cxgb3: Don't call cxgb_vlan_mode until q locks are initialized
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_main.c
1 /*
2 * Copyright (c) 2003-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/init.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/mdio.h>
41 #include <linux/sockios.h>
42 #include <linux/workqueue.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rtnetlink.h>
45 #include <linux/firmware.h>
46 #include <linux/log2.h>
47 #include <linux/stringify.h>
48 #include <linux/sched.h>
49 #include <linux/slab.h>
50 #include <asm/uaccess.h>
51
52 #include "common.h"
53 #include "cxgb3_ioctl.h"
54 #include "regs.h"
55 #include "cxgb3_offload.h"
56 #include "version.h"
57
58 #include "cxgb3_ctl_defs.h"
59 #include "t3_cpl.h"
60 #include "firmware_exports.h"
61
62 enum {
63 MAX_TXQ_ENTRIES = 16384,
64 MAX_CTRL_TXQ_ENTRIES = 1024,
65 MAX_RSPQ_ENTRIES = 16384,
66 MAX_RX_BUFFERS = 16384,
67 MAX_RX_JUMBO_BUFFERS = 16384,
68 MIN_TXQ_ENTRIES = 4,
69 MIN_CTRL_TXQ_ENTRIES = 4,
70 MIN_RSPQ_ENTRIES = 32,
71 MIN_FL_ENTRIES = 32
72 };
73
74 #define PORT_MASK ((1 << MAX_NPORTS) - 1)
75
76 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
77 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
78 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
79
80 #define EEPROM_MAGIC 0x38E2F10C
81
82 #define CH_DEVICE(devid, idx) \
83 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
84
85 static DEFINE_PCI_DEVICE_TABLE(cxgb3_pci_tbl) = {
86 CH_DEVICE(0x20, 0), /* PE9000 */
87 CH_DEVICE(0x21, 1), /* T302E */
88 CH_DEVICE(0x22, 2), /* T310E */
89 CH_DEVICE(0x23, 3), /* T320X */
90 CH_DEVICE(0x24, 1), /* T302X */
91 CH_DEVICE(0x25, 3), /* T320E */
92 CH_DEVICE(0x26, 2), /* T310X */
93 CH_DEVICE(0x30, 2), /* T3B10 */
94 CH_DEVICE(0x31, 3), /* T3B20 */
95 CH_DEVICE(0x32, 1), /* T3B02 */
96 CH_DEVICE(0x35, 6), /* T3C20-derived T3C10 */
97 CH_DEVICE(0x36, 3), /* S320E-CR */
98 CH_DEVICE(0x37, 7), /* N320E-G2 */
99 {0,}
100 };
101
102 MODULE_DESCRIPTION(DRV_DESC);
103 MODULE_AUTHOR("Chelsio Communications");
104 MODULE_LICENSE("Dual BSD/GPL");
105 MODULE_VERSION(DRV_VERSION);
106 MODULE_DEVICE_TABLE(pci, cxgb3_pci_tbl);
107
108 static int dflt_msg_enable = DFLT_MSG_ENABLE;
109
110 module_param(dflt_msg_enable, int, 0644);
111 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T3 default message enable bitmap");
112
113 /*
114 * The driver uses the best interrupt scheme available on a platform in the
115 * order MSI-X, MSI, legacy pin interrupts. This parameter determines which
116 * of these schemes the driver may consider as follows:
117 *
118 * msi = 2: choose from among all three options
119 * msi = 1: only consider MSI and pin interrupts
120 * msi = 0: force pin interrupts
121 */
122 static int msi = 2;
123
124 module_param(msi, int, 0644);
125 MODULE_PARM_DESC(msi, "whether to use MSI or MSI-X");
126
127 /*
128 * The driver enables offload as a default.
129 * To disable it, use ofld_disable = 1.
130 */
131
132 static int ofld_disable = 0;
133
134 module_param(ofld_disable, int, 0644);
135 MODULE_PARM_DESC(ofld_disable, "whether to enable offload at init time or not");
136
137 /*
138 * We have work elements that we need to cancel when an interface is taken
139 * down. Normally the work elements would be executed by keventd but that
140 * can deadlock because of linkwatch. If our close method takes the rtnl
141 * lock and linkwatch is ahead of our work elements in keventd, linkwatch
142 * will block keventd as it needs the rtnl lock, and we'll deadlock waiting
143 * for our work to complete. Get our own work queue to solve this.
144 */
145 struct workqueue_struct *cxgb3_wq;
146
147 /**
148 * link_report - show link status and link speed/duplex
149 * @p: the port whose settings are to be reported
150 *
151 * Shows the link status, speed, and duplex of a port.
152 */
153 static void link_report(struct net_device *dev)
154 {
155 if (!netif_carrier_ok(dev))
156 printk(KERN_INFO "%s: link down\n", dev->name);
157 else {
158 const char *s = "10Mbps";
159 const struct port_info *p = netdev_priv(dev);
160
161 switch (p->link_config.speed) {
162 case SPEED_10000:
163 s = "10Gbps";
164 break;
165 case SPEED_1000:
166 s = "1000Mbps";
167 break;
168 case SPEED_100:
169 s = "100Mbps";
170 break;
171 }
172
173 printk(KERN_INFO "%s: link up, %s, %s-duplex\n", dev->name, s,
174 p->link_config.duplex == DUPLEX_FULL ? "full" : "half");
175 }
176 }
177
178 static void enable_tx_fifo_drain(struct adapter *adapter,
179 struct port_info *pi)
180 {
181 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset, 0,
182 F_ENDROPPKT);
183 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, 0);
184 t3_write_reg(adapter, A_XGM_TX_CTRL + pi->mac.offset, F_TXEN);
185 t3_write_reg(adapter, A_XGM_RX_CTRL + pi->mac.offset, F_RXEN);
186 }
187
188 static void disable_tx_fifo_drain(struct adapter *adapter,
189 struct port_info *pi)
190 {
191 t3_set_reg_field(adapter, A_XGM_TXFIFO_CFG + pi->mac.offset,
192 F_ENDROPPKT, 0);
193 }
194
195 void t3_os_link_fault(struct adapter *adap, int port_id, int state)
196 {
197 struct net_device *dev = adap->port[port_id];
198 struct port_info *pi = netdev_priv(dev);
199
200 if (state == netif_carrier_ok(dev))
201 return;
202
203 if (state) {
204 struct cmac *mac = &pi->mac;
205
206 netif_carrier_on(dev);
207
208 disable_tx_fifo_drain(adap, pi);
209
210 /* Clear local faults */
211 t3_xgm_intr_disable(adap, pi->port_id);
212 t3_read_reg(adap, A_XGM_INT_STATUS +
213 pi->mac.offset);
214 t3_write_reg(adap,
215 A_XGM_INT_CAUSE + pi->mac.offset,
216 F_XGM_INT);
217
218 t3_set_reg_field(adap,
219 A_XGM_INT_ENABLE +
220 pi->mac.offset,
221 F_XGM_INT, F_XGM_INT);
222 t3_xgm_intr_enable(adap, pi->port_id);
223
224 t3_mac_enable(mac, MAC_DIRECTION_TX);
225 } else {
226 netif_carrier_off(dev);
227
228 /* Flush TX FIFO */
229 enable_tx_fifo_drain(adap, pi);
230 }
231 link_report(dev);
232 }
233
234 /**
235 * t3_os_link_changed - handle link status changes
236 * @adapter: the adapter associated with the link change
237 * @port_id: the port index whose limk status has changed
238 * @link_stat: the new status of the link
239 * @speed: the new speed setting
240 * @duplex: the new duplex setting
241 * @pause: the new flow-control setting
242 *
243 * This is the OS-dependent handler for link status changes. The OS
244 * neutral handler takes care of most of the processing for these events,
245 * then calls this handler for any OS-specific processing.
246 */
247 void t3_os_link_changed(struct adapter *adapter, int port_id, int link_stat,
248 int speed, int duplex, int pause)
249 {
250 struct net_device *dev = adapter->port[port_id];
251 struct port_info *pi = netdev_priv(dev);
252 struct cmac *mac = &pi->mac;
253
254 /* Skip changes from disabled ports. */
255 if (!netif_running(dev))
256 return;
257
258 if (link_stat != netif_carrier_ok(dev)) {
259 if (link_stat) {
260 disable_tx_fifo_drain(adapter, pi);
261
262 t3_mac_enable(mac, MAC_DIRECTION_RX);
263
264 /* Clear local faults */
265 t3_xgm_intr_disable(adapter, pi->port_id);
266 t3_read_reg(adapter, A_XGM_INT_STATUS +
267 pi->mac.offset);
268 t3_write_reg(adapter,
269 A_XGM_INT_CAUSE + pi->mac.offset,
270 F_XGM_INT);
271
272 t3_set_reg_field(adapter,
273 A_XGM_INT_ENABLE + pi->mac.offset,
274 F_XGM_INT, F_XGM_INT);
275 t3_xgm_intr_enable(adapter, pi->port_id);
276
277 netif_carrier_on(dev);
278 } else {
279 netif_carrier_off(dev);
280
281 t3_xgm_intr_disable(adapter, pi->port_id);
282 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
283 t3_set_reg_field(adapter,
284 A_XGM_INT_ENABLE + pi->mac.offset,
285 F_XGM_INT, 0);
286
287 if (is_10G(adapter))
288 pi->phy.ops->power_down(&pi->phy, 1);
289
290 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
291 t3_mac_disable(mac, MAC_DIRECTION_RX);
292 t3_link_start(&pi->phy, mac, &pi->link_config);
293
294 /* Flush TX FIFO */
295 enable_tx_fifo_drain(adapter, pi);
296 }
297
298 link_report(dev);
299 }
300 }
301
302 /**
303 * t3_os_phymod_changed - handle PHY module changes
304 * @phy: the PHY reporting the module change
305 * @mod_type: new module type
306 *
307 * This is the OS-dependent handler for PHY module changes. It is
308 * invoked when a PHY module is removed or inserted for any OS-specific
309 * processing.
310 */
311 void t3_os_phymod_changed(struct adapter *adap, int port_id)
312 {
313 static const char *mod_str[] = {
314 NULL, "SR", "LR", "LRM", "TWINAX", "TWINAX", "unknown"
315 };
316
317 const struct net_device *dev = adap->port[port_id];
318 const struct port_info *pi = netdev_priv(dev);
319
320 if (pi->phy.modtype == phy_modtype_none)
321 printk(KERN_INFO "%s: PHY module unplugged\n", dev->name);
322 else
323 printk(KERN_INFO "%s: %s PHY module inserted\n", dev->name,
324 mod_str[pi->phy.modtype]);
325 }
326
327 static void cxgb_set_rxmode(struct net_device *dev)
328 {
329 struct port_info *pi = netdev_priv(dev);
330
331 t3_mac_set_rx_mode(&pi->mac, dev);
332 }
333
334 /**
335 * link_start - enable a port
336 * @dev: the device to enable
337 *
338 * Performs the MAC and PHY actions needed to enable a port.
339 */
340 static void link_start(struct net_device *dev)
341 {
342 struct port_info *pi = netdev_priv(dev);
343 struct cmac *mac = &pi->mac;
344
345 t3_mac_reset(mac);
346 t3_mac_set_num_ucast(mac, MAX_MAC_IDX);
347 t3_mac_set_mtu(mac, dev->mtu);
348 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
349 t3_mac_set_address(mac, SAN_MAC_IDX, pi->iscsic.mac_addr);
350 t3_mac_set_rx_mode(mac, dev);
351 t3_link_start(&pi->phy, mac, &pi->link_config);
352 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
353 }
354
355 static inline void cxgb_disable_msi(struct adapter *adapter)
356 {
357 if (adapter->flags & USING_MSIX) {
358 pci_disable_msix(adapter->pdev);
359 adapter->flags &= ~USING_MSIX;
360 } else if (adapter->flags & USING_MSI) {
361 pci_disable_msi(adapter->pdev);
362 adapter->flags &= ~USING_MSI;
363 }
364 }
365
366 /*
367 * Interrupt handler for asynchronous events used with MSI-X.
368 */
369 static irqreturn_t t3_async_intr_handler(int irq, void *cookie)
370 {
371 t3_slow_intr_handler(cookie);
372 return IRQ_HANDLED;
373 }
374
375 /*
376 * Name the MSI-X interrupts.
377 */
378 static void name_msix_vecs(struct adapter *adap)
379 {
380 int i, j, msi_idx = 1, n = sizeof(adap->msix_info[0].desc) - 1;
381
382 snprintf(adap->msix_info[0].desc, n, "%s", adap->name);
383 adap->msix_info[0].desc[n] = 0;
384
385 for_each_port(adap, j) {
386 struct net_device *d = adap->port[j];
387 const struct port_info *pi = netdev_priv(d);
388
389 for (i = 0; i < pi->nqsets; i++, msi_idx++) {
390 snprintf(adap->msix_info[msi_idx].desc, n,
391 "%s-%d", d->name, pi->first_qset + i);
392 adap->msix_info[msi_idx].desc[n] = 0;
393 }
394 }
395 }
396
397 static int request_msix_data_irqs(struct adapter *adap)
398 {
399 int i, j, err, qidx = 0;
400
401 for_each_port(adap, i) {
402 int nqsets = adap2pinfo(adap, i)->nqsets;
403
404 for (j = 0; j < nqsets; ++j) {
405 err = request_irq(adap->msix_info[qidx + 1].vec,
406 t3_intr_handler(adap,
407 adap->sge.qs[qidx].
