ethernet: Remove casts to same type
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb3 / cxgb3_offload.c
1 /*
2 * Copyright (c) 2006-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <net/neighbour.h>
36 #include <linux/notifier.h>
37 #include <linux/atomic.h>
38 #include <linux/proc_fs.h>
39 #include <linux/if_vlan.h>
40 #include <net/netevent.h>
41 #include <linux/highmem.h>
42 #include <linux/vmalloc.h>
43 #include <linux/export.h>
44
45 #include "common.h"
46 #include "regs.h"
47 #include "cxgb3_ioctl.h"
48 #include "cxgb3_ctl_defs.h"
49 #include "cxgb3_defs.h"
50 #include "l2t.h"
51 #include "firmware_exports.h"
52 #include "cxgb3_offload.h"
53
54 static LIST_HEAD(client_list);
55 static LIST_HEAD(ofld_dev_list);
56 static DEFINE_MUTEX(cxgb3_db_lock);
57
58 static DEFINE_RWLOCK(adapter_list_lock);
59 static LIST_HEAD(adapter_list);
60
61 static const unsigned int MAX_ATIDS = 64 * 1024;
62 static const unsigned int ATID_BASE = 0x10000;
63
64 static void cxgb_neigh_update(struct neighbour *neigh);
65 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new);
66
67 static inline int offload_activated(struct t3cdev *tdev)
68 {
69 const struct adapter *adapter = tdev2adap(tdev);
70
71 return test_bit(OFFLOAD_DEVMAP_BIT, &adapter->open_device_map);
72 }
73
74 /**
75 * cxgb3_register_client - register an offload client
76 * @client: the client
77 *
78 * Add the client to the client list,
79 * and call backs the client for each activated offload device
80 */
81 void cxgb3_register_client(struct cxgb3_client *client)
82 {
83 struct t3cdev *tdev;
84
85 mutex_lock(&cxgb3_db_lock);
86 list_add_tail(&client->client_list, &client_list);
87
88 if (client->add) {
89 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
90 if (offload_activated(tdev))
91 client->add(tdev);
92 }
93 }
94 mutex_unlock(&cxgb3_db_lock);
95 }
96
97 EXPORT_SYMBOL(cxgb3_register_client);
98
99 /**
100 * cxgb3_unregister_client - unregister an offload client
101 * @client: the client
102 *
103 * Remove the client to the client list,
104 * and call backs the client for each activated offload device.
105 */
106 void cxgb3_unregister_client(struct cxgb3_client *client)
107 {
108 struct t3cdev *tdev;
109
110 mutex_lock(&cxgb3_db_lock);
111 list_del(&client->client_list);
112
113 if (client->remove) {
114 list_for_each_entry(tdev, &ofld_dev_list, ofld_dev_list) {
115 if (offload_activated(tdev))
116 client->remove(tdev);
117 }
118 }
119 mutex_unlock(&cxgb3_db_lock);
120 }
121
122 EXPORT_SYMBOL(cxgb3_unregister_client);
123
124 /**
125 * cxgb3_add_clients - activate registered clients for an offload device
126 * @tdev: the offload device
127 *
128 * Call backs all registered clients once a offload device is activated
129 */
130 void cxgb3_add_clients(struct t3cdev *tdev)
131 {
132 struct cxgb3_client *client;
133
134 mutex_lock(&cxgb3_db_lock);
135 list_for_each_entry(client, &client_list, client_list) {
136 if (client->add)
137 client->add(tdev);
138 }
139 mutex_unlock(&cxgb3_db_lock);
140 }
141
142 /**
143 * cxgb3_remove_clients - deactivates registered clients
144 * for an offload device
145 * @tdev: the offload device
146 *
147 * Call backs all registered clients once a offload device is deactivated
148 */
149 void cxgb3_remove_clients(struct t3cdev *tdev)
150 {
151 struct cxgb3_client *client;
152
153 mutex_lock(&cxgb3_db_lock);
154 list_for_each_entry(client, &client_list, client_list) {
155 if (client->remove)
156 client->remove(tdev);
157 }
158 mutex_unlock(&cxgb3_db_lock);
159 }
160
161 void cxgb3_event_notify(struct t3cdev *tdev, u32 event, u32 port)
162 {
163 struct cxgb3_client *client;
164
165 mutex_lock(&cxgb3_db_lock);
166 list_for_each_entry(client, &client_list, client_list) {
167 if (client->event_handler)
168 client->event_handler(tdev, event, port);
169 }
170 mutex_unlock(&cxgb3_db_lock);
171 }
172
173 static struct net_device *get_iff_from_mac(struct adapter *adapter,
174 const unsigned char *mac,
175 unsigned int vlan)
176 {
177 int i;
178
179 for_each_port(adapter, i) {
180 struct net_device *dev = adapter->port[i];
181
182 if (!memcmp(dev->dev_addr, mac, ETH_ALEN)) {
183 if (vlan && vlan != VLAN_VID_MASK) {
184 rcu_read_lock();
185 dev = __vlan_find_dev_deep(dev, vlan);
186 rcu_read_unlock();
187 } else if (netif_is_bond_slave(dev)) {
188 while (dev->master)
189 dev = dev->master;
190 }
191 return dev;
192 }
193 }
194 return NULL;
195 }
196
197 static int cxgb_ulp_iscsi_ctl(struct adapter *adapter, unsigned int req,
198 void *data)
199 {
200 int i;
201 int ret = 0;
202 unsigned int val = 0;
203 struct ulp_iscsi_info *uiip = data;
204
205 switch (req) {
206 case ULP_ISCSI_GET_PARAMS:
207 uiip->pdev = adapter->pdev;
208 uiip->llimit = t3_read_reg(adapter, A_ULPRX_ISCSI_LLIMIT);
209 uiip->ulimit = t3_read_reg(adapter, A_ULPRX_ISCSI_ULIMIT);
210 uiip->tagmask = t3_read_reg(adapter, A_ULPRX_ISCSI_TAGMASK);
211
212 val = t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ);
213 for (i = 0; i < 4; i++, val >>= 8)
214 uiip->pgsz_factor[i] = val & 0xFF;
215
216 val = t3_read_reg(adapter, A_TP_PARA_REG7);
217 uiip->max_txsz =
218 uiip->max_rxsz = min((val >> S_PMMAXXFERLEN0)&M_PMMAXXFERLEN0,
219 (val >> S_PMMAXXFERLEN1)&M_PMMAXXFERLEN1);
220 /*
221 * On tx, the iscsi pdu has to be <= tx page size and has to
222 * fit into the Tx PM FIFO.
