;
625
626 q->in_use -= n;
627 ce = &q->centries[cidx];
628 while (n--) {
629 if (likely(dma_unmap_len(ce, dma_len))) {
630 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
631 dma_unmap_len(ce, dma_len),
632 PCI_DMA_TODEVICE);
633 if (q->sop)
634 q->sop = 0;
635 }
636 if (ce->skb) {
637 dev_kfree_skb_any(ce->skb);
638 q->sop = 1;
639 }
640 ce++;
641 if (++cidx == q->size) {
642 cidx = 0;
643 ce = q->centries;
644 }
645 }
646 q->cidx = cidx;
647 }
648
649 /*
650 * Free TX resources.
651 *
652 * Assumes that SGE is stopped and all interrupts are disabled.
653 */
654 static void free_tx_resources(struct sge *sge)
655 {
656 struct pci_dev *pdev = sge->adapter->pdev;
657 unsigned int size, i;
658
659 for (i = 0; i < SGE_CMDQ_N; i++) {
660 struct cmdQ *q = &sge->cmdQ[i];
661
662 if (q->centries) {
663 if (q->in_use)
664 free_cmdQ_buffers(sge, q, q->in_use);
665 kfree(q->centries);
666 }
667 if (q->entries) {
668 size = sizeof(struct cmdQ_e) * q->size;
669 pci_free_consistent(pdev, size, q->entries,
670 q->dma_addr);
671 }
672 }
673 }
674
675 /*
676 * Allocates basic TX resources, consisting of memory mapped command Qs.
677 */
678 static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
679 {
680 struct pci_dev *pdev = sge->adapter->pdev;
681 unsigned int size, i;
682
683 for (i = 0; i < SGE_CMDQ_N; i++) {
684 struct cmdQ *q = &sge->cmdQ[i];
685
686 q->genbit = 1;
687 q->sop = 1;
688 q->size = p->cmdQ_size[i];
689 q->in_use = 0;
690 q->status = 0;
691 q->processed = q->cleaned = 0;
692 q->stop_thres = 0;
693 spin_lock_init(&q->lock);
694 size = sizeof(struct cmdQ_e) * q->size;
695 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
696 if (!q->entries)
697 goto err_no_mem;
698
699 size = sizeof(struct cmdQ_ce) * q->size;
700 q->centries = kzalloc(size, GFP_KERNEL);
701 if (!q->centries)
702 goto err_no_mem;
703 }
704
705 /*
706 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
707 * only. For queue 0 set the stop threshold so we can handle one more
708 * packet from each port, plus reserve an additional 24 entries for
709 * Ethernet packets only. Queue 1 never suspends nor do we reserve
710 * space for Ethernet packets.
711 */
712 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
713 (MAX_SKB_FRAGS + 1);
714 return 0;
715
716 err_no_mem:
717 free_tx_resources(sge);
718 return -ENOMEM;
719 }
720
721 static inline void setup_ring_params(struct adapter *adapter, u64 addr,
722 u32 size, int base_reg_lo,
723 int base_reg_hi, int size_reg)
724 {
725 writel((u32)addr, adapter->regs + base_reg_lo);
726 writel(addr >> 32, adapter->regs + base_reg_hi);
727 writel(size, adapter->regs + size_reg);
728 }
729
730 /*
731 * Enable/disable VLAN acceleration.
732 */
733 void t1_vlan_mode(struct adapter *adapter, netdev_features_t features)
734 {
735 struct sge *sge = adapter->sge;
736
737 if (features & NETIF_F_HW_VLAN_CTAG_RX)
738 sge->sge_control |= F_VLAN_XTRACT;
739 else
740 sge->sge_control &= ~F_VLAN_XTRACT;
741 if (adapter->open_device_map) {
742 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
743 readl(adapter->regs + A_SG_CONTROL); /* flush */
744 }
745 }
746
747 /*
748 * Programs the various SGE registers. However, the engine is not yet enabled,
749 * but sge->sge_control is setup and ready to go.
750 */
751 static void configure_sge(struct sge *sge, struct sge_params *p)
752 {
753 struct adapter *ap = sge->adapter;
754
755 writel(0, ap->regs + A_SG_CONTROL);
756 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
757 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
758 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
759 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
760 setup_ring_params(ap, sge->freelQ[0].dma_addr,
761 sge->freelQ[0].size, A_SG_FL0BASELWR,
762 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
763 setup_ring_params(ap, sge->freelQ[1].dma_addr,
764 sge->freelQ[1].size, A_SG_FL1BASELWR,
765 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
766
767 /* The threshold comparison uses <. */
768 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
769
770 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
771 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
772 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
773
774 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
775 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
776 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
777 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
778
779 #if defined(__BIG_ENDIAN_BITFIELD)
780 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
781 #endif
782
783 /* Initialize no-resource timer */
784 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
785
786 t1_sge_set_coalesce_params(sge, p);
787 }
788
789 /*
790 * Return the payload capacity of the jumbo free-list buffers.
791 */
792 static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
793 {
794 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
795 sge->freelQ[sge->jumbo_fl].dma_offset -
796 sizeof(struct cpl_rx_data);
797 }
798
799 /*
800 * Frees all SGE related resources and the sge structure itself
801 */
802 void t1_sge_destroy(struct sge *sge)
803 {
804 int i;
805
806 for_each_port(sge->adapter, i)
807 free_percpu(sge->port_stats[i]);
808
809 kfree(sge->tx_sched);
810 free_tx_resources(sge);
811 free_rx_resources(sge);
812 kfree(sge);
813 }
814
815 /*
816 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
817 * context Q) until the Q is full or alloc_skb fails.
818 *
819 * It is possible that the generation bits already match, indicating that the
820 * buffer is already valid and nothing needs to be done. This happens when we
821 * copied a received buffer into a new sk_buff during the interrupt processing.
822 *
823 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
824 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
825 * aligned.