408 rspq.polling), 0,
409 adap->msix_info[qidx + 1].desc,
410 &adap->sge.qs[qidx]);
411 if (err) {
412 while (--qidx >= 0)
413 free_irq(adap->msix_info[qidx + 1].vec,
414 &adap->sge.qs[qidx]);
415 return err;
416 }
417 qidx++;
418 }
419 }
420 return 0;
421 }
422
423 static void free_irq_resources(struct adapter *adapter)
424 {
425 if (adapter->flags & USING_MSIX) {
426 int i, n = 0;
427
428 free_irq(adapter->msix_info[0].vec, adapter);
429 for_each_port(adapter, i)
430 n += adap2pinfo(adapter, i)->nqsets;
431
432 for (i = 0; i < n; ++i)
433 free_irq(adapter->msix_info[i + 1].vec,
434 &adapter->sge.qs[i]);
435 } else
436 free_irq(adapter->pdev->irq, adapter);
437 }
438
439 static int await_mgmt_replies(struct adapter *adap, unsigned long init_cnt,
440 unsigned long n)
441 {
442 int attempts = 10;
443
444 while (adap->sge.qs[0].rspq.offload_pkts < init_cnt + n) {
445 if (!--attempts)
446 return -ETIMEDOUT;
447 msleep(10);
448 }
449 return 0;
450 }
451
452 static int init_tp_parity(struct adapter *adap)
453 {
454 int i;
455 struct sk_buff *skb;
456 struct cpl_set_tcb_field *greq;
457 unsigned long cnt = adap->sge.qs[0].rspq.offload_pkts;
458
459 t3_tp_set_offload_mode(adap, 1);
460
461 for (i = 0; i < 16; i++) {
462 struct cpl_smt_write_req *req;
463
464 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
465 if (!skb)
466 skb = adap->nofail_skb;
467 if (!skb)
468 goto alloc_skb_fail;
469
470 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
471 memset(req, 0, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, i));
474 req->mtu_idx = NMTUS - 1;
475 req->iff = i;
476 t3_mgmt_tx(adap, skb);
477 if (skb == adap->nofail_skb) {
478 await_mgmt_replies(adap, cnt, i + 1);
479 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
480 if (!adap->nofail_skb)
481 goto alloc_skb_fail;
482 }
483 }
484
485 for (i = 0; i < 2048; i++) {
486 struct cpl_l2t_write_req *req;
487
488 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
489 if (!skb)
490 skb = adap->nofail_skb;
491 if (!skb)
492 goto alloc_skb_fail;
493
494 req = (struct cpl_l2t_write_req *)__skb_put(skb, sizeof(*req));
495 memset(req, 0, sizeof(*req));
496 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
497 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, i));
498 req->params = htonl(V_L2T_W_IDX(i));
499 t3_mgmt_tx(adap, skb);
500 if (skb == adap->nofail_skb) {
501 await_mgmt_replies(adap, cnt, 16 + i + 1);
502 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
503 if (!adap->nofail_skb)
504 goto alloc_skb_fail;
505 }
506 }
507
508 for (i = 0; i < 2048; i++) {
509 struct cpl_rte_write_req *req;
510
511 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
512 if (!skb)
513 skb = adap->nofail_skb;
514 if (!skb)
515 goto alloc_skb_fail;
516
517 req = (struct cpl_rte_write_req *)__skb_put(skb, sizeof(*req));
518 memset(req, 0, sizeof(*req));
519 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
520 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RTE_WRITE_REQ, i));
521 req->l2t_idx = htonl(V_L2T_W_IDX(i));
522 t3_mgmt_tx(adap, skb);
523 if (skb == adap->nofail_skb) {
524 await_mgmt_replies(adap, cnt, 16 + 2048 + i + 1);
525 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
526 if (!adap->nofail_skb)
527 goto alloc_skb_fail;
528 }
529 }
530
531 skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
532 if (!skb)
533 skb = adap->nofail_skb;
534 if (!skb)
535 goto alloc_skb_fail;
536
537 greq = (struct cpl_set_tcb_field *)__skb_put(skb, sizeof(*greq));
538 memset(greq, 0, sizeof(*greq));
539 greq->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
540 OPCODE_TID(greq) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, 0));
541 greq->mask = cpu_to_be64(1);
542 t3_mgmt_tx(adap, skb);
543
544 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
545 if (skb == adap->nofail_skb) {
546 i = await_mgmt_replies(adap, cnt, 16 + 2048 + 2048 + 1);
547 adap->nofail_skb = alloc_skb(sizeof(*greq), GFP_KERNEL);
548 }
549
550 t3_tp_set_offload_mode(adap, 0);
551 return i;
552
553 alloc_skb_fail:
554 t3_tp_set_offload_mode(adap, 0);
555 return -ENOMEM;
556 }
557
558 /**
559 * setup_rss - configure RSS
560 * @adap: the adapter
561 *
562 * Sets up RSS to distribute packets to multiple receive queues. We
563 * configure the RSS CPU lookup table to distribute to the number of HW
564 * receive queues, and the response queue lookup table to narrow that
565 * down to the response queues actually configured for each port.
566 * We always configure the RSS mapping for two ports since the mapping
567 * table has plenty of entries.
568 */
569 static void setup_rss(struct adapter *adap)
570 {
571 int i;
572 unsigned int nq0 = adap2pinfo(adap, 0)->nqsets;
573 unsigned int nq1 = adap->port[1] ? adap2pinfo(adap, 1)->nqsets : 1;
574 u8 cpus[SGE_QSETS + 1];
575 u16 rspq_map[RSS_TABLE_SIZE];
576
577 for (i = 0; i < SGE_QSETS; ++i)
578 cpus[i] = i;
579 cpus[SGE_QSETS] = 0xff; /* terminator */
580
581 for (i = 0; i < RSS_TABLE_SIZE / 2; ++i) {
582 rspq_map[i] = i % nq0;
583 rspq_map[i + RSS_TABLE_SIZE / 2] = (i % nq1) + nq0;
584 }
585
586 t3_config_rss(adap, F_RQFEEDBACKENABLE | F_TNLLKPEN | F_TNLMAPEN |
587 F_TNLPRTEN | F_TNL2TUPEN | F_TNL4TUPEN |
588 V_RRCPLCPUSIZE(6) | F_HASHTOEPLITZ, cpus, rspq_map);
589 }
590
591 static void ring_dbs(struct adapter *adap)
592 {
593 int i, j;
594
595 for (i = 0; i < SGE_QSETS; i++) {
596 struct sge_qset *qs = &adap->sge.qs[i];
597
598 if (qs->adap)
599 for (j = 0; j < SGE_TXQ_PER_SET; j++)
600 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | V_EGRCNTX(qs->txq[j].cntxt_id));
601 }
602 }
603
604 static void init_napi(struct adapter *adap)
605 {
606 int i;
607
608 for (i = 0; i < SGE_QSETS; i++) {
609 struct sge_qset *qs = &adap->sge.qs[i];
610
611 if (qs->adap)
612 netif_napi_add(qs->netdev, &qs->napi, qs->napi.poll,
613 64);
614 }
615
616 /*
617 * netif_napi_add() can be called only once per napi_struct because it
618 * adds each new napi_struct to a list. Be careful not to call it a
619 * second time, e.g., during EEH recovery, by making a note of it.
620 */
621 adap->flags |= NAPI_INIT;
622 }
623
624 /*
625 * Wait until all NAPI handlers are descheduled. This includes the handlers of
626 * both netdevices representing interfaces and the dummy ones for the extra
627 * queues.
628 */
629 static void quiesce_rx(struct adapter *adap)
630 {
631 int i;
632
633 for (i = 0; i < SGE_QSETS; i++)
634 if (adap->sge.qs[i].adap)
635 napi_disable(&adap->sge.qs[i].napi);
636 }
637
638 static void enable_all_napi(struct adapter *adap)
639 {
640 int i;
641 for (i = 0; i < SGE_QSETS; i++)
642 if (adap->sge.qs[i].adap)
643 napi_enable(&adap->sge.qs[i].napi);
644 }
645
646 /**
647 * setup_sge_qsets - configure SGE Tx/Rx/response queues
648 * @adap: the adapter
649 *
650 * Determines how many sets of SGE queues to use and initializes them.
651 * We support multiple queue sets per port if we have MSI-X, otherwise
652 * just one queue set per port.
653 */
654 static int setup_sge_qsets(struct adapter *adap)
655 {
656 int i, j, err, irq_idx = 0, qset_idx = 0;
657 unsigned int ntxq = SGE_TXQ_PER_SET;
658
659 if (adap->params.rev > 0 && !(adap->flags & USING_MSI))
660 irq_idx = -1;
661
662 for_each_port(adap, i) {
663 struct net_device *dev = adap->port[i];
664 struct port_info *pi = netdev_priv(dev);
665
666 pi->qs = &adap->sge.qs[pi->first_qset];
667 for (j = 0; j < pi->nqsets; ++j, ++qset_idx) {
668 err = t3_sge_alloc_qset(adap, qset_idx, 1,
669 (adap->flags & USING_MSIX) ? qset_idx + 1 :
670 irq_idx,
671 &adap->params.sge.qset[qset_idx], ntxq, dev,
672 netdev_get_tx_queue(dev, j));
673 if (err) {
674 t3_free_sge_resources(adap);
675 return err;
676 }
677 }
678 }
679
680 return 0;
681 }
682
683 static ssize_t attr_show(struct device *d, char *buf,
684 ssize_t(*format) (struct net_device *, char *))
685 {
686 ssize_t len;
687
688 /* Synchronize with ioctls that may shut down the device */
689 rtnl_lock();
690 len = (*format) (to_net_dev(d), buf);
691 rtnl_unlock();
692 return len;
693 }
694
695 static ssize_t attr_store(struct device *d,
696 const char *buf, size_t len,
697 ssize_t(*set) (struct net_device *, unsigned int),
698 unsigned int min_val, unsigned int max_val)
699 {
700 char *endp;
701 ssize_t ret;
702 unsigned int val;
703
704 if (!capable(CAP_NET_ADMIN))
705 return -EPERM;
706
707 val = simple_strtoul(buf, &endp, 0);
708 if (endp == buf || val < min_val || val > max_val)
709 return -EINVAL;
710
711 rtnl_lock();
712 ret = (*set) (to_net_dev(d), val);
713 if (!ret)
714 ret = len;
715 rtnl_unlock();
716 return ret;
717 }
718
719 #define CXGB3_SHOW(name, val_expr) \
720 static ssize_t format_##name(struct net_device *dev, char *buf) \
721 { \
722 struct port_info *pi = netdev_priv(dev); \
723 struct adapter *adap = pi->adapter; \
724 return sprintf(buf, "%u\n", val_expr); \
725 } \
726 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
727 char *buf) \
728 { \
729 return attr_show(d, buf, format_##name); \
730 }
731
732 static ssize_t set_nfilters(struct net_device *dev, unsigned int val)
733 {
734 struct port_info *pi = netdev_priv(dev);
735 struct adapter *adap = pi->adapter;
736 int min_tids = is_offload(adap) ? MC5_MIN_TIDS : 0;
737
738 if (adap->flags & FULL_INIT_DONE)
739 return -EBUSY;
740 if (val && adap->params.rev == 0)
741 return -EINVAL;
742 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
743 min_tids)
744 return -EINVAL;
745 adap->params.mc5.nfilters = val;
746 return 0;
747 }
748
749 static ssize_t store_nfilters(struct device *d, struct device_attribute *attr,
750 const char *buf, size_t len)
751 {
752 return attr_store(d, buf, len, set_nfilters, 0, ~0);
753 }
754
755 static ssize_t set_nservers(struct net_device *dev, unsigned int val)
756 {
757 struct port_info *pi = netdev_priv(dev);
758 struct adapter *adap = pi->adapter;
759
760 if (adap->flags & FULL_INIT_DONE)
761 return -EBUSY;
762 if (val > t3_mc5_size(&adap->mc5) - adap->params.mc5.nfilters -
763 MC5_MIN_TIDS)
764 return -EINVAL;
765 adap->params.mc5.nservers = val;
766 return 0;
767 }
768
769 static ssize_t store_nservers(struct device *d, struct device_attribute *attr,
770 const char *buf, size_t len)
771 {
772 return attr_store(d, buf, len, set_nservers, 0, ~0);
773 }
774
775 #define CXGB3_ATTR_R(name, val_expr) \
776 CXGB3_SHOW(name, val_expr) \
777 static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL)
778
779 #define CXGB3_ATTR_RW(name, val_expr, store_method) \
780 CXGB3_SHOW(name, val_expr) \
781 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_method)
782
783 CXGB3_ATTR_R(cam_size, t3_mc5_size(&adap->mc5));
784 CXGB3_ATTR_RW(nfilters, adap->params.mc5.nfilters, store_nfilters);
785 CXGB3_ATTR_RW(nservers, adap->params.mc5.nservers, store_nservers);
786
787 static struct attribute *cxgb3_attrs[] = {
788 &dev_attr_cam_size.attr,
789 &dev_attr_nfilters.attr,
790 &dev_attr_nservers.attr,
791 NULL
792 };
793
794 static struct attribute_group cxgb3_attr_group = {.attrs = cxgb3_attrs };
795
796 static ssize_t tm_attr_show(struct device *d,
797 char *buf, int sched)
798 {
799 struct port_info *pi = netdev_priv(to_net_dev(d));
800 struct adapter *adap = pi->adapter;
801 unsigned int v, addr, bpt, cpt;
802 ssize_t len;
803
804 addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
805 rtnl_lock();
806 t3_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
807 v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
808 if (sched & 1)
809 v >>= 16;
810 bpt = (v >> 8) & 0xff;
811 cpt = v & 0xff;
812 if (!cpt)
813 len = sprintf(buf, "disabled\n");
814 else {
815 v = (adap->params.vpd.cclk * 1000) / cpt;
816 len = sprintf(buf, "%u Kbps\n", (v * bpt) / 125);
817 }
818 rtnl_unlock();
819 return len;
820 }
821
822 static ssize_t tm_attr_store(struct device *d,
823 const char *buf, size_t len, int sched)
824 {
825 struct port_info *pi = netdev_priv(to_net_dev(d));
826 struct adapter *adap = pi->adapter;
827 unsigned int val;
828 char *endp;
829 ssize_t ret;
830
831 if (!capable(CAP_NET_ADMIN))
832 return -EPERM;
833
834 val = simple_strtoul(buf, &endp, 0);
835 if (endp == buf || val > 10000000)
836 return -EINVAL;
837
838 rtnl_lock();
839 ret = t3_config_sched(adap, val, sched);
840 if (!ret)
841 ret = len;
842 rtnl_unlock();
843 return ret;
844 }
845
846 #define TM_ATTR(name, sched) \
847 static ssize_t show_##name(struct device *d, struct device_attribute *attr, \
848 char *buf) \
849 { \
850 return tm_attr_show(d, buf, sched); \
851 } \
852 static ssize_t store_##name(struct device *d, struct device_attribute *attr, \
853 const char *buf, size_t len) \
854 { \
855 return tm_attr_store(d, buf, len, sched); \
856 } \
857 static DEVICE_ATTR(name, S_IRUGO | S_IWUSR, show_##name, store_##name)
858
859 TM_ATTR(sched0, 0);
860 TM_ATTR(sched1, 1);
861 TM_ATTR(sched2, 2);
862 TM_ATTR(sched3, 3);
863 TM_ATTR(sched4, 4);
864 TM_ATTR(sched5, 5);
865 TM_ATTR(sched6, 6);
866 TM_ATTR(sched7, 7);
867
868 static struct attribute *offload_attrs[] = {
869 &dev_attr_sched0.attr,
870 &dev_attr_sched1.attr,
871 &dev_attr_sched2.attr,
872 &dev_attr_sched3.attr,
873 &dev_attr_sched4.attr,
874 &dev_attr_sched5.attr,
875 &dev_attr_sched6.attr,
876 &dev_attr_sched7.attr,
877 NULL
878 };
879
880 static struct attribute_group offload_attr_group = {.attrs = offload_attrs };
881
882 /*
883 * Sends an sk_buff to an offload queue driver
884 * after dealing with any active network taps.
