chelsio: Use netdev_<level> and pr_<level>
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/init.h>
38 #include <linux/pci.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/netdevice.h>
41 #include <linux/etherdevice.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mdio.h>
44 #include <linux/sockios.h>
45 #include <linux/workqueue.h>
46 #include <linux/proc_fs.h>
47 #include <linux/rtnetlink.h>
48 #include <linux/firmware.h>
49 #include <linux/log2.h>
50 #include <linux/stringify.h>
51 #include <linux/sched.h>
52 #include <linux/slab.h>
53 #include <asm/uaccess.h>
54
55 #include "common.h"
56 #include "cxgb3_ioctl.h"
57 #include "regs.h"
58 #include "cxgb3_offload.h"
59 #include "version.h"
60
61 #include "cxgb3_ctl_defs.h"
62 #include "t3_cpl.h"
63 #include "firmware_exports.h"
64
65 enum {
66 MAX_TXQ_ENTRIES = 16384,
67 MAX_CTRL_TXQ_ENTRIES = 1024,
68 MAX_RSPQ_ENTRIES = 16384,
69 MAX_RX_BUFFERS = 16384,
70 MAX_RX_JUMBO_BUFFERS = 16384,
71 MIN_TXQ_ENTRIES = 4,
72 MIN_CTRL_TXQ_ENTRIES = 4,
73 MIN_RSPQ_ENTRIES = 32,
74 MIN_FL_ENTRIES = 32
75 };
76
77 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
78
79 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
80 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
81 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
82
83 #define EEPROM_MAGIC 0x38E2F10C
84
85 #define CH_DEVICE(devid, idx) \
86 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
87
88 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
89 CH_DEVICE(0x20, 0), /* PE9000 */
90 CH_DEVICE(0x21, 1), /* T302E */
91 CH_DEVICE(0x22, 2), /* T310E */
92 CH_DEVICE(0x23, 3), /* T320X */
93 CH_DEVICE(0x24, 1), /* T302X */
94 CH_DEVICE(0x25, 3), /* T320E */
95 CH_DEVICE(0x26, 2), /* T310X */
96 CH_DEVICE(0x30, 2), /* T3B10 */
97 CH_DEVICE(0x31, 3), /* T3B20 */
98 CH_DEVICE(0x32, 1), /* T3B02 */
99 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
100 CH_DEVICE(0x36, 3), /* S320E-CR */
101 CH_DEVICE(0x37, 7), /* N320E-G2 */
102 {0,}
103 };
104
105 MODULE_DESCRIPTION(DRV_DESC);
106 MODULE_AUTHOR("Chelsio Communications");
107 MODULE_LICENSE("Dual BSD/GPL");
108 MODULE_VERSION(DRV_VERSION);
109 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
110
111 static int dflt_msg_enable = DFLT_MSG_ENABLE;
112
113 module_param(dflt_msg_enable, int, 0644);
114 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
115
116 /*
117 * The driver uses the best interrupt scheme available on a platform in the
118 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
119 * of these schemes the driver may consider as follows:
120 *
121 * msi = 2: choose from among all three options
122 * msi = 1: only consider MSI and pin interrupts
123 * msi = 0: force pin interrupts
124 */
125 static int msi = 2;
126
127 module_param(msi, int, 0644);
128 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
129
130 /*
131 * The driver enables offload as a default.
132 * To disable it, use ofld_disable = 1.
133 */
134
135 static int ofld_disable = 0;
136
137 module_param(ofld_disable, int, 0644);
138 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
139
140 /*
141 * We have work elements that we need to cancel when an interface is taken
142 * down. Normally the work elements would be executed by keventd but that
143 * can deadlock because of linkwatch. If our close method takes the rtnl
144 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
145 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
146 * for our work to complete. Get our own work queue to solve this.
147 */
148 struct workqueue_struct *cxgb3_wq;
149
150 /**
151 * link_report - show link status and link speed/duplex
152 * @p: the port whose settings are to be reported
153 *
154 * Shows the link status, speed, and duplex of a port.
155 */
156 static void link_report(struct net_device *dev)
157 {
158 if (!netif_carrier_ok(dev))
159 netdev_info(dev, "link down\n");
160 else {
161 const char *s = "10Mbps";
162 const struct port_info *p = netdev_priv(dev);
163
164 switch (p->link_config.speed) {
165 case SPEED_10000:
166 s = "10Gbps";
167 break;
168 case SPEED_1000:
169 s = "1000Mbps";
170 break;
171 case SPEED_100:
172 s = "100Mbps";
173 break;
174 }
175
176 netdev_info(dev, "link up, %s, %s-duplex\n",
177 s, p->link_config.duplex == DUPLEX_FULL
178 ? "full" : "half");
179 }
180 }
181
182 static void enable_tx_fifo_drain(struct adapter *adapter,
183 struct port_info *pi)
184 {
185 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
186 F_ENDROPPKT);
187 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
188 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
189 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
190 }
191
192 static void disable_tx_fifo_drain(struct adapter *adapter,
193 struct port_info *pi)
194 {
195 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
196 F_ENDROPPKT, 0);
197 }
198
199 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
200 {
201 struct net_device *dev = adap->port[port_id];
202 struct port_info *pi = netdev_priv(dev);
203
204 if (state == netif_carrier_ok(dev))
205 return;
206
207 if (state) {
208 struct cmac *mac = &pi->mac;
209
210 netif_carrier_on(dev);
211
212 disable_tx_fifo_drain(adap, pi);
213
214 /* Clear local faults */
215 t3_xgm_intr_disable(adap, pi->port_id);
216 t3_read_reg(adap, A_XGM_INT_STATUS +
217 pi->mac.offset);
218 t3_write_reg(adap,
219 A_XGM_INT_CAUSE + pi->mac.offset,
220 F_XGM_INT);
221
222 t3_set_reg_field(adap,
223 A_XGM_INT_ENABLE +
224 pi->mac.offset,
225 F_XGM_INT, F_XGM_INT);
226 t3_xgm_intr_enable(adap, pi->port_id);
227
228 t3_mac_enable(mac, MAC_DIRECTION_TX);
229 } else {
230 netif_carrier_off(dev);
231
232 /* Flush TX FIFO */
233 enable_tx_fifo_drain(adap, pi);
234 }
235 link_report(dev);
236 }
237
238 /**
239 * t3_os_link_changed - handle link status changes
240 * @adapter: the adapter associated with the link change
241 * @port_id: the port index whose limk status has changed
242 * @link_stat: the new status of the link
243 * @speed: the new speed setting
244 * @duplex: the new duplex setting
245 * @pause: the new flow-control setting
246 *
247 * This is the OS-dependent handler for link status changes. The OS
248 * neutral handler takes care of most of the processing for these events,
249 * then calls this handler for any OS-specific processing.
250 */
251 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
252 int speed, int duplex, int pause)
253 {
254 struct net_device *dev = adapter->port[port_id];
255 struct port_info *pi = netdev_priv(dev);
256 struct cmac *mac = &pi->mac;
257
258 /* Skip changes from disabled ports. */
259 if (!netif_running(dev))
260 return;
261
262 if (link_stat != netif_carrier_ok(dev)) {
263 if (link_stat) {
264 disable_tx_fifo_drain(adapter, pi);
265
266 t3_mac_enable(mac, MAC_DIRECTION_RX);
267
268 /* Clear local faults */
269 t3_xgm_intr_disable(adapter, pi->port_id);
270 t3_read_reg(adapter, A_XGM_INT_STATUS +
271 pi->mac.offset);
272 t3_write_reg(adapter,
273 A_XGM_INT_CAUSE + pi->mac.offset,
274 F_XGM_INT);
275
276 t3_set_reg_field(adapter,
277 A_XGM_INT_ENABLE + pi->mac.offset,
278 F_XGM_INT, F_XGM_INT);
279 t3_xgm_intr_enable(adapter, pi->port_id);
280
281 netif_carrier_on(dev);
282 } else {
283 netif_carrier_off(dev);
284
285 t3_xgm_intr_disable(adapter, pi->port_id);
286 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
287 t3_set_reg_field(adapter,
288 A_XGM_INT_ENABLE + pi->mac.offset,
289 F_XGM_INT, 0);
290
291 if (is_10G(adapter))
292 pi->phy.ops->power_down(&pi->phy, 1);
293
294 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
295 t3_mac_disable(mac, MAC_DIRECTION_RX);
296 t3_link_start(&pi->phy, mac, &pi->link_config);
297
298 /* Flush TX FIFO */
299 enable_tx_fifo_drain(adapter, pi);
300 }
301
302 link_report(dev);
303 }
304 }
305
306 /**
307 * t3_os_phymod_changed - handle PHY module changes
308 * @phy: the PHY reporting the module change
309 * @mod_type: new module type
310 *
311 * This is the OS-dependent handler for PHY module changes. It is
312 * invoked when a PHY module is removed or inserted for any OS-specific
313 * processing.
314 */
315 void t3_os_phymod_changed(struct adapter *adap, int port_id)
316 {
317 static const char *mod_str[] = {
318 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
319 };
320
321 const struct net_device *dev = adap->port[port_id];
322 const struct port_info *pi = netdev_priv(dev);
323
324 if (pi->phy.modtype == phy_modtype_none)
325 netdev_info(dev, "PHY module unplugged\n");
326 else
327 netdev_info(dev, "%s PHY module inserted\n",
328 mod_str[pi->phy.modtype]);
329 }
330
331 static void cxgb_set_rxmode(struct net_device *dev)
332 {
333 struct port_info *pi = netdev_priv(dev);
334
335 t3_mac_set_rx_mode(&pi->mac, dev);
336 }
337
338 /**
339 * link_start - enable a port
340 * @dev: the device to enable
341 *
342 * Performs the MAC and PHY actions needed to enable a port.
343 */
344 static void link_start(struct net_device *dev)
345 {
346 struct port_info *pi = netdev_priv(dev);
347 struct cmac *mac = &pi->mac;
348
349 t3_mac_reset(mac);
350 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
351 t3_mac_set_mtu(mac, dev->mtu);
352 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
353 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
354 t3_mac_set_rx_mode(mac, dev);
355 t3_link_start(&pi->phy, mac, &pi->link_config);
356 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
357 }
358
359 static inline void cxgb_disable_msi(struct adapter *adapter)
360 {
361 if (adapter->flags & USING_MSIX) {
362 pci_disable_msix(adapter->pdev);
363 adapter->flags &= ~USING_MSIX;
364 } else if (adapter->flags & USING_MSI) {
365 pci_disable_msi(adapter->pdev);
366 adapter->flags &= ~USING_MSI;
367 }
368 }
369
370 /*
371 * Interrupt handler for asynchronous events used with MSI-X.
372 */
373 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
374 {
375 t3_slow_intr_handler(cookie);
376 return IRQ_HANDLED;
377 }
378
379 /*
380 * Name the MSI-X interrupts.
381 */
382 static void name_msix_vecs(struct adapter *adap)
383 {
384 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
385
386 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
387 adap->msix_info[0].desc[n] = 0;
388
389 for_each_port(adap, j) {
390 struct net_device *d = adap->port[j];
391 const struct port_info *pi = netdev_priv(d);
392
393 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
394 snprintf(adap->msix_info[msi_idx].desc, n,
395 "%s-%d", d->name, pi->first_qset + i);
396 adap->msix_info[msi_idx].desc[n] = 0;
397 }
398 }
399 }
400
401 static int request_msix_data_irqs(struct adapter *adap)
402 {
403 int i, j, err, qidx = 0;
404
405 for_each_port(adap, i) {
406 int nqsets = adap2pinfo(adap, i)->nqsets;
407
408 for (j = 0; j < nqsets; ++j) {
409 err = request_irq(adap->msix_info[qidx + 1].vec,
410 t3_intr_handler(adap,
411 adap->sge.qs[qidx].