223 */
224 val = min(adapter->params.tp.tx_pg_size,
225 t3_read_reg(adapter, A_PM1_TX_CFG) >> 17);
226 uiip->max_txsz = min(val, uiip->max_txsz);
227
228 /* set MaxRxData to 16224 */
229 val = t3_read_reg(adapter, A_TP_PARA_REG2);
230 if ((val >> S_MAXRXDATA) != 0x3f60) {
231 val &= (M_RXCOALESCESIZE << S_RXCOALESCESIZE);
232 val |= V_MAXRXDATA(0x3f60);
233 printk(KERN_INFO
234 "%s, iscsi set MaxRxData to 16224 (0x%x).\n",
235 adapter->name, val);
236 t3_write_reg(adapter, A_TP_PARA_REG2, val);
237 }
238
239 /*
240 * on rx, the iscsi pdu has to be < rx page size and the
241 * the max rx data length programmed in TP
242 */
243 val = min(adapter->params.tp.rx_pg_size,
244 ((t3_read_reg(adapter, A_TP_PARA_REG2)) >>
245 S_MAXRXDATA) & M_MAXRXDATA);
246 uiip->max_rxsz = min(val, uiip->max_rxsz);
247 break;
248 case ULP_ISCSI_SET_PARAMS:
249 t3_write_reg(adapter, A_ULPRX_ISCSI_TAGMASK, uiip->tagmask);
250 /* program the ddp page sizes */
251 for (i = 0; i < 4; i++)
252 val |= (uiip->pgsz_factor[i] & 0xF) << (8 * i);
253 if (val && (val != t3_read_reg(adapter, A_ULPRX_ISCSI_PSZ))) {
254 printk(KERN_INFO
255 "%s, setting iscsi pgsz 0x%x, %u,%u,%u,%u.\n",
256 adapter->name, val, uiip->pgsz_factor[0],
257 uiip->pgsz_factor[1], uiip->pgsz_factor[2],
258 uiip->pgsz_factor[3]);
259 t3_write_reg(adapter, A_ULPRX_ISCSI_PSZ, val);
260 }
261 break;
262 default:
263 ret = -EOPNOTSUPP;
264 }
265 return ret;
266 }
267
268 /* Response queue used for RDMA events. */
269 #define ASYNC_NOTIF_RSPQ 0
270
271 static int cxgb_rdma_ctl(struct adapter *adapter, unsigned int req, void *data)
272 {
273 int ret = 0;
274
275 switch (req) {
276 case RDMA_GET_PARAMS: {
277 struct rdma_info *rdma = data;
278 struct pci_dev *pdev = adapter->pdev;
279
280 rdma->udbell_physbase = pci_resource_start(pdev, 2);
281 rdma->udbell_len = pci_resource_len(pdev, 2);
282 rdma->tpt_base =
283 t3_read_reg(adapter, A_ULPTX_TPT_LLIMIT);
284 rdma->tpt_top = t3_read_reg(adapter, A_ULPTX_TPT_ULIMIT);
285 rdma->pbl_base =
286 t3_read_reg(adapter, A_ULPTX_PBL_LLIMIT);
287 rdma->pbl_top = t3_read_reg(adapter, A_ULPTX_PBL_ULIMIT);
288 rdma->rqt_base = t3_read_reg(adapter, A_ULPRX_RQ_LLIMIT);
289 rdma->rqt_top = t3_read_reg(adapter, A_ULPRX_RQ_ULIMIT);
290 rdma->kdb_addr = adapter->regs + A_SG_KDOORBELL;
291 rdma->pdev = pdev;
292 break;
293 }
294 case RDMA_CQ_OP:{
295 unsigned long flags;
296 struct rdma_cq_op *rdma = data;
297
298 /* may be called in any context */
299 spin_lock_irqsave(&adapter->sge.reg_lock, flags);
300 ret = t3_sge_cqcntxt_op(adapter, rdma->id, rdma->op,
301 rdma->credits);
302 spin_unlock_irqrestore(&adapter->sge.reg_lock, flags);
303 break;
304 }
305 case RDMA_GET_MEM:{
306 struct ch_mem_range *t = data;
307 struct mc7 *mem;
308
309 if ((t->addr & 7) || (t->len & 7))
310 return -EINVAL;
311 if (t->mem_id == MEM_CM)
312 mem = &adapter->cm;
313 else if (t->mem_id == MEM_PMRX)
314 mem = &adapter->pmrx;
315 else if (t->mem_id == MEM_PMTX)
316 mem = &adapter->pmtx;
317 else
318 return -EINVAL;
319
320 ret =
321 t3_mc7_bd_read(mem, t->addr / 8, t->len / 8,
322 (u64 *) t->buf);
323 if (ret)
324 return ret;
325 break;
326 }
327 case RDMA_CQ_SETUP:{
328 struct rdma_cq_setup *rdma = data;
329
330 spin_lock_irq(&adapter->sge.reg_lock);
331 ret =
332 t3_sge_init_cqcntxt(adapter, rdma->id,
333 rdma->base_addr, rdma->size,
334 ASYNC_NOTIF_RSPQ,
335 rdma->ovfl_mode, rdma->credits,
336 rdma->credit_thres);
337 spin_unlock_irq(&adapter->sge.reg_lock);
338 break;
339 }
340 case RDMA_CQ_DISABLE:
341 spin_lock_irq(&adapter->sge.reg_lock);
342 ret = t3_sge_disable_cqcntxt(adapter, *(unsigned int *)data);
343 spin_unlock_irq(&adapter->sge.reg_lock);
344 break;
345 case RDMA_CTRL_QP_SETUP:{