826 */
827 static void refill_free_list(struct sge *sge, struct freelQ *q)
828 {
829 struct pci_dev *pdev = sge->adapter->pdev;
830 struct freelQ_ce *ce = &q->centries[q->pidx];
831 struct freelQ_e *e = &q->entries[q->pidx];
832 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
833
834 while (q->credits < q->size) {
835 struct sk_buff *skb;
836 dma_addr_t mapping;
837
838 skb = dev_alloc_skb(q->rx_buffer_size);
839 if (!skb)
840 break;
841
842 skb_reserve(skb, q->dma_offset);
843 mapping = pci_map_single(pdev, skb->data, dma_len,
844 PCI_DMA_FROMDEVICE);
845 skb_reserve(skb, sge->rx_pkt_pad);
846
847 ce->skb = skb;
848 dma_unmap_addr_set(ce, dma_addr, mapping);
849 dma_unmap_len_set(ce, dma_len, dma_len);
850 e->addr_lo = (u32)mapping;
851 e->addr_hi = (u64)mapping >> 32;
852 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
853 wmb();
854 e->gen2 = V_CMD_GEN2(q->genbit);
855
856 e++;
857 ce++;
858 if (++q->pidx == q->size) {
859 q->pidx = 0;
860 q->genbit ^= 1;
861 ce = q->centries;
862 e = q->entries;
863 }
864 q->credits++;
865 }
866 }
867
868 /*
869 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
870 * of both rings, we go into 'few interrupt mode' in order to give the system
871 * time to free up resources.
872 */
873 static void freelQs_empty(struct sge *sge)
874 {
875 struct adapter *adapter = sge->adapter;
876 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
877 u32 irqholdoff_reg;
878
879 refill_free_list(sge, &sge->freelQ[0]);
880 refill_free_list(sge, &sge->freelQ[1]);
881
882 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
883 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
884 irq_reg |= F_FL_EXHAUSTED;
885 irqholdoff_reg = sge->fixed_intrtimer;
886 } else {
887 /* Clear the F_FL_EXHAUSTED interrupts for now */
888 irq_reg &= ~F_FL_EXHAUSTED;
889 irqholdoff_reg = sge->intrtimer_nres;
890 }
891 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
892 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
893
894 /* We reenable the Qs to force a freelist GTS interrupt later */
895 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
896 }
897
898 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
899 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
900 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
901 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902
903 /*
904 * Disable SGE Interrupts
905 */
906 void t1_sge_intr_disable(struct sge *sge)
907 {
908 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
909
910 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
911 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
912 }
913
914 /*
915 * Enable SGE interrupts.
916 */
917 void t1_sge_intr_enable(struct sge *sge)
918 {
919 u32 en = SGE_INT_ENABLE;
920 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
921
922 if (sge->adapter->port[0].dev->hw_features & NETIF_F_TSO)
923 en &= ~F_PACKET_TOO_BIG;
924 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
925 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
926 }
927
928 /*
929 * Clear SGE interrupts.
930 */
931 void t1_sge_intr_clear(struct sge *sge)
932 {
933 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
934 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
935 }
936
937 /*
938 * SGE 'Error' interrupt handler
939 */
940 int t1_sge_intr_error_handler(struct sge *sge)
941 {
942 struct adapter *adapter = sge->adapter;
943 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
944
945 if (adapter->port[0].dev->hw_features & NETIF_F_TSO)
946 cause &= ~F_PACKET_TOO_BIG;
947 if (cause & F_RESPQ_EXHAUSTED)
948 sge->stats.respQ_empty++;
949 if (cause & F_RESPQ_OVERFLOW) {
950 sge->stats.respQ_overflow++;
951 pr_alert("%s: SGE response queue overflow\n",
952 adapter->name);
953 }
954 if (cause & F_FL_EXHAUSTED) {
955 sge->stats.freelistQ_empty++;
956 freelQs_empty(sge);
957 }
958 if (cause & F_PACKET_TOO_BIG) {
959 sge->stats.pkt_too_big++;
960 pr_alert("%s: SGE max packet size exceeded\n",
961 adapter->name);
962 }
963 if (cause & F_PACKET_MISMATCH) {
964 sge->stats.pkt_mismatch++;
965 pr_alert("%s: SGE packet mismatch\n", adapter->name);
966 }
967 if (cause & SGE_INT_FATAL)
968 t1_fatal_err(adapter);
969
970 writel(cause, adapter->regs + A_SG_INT_CAUSE);
971 return 0;
972 }
973
974 const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
975 {
976 return &sge->stats;
977 }
978
979 void t1_sge_get_port_stats(const struct sge *sge, int port,
980 struct sge_port_stats *ss)
981 {
982 int cpu;
983
984 memset(ss, 0, sizeof(*ss));
985 for_each_possible_cpu(cpu) {
986 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
987
988 ss->rx_cso_good += st->rx_cso_good;
989 ss->tx_cso += st->tx_cso;
990 ss->tx_tso += st->tx_tso;
991 ss->tx_need_hdrroom += st->tx_need_hdrroom;
992 ss->vlan_xtract += st->vlan_xtract;
993 ss->vlan_insert += st->vlan_insert;
994 }
995 }
996
997 /**
998 * recycle_fl_buf - recycle a free list buffer
999 * @fl: the free list
1000 * @idx: index of buffer to recycle
1001 *
1002 * Recycles the specified buffer on the given free list by adding it at
1003 * the next available slot on the list.