885 */
886 static inline int offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
887 {
888 int ret;
889
890 local_bh_disable();
891 ret = t3_offload_tx(tdev, skb);
892 local_bh_enable();
893 return ret;
894 }
895
896 static int write_smt_entry(struct adapter *adapter, int idx)
897 {
898 struct cpl_smt_write_req *req;
899 struct port_info *pi = netdev_priv(adapter->port[idx]);
900 struct sk_buff *skb = alloc_skb(sizeof(*req), GFP_KERNEL);
901
902 if (!skb)
903 return -ENOMEM;
904
905 req = (struct cpl_smt_write_req *)__skb_put(skb, sizeof(*req));
906 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
907 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SMT_WRITE_REQ, idx));
908 req->mtu_idx = NMTUS - 1; /* should be 0 but there's a T3 bug */
909 req->iff = idx;
910 memcpy(req->src_mac0, adapter->port[idx]->dev_addr, ETH_ALEN);
911 memcpy(req->src_mac1, pi->iscsic.mac_addr, ETH_ALEN);
912 skb->priority = 1;
913 offload_tx(&adapter->tdev, skb);
914 return 0;
915 }
916
917 static int init_smt(struct adapter *adapter)
918 {
919 int i;
920
921 for_each_port(adapter, i)
922 write_smt_entry(adapter, i);
923 return 0;
924 }
925
926 static void init_port_mtus(struct adapter *adapter)
927 {
928 unsigned int mtus = adapter->port[0]->mtu;
929
930 if (adapter->port[1])
931 mtus |= adapter->port[1]->mtu << 16;
932 t3_write_reg(adapter, A_TP_MTU_PORT_TABLE, mtus);
933 }
934
935 static int send_pktsched_cmd(struct adapter *adap, int sched, int qidx, int lo,
936 int hi, int port)
937 {
938 struct sk_buff *skb;
939 struct mngt_pktsched_wr *req;
940 int ret;
941
942 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
943 if (!skb)
944 skb = adap->nofail_skb;
945 if (!skb)
946 return -ENOMEM;
947
948 req = (struct mngt_pktsched_wr *)skb_put(skb, sizeof(*req));
949 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_MNGT));
950 req->mngt_opcode = FW_MNGTOPCODE_PKTSCHED_SET;
951 req->sched = sched;
952 req->idx = qidx;
953 req->min = lo;
954 req->max = hi;
955 req->binding = port;
956 ret = t3_mgmt_tx(adap, skb);
957 if (skb == adap->nofail_skb) {
958 adap->nofail_skb = alloc_skb(sizeof(struct cpl_set_tcb_field),
959 GFP_KERNEL);
960 if (!adap->nofail_skb)
961 ret = -ENOMEM;
962 }
963
964 return ret;
965 }
966
967 static int bind_qsets(struct adapter *adap)
968 {
969 int i, j, err = 0;
970
971 for_each_port(adap, i) {
972 const struct port_info *pi = adap2pinfo(adap, i);
973
974 for (j = 0; j < pi->nqsets; ++j) {
975 int ret = send_pktsched_cmd(adap, 1,
976 pi->first_qset + j, -1,
977 -1, i);
978 if (ret)
979 err = ret;
980 }
981 }
982
983 return err;
984 }
985
986 #define FW_VERSION __stringify(FW_VERSION_MAJOR) "." \
987 __stringify(FW_VERSION_MINOR) "." __stringify(FW_VERSION_MICRO)
988 #define FW_FNAME "cxgb3/t3fw-" FW_VERSION ".bin"
989 #define TPSRAM_VERSION __stringify(TP_VERSION_MAJOR) "." \
990 __stringify(TP_VERSION_MINOR) "." __stringify(TP_VERSION_MICRO)
991 #define TPSRAM_NAME "cxgb3/t3%c_psram-" TPSRAM_VERSION ".bin"
992 #define AEL2005_OPT_EDC_NAME "cxgb3/ael2005_opt_edc.bin"
993 #define AEL2005_TWX_EDC_NAME "cxgb3/ael2005_twx_edc.bin"
994 #define AEL2020_TWX_EDC_NAME "cxgb3/ael2020_twx_edc.bin"
995 MODULE_FIRMWARE(FW_FNAME);
996 MODULE_FIRMWARE("cxgb3/t3b_psram-" TPSRAM_VERSION ".bin");
997 MODULE_FIRMWARE("cxgb3/t3c_psram-" TPSRAM_VERSION ".bin");
998 MODULE_FIRMWARE(AEL2005_OPT_EDC_NAME);
999 MODULE_FIRMWARE(AEL2005_TWX_EDC_NAME);
1000 MODULE_FIRMWARE(AEL2020_TWX_EDC_NAME);
1001
1002 static inline const char *get_edc_fw_name(int edc_idx)
1003 {
1004 const char *fw_name = NULL;
1005
1006 switch (edc_idx) {
1007 case EDC_OPT_AEL2005:
1008 fw_name = AEL2005_OPT_EDC_NAME;
1009 break;
1010 case EDC_TWX_AEL2005:
1011 fw_name = AEL2005_TWX_EDC_NAME;
1012 break;
1013 case EDC_TWX_AEL2020:
1014 fw_name = AEL2020_TWX_EDC_NAME;
1015 break;
1016 }
1017 return fw_name;
1018 }
1019
1020 int t3_get_edc_fw(struct cphy *phy, int edc_idx, int size)
1021 {
1022 struct adapter *adapter = phy->adapter;
1023 const struct firmware *fw;
1024 char buf[64];
1025 u32 csum;
1026 const __be32 *p;
1027 u16 *cache = phy->phy_cache;
1028 int i, ret;
1029
1030 snprintf(buf, sizeof(buf), get_edc_fw_name(edc_idx));
1031
1032 ret = request_firmware(&fw, buf, &adapter->pdev->dev);
1033 if (ret < 0) {
1034 dev_err(&adapter->pdev->dev,
1035 "could not upgrade firmware: unable to load %s\n",
1036 buf);
1037 return ret;
1038 }
1039
1040 /* check size, take checksum in account */
1041 if (fw->size > size + 4) {
1042 CH_ERR(adapter, "firmware image too large %u, expected %d\n",
1043 (unsigned int)fw->size, size + 4);
1044 ret = -EINVAL;
1045 }
1046
1047 /* compute checksum */
1048 p = (const __be32 *)fw->data;
1049 for (csum = 0, i = 0; i < fw->size / sizeof(csum); i++)
1050 csum += ntohl(p[i]);
1051
1052 if (csum != 0xffffffff) {
1053 CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
1054 csum);
1055 ret = -EINVAL;
1056 }
1057
1058 for (i = 0; i < size / 4 ; i++) {
1059 *cache++ = (be32_to_cpu(p[i]) & 0xffff0000) >> 16;
1060 *cache++ = be32_to_cpu(p[i]) & 0xffff;
1061 }
1062
1063 release_firmware(fw);
1064
1065 return ret;
1066 }
1067
1068 static int upgrade_fw(struct adapter *adap)
1069 {
1070 int ret;
1071 const struct firmware *fw;
1072 struct device *dev = &adap->pdev->dev;
1073
1074 ret = request_firmware(&fw, FW_FNAME, dev);
1075 if (ret < 0) {
1076 dev_err(dev, "could not upgrade firmware: unable to load %s\n",
1077 FW_FNAME);
1078 return ret;
1079 }
1080 ret = t3_load_fw(adap, fw->data, fw->size);
1081 release_firmware(fw);
1082
1083 if (ret == 0)
1084 dev_info(dev, "successful upgrade to firmware %d.%d.%d\n",
1085 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1086 else
1087 dev_err(dev, "failed to upgrade to firmware %d.%d.%d\n",
1088 FW_VERSION_MAJOR, FW_VERSION_MINOR, FW_VERSION_MICRO);
1089
1090 return ret;
1091 }
1092
1093 static inline char t3rev2char(struct adapter *adapter)
1094 {
1095 char rev = 0;
1096
1097 switch(adapter->params.rev) {
1098 case T3_REV_B:
1099 case T3_REV_B2:
1100 rev = 'b';
1101 break;
1102 case T3_REV_C:
1103 rev = 'c';
1104 break;
1105 }
1106 return rev;
1107 }
1108
1109 static int update_tpsram(struct adapter *adap)
1110 {
1111 const struct firmware *tpsram;
1112 char buf[64];
1113 struct device *dev = &adap->pdev->dev;
1114 int ret;
1115 char rev;
1116
1117 rev = t3rev2char(adap);
1118 if (!rev)
1119 return 0;
1120
1121 snprintf(buf, sizeof(buf), TPSRAM_NAME, rev);
1122
1123 ret = request_firmware(&tpsram, buf, dev);
1124 if (ret < 0) {
1125 dev_err(dev, "could not load TP SRAM: unable to load %s\n",
1126 buf);
1127 return ret;
1128 }
1129
1130 ret = t3_check_tpsram(adap, tpsram->data, tpsram->size);
1131 if (ret)
1132 goto release_tpsram;
1133
1134 ret = t3_set_proto_sram(adap, tpsram->data);
1135 if (ret == 0)
1136 dev_info(dev,
1137 "successful update of protocol engine "
1138 "to %d.%d.%d\n",
1139 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1140 else
1141 dev_err(dev, "failed to update of protocol engine %d.%d.%d\n",
1142 TP_VERSION_MAJOR, TP_VERSION_MINOR, TP_VERSION_MICRO);
1143 if (ret)
1144 dev_err(dev, "loading protocol SRAM failed\n");
1145
1146 release_tpsram:
1147 release_firmware(tpsram);
1148
1149 return ret;
1150 }
1151
1152 /**
1153 * t3_synchronize_rx - wait for current Rx processing on a port to complete
1154 * @adap: the adapter
1155 * @p: the port
1156 *
1157 * Ensures that current Rx processing on any of the queues associated with
1158 * the given port completes before returning. We do this by acquiring and
1159 * releasing the locks of the response queues associated with the port.
1160 */
1161 static void t3_synchronize_rx(struct adapter *adap, const struct port_info *p)
1162 {
1163 int i;
1164
1165 for (i = p->first_qset; i < p->first_qset + p->nqsets; i++) {
1166 struct sge_rspq *q = &adap->sge.qs[i].rspq;
1167
1168 spin_lock_irq(&q->lock);
1169 spin_unlock_irq(&q->lock);
1170 }
1171 }
1172
1173 static void cxgb_vlan_mode(struct net_device *dev, netdev_features_t features)
1174 {
1175 struct port_info *pi = netdev_priv(dev);
1176 struct adapter *adapter = pi->adapter;
1177
1178 if (adapter->params.rev > 0) {
1179 t3_set_vlan_accel(adapter, 1 << pi->port_id,
1180 features & NETIF_F_HW_VLAN_RX);
1181 } else {
1182 /* single control for all ports */
1183 unsigned int i, have_vlans = features & NETIF_F_HW_VLAN_RX;
1184
1185 for_each_port(adapter, i)
1186 have_vlans |=
1187 adapter->port[i]->features & NETIF_F_HW_VLAN_RX;
1188
1189 t3_set_vlan_accel(adapter, 1, have_vlans);
1190 }
1191 t3_synchronize_rx(adapter, pi);
1192 }
1193
1194 /**
1195 * cxgb_up - enable the adapter
1196 * @adapter: adapter being enabled
1197 *
1198 * Called when the first port is enabled, this function performs the
1199 * actions necessary to make an adapter operational, such as completing
1200 * the initialization of HW modules, and enabling interrupts.
1201 *
1202 * Must be called with the rtnl lock held.
1203 */
1204 static int cxgb_up(struct adapter *adap)
1205 {
1206 int i, err;
1207
1208 if (!(adap->flags & FULL_INIT_DONE)) {
1209 err = t3_check_fw_version(adap);
1210 if (err == -EINVAL) {
1211 err = upgrade_fw(adap);
1212 CH_WARN(adap, "FW upgrade to %d.%d.%d %s\n",
1213 FW_VERSION_MAJOR, FW_VERSION_MINOR,
1214 FW_VERSION_MICRO, err ? "failed" : "succeeded");
1215 }
1216
1217 err = t3_check_tpsram_version(adap);
1218 if (err == -EINVAL) {
1219 err = update_tpsram(adap);
1220 CH_WARN(adap, "TP upgrade to %d.%d.%d %s\n",
1221 TP_VERSION_MAJOR, TP_VERSION_MINOR,
1222 TP_VERSION_MICRO, err ? "failed" : "succeeded");
1223 }
1224
1225 /*
1226 * Clear interrupts now to catch errors if t3_init_hw fails.
1227 * We clear them again later as initialization may trigger
1228 * conditions that can interrupt.
1229 */
1230 t3_intr_clear(adap);
1231
1232 err = t3_init_hw(adap, 0);
1233 if (err)
1234 goto out;
1235
1236 t3_set_reg_field(adap, A_TP_PARA_REG5, 0, F_RXDDPOFFINIT);
1237 t3_write_reg(adap, A_ULPRX_TDDP_PSZ, V_HPZ0(PAGE_SHIFT - 12));
1238
1239 err = setup_sge_qsets(adap);
1240 if (err)
1241 goto out;
1242
1243 for_each_port(adap, i)
1244 cxgb_vlan_mode(adap->port[i], adap->port[i]->features);
1245
1246 setup_rss(adap);
1247 if (!(adap->flags & NAPI_INIT))
1248 init_napi(adap);
1249
1250 t3_start_sge_timers(adap);
1251 adap->flags |= FULL_INIT_DONE;
1252 }
1253
1254 t3_intr_clear(adap);
1255
1256 if (adap->flags & USING_MSIX) {
1257 name_msix_vecs(adap);
1258 err = request_irq(adap->msix_info[0].vec,
1259 t3_async_intr_handler, 0,
1260 adap->msix_info[0].desc, adap);
1261 if (err)
1262 goto irq_err;
1263
1264 err = request_msix_data_irqs(adap);
1265 if (err) {
1266 free_irq(adap->msix_info[0].vec, adap);
1267 goto irq_err;
1268 }
1269 } else if ((err = request_irq(adap->pdev->irq,
1270 t3_intr_handler(adap,
1271 adap->sge.qs[0].rspq.
1272 polling),
1273 (adap->flags & USING_MSI) ?
1274 0 : IRQF_SHARED,
1275 adap->name, adap)))
1276 goto irq_err;
1277
1278 enable_all_napi(adap);
1279 t3_sge_start(adap);
1280 t3_intr_enable(adap);
1281
1282 if (adap->params.rev >= T3_REV_C && !(adap->flags & TP_PARITY_INIT) &&
1283 is_offload(adap) && init_tp_parity(adap) == 0)
1284 adap->flags |= TP_PARITY_INIT;
1285
1286 if (adap->flags & TP_PARITY_INIT) {
1287 t3_write_reg(adap, A_TP_INT_CAUSE,
1288 F_CMCACHEPERR | F_ARPLUTPERR);
1289 t3_write_reg(adap, A_TP_INT_ENABLE, 0x7fbfffff);
1290 }
1291
1292 if (!(adap->flags & QUEUES_BOUND)) {
1293 int ret = bind_qsets(adap);
1294
1295 if (ret < 0) {
1296 CH_ERR(adap, "failed to bind qsets, err %d\n", ret);
1297 t3_intr_disable(adap);
1298 free_irq_resources(adap);
1299 err = ret;
1300 goto out;
1301 }
1302 adap->flags |= QUEUES_BOUND;
1303 }
1304
1305 out:
1306 return err;
1307 irq_err:
1308 CH_ERR(adap, "request_irq failed, err %d\n", err);
1309 goto out;
1310 }
1311
1312 /*
1313 * Release resources when all the ports and offloading have been stopped.
1314 */
1315 static void cxgb_down(struct adapter *adapter, int on_wq)
1316 {
1317 t3_sge_stop(adapter);
1318 spin_lock_irq(&adapter->work_lock); /* sync with PHY intr task */
1319 t3_intr_disable(adapter);
1320 spin_unlock_irq(&adapter->work_lock);
1321
1322 free_irq_resources(adapter);
1323 quiesce_rx(adapter);
1324 t3_sge_stop(adapter);
1325 if (!on_wq)
1326 flush_workqueue(cxgb3_wq);/* wait for external IRQ handler */
1327 }
1328
1329 static void schedule_chk_task(struct adapter *adap)
1330 {
1331 unsigned int timeo;
1332
1333 timeo = adap->params.linkpoll_period ?
1334 (HZ * adap->params.linkpoll_period) / 10 :
1335 adap->params.stats_update_period * HZ;
1336 if (timeo)
1337 queue_delayed_work(cxgb3_wq, &adap->adap_check_task, timeo);
1338 }
1339
1340 static int offload_open(struct net_device *dev)
1341 {
1342 struct port_info *pi = netdev_priv(dev);
1343 struct adapter *adapter = pi->adapter;
1344 struct t3cdev *tdev = dev2t3cdev(dev);
1345 int adap_up = adapter->open_device_map & PORT_MASK;
1346 int err;
1347
1348 if (test_and_set_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1349 return 0;
1350
1351 if (!adap_up && (err = cxgb_up(adapter)) < 0)
1352 goto out;
1353
1354 t3_tp_set_offload_mode(adapter, 1);
1355 tdev->lldev = adapter->port[0];
1356 err = cxgb3_offload_activate(adapter);
1357 if (err)
1358 goto out;
1359
1360 init_port_mtus(adapter);
1361 t3_load_mtus(adapter, adapter->params.mtus, adapter->params.a_wnd,
1362 adapter->params.b_wnd,
1363 adapter->params.rev == 0 ?