412 rspq.polling), 0,
413 adap->msix_info[qidx + 1].desc,
414 &adap->sge.qs[qidx]);
415 if (err) {
416 while (--qidx >= 0)
417 free_irq(adap->msix_info[qidx + 1].vec,
418 &adap->sge.qs[qidx]);
419 return err;
420 }
421 qidx++;
422 }
423 }
424 return 0;
425 }
426
427 static void free_irq_resources(struct adapter *adapter)
428 {
429 if (adapter->flags & USING_MSIX) {
430 int i, n = 0;
431
432 free_irq(adapter->msix_info[0].vec, adapter);
433 for_each_port(adapter, i)
434 n += adap2pinfo(adapter, i)->nqsets;
435
436 for (i = 0; i < n; ++i)
437 free_irq(adapter->msix_info[i + 1].vec,
438 &adapter->sge.qs[i]);
439 } else
440 free_irq(adapter->pdev->irq, adapter);
441 }
442
443 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
444 unsigned long n)
445 {
446 int attempts = 10;
447
448 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
449 if (!--attempts)
450 return -ETIMEDOUT;
451 msleep(10);
452 }
453 return 0;
454 }
455
456 static int init_tp_parity(struct adapter *adap)
457 {
458 int i;
459 struct sk_buff *skb;
460 struct cpl_set_tcb_field *greq;
461 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
462
463 t3_tp_set_offload_mode(adap, 1);
464
465 for (i = 0; i < 16; i++) {
466 struct cpl_smt_write_req *req;
467
468 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
469 if (!skb)
470 skb = adap->nofail_skb;
471 if (!skb)
472 goto alloc_skb_fail;
473
474 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
475 memset(req, 0, sizeof(*req));
476 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
477 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
478 req->mtu_idx = NMTUS - 1;
479 req->iff = i;
480 t3_mgmt_tx(adap, skb);
481 if (skb == adap->nofail_skb) {
482 await_mgmt_replies(adap, cnt, i + 1);
483 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
484 if (!adap->nofail_skb)
485 goto alloc_skb_fail;
486 }
487 }
488
489 for (i = 0; i < 2048; i++) {
490 struct cpl_l2t_write_req *req;
491
492 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
493 if (!skb)
494 skb = adap->nofail_skb;
495 if (!skb)
496 goto alloc_skb_fail;
497
498 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
499 memset(req, 0, sizeof(*req));
500 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
501 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
502 req->params = htonl(V_L2T_W_IDX(i));
503 t3_mgmt_tx(adap, skb);
504 if (skb == adap->nofail_skb) {
505 await_mgmt_replies(adap, cnt, 16 + i + 1);
506 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
507 if (!adap->nofail_skb)
508 goto alloc_skb_fail;
509 }
510 }
511
512 for (i = 0; i < 2048; i++) {
513 struct cpl_rte_write_req *req;
514
515 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
516 if (!skb)
517 skb = adap->nofail_skb;
518 if (!skb)
519 goto alloc_skb_fail;
520
521 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
522 memset(req, 0, sizeof(*req));
523 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
524 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
525 req->l2t_idx = htonl(V_L2T_W_IDX(i));
526 t3_mgmt_tx(adap, skb);
527 if (skb == adap->nofail_skb) {
528 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
529 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
530 if (!adap->nofail_skb)
531 goto alloc_skb_fail;
532 }
533 }
534
535 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
536 if (!skb)
537 skb = adap->nofail_skb;
538 if (!skb)
539 goto alloc_skb_fail;
540
541 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
542 memset(greq, 0, sizeof(*greq));
543 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
544 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
545 greq->mask = cpu_to_be64(1);
546 t3_mgmt_tx(adap, skb);
547
548 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
549 if (skb == adap->nofail_skb) {
550 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
551 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
552 }
553
554 t3_tp_set_offload_mode(adap, 0);
555 return i;
556
557 alloc_skb_fail:
558 t3_tp_set_offload_mode(adap, 0);
559 return -ENOMEM;
560 }
561
562 /**
563 * setup_rss - configure RSS
564 * @adap: the adapter
565 *
566 * Sets up RSS to distribute packets to multiple receive queues. We
567 * configure the RSS CPU lookup table to distribute to the number of HW
568 * receive queues, and the response queue lookup table to narrow that
569 * down to the response queues actually configured for each port.
570 * We always configure the RSS mapping for two ports since the mapping
571 * table has plenty of entries.
572 */
573 static void setup_rss(struct adapter *adap)
574 {
575 int i;
576 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
577 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
578 u8 cpus[SGE_QSETS + 1];
579 u16 rspq_map[RSS_TABLE_SIZE];
580
581 for (i = 0; i < SGE_QSETS; ++i)
582 cpus[i] = i;
583 cpus[SGE_QSETS] = 0xff; /* terminator */
584
585 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
586 rspq_map[i] = i % nq0;
587 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
588 }
589
590 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
591 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
592 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
593 }
594
595 static void ring_dbs(struct adapter *adap)
596 {
597 int i, j;
598
599 for (i = 0; i < SGE_QSETS; i++) {
600 struct sge_qset *qs = &adap->sge.qs[i];
601
602 if (qs->adap)
603 for (j = 0; j < SGE_TXQ_PER_SET; j++)
604 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
605 }
606 }
607
608 static void init_napi(struct adapter *adap)
609 {
610 int i;
611
612 for (i = 0; i < SGE_QSETS; i++) {
613 struct sge_qset *qs = &adap->sge.qs[i];
614
615 if (qs->adap)
616 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
617 64);
618 }
619
620 /*
621 * netif_napi_add() can be called only once per napi_struct because it
622 * adds each new napi_struct to a list. Be careful not to call it a
623 * second time, e.g., during EEH recovery, by making a note of it.
624 */
625 adap->flags |= NAPI_INIT;
626 }
627
628 /*
629 * Wait until all NAPI handlers are descheduled. This includes the handlers of
630 * both netdevices representing interfaces and the dummy ones for the extra
631 * queues.
632 */
633 static void quiesce_rx(struct adapter *adap)
634 {
635 int i;
636
637 for (i = 0; i < SGE_QSETS; i++)
638 if (adap->sge.qs[i].adap)
639 napi_disable(&adap->sge.qs[i].napi);
640 }
641
642 static void enable_all_napi(struct adapter *adap)
643 {
644 int i;
645 for (i = 0; i < SGE_QSETS; i++)
646 if (adap->sge.qs[i].adap)
647 napi_enable(&adap->sge.qs[i].napi);
648 }
649
650 /**
651 * setup_sge_qsets - configure SGE Tx/Rx/response queues
652 * @adap: the adapter
653 *
654 * Determines how many sets of SGE queues to use and initializes them.
655 * We support multiple queue sets per port if we have MSI-X, otherwise
656 * just one queue set per port.
657 */
658 static int setup_sge_qsets(struct adapter *adap)
659 {
660 int i, j, err, irq_idx = 0, qset_idx = 0;
661 unsigned int ntxq = SGE_TXQ_PER_SET;
662
663 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
664 irq_idx = -1;
665
666 for_each_port(adap, i) {
667 struct net_device *dev = adap->port[i];
668 struct port_info *pi = netdev_priv(dev);
669
670 pi->qs = &adap->sge.qs[pi->first_qset];
671 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
672 err = t3_sge_alloc_qset(adap, qset_idx, 1,
673 (adap->flags & USING_MSIX) ? qset_idx + 1 :
674 irq_idx,
675 &adap->params.sge.qset[qset_idx], ntxq, dev,
676 netdev_get_tx_queue(dev, j));
677 if (err) {
678 t3_free_sge_resources(adap);
679 return err;
680 }
681 }
682 }
683
684 return 0;
685 }
686
687 static ssize_t attr_show(struct device *d, char *buf,
688 ssize_t(*format) (struct net_device *, char *))
689 {
690 ssize_t len;
691
692 /* Synchronize with ioctls that may shut down the device */
693 rtnl_lock();
694 len = (*format) (to_net_dev(d), buf);
695 rtnl_unlock();
696 return len;
697 }
698
699 static ssize_t attr_store(struct device *d,
700 const char *buf, size_t len,
701 ssize_t(*set) (struct net_device *, unsigned int),
702 unsigned int min_val, unsigned int max_val)
703 {
704 char *endp;
705 ssize_t ret;
706 unsigned int val;
707
708 if (!capable(CAP_NET_ADMIN))
709 return -EPERM;
710
711 val = simple_strtoul(buf, &endp, 0);
712 if (endp == buf || val < min_val || val > max_val)
713 return -EINVAL;
714
715 rtnl_lock();
716 ret = (*set) (to_net_dev(d), val);
717 if (!ret)
718 ret = len;
719 rtnl_unlock();
720 return ret;
721 }
722
723 #define CXGB3_SHOW(name, val_expr) \
724 static ssize_t format_##name(struct net_device *dev, char *buf) \
725 { \
726 struct port_info *pi = netdev_priv(dev); \
727 struct adapter *adap = pi->adapter; \
728 return sprintf(buf, "%u\n", val_expr); \
729 } \
730 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
731 char *buf) \
732 { \
733 return attr_show(d, buf, format_##name); \
734 }
735
736 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
737 {
738 struct port_info *pi = netdev_priv(dev);
739 struct adapter *adap = pi->adapter;
740 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
741
742 if (adap->flags & FULL_INIT_DONE)
743 return -EBUSY;
744 if (val && adap->params.rev == 0)
745 return -EINVAL;
746 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
747 min_tids)
748 return -EINVAL;
749 adap->params.mc5.nfilters = val;
750 return 0;
751 }
752
753 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
754 const char *buf, size_t len)
755 {
756 return attr_store(d, buf, len, set_nfilters, 0, ~0);
757 }
758
759 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
760 {
761 struct port_info *pi = netdev_priv(dev);
762 struct adapter *adap = pi->adapter;
763
764 if (adap->flags & FULL_INIT_DONE)
765 return -EBUSY;
766 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
767 MC5_MIN_TIDS)
768 return -EINVAL;
769 adap->params.mc5.nservers = val;
770 return 0;
771 }
772
773 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
774 const char *buf, size_t len)
775 {
776 return attr_store(d, buf, len, set_nservers, 0, ~0);
777 }
778
779 #define CXGB3_ATTR_R(name, val_expr) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
782
783 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
784 CXGB3_SHOW(name, val_expr) \
785 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
786
787 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
788 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
789 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
790
791 static struct attribute *cxgb3_attrs[] = {
792 &dev_attr_cam_size.attr,
793 &dev_attr_nfilters.attr,
794 &dev_attr_nservers.attr,
795 NULL
796 };
797
798 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
799
800 static ssize_t tm_attr_show(struct device *d,
801 char *buf, int sched)
802 {
803 struct port_info *pi = netdev_priv(to_net_dev(d));
804 struct adapter *adap = pi->adapter;
805 unsigned int v, addr, bpt, cpt;
806 ssize_t len;
807
808 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
809 rtnl_lock();
810 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
811 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
812 if (sched & 1)
813 v >>= 16;
814 bpt = (v >> 8) & 0xff;
815 cpt = v & 0xff;
816 if (!cpt)
817 len = sprintf(buf, "disabled\n");
818 else {
819 v = (adap->params.vpd.cclk * 1000) / cpt;
820 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
821 }
822 rtnl_unlock();
823 return len;
824 }
825
826 static ssize_t tm_attr_store(struct device *d,
827 const char *buf, size_t len, int sched)
828 {
829 struct port_info *pi = netdev_priv(to_net_dev(d));
830 struct adapter *adap = pi->adapter;
831 unsigned int val;
832 char *endp;
833 ssize_t ret;
834
835 if (!capable(CAP_NET_ADMIN))
836 return -EPERM;
837
838 val = simple_strtoul(buf, &endp, 0);
839 if (endp == buf || val > 10000000)
840 return -EINVAL;
841
842 rtnl_lock();
843 ret = t3_config_sched(adap, val, sched);
844 if (!ret)
845 ret = len;
846 rtnl_unlock();
847 return ret;
848 }
849
850 #define TM_ATTR(name, sched) \
851 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
852 char *buf) \
853 { \
854 return tm_attr_show(d, buf, sched); \
855 } \
856 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
857 const char *buf, size_t len) \
858 { \
859 return tm_attr_store(d, buf, len, sched); \
860 } \
861 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
862
863 TM_ATTR(sched0, 0);
864 TM_ATTR(sched1, 1);
865 TM_ATTR(sched2, 2);
866 TM_ATTR(sched3, 3);
867 TM_ATTR(sched4, 4);
868 TM_ATTR(sched5, 5);
869 TM_ATTR(sched6, 6);
870 TM_ATTR(sched7, 7);
871
872 static struct attribute *offload_attrs[] = {
873 &dev_attr_sched0.attr,
874 &dev_attr_sched1.attr,
875 &dev_attr_sched2.attr,
876 &dev_attr_sched3.attr,
877 &dev_attr_sched4.attr,
878 &dev_attr_sched5.attr,
879 &dev_attr_sched6.attr,
880 &dev_attr_sched7.attr,
881 NULL
882 };
883
884 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
885
886 /*
887 * Sends an sk_buff to an offload queue driver
888 * after dealing with any active network taps.