346 struct rdma_ctrlqp_setup *rdma = data;
347
348 spin_lock_irq(&adapter->sge.reg_lock);
349 ret = t3_sge_init_ecntxt(adapter, FW_RI_SGEEC_START, 0,
350 SGE_CNTXT_RDMA,
351 ASYNC_NOTIF_RSPQ,
352 rdma->base_addr, rdma->size,
353 FW_RI_TID_START, 1, 0);
354 spin_unlock_irq(&adapter->sge.reg_lock);
355 break;
356 }
357 case RDMA_GET_MIB: {
358 spin_lock(&adapter->stats_lock);
359 t3_tp_get_mib_stats(adapter, (struct tp_mib_stats *)data);
360 spin_unlock(&adapter->stats_lock);
361 break;
362 }
363 default:
364 ret = -EOPNOTSUPP;
365 }
366 return ret;
367 }
368
369 static int cxgb_offload_ctl(struct t3cdev *tdev, unsigned int req, void *data)
370 {
371 struct adapter *adapter = tdev2adap(tdev);
372 struct tid_range *tid;
373 struct mtutab *mtup;
374 struct iff_mac *iffmacp;
375 struct ddp_params *ddpp;
376 struct adap_ports *ports;
377 struct ofld_page_info *rx_page_info;
378 struct tp_params *tp = &adapter->params.tp;
379 int i;
380
381 switch (req) {
382 case GET_MAX_OUTSTANDING_WR:
383 *(unsigned int *)data = FW_WR_NUM;
384 break;
385 case GET_WR_LEN:
386 *(unsigned int *)data = WR_FLITS;
387 break;
388 case GET_TX_MAX_CHUNK:
389 *(unsigned int *)data = 1 << 20; /* 1MB */
390 break;
391 case GET_TID_RANGE:
392 tid = data;
393 tid->num = t3_mc5_size(&adapter->mc5) -
394 adapter->params.mc5.nroutes -
395 adapter->params.mc5.nfilters - adapter->params.mc5.nservers;
396 tid->base = 0;
397 break;
398 case GET_STID_RANGE:
399 tid = data;
400 tid->num = adapter->params.mc5.nservers;
401 tid->base = t3_mc5_size(&adapter->mc5) - tid->num -
402 adapter->params.mc5.nfilters - adapter->params.mc5.nroutes;
403 break;
404 case GET_L2T_CAPACITY:
405 *(unsigned int *)data = 2048;
406 break;
407 case GET_MTUS:
408 mtup = data;
409 mtup->size = NMTUS;
410 mtup->mtus = adapter->params.mtus;
411 break;
412 case GET_IFF_FROM_MAC:
413 iffmacp = data;
414 iffmacp->dev = get_iff_from_mac(adapter, iffmacp->mac_addr,
415 iffmacp->vlan_tag &
416 VLAN_VID_MASK);
417 break;
418 case GET_DDP_PARAMS:
419 ddpp = data;
420 ddpp->llimit = t3_read_reg(adapter, A_ULPRX_TDDP_LLIMIT);
421 ddpp->ulimit = t3_read_reg(adapter, A_ULPRX_TDDP_ULIMIT);
422 ddpp->tag_mask = t3_read_reg(adapter, A_ULPRX_TDDP_TAGMASK);
423 break;
424 case GET_PORTS:
425 ports = data;
426 ports->nports = adapter->params.nports;
427 for_each_port(adapter, i)
428 ports->lldevs[i] = adapter->port[i];
429 break;
430 case ULP_ISCSI_GET_PARAMS:
431 case ULP_ISCSI_SET_PARAMS:
432 if (!offload_running(adapter))
433 return -EAGAIN;
434 return cxgb_ulp_iscsi_ctl(adapter, req, data);
435 case RDMA_GET_PARAMS:
436 case RDMA_CQ_OP:
437 case RDMA_CQ_SETUP:
438 case RDMA_CQ_DISABLE:
439 case RDMA_CTRL_QP_SETUP:
440 case RDMA_GET_MEM:
441 case RDMA_GET_MIB:
442 if (!offload_running(adapter))
443 return -EAGAIN;
444 return cxgb_rdma_ctl(adapter, req, data);
445 case GET_RX_PAGE_INFO:
446 rx_page_info = data;
447 rx_page_info->page_size = tp->rx_pg_size;
448 rx_page_info->num = tp->rx_num_pgs;
449 break;
450 case GET_ISCSI_IPV4ADDR: {
451 struct iscsi_ipv4addr *p = data;
452 struct port_info *pi = netdev_priv(p->dev);
453 p->ipv4addr = pi->iscsi_ipv4addr;
454 break;
455 }
456 case GET_EMBEDDED_INFO: {
457 struct ch_embedded_info *e = data;
458
459 spin_lock(&adapter->stats_lock);
460 t3_get_fw_version(adapter, &e->fw_vers);
461 t3_get_tp_version(adapter, &e->tp_vers);
462 spin_unlock(&adapter->stats_lock);
463 break;
464 }
465 default:
466 return -EOPNOTSUPP;
467 }
468 return 0;
469 }
470
471 /*
472 * Dummy handler for Rx offload packets in case we get an offload packet before
473 * proper processing is setup. This complains and drops the packet as it isn't
474 * normal to get offload packets at this stage.