1364 adapter->port[0]->mtu : 0xffff);
1365 init_smt(adapter);
1366
1367 if (sysfs_create_group(&tdev->lldev->dev.kobj, &offload_attr_group))
1368 dev_dbg(&dev->dev, "cannot create sysfs group\n");
1369
1370 /* Call back all registered clients */
1371 cxgb3_add_clients(tdev);
1372
1373 out:
1374 /* restore them in case the offload module has changed them */
1375 if (err) {
1376 t3_tp_set_offload_mode(adapter, 0);
1377 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1378 cxgb3_set_dummy_ops(tdev);
1379 }
1380 return err;
1381 }
1382
1383 static int offload_close(struct t3cdev *tdev)
1384 {
1385 struct adapter *adapter = tdev2adap(tdev);
1386 struct t3c_data *td = T3C_DATA(tdev);
1387
1388 if (!test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map))
1389 return 0;
1390
1391 /* Call back all registered clients */
1392 cxgb3_remove_clients(tdev);
1393
1394 sysfs_remove_group(&tdev->lldev->dev.kobj, &offload_attr_group);
1395
1396 /* Flush work scheduled while releasing TIDs */
1397 flush_work_sync(&td->tid_release_task);
1398
1399 tdev->lldev = NULL;
1400 cxgb3_set_dummy_ops(tdev);
1401 t3_tp_set_offload_mode(adapter, 0);
1402 clear_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
1403
1404 if (!adapter->open_device_map)
1405 cxgb_down(adapter, 0);
1406
1407 cxgb3_offload_deactivate(adapter);
1408 return 0;
1409 }
1410
1411 static int cxgb_open(struct net_device *dev)
1412 {
1413 struct port_info *pi = netdev_priv(dev);
1414 struct adapter *adapter = pi->adapter;
1415 int other_ports = adapter->open_device_map & PORT_MASK;
1416 int err;
1417
1418 if (!adapter->open_device_map && (err = cxgb_up(adapter)) < 0)
1419 return err;
1420
1421 set_bit(pi->port_id, &adapter->open_device_map);
1422 if (is_offload(adapter) && !ofld_disable) {
1423 err = offload_open(dev);
1424 if (err)
1425 printk(KERN_WARNING
1426 "Could not initialize offload capabilities\n");
1427 }
1428
1429 netif_set_real_num_tx_queues(dev, pi->nqsets);
1430 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
1431 if (err)
1432 return err;
1433 link_start(dev);
1434 t3_port_intr_enable(adapter, pi->port_id);
1435 netif_tx_start_all_queues(dev);
1436 if (!other_ports)
1437 schedule_chk_task(adapter);
1438
1439 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_UP, pi->port_id);
1440 return 0;
1441 }
1442
1443 static int __cxgb_close(struct net_device *dev, int on_wq)
1444 {
1445 struct port_info *pi = netdev_priv(dev);
1446 struct adapter *adapter = pi->adapter;
1447
1448
1449 if (!adapter->open_device_map)
1450 return 0;
1451
1452 /* Stop link fault interrupts */
1453 t3_xgm_intr_disable(adapter, pi->port_id);
1454 t3_read_reg(adapter, A_XGM_INT_STATUS + pi->mac.offset);
1455
1456 t3_port_intr_disable(adapter, pi->port_id);
1457 netif_tx_stop_all_queues(dev);
1458 pi->phy.ops->power_down(&pi->phy, 1);
1459 netif_carrier_off(dev);
1460 t3_mac_disable(&pi->mac, MAC_DIRECTION_TX | MAC_DIRECTION_RX);
1461
1462 spin_lock_irq(&adapter->work_lock); /* sync with update task */
1463 clear_bit(pi->port_id, &adapter->open_device_map);
1464 spin_unlock_irq(&adapter->work_lock);
1465
1466 if (!(adapter->open_device_map & PORT_MASK))
1467 cancel_delayed_work_sync(&adapter->adap_check_task);
1468
1469 if (!adapter->open_device_map)
1470 cxgb_down(adapter, on_wq);
1471
1472 cxgb3_event_notify(&adapter->tdev, OFFLOAD_PORT_DOWN, pi->port_id);
1473 return 0;
1474 }
1475
1476 static int cxgb_close(struct net_device *dev)
1477 {
1478 return __cxgb_close(dev, 0);
1479 }
1480
1481 static struct net_device_stats *cxgb_get_stats(struct net_device *dev)
1482 {
1483 struct port_info *pi = netdev_priv(dev);
1484 struct adapter *adapter = pi->adapter;
1485 struct net_device_stats *ns = &pi->netstats;
1486 const struct mac_stats *pstats;
1487
1488 spin_lock(&adapter->stats_lock);
1489 pstats = t3_mac_update_stats(&pi->mac);
1490 spin_unlock(&adapter->stats_lock);
1491
1492 ns->tx_bytes = pstats->tx_octets;
1493 ns->tx_packets = pstats->tx_frames;
1494 ns->rx_bytes = pstats->rx_octets;
1495 ns->rx_packets = pstats->rx_frames;
1496 ns->multicast = pstats->rx_mcast_frames;
1497
1498 ns->tx_errors = pstats->tx_underrun;
1499 ns->rx_errors = pstats->rx_symbol_errs + pstats->rx_fcs_errs +
1500 pstats->rx_too_long + pstats->rx_jabber + pstats->rx_short +
1501 pstats->rx_fifo_ovfl;
1502
1503 /* detailed rx_errors */
1504 ns->rx_length_errors = pstats->rx_jabber + pstats->rx_too_long;
1505 ns->rx_over_errors = 0;
1506 ns->rx_crc_errors = pstats->rx_fcs_errs;
1507 ns->rx_frame_errors = pstats->rx_symbol_errs;
1508 ns->rx_fifo_errors = pstats->rx_fifo_ovfl;
1509 ns->rx_missed_errors = pstats->rx_cong_drops;
1510
1511 /* detailed tx_errors */
1512 ns->tx_aborted_errors = 0;
1513 ns->tx_carrier_errors = 0;
1514 ns->tx_fifo_errors = pstats->tx_underrun;
1515 ns->tx_heartbeat_errors = 0;
1516 ns->tx_window_errors = 0;
1517 return ns;
1518 }
1519
1520 static u32 get_msglevel(struct net_device *dev)
1521 {
1522 struct port_info *pi = netdev_priv(dev);
1523 struct adapter *adapter = pi->adapter;
1524
1525 return adapter->msg_enable;
1526 }
1527
1528 static void set_msglevel(struct net_device *dev, u32 val)
1529 {
1530 struct port_info *pi = netdev_priv(dev);
1531 struct adapter *adapter = pi->adapter;
1532
1533 adapter->msg_enable = val;
1534 }
1535
1536 static char stats_strings[][ETH_GSTRING_LEN] = {
1537 "TxOctetsOK ",
1538 "TxFramesOK ",
1539 "TxMulticastFramesOK",
1540 "TxBroadcastFramesOK",
1541 "TxPauseFrames ",
1542 "TxUnderrun ",
1543 "TxExtUnderrun ",
1544
1545 "TxFrames64 ",
1546 "TxFrames65To127 ",
1547 "TxFrames128To255 ",
1548 "TxFrames256To511 ",
1549 "TxFrames512To1023 ",
1550 "TxFrames1024To1518 ",
1551 "TxFrames1519ToMax ",
1552
1553 "RxOctetsOK ",
1554 "RxFramesOK ",
1555 "RxMulticastFramesOK",
1556 "RxBroadcastFramesOK",
1557 "RxPauseFrames ",
1558 "RxFCSErrors ",
1559 "RxSymbolErrors ",
1560 "RxShortErrors ",
1561 "RxJabberErrors ",
1562 "RxLengthErrors ",
1563 "RxFIFOoverflow ",
1564
1565 "RxFrames64 ",
1566 "RxFrames65To127 ",
1567 "RxFrames128To255 ",
1568 "RxFrames256To511 ",
1569 "RxFrames512To1023 ",
1570 "RxFrames1024To1518 ",
1571 "RxFrames1519ToMax ",
1572
1573 "PhyFIFOErrors ",
1574 "TSO ",
1575 "VLANextractions ",
1576 "VLANinsertions ",
1577 "TxCsumOffload ",
1578 "RxCsumGood ",
1579 "LroAggregated ",
1580 "LroFlushed ",
1581 "LroNoDesc ",
1582 "RxDrops ",
1583
1584 "CheckTXEnToggled ",
1585 "CheckResets ",
1586
1587 "LinkFaults ",
1588 };
1589
1590 static int get_sset_count(struct net_device *dev, int sset)
1591 {
1592 switch (sset) {
1593 case ETH_SS_STATS:
1594 return ARRAY_SIZE(stats_strings);
1595 default:
1596 return -EOPNOTSUPP;
1597 }
1598 }
1599
1600 #define T3_REGMAP_SIZE (3 * 1024)
1601
1602 static int get_regs_len(struct net_device *dev)
1603 {
1604 return T3_REGMAP_SIZE;
1605 }
1606
1607 static int get_eeprom_len(struct net_device *dev)
1608 {
1609 return EEPROMSIZE;
1610 }
1611
1612 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1613 {
1614 struct port_info *pi = netdev_priv(dev);
1615 struct adapter *adapter = pi->adapter;
1616 u32 fw_vers = 0;
1617 u32 tp_vers = 0;
1618
1619 spin_lock(&adapter->stats_lock);
1620 t3_get_fw_version(adapter, &fw_vers);
1621 t3_get_tp_version(adapter, &tp_vers);
1622 spin_unlock(&adapter->stats_lock);
1623
1624 strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1625 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1626 strlcpy(info->bus_info, pci_name(adapter->pdev),
1627 sizeof(info->bus_info));
1628 if (fw_vers)
1629 snprintf(info->fw_version, sizeof(info->fw_version),
1630 "%s %u.%u.%u TP %u.%u.%u",
1631 G_FW_VERSION_TYPE(fw_vers) ? "T" : "N",
1632 G_FW_VERSION_MAJOR(fw_vers),
1633 G_FW_VERSION_MINOR(fw_vers),
1634 G_FW_VERSION_MICRO(fw_vers),
1635 G_TP_VERSION_MAJOR(tp_vers),
1636 G_TP_VERSION_MINOR(tp_vers),
1637 G_TP_VERSION_MICRO(tp_vers));
1638 }
1639
1640 static void get_strings(struct net_device *dev, u32 stringset, u8 * data)
1641 {
1642 if (stringset == ETH_SS_STATS)
1643 memcpy(data, stats_strings, sizeof(stats_strings));
1644 }
1645
1646 static unsigned long collect_sge_port_stats(struct adapter *adapter,
1647 struct port_info *p, int idx)
1648 {
1649 int i;
1650 unsigned long tot = 0;
1651
1652 for (i = p->first_qset; i < p->first_qset + p->nqsets; ++i)
1653 tot += adapter->sge.qs[i].port_stats[idx];
1654 return tot;
1655 }
1656
1657 static void get_stats(struct net_device *dev, struct ethtool_stats *stats,
1658 u64 *data)
1659 {
1660 struct port_info *pi = netdev_priv(dev);
1661 struct adapter *adapter = pi->adapter;
1662 const struct mac_stats *s;
1663
1664 spin_lock(&adapter->stats_lock);
1665 s = t3_mac_update_stats(&pi->mac);
1666 spin_unlock(&adapter->stats_lock);
1667
1668 *data++ = s->tx_octets;
1669 *data++ = s->tx_frames;
1670 *data++ = s->tx_mcast_frames;
1671 *data++ = s->tx_bcast_frames;
1672 *data++ = s->tx_pause;
1673 *data++ = s->tx_underrun;
1674 *data++ = s->tx_fifo_urun;
1675
1676 *data++ = s->tx_frames_64;
1677 *data++ = s->tx_frames_65_127;
1678 *data++ = s->tx_frames_128_255;
1679 *data++ = s->tx_frames_256_511;
1680 *data++ = s->tx_frames_512_1023;
1681 *data++ = s->tx_frames_1024_1518;
1682 *data++ = s->tx_frames_1519_max;
1683
1684 *data++ = s->rx_octets;
1685 *data++ = s->rx_frames;
1686 *data++ = s->rx_mcast_frames;
1687 *data++ = s->rx_bcast_frames;
1688 *data++ = s->rx_pause;
1689 *data++ = s->rx_fcs_errs;
1690 *data++ = s->rx_symbol_errs;
1691 *data++ = s->rx_short;
1692 *data++ = s->rx_jabber;
1693 *data++ = s->rx_too_long;
1694 *data++ = s->rx_fifo_ovfl;
1695
1696 *data++ = s->rx_frames_64;
1697 *data++ = s->rx_frames_65_127;
1698 *data++ = s->rx_frames_128_255;
1699 *data++ = s->rx_frames_256_511;
1700 *data++ = s->rx_frames_512_1023;
1701 *data++ = s->rx_frames_1024_1518;
1702 *data++ = s->rx_frames_1519_max;
1703
1704 *data++ = pi->phy.fifo_errors;
1705
1706 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TSO);
1707 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANEX);
1708 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_VLANINS);
1709 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_TX_CSUM);
1710 *data++ = collect_sge_port_stats(adapter, pi, SGE_PSTAT_RX_CSUM_GOOD);
1711 *data++ = 0;
1712 *data++ = 0;
1713 *data++ = 0;
1714 *data++ = s->rx_cong_drops;
1715
1716 *data++ = s->num_toggled;
1717 *data++ = s->num_resets;
1718
1719 *data++ = s->link_faults;
1720 }
1721
1722 static inline void reg_block_dump(struct adapter *ap, void *buf,
1723 unsigned int start, unsigned int end)
1724 {
1725 u32 *p = buf + start;
1726
1727 for (; start <= end; start += sizeof(u32))
1728 *p++ = t3_read_reg(ap, start);
1729 }
1730
1731 static void get_regs(struct net_device *dev, struct ethtool_regs *regs,
1732 void *buf)
1733 {
1734 struct port_info *pi = netdev_priv(dev);
1735 struct adapter *ap = pi->adapter;
1736
1737 /*
1738 * Version scheme:
1739 * bits 0..9: chip version
1740 * bits 10..15: chip revision
1741 * bit 31: set for PCIe cards
1742 */
1743 regs->version = 3 | (ap->params.rev << 10) | (is_pcie(ap) << 31);
1744
1745 /*
1746 * We skip the MAC statistics registers because they are clear-on-read.
1747 * Also reading multi-register stats would need to synchronize with the
1748 * periodic mac stats accumulation. Hard to justify the complexity.