889 */
890 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
891 {
892 int ret;
893
894 local_bh_disable();
895 ret = t3_offload_tx(tdev, skb);
896 local_bh_enable();
897 return ret;
898 }
899
900 static int write_smt_entry(struct adapter *adapter, int idx)
901 {
902 struct cpl_smt_write_req *req;
903 struct port_info *pi = netdev_priv(adapter->port[idx]);
904 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
905
906 if (!skb)
907 return -ENOMEM;
908
909 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
910 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
911 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
912 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
913 req->iff = idx;
914 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
915 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
916 skb->priority = 1;
917 offload_tx(&adapter->tdev, skb);
918 return 0;
919 }
920
921 static int init_smt(struct adapter *adapter)
922 {
923 int i;
924
925 for_each_port(adapter, i)
926 write_smt_entry(adapter, i);
927 return 0;
928 }
929
930 static void init_port_mtus(struct adapter *adapter)
931 {
932 unsigned int mtus = adapter->port[0]->mtu;
933
934 if (adapter->port[1])
935 mtus |= adapter->port[1]->mtu << 16;
936 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
937 }
938
939 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
940 int hi, int port)
941 {
942 struct sk_buff *skb;
943 struct mngt_pktsched_wr *req;
944 int ret;
945
946 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
947 if (!skb)
948 skb = adap->nofail_skb;
949 if (!skb)
950 return -ENOMEM;
951
952 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
953 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
954 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
955 req->sched = sched;
956 req->idx = qidx;
957 req->min = lo;
958 req->max = hi;
959 req->binding = port;
960 ret = t3_mgmt_tx(adap, skb);
961 if (skb == adap->nofail_skb) {
962 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
963 GFP_KERNEL);
964 if (!adap->nofail_skb)
965 ret = -ENOMEM;
966 }
967
968 return ret;
969 }
970
971 static int bind_qsets(struct adapter *adap)
972 {
973 int i, j, err = 0;
974
975 for_each_port(adap, i) {
976 const struct port_info *pi = adap2pinfo(adap, i);
977
978 for (j = 0; j < pi->nqsets; ++j) {
979 int ret = send_pktsched_cmd(adap, 1,
980 pi->first_qset + j, -1,
981 -1, i);
982 if (ret)
983 err = ret;
984 }
985 }
986
987 return err;
988 }
989
990 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
991 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
992 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
993 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
994 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
995 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
996 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
997 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
998 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
999 MODULE_FIRMWARE(FW_FNAME);
1000 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
1001 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
1002 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
1003 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1004 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1005
1006 static inline const char *get_edc_fw_name(int edc_idx)
1007 {
1008 const char *fw_name = NULL;
1009
1010 switch (edc_idx) {
1011 case EDC_OPT_AEL2005:
1012 fw_name = AEL2005_OPT_EDC_NAME;
1013 break;
1014 case EDC_TWX_AEL2005:
1015 fw_name = AEL2005_TWX_EDC_NAME;
1016 break;
1017 case EDC_TWX_AEL2020:
1018 fw_name = AEL2020_TWX_EDC_NAME;
1019 break;
1020 }
1021 return fw_name;
1022 }
1023
1024 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1025 {
1026 struct adapter *adapter = phy->adapter;
1027 const struct firmware *fw;
1028 char buf[64];
1029 u32 csum;
1030 const __be32 *p;
1031 u16 *cache = phy->phy_cache;
1032 int i, ret;
1033
1034 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1035
1036 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1037 if (ret < 0) {
1038 dev_err(&adapter->pdev->dev,
1039 "could not upgrade firmware: unable to load %s\n",
1040 buf);
1041 return ret;
1042 }
1043
1044 /* check size, take checksum in account */
1045 if (fw->size > size + 4) {
1046 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1047 (unsigned int)fw->size, size + 4);
1048 ret = -EINVAL;
1049 }
1050
1051 /* compute checksum */
1052 p = (const __be32 *)fw->data;
1053 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1054 csum += ntohl(p[i]);
1055
1056 if (csum != 0xffffffff) {
1057 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1058 csum);
1059 ret = -EINVAL;
1060 }
1061
1062 for (i = 0; i < size / 4 ; i++) {
1063 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1064 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1065 }
1066
1067 release_firmware(fw);
1068
1069 return ret;
1070 }
1071
1072 static int upgrade_fw(struct adapter *adap)
1073 {
1074 int ret;
1075 const struct firmware *fw;
1076 struct device *dev = &adap->pdev->dev;
1077
1078 ret = request_firmware(&fw, FW_FNAME, dev);
1079 if (ret < 0) {
1080 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1081 FW_FNAME);
1082 return ret;
1083 }
1084 ret = t3_load_fw(adap, fw->data, fw->size);
1085 release_firmware(fw);
1086
1087 if (ret == 0)
1088 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1089 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1090 else
1091 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1092 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1093
1094 return ret;
1095 }
1096
1097 static inline char t3rev2char(struct adapter *adapter)
1098 {
1099 char rev = 0;
1100
1101 switch(adapter->params.rev) {
1102 case T3_REV_B:
1103 case T3_REV_B2:
1104 rev = 'b';
1105 break;
1106 case T3_REV_C:
1107 rev = 'c';
1108 break;
1109 }
1110 return rev;
1111 }
1112
1113 static int update_tpsram(struct adapter *adap)
1114 {
1115 const struct firmware *tpsram;
1116 char buf[64];
1117 struct device *dev = &adap->pdev->dev;
1118 int ret;
1119 char rev;
1120
1121 rev = t3rev2char(adap);
1122 if (!rev)
1123 return 0;
1124
1125 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1126
1127 ret = request_firmware(&tpsram, buf, dev);
1128 if (ret < 0) {
1129 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1130 buf);
1131 return ret;
1132 }
1133
1134 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1135 if (ret)
1136 goto release_tpsram;
1137
1138 ret = t3_set_proto_sram(adap, tpsram->data);
1139 if (ret == 0)
1140 dev_info(dev,
1141 "successful update of protocol engine "
1142 "to %d.%d.%d\n",
1143 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1144 else
1145 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1146 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1147 if (ret)
1148 dev_err(dev, "loading protocol SRAM failed\n");
1149
1150 release_tpsram:
1151 release_firmware(tpsram);
1152
1153 return ret;
1154 }
1155
1156 /**
1157 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1158 * @adap: the adapter
1159 * @p: the port
1160 *
1161 * Ensures that current Rx processing on any of the queues associated with
1162 * the given port completes before returning. We do this by acquiring and
1163 * releasing the locks of the response queues associated with the port.
1164 */
1165 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1166 {
1167 int i;
1168
1169 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1170 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1171
1172 spin_lock_irq(&q->lock);
1173 spin_unlock_irq(&q->lock);
1174 }
1175 }
1176
1177 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1178 {
1179 struct port_info *pi = netdev_priv(dev);
1180 struct adapter *adapter = pi->adapter;
1181
1182 if (adapter->params.rev > 0) {
1183 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1184 features & NETIF_F_HW_VLAN_RX);
1185 } else {
1186 /* single control for all ports */
1187 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX;
1188
1189 for_each_port(adapter, i)
1190 have_vlans |=
1191 adapter->port[i]->features & NETIF_F_HW_VLAN_RX;
1192
1193 t3_set_vlan_accel(adapter, 1, have_vlans);
1194 }
1195 t3_synchronize_rx(adapter, pi);
1196 }
1197
1198 /**
1199 * cxgb_up - enable the adapter
1200 * @adapter: adapter being enabled
1201 *
1202 * Called when the first port is enabled, this function performs the
1203 * actions necessary to make an adapter operational, such as completing
1204 * the initialization of HW modules, and enabling interrupts.
1205 *
1206 * Must be called with the rtnl lock held.
1207 */
1208 static int cxgb_up(struct adapter *adap)
1209 {
1210 int i, err;
1211
1212 if (!(adap->flags & FULL_INIT_DONE)) {
1213 err = t3_check_fw_version(adap);
1214 if (err == -EINVAL) {
1215 err = upgrade_fw(adap);
1216 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1217 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1218 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1219 }
1220
1221 err = t3_check_tpsram_version(adap);
1222 if (err == -EINVAL) {
1223 err = update_tpsram(adap);
1224 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1225 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1226 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1227 }
1228
1229 /*
1230 * Clear interrupts now to catch errors if t3_init_hw fails.
1231 * We clear them again later as initialization may trigger
1232 * conditions that can interrupt.
1233 */
1234 t3_intr_clear(adap);
1235
1236 err = t3_init_hw(adap, 0);
1237 if (err)
1238 goto out;
1239
1240 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1241 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1242
1243 err = setup_sge_qsets(adap);
1244 if (err)
1245 goto out;
1246
1247 for_each_port(adap, i)
1248 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1249
1250 setup_rss(adap);
1251 if (!(adap->flags & NAPI_INIT))
1252 init_napi(adap);
1253
1254 t3_start_sge_timers(adap);
1255 adap->flags |= FULL_INIT_DONE;
1256 }
1257
1258 t3_intr_clear(adap);
1259
1260 if (adap->flags & USING_MSIX) {
1261 name_msix_vecs(adap);
1262 err = request_irq(adap->msix_info[0].vec,
1263 t3_async_intr_handler, 0,
1264 adap->msix_info[0].desc, adap);
1265 if (err)
1266 goto irq_err;
1267
1268 err = request_msix_data_irqs(adap);
1269 if (err) {
1270 free_irq(adap->msix_info[0].vec, adap);
1271 goto irq_err;
1272 }
1273 } else if ((err = request_irq(adap->pdev->irq,
1274 t3_intr_handler(adap,
1275 adap->sge.qs[0].rspq.
1276 polling),
1277 (adap->flags & USING_MSI) ?
1278 0 : IRQF_SHARED,
1279 adap->name, adap)))
1280 goto irq_err;
1281
1282 enable_all_napi(adap);
1283 t3_sge_start(adap);
1284 t3_intr_enable(adap);
1285
1286 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1287 is_offload(adap) && init_tp_parity(adap) == 0)
1288 adap->flags |= TP_PARITY_INIT;
1289
1290 if (adap->flags & TP_PARITY_INIT) {
1291 t3_write_reg(adap, A_TP_INT_CAUSE,
1292 F_CMCACHEPERR | F_ARPLUTPERR);
1293 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1294 }
1295
1296 if (!(adap->flags & QUEUES_BOUND)) {
1297 int ret = bind_qsets(adap);
1298
1299 if (ret < 0) {
1300 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1301 t3_intr_disable(adap);
1302 free_irq_resources(adap);
1303 err = ret;
1304 goto out;
1305 }
1306 adap->flags |= QUEUES_BOUND;
1307 }
1308
1309 out:
1310 return err;
1311 irq_err:
1312 CH_ERR(adap, "request_irq failed, err %d\n", err);
1313 goto out;
1314 }
1315
1316 /*
1317 * Release resources when all the ports and offloading have been stopped.
1318 */
1319 static void cxgb_down(struct adapter *adapter, int on_wq)
1320 {
1321 t3_sge_stop(adapter);
1322 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1323 t3_intr_disable(adapter);
1324 spin_unlock_irq(&adapter->work_lock);
1325
1326 free_irq_resources(adapter);
1327 quiesce_rx(adapter);
1328 t3_sge_stop(adapter);
1329 if (!on_wq)
1330 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1331 }
1332
1333 static void schedule_chk_task(struct adapter *adap)
1334 {
1335 unsigned int timeo;
1336
1337 timeo = adap->params.linkpoll_period ?
1338 (HZ * adap->params.linkpoll_period) / 10 :
1339 adap->params.stats_update_period * HZ;
1340 if (timeo)
1341 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1342 }
1343
1344 static int offload_open(struct net_device *dev)
1345 {
1346 struct port_info *pi = netdev_priv(dev);
1347 struct adapter *adapter = pi->adapter;
1348 struct t3cdev *tdev = dev2t3cdev(dev);
1349 int adap_up = adapter->open_device_map & PORT_MASK;
1350 int err;
1351
1352 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1353 return 0;
1354
1355 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1356 goto out;
1357
1358 t3_tp_set_offload_mode(adapter, 1);
1359 tdev->lldev = adapter->port[0];
1360 err = cxgb3_offload_activate(adapter);
1361 if (err)
1362 goto out;
1363
1364 init_port_mtus(adapter);
1365 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1366 adapter->params.b_wnd,
1367 adapter->params.rev == 0 ?