1004 */
1005 static void recycle_fl_buf(struct freelQ *fl, int idx)
1006 {
1007 struct freelQ_e *from = &fl->entries[idx];
1008 struct freelQ_e *to = &fl->entries[fl->pidx];
1009
1010 fl->centries[fl->pidx] = fl->centries[idx];
1011 to->addr_lo = from->addr_lo;
1012 to->addr_hi = from->addr_hi;
1013 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1014 wmb();
1015 to->gen2 = V_CMD_GEN2(fl->genbit);
1016 fl->credits++;
1017
1018 if (++fl->pidx == fl->size) {
1019 fl->pidx = 0;
1020 fl->genbit ^= 1;
1021 }
1022 }
1023
1024 static int copybreak __read_mostly = 256;
1025 module_param(copybreak, int, 0);
1026 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
1027
1028 /**
1029 * get_packet - return the next ingress packet buffer
1030 * @pdev: the PCI device that received the packet
1031 * @fl: the SGE free list holding the packet
1032 * @len: the actual packet length, excluding any SGE padding
1033 *
1034 * Get the next packet from a free list and complete setup of the
1035 * sk_buff. If the packet is small we make a copy and recycle the
1036 * original buffer, otherwise we use the original buffer itself. If a
1037 * positive drop threshold is supplied packets are dropped and their
1038 * buffers recycled if (a) the number of remaining buffers is under the
1039 * threshold and the packet is too big to copy, or (b) the packet should
1040 * be copied but there is no memory for the copy.
1041 */
1042 static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1043 struct freelQ *fl, unsigned int len)
1044 {
1045 struct sk_buff *skb;
1046 const struct freelQ_ce *ce = &fl->centries[fl->cidx];
1047
1048 if (len < copybreak) {
1049 skb = netdev_alloc_skb_ip_align(NULL, len);
1050 if (!skb)
1051 goto use_orig_buf;
1052
1053 skb_put(skb, len);
1054 pci_dma_sync_single_for_cpu(pdev,
1055 dma_unmap_addr(ce, dma_addr),
1056 dma_unmap_len(ce, dma_len),
1057 PCI_DMA_FROMDEVICE);
1058 skb_copy_from_linear_data(ce->skb, skb->data, len);
1059 pci_dma_sync_single_for_device(pdev,
1060 dma_unmap_addr(ce, dma_addr),
1061 dma_unmap_len(ce, dma_len),
1062 PCI_DMA_FROMDEVICE);
1063 recycle_fl_buf(fl, fl->cidx);
1064 return skb;
1065 }
1066
1067 use_orig_buf:
1068 if (fl->credits < 2) {
1069 recycle_fl_buf(fl, fl->cidx);
1070 return NULL;
1071 }
1072
1073 pci_unmap_single(pdev, dma_unmap_addr(ce, dma_addr),
1074 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1075 skb = ce->skb;
1076 prefetch(skb->data);
1077
1078 skb_put(skb, len);
1079 return skb;
1080 }
1081
1082 /**
1083 * unexpected_offload - handle an unexpected offload packet
1084 * @adapter: the adapter
1085 * @fl: the free list that received the packet
1086 *
1087 * Called when we receive an unexpected offload packet (e.g., the TOE
1088 * function is disabled or the card is a NIC). Prints a message and
1089 * recycles the buffer.
1090 */
1091 static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1092 {
1093 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1094 struct sk_buff *skb = ce->skb;
1095
1096 pci_dma_sync_single_for_cpu(adapter->pdev, dma_unmap_addr(ce, dma_addr),
1097 dma_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1098 pr_err("%s: unexpected offload packet, cmd %u\n",
1099 adapter->name, *skb->data);
1100 recycle_fl_buf(fl, fl->cidx);
1101 }
1102
1103 /*
1104 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1105 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1106 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1107 * Note that the *_large_page_tx_descs stuff will be optimized out when
1108 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1109 *
1110 * compute_large_page_descs() computes how many additional descriptors are
1111 * required to break down the stack's request.
1112 */
1113 static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1114 {
1115 unsigned int count = 0;
1116
1117 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1118 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1119 unsigned int i, len = skb_headlen(skb);
1120 while (len > SGE_TX_DESC_MAX_PLEN) {
1121 count++;
1122 len -= SGE_TX_DESC_MAX_PLEN;
1123 }
1124 for (i = 0; nfrags--; i++) {
1125 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1126 len = skb_frag_size(frag);
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1130 }
1131 }
1132 }
1133 return count;
1134 }
1135
1136 /*
1137 * Write a cmdQ entry.
1138 *
1139 * Since this function writes the 'flags' field, it must not be used to
1140 * write the first cmdQ entry.
1141 */
1142 static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1143 unsigned int len, unsigned int gen,
1144 unsigned int eop)
1145 {
1146 BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
1147
1148 e->addr_lo = (u32)mapping;
1149 e->addr_hi = (u64)mapping >> 32;
1150 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1151 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1152 }
1153
1154 /*
1155 * See comment for previous function.
1156 *
1157 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1158 * *desc_len exceeds HW's capability.
1159 */
1160 static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1161 struct cmdQ_e **e,
1162 struct cmdQ_ce **ce,
1163 unsigned int *gen,
1164 dma_addr_t *desc_mapping,
1165 unsigned int *desc_len,
1166 unsigned int nfrags,
1167 struct cmdQ *q)
1168 {
1169 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1170 struct cmdQ_e *e1 = *e;
1171 struct cmdQ_ce *ce1 = *ce;
1172
1173 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1174 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1175 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1176 *gen, nfrags == 0 && *desc_len == 0);
1177 ce1->skb = NULL;
1178 dma_unmap_len_set(ce1, dma_len, 0);
1179 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1180 if (*desc_len) {
1181 ce1++;
1182 e1++;
1183 if (++pidx == q->size) {
1184 pidx = 0;
1185 *gen ^= 1;
1186 ce1 = q->centries;
1187 e1 = q->entries;
1188 }
1189 }
1190 }
1191 *e = e1;
1192 *ce = ce1;
1193 }
1194 return pidx;
1195 }
1196
1197 /*
1198 * Write the command descriptors to transmit the given skb starting at
1199 * descriptor pidx with the given generation.