1749 */
1750 memset(buf, 0, T3_REGMAP_SIZE);
1751 reg_block_dump(ap, buf, 0, A_SG_RSPQ_CREDIT_RETURN);
1752 reg_block_dump(ap, buf, A_SG_HI_DRB_HI_THRSH, A_ULPRX_PBL_ULIMIT);
1753 reg_block_dump(ap, buf, A_ULPTX_CONFIG, A_MPS_INT_CAUSE);
1754 reg_block_dump(ap, buf, A_CPL_SWITCH_CNTRL, A_CPL_MAP_TBL_DATA);
1755 reg_block_dump(ap, buf, A_SMB_GLOBAL_TIME_CFG, A_XGM_SERDES_STAT3);
1756 reg_block_dump(ap, buf, A_XGM_SERDES_STATUS0,
1757 XGM_REG(A_XGM_SERDES_STAT3, 1));
1758 reg_block_dump(ap, buf, XGM_REG(A_XGM_SERDES_STATUS0, 1),
1759 XGM_REG(A_XGM_RX_SPI4_SOP_EOP_CNT, 1));
1760 }
1761
1762 static int restart_autoneg(struct net_device *dev)
1763 {
1764 struct port_info *p = netdev_priv(dev);
1765
1766 if (!netif_running(dev))
1767 return -EAGAIN;
1768 if (p->link_config.autoneg != AUTONEG_ENABLE)
1769 return -EINVAL;
1770 p->phy.ops->autoneg_restart(&p->phy);
1771 return 0;
1772 }
1773
1774 static int set_phys_id(struct net_device *dev,
1775 enum ethtool_phys_id_state state)
1776 {
1777 struct port_info *pi = netdev_priv(dev);
1778 struct adapter *adapter = pi->adapter;
1779
1780 switch (state) {
1781 case ETHTOOL_ID_ACTIVE:
1782 return 1; /* cycle on/off once per second */
1783
1784 case ETHTOOL_ID_OFF:
1785 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL, 0);
1786 break;
1787
1788 case ETHTOOL_ID_ON:
1789 case ETHTOOL_ID_INACTIVE:
1790 t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
1791 F_GPIO0_OUT_VAL);
1792 }
1793
1794 return 0;
1795 }
1796
1797 static int get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1798 {
1799 struct port_info *p = netdev_priv(dev);
1800
1801 cmd->supported = p->link_config.supported;
1802 cmd->advertising = p->link_config.advertising;
1803
1804 if (netif_carrier_ok(dev)) {
1805 ethtool_cmd_speed_set(cmd, p->link_config.speed);
1806 cmd->duplex = p->link_config.duplex;
1807 } else {
1808 ethtool_cmd_speed_set(cmd, -1);
1809 cmd->duplex = -1;
1810 }
1811
1812 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1813 cmd->phy_address = p->phy.mdio.prtad;
1814 cmd->transceiver = XCVR_EXTERNAL;
1815 cmd->autoneg = p->link_config.autoneg;
1816 cmd->maxtxpkt = 0;
1817 cmd->maxrxpkt = 0;
1818 return 0;
1819 }
1820
1821 static int speed_duplex_to_caps(int speed, int duplex)
1822 {
1823 int cap = 0;
1824
1825 switch (speed) {
1826 case SPEED_10:
1827 if (duplex == DUPLEX_FULL)
1828 cap = SUPPORTED_10baseT_Full;
1829 else
1830 cap = SUPPORTED_10baseT_Half;
1831 break;
1832 case SPEED_100:
1833 if (duplex == DUPLEX_FULL)
1834 cap = SUPPORTED_100baseT_Full;
1835 else
1836 cap = SUPPORTED_100baseT_Half;
1837 break;
1838 case SPEED_1000:
1839 if (duplex == DUPLEX_FULL)
1840 cap = SUPPORTED_1000baseT_Full;
1841 else
1842 cap = SUPPORTED_1000baseT_Half;
1843 break;
1844 case SPEED_10000:
1845 if (duplex == DUPLEX_FULL)
1846 cap = SUPPORTED_10000baseT_Full;
1847 }
1848 return cap;
1849 }
1850
1851 #define ADVERTISED_MASK (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
1852 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
1853 ADVERTISED_1000baseT_Half | ADVERTISED_1000baseT_Full | \
1854 ADVERTISED_10000baseT_Full)
1855
1856 static int set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1857 {
1858 struct port_info *p = netdev_priv(dev);
1859 struct link_config *lc = &p->link_config;
1860
1861 if (!(lc->supported & SUPPORTED_Autoneg)) {
1862 /*
1863 * PHY offers a single speed/duplex. See if that's what's
1864 * being requested.
1865 */
1866 if (cmd->autoneg == AUTONEG_DISABLE) {
1867 u32 speed = ethtool_cmd_speed(cmd);
1868 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1869 if (lc->supported & cap)
1870 return 0;
1871 }
1872 return -EINVAL;
1873 }
1874
1875 if (cmd->autoneg == AUTONEG_DISABLE) {
1876 u32 speed = ethtool_cmd_speed(cmd);
1877 int cap = speed_duplex_to_caps(speed, cmd->duplex);
1878
1879 if (!(lc->supported & cap) || (speed == SPEED_1000))
1880 return -EINVAL;
1881 lc->requested_speed = speed;
1882 lc->requested_duplex = cmd->duplex;
1883 lc->advertising = 0;
1884 } else {
1885 cmd->advertising &= ADVERTISED_MASK;
1886 cmd->advertising &= lc->supported;
1887 if (!cmd->advertising)
1888 return -EINVAL;
1889 lc->requested_speed = SPEED_INVALID;
1890 lc->requested_duplex = DUPLEX_INVALID;
1891 lc->advertising = cmd->advertising | ADVERTISED_Autoneg;
1892 }
1893 lc->autoneg = cmd->autoneg;
1894 if (netif_running(dev))
1895 t3_link_start(&p->phy, &p->mac, lc);
1896 return 0;
1897 }
1898
1899 static void get_pauseparam(struct net_device *dev,
1900 struct ethtool_pauseparam *epause)
1901 {
1902 struct port_info *p = netdev_priv(dev);
1903
1904 epause->autoneg = (p->link_config.requested_fc & PAUSE_AUTONEG) != 0;
1905 epause->rx_pause = (p->link_config.fc & PAUSE_RX) != 0;
1906 epause->tx_pause = (p->link_config.fc & PAUSE_TX) != 0;
1907 }
1908
1909 static int set_pauseparam(struct net_device *dev,
1910 struct ethtool_pauseparam *epause)
1911 {
1912 struct port_info *p = netdev_priv(dev);
1913 struct link_config *lc = &p->link_config;
1914
1915 if (epause->autoneg == AUTONEG_DISABLE)
1916 lc->requested_fc = 0;
1917 else if (lc->supported & SUPPORTED_Autoneg)
1918 lc->requested_fc = PAUSE_AUTONEG;
1919 else
1920 return -EINVAL;
1921
1922 if (epause->rx_pause)
1923 lc->requested_fc |= PAUSE_RX;
1924 if (epause->tx_pause)
1925 lc->requested_fc |= PAUSE_TX;
1926 if (lc->autoneg == AUTONEG_ENABLE) {
1927 if (netif_running(dev))
1928 t3_link_start(&p->phy, &p->mac, lc);
1929 } else {
1930 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
1931 if (netif_running(dev))
1932 t3_mac_set_speed_duplex_fc(&p->mac, -1, -1, lc->fc);
1933 }
1934 return 0;
1935 }
1936
1937 static void get_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1938 {
1939 struct port_info *pi = netdev_priv(dev);
1940 struct adapter *adapter = pi->adapter;
1941 const struct qset_params *q = &adapter->params.sge.qset[pi->first_qset];
1942
1943 e->rx_max_pending = MAX_RX_BUFFERS;
1944 e->rx_jumbo_max_pending = MAX_RX_JUMBO_BUFFERS;
1945 e->tx_max_pending = MAX_TXQ_ENTRIES;
1946
1947 e->rx_pending = q->fl_size;
1948 e->rx_mini_pending = q->rspq_size;
1949 e->rx_jumbo_pending = q->jumbo_size;
1950 e->tx_pending = q->txq_size[0];
1951 }
1952
1953 static int set_sge_param(struct net_device *dev, struct ethtool_ringparam *e)
1954 {
1955 struct port_info *pi = netdev_priv(dev);
1956 struct adapter *adapter = pi->adapter;
1957 struct qset_params *q;
1958 int i;
1959
1960 if (e->rx_pending > MAX_RX_BUFFERS ||
1961 e->rx_jumbo_pending > MAX_RX_JUMBO_BUFFERS ||
1962 e->tx_pending > MAX_TXQ_ENTRIES ||
1963 e->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1964 e->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1965 e->rx_pending < MIN_FL_ENTRIES ||
1966 e->rx_jumbo_pending < MIN_FL_ENTRIES ||
1967 e->tx_pending < adapter->params.nports * MIN_TXQ_ENTRIES)
1968 return -EINVAL;
1969
1970 if (adapter->flags & FULL_INIT_DONE)
1971 return -EBUSY;
1972
1973 q = &adapter->params.sge.qset[pi->first_qset];
1974 for (i = 0; i < pi->nqsets; ++i, ++q) {
1975 q->rspq_size = e->rx_mini_pending;
1976 q->fl_size = e->rx_pending;
1977 q->jumbo_size = e->rx_jumbo_pending;
1978 q->txq_size[0] = e->tx_pending;
1979 q->txq_size[1] = e->tx_pending;
1980 q->txq_size[2] = e->tx_pending;
1981 }
1982 return 0;
1983 }
1984
1985 static int set_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
1986 {
1987 struct port_info *pi = netdev_priv(dev);
1988 struct adapter *adapter = pi->adapter;
1989 struct qset_params *qsp;
1990 struct sge_qset *qs;
1991 int i;
1992
1993 if (c->rx_coalesce_usecs * 10 > M_NEWTIMER)
1994 return -EINVAL;
1995
1996 for (i = 0; i < pi->nqsets; i++) {
1997 qsp = &adapter->params.sge.qset[i];
1998 qs = &adapter->sge.qs[i];
1999 qsp->coalesce_usecs = c->rx_coalesce_usecs;
2000 t3_update_qset_coalesce(qs, qsp);
2001 }
2002
2003 return 0;
2004 }
2005
2006 static int get_coalesce(struct net_device *dev, struct ethtool_coalesce *c)
2007 {
2008 struct port_info *pi = netdev_priv(dev);
2009 struct adapter *adapter = pi->adapter;
2010 struct qset_params *q = adapter->params.sge.qset;
2011
2012 c->rx_coalesce_usecs = q->coalesce_usecs;
2013 return 0;
2014 }
2015
2016 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *e,
2017 u8 * data)
2018 {
2019 struct port_info *pi = netdev_priv(dev);
2020 struct adapter *adapter = pi->adapter;
2021 int i, err = 0;
2022
2023 u8 *buf = kmalloc(EEPROMSIZE, GFP_KERNEL);
2024 if (!buf)
2025 return -ENOMEM;
2026
2027 e->magic = EEPROM_MAGIC;
2028 for (i = e->offset & ~3; !err && i < e->offset + e->len; i += 4)
2029 err = t3_seeprom_read(adapter, i, (__le32 *) & buf[i]);
2030
2031 if (!err)
2032 memcpy(data, buf + e->offset, e->len);
2033 kfree(buf);
2034 return err;
2035 }
2036
2037 static int set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
2038 u8 * data)
2039 {
2040 struct port_info *pi = netdev_priv(dev);
2041 struct adapter *adapter = pi->adapter;
2042 u32 aligned_offset, aligned_len;
2043 __le32 *p;
2044 u8 *buf;
2045 int err;
2046
2047 if (eeprom->magic != EEPROM_MAGIC)
2048 return -EINVAL;
2049
2050 aligned_offset = eeprom->offset & ~3;
2051 aligned_len = (eeprom->len + (eeprom->offset & 3) + 3) & ~3;
2052
2053 if (aligned_offset != eeprom->offset || aligned_len != eeprom->len) {
2054 buf = kmalloc(aligned_len, GFP_KERNEL);
2055 if (!buf)
2056 return -ENOMEM;
2057 err = t3_seeprom_read(adapter, aligned_offset, (__le32 *) buf);
2058 if (!err && aligned_len > 4)
2059 err = t3_seeprom_read(adapter,
2060 aligned_offset + aligned_len - 4,
2061 (__le32 *) & buf[aligned_len - 4]);
2062 if (err)
2063 goto out;
2064 memcpy(buf + (eeprom->offset & 3), data, eeprom->len);
2065 } else
2066 buf = data;
2067
2068 err = t3_seeprom_wp(adapter, 0);
2069 if (err)
2070 goto out;
2071
2072 for (p = (__le32 *) buf; !err && aligned_len; aligned_len -= 4, p++) {
2073 err = t3_seeprom_write(adapter, aligned_offset, *p);
2074 aligned_offset += 4;
2075 }
2076
2077 if (!err)
2078 err = t3_seeprom_wp(adapter, 1);
2079 out:
2080 if (buf != data)
2081 kfree(buf);
2082 return err;
2083 }
2084
2085 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2086 {
2087 wol->supported = 0;
2088 wol->wolopts = 0;
2089 memset(&wol->sopass, 0, sizeof(wol->sopass));
2090 }
2091
2092 static const struct ethtool_ops cxgb_ethtool_ops = {
2093 .get_settings = get_settings,
2094 .set_settings = set_settings,
2095 .get_drvinfo = get_drvinfo,
2096 .get_msglevel = get_msglevel,
2097 .set_msglevel = set_msglevel,
2098 .get_ringparam = get_sge_param,
2099 .set_ringparam = set_sge_param,
2100 .get_coalesce = get_coalesce,
2101 .set_coalesce = set_coalesce,
2102 .get_eeprom_len = get_eeprom_len,
2103 .get_eeprom = get_eeprom,
2104 .set_eeprom = set_eeprom,
2105 .get_pauseparam = get_pauseparam,
2106 .set_pauseparam = set_pauseparam,
2107 .get_link = ethtool_op_get_link,
2108 .get_strings = get_strings,
2109 .set_phys_id = set_phys_id,
2110 .nway_reset = restart_autoneg,
2111 .get_sset_count = get_sset_count,
2112 .get_ethtool_stats = get_stats,
2113 .get_regs_len = get_regs_len,
2114 .get_regs = get_regs,
2115 .get_wol = get_wol,
2116 };
2117
2118 static int in_range(int val, int lo, int hi)
2119 {
2120 return val < 0 || (val <= hi && val >= lo);
2121 }
2122
2123 static int cxgb_extension_ioctl(struct net_device *dev, void __user *useraddr)
2124 {
2125 struct port_info *pi = netdev_priv(dev);
2126 struct adapter *adapter = pi->adapter;
2127 u32 cmd;
2128 int ret;
2129
2130 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2131 return -EFAULT;
2132
2133 switch (cmd) {
2134 case CHELSIO_SET_QSET_PARAMS:{
2135 int i;
2136 struct qset_params *q;
2137 struct ch_qset_params t;
2138 int q1 = pi->first_qset;
2139 int nqsets = pi->nqsets;
2140
2141 if (!capable(CAP_NET_ADMIN))
2142 return -EPERM;
2143 if (copy_from_user(&t, useraddr, sizeof(t)))
2144 return -EFAULT;
2145 if (t.qset_idx >= SGE_QSETS)
2146 return -EINVAL;
2147 if (!in_range(t.intr_lat, 0, M_NEWTIMER) ||
2148 !in_range(t.cong_thres, 0, 255) ||
2149 !in_range(t.txq_size[0], MIN_TXQ_ENTRIES,
2150 MAX_TXQ_ENTRIES) ||
2151 !in_range(t.txq_size[1], MIN_TXQ_ENTRIES,
2152 MAX_TXQ_ENTRIES) ||
2153 !in_range(t.txq_size[2], MIN_CTRL_TXQ_ENTRIES,
2154 MAX_CTRL_TXQ_ENTRIES) ||
2155 !in_range(t.fl_size[0], MIN_FL_ENTRIES,
2156 MAX_RX_BUFFERS) ||
2157 !in_range(t.fl_size[1], MIN_FL_ENTRIES,
2158 MAX_RX_JUMBO_BUFFERS) ||
2159 !in_range(t.rspq_size, MIN_RSPQ_ENTRIES,
2160 MAX_RSPQ_ENTRIES))
2161 return -EINVAL;
2162
2163 if ((adapter->flags & FULL_INIT_DONE) &&
2164 (t.rspq_size >= 0 || t.fl_size[0] >= 0 ||
2165 t.fl_size[1] >= 0 || t.txq_size[0] >= 0 ||
2166 t.txq_size[1] >= 0 || t.txq_size[2] >= 0 ||
2167 t.polling >= 0 || t.cong_thres >= 0))
2168 return -EBUSY;
2169
2170 /* Allow setting of any available qset when offload enabled */
2171 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2172 q1 = 0;
2173 for_each_port(adapter, i) {
2174 pi = adap2pinfo(adapter, i);
2175 nqsets += pi->first_qset + pi->nqsets;
2176 }
2177 }
2178
2179 if (t.qset_idx < q1)
2180 return -EINVAL;
2181 if (t.qset_idx > q1 + nqsets - 1)
2182 return -EINVAL;
2183
2184 q = &adapter->params.sge.qset[t.qset_idx];
2185
2186 if (t.rspq_size >= 0)
2187 q->rspq_size = t.rspq_size;
2188 if (t.fl_size[0] >= 0)
2189 q->fl_size = t.fl_size[0];
2190 if (t.fl_size[1] >= 0)
2191 q->jumbo_size = t.fl_size[1];
2192 if (t.txq_size[0] >= 0)
2193 q->txq_size[0] = t.txq_size[0];
2194 if (t.txq_size[1] >= 0)
2195 q->txq_size[1] = t.txq_size[1];
2196 if (t.txq_size[2] >= 0)
2197 q->txq_size[2] = t.txq_size[2];
2198 if (t.cong_thres >= 0)
2199 q->cong_thres = t.cong_thres;
2200 if (t.intr_lat >= 0) {
2201 struct sge_qset *qs =
2202 &adapter->sge.qs[t.qset_idx];
2203
2204 q->coalesce_usecs = t.intr_lat;
2205 t3_update_qset_coalesce(qs, q);
2206 }
2207 if (t.polling >= 0) {
2208 if (adapter->flags & USING_MSIX)
2209 q->polling = t.polling;
2210 else {
2211 /* No polling with INTx for T3A */
2212 if (adapter->params.rev == 0 &&
2213 !(adapter->flags & USING_MSI))
2214 t.polling = 0;
2215
2216 for (i = 0; i < SGE_QSETS; i++) {
2217 q = &adapter->params.sge.