1368 adapter->port[0]->mtu : 0xffff);
1369 init_smt(adapter);
1370
1371 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1372 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1373
1374 /* Call back all registered clients */
1375 cxgb3_add_clients(tdev);
1376
1377 out:
1378 /* restore them in case the offload module has changed them */
1379 if (err) {
1380 t3_tp_set_offload_mode(adapter, 0);
1381 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1382 cxgb3_set_dummy_ops(tdev);
1383 }
1384 return err;
1385 }
1386
1387 static int offload_close(struct t3cdev *tdev)
1388 {
1389 struct adapter *adapter = tdev2adap(tdev);
1390 struct t3c_data *td = T3C_DATA(tdev);
1391
1392 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1393 return 0;
1394
1395 /* Call back all registered clients */
1396 cxgb3_remove_clients(tdev);
1397
1398 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1399
1400 /* Flush work scheduled while releasing TIDs */
1401 flush_work(&td->tid_release_task);
1402
1403 tdev->lldev = NULL;
1404 cxgb3_set_dummy_ops(tdev);
1405 t3_tp_set_offload_mode(adapter, 0);
1406 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1407
1408 if (!adapter->open_device_map)
1409 cxgb_down(adapter, 0);
1410
1411 cxgb3_offload_deactivate(adapter);
1412 return 0;
1413 }
1414
1415 static int cxgb_open(struct net_device *dev)
1416 {
1417 struct port_info *pi = netdev_priv(dev);
1418 struct adapter *adapter = pi->adapter;
1419 int other_ports = adapter->open_device_map & PORT_MASK;
1420 int err;
1421
1422 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1423 return err;
1424
1425 set_bit(pi->port_id, &adapter->open_device_map);
1426 if (is_offload(adapter) && !ofld_disable) {
1427 err = offload_open(dev);
1428 if (err)
1429 pr_warn("Could not initialize offload capabilities\n");
1430 }
1431
1432 netif_set_real_num_tx_queues(dev, pi->nqsets);
1433 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1434 if (err)
1435 return err;
1436 link_start(dev);
1437 t3_port_intr_enable(adapter, pi->port_id);
1438 netif_tx_start_all_queues(dev);
1439 if (!other_ports)
1440 schedule_chk_task(adapter);
1441
1442 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1443 return 0;
1444 }
1445
1446 static int __cxgb_close(struct net_device *dev, int on_wq)
1447 {
1448 struct port_info *pi = netdev_priv(dev);
1449 struct adapter *adapter = pi->adapter;
1450
1451
1452 if (!adapter->open_device_map)
1453 return 0;
1454
1455 /* Stop link fault interrupts */
1456 t3_xgm_intr_disable(adapter, pi->port_id);
1457 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1458
1459 t3_port_intr_disable(adapter, pi->port_id);
1460 netif_tx_stop_all_queues(dev);
1461 pi->phy.ops->power_down(&pi->phy, 1);
1462 netif_carrier_off(dev);
1463 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1464
1465 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1466 clear_bit(pi->port_id, &adapter->open_device_map);
1467 spin_unlock_irq(&adapter->work_lock);
1468
1469 if (!(adapter->open_device_map & PORT_MASK))
1470 cancel_delayed_work_sync(&adapter->adap_check_task);
1471
1472 if (!adapter->open_device_map)
1473 cxgb_down(adapter, on_wq);
1474
1475 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1476 return 0;
1477 }
1478
1479 static int cxgb_close(struct net_device *dev)
1480 {
1481 return __cxgb_close(dev, 0);
1482 }
1483
1484 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1485 {
1486 struct port_info *pi = netdev_priv(dev);
1487 struct adapter *adapter = pi->adapter;
1488 struct net_device_stats *ns = &pi->netstats;
1489 const struct mac_stats *pstats;
1490
1491 spin_lock(&adapter->stats_lock);
1492 pstats = t3_mac_update_stats(&pi->mac);
1493 spin_unlock(&adapter->stats_lock);
1494
1495 ns->tx_bytes = pstats->tx_octets;
1496 ns->tx_packets = pstats->tx_frames;
1497 ns->rx_bytes = pstats->rx_octets;
1498 ns->rx_packets = pstats->rx_frames;
1499 ns->multicast = pstats->rx_mcast_frames;
1500
1501 ns->tx_errors = pstats->tx_underrun;
1502 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1503 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1504 pstats->rx_fifo_ovfl;
1505
1506 /* detailed rx_errors */
1507 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1508 ns->rx_over_errors = 0;
1509 ns->rx_crc_errors = pstats->rx_fcs_errs;
1510 ns->rx_frame_errors = pstats->rx_symbol_errs;
1511 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1512 ns->rx_missed_errors = pstats->rx_cong_drops;
1513
1514 /* detailed tx_errors */
1515 ns->tx_aborted_errors = 0;
1516 ns->tx_carrier_errors = 0;
1517 ns->tx_fifo_errors = pstats->tx_underrun;
1518 ns->tx_heartbeat_errors = 0;
1519 ns->tx_window_errors = 0;
1520 return ns;
1521 }
1522
1523 static u32 get_msglevel(struct net_device *dev)
1524 {
1525 struct port_info *pi = netdev_priv(dev);
1526 struct adapter *adapter = pi->adapter;
1527
1528 return adapter->msg_enable;
1529 }
1530
1531 static void set_msglevel(struct net_device *dev, u32 val)
1532 {
1533 struct port_info *pi = netdev_priv(dev);
1534 struct adapter *adapter = pi->adapter;
1535
1536 adapter->msg_enable = val;
1537 }
1538
1539 static char stats_strings[][ETH_GSTRING_LEN] = {
1540 "TxOctetsOK ",
1541 "TxFramesOK ",
1542 "TxMulticastFramesOK",
1543 "TxBroadcastFramesOK",
1544 "TxPauseFrames ",
1545 "TxUnderrun ",
1546 "TxExtUnderrun ",
1547
1548 "TxFrames64 ",
1549 "TxFrames65To127 ",
1550 "TxFrames128To255 ",
1551 "TxFrames256To511 ",
1552 "TxFrames512To1023 ",
1553 "TxFrames1024To1518 ",
1554 "TxFrames1519ToMax ",
1555
1556 "RxOctetsOK ",
1557 "RxFramesOK ",
1558 "RxMulticastFramesOK",
1559 "RxBroadcastFramesOK",
1560 "RxPauseFrames ",
1561 "RxFCSErrors ",
1562 "RxSymbolErrors ",
1563 "RxShortErrors ",
1564 "RxJabberErrors ",
1565 "RxLengthErrors ",
1566 "RxFIFOoverflow ",
1567
1568 "RxFrames64 ",
1569 "RxFrames65To127 ",
1570 "RxFrames128To255 ",
1571 "RxFrames256To511 ",
1572 "RxFrames512To1023 ",
1573 "RxFrames1024To1518 ",
1574 "RxFrames1519ToMax ",
1575
1576 "PhyFIFOErrors ",
1577 "TSO ",
1578 "VLANextractions ",
1579 "VLANinsertions ",
1580 "TxCsumOffload ",
1581 "RxCsumGood ",
1582 "LroAggregated ",
1583 "LroFlushed ",
1584 "LroNoDesc ",
1585 "RxDrops ",
1586
1587 "CheckTXEnToggled ",
1588 "CheckResets ",
1589
1590 "LinkFaults ",
1591 };
1592
1593 static int get_sset_count(struct net_device *dev, int sset)
1594 {
1595 switch (sset) {
1596 case ETH_SS_STATS:
1597 return ARRAY_SIZE(stats_strings);
1598 default:
1599 return -EOPNOTSUPP;
1600 }
1601 }
1602
1603 #define T3_REGMAP_SIZE (3 * 1024)
1604
1605 static int get_regs_len(struct net_device *dev)
1606 {
1607 return T3_REGMAP_SIZE;
1608 }
1609
1610 static int get_eeprom_len(struct net_device *dev)
1611 {
1612 return EEPROMSIZE;
1613 }
1614
1615 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1616 {
1617 struct port_info *pi = netdev_priv(dev);
1618 struct adapter *adapter = pi->adapter;
1619 u32 fw_vers = 0;
1620 u32 tp_vers = 0;
1621
1622 spin_lock(&adapter->stats_lock);
1623 t3_get_fw_version(adapter, &fw_vers);
1624 t3_get_tp_version(adapter, &tp_vers);
1625 spin_unlock(&adapter->stats_lock);
1626
1627 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1628 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1629 strlcpy(info->bus_info, pci_name(adapter->pdev),
1630 sizeof(info->bus_info));
1631 if (fw_vers)
1632 snprintf(info->fw_version, sizeof(info->fw_version),
1633 "%s %u.%u.%u TP %u.%u.%u",
1634 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1635 G_FW_VERSION_MAJOR(fw_vers),
1636 G_FW_VERSION_MINOR(fw_vers),
1637 G_FW_VERSION_MICRO(fw_vers),
1638 G_TP_VERSION_MAJOR(tp_vers),
1639 G_TP_VERSION_MINOR(tp_vers),
1640 G_TP_VERSION_MICRO(tp_vers));
1641 }
1642
1643 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1644 {
1645 if (stringset == ETH_SS_STATS)
1646 memcpy(data, stats_strings, sizeof(stats_strings));
1647 }
1648
1649 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1650 struct port_info *p, int idx)
1651 {
1652 int i;
1653 unsigned long tot = 0;
1654
1655 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1656 tot += adapter->sge.qs[i].port_stats[idx];
1657 return tot;
1658 }
1659
1660 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1661 u64 *data)
1662 {
1663 struct port_info *pi = netdev_priv(dev);
1664 struct adapter *adapter = pi->adapter;
1665 const struct mac_stats *s;
1666
1667 spin_lock(&adapter->stats_lock);
1668 s = t3_mac_update_stats(&pi->mac);
1669 spin_unlock(&adapter->stats_lock);
1670
1671 *data++ = s->tx_octets;
1672 *data++ = s->tx_frames;
1673 *data++ = s->tx_mcast_frames;
1674 *data++ = s->tx_bcast_frames;
1675 *data++ = s->tx_pause;
1676 *data++ = s->tx_underrun;
1677 *data++ = s->tx_fifo_urun;
1678
1679 *data++ = s->tx_frames_64;
1680 *data++ = s->tx_frames_65_127;
1681 *data++ = s->tx_frames_128_255;
1682 *data++ = s->tx_frames_256_511;
1683 *data++ = s->tx_frames_512_1023;
1684 *data++ = s->tx_frames_1024_1518;
1685 *data++ = s->tx_frames_1519_max;
1686
1687 *data++ = s->rx_octets;
1688 *data++ = s->rx_frames;
1689 *data++ = s->rx_mcast_frames;
1690 *data++ = s->rx_bcast_frames;
1691 *data++ = s->rx_pause;
1692 *data++ = s->rx_fcs_errs;
1693 *data++ = s->rx_symbol_errs;
1694 *data++ = s->rx_short;
1695 *data++ = s->rx_jabber;
1696 *data++ = s->rx_too_long;
1697 *data++ = s->rx_fifo_ovfl;
1698
1699 *data++ = s->rx_frames_64;
1700 *data++ = s->rx_frames_65_127;
1701 *data++ = s->rx_frames_128_255;
1702 *data++ = s->rx_frames_256_511;
1703 *data++ = s->rx_frames_512_1023;
1704 *data++ = s->rx_frames_1024_1518;
1705 *data++ = s->rx_frames_1519_max;
1706
1707 *data++ = pi->phy.fifo_errors;
1708
1709 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1711 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1712 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1713 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1714 *data++ = 0;
1715 *data++ = 0;
1716 *data++ = 0;
1717 *data++ = s->rx_cong_drops;
1718
1719 *data++ = s->num_toggled;
1720 *data++ = s->num_resets;
1721
1722 *data++ = s->link_faults;
1723 }
1724
1725 static inline void reg_block_dump(struct adapter *ap, void *buf,
1726 unsigned int start, unsigned int end)
1727 {
1728 u32 *p = buf + start;
1729
1730 for (; start <= end; start += sizeof(u32))
1731 *p++ = t3_read_reg(ap, start);
1732 }
1733
1734 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1735 void *buf)
1736 {
1737 struct port_info *pi = netdev_priv(dev);
1738 struct adapter *ap = pi->adapter;
1739
1740 /*
1741 * Version scheme:
1742 * bits 0..9: chip version
1743 * bits 10..15: chip revision
1744 * bit 31: set for PCIe cards
1745 */
1746 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1747
1748 /*
1749 * We skip the MAC statistics registers because they are clear-on-read.
1750 * Also reading multi-register stats would need to synchronize with the
1751 * periodic mac stats accumulation. Hard to justify the complexity.
1752 */
1753 memset(buf, 0, T3_REGMAP_SIZE);
1754 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1755 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1756 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1757 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1758 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1759 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1760 XGM_REG(A_XGM_SERDES_STAT3, 1));
1761 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1762 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1763 }
1764
1765 static int restart_autoneg(struct net_device *dev)
1766 {
1767 struct port_info *p = netdev_priv(dev);
1768
1769 if (!netif_running(dev))
1770 return -EAGAIN;
1771 if (p->link_config.autoneg != AUTONEG_ENABLE)
1772 return -EINVAL;
1773 p->phy.ops->autoneg_restart(&p->phy);
1774 return 0;
1775 }
1776
1777 static int set_phys_id(struct net_device *dev,
1778 enum ethtool_phys_id_state state)
1779 {
1780 struct port_info *pi = netdev_priv(dev);
1781 struct adapter *adapter = pi->adapter;
1782
1783 switch (state) {
1784 case ETHTOOL_ID_ACTIVE:
1785 return 1; /* cycle on/off once per second */
1786
1787 case ETHTOOL_ID_OFF:
1788 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1789 break;
1790
1791 case ETHTOOL_ID_ON:
1792 case ETHTOOL_ID_INACTIVE:
1793 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1794 F_GPIO0_OUT_VAL);
1795 }
1796
1797 return 0;
1798 }
1799
1800 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1801 {
1802 struct port_info *p = netdev_priv(dev);
1803
1804 cmd->supported = p->link_config.supported;
1805 cmd->advertising = p->link_config.advertising;
1806
1807 if (netif_carrier_ok(dev)) {
1808 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1809 cmd->duplex = p->link_config.duplex;
1810 } else {
1811 ethtool_cmd_speed_set(cmd, -1);
1812 cmd->duplex = -1;
1813 }
1814
1815 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1816 cmd->phy_address = p->phy.mdio.prtad;
1817 cmd->transceiver = XCVR_EXTERNAL;
1818 cmd->autoneg = p->link_config.autoneg;
1819 cmd->maxtxpkt = 0;
1820 cmd->maxrxpkt = 0;
1821 return 0;
1822 }
1823
1824 static int speed_duplex_to_caps(int speed, int duplex)
1825 {
1826 int cap = 0;
1827
1828 switch (speed) {
1829 case SPEED_10:
1830 if (duplex == DUPLEX_FULL)
1831 cap = SUPPORTED_10baseT_Full;
1832 else
1833 cap = SUPPORTED_10baseT_Half;
1834 break;
1835 case SPEED_100:
1836 if (duplex == DUPLEX_FULL)
1837 cap = SUPPORTED_100baseT_Full;
1838 else
1839 cap = SUPPORTED_100baseT_Half;
1840 break;
1841 case SPEED_1000:
1842 if (duplex == DUPLEX_FULL)
1843 cap = SUPPORTED_1000baseT_Full;
1844 else
1845 cap = SUPPORTED_1000baseT_Half;
1846 break;
1847 case SPEED_10000:
1848 if (duplex == DUPLEX_FULL)
1849 cap = SUPPORTED_10000baseT_Full;
1850 }
1851 return cap;
1852 }
1853
1854 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1855 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1856 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1857 ADVERTISED_10000baseT_Full)
1858
1859 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1860 {
1861 struct port_info *p = netdev_priv(dev);
1862 struct link_config *lc = &p->link_config;
1863
1864 if (!(lc->supported & SUPPORTED_Autoneg)) {
1865 /*
1866 * PHY offers a single speed/duplex. See if that's what's
1867 * being requested.