1200 */
1201 static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1202 unsigned int pidx, unsigned int gen,
1203 struct cmdQ *q)
1204 {
1205 dma_addr_t mapping, desc_mapping;
1206 struct cmdQ_e *e, *e1;
1207 struct cmdQ_ce *ce;
1208 unsigned int i, flags, first_desc_len, desc_len,
1209 nfrags = skb_shinfo(skb)->nr_frags;
1210
1211 e = e1 = &q->entries[pidx];
1212 ce = &q->centries[pidx];
1213
1214 mapping = pci_map_single(adapter->pdev, skb->data,
1215 skb_headlen(skb), PCI_DMA_TODEVICE);
1216
1217 desc_mapping = mapping;
1218 desc_len = skb_headlen(skb);
1219
1220 flags = F_CMD_DATAVALID | F_CMD_SOP |
1221 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1222 V_CMD_GEN2(gen);
1223 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1224 desc_len : SGE_TX_DESC_MAX_PLEN;
1225 e->addr_lo = (u32)desc_mapping;
1226 e->addr_hi = (u64)desc_mapping >> 32;
1227 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1228 ce->skb = NULL;
1229 dma_unmap_len_set(ce, dma_len, 0);
1230
1231 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1232 desc_len > SGE_TX_DESC_MAX_PLEN) {
1233 desc_mapping += first_desc_len;
1234 desc_len -= first_desc_len;
1235 e1++;
1236 ce++;
1237 if (++pidx == q->size) {
1238 pidx = 0;
1239 gen ^= 1;
1240 e1 = q->entries;
1241 ce = q->centries;
1242 }
1243 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1244 &desc_mapping, &desc_len,
1245 nfrags, q);
1246
1247 if (likely(desc_len))
1248 write_tx_desc(e1, desc_mapping, desc_len, gen,
1249 nfrags == 0);
1250 }
1251
1252 ce->skb = NULL;
1253 dma_unmap_addr_set(ce, dma_addr, mapping);
1254 dma_unmap_len_set(ce, dma_len, skb_headlen(skb));
1255
1256 for (i = 0; nfrags--; i++) {
1257 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1258 e1++;
1259 ce++;
1260 if (++pidx == q->size) {
1261 pidx = 0;
1262 gen ^= 1;
1263 e1 = q->entries;
1264 ce = q->centries;
1265 }
1266
1267 mapping = skb_frag_dma_map(&adapter->pdev->dev, frag, 0,
1268 skb_frag_size(frag), DMA_TO_DEVICE);
1269 desc_mapping = mapping;
1270 desc_len = skb_frag_size(frag);
1271
1272 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1273 &desc_mapping, &desc_len,
1274 nfrags, q);
1275 if (likely(desc_len))
1276 write_tx_desc(e1, desc_mapping, desc_len, gen,
1277 nfrags == 0);
1278 ce->skb = NULL;
1279 dma_unmap_addr_set(ce, dma_addr, mapping);
1280 dma_unmap_len_set(ce, dma_len, skb_frag_size(frag));
1281 }
1282 ce->skb = skb;
1283 wmb();
1284 e->flags = flags;
1285 }
1286
1287 /*
1288 * Clean up completed Tx buffers.
1289 */
1290 static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1291 {
1292 unsigned int reclaim = q->processed - q->cleaned;
1293
1294 if (reclaim) {
1295 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1296 q->processed, q->cleaned);
1297 free_cmdQ_buffers(sge, q, reclaim);
1298 q->cleaned += reclaim;
1299 }
1300 }
1301
1302 /*
1303 * Called from tasklet. Checks the scheduler for any
1304 * pending skbs that can be sent.
1305 */
1306 static void restart_sched(unsigned long arg)
1307 {
1308 struct sge *sge = (struct sge *) arg;
1309 struct adapter *adapter = sge->adapter;
1310 struct cmdQ *q = &sge->cmdQ[0];
1311 struct sk_buff *skb;
1312 unsigned int credits, queued_skb = 0;
1313
1314 spin_lock(&q->lock);
1315 reclaim_completed_tx(sge, q);
1316
1317 credits = q->size - q->in_use;
1318 pr_debug("restart_sched credits=%d\n", credits);
1319 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1320 unsigned int genbit, pidx, count;
1321 count = 1 + skb_shinfo(skb)->nr_frags;
1322 count += compute_large_page_tx_descs(skb);
1323 q->in_use += count;
1324 genbit = q->genbit;
1325 pidx = q->pidx;
1326 q->pidx += count;
1327 if (q->pidx >= q->size) {
1328 q->pidx -= q->size;
1329 q->genbit ^= 1;
1330 }
1331 write_tx_descs(adapter, skb, pidx, genbit, q);
1332 credits = q->size - q->in_use;
1333 queued_skb = 1;
1334 }
1335
1336 if (queued_skb) {
1337 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1338 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1339 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1340 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1341 }
1342 }
1343 spin_unlock(&q->lock);
1344 }
1345
1346 /**
1347 * sge_rx - process an ingress ethernet packet
1348 * @sge: the sge structure
1349 * @fl: the free list that contains the packet buffer
1350 * @len: the packet length
1351 *
1352 * Process an ingress ethernet pakcet and deliver it to the stack.
1353 */
1354 static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
1355 {
1356 struct sk_buff *skb;
1357 const struct cpl_rx_pkt *p;
1358 struct adapter *adapter = sge->adapter;
1359 struct sge_port_stats *st;
1360 struct net_device *dev;
1361
1362 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
1363 if (unlikely(!skb)) {
1364 sge->stats.rx_drops++;
1365 return;
1366 }
1367
1368 p = (const struct cpl_rx_pkt *) skb->data;
1369 if (p->iff >= adapter->params.nports) {
1370 kfree_skb(skb);
1371 return;
1372 }
1373 __skb_pull(skb, sizeof(*p));
1374
1375 st = this_cpu_ptr(sge->port_stats[p->iff]);
1376 dev = adapter->port[p->iff].dev;
1377
1378 skb->protocol = eth_type_trans(skb, dev);
1379 if ((dev->features & NETIF_F_RXCSUM) && p->csum == 0xffff &&
1380 skb->protocol == htons(ETH_P_IP) &&
1381 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
1382 ++st->rx_cso_good;
1383 skb->ip_summed = CHECKSUM_UNNECESSARY;
1384 } else
1385 skb_checksum_none_assert(skb);
1386
1387 if (p->vlan_valid) {
1388 st->vlan_xtract++;
1389 __vlan_hwaccel_put_tag(skb, ntohs(p->vlan));
1390 }
1391 netif_receive_skb(skb);
1392 }
1393
1394 /*
1395 * Returns true if a command queue has enough available descriptors that
1396 * we can resume Tx operation after temporarily disabling its packet queue.