2218 qset[i];
2219 q->polling = t.polling;
2220 }
2221 }
2222 }
2223
2224 if (t.lro >= 0) {
2225 if (t.lro)
2226 dev->wanted_features |= NETIF_F_GRO;
2227 else
2228 dev->wanted_features &= ~NETIF_F_GRO;
2229 netdev_update_features(dev);
2230 }
2231
2232 break;
2233 }
2234 case CHELSIO_GET_QSET_PARAMS:{
2235 struct qset_params *q;
2236 struct ch_qset_params t;
2237 int q1 = pi->first_qset;
2238 int nqsets = pi->nqsets;
2239 int i;
2240
2241 if (copy_from_user(&t, useraddr, sizeof(t)))
2242 return -EFAULT;
2243
2244 /* Display qsets for all ports when offload enabled */
2245 if (test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2246 q1 = 0;
2247 for_each_port(adapter, i) {
2248 pi = adap2pinfo(adapter, i);
2249 nqsets = pi->first_qset + pi->nqsets;
2250 }
2251 }
2252
2253 if (t.qset_idx >= nqsets)
2254 return -EINVAL;
2255
2256 q = &adapter->params.sge.qset[q1 + t.qset_idx];
2257 t.rspq_size = q->rspq_size;
2258 t.txq_size[0] = q->txq_size[0];
2259 t.txq_size[1] = q->txq_size[1];
2260 t.txq_size[2] = q->txq_size[2];
2261 t.fl_size[0] = q->fl_size;
2262 t.fl_size[1] = q->jumbo_size;
2263 t.polling = q->polling;
2264 t.lro = !!(dev->features & NETIF_F_GRO);
2265 t.intr_lat = q->coalesce_usecs;
2266 t.cong_thres = q->cong_thres;
2267 t.qnum = q1;
2268
2269 if (adapter->flags & USING_MSIX)
2270 t.vector = adapter->msix_info[q1 + t.qset_idx + 1].vec;
2271 else
2272 t.vector = adapter->pdev->irq;
2273
2274 if (copy_to_user(useraddr, &t, sizeof(t)))
2275 return -EFAULT;
2276 break;
2277 }
2278 case CHELSIO_SET_QSET_NUM:{
2279 struct ch_reg edata;
2280 unsigned int i, first_qset = 0, other_qsets = 0;
2281
2282 if (!capable(CAP_NET_ADMIN))
2283 return -EPERM;
2284 if (adapter->flags & FULL_INIT_DONE)
2285 return -EBUSY;
2286 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2287 return -EFAULT;
2288 if (edata.val < 1 ||
2289 (edata.val > 1 && !(adapter->flags & USING_MSIX)))
2290 return -EINVAL;
2291
2292 for_each_port(adapter, i)
2293 if (adapter->port[i] && adapter->port[i] != dev)
2294 other_qsets += adap2pinfo(adapter, i)->nqsets;
2295
2296 if (edata.val + other_qsets > SGE_QSETS)
2297 return -EINVAL;
2298
2299 pi->nqsets = edata.val;
2300
2301 for_each_port(adapter, i)
2302 if (adapter->port[i]) {
2303 pi = adap2pinfo(adapter, i);
2304 pi->first_qset = first_qset;
2305 first_qset += pi->nqsets;
2306 }
2307 break;
2308 }
2309 case CHELSIO_GET_QSET_NUM:{
2310 struct ch_reg edata;
2311
2312 memset(&edata, 0, sizeof(struct ch_reg));
2313
2314 edata.cmd = CHELSIO_GET_QSET_NUM;
2315 edata.val = pi->nqsets;
2316 if (copy_to_user(useraddr, &edata, sizeof(edata)))
2317 return -EFAULT;
2318 break;
2319 }
2320 case CHELSIO_LOAD_FW:{
2321 u8 *fw_data;
2322 struct ch_mem_range t;
2323
2324 if (!capable(CAP_SYS_RAWIO))
2325 return -EPERM;
2326 if (copy_from_user(&t, useraddr, sizeof(t)))
2327 return -EFAULT;
2328 /* Check t.len sanity ? */
2329 fw_data = memdup_user(useraddr + sizeof(t), t.len);
2330 if (IS_ERR(fw_data))
2331 return PTR_ERR(fw_data);
2332
2333 ret = t3_load_fw(adapter, fw_data, t.len);
2334 kfree(fw_data);
2335 if (ret)
2336 return ret;
2337 break;
2338 }
2339 case CHELSIO_SETMTUTAB:{
2340 struct ch_mtus m;
2341 int i;
2342
2343 if (!is_offload(adapter))
2344 return -EOPNOTSUPP;
2345 if (!capable(CAP_NET_ADMIN))
2346 return -EPERM;
2347 if (offload_running(adapter))
2348 return -EBUSY;
2349 if (copy_from_user(&m, useraddr, sizeof(m)))
2350 return -EFAULT;
2351 if (m.nmtus != NMTUS)
2352 return -EINVAL;
2353 if (m.mtus[0] < 81) /* accommodate SACK */
2354 return -EINVAL;
2355
2356 /* MTUs must be in ascending order */
2357 for (i = 1; i < NMTUS; ++i)
2358 if (m.mtus[i] < m.mtus[i - 1])
2359 return -EINVAL;
2360
2361 memcpy(adapter->params.mtus, m.mtus,
2362 sizeof(adapter->params.mtus));
2363 break;
2364 }
2365 case CHELSIO_GET_PM:{
2366 struct tp_params *p = &adapter->params.tp;
2367 struct ch_pm m = {.cmd = CHELSIO_GET_PM };
2368
2369 if (!is_offload(adapter))
2370 return -EOPNOTSUPP;
2371 m.tx_pg_sz = p->tx_pg_size;
2372 m.tx_num_pg = p->tx_num_pgs;
2373 m.rx_pg_sz = p->rx_pg_size;
2374 m.rx_num_pg = p->rx_num_pgs;
2375 m.pm_total = p->pmtx_size + p->chan_rx_size * p->nchan;
2376 if (copy_to_user(useraddr, &m, sizeof(m)))
2377 return -EFAULT;
2378 break;
2379 }
2380 case CHELSIO_SET_PM:{
2381 struct ch_pm m;
2382 struct tp_params *p = &adapter->params.tp;
2383
2384 if (!is_offload(adapter))
2385 return -EOPNOTSUPP;
2386 if (!capable(CAP_NET_ADMIN))
2387 return -EPERM;
2388 if (adapter->flags & FULL_INIT_DONE)
2389 return -EBUSY;
2390 if (copy_from_user(&m, useraddr, sizeof(m)))
2391 return -EFAULT;
2392 if (!is_power_of_2(m.rx_pg_sz) ||
2393 !is_power_of_2(m.tx_pg_sz))
2394 return -EINVAL; /* not power of 2 */
2395 if (!(m.rx_pg_sz & 0x14000))
2396 return -EINVAL; /* not 16KB or 64KB */
2397 if (!(m.tx_pg_sz & 0x1554000))
2398 return -EINVAL;
2399 if (m.tx_num_pg == -1)
2400 m.tx_num_pg = p->tx_num_pgs;
2401 if (m.rx_num_pg == -1)
2402 m.rx_num_pg = p->rx_num_pgs;
2403 if (m.tx_num_pg % 24 || m.rx_num_pg % 24)
2404 return -EINVAL;
2405 if (m.rx_num_pg * m.rx_pg_sz > p->chan_rx_size ||
2406 m.tx_num_pg * m.tx_pg_sz > p->chan_tx_size)
2407 return -EINVAL;
2408 p->rx_pg_size = m.rx_pg_sz;
2409 p->tx_pg_size = m.tx_pg_sz;
2410 p->rx_num_pgs = m.rx_num_pg;
2411 p->tx_num_pgs = m.tx_num_pg;
2412 break;
2413 }
2414 case CHELSIO_GET_MEM:{
2415 struct ch_mem_range t;
2416 struct mc7 *mem;
2417 u64 buf[32];
2418
2419 if (!is_offload(adapter))
2420 return -EOPNOTSUPP;
2421 if (!(adapter->flags & FULL_INIT_DONE))
2422 return -EIO; /* need the memory controllers */
2423 if (copy_from_user(&t, useraddr, sizeof(t)))
2424 return -EFAULT;
2425 if ((t.addr & 7) || (t.len & 7))
2426 return -EINVAL;
2427 if (t.mem_id == MEM_CM)
2428 mem = &adapter->cm;
2429 else if (t.mem_id == MEM_PMRX)
2430 mem = &adapter->pmrx;
2431 else if (t.mem_id == MEM_PMTX)
2432 mem = &adapter->pmtx;
2433 else
2434 return -EINVAL;
2435
2436 /*
2437 * Version scheme:
2438 * bits 0..9: chip version
2439 * bits 10..15: chip revision
2440 */
2441 t.version = 3 | (adapter->params.rev << 10);
2442 if (copy_to_user(useraddr, &t, sizeof(t)))
2443 return -EFAULT;
2444
2445 /*
2446 * Read 256 bytes at a time as len can be large and we don't
2447 * want to use huge intermediate buffers.
2448 */
2449 useraddr += sizeof(t); /* advance to start of buffer */
2450 while (t.len) {
2451 unsigned int chunk =
2452 min_t(unsigned int, t.len, sizeof(buf));
2453
2454 ret =
2455 t3_mc7_bd_read(mem, t.addr / 8, chunk / 8,
2456 buf);
2457 if (ret)
2458 return ret;
2459 if (copy_to_user(useraddr, buf, chunk))
2460 return -EFAULT;
2461 useraddr += chunk;
2462 t.addr += chunk;
2463 t.len -= chunk;
2464 }
2465 break;
2466 }
2467 case CHELSIO_SET_TRACE_FILTER:{
2468 struct ch_trace t;
2469 const struct trace_params *tp;
2470
2471 if (!capable(CAP_NET_ADMIN))
2472 return -EPERM;
2473 if (!offload_running(adapter))
2474 return -EAGAIN;
2475 if (copy_from_user(&t, useraddr, sizeof(t)))
2476 return -EFAULT;
2477
2478 tp = (const struct trace_params *)&t.sip;
2479 if (t.config_tx)
2480 t3_config_trace_filter(adapter, tp, 0,
2481 t.invert_match,
2482 t.trace_tx);
2483 if (t.config_rx)
2484 t3_config_trace_filter(adapter, tp, 1,
2485 t.invert_match,
2486 t.trace_rx);
2487 break;
2488 }
2489 default:
2490 return -EOPNOTSUPP;
2491 }
2492 return 0;
2493 }
2494
2495 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2496 {
2497 struct mii_ioctl_data *data = if_mii(req);
2498 struct port_info *pi = netdev_priv(dev);
2499 struct adapter *adapter = pi->adapter;
2500
2501 switch (cmd) {
2502 case SIOCGMIIREG:
2503 case SIOCSMIIREG:
2504 /* Convert phy_id from older PRTAD/DEVAD format */
2505 if (is_10G(adapter) &&
2506 !mdio_phy_id_is_c45(data->phy_id) &&
2507 (data->phy_id & 0x1f00) &&
2508 !(data->phy_id & 0xe0e0))
2509 data->phy_id = mdio_phy_id_c45(data->phy_id >> 8,
2510 data->phy_id & 0x1f);
2511 /* FALLTHRU */
2512 case SIOCGMIIPHY:
2513 return mdio_mii_ioctl(&pi->phy.mdio, data, cmd);
2514 case SIOCCHIOCTL:
2515 return cxgb_extension_ioctl(dev, req->ifr_data);
2516 default:
2517 return -EOPNOTSUPP;
2518 }
2519 }
2520
2521 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2522 {
2523 struct port_info *pi = netdev_priv(dev);
2524 struct adapter *adapter = pi->adapter;
2525 int ret;
2526
2527 if (new_mtu < 81) /* accommodate SACK */
2528 return -EINVAL;
2529 if ((ret = t3_mac_set_mtu(&pi->mac, new_mtu)))
2530 return ret;
2531 dev->mtu = new_mtu;
2532 init_port_mtus(adapter);
2533 if (adapter->params.rev == 0 && offload_running(adapter))
2534 t3_load_mtus(adapter, adapter->params.mtus,
2535 adapter->params.a_wnd, adapter->params.b_wnd,
2536 adapter->port[0]->mtu);
2537 return 0;
2538 }
2539
2540 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2541 {
2542 struct port_info *pi = netdev_priv(dev);
2543 struct adapter *adapter = pi->adapter;
2544 struct sockaddr *addr = p;
2545
2546 if (!is_valid_ether_addr(addr->sa_data))
2547 return -EADDRNOTAVAIL;
2548
2549 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2550 t3_mac_set_address(&pi->mac, LAN_MAC_IDX, dev->dev_addr);
2551 if (offload_running(adapter))
2552 write_smt_entry(adapter, pi->port_id);
2553 return 0;
2554 }
2555
2556 static netdev_features_t cxgb_fix_features(struct net_device *dev,
2557 netdev_features_t features)
2558 {
2559 /*
2560 * Since there is no support for separate rx/tx vlan accel
2561 * enable/disable make sure tx flag is always in same state as rx.