1868 */
1869 if (cmd->autoneg == AUTONEG_DISABLE) {
1870 u32 speed = ethtool_cmd_speed(cmd);
1871 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1872 if (lc->supported & cap)
1873 return 0;
1874 }
1875 return -EINVAL;
1876 }
1877
1878 if (cmd->autoneg == AUTONEG_DISABLE) {
1879 u32 speed = ethtool_cmd_speed(cmd);
1880 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1881
1882 if (!(lc->supported & cap) || (speed == SPEED_1000))
1883 return -EINVAL;
1884 lc->requested_speed = speed;
1885 lc->requested_duplex = cmd->duplex;
1886 lc->advertising = 0;
1887 } else {
1888 cmd->advertising &= ADVERTISED_MASK;
1889 cmd->advertising &= lc->supported;
1890 if (!cmd->advertising)
1891 return -EINVAL;
1892 lc->requested_speed = SPEED_INVALID;
1893 lc->requested_duplex = DUPLEX_INVALID;
1894 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1895 }
1896 lc->autoneg = cmd->autoneg;
1897 if (netif_running(dev))
1898 t3_link_start(&p->phy, &p->mac, lc);
1899 return 0;
1900 }
1901
1902 static void get_pauseparam(struct net_device *dev,
1903 struct ethtool_pauseparam *epause)
1904 {
1905 struct port_info *p = netdev_priv(dev);
1906
1907 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1908 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1909 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1910 }
1911
1912 static int set_pauseparam(struct net_device *dev,
1913 struct ethtool_pauseparam *epause)
1914 {
1915 struct port_info *p = netdev_priv(dev);
1916 struct link_config *lc = &p->link_config;
1917
1918 if (epause->autoneg == AUTONEG_DISABLE)
1919 lc->requested_fc = 0;
1920 else if (lc->supported & SUPPORTED_Autoneg)
1921 lc->requested_fc = PAUSE_AUTONEG;
1922 else
1923 return -EINVAL;
1924
1925 if (epause->rx_pause)
1926 lc->requested_fc |= PAUSE_RX;
1927 if (epause->tx_pause)
1928 lc->requested_fc |= PAUSE_TX;
1929 if (lc->autoneg == AUTONEG_ENABLE) {
1930 if (netif_running(dev))
1931 t3_link_start(&p->phy, &p->mac, lc);
1932 } else {
1933 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1934 if (netif_running(dev))
1935 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1936 }
1937 return 0;
1938 }
1939
1940 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1941 {
1942 struct port_info *pi = netdev_priv(dev);
1943 struct adapter *adapter = pi->adapter;
1944 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1945
1946 e->rx_max_pending = MAX_RX_BUFFERS;
1947 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1948 e->tx_max_pending = MAX_TXQ_ENTRIES;
1949
1950 e->rx_pending = q->fl_size;
1951 e->rx_mini_pending = q->rspq_size;
1952 e->rx_jumbo_pending = q->jumbo_size;
1953 e->tx_pending = q->txq_size[0];
1954 }
1955
1956 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1957 {
1958 struct port_info *pi = netdev_priv(dev);
1959 struct adapter *adapter = pi->adapter;
1960 struct qset_params *q;
1961 int i;
1962
1963 if (e->rx_pending > MAX_RX_BUFFERS ||
1964 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1965 e->tx_pending > MAX_TXQ_ENTRIES ||
1966 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1967 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1968 e->rx_pending < MIN_FL_ENTRIES ||
1969 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1970 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1971 return -EINVAL;
1972
1973 if (adapter->flags & FULL_INIT_DONE)
1974 return -EBUSY;
1975
1976 q = &adapter->params.sge.qset[pi->first_qset];
1977 for (i = 0; i < pi->nqsets; ++i, ++q) {
1978 q->rspq_size = e->rx_mini_pending;
1979 q->fl_size = e->rx_pending;
1980 q->jumbo_size = e->rx_jumbo_pending;
1981 q->txq_size[0] = e->tx_pending;
1982 q->txq_size[1] = e->tx_pending;
1983 q->txq_size[2] = e->tx_pending;
1984 }
1985 return 0;
1986 }
1987
1988 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1989 {
1990 struct port_info *pi = netdev_priv(dev);
1991 struct adapter *adapter = pi->adapter;
1992 struct qset_params *qsp;
1993 struct sge_qset *qs;
1994 int i;
1995
1996 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1997 return -EINVAL;
1998
1999 for (i = 0; i < pi->nqsets; i++) {
2000 qsp = &adapter->params.sge.qset[i];
2001 qs = &adapter->sge.qs[i];
2002 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2003 t3_update_qset_coalesce(qs, qsp);
2004 }
2005
2006 return 0;
2007 }
2008
2009 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2010 {
2011 struct port_info *pi = netdev_priv(dev);
2012 struct adapter *adapter = pi->adapter;
2013 struct qset_params *q = adapter->params.sge.qset;
2014
2015 c->rx_coalesce_usecs = q->coalesce_usecs;
2016 return 0;
2017 }
2018
2019 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2020 u8 * data)
2021 {
2022 struct port_info *pi = netdev_priv(dev);
2023 struct adapter *adapter = pi->adapter;
2024 int i, err = 0;
2025
2026 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2027 if (!buf)
2028 return -ENOMEM;
2029
2030 e->magic = EEPROM_MAGIC;
2031 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2032 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2033
2034 if (!err)
2035 memcpy(data, buf + e->offset, e->len);
2036 kfree(buf);
2037 return err;
2038 }
2039
2040 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2041 u8 * data)
2042 {
2043 struct port_info *pi = netdev_priv(dev);
2044 struct adapter *adapter = pi->adapter;
2045 u32 aligned_offset, aligned_len;
2046 __le32 *p;
2047 u8 *buf;
2048 int err;
2049
2050 if (eeprom->magic != EEPROM_MAGIC)
2051 return -EINVAL;
2052
2053 aligned_offset = eeprom->offset & ~3;
2054 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2055
2056 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2057 buf = kmalloc(aligned_len, GFP_KERNEL);
2058 if (!buf)
2059 return -ENOMEM;
2060 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2061 if (!err && aligned_len > 4)
2062 err = t3_seeprom_read(adapter,
2063 aligned_offset + aligned_len - 4,
2064 (__le32 *) & buf[aligned_len - 4]);
2065 if (err)
2066 goto out;
2067 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2068 } else
2069 buf = data;
2070
2071 err = t3_seeprom_wp(adapter, 0);
2072 if (err)
2073 goto out;
2074
2075 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2076 err = t3_seeprom_write(adapter, aligned_offset, *p);
2077 aligned_offset += 4;
2078 }
2079
2080 if (!err)
2081 err = t3_seeprom_wp(adapter, 1);
2082 out:
2083 if (buf != data)
2084 kfree(buf);
2085 return err;
2086 }
2087
2088 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2089 {
2090 wol->supported = 0;
2091 wol->wolopts = 0;
2092 memset(&wol->sopass, 0, sizeof(wol->sopass));
2093 }
2094
2095 static const struct ethtool_ops cxgb_ethtool_ops = {
2096 .get_settings = get_settings,
2097 .set_settings = set_settings,
2098 .get_drvinfo = get_drvinfo,
2099 .get_msglevel = get_msglevel,
2100 .set_msglevel = set_msglevel,
2101 .get_ringparam = get_sge_param,
2102 .set_ringparam = set_sge_param,
2103 .get_coalesce = get_coalesce,
2104 .set_coalesce = set_coalesce,
2105 .get_eeprom_len = get_eeprom_len,
2106 .get_eeprom = get_eeprom,
2107 .set_eeprom = set_eeprom,
2108 .get_pauseparam = get_pauseparam,
2109 .set_pauseparam = set_pauseparam,
2110 .get_link = ethtool_op_get_link,
2111 .get_strings = get_strings,
2112 .set_phys_id = set_phys_id,
2113 .nway_reset = restart_autoneg,
2114 .get_sset_count = get_sset_count,
2115 .get_ethtool_stats = get_stats,
2116 .get_regs_len = get_regs_len,
2117 .get_regs = get_regs,
2118 .get_wol = get_wol,
2119 };
2120
2121 static int in_range(int val, int lo, int hi)
2122 {
2123 return val < 0 || (val <= hi && val >= lo);
2124 }
2125
2126 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2127 {
2128 struct port_info *pi = netdev_priv(dev);
2129 struct adapter *adapter = pi->adapter;
2130 u32 cmd;
2131 int ret;
2132
2133 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2134 return -EFAULT;
2135
2136 switch (cmd) {
2137 case CHELSIO_SET_QSET_PARAMS:{
2138 int i;
2139 struct qset_params *q;
2140 struct ch_qset_params t;
2141 int q1 = pi->first_qset;
2142 int nqsets = pi->nqsets;
2143
2144 if (!capable(CAP_NET_ADMIN))
2145 return -EPERM;
2146 if (copy_from_user(&t, useraddr, sizeof(t)))
2147 return -EFAULT;
2148 if (t.qset_idx >= SGE_QSETS)
2149 return -EINVAL;
2150 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2151 !in_range(t.cong_thres, 0, 255) ||
2152 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2153 MAX_TXQ_ENTRIES) ||
2154 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2155 MAX_TXQ_ENTRIES) ||
2156 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2157 MAX_CTRL_TXQ_ENTRIES) ||
2158 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2159 MAX_RX_BUFFERS) ||
2160 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2161 MAX_RX_JUMBO_BUFFERS) ||
2162 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2163 MAX_RSPQ_ENTRIES))
2164 return -EINVAL;
2165
2166 if ((adapter->flags & FULL_INIT_DONE) &&
2167 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2168 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2169 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2170 t.polling >= 0 || t.cong_thres >= 0))
2171 return -EBUSY;
2172
2173 /* Allow setting of any available qset when offload enabled */
2174 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2175 q1 = 0;
2176 for_each_port(adapter, i) {
2177 pi = adap2pinfo(adapter, i);
2178 nqsets += pi->first_qset + pi->nqsets;
2179 }
2180 }
2181
2182 if (t.qset_idx < q1)
2183 return -EINVAL;
2184 if (t.qset_idx > q1 + nqsets - 1)
2185 return -EINVAL;
2186
2187 q = &adapter->params.sge.qset[t.qset_idx];
2188
2189 if (t.rspq_size >= 0)
2190 q->rspq_size = t.rspq_size;
2191 if (t.fl_size[0] >= 0)
2192 q->fl_size = t.fl_size[0];
2193 if (t.fl_size[1] >= 0)
2194 q->jumbo_size = t.fl_size[1];
2195 if (t.txq_size[0] >= 0)
2196 q->txq_size[0] = t.txq_size[0];
2197 if (t.txq_size[1] >= 0)
2198 q->txq_size[1] = t.txq_size[1];
2199 if (t.txq_size[2] >= 0)
2200 q->txq_size[2] = t.txq_size[2];
2201 if (t.cong_thres >= 0)
2202 q->cong_thres = t.cong_thres;
2203 if (t.intr_lat >= 0) {
2204 struct sge_qset *qs =
2205 &adapter->sge.qs[t.qset_idx];
2206
2207 q->coalesce_usecs = t.intr_lat;
2208 t3_update_qset_coalesce(qs, q);
2209 }
2210 if (t.polling >= 0) {
2211 if (adapter->flags & USING_MSIX)
2212 q->polling = t.polling;
2213 else {
2214 /* No polling with INTx for T3A */
2215 if (adapter->params.rev == 0 &&
2216 !(adapter->flags & USING_MSI))
2217 t.polling = 0;
2218
2219 for (i = 0; i < SGE_QSETS; i++) {
2220 q = &adapter->params.sge.