1397 */
1398 static inline int enough_free_Tx_descs(const struct cmdQ *q)
1399 {
1400 unsigned int r = q->processed - q->cleaned;
1401
1402 return q->in_use - r < (q->size >> 1);
1403 }
1404
1405 /*
1406 * Called when sufficient space has become available in the SGE command queues
1407 * after the Tx packet schedulers have been suspended to restart the Tx path.
1408 */
1409 static void restart_tx_queues(struct sge *sge)
1410 {
1411 struct adapter *adap = sge->adapter;
1412 int i;
1413
1414 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1415 return;
1416
1417 for_each_port(adap, i) {
1418 struct net_device *nd = adap->port[i].dev;
1419
1420 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1421 netif_running(nd)) {
1422 sge->stats.cmdQ_restarted[2]++;
1423 netif_wake_queue(nd);
1424 }
1425 }
1426 }
1427
1428 /*
1429 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1430 * information.
1431 */
1432 static unsigned int update_tx_info(struct adapter *adapter,
1433 unsigned int flags,
1434 unsigned int pr0)
1435 {
1436 struct sge *sge = adapter->sge;
1437 struct cmdQ *cmdq = &sge->cmdQ[0];
1438
1439 cmdq->processed += pr0;
1440 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1441 freelQs_empty(sge);
1442 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1443 }
1444 if (flags & F_CMDQ0_ENABLE) {
1445 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1446
1447 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1448 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1449 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1450 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1451 }
1452 if (sge->tx_sched)
1453 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1454
1455 flags &= ~F_CMDQ0_ENABLE;
1456 }
1457
1458 if (unlikely(sge->stopped_tx_queues != 0))
1459 restart_tx_queues(sge);
1460
1461 return flags;
1462 }
1463
1464 /*
1465 * Process SGE responses, up to the supplied budget. Returns the number of
1466 * responses processed. A negative budget is effectively unlimited.
1467 */
1468 static int process_responses(struct adapter *adapter, int budget)
1469 {
1470 struct sge *sge = adapter->sge;
1471 struct respQ *q = &sge->respQ;
1472 struct respQ_e *e = &q->entries[q->cidx];
1473 int done = 0;
1474 unsigned int flags = 0;
1475 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1476
1477 while (done < budget && e->GenerationBit == q->genbit) {
1478 flags |= e->Qsleeping;
1479
1480 cmdq_processed[0] += e->Cmdq0CreditReturn;
1481 cmdq_processed[1] += e->Cmdq1CreditReturn;
1482
1483 /* We batch updates to the TX side to avoid cacheline
1484 * ping-pong of TX state information on MP where the sender
1485 * might run on a different CPU than this function...
1486 */
1487 if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
1488 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1489 cmdq_processed[0] = 0;
1490 }
1491
1492 if (unlikely(cmdq_processed[1] > 16)) {
1493 sge->cmdQ[1].processed += cmdq_processed[1];
1494 cmdq_processed[1] = 0;
1495 }
1496
1497 if (likely(e->DataValid)) {
1498 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1499
1500 BUG_ON(!e->Sop || !e->Eop);
1501 if (unlikely(e->Offload))
1502 unexpected_offload(adapter, fl);
1503 else
1504 sge_rx(sge, fl, e->BufferLength);
1505
1506 ++done;
1507
1508 /*
1509 * Note: this depends on each packet consuming a
1510 * single free-list buffer; cf. the BUG above.
1511 */
1512 if (++fl->cidx == fl->size)
1513 fl->cidx = 0;
1514 prefetch(fl->centries[fl->cidx].skb);
1515
1516 if (unlikely(--fl->credits <
1517 fl->size - SGE_FREEL_REFILL_THRESH))
1518 refill_free_list(sge, fl);
1519 } else
1520 sge->stats.pure_rsps++;
1521
1522 e++;
1523 if (unlikely(++q->cidx == q->size)) {
1524 q->cidx = 0;
1525 q->genbit ^= 1;
1526 e = q->entries;
1527 }
1528 prefetch(e);
1529
1530 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1531 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1532 q->credits = 0;
1533 }
1534 }
1535
1536 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1537 sge->cmdQ[1].processed += cmdq_processed[1];
1538
1539 return done;
1540 }
1541
1542 static inline int responses_pending(const struct adapter *adapter)
1543 {
1544 const struct respQ *Q = &adapter->sge->respQ;
1545 const struct respQ_e *e = &Q->entries[Q->cidx];
1546
1547 return e->GenerationBit == Q->genbit;
1548 }
1549
1550 /*
1551 * A simpler version of process_responses() that handles only pure (i.e.,
1552 * non data-carrying) responses. Such respones are too light-weight to justify
1553 * calling a softirq when using NAPI, so we handle them specially in hard
1554 * interrupt context. The function is called with a pointer to a response,
1555 * which the caller must ensure is a valid pure response. Returns 1 if it
1556 * encounters a valid data-carrying response, 0 otherwise.