2562 */
2563 if (features & NETIF_F_HW_VLAN_RX)
2564 features |= NETIF_F_HW_VLAN_TX;
2565 else
2566 features &= ~NETIF_F_HW_VLAN_TX;
2567
2568 return features;
2569 }
2570
2571 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
2572 {
2573 netdev_features_t changed = dev->features ^ features;
2574
2575 if (changed & NETIF_F_HW_VLAN_RX)
2576 cxgb_vlan_mode(dev, features);
2577
2578 return 0;
2579 }
2580
2581 #ifdef CONFIG_NET_POLL_CONTROLLER
2582 static void cxgb_netpoll(struct net_device *dev)
2583 {
2584 struct port_info *pi = netdev_priv(dev);
2585 struct adapter *adapter = pi->adapter;
2586 int qidx;
2587
2588 for (qidx = pi->first_qset; qidx < pi->first_qset + pi->nqsets; qidx++) {
2589 struct sge_qset *qs = &adapter->sge.qs[qidx];
2590 void *source;
2591
2592 if (adapter->flags & USING_MSIX)
2593 source = qs;
2594 else
2595 source = adapter;
2596
2597 t3_intr_handler(adapter, qs->rspq.polling) (0, source);
2598 }
2599 }
2600 #endif
2601
2602 /*
2603 * Periodic accumulation of MAC statistics.
2604 */
2605 static void mac_stats_update(struct adapter *adapter)
2606 {
2607 int i;
2608
2609 for_each_port(adapter, i) {
2610 struct net_device *dev = adapter->port[i];
2611 struct port_info *p = netdev_priv(dev);
2612
2613 if (netif_running(dev)) {
2614 spin_lock(&adapter->stats_lock);
2615 t3_mac_update_stats(&p->mac);
2616 spin_unlock(&adapter->stats_lock);
2617 }
2618 }
2619 }
2620
2621 static void check_link_status(struct adapter *adapter)
2622 {
2623 int i;
2624
2625 for_each_port(adapter, i) {
2626 struct net_device *dev = adapter->port[i];
2627 struct port_info *p = netdev_priv(dev);
2628 int link_fault;
2629
2630 spin_lock_irq(&adapter->work_lock);
2631 link_fault = p->link_fault;
2632 spin_unlock_irq(&adapter->work_lock);
2633
2634 if (link_fault) {
2635 t3_link_fault(adapter, i);
2636 continue;
2637 }
2638
2639 if (!(p->phy.caps & SUPPORTED_IRQ) && netif_running(dev)) {
2640 t3_xgm_intr_disable(adapter, i);
2641 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2642
2643 t3_link_changed(adapter, i);
2644 t3_xgm_intr_enable(adapter, i);
2645 }
2646 }
2647 }
2648
2649 static void check_t3b2_mac(struct adapter *adapter)
2650 {
2651 int i;
2652
2653 if (!rtnl_trylock()) /* synchronize with ifdown */
2654 return;
2655
2656 for_each_port(adapter, i) {
2657 struct net_device *dev = adapter->port[i];
2658 struct port_info *p = netdev_priv(dev);
2659 int status;
2660
2661 if (!netif_running(dev))
2662 continue;
2663
2664 status = 0;
2665 if (netif_running(dev) && netif_carrier_ok(dev))
2666 status = t3b2_mac_watchdog_task(&p->mac);
2667 if (status == 1)
2668 p->mac.stats.num_toggled++;
2669 else if (status == 2) {
2670 struct cmac *mac = &p->mac;
2671
2672 t3_mac_set_mtu(mac, dev->mtu);
2673 t3_mac_set_address(mac, LAN_MAC_IDX, dev->dev_addr);
2674 cxgb_set_rxmode(dev);
2675 t3_link_start(&p->phy, mac, &p->link_config);
2676 t3_mac_enable(mac, MAC_DIRECTION_RX | MAC_DIRECTION_TX);
2677 t3_port_intr_enable(adapter, p->port_id);
2678 p->mac.stats.num_resets++;
2679 }
2680 }
2681 rtnl_unlock();
2682 }
2683
2684
2685 static void t3_adap_check_task(struct work_struct *work)
2686 {
2687 struct adapter *adapter = container_of(work, struct adapter,
2688 adap_check_task.work);
2689 const struct adapter_params *p = &adapter->params;
2690 int port;
2691 unsigned int v, status, reset;
2692
2693 adapter->check_task_cnt++;
2694
2695 check_link_status(adapter);
2696
2697 /* Accumulate MAC stats if needed */
2698 if (!p->linkpoll_period ||
2699 (adapter->check_task_cnt * p->linkpoll_period) / 10 >=
2700 p->stats_update_period) {
2701 mac_stats_update(adapter);
2702 adapter->check_task_cnt = 0;
2703 }
2704
2705 if (p->rev == T3_REV_B2)
2706 check_t3b2_mac(adapter);
2707
2708 /*
2709 * Scan the XGMAC's to check for various conditions which we want to
2710 * monitor in a periodic polling manner rather than via an interrupt
2711 * condition. This is used for conditions which would otherwise flood
2712 * the system with interrupts and we only really need to know that the
2713 * conditions are "happening" ... For each condition we count the
2714 * detection of the condition and reset it for the next polling loop.
2715 */
2716 for_each_port(adapter, port) {
2717 struct cmac *mac = &adap2pinfo(adapter, port)->mac;
2718 u32 cause;
2719
2720 cause = t3_read_reg(adapter, A_XGM_INT_CAUSE + mac->offset);
2721 reset = 0;
2722 if (cause & F_RXFIFO_OVERFLOW) {
2723 mac->stats.rx_fifo_ovfl++;
2724 reset |= F_RXFIFO_OVERFLOW;
2725 }
2726
2727 t3_write_reg(adapter, A_XGM_INT_CAUSE + mac->offset, reset);
2728 }
2729
2730 /*
2731 * We do the same as above for FL_EMPTY interrupts.
2732 */
2733 status = t3_read_reg(adapter, A_SG_INT_CAUSE);
2734 reset = 0;
2735
2736 if (status & F_FLEMPTY) {
2737 struct sge_qset *qs = &adapter->sge.qs[0];
2738 int i = 0;
2739
2740 reset |= F_FLEMPTY;
2741
2742 v = (t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS) >> S_FL0EMPTY) &
2743 0xffff;
2744
2745 while (v) {
2746 qs->fl[i].empty += (v & 1);
2747 if (i)
2748 qs++;
2749 i ^= 1;
2750 v >>= 1;
2751 }
2752 }
2753
2754 t3_write_reg(adapter, A_SG_INT_CAUSE, reset);
2755
2756 /* Schedule the next check update if any port is active. */
2757 spin_lock_irq(&adapter->work_lock);
2758 if (adapter->open_device_map & PORT_MASK)
2759 schedule_chk_task(adapter);
2760 spin_unlock_irq(&adapter->work_lock);
2761 }
2762
2763 static void db_full_task(struct work_struct *work)
2764 {
2765 struct adapter *adapter = container_of(work, struct adapter,
2766 db_full_task);
2767
2768 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_FULL, 0);
2769 }
2770
2771 static void db_empty_task(struct work_struct *work)
2772 {
2773 struct adapter *adapter = container_of(work, struct adapter,
2774 db_empty_task);
2775
2776 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_EMPTY, 0);
2777 }
2778
2779 static void db_drop_task(struct work_struct *work)
2780 {
2781 struct adapter *adapter = container_of(work, struct adapter,
2782 db_drop_task);
2783 unsigned long delay = 1000;
2784 unsigned short r;
2785
2786 cxgb3_event_notify(&adapter->tdev, OFFLOAD_DB_DROP, 0);
2787
2788 /*
2789 * Sleep a while before ringing the driver qset dbs.
2790 * The delay is between 1000-2023 usecs.
2791 */
2792 get_random_bytes(&r, 2);
2793 delay += r & 1023;
2794 set_current_state(TASK_UNINTERRUPTIBLE);
2795 schedule_timeout(usecs_to_jiffies(delay));
2796 ring_dbs(adapter);
2797 }
2798
2799 /*
2800 * Processes external (PHY) interrupts in process context.
2801 */
2802 static void ext_intr_task(struct work_struct *work)
2803 {
2804 struct adapter *adapter = container_of(work, struct adapter,
2805 ext_intr_handler_task);
2806 int i;
2807
2808 /* Disable link fault interrupts */
2809 for_each_port(adapter, i) {
2810 struct net_device *dev = adapter->port[i];
2811 struct port_info *p = netdev_priv(dev);
2812
2813 t3_xgm_intr_disable(adapter, i);
2814 t3_read_reg(adapter, A_XGM_INT_STATUS + p->mac.offset);
2815 }
2816
2817 /* Re-enable link fault interrupts */
2818 t3_phy_intr_handler(adapter);
2819
2820 for_each_port(adapter, i)
2821 t3_xgm_intr_enable(adapter, i);
2822
2823 /* Now reenable external interrupts */
2824 spin_lock_irq(&adapter->work_lock);
2825 if (adapter->slow_intr_mask) {
2826 adapter->slow_intr_mask |= F_T3DBG;
2827 t3_write_reg(adapter, A_PL_INT_CAUSE0, F_T3DBG);
2828 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2829 adapter->slow_intr_mask);
2830 }
2831 spin_unlock_irq(&adapter->work_lock);
2832 }
2833
2834 /*
2835 * Interrupt-context handler for external (PHY) interrupts.
2836 */
2837 void t3_os_ext_intr_handler(struct adapter *adapter)
2838 {
2839 /*
2840 * Schedule a task to handle external interrupts as they may be slow
2841 * and we use a mutex to protect MDIO registers. We disable PHY
2842 * interrupts in the meantime and let the task reenable them when
2843 * it's done.
2844 */
2845 spin_lock(&adapter->work_lock);
2846 if (adapter->slow_intr_mask) {
2847 adapter->slow_intr_mask &= ~F_T3DBG;
2848 t3_write_reg(adapter, A_PL_INT_ENABLE0,
2849 adapter->slow_intr_mask);
2850 queue_work(cxgb3_wq, &adapter->ext_intr_handler_task);
2851 }
2852 spin_unlock(&adapter->work_lock);
2853 }
2854
2855 void t3_os_link_fault_handler(struct adapter *adapter, int port_id)
2856 {
2857 struct net_device *netdev = adapter->port[port_id];
2858 struct port_info *pi = netdev_priv(netdev);
2859
2860 spin_lock(&adapter->work_lock);
2861 pi->link_fault = 1;
2862 spin_unlock(&adapter->work_lock);
2863 }
2864
2865 static int t3_adapter_error(struct adapter *adapter, int reset, int on_wq)
2866 {
2867 int i, ret = 0;
2868
2869 if (is_offload(adapter) &&
2870 test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map)) {
2871 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_DOWN, 0);
2872 offload_close(&adapter->tdev);
2873 }
2874
2875 /* Stop all ports */
2876 for_each_port(adapter, i) {
2877 struct net_device *netdev = adapter->port[i];
2878
2879 if (netif_running(netdev))
2880 __cxgb_close(netdev, on_wq);
2881 }
2882
2883 /* Stop SGE timers */
2884 t3_stop_sge_timers(adapter);
2885
2886 adapter->flags &= ~FULL_INIT_DONE;
2887
2888 if (reset)
2889 ret = t3_reset_adapter(adapter);
2890
2891 pci_disable_device(adapter->pdev);
2892
2893 return ret;
2894 }
2895
2896 static int t3_reenable_adapter(struct adapter *adapter)
2897 {
2898 if (pci_enable_device(adapter->pdev)) {
2899 dev_err(&adapter->pdev->dev,
2900 "Cannot re-enable PCI device after reset.\n");
2901 goto err;
2902 }
2903 pci_set_master(adapter->pdev);
2904 pci_restore_state(adapter->pdev);
2905 pci_save_state(adapter->pdev);
2906
2907 /* Free sge resources */
2908 t3_free_sge_resources(adapter);
2909
2910 if (t3_replay_prep_adapter(adapter))
2911 goto err;
2912
2913 return 0;
2914 err:
2915 return -1;
2916 }
2917
2918 static void t3_resume_ports(struct adapter *adapter)
2919 {
2920 int i;
2921
2922 /* Restart the ports */
2923 for_each_port(adapter, i) {
2924 struct net_device *netdev = adapter->port[i];
2925
2926 if (netif_running(netdev)) {
2927 if (cxgb_open(netdev)) {
2928 dev_err(&adapter->pdev->dev,
2929 "can't bring device back up"
2930 " after reset\n");
2931 continue;
2932 }
2933 }
2934 }
2935
2936 if (is_offload(adapter) && !ofld_disable)
2937 cxgb3_event_notify(&adapter->tdev, OFFLOAD_STATUS_UP, 0);
2938 }
2939
2940 /*
2941 * processes a fatal error.
2942 * Bring the ports down, reset the chip, bring the ports back up.
2943 */
2944 static void fatal_error_task(struct work_struct *work)
2945 {
2946 struct adapter *adapter = container_of(work, struct adapter,
2947 fatal_error_handler_task);
2948 int err = 0;
2949
2950 rtnl_lock();
2951 err = t3_adapter_error(adapter, 1, 1);
2952 if (!err)
2953 err = t3_reenable_adapter(adapter);
2954 if (!err)
2955 t3_resume_ports(adapter);
2956
2957 CH_ALERT(adapter, "adapter reset %s\n", err ? "failed" : "succeeded");
2958 rtnl_unlock();
2959 }
2960
2961 void t3_fatal_err(struct adapter *adapter)
2962 {
2963 unsigned int fw_status[4];
2964
2965 if (adapter->flags & FULL_INIT_DONE) {
2966 t3_sge_stop(adapter);
2967 t3_write_reg(adapter, A_XGM_TX_CTRL, 0);
2968 t3_write_reg(adapter, A_XGM_RX_CTRL, 0);
2969 t3_write_reg(adapter, XGM_REG(A_XGM_TX_CTRL, 1), 0);
2970 t3_write_reg(adapter, XGM_REG(A_XGM_RX_CTRL, 1), 0);
2971
2972 spin_lock(&adapter->work_lock);
2973 t3_intr_disable(adapter);
2974 queue_work(cxgb3_wq, &adapter->fatal_error_handler_task);
2975 spin_unlock(&adapter->work_lock);
2976 }
2977 CH_ALERT(adapter, "encountered fatal error, operation suspended\n");
2978 if (!t3_cim_ctl_blk_read(adapter, 0xa0, 4, fw_status))
2979 CH_ALERT(adapter, "FW status: 0x%x, 0x%x, 0x%x, 0x%x\n",
2980 fw_status[0], fw_status[1],
2981 fw_status[2], fw_status[3]);
2982 }
2983
2984 /**
2985 * t3_io_error_detected - called when PCI error is detected
2986 * @pdev: Pointer to PCI device
2987 * @state: The current pci connection state
2988 *
2989 * This function is called after a PCI bus error affecting
2990 * this device has been detected.
2991 */
2992 static pci_ers_result_t t3_io_error_detected(struct pci_dev *pdev,
2993 pci_channel_state_t state)
2994 {
2995 struct adapter *adapter = pci_get_drvdata(pdev);
2996
2997 if (state == pci_channel_io_perm_failure)
2998 return PCI_ERS_RESULT_DISCONNECT;
2999
3000 t3_adapter_error(adapter, 0, 0);
3001
3002 /* Request a slot reset. */
3003 return PCI_ERS_RESULT_NEED_RESET;
3004 }
3005
3006 /**
3007 * t3_io_slot_reset - called after the pci bus has been reset.
3008 * @pdev: Pointer to PCI device
3009 *
3010 * Restart the card from scratch, as if from a cold-boot.
3011 */
3012 static pci_ers_result_t t3_io_slot_reset(struct pci_dev *pdev)
3013 {
3014 struct adapter *adapter = pci_get_drvdata(pdev);
3015
3016 if (!t3_reenable_adapter(adapter))
3017 return PCI_ERS_RESULT_RECOVERED;
3018
3019 return PCI_ERS_RESULT_DISCONNECT;
3020 }
3021
3022 /**
3023 * t3_io_resume - called when traffic can start flowing again.