2221 qset[i];
2222 q->polling = t.polling;
2223 }
2224 }
2225 }
2226
2227 if (t.lro >= 0) {
2228 if (t.lro)
2229 dev->wanted_features |= NETIF_F_GRO;
2230 else
2231 dev->wanted_features &= ~NETIF_F_GRO;
2232 netdev_update_features(dev);
2233 }
2234
2235 break;
2236 }
2237 case CHELSIO_GET_QSET_PARAMS:{
2238 struct qset_params *q;
2239 struct ch_qset_params t;
2240 int q1 = pi->first_qset;
2241 int nqsets = pi->nqsets;
2242 int i;
2243
2244 if (copy_from_user(&t, useraddr, sizeof(t)))
2245 return -EFAULT;
2246
2247 /* Display qsets for all ports when offload enabled */
2248 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2249 q1 = 0;
2250 for_each_port(adapter, i) {
2251 pi = adap2pinfo(adapter, i);
2252 nqsets = pi->first_qset + pi->nqsets;
2253 }
2254 }
2255
2256 if (t.qset_idx >= nqsets)
2257 return -EINVAL;
2258
2259 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2260 t.rspq_size = q->rspq_size;
2261 t.txq_size[0] = q->txq_size[0];
2262 t.txq_size[1] = q->txq_size[1];
2263 t.txq_size[2] = q->txq_size[2];
2264 t.fl_size[0] = q->fl_size;
2265 t.fl_size[1] = q->jumbo_size;
2266 t.polling = q->polling;
2267 t.lro = !!(dev->features & NETIF_F_GRO);
2268 t.intr_lat = q->coalesce_usecs;
2269 t.cong_thres = q->cong_thres;
2270 t.qnum = q1;
2271
2272 if (adapter->flags & USING_MSIX)
2273 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2274 else
2275 t.vector = adapter->pdev->irq;
2276
2277 if (copy_to_user(useraddr, &t, sizeof(t)))
2278 return -EFAULT;
2279 break;
2280 }
2281 case CHELSIO_SET_QSET_NUM:{
2282 struct ch_reg edata;
2283 unsigned int i, first_qset = 0, other_qsets = 0;
2284
2285 if (!capable(CAP_NET_ADMIN))
2286 return -EPERM;
2287 if (adapter->flags & FULL_INIT_DONE)
2288 return -EBUSY;
2289 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2290 return -EFAULT;
2291 if (edata.val < 1 ||
2292 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2293 return -EINVAL;
2294
2295 for_each_port(adapter, i)
2296 if (adapter->port[i] && adapter->port[i] != dev)
2297 other_qsets += adap2pinfo(adapter, i)->nqsets;
2298
2299 if (edata.val + other_qsets > SGE_QSETS)
2300 return -EINVAL;
2301
2302 pi->nqsets = edata.val;
2303
2304 for_each_port(adapter, i)
2305 if (adapter->port[i]) {
2306 pi = adap2pinfo(adapter, i);
2307 pi->first_qset = first_qset;
2308 first_qset += pi->nqsets;
2309 }
2310 break;
2311 }
2312 case CHELSIO_GET_QSET_NUM:{
2313 struct ch_reg edata;
2314
2315 memset(&edata, 0, sizeof(struct ch_reg));
2316
2317 edata.cmd = CHELSIO_GET_QSET_NUM;
2318 edata.val = pi->nqsets;
2319 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2320 return -EFAULT;
2321 break;
2322 }
2323 case CHELSIO_LOAD_FW:{
2324 u8 *fw_data;
2325 struct ch_mem_range t;
2326
2327 if (!capable(CAP_SYS_RAWIO))
2328 return -EPERM;
2329 if (copy_from_user(&t, useraddr, sizeof(t)))
2330 return -EFAULT;
2331 /* Check t.len sanity ? */
2332 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2333 if (IS_ERR(fw_data))
2334 return PTR_ERR(fw_data);
2335
2336 ret = t3_load_fw(adapter, fw_data, t.len);
2337 kfree(fw_data);
2338 if (ret)
2339 return ret;
2340 break;
2341 }
2342 case CHELSIO_SETMTUTAB:{
2343 struct ch_mtus m;
2344 int i;
2345
2346 if (!is_offload(adapter))
2347 return -EOPNOTSUPP;
2348 if (!capable(CAP_NET_ADMIN))
2349 return -EPERM;
2350 if (offload_running(adapter))
2351 return -EBUSY;
2352 if (copy_from_user(&m, useraddr, sizeof(m)))
2353 return -EFAULT;
2354 if (m.nmtus != NMTUS)
2355 return -EINVAL;
2356 if (m.mtus[0] < 81) /* accommodate SACK */
2357 return -EINVAL;
2358
2359 /* MTUs must be in ascending order */
2360 for (i = 1; i < NMTUS; ++i)
2361 if (m.mtus[i] < m.mtus[i - 1])
2362 return -EINVAL;
2363
2364 memcpy(adapter->params.mtus, m.mtus,
2365 sizeof(adapter->params.mtus));
2366 break;
2367 }
2368 case CHELSIO_GET_PM:{
2369 struct tp_params *p = &adapter->params.tp;
2370 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2371
2372 if (!is_offload(adapter))
2373 return -EOPNOTSUPP;
2374 m.tx_pg_sz = p->tx_pg_size;
2375 m.tx_num_pg = p->tx_num_pgs;
2376 m.rx_pg_sz = p->rx_pg_size;
2377 m.rx_num_pg = p->rx_num_pgs;
2378 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2379 if (copy_to_user(useraddr, &m, sizeof(m)))
2380 return -EFAULT;
2381 break;
2382 }
2383 case CHELSIO_SET_PM:{
2384 struct ch_pm m;
2385 struct tp_params *p = &adapter->params.tp;
2386
2387 if (!is_offload(adapter))
2388 return -EOPNOTSUPP;
2389 if (!capable(CAP_NET_ADMIN))
2390 return -EPERM;
2391 if (adapter->flags & FULL_INIT_DONE)
2392 return -EBUSY;
2393 if (copy_from_user(&m, useraddr, sizeof(m)))
2394 return -EFAULT;
2395 if (!is_power_of_2(m.rx_pg_sz) ||
2396 !is_power_of_2(m.tx_pg_sz))
2397 return -EINVAL; /* not power of 2 */
2398 if (!(m.rx_pg_sz & 0x14000))
2399 return -EINVAL; /* not 16KB or 64KB */
2400 if (!(m.tx_pg_sz & 0x1554000))
2401 return -EINVAL;
2402 if (m.tx_num_pg == -1)
2403 m.tx_num_pg = p->tx_num_pgs;
2404 if (m.rx_num_pg == -1)
2405 m.rx_num_pg = p->rx_num_pgs;
2406 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2407 return -EINVAL;
2408 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2409 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2410 return -EINVAL;
2411 p->rx_pg_size = m.rx_pg_sz;
2412 p->tx_pg_size = m.tx_pg_sz;
2413 p->rx_num_pgs = m.rx_num_pg;
2414 p->tx_num_pgs = m.tx_num_pg;
2415 break;
2416 }
2417 case CHELSIO_GET_MEM:{
2418 struct ch_mem_range t;
2419 struct mc7 *mem;
2420 u64 buf[32];
2421
2422 if (!is_offload(adapter))
2423 return -EOPNOTSUPP;
2424 if (!(adapter->flags & FULL_INIT_DONE))
2425 return -EIO; /* need the memory controllers */
2426 if (copy_from_user(&t, useraddr, sizeof(t)))
2427 return -EFAULT;
2428 if ((t.addr & 7) || (t.len & 7))
2429 return -EINVAL;
2430 if (t.mem_id == MEM_CM)
2431 mem = &adapter->cm;
2432 else if (t.mem_id == MEM_PMRX)
2433 mem = &adapter->pmrx;
2434 else if (t.mem_id == MEM_PMTX)
2435 mem = &adapter->pmtx;
2436 else
2437 return -EINVAL;
2438
2439 /*
2440 * Version scheme:
2441 * bits 0..9: chip version
2442 * bits 10..15: chip revision
2443 */
2444 t.version = 3 | (adapter->params.rev << 10);
2445 if (copy_to_user(useraddr, &t, sizeof(t)))
2446 return -EFAULT;
2447
2448 /*
2449 * Read 256 bytes at a time as len can be large and we don't
2450 * want to use huge intermediate buffers.
2451 */
2452 useraddr += sizeof(t); /* advance to start of buffer */
2453 while (t.len) {
2454 unsigned int chunk =
2455 min_t(unsigned int, t.len, sizeof(buf));
2456
2457 ret =
2458 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2459 buf);
2460 if (ret)
2461 return ret;
2462 if (copy_to_user(useraddr, buf, chunk))
2463 return -EFAULT;
2464 useraddr += chunk;
2465 t.addr += chunk;
2466 t.len -= chunk;
2467 }
2468 break;
2469 }
2470 case CHELSIO_SET_TRACE_FILTER:{
2471 struct ch_trace t;
2472 const struct trace_params *tp;
2473
2474 if (!capable(CAP_NET_ADMIN))
2475 return -EPERM;
2476 if (!offload_running(adapter))
2477 return -EAGAIN;
2478 if (copy_from_user(&t, useraddr, sizeof(t)))
2479 return -EFAULT;
2480
2481 tp = (const struct trace_params *)&t.sip;
2482 if (t.config_tx)
2483 t3_config_trace_filter(adapter, tp, 0,
2484 t.invert_match,
2485 t.trace_tx);
2486 if (t.config_rx)
2487 t3_config_trace_filter(adapter, tp, 1,
2488 t.invert_match,
2489 t.trace_rx);
2490 break;
2491 }
2492 default:
2493 return -EOPNOTSUPP;
2494 }
2495 return 0;
2496 }
2497
2498 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2499 {
2500 struct mii_ioctl_data *data = if_mii(req);
2501 struct port_info *pi = netdev_priv(dev);
2502 struct adapter *adapter = pi->adapter;
2503
2504 switch (cmd) {
2505 case SIOCGMIIREG:
2506 case SIOCSMIIREG:
2507 /* Convert phy_id from older PRTAD/DEVAD format */
2508 if (is_10G(adapter) &&
2509 !mdio_phy_id_is_c45(data->phy_id) &&
2510 (data->phy_id & 0x1f00) &&
2511 !(data->phy_id & 0xe0e0))
2512 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2513 data->phy_id & 0x1f);
2514 /* FALLTHRU */
2515 case SIOCGMIIPHY:
2516 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2517 case SIOCCHIOCTL:
2518 return cxgb_extension_ioctl(dev, req->ifr_data);
2519 default:
2520 return -EOPNOTSUPP;
2521 }
2522 }
2523
2524 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2525 {
2526 struct port_info *pi = netdev_priv(dev);
2527 struct adapter *adapter = pi->adapter;
2528 int ret;
2529
2530 if (new_mtu < 81) /* accommodate SACK */
2531 return -EINVAL;
2532 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2533 return ret;
2534 dev->mtu = new_mtu;
2535 init_port_mtus(adapter);
2536 if (adapter->params.rev == 0 && offload_running(adapter))
2537 t3_load_mtus(adapter, adapter->params.mtus,
2538 adapter->params.a_wnd, adapter->params.b_wnd,
2539 adapter->port[0]->mtu);
2540 return 0;
2541 }
2542
2543 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2544 {
2545 struct port_info *pi = netdev_priv(dev);
2546 struct adapter *adapter = pi->adapter;
2547 struct sockaddr *addr = p;
2548
2549 if (!is_valid_ether_addr(addr->sa_data))
2550 return -EADDRNOTAVAIL;
2551
2552 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2553 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2554 if (offload_running(adapter))
2555 write_smt_entry(adapter, pi->port_id);
2556 return 0;
2557 }
2558
2559 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2560 netdev_features_t features)
2561 {
2562 /*
2563 * Since there is no support for separate rx/tx vlan accel
2564 * enable/disable make sure tx flag is always in same state as rx.
2565 */
2566 if (features & NETIF_F_HW_VLAN_RX)
2567 features |= NETIF_F_HW_VLAN_TX;
2568 else
2569 features &= ~NETIF_F_HW_VLAN_TX;
2570
2571 return features;
2572 }
2573
2574 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2575 {
2576 netdev_features_t changed = dev->features ^ features;
2577
2578 if (changed & NETIF_F_HW_VLAN_RX)
2579 cxgb_vlan_mode(dev, features);
2580
2581 return 0;
2582 }
2583
2584 #ifdef CONFIG_NET_POLL_CONTROLLER
2585 static void cxgb_netpoll(struct net_device *dev)
2586 {
2587 struct port_info *pi = netdev_priv(dev);
2588 struct adapter *adapter = pi->adapter;
2589 int qidx;
2590
2591 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2592 struct sge_qset *qs = &adapter->sge.qs[qidx];
2593 void *source;
2594
2595 if (adapter->flags & USING_MSIX)
2596 source = qs;
2597 else
2598 source = adapter;
2599
2600 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2601 }
2602 }
2603 #endif
2604
2605 /*
2606 * Periodic accumulation of MAC statistics.