1557 */
1558 static int process_pure_responses(struct adapter *adapter)
1559 {
1560 struct sge *sge = adapter->sge;
1561 struct respQ *q = &sge->respQ;
1562 struct respQ_e *e = &q->entries[q->cidx];
1563 const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1564 unsigned int flags = 0;
1565 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
1566
1567 prefetch(fl->centries[fl->cidx].skb);
1568 if (e->DataValid)
1569 return 1;
1570
1571 do {
1572 flags |= e->Qsleeping;
1573
1574 cmdq_processed[0] += e->Cmdq0CreditReturn;
1575 cmdq_processed[1] += e->Cmdq1CreditReturn;
1576
1577 e++;
1578 if (unlikely(++q->cidx == q->size)) {
1579 q->cidx = 0;
1580 q->genbit ^= 1;
1581 e = q->entries;
1582 }
1583 prefetch(e);
1584
1585 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1586 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1587 q->credits = 0;
1588 }
1589 sge->stats.pure_rsps++;
1590 } while (e->GenerationBit == q->genbit && !e->DataValid);
1591
1592 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1593 sge->cmdQ[1].processed += cmdq_processed[1];
1594
1595 return e->GenerationBit == q->genbit;
1596 }
1597
1598 /*
1599 * Handler for new data events when using NAPI. This does not need any locking
1600 * or protection from interrupts as data interrupts are off at this point and
1601 * other adapter interrupts do not interfere.
1602 */
1603 int t1_poll(struct napi_struct *napi, int budget)
1604 {
1605 struct adapter *adapter = container_of(napi, struct adapter, napi);
1606 int work_done = process_responses(adapter, budget);
1607
1608 if (likely(work_done < budget)) {
1609 napi_complete(napi);
1610 writel(adapter->sge->respQ.cidx,
1611 adapter->regs + A_SG_SLEEPING);
1612 }
1613 return work_done;
1614 }
1615
1616 irqreturn_t t1_interrupt(int irq, void *data)
1617 {
1618 struct adapter *adapter = data;
1619 struct sge *sge = adapter->sge;
1620 int handled;
1621
1622 if (likely(responses_pending(adapter))) {
1623 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
1624
1625 if (napi_schedule_prep(&adapter->napi)) {
1626 if (process_pure_responses(adapter))
1627 __napi_schedule(&adapter->napi);
1628 else {
1629 /* no data, no NAPI needed */
1630 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1631 /* undo schedule_prep */
1632 napi_enable(&adapter->napi);
1633 }
1634 }
1635 return IRQ_HANDLED;
1636 }
1637
1638 spin_lock(&adapter->async_lock);
1639 handled = t1_slow_intr_handler(adapter);
1640 spin_unlock(&adapter->async_lock);
1641
1642 if (!handled)
1643 sge->stats.unhandled_irqs++;
1644
1645 return IRQ_RETVAL(handled != 0);
1646 }
1647
1648 /*
1649 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1650 *
1651 * The code figures out how many entries the sk_buff will require in the
1652 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1653 * has complete. Then, it doesn't access the global structure anymore, but
1654 * uses the corresponding fields on the stack. In conjunction with a spinlock
1655 * around that code, we can make the function reentrant without holding the
1656 * lock when we actually enqueue (which might be expensive, especially on
1657 * architectures with IO MMUs).
1658 *
1659 * This runs with softirqs disabled.
1660 */
1661 static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1662 unsigned int qid, struct net_device *dev)
1663 {
1664 struct sge *sge = adapter->sge;
1665 struct cmdQ *q = &sge->cmdQ[qid];
1666 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
1667
1668 if (!spin_trylock(&q->lock))
1669 return NETDEV_TX_LOCKED;
1670
1671 reclaim_completed_tx(sge, q);
1672
1673 pidx = q->pidx;
1674 credits = q->size - q->in_use;
1675 count = 1 + skb_shinfo(skb)->nr_frags;
1676 count += compute_large_page_tx_descs(skb);
1677
1678 /* Ethernet packet */
1679 if (unlikely(credits < count)) {
1680 if (!netif_queue_stopped(dev)) {
1681 netif_stop_queue(dev);
1682 set_bit(dev->if_port, &sge->stopped_tx_queues);
1683 sge->stats.cmdQ_full[2]++;
1684 pr_err("%s: Tx ring full while queue awake!\n",
1685 adapter->name);
1686 }
1687 spin_unlock(&q->lock);
1688 return NETDEV_TX_BUSY;
1689 }
1690
1691 if (unlikely(credits - count < q->stop_thres)) {
1692 netif_stop_queue(dev);
1693 set_bit(dev->if_port, &sge->stopped_tx_queues);
1694 sge->stats.cmdQ_full[2]++;
1695 }
1696
1697 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1698 * through the scheduler.
1699 */
1700 if (sge->tx_sched && !qid && skb->dev) {
1701 use_sched:
1702 use_sched_skb = 1;
1703 /* Note that the scheduler might return a different skb than
1704 * the one passed in.
1705 */
1706 skb = sched_skb(sge, skb, credits);
1707 if (!skb) {
1708 spin_unlock(&q->lock);
1709 return NETDEV_TX_OK;
1710 }
1711 pidx = q->pidx;
1712 count = 1 + skb_shinfo(skb)->nr_frags;
1713 count += compute_large_page_tx_descs(skb);
1714 }
1715
1716 q->in_use += count;
1717 genbit = q->genbit;
1718 pidx = q->pidx;
1719 q->pidx += count;
1720 if (q->pidx >= q->size) {
1721 q->pidx -= q->size;
1722 q->genbit ^= 1;
1723 }
1724 spin_unlock(&q->lock);
1725
1726 write_tx_descs(adapter, skb, pidx, genbit, q);
1727
1728 /*
1729 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1730 * the doorbell if the Q is asleep. There is a natural race, where
1731 * the hardware is going to sleep just after we checked, however,
1732 * then the interrupt handler will detect the outstanding TX packet
1733 * and ring the doorbell for us.