475 */
476 static int rx_offload_blackhole(struct t3cdev *dev, struct sk_buff **skbs,
477 int n)
478 {
479 while (n--)
480 dev_kfree_skb_any(skbs[n]);
481 return 0;
482 }
483
484 static void dummy_neigh_update(struct t3cdev *dev, struct neighbour *neigh)
485 {
486 }
487
488 void cxgb3_set_dummy_ops(struct t3cdev *dev)
489 {
490 dev->recv = rx_offload_blackhole;
491 dev->neigh_update = dummy_neigh_update;
492 }
493
494 /*
495 * Free an active-open TID.
496 */
497 void *cxgb3_free_atid(struct t3cdev *tdev, int atid)
498 {
499 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
500 union active_open_entry *p = atid2entry(t, atid);
501 void *ctx = p->t3c_tid.ctx;
502
503 spin_lock_bh(&t->atid_lock);
504 p->next = t->afree;
505 t->afree = p;
506 t->atids_in_use--;
507 spin_unlock_bh(&t->atid_lock);
508
509 return ctx;
510 }
511
512 EXPORT_SYMBOL(cxgb3_free_atid);
513
514 /*
515 * Free a server TID and return it to the free pool.
516 */
517 void cxgb3_free_stid(struct t3cdev *tdev, int stid)
518 {
519 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
520 union listen_entry *p = stid2entry(t, stid);
521
522 spin_lock_bh(&t->stid_lock);
523 p->next = t->sfree;
524 t->sfree = p;
525 t->stids_in_use--;
526 spin_unlock_bh(&t->stid_lock);
527 }
528
529 EXPORT_SYMBOL(cxgb3_free_stid);
530
531 void cxgb3_insert_tid(struct t3cdev *tdev, struct cxgb3_client *client,
532 void *ctx, unsigned int tid)
533 {
534 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
535
536 t->tid_tab[tid].client = client;
537 t->tid_tab[tid].ctx = ctx;
538 atomic_inc(&t->tids_in_use);
539 }
540
541 EXPORT_SYMBOL(cxgb3_insert_tid);
542
543 /*
544 * Populate a TID_RELEASE WR. The skb must be already propely sized.
545 */
546 static inline void mk_tid_release(struct sk_buff *skb, unsigned int tid)
547 {
548 struct cpl_tid_release *req;
549
550 skb->priority = CPL_PRIORITY_SETUP;
551 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
552 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
553 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
554 }
555
556 static void t3_process_tid_release_list(struct work_struct *work)
557 {
558 struct t3c_data *td = container_of(work, struct t3c_data,
559 tid_release_task);
560 struct sk_buff *skb;
561 struct t3cdev *tdev = td->dev;
562
563
564 spin_lock_bh(&td->tid_release_lock);
565 while (td->tid_release_list) {
566 struct t3c_tid_entry *p = td->tid_release_list;
567
568 td->tid_release_list = p->ctx;
569 spin_unlock_bh(&td->tid_release_lock);
570
571 skb = alloc_skb(sizeof(struct cpl_tid_release),
572 GFP_KERNEL);
573 if (!skb)
574 skb = td->nofail_skb;
575 if (!skb) {
576 spin_lock_bh(&td->tid_release_lock);
577 p->ctx = (void *)td->tid_release_list;
578 td->tid_release_list = p;
579 break;
580 }
581 mk_tid_release(skb, p - td->tid_maps.tid_tab);
582 cxgb3_ofld_send(tdev, skb);
583 p->ctx = NULL;
584 if (skb == td->nofail_skb)
585 td->nofail_skb =
586 alloc_skb(sizeof(struct cpl_tid_release),
587 GFP_KERNEL);
588 spin_lock_bh(&td->tid_release_lock);
589 }
590 td->release_list_incomplete = (td->tid_release_list == NULL) ? 0 : 1;
591 spin_unlock_bh(&td->tid_release_lock);
592
593 if (!td->nofail_skb)
594 td->nofail_skb =
595 alloc_skb(sizeof(struct cpl_tid_release),
596 GFP_KERNEL);
597 }
598
599 /* use ctx as a next pointer in the tid release list */
600 void cxgb3_queue_tid_release(struct t3cdev *tdev, unsigned int tid)
601 {
602 struct t3c_data *td = T3C_DATA(tdev);
603 struct t3c_tid_entry *p = &td->tid_maps.tid_tab[tid];
604
605 spin_lock_bh(&td->tid_release_lock);
606 p->ctx = (void *)td->tid_release_list;
607 p->client = NULL;
608 td->tid_release_list = p;
609 if (!p->ctx || td->release_list_incomplete)
610 schedule_work(&td->tid_release_task);
611 spin_unlock_bh(&td->tid_release_lock);
612 }
613
614 EXPORT_SYMBOL(cxgb3_queue_tid_release);
615
616 /*
617 * Remove a tid from the TID table. A client may defer processing its last
618 * CPL message if it is locked at the time it arrives, and while the message
619 * sits in the client's backlog the TID may be reused for another connection.
620 * To handle this we atomically switch the TID association if it still points
621 * to the original client context.