2607 */
2608 static void mac_stats_update(struct adapter *adapter)
2609 {
2610 int i;
2611
2612 for_each_port(adapter, i) {
2613 struct net_device *dev = adapter->port[i];
2614 struct port_info *p = netdev_priv(dev);
2615
2616 if (netif_running(dev)) {
2617 spin_lock(&adapter->stats_lock);
2618 t3_mac_update_stats(&p->mac);
2619 spin_unlock(&adapter->stats_lock);
2620 }
2621 }
2622 }
2623
2624 static void check_link_status(struct adapter *adapter)
2625 {
2626 int i;
2627
2628 for_each_port(adapter, i) {
2629 struct net_device *dev = adapter->port[i];
2630 struct port_info *p = netdev_priv(dev);
2631 int link_fault;
2632
2633 spin_lock_irq(&adapter->work_lock);
2634 link_fault = p->link_fault;
2635 spin_unlock_irq(&adapter->work_lock);
2636
2637 if (link_fault) {
2638 t3_link_fault(adapter, i);
2639 continue;
2640 }
2641
2642 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2643 t3_xgm_intr_disable(adapter, i);
2644 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2645
2646 t3_link_changed(adapter, i);
2647 t3_xgm_intr_enable(adapter, i);
2648 }
2649 }
2650 }
2651
2652 static void check_t3b2_mac(struct adapter *adapter)
2653 {
2654 int i;
2655
2656 if (!rtnl_trylock()) /* synchronize with ifdown */
2657 return;
2658
2659 for_each_port(adapter, i) {
2660 struct net_device *dev = adapter->port[i];
2661 struct port_info *p = netdev_priv(dev);
2662 int status;
2663
2664 if (!netif_running(dev))
2665 continue;
2666
2667 status = 0;
2668 if (netif_running(dev) && netif_carrier_ok(dev))
2669 status = t3b2_mac_watchdog_task(&p->mac);
2670 if (status == 1)
2671 p->mac.stats.num_toggled++;
2672 else if (status == 2) {
2673 struct cmac *mac = &p->mac;
2674
2675 t3_mac_set_mtu(mac, dev->mtu);
2676 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2677 cxgb_set_rxmode(dev);
2678 t3_link_start(&p->phy, mac, &p->link_config);
2679 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2680 t3_port_intr_enable(adapter, p->port_id);
2681 p->mac.stats.num_resets++;
2682 }
2683 }
2684 rtnl_unlock();
2685 }
2686
2687
2688 static void t3_adap_check_task(struct work_struct *work)
2689 {
2690 struct adapter *adapter = container_of(work, struct adapter,
2691 adap_check_task.work);
2692 const struct adapter_params *p = &adapter->params;
2693 int port;
2694 unsigned int v, status, reset;
2695
2696 adapter->check_task_cnt++;
2697
2698 check_link_status(adapter);
2699
2700 /* Accumulate MAC stats if needed */
2701 if (!p->linkpoll_period ||
2702 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2703 p->stats_update_period) {
2704 mac_stats_update(adapter);
2705 adapter->check_task_cnt = 0;
2706 }
2707
2708 if (p->rev == T3_REV_B2)
2709 check_t3b2_mac(adapter);
2710
2711 /*
2712 * Scan the XGMAC's to check for various conditions which we want to
2713 * monitor in a periodic polling manner rather than via an interrupt
2714 * condition. This is used for conditions which would otherwise flood
2715 * the system with interrupts and we only really need to know that the
2716 * conditions are "happening" ... For each condition we count the
2717 * detection of the condition and reset it for the next polling loop.
2718 */
2719 for_each_port(adapter, port) {
2720 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2721 u32 cause;
2722
2723 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2724 reset = 0;
2725 if (cause & F_RXFIFO_OVERFLOW) {
2726 mac->stats.rx_fifo_ovfl++;
2727 reset |= F_RXFIFO_OVERFLOW;
2728 }
2729
2730 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2731 }
2732
2733 /*
2734 * We do the same as above for FL_EMPTY interrupts.
2735 */
2736 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2737 reset = 0;
2738
2739 if (status & F_FLEMPTY) {
2740 struct sge_qset *qs = &adapter->sge.qs[0];
2741 int i = 0;
2742
2743 reset |= F_FLEMPTY;
2744
2745 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2746 0xffff;
2747
2748 while (v) {
2749 qs->fl[i].empty += (v & 1);
2750 if (i)
2751 qs++;
2752 i ^= 1;
2753 v >>= 1;
2754 }
2755 }
2756
2757 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2758
2759 /* Schedule the next check update if any port is active. */
2760 spin_lock_irq(&adapter->work_lock);
2761 if (adapter->open_device_map & PORT_MASK)
2762 schedule_chk_task(adapter);
2763 spin_unlock_irq(&adapter->work_lock);
2764 }
2765
2766 static void db_full_task(struct work_struct *work)
2767 {
2768 struct adapter *adapter = container_of(work, struct adapter,
2769 db_full_task);
2770
2771 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2772 }
2773
2774 static void db_empty_task(struct work_struct *work)
2775 {
2776 struct adapter *adapter = container_of(work, struct adapter,
2777 db_empty_task);
2778
2779 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2780 }
2781
2782 static void db_drop_task(struct work_struct *work)
2783 {
2784 struct adapter *adapter = container_of(work, struct adapter,
2785 db_drop_task);
2786 unsigned long delay = 1000;
2787 unsigned short r;
2788
2789 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2790
2791 /*
2792 * Sleep a while before ringing the driver qset dbs.
2793 * The delay is between 1000-2023 usecs.
2794 */
2795 get_random_bytes(&r, 2);
2796 delay += r & 1023;
2797 set_current_state(TASK_UNINTERRUPTIBLE);
2798 schedule_timeout(usecs_to_jiffies(delay));
2799 ring_dbs(adapter);
2800 }
2801
2802 /*
2803 * Processes external (PHY) interrupts in process context.
2804 */
2805 static void ext_intr_task(struct work_struct *work)
2806 {
2807 struct adapter *adapter = container_of(work, struct adapter,
2808 ext_intr_handler_task);
2809 int i;
2810
2811 /* Disable link fault interrupts */
2812 for_each_port(adapter, i) {
2813 struct net_device *dev = adapter->port[i];
2814 struct port_info *p = netdev_priv(dev);
2815
2816 t3_xgm_intr_disable(adapter, i);
2817 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2818 }
2819
2820 /* Re-enable link fault interrupts */
2821 t3_phy_intr_handler(adapter);
2822
2823 for_each_port(adapter, i)
2824 t3_xgm_intr_enable(adapter, i);
2825
2826 /* Now reenable external interrupts */
2827 spin_lock_irq(&adapter->work_lock);
2828 if (adapter->slow_intr_mask) {
2829 adapter->slow_intr_mask |= F_T3DBG;
2830 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2831 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2832 adapter->slow_intr_mask);
2833 }
2834 spin_unlock_irq(&adapter->work_lock);
2835 }
2836
2837 /*
2838 * Interrupt-context handler for external (PHY) interrupts.
2839 */
2840 void t3_os_ext_intr_handler(struct adapter *adapter)
2841 {
2842 /*
2843 * Schedule a task to handle external interrupts as they may be slow
2844 * and we use a mutex to protect MDIO registers. We disable PHY
2845 * interrupts in the meantime and let the task reenable them when
2846 * it's done.
2847 */
2848 spin_lock(&adapter->work_lock);
2849 if (adapter->slow_intr_mask) {
2850 adapter->slow_intr_mask &= ~F_T3DBG;
2851 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2852 adapter->slow_intr_mask);
2853 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2854 }
2855 spin_unlock(&adapter->work_lock);
2856 }
2857
2858 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2859 {
2860 struct net_device *netdev = adapter->port[port_id];
2861 struct port_info *pi = netdev_priv(netdev);
2862
2863 spin_lock(&adapter->work_lock);
2864 pi->link_fault = 1;
2865 spin_unlock(&adapter->work_lock);
2866 }
2867
2868 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2869 {
2870 int i, ret = 0;
2871
2872 if (is_offload(adapter) &&
2873 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2874 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2875 offload_close(&adapter->tdev);
2876 }
2877
2878 /* Stop all ports */
2879 for_each_port(adapter, i) {
2880 struct net_device *netdev = adapter->port[i];
2881
2882 if (netif_running(netdev))
2883 __cxgb_close(netdev, on_wq);
2884 }
2885
2886 /* Stop SGE timers */
2887 t3_stop_sge_timers(adapter);
2888
2889 adapter->flags &= ~FULL_INIT_DONE;
2890
2891 if (reset)
2892 ret = t3_reset_adapter(adapter);
2893
2894 pci_disable_device(adapter->pdev);
2895
2896 return ret;
2897 }
2898
2899 static int t3_reenable_adapter(struct adapter *adapter)
2900 {
2901 if (pci_enable_device(adapter->pdev)) {
2902 dev_err(&adapter->pdev->dev,
2903 "Cannot re-enable PCI device after reset.\n");
2904 goto err;
2905 }
2906 pci_set_master(adapter->pdev);
2907 pci_restore_state(adapter->pdev);
2908 pci_save_state(adapter->pdev);
2909
2910 /* Free sge resources */
2911 t3_free_sge_resources(adapter);
2912
2913 if (t3_replay_prep_adapter(adapter))
2914 goto err;
2915
2916 return 0;
2917 err:
2918 return -1;
2919 }
2920
2921 static void t3_resume_ports(struct adapter *adapter)
2922 {
2923 int i;
2924
2925 /* Restart the ports */
2926 for_each_port(adapter, i) {
2927 struct net_device *netdev = adapter->port[i];
2928
2929 if (netif_running(netdev)) {
2930 if (cxgb_open(netdev)) {
2931 dev_err(&adapter->pdev->dev,
2932 "can't bring device back up"
2933 " after reset\n");
2934 continue;
2935 }
2936 }
2937 }
2938
2939 if (is_offload(adapter) && !ofld_disable)
2940 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2941 }
2942
2943 /*
2944 * processes a fatal error.
2945 * Bring the ports down, reset the chip, bring the ports back up.
2946 */
2947 static void fatal_error_task(struct work_struct *work)
2948 {
2949 struct adapter *adapter = container_of(work, struct adapter,
2950 fatal_error_handler_task);
2951 int err = 0;
2952
2953 rtnl_lock();
2954 err = t3_adapter_error(adapter, 1, 1);
2955 if (!err)
2956 err = t3_reenable_adapter(adapter);
2957 if (!err)
2958 t3_resume_ports(adapter);
2959
2960 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2961 rtnl_unlock();
2962 }
2963
2964 void t3_fatal_err(struct adapter *adapter)
2965 {
2966 unsigned int fw_status[4];
2967
2968 if (adapter->flags & FULL_INIT_DONE) {
2969 t3_sge_stop(adapter);
2970 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2971 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2972 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2973 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2974
2975 spin_lock(&adapter->work_lock);
2976 t3_intr_disable(adapter);
2977 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2978 spin_unlock(&adapter->work_lock);
2979 }
2980 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2981 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2982 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2983 fw_status[0], fw_status[1],
2984 fw_status[2], fw_status[3]);
2985 }
2986
2987 /**
2988 * t3_io_error_detected - called when PCI error is detected
2989 * @pdev: Pointer to PCI device
2990 * @state: The current pci connection state
2991 *
2992 * This function is called after a PCI bus error affecting
2993 * this device has been detected.
2994 */
2995 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2996 pci_channel_state_t state)
2997 {
2998 struct adapter *adapter = pci_get_drvdata(pdev);
2999
3000 if (state == pci_channel_io_perm_failure)
3001 return PCI_ERS_RESULT_DISCONNECT;
3002
3003 t3_adapter_error(adapter, 0, 0);
3004
3005 /* Request a slot reset. */
3006 return PCI_ERS_RESULT_NEED_RESET;
3007 }
3008
3009 /**
3010 * t3_io_slot_reset - called after the pci bus has been reset.
3011 * @pdev: Pointer to PCI device
3012 *
3013 * Restart the card from scratch, as if from a cold-boot.
3014 */
3015 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3016 {
3017 struct adapter *adapter = pci_get_drvdata(pdev);
3018
3019 if (!t3_reenable_adapter(adapter))
3020 return PCI_ERS_RESULT_RECOVERED;
3021
3022 return PCI_ERS_RESULT_DISCONNECT;
3023 }
3024
3025 /**
3026 * t3_io_resume - called when traffic can start flowing again.
3027 * @pdev: Pointer to PCI device
3028 *
3029 * This callback is called when the error recovery driver tells us that
3030 * its OK to resume normal operation.