1734 */
1735 if (qid)
1736 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1737 else {
1738 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1739 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1740 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1741 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1742 }
1743 }
1744
1745 if (use_sched_skb) {
1746 if (spin_trylock(&q->lock)) {
1747 credits = q->size - q->in_use;
1748 skb = NULL;
1749 goto use_sched;
1750 }
1751 }
1752 return NETDEV_TX_OK;
1753 }
1754
1755 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1756
1757 /*
1758 * eth_hdr_len - return the length of an Ethernet header
1759 * @data: pointer to the start of the Ethernet header
1760 *
1761 * Returns the length of an Ethernet header, including optional VLAN tag.
1762 */
1763 static inline int eth_hdr_len(const void *data)
1764 {
1765 const struct ethhdr *e = data;
1766
1767 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1768 }
1769
1770 /*
1771 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1772 */
1773 netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1774 {
1775 struct adapter *adapter = dev->ml_priv;
1776 struct sge *sge = adapter->sge;
1777 struct sge_port_stats *st = this_cpu_ptr(sge->port_stats[dev->if_port]);
1778 struct cpl_tx_pkt *cpl;
1779 struct sk_buff *orig_skb = skb;
1780 int ret;
1781
1782 if (skb->protocol == htons(ETH_P_CPL5))
1783 goto send;
1784
1785 /*
1786 * We are using a non-standard hard_header_len.
1787 * Allocate more header room in the rare cases it is not big enough.
1788 */
1789 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
1790 skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
1791 ++st->tx_need_hdrroom;
1792 dev_kfree_skb_any(orig_skb);
1793 if (!skb)
1794 return NETDEV_TX_OK;
1795 }
1796
1797 if (skb_shinfo(skb)->gso_size) {
1798 int eth_type;
1799 struct cpl_tx_pkt_lso *hdr;
1800
1801 ++st->tx_tso;
1802
1803 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1804 CPL_ETH_II : CPL_ETH_II_VLAN;
1805
1806 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1807 hdr->opcode = CPL_TX_PKT_LSO;
1808 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1809 hdr->ip_hdr_words = ip_hdr(skb)->ihl;
1810 hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
1811 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
1812 skb_shinfo(skb)->gso_size));
1813 hdr->len = htonl(skb->len - sizeof(*hdr));
1814 cpl = (struct cpl_tx_pkt *)hdr;
1815 } else {
1816 /*
1817 * Packets shorter than ETH_HLEN can break the MAC, drop them
1818 * early. Also, we may get oversized packets because some
1819 * parts of the kernel don't handle our unusual hard_header_len
1820 * right, drop those too.
1821 */
1822 if (unlikely(skb->len < ETH_HLEN ||
1823 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
1824 netdev_dbg(dev, "packet size %d hdr %d mtu%d\n",
1825 skb->len, eth_hdr_len(skb->data), dev->mtu);
1826 dev_kfree_skb_any(skb);
1827 return NETDEV_TX_OK;
1828 }
1829
1830 if (skb->ip_summed == CHECKSUM_PARTIAL &&
1831 ip_hdr(skb)->protocol == IPPROTO_UDP) {
1832 if (unlikely(skb_checksum_help(skb))) {
1833 netdev_dbg(dev, "unable to do udp checksum\n");
1834 dev_kfree_skb_any(skb);
1835 return NETDEV_TX_OK;
1836 }
1837 }
1838
1839 /* Hmmm, assuming to catch the gratious arp... and we'll use
1840 * it to flush out stuck espi packets...
1841 */
1842 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
1843 if (skb->protocol == htons(ETH_P_ARP) &&
1844 arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
1845 adapter->sge->espibug_skb[dev->if_port] = skb;
1846 /* We want to re-use this skb later. We
1847 * simply bump the reference count and it
1848 * will not be freed...
1849 */
1850 skb = skb_get(skb);
1851 }
1852 }
1853
1854 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
1855 cpl->opcode = CPL_TX_PKT;
1856 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
1857 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
1858 /* the length field isn't used so don't bother setting it */
1859
1860 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
1861 }
1862 cpl->iff = dev->if_port;
1863
1864 if (vlan_tx_tag_present(skb)) {
1865 cpl->vlan_valid = 1;
1866 cpl->vlan = htons(vlan_tx_tag_get(skb));
1867 st->vlan_insert++;
1868 } else
1869 cpl->vlan_valid = 0;
1870
1871 send:
1872 ret = t1_sge_tx(skb, adapter, 0, dev);
1873
1874 /* If transmit busy, and we reallocated skb's due to headroom limit,
1875 * then silently discard to avoid leak.
1876 */
1877 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
1878 dev_kfree_skb_any(skb);
1879 ret = NETDEV_TX_OK;
1880 }
1881 return ret;
1882 }
1883
1884 /*
1885 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1886 */
1887 static void sge_tx_reclaim_cb(unsigned long data)
1888 {
1889 int i;
1890 struct sge *sge = (struct sge *)data;
1891
1892 for (i = 0; i < SGE_CMDQ_N; ++i) {
1893 struct cmdQ *q = &sge->cmdQ[i];
1894
1895 if (!spin_trylock(&q->lock))
1896 continue;
1897
1898 reclaim_completed_tx(sge, q);
1899 if (i == 0 && q->in_use) { /* flush pending credits */
1900 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1901 }
1902 spin_unlock(&q->lock);
1903 }
1904 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1905 }
1906
1907 /*
1908 * Propagate changes of the SGE coalescing parameters to the HW.
1909 */
1910 int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1911 {
1912 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1913 core_ticks_per_usec(sge->adapter);
1914 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
1915 return 0;
1916 }
1917
1918 /*
1919 * Allocates both RX and TX resources and configures the SGE. However,
1920 * the hardware is not enabled yet.
1921 */
1922 int t1_sge_configure(struct sge *sge, struct sge_params *p)
1923 {
1924 if (alloc_rx_resources(sge, p))
1925 return -ENOMEM;
1926 if (alloc_tx_resources(sge, p)) {
1927 free_rx_resources(sge);
1928 return -ENOMEM;
1929 }
1930 configure_sge(sge, p);
1931
1932 /*
1933 * Now that we have sized the free lists calculate the payload
1934 * capacity of the large buffers. Other parts of the driver use
1935 * this to set the max offload coalescing size so that RX packets
1936 * do not overflow our large buffers.