622 */
623 void cxgb3_remove_tid(struct t3cdev *tdev, void *ctx, unsigned int tid)
624 {
625 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
626
627 BUG_ON(tid >= t->ntids);
628 if (tdev->type == T3A)
629 (void)cmpxchg(&t->tid_tab[tid].ctx, ctx, NULL);
630 else {
631 struct sk_buff *skb;
632
633 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
634 if (likely(skb)) {
635 mk_tid_release(skb, tid);
636 cxgb3_ofld_send(tdev, skb);
637 t->tid_tab[tid].ctx = NULL;
638 } else
639 cxgb3_queue_tid_release(tdev, tid);
640 }
641 atomic_dec(&t->tids_in_use);
642 }
643
644 EXPORT_SYMBOL(cxgb3_remove_tid);
645
646 int cxgb3_alloc_atid(struct t3cdev *tdev, struct cxgb3_client *client,
647 void *ctx)
648 {
649 int atid = -1;
650 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
651
652 spin_lock_bh(&t->atid_lock);
653 if (t->afree &&
654 t->atids_in_use + atomic_read(&t->tids_in_use) + MC5_MIN_TIDS <=
655 t->ntids) {
656 union active_open_entry *p = t->afree;
657
658 atid = (p - t->atid_tab) + t->atid_base;
659 t->afree = p->next;
660 p->t3c_tid.ctx = ctx;
661 p->t3c_tid.client = client;
662 t->atids_in_use++;
663 }
664 spin_unlock_bh(&t->atid_lock);
665 return atid;
666 }
667
668 EXPORT_SYMBOL(cxgb3_alloc_atid);
669
670 int cxgb3_alloc_stid(struct t3cdev *tdev, struct cxgb3_client *client,
671 void *ctx)
672 {
673 int stid = -1;
674 struct tid_info *t = &(T3C_DATA(tdev))->tid_maps;
675
676 spin_lock_bh(&t->stid_lock);
677 if (t->sfree) {
678 union listen_entry *p = t->sfree;
679
680 stid = (p - t->stid_tab) + t->stid_base;
681 t->sfree = p->next;
682 p->t3c_tid.ctx = ctx;
683 p->t3c_tid.client = client;
684 t->stids_in_use++;
685 }
686 spin_unlock_bh(&t->stid_lock);
687 return stid;
688 }
689
690 EXPORT_SYMBOL(cxgb3_alloc_stid);
691
692 /* Get the t3cdev associated with a net_device */
693 struct t3cdev *dev2t3cdev(struct net_device *dev)
694 {
695 const struct port_info *pi = netdev_priv(dev);
696
697 return (struct t3cdev *)pi->adapter;
698 }
699
700 EXPORT_SYMBOL(dev2t3cdev);
701
702 static int do_smt_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
703 {
704 struct cpl_smt_write_rpl *rpl = cplhdr(skb);
705
706 if (rpl->status != CPL_ERR_NONE)
707 printk(KERN_ERR
708 "Unexpected SMT_WRITE_RPL status %u for entry %u\n",
709 rpl->status, GET_TID(rpl));
710
711 return CPL_RET_BUF_DONE;
712 }
713
714 static int do_l2t_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
715 {
716 struct cpl_l2t_write_rpl *rpl = cplhdr(skb);
717
718 if (rpl->status != CPL_ERR_NONE)
719 printk(KERN_ERR
720 "Unexpected L2T_WRITE_RPL status %u for entry %u\n",
721 rpl->status, GET_TID(rpl));
722
723 return CPL_RET_BUF_DONE;
724 }
725
726 static int do_rte_write_rpl(struct t3cdev *dev, struct sk_buff *skb)
727 {
728 struct cpl_rte_write_rpl *rpl = cplhdr(skb);
729
730 if (rpl->status != CPL_ERR_NONE)
731 printk(KERN_ERR
732 "Unexpected RTE_WRITE_RPL status %u for entry %u\n",
733 rpl->status, GET_TID(rpl));
734
735 return CPL_RET_BUF_DONE;
736 }
737
738 static int do_act_open_rpl(struct t3cdev *dev, struct sk_buff *skb)
739 {
740 struct cpl_act_open_rpl *rpl = cplhdr(skb);
741 unsigned int atid = G_TID(ntohl(rpl->atid));
742 struct t3c_tid_entry *t3c_tid;
743
744 t3c_tid = lookup_atid(&(T3C_DATA(dev))->tid_maps, atid);
745 if (t3c_tid && t3c_tid->ctx && t3c_tid->client &&
746 t3c_tid->client->handlers &&
747 t3c_tid->client->handlers[CPL_ACT_OPEN_RPL]) {
748 return t3c_tid->client->handlers[CPL_ACT_OPEN_RPL] (dev, skb,
749 t3c_tid->
750 ctx);
751 } else {
752 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
753 dev->name, CPL_ACT_OPEN_RPL);
754 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
755 }
756 }
757
758 static int do_stid_rpl(struct t3cdev *dev, struct sk_buff *skb)
759 {
760 union opcode_tid *p = cplhdr(skb);
761 unsigned int stid = G_TID(ntohl(p->opcode_tid));
762 struct t3c_tid_entry *t3c_tid;
763
764 t3c_tid = lookup_stid(&(T3C_DATA(dev))->tid_maps, stid);
765 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
766 t3c_tid->client->handlers[p->opcode]) {
767 return t3c_tid->client->handlers[p->opcode] (dev, skb,
768 t3c_tid->ctx);
769 } else {
770 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
771 dev->name, p->opcode);
772 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
773 }
774 }
775
776 static int do_hwtid_rpl(struct t3cdev *dev, struct sk_buff *skb)
777 {
778 union opcode_tid *p = cplhdr(skb);
779 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
780 struct t3c_tid_entry *t3c_tid;
781
782 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
783 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
784 t3c_tid->client->handlers[p->opcode]) {
785 return t3c_tid->client->handlers[p->opcode]
786 (dev, skb, t3c_tid->ctx);
787 } else {
788 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
789 dev->name, p->opcode);
790 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
791 }
792 }
793
794 static int do_cr(struct t3cdev *dev, struct sk_buff *skb)
795 {
796 struct cpl_pass_accept_req *req = cplhdr(skb);
797 unsigned int stid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
798 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
799 struct t3c_tid_entry *t3c_tid;
800 unsigned int tid = GET_TID(req);
801
802 if (unlikely(tid >= t->ntids)) {
803 printk("%s: passive open TID %u too large\n",
804 dev->name, tid);
805 t3_fatal_err(tdev2adap(dev));
806 return CPL_RET_BUF_DONE;
807 }
808
809 t3c_tid = lookup_stid(t, stid);
810 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
811 t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]) {
812 return t3c_tid->client->handlers[CPL_PASS_ACCEPT_REQ]
813 (dev, skb, t3c_tid->ctx);
814 } else {
815 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
816 dev->name, CPL_PASS_ACCEPT_REQ);
817 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
818 }
819 }
820
821 /*
822 * Returns an sk_buff for a reply CPL message of size len. If the input
823 * sk_buff has no other users it is trimmed and reused, otherwise a new buffer
824 * is allocated. The input skb must be of size at least len. Note that this
825 * operation does not destroy the original skb data even if it decides to reuse
826 * the buffer.