3031 */
3032 static void t3_io_resume(struct pci_dev *pdev)
3033 {
3034 struct adapter *adapter = pci_get_drvdata(pdev);
3035
3036 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3037 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3038
3039 t3_resume_ports(adapter);
3040 }
3041
3042 static const struct pci_error_handlers t3_err_handler = {
3043 .error_detected = t3_io_error_detected,
3044 .slot_reset = t3_io_slot_reset,
3045 .resume = t3_io_resume,
3046 };
3047
3048 /*
3049 * Set the number of qsets based on the number of CPUs and the number of ports,
3050 * not to exceed the number of available qsets, assuming there are enough qsets
3051 * per port in HW.
3052 */
3053 static void set_nqsets(struct adapter *adap)
3054 {
3055 int i, j = 0;
3056 int num_cpus = netif_get_num_default_rss_queues();
3057 int hwports = adap->params.nports;
3058 int nqsets = adap->msix_nvectors - 1;
3059
3060 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3061 if (hwports == 2 &&
3062 (hwports * nqsets > SGE_QSETS ||
3063 num_cpus >= nqsets / hwports))
3064 nqsets /= hwports;
3065 if (nqsets > num_cpus)
3066 nqsets = num_cpus;
3067 if (nqsets < 1 || hwports == 4)
3068 nqsets = 1;
3069 } else
3070 nqsets = 1;
3071
3072 for_each_port(adap, i) {
3073 struct port_info *pi = adap2pinfo(adap, i);
3074
3075 pi->first_qset = j;
3076 pi->nqsets = nqsets;
3077 j = pi->first_qset + nqsets;
3078
3079 dev_info(&adap->pdev->dev,
3080 "Port %d using %d queue sets.\n", i, nqsets);
3081 }
3082 }
3083
3084 static int cxgb_enable_msix(struct adapter *adap)
3085 {
3086 struct msix_entry entries[SGE_QSETS + 1];
3087 int vectors;
3088 int i, err;
3089
3090 vectors = ARRAY_SIZE(entries);
3091 for (i = 0; i < vectors; ++i)
3092 entries[i].entry = i;
3093
3094 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3095 vectors = err;
3096
3097 if (err < 0)
3098 pci_disable_msix(adap->pdev);
3099
3100 if (!err && vectors < (adap->params.nports + 1)) {
3101 pci_disable_msix(adap->pdev);
3102 err = -1;
3103 }
3104
3105 if (!err) {
3106 for (i = 0; i < vectors; ++i)
3107 adap->msix_info[i].vec = entries[i].vector;
3108 adap->msix_nvectors = vectors;
3109 }
3110
3111 return err;
3112 }
3113
3114 static void print_port_info(struct adapter *adap, const struct adapter_info *ai)
3115 {
3116 static const char *pci_variant[] = {
3117 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3118 };
3119
3120 int i;
3121 char buf[80];
3122
3123 if (is_pcie(adap))
3124 snprintf(buf, sizeof(buf), "%s x%d",
3125 pci_variant[adap->params.pci.variant],
3126 adap->params.pci.width);
3127 else
3128 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3129 pci_variant[adap->params.pci.variant],
3130 adap->params.pci.speed, adap->params.pci.width);
3131
3132 for_each_port(adap, i) {
3133 struct net_device *dev = adap->port[i];
3134 const struct port_info *pi = netdev_priv(dev);
3135
3136 if (!test_bit(i, &adap->registered_device_map))
3137 continue;
3138 netdev_info(dev, "%s %s %sNIC (rev %d) %s%s\n",
3139 ai->desc, pi->phy.desc,
3140 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3141 (adap->flags & USING_MSIX) ? " MSI-X" :
3142 (adap->flags & USING_MSI) ? " MSI" : "");
3143 if (adap->name == dev->name && adap->params.vpd.mclk)
3144 pr_info("%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3145 adap->name, t3_mc7_size(&adap->cm) >> 20,
3146 t3_mc7_size(&adap->pmtx) >> 20,
3147 t3_mc7_size(&adap->pmrx) >> 20,
3148 adap->params.vpd.sn);
3149 }
3150 }
3151
3152 static const struct net_device_ops cxgb_netdev_ops = {
3153 .ndo_open = cxgb_open,
3154 .ndo_stop = cxgb_close,
3155 .ndo_start_xmit = t3_eth_xmit,
3156 .ndo_get_stats = cxgb_get_stats,
3157 .ndo_validate_addr = eth_validate_addr,
3158 .ndo_set_rx_mode = cxgb_set_rxmode,
3159 .ndo_do_ioctl = cxgb_ioctl,
3160 .ndo_change_mtu = cxgb_change_mtu,
3161 .ndo_set_mac_address = cxgb_set_mac_addr,
3162 .ndo_fix_features = cxgb_fix_features,
3163 .ndo_set_features = cxgb_set_features,
3164 #ifdef CONFIG_NET_POLL_CONTROLLER
3165 .ndo_poll_controller = cxgb_netpoll,
3166 #endif
3167 };
3168
3169 static void cxgb3_init_iscsi_mac(struct net_device *dev)
3170 {
3171 struct port_info *pi = netdev_priv(dev);
3172
3173 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3174 pi->iscsic.mac_addr[3] |= 0x80;
3175 }
3176
3177 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
3178 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
3179 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
3180 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
3181 {
3182 int i, err, pci_using_dac = 0;
3183 resource_size_t mmio_start, mmio_len;
3184 const struct adapter_info *ai;
3185 struct adapter *adapter = NULL;
3186 struct port_info *pi;
3187
3188 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
3189
3190 if (!cxgb3_wq) {
3191 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3192 if (!cxgb3_wq) {
3193 pr_err("cannot initialize work queue\n");
3194 return -ENOMEM;
3195 }
3196 }
3197
3198 err = pci_enable_device(pdev);
3199 if (err) {
3200 dev_err(&pdev->dev, "cannot enable PCI device\n");
3201 goto out;
3202 }
3203
3204 err = pci_request_regions(pdev, DRV_NAME);
3205 if (err) {
3206 /* Just info, some other driver may have claimed the device. */
3207 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3208 goto out_disable_device;
3209 }
3210
3211 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3212 pci_using_dac = 1;
3213 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3214 if (err) {
3215 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3216 "coherent allocations\n");
3217 goto out_release_regions;
3218 }
3219 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3220 dev_err(&pdev->dev, "no usable DMA configuration\n");
3221 goto out_release_regions;
3222 }
3223
3224 pci_set_master(pdev);
3225 pci_save_state(pdev);
3226
3227 mmio_start = pci_resource_start(pdev, 0);
3228 mmio_len = pci_resource_len(pdev, 0);
3229 ai = t3_get_adapter_info(ent->driver_data);
3230
3231 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3232 if (!adapter) {
3233 err = -ENOMEM;
3234 goto out_release_regions;
3235 }
3236
3237 adapter->nofail_skb =
3238 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3239 if (!adapter->nofail_skb) {
3240 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3241 err = -ENOMEM;
3242 goto out_free_adapter;
3243 }
3244
3245 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3246 if (!adapter->regs) {
3247 dev_err(&pdev->dev, "cannot map device registers\n");
3248 err = -ENOMEM;
3249 goto out_free_adapter;
3250 }
3251
3252 adapter->pdev = pdev;
3253 adapter->name = pci_name(pdev);
3254 adapter->msg_enable = dflt_msg_enable;
3255 adapter->mmio_len = mmio_len;
3256
3257 mutex_init(&adapter->mdio_lock);
3258 spin_lock_init(&adapter->work_lock);
3259 spin_lock_init(&adapter->stats_lock);
3260
3261 INIT_LIST_HEAD(&adapter->adapter_list);
3262 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3263 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3264
3265 INIT_WORK(&adapter->db_full_task, db_full_task);
3266 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3267 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3268
3269 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3270
3271 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3272 struct net_device *netdev;
3273
3274 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3275 if (!netdev) {
3276 err = -ENOMEM;
3277 goto out_free_dev;
3278 }
3279
3280 SET_NETDEV_DEV(netdev, &pdev->dev);
3281
3282 adapter->port[i] = netdev;
3283 pi = netdev_priv(netdev);
3284 pi->adapter = adapter;
3285 pi->port_id = i;
3286 netif_carrier_off(netdev);
3287 netdev->irq = pdev->irq;
3288 netdev->mem_start = mmio_start;
3289 netdev->mem_end = mmio_start + mmio_len - 1;
3290 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3291 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX;
3292 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX;
3293 netdev->vlan_features |= netdev->features & VLAN_FEAT;
3294 if (pci_using_dac)
3295 netdev->features |= NETIF_F_HIGHDMA;
3296
3297 netdev->netdev_ops = &cxgb_netdev_ops;
3298 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3299 }
3300
3301 pci_set_drvdata(pdev, adapter);
3302 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3303 err = -ENODEV;
3304 goto out_free_dev;
3305 }
3306
3307 /*
3308 * The card is now ready to go. If any errors occur during device
3309 * registration we do not fail the whole card but rather proceed only
3310 * with the ports we manage to register successfully. However we must
3311 * register at least one net device.
3312 */
3313 for_each_port(adapter, i) {
3314 err = register_netdev(adapter->port[i]);
3315 if (err)
3316 dev_warn(&pdev->dev,
3317 "cannot register net device %s, skipping\n",
3318 adapter->port[i]->name);
3319 else {
3320 /*
3321 * Change the name we use for messages to the name of
3322 * the first successfully registered interface.
3323 */
3324 if (!adapter->registered_device_map)
3325 adapter->name = adapter->port[i]->name;
3326
3327 __set_bit(i, &adapter->registered_device_map);
3328 }
3329 }
3330 if (!adapter->registered_device_map) {
3331 dev_err(&pdev->dev, "could not register any net devices\n");
3332 goto out_free_dev;
3333 }
3334
3335 for_each_port(adapter, i)
3336 cxgb3_init_iscsi_mac(adapter->port[i]);
3337
3338 /* Driver's ready. Reflect it on LEDs */
3339 t3_led_ready(adapter);
3340
3341 if (is_offload(adapter)) {
3342 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3343 cxgb3_adapter_ofld(adapter);
3344 }
3345
3346 /* See what interrupts we'll be using */
3347 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3348 adapter->flags |= USING_MSIX;
3349 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3350 adapter->flags |= USING_MSI;
3351
3352 set_nqsets(adapter);
3353
3354 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3355 &cxgb3_attr_group);
3356
3357 print_port_info(adapter, ai);
3358 return 0;
3359
3360 out_free_dev:
3361 iounmap(adapter->regs);
3362 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3363 if (adapter->port[i])
3364 free_netdev(adapter->port[i]);
3365
3366 out_free_adapter:
3367 kfree(adapter);
3368
3369 out_release_regions:
3370 pci_release_regions(pdev);
3371 out_disable_device:
3372 pci_disable_device(pdev);
3373 pci_set_drvdata(pdev, NULL);
3374 out:
3375 return err;
3376 }
3377
3378 static void remove_one(struct pci_dev *pdev)
3379 {
3380 struct adapter *adapter = pci_get_drvdata(pdev);
3381
3382 if (adapter) {
3383 int i;
3384
3385 t3_sge_stop(adapter);
3386 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3387 &cxgb3_attr_group);
3388
3389 if (is_offload(adapter)) {
3390 cxgb3_adapter_unofld(adapter);
3391 if (test_bit(OFFLOAD_DEVMAP_BIT,
3392 &adapter->open_device_map))
3393 offload_close(&adapter->tdev);
3394 }
3395
3396 for_each_port(adapter, i)
3397 if (test_bit(i, &adapter->registered_device_map))
3398 unregister_netdev(adapter->port[i]);
3399
3400 t3_stop_sge_timers(adapter);
3401 t3_free_sge_resources(adapter);
3402 cxgb_disable_msi(adapter);
3403
3404 for_each_port(adapter, i)
3405 if (adapter->port[i])
3406 free_netdev(adapter->port[i]);
3407
3408 iounmap(adapter->regs);
3409 if (adapter->nofail_skb)
3410 kfree_skb(adapter->nofail_skb);
3411 kfree(adapter);
3412 pci_release_regions(pdev);
3413 pci_disable_device(pdev);
3414 pci_set_drvdata(pdev, NULL);
3415 }
3416 }
3417
3418 static struct pci_driver driver = {
3419 .name = DRV_NAME,
3420 .id_table = cxgb3_pci_tbl,
3421 .probe = init_one,
3422 .remove = remove_one,
3423 .err_handler = &t3_err_handler,
3424 };
3425
3426 static int __init cxgb3_init_module(void)
3427 {
3428 int ret;
3429
3430 cxgb3_offload_init();
3431
3432 ret = pci_register_driver(&driver);
3433 return ret;
3434 }
3435
3436 static void __exit cxgb3_cleanup_module(void)
3437 {
3438 pci_unregister_driver(&driver);
3439 if (cxgb3_wq)
3440 destroy_workqueue(cxgb3_wq);
3441 }
3442
3443 module_init(cxgb3_init_module);
3444 module_exit(cxgb3_cleanup_module);
This page took 0.211745 seconds and 5 git commands to generate.