1937 */
1938 p->large_buf_capacity = jumbo_payload_capacity(sge);
1939 return 0;
1940 }
1941
1942 /*
1943 * Disables the DMA engine.
1944 */
1945 void t1_sge_stop(struct sge *sge)
1946 {
1947 int i;
1948 writel(0, sge->adapter->regs + A_SG_CONTROL);
1949 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1950
1951 if (is_T2(sge->adapter))
1952 del_timer_sync(&sge->espibug_timer);
1953
1954 del_timer_sync(&sge->tx_reclaim_timer);
1955 if (sge->tx_sched)
1956 tx_sched_stop(sge);
1957
1958 for (i = 0; i < MAX_NPORTS; i++)
1959 kfree_skb(sge->espibug_skb[i]);
1960 }
1961
1962 /*
1963 * Enables the DMA engine.
1964 */
1965 void t1_sge_start(struct sge *sge)
1966 {
1967 refill_free_list(sge, &sge->freelQ[0]);
1968 refill_free_list(sge, &sge->freelQ[1]);
1969
1970 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
1971 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
1972 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
1973
1974 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1975
1976 if (is_T2(sge->adapter))
1977 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
1978 }
1979
1980 /*
1981 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1982 */
1983 static void espibug_workaround_t204(unsigned long data)
1984 {
1985 struct adapter *adapter = (struct adapter *)data;
1986 struct sge *sge = adapter->sge;
1987 unsigned int nports = adapter->params.nports;
1988 u32 seop[MAX_NPORTS];
1989
1990 if (adapter->open_device_map & PORT_MASK) {
1991 int i;
1992
1993 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
1994 return;
1995
1996 for (i = 0; i < nports; i++) {
1997 struct sk_buff *skb = sge->espibug_skb[i];
1998
1999 if (!netif_running(adapter->port[i].dev) ||
2000 netif_queue_stopped(adapter->port[i].dev) ||
2001 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2002 continue;
2003
2004 if (!skb->cb[0]) {
2005 skb_copy_to_linear_data_offset(skb,
2006 sizeof(struct cpl_tx_pkt),
2007 ch_mac_addr,
2008 ETH_ALEN);
2009 skb_copy_to_linear_data_offset(skb,
2010 skb->len - 10,
2011 ch_mac_addr,
2012 ETH_ALEN);
2013 skb->cb[0] = 0xff;
2014 }
2015
2016 /* bump the reference count to avoid freeing of
2017 * the skb once the DMA has completed.
2018 */
2019 skb = skb_get(skb);
2020 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
2021 }
2022 }
2023 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2024 }
2025
2026 static void espibug_workaround(unsigned long data)
2027 {
2028 struct adapter *adapter = (struct adapter *)data;
2029 struct sge *sge = adapter->sge;
2030
2031 if (netif_running(adapter->port[0].dev)) {
2032 struct sk_buff *skb = sge->espibug_skb[0];
2033 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2034
2035 if ((seop & 0xfff0fff) == 0xfff && skb) {
2036 if (!skb->cb[0]) {
2037 skb_copy_to_linear_data_offset(skb,
2038 sizeof(struct cpl_tx_pkt),
2039 ch_mac_addr,
2040 ETH_ALEN);
2041 skb_copy_to_linear_data_offset(skb,
2042 skb->len - 10,
2043 ch_mac_addr,
2044 ETH_ALEN);
2045 skb->cb[0] = 0xff;
2046 }
2047
2048 /* bump the reference count to avoid freeing of the
2049 * skb once the DMA has completed.
2050 */
2051 skb = skb_get(skb);
2052 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2053 }
2054 }
2055 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2056 }
2057
2058 /*
2059 * Creates a t1_sge structure and returns suggested resource parameters.
2060 */
2061 struct sge *t1_sge_create(struct adapter *adapter, struct sge_params *p)
2062 {
2063 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
2064 int i;
2065
2066 if (!sge)
2067 return NULL;
2068
2069 sge->adapter = adapter;
2070 sge->netdev = adapter->port[0].dev;
2071 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2072 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2073
2074 for_each_port(adapter, i) {
2075 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2076 if (!sge->port_stats[i])
2077 goto nomem_port;
2078 }
2079
2080 init_timer(&sge->tx_reclaim_timer);
2081 sge->tx_reclaim_timer.data = (unsigned long)sge;
2082 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2083
2084 if (is_T2(sge->adapter)) {
2085 init_timer(&sge->espibug_timer);
2086
2087 if (adapter->params.nports > 1) {
2088 tx_sched_init(sge);
2089 sge->espibug_timer.function = espibug_workaround_t204;
2090 } else
2091 sge->espibug_timer.function = espibug_workaround;
2092 sge->espibug_timer.data = (unsigned long)sge->adapter;
2093
2094 sge->espibug_timeout = 1;
2095 /* for T204, every 10ms */
2096 if (adapter->params.nports > 1)
2097 sge->espibug_timeout = HZ/100;
2098 }
2099
2100
2101 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2102 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2103 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2104 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
2105 if (sge->tx_sched) {
2106 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2107 p->rx_coalesce_usecs = 15;
2108 else
2109 p->rx_coalesce_usecs = 50;
2110 } else
2111 p->rx_coalesce_usecs = 50;
2112
2113 p->coalesce_enable = 0;
2114 p->sample_interval_usecs = 0;
2115
2116 return sge;
2117 nomem_port:
2118 while (i >= 0) {
2119 free_percpu(sge->port_stats[i]);
2120 --i;
2121 }
2122 kfree(sge);
2123 return NULL;
2124
2125 }
This page took 0.281138 seconds and 5 git commands to generate.