827 */
828 static struct sk_buff *cxgb3_get_cpl_reply_skb(struct sk_buff *skb, size_t len,
829 gfp_t gfp)
830 {
831 if (likely(!skb_cloned(skb))) {
832 BUG_ON(skb->len < len);
833 __skb_trim(skb, len);
834 skb_get(skb);
835 } else {
836 skb = alloc_skb(len, gfp);
837 if (skb)
838 __skb_put(skb, len);
839 }
840 return skb;
841 }
842
843 static int do_abort_req_rss(struct t3cdev *dev, struct sk_buff *skb)
844 {
845 union opcode_tid *p = cplhdr(skb);
846 unsigned int hwtid = G_TID(ntohl(p->opcode_tid));
847 struct t3c_tid_entry *t3c_tid;
848
849 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
850 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
851 t3c_tid->client->handlers[p->opcode]) {
852 return t3c_tid->client->handlers[p->opcode]
853 (dev, skb, t3c_tid->ctx);
854 } else {
855 struct cpl_abort_req_rss *req = cplhdr(skb);
856 struct cpl_abort_rpl *rpl;
857 struct sk_buff *reply_skb;
858 unsigned int tid = GET_TID(req);
859 u8 cmd = req->status;
860
861 if (req->status == CPL_ERR_RTX_NEG_ADVICE ||
862 req->status == CPL_ERR_PERSIST_NEG_ADVICE)
863 goto out;
864
865 reply_skb = cxgb3_get_cpl_reply_skb(skb,
866 sizeof(struct
867 cpl_abort_rpl),
868 GFP_ATOMIC);
869
870 if (!reply_skb) {
871 printk("do_abort_req_rss: couldn't get skb!\n");
872 goto out;
873 }
874 reply_skb->priority = CPL_PRIORITY_DATA;
875 __skb_put(reply_skb, sizeof(struct cpl_abort_rpl));
876 rpl = cplhdr(reply_skb);
877 rpl->wr.wr_hi =
878 htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
879 rpl->wr.wr_lo = htonl(V_WR_TID(tid));
880 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, tid));
881 rpl->cmd = cmd;
882 cxgb3_ofld_send(dev, reply_skb);
883 out:
884 return CPL_RET_BUF_DONE;
885 }
886 }
887
888 static int do_act_establish(struct t3cdev *dev, struct sk_buff *skb)
889 {
890 struct cpl_act_establish *req = cplhdr(skb);
891 unsigned int atid = G_PASS_OPEN_TID(ntohl(req->tos_tid));
892 struct tid_info *t = &(T3C_DATA(dev))->tid_maps;
893 struct t3c_tid_entry *t3c_tid;
894 unsigned int tid = GET_TID(req);
895
896 if (unlikely(tid >= t->ntids)) {
897 printk("%s: active establish TID %u too large\n",
898 dev->name, tid);
899 t3_fatal_err(tdev2adap(dev));
900 return CPL_RET_BUF_DONE;
901 }
902
903 t3c_tid = lookup_atid(t, atid);
904 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
905 t3c_tid->client->handlers[CPL_ACT_ESTABLISH]) {
906 return t3c_tid->client->handlers[CPL_ACT_ESTABLISH]
907 (dev, skb, t3c_tid->ctx);
908 } else {
909 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
910 dev->name, CPL_ACT_ESTABLISH);
911 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
912 }
913 }
914
915 static int do_trace(struct t3cdev *dev, struct sk_buff *skb)
916 {
917 struct cpl_trace_pkt *p = cplhdr(skb);
918
919 skb->protocol = htons(0xffff);
920 skb->dev = dev->lldev;
921 skb_pull(skb, sizeof(*p));
922 skb_reset_mac_header(skb);
923 netif_receive_skb(skb);
924 return 0;
925 }
926
927 /*
928 * That skb would better have come from process_responses() where we abuse
929 * ->priority and ->csum to carry our data. NB: if we get to per-arch
930 * ->csum, the things might get really interesting here.
931 */
932
933 static inline u32 get_hwtid(struct sk_buff *skb)
934 {
935 return ntohl((__force __be32)skb->priority) >> 8 & 0xfffff;
936 }
937
938 static inline u32 get_opcode(struct sk_buff *skb)
939 {
940 return G_OPCODE(ntohl((__force __be32)skb->csum));
941 }
942
943 static int do_term(struct t3cdev *dev, struct sk_buff *skb)
944 {
945 unsigned int hwtid = get_hwtid(skb);
946 unsigned int opcode = get_opcode(skb);
947 struct t3c_tid_entry *t3c_tid;
948
949 t3c_tid = lookup_tid(&(T3C_DATA(dev))->tid_maps, hwtid);
950 if (t3c_tid && t3c_tid->ctx && t3c_tid->client->handlers &&
951 t3c_tid->client->handlers[opcode]) {
952 return t3c_tid->client->handlers[opcode] (dev, skb,
953 t3c_tid->ctx);
954 } else {
955 printk(KERN_ERR "%s: received clientless CPL command 0x%x\n",
956 dev->name, opcode);
957 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
958 }
959 }
960
961 static int nb_callback(struct notifier_block *self, unsigned long event,
962 void *ctx)
963 {
964 switch (event) {
965 case (NETEVENT_NEIGH_UPDATE):{
966 cxgb_neigh_update((struct neighbour *)ctx);
967 break;
968 }
969 case (NETEVENT_REDIRECT):{
970 struct netevent_redirect *nr = ctx;
971 cxgb_redirect(nr->old, nr->new);
972 cxgb_neigh_update(dst_get_neighbour_noref(nr->new));
973 break;
974 }
975 default:
976 break;
977 }
978 return 0;
979 }
980
981 static struct notifier_block nb = {
982 .notifier_call = nb_callback
983 };
984
985 /*
986 * Process a received packet with an unknown/unexpected CPL opcode.