3024 * @pdev: Pointer to PCI device
3025 *
3026 * This callback is called when the error recovery driver tells us that
3027 * its OK to resume normal operation.
3028 */
3029 static void t3_io_resume(struct pci_dev *pdev)
3030 {
3031 struct adapter *adapter = pci_get_drvdata(pdev);
3032
3033 CH_ALERT(adapter, "adapter recovering, PEX ERR 0x%x\n",
3034 t3_read_reg(adapter, A_PCIE_PEX_ERR));
3035
3036 t3_resume_ports(adapter);
3037 }
3038
3039 static struct pci_error_handlers t3_err_handler = {
3040 .error_detected = t3_io_error_detected,
3041 .slot_reset = t3_io_slot_reset,
3042 .resume = t3_io_resume,
3043 };
3044
3045 /*
3046 * Set the number of qsets based on the number of CPUs and the number of ports,
3047 * not to exceed the number of available qsets, assuming there are enough qsets
3048 * per port in HW.
3049 */
3050 static void set_nqsets(struct adapter *adap)
3051 {
3052 int i, j = 0;
3053 int num_cpus = num_online_cpus();
3054 int hwports = adap->params.nports;
3055 int nqsets = adap->msix_nvectors - 1;
3056
3057 if (adap->params.rev > 0 && adap->flags & USING_MSIX) {
3058 if (hwports == 2 &&
3059 (hwports * nqsets > SGE_QSETS ||
3060 num_cpus >= nqsets / hwports))
3061 nqsets /= hwports;
3062 if (nqsets > num_cpus)
3063 nqsets = num_cpus;
3064 if (nqsets < 1 || hwports == 4)
3065 nqsets = 1;
3066 } else
3067 nqsets = 1;
3068
3069 for_each_port(adap, i) {
3070 struct port_info *pi = adap2pinfo(adap, i);
3071
3072 pi->first_qset = j;
3073 pi->nqsets = nqsets;
3074 j = pi->first_qset + nqsets;
3075
3076 dev_info(&adap->pdev->dev,
3077 "Port %d using %d queue sets.\n", i, nqsets);
3078 }
3079 }
3080
3081 static int __devinit cxgb_enable_msix(struct adapter *adap)
3082 {
3083 struct msix_entry entries[SGE_QSETS + 1];
3084 int vectors;
3085 int i, err;
3086
3087 vectors = ARRAY_SIZE(entries);
3088 for (i = 0; i < vectors; ++i)
3089 entries[i].entry = i;
3090
3091 while ((err = pci_enable_msix(adap->pdev, entries, vectors)) > 0)
3092 vectors = err;
3093
3094 if (err < 0)
3095 pci_disable_msix(adap->pdev);
3096
3097 if (!err && vectors < (adap->params.nports + 1)) {
3098 pci_disable_msix(adap->pdev);
3099 err = -1;
3100 }
3101
3102 if (!err) {
3103 for (i = 0; i < vectors; ++i)
3104 adap->msix_info[i].vec = entries[i].vector;
3105 adap->msix_nvectors = vectors;
3106 }
3107
3108 return err;
3109 }
3110
3111 static void __devinit print_port_info(struct adapter *adap,
3112 const struct adapter_info *ai)
3113 {
3114 static const char *pci_variant[] = {
3115 "PCI", "PCI-X", "PCI-X ECC", "PCI-X 266", "PCI Express"
3116 };
3117
3118 int i;
3119 char buf[80];
3120
3121 if (is_pcie(adap))
3122 snprintf(buf, sizeof(buf), "%s x%d",
3123 pci_variant[adap->params.pci.variant],
3124 adap->params.pci.width);
3125 else
3126 snprintf(buf, sizeof(buf), "%s %dMHz/%d-bit",
3127 pci_variant[adap->params.pci.variant],
3128 adap->params.pci.speed, adap->params.pci.width);
3129
3130 for_each_port(adap, i) {
3131 struct net_device *dev = adap->port[i];
3132 const struct port_info *pi = netdev_priv(dev);
3133
3134 if (!test_bit(i, &adap->registered_device_map))
3135 continue;
3136 printk(KERN_INFO "%s: %s %s %sNIC (rev %d) %s%s\n",
3137 dev->name, ai->desc, pi->phy.desc,
3138 is_offload(adap) ? "R" : "", adap->params.rev, buf,
3139 (adap->flags & USING_MSIX) ? " MSI-X" :
3140 (adap->flags & USING_MSI) ? " MSI" : "");
3141 if (adap->name == dev->name && adap->params.vpd.mclk)
3142 printk(KERN_INFO
3143 "%s: %uMB CM, %uMB PMTX, %uMB PMRX, S/N: %s\n",
3144 adap->name, t3_mc7_size(&adap->cm) >> 20,
3145 t3_mc7_size(&adap->pmtx) >> 20,
3146 t3_mc7_size(&adap->pmrx) >> 20,
3147 adap->params.vpd.sn);
3148 }
3149 }
3150
3151 static const struct net_device_ops cxgb_netdev_ops = {
3152 .ndo_open = cxgb_open,
3153 .ndo_stop = cxgb_close,
3154 .ndo_start_xmit = t3_eth_xmit,
3155 .ndo_get_stats = cxgb_get_stats,
3156 .ndo_validate_addr = eth_validate_addr,
3157 .ndo_set_rx_mode = cxgb_set_rxmode,
3158 .ndo_do_ioctl = cxgb_ioctl,
3159 .ndo_change_mtu = cxgb_change_mtu,
3160 .ndo_set_mac_address = cxgb_set_mac_addr,
3161 .ndo_fix_features = cxgb_fix_features,
3162 .ndo_set_features = cxgb_set_features,
3163 #ifdef CONFIG_NET_POLL_CONTROLLER
3164 .ndo_poll_controller = cxgb_netpoll,
3165 #endif
3166 };
3167
3168 static void __devinit cxgb3_init_iscsi_mac(struct net_device *dev)
3169 {
3170 struct port_info *pi = netdev_priv(dev);
3171
3172 memcpy(pi->iscsic.mac_addr, dev->dev_addr, ETH_ALEN);
3173 pi->iscsic.mac_addr[3] |= 0x80;
3174 }
3175
3176 static int __devinit init_one(struct pci_dev *pdev,
3177 const struct pci_device_id *ent)
3178 {
3179 static int version_printed;
3180
3181 int i, err, pci_using_dac = 0;
3182 resource_size_t mmio_start, mmio_len;
3183 const struct adapter_info *ai;
3184 struct adapter *adapter = NULL;
3185 struct port_info *pi;
3186
3187 if (!version_printed) {
3188 printk(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
3189 ++version_printed;
3190 }
3191
3192 if (!cxgb3_wq) {
3193 cxgb3_wq = create_singlethread_workqueue(DRV_NAME);
3194 if (!cxgb3_wq) {
3195 printk(KERN_ERR DRV_NAME
3196 ": cannot initialize work queue\n");
3197 return -ENOMEM;
3198 }
3199 }
3200
3201 err = pci_enable_device(pdev);
3202 if (err) {
3203 dev_err(&pdev->dev, "cannot enable PCI device\n");
3204 goto out;
3205 }
3206
3207 err = pci_request_regions(pdev, DRV_NAME);
3208 if (err) {
3209 /* Just info, some other driver may have claimed the device. */
3210 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
3211 goto out_disable_device;
3212 }
3213
3214 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3215 pci_using_dac = 1;
3216 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3217 if (err) {
3218 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
3219 "coherent allocations\n");
3220 goto out_release_regions;
3221 }
3222 } else if ((err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) != 0) {
3223 dev_err(&pdev->dev, "no usable DMA configuration\n");
3224 goto out_release_regions;
3225 }
3226
3227 pci_set_master(pdev);
3228 pci_save_state(pdev);
3229
3230 mmio_start = pci_resource_start(pdev, 0);
3231 mmio_len = pci_resource_len(pdev, 0);
3232 ai = t3_get_adapter_info(ent->driver_data);
3233
3234 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
3235 if (!adapter) {
3236 err = -ENOMEM;
3237 goto out_release_regions;
3238 }
3239
3240 adapter->nofail_skb =
3241 alloc_skb(sizeof(struct cpl_set_tcb_field), GFP_KERNEL);
3242 if (!adapter->nofail_skb) {
3243 dev_err(&pdev->dev, "cannot allocate nofail buffer\n");
3244 err = -ENOMEM;
3245 goto out_free_adapter;
3246 }
3247
3248 adapter->regs = ioremap_nocache(mmio_start, mmio_len);
3249 if (!adapter->regs) {
3250 dev_err(&pdev->dev, "cannot map device registers\n");
3251 err = -ENOMEM;
3252 goto out_free_adapter;
3253 }
3254
3255 adapter->pdev = pdev;
3256 adapter->name = pci_name(pdev);
3257 adapter->msg_enable = dflt_msg_enable;
3258 adapter->mmio_len = mmio_len;
3259
3260 mutex_init(&adapter->mdio_lock);
3261 spin_lock_init(&adapter->work_lock);
3262 spin_lock_init(&adapter->stats_lock);
3263
3264 INIT_LIST_HEAD(&adapter->adapter_list);
3265 INIT_WORK(&adapter->ext_intr_handler_task, ext_intr_task);
3266 INIT_WORK(&adapter->fatal_error_handler_task, fatal_error_task);
3267
3268 INIT_WORK(&adapter->db_full_task, db_full_task);
3269 INIT_WORK(&adapter->db_empty_task, db_empty_task);
3270 INIT_WORK(&adapter->db_drop_task, db_drop_task);
3271
3272 INIT_DELAYED_WORK(&adapter->adap_check_task, t3_adap_check_task);
3273
3274 for (i = 0; i < ai->nports0 + ai->nports1; ++i) {
3275 struct net_device *netdev;
3276
3277 netdev = alloc_etherdev_mq(sizeof(struct port_info), SGE_QSETS);
3278 if (!netdev) {
3279 err = -ENOMEM;
3280 goto out_free_dev;
3281 }
3282
3283 SET_NETDEV_DEV(netdev, &pdev->dev);
3284
3285 adapter->port[i] = netdev;
3286 pi = netdev_priv(netdev);
3287 pi->adapter = adapter;
3288 pi->port_id = i;
3289 netif_carrier_off(netdev);
3290 netdev->irq = pdev->irq;
3291 netdev->mem_start = mmio_start;
3292 netdev->mem_end = mmio_start + mmio_len - 1;
3293 netdev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM |
3294 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_HW_VLAN_RX;
3295 netdev->features |= netdev->hw_features | NETIF_F_HW_VLAN_TX;
3296 if (pci_using_dac)
3297 netdev->features |= NETIF_F_HIGHDMA;
3298
3299 netdev->netdev_ops = &cxgb_netdev_ops;
3300 SET_ETHTOOL_OPS(netdev, &cxgb_ethtool_ops);
3301 }
3302
3303 pci_set_drvdata(pdev, adapter);
3304 if (t3_prep_adapter(adapter, ai, 1) < 0) {
3305 err = -ENODEV;
3306 goto out_free_dev;
3307 }
3308
3309 /*
3310 * The card is now ready to go. If any errors occur during device
3311 * registration we do not fail the whole card but rather proceed only
3312 * with the ports we manage to register successfully. However we must
3313 * register at least one net device.
3314 */
3315 for_each_port(adapter, i) {
3316 err = register_netdev(adapter->port[i]);
3317 if (err)
3318 dev_warn(&pdev->dev,
3319 "cannot register net device %s, skipping\n",
3320 adapter->port[i]->name);
3321 else {
3322 /*
3323 * Change the name we use for messages to the name of
3324 * the first successfully registered interface.
3325 */
3326 if (!adapter->registered_device_map)
3327 adapter->name = adapter->port[i]->name;
3328
3329 __set_bit(i, &adapter->registered_device_map);
3330 }
3331 }
3332 if (!adapter->registered_device_map) {
3333 dev_err(&pdev->dev, "could not register any net devices\n");
3334 goto out_free_dev;
3335 }
3336
3337 for_each_port(adapter, i)
3338 cxgb3_init_iscsi_mac(adapter->port[i]);
3339
3340 /* Driver's ready. Reflect it on LEDs */
3341 t3_led_ready(adapter);
3342
3343 if (is_offload(adapter)) {
3344 __set_bit(OFFLOAD_DEVMAP_BIT, &adapter->registered_device_map);
3345 cxgb3_adapter_ofld(adapter);
3346 }
3347
3348 /* See what interrupts we'll be using */
3349 if (msi > 1 && cxgb_enable_msix(adapter) == 0)
3350 adapter->flags |= USING_MSIX;
3351 else if (msi > 0 && pci_enable_msi(pdev) == 0)
3352 adapter->flags |= USING_MSI;
3353
3354 set_nqsets(adapter);
3355
3356 err = sysfs_create_group(&adapter->port[0]->dev.kobj,
3357 &cxgb3_attr_group);
3358
3359 print_port_info(adapter, ai);
3360 return 0;
3361
3362 out_free_dev:
3363 iounmap(adapter->regs);
3364 for (i = ai->nports0 + ai->nports1 - 1; i >= 0; --i)
3365 if (adapter->port[i])
3366 free_netdev(adapter->port[i]);
3367
3368 out_free_adapter:
3369 kfree(adapter);
3370
3371 out_release_regions:
3372 pci_release_regions(pdev);
3373 out_disable_device:
3374 pci_disable_device(pdev);
3375 pci_set_drvdata(pdev, NULL);
3376 out:
3377 return err;
3378 }
3379
3380 static void __devexit remove_one(struct pci_dev *pdev)
3381 {
3382 struct adapter *adapter = pci_get_drvdata(pdev);
3383
3384 if (adapter) {
3385 int i;
3386
3387 t3_sge_stop(adapter);
3388 sysfs_remove_group(&adapter->port[0]->dev.kobj,
3389 &cxgb3_attr_group);
3390
3391 if (is_offload(adapter)) {
3392 cxgb3_adapter_unofld(adapter);
3393 if (test_bit(OFFLOAD_DEVMAP_BIT,
3394 &adapter->open_device_map))
3395 offload_close(&adapter->tdev);
3396 }
3397
3398 for_each_port(adapter, i)
3399 if (test_bit(i, &adapter->registered_device_map))
3400 unregister_netdev(adapter->port[i]);
3401
3402 t3_stop_sge_timers(adapter);
3403 t3_free_sge_resources(adapter);
3404 cxgb_disable_msi(adapter);
3405
3406 for_each_port(adapter, i)
3407 if (adapter->port[i])
3408 free_netdev(adapter->port[i]);
3409
3410 iounmap(adapter->regs);
3411 if (adapter->nofail_skb)
3412 kfree_skb(adapter->nofail_skb);
3413 kfree(adapter);
3414 pci_release_regions(pdev);
3415 pci_disable_device(pdev);
3416 pci_set_drvdata(pdev, NULL);
3417 }
3418 }
3419
3420 static struct pci_driver driver = {
3421 .name = DRV_NAME,
3422 .id_table = cxgb3_pci_tbl,
3423 .probe = init_one,
3424 .remove = __devexit_p(remove_one),
3425 .err_handler = &t3_err_handler,
3426 };
3427
3428 static int __init cxgb3_init_module(void)
3429 {
3430 int ret;
3431
3432 cxgb3_offload_init();
3433
3434 ret = pci_register_driver(&driver);
3435 return ret;
3436 }
3437
3438 static void __exit cxgb3_cleanup_module(void)
3439 {
3440 pci_unregister_driver(&driver);
3441 if (cxgb3_wq)
3442 destroy_workqueue(cxgb3_wq);
3443 }
3444
3445 module_init(cxgb3_init_module);
3446 module_exit(cxgb3_cleanup_module);
This page took 0.11368 seconds and 5 git commands to generate.