987 */
988 static int do_bad_cpl(struct t3cdev *dev, struct sk_buff *skb)
989 {
990 printk(KERN_ERR "%s: received bad CPL command 0x%x\n", dev->name,
991 *skb->data);
992 return CPL_RET_BUF_DONE | CPL_RET_BAD_MSG;
993 }
994
995 /*
996 * Handlers for each CPL opcode
997 */
998 static cpl_handler_func cpl_handlers[NUM_CPL_CMDS];
999
1000 /*
1001 * Add a new handler to the CPL dispatch table. A NULL handler may be supplied
1002 * to unregister an existing handler.
1003 */
1004 void t3_register_cpl_handler(unsigned int opcode, cpl_handler_func h)
1005 {
1006 if (opcode < NUM_CPL_CMDS)
1007 cpl_handlers[opcode] = h ? h : do_bad_cpl;
1008 else
1009 printk(KERN_ERR "T3C: handler registration for "
1010 "opcode %x failed\n", opcode);
1011 }
1012
1013 EXPORT_SYMBOL(t3_register_cpl_handler);
1014
1015 /*
1016 * T3CDEV's receive method.
1017 */
1018 static int process_rx(struct t3cdev *dev, struct sk_buff **skbs, int n)
1019 {
1020 while (n--) {
1021 struct sk_buff *skb = *skbs++;
1022 unsigned int opcode = get_opcode(skb);
1023 int ret = cpl_handlers[opcode] (dev, skb);
1024
1025 #if VALIDATE_TID
1026 if (ret & CPL_RET_UNKNOWN_TID) {
1027 union opcode_tid *p = cplhdr(skb);
1028
1029 printk(KERN_ERR "%s: CPL message (opcode %u) had "
1030 "unknown TID %u\n", dev->name, opcode,
1031 G_TID(ntohl(p->opcode_tid)));
1032 }
1033 #endif
1034 if (ret & CPL_RET_BUF_DONE)
1035 kfree_skb(skb);
1036 }
1037 return 0;
1038 }
1039
1040 /*
1041 * Sends an sk_buff to a T3C driver after dealing with any active network taps.
1042 */
1043 int cxgb3_ofld_send(struct t3cdev *dev, struct sk_buff *skb)
1044 {
1045 int r;
1046
1047 local_bh_disable();
1048 r = dev->send(dev, skb);
1049 local_bh_enable();
1050 return r;
1051 }
1052
1053 EXPORT_SYMBOL(cxgb3_ofld_send);
1054
1055 static int is_offloading(struct net_device *dev)
1056 {
1057 struct adapter *adapter;
1058 int i;
1059
1060 read_lock_bh(&adapter_list_lock);
1061 list_for_each_entry(adapter, &adapter_list, adapter_list) {
1062 for_each_port(adapter, i) {
1063 if (dev == adapter->port[i]) {
1064 read_unlock_bh(&adapter_list_lock);
1065 return 1;
1066 }
1067 }
1068 }
1069 read_unlock_bh(&adapter_list_lock);
1070 return 0;
1071 }
1072
1073 static void cxgb_neigh_update(struct neighbour *neigh)
1074 {
1075 struct net_device *dev;
1076
1077 if (!neigh)
1078 return;
1079 dev = neigh->dev;
1080 if (dev && (is_offloading(dev))) {
1081 struct t3cdev *tdev = dev2t3cdev(dev);
1082
1083 BUG_ON(!tdev);
1084 t3_l2t_update(tdev, neigh);
1085 }
1086 }
1087
1088 static void set_l2t_ix(struct t3cdev *tdev, u32 tid, struct l2t_entry *e)
1089 {
1090 struct sk_buff *skb;
1091 struct cpl_set_tcb_field *req;
1092
1093 skb = alloc_skb(sizeof(*req), GFP_ATOMIC);
1094 if (!skb) {
1095 printk(KERN_ERR "%s: cannot allocate skb!\n", __func__);
1096 return;
1097 }
1098 skb->priority = CPL_PRIORITY_CONTROL;
1099 req = (struct cpl_set_tcb_field *)skb_put(skb, sizeof(*req));
1100 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1101 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, tid));
1102 req->reply = 0;
1103 req->cpu_idx = 0;
1104 req->word = htons(W_TCB_L2T_IX);
1105 req->mask = cpu_to_be64(V_TCB_L2T_IX(M_TCB_L2T_IX));
1106 req->val = cpu_to_be64(V_TCB_L2T_IX(e->idx));
1107 tdev->send(tdev, skb);
1108 }
1109
1110 static void cxgb_redirect(struct dst_entry *old, struct dst_entry *new)
1111 {
1112 struct net_device *olddev, *newdev;
1113 struct neighbour *n;
1114 struct tid_info *ti;
1115 struct t3cdev *tdev;
1116 u32 tid;
1117 int update_tcb;
1118 struct l2t_entry *e;
1119 struct t3c_tid_entry *te;
1120
1121 n = dst_get_neighbour_noref(old);
1122 if (!n)
1123 return;
1124 olddev = n->dev;
1125
1126 n = dst_get_neighbour_noref(new);
1127 if (!n)
1128 return;
1129 newdev = n->dev;
1130
1131 if (!is_offloading(olddev))
1132 return;
1133 if (!is_offloading(newdev)) {
1134 printk(KERN_WARNING "%s: Redirect to non-offload "
1135 "device ignored.\n", __func__);
1136 return;
1137 }
1138 tdev = dev2t3cdev(olddev);
1139 BUG_ON(!tdev);
1140 if (tdev != dev2t3cdev(newdev)) {
1141 printk(KERN_WARNING "%s: Redirect to different "
1142 "offload device ignored.\n", __func__);
1143 return;
1144 }
1145
1146 /* Add new L2T entry */
1147 e = t3_l2t_get(tdev, new, newdev);
1148 if (!e) {
1149 printk(KERN_ERR "%s: couldn't allocate new l2t entry!\n",
1150 __func__);
1151 return;
1152 }
1153
1154 /* Walk tid table and notify clients of dst change. */
1155 ti = &(T3C_DATA(tdev))->tid_maps;
1156 for (tid = 0; tid < ti->ntids; tid++) {
1157 te = lookup_tid(ti, tid);
1158 BUG_ON(!te);
1159 if (te && te->ctx && te->client && te->client->redirect) {
1160 update_tcb = te->client->redirect(te->ctx, old, new, e);
1161 if (update_tcb) {
1162 rcu_read_lock();
1163 l2t_hold(L2DATA(tdev), e);
1164 rcu_read_unlock();
1165 set_l2t_ix(tdev, tid, e);
1166 }
1167 }
1168 }
1169 l2t_release(tdev, e);
1170 }
1171
1172 /*
1173 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1174 * The allocated memory is cleared.
1175 */
1176 void *cxgb_alloc_mem(unsigned long size)
1177 {
1178 void *p = kzalloc(size, GFP_KERNEL);
1179
1180 if (!p)
1181 p = vzalloc(size);
1182 return p;
1183 }
1184
1185 /*
1186 * Free memory allocated through t3_alloc_mem().
1187 */
1188 void cxgb_free_mem(void *addr)
1189 {
1190 if (is_vmalloc_addr(addr))
1191 vfree(addr);
1192 else
1193 kfree(addr);
1194 }
1195
1196 /*
1197 * Allocate and initialize the TID tables. Returns 0 on success.
1198 */
1199 static int init_tid_tabs(struct tid_info *t, unsigned int ntids,
1200 unsigned int natids, unsigned int nstids,
1201 unsigned int atid_base, unsigned int stid_base)
1202 {
1203 unsigned long size = ntids * sizeof(*t->tid_tab) +
1204 natids * sizeof(*t->atid_tab) + nstids * sizeof(*t->stid_tab);
1205
1206 t->tid_tab = cxgb_alloc_mem(size);
1207 if (!t->tid_tab)
1208 return -ENOMEM;
1209
1210 t->stid_tab = (union listen_entry *)&t->tid_tab[ntids];
1211 t->atid_tab = (union active_open_entry *)&t->stid_tab[nstids];
1212 t->ntids = ntids;
1213 t->nstids = nstids;
1214 t->stid_base = stid_base;
1215 t->sfree = NULL;
1216 t->natids = natids;
1217 t->atid_base = atid_base;
1218 t->afree = NULL;
1219 t->stids_in_use = t->atids_in_use = 0;
1220 atomic_set(&t->tids_in_use, 0);
1221 spin_lock_init(&t->stid_lock);
1222 spin_lock_init(&t->atid_lock);
1223
1224 /*
1225 * Setup the free lists for stid_tab and atid_tab.
1226 */
1227 if (nstids) {
1228 while (--nstids)
1229 t->stid_tab[nstids - 1].next = &t->stid_tab[nstids];
1230 t->sfree = t->stid_tab;
1231 }
1232 if (natids) {
1233 while (--natids)
1234 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1235 t->afree = t->atid_tab;
1236 }
1237 return 0;
1238 }
1239
1240 static void free_tid_maps(struct tid_info *t)
1241 {
1242 cxgb_free_mem(t->tid_tab);
1243 }
1244
1245 static inline void add_adapter(struct adapter *adap)
1246 {
1247 write_lock_bh(&adapter_list_lock);
1248 list_add_tail(&adap->adapter_list, &adapter_list);
1249 write_unlock_bh(&adapter_list_lock);
1250 }
1251
1252 static inline void remove_adapter(struct adapter *adap)
1253 {
1254 write_lock_bh(&adapter_list_lock);
1255 list_del(&adap->adapter_list);
1256 write_unlock_bh(&adapter_list_lock);
1257 }
1258
1259 int cxgb3_offload_activate(struct adapter *adapter)
1260 {
1261 struct t3cdev *dev = &adapter->tdev;
1262 int natids, err;
1263 struct t3c_data *t;
1264 struct tid_range stid_range, tid_range;
1265 struct mtutab mtutab;
1266 unsigned int l2t_capacity;
1267
1268 t = kzalloc(sizeof(*t), GFP_KERNEL);
1269 if (!t)
1270 return -ENOMEM;
1271
1272 err = -EOPNOTSUPP;
1273 if (dev->ctl(dev, GET_TX_MAX_CHUNK, &t->tx_max_chunk) < 0 ||
1274 dev->ctl(dev, GET_MAX_OUTSTANDING_WR, &t->max_wrs) < 0 ||
1275 dev->ctl(dev, GET_L2T_CAPACITY, &l2t_capacity) < 0 ||
1276 dev->ctl(dev, GET_MTUS, &mtutab) < 0 ||
1277 dev->ctl(dev, GET_TID_RANGE, &tid_range) < 0 ||
1278 dev->ctl(dev, GET_STID_RANGE, &stid_range) < 0)
1279 goto out_free;
1280
1281 err = -ENOMEM;
1282 RCU_INIT_POINTER(dev->l2opt, t3_init_l2t(l2t_capacity));
1283 if (!L2DATA(dev))
1284 goto out_free;
1285
1286 natids = min(tid_range.num / 2, MAX_ATIDS);
1287 err = init_tid_tabs(&t->tid_maps, tid_range.num, natids,
1288 stid_range.num, ATID_BASE, stid_range.base);
1289 if (err)
1290 goto out_free_l2t;
1291
1292 t->mtus = mtutab.mtus;
1293 t->nmtus = mtutab.size;
1294
1295 INIT_WORK(&t->tid_release_task, t3_process_tid_release_list);
1296 spin_lock_init(&t->tid_release_lock);
1297 INIT_LIST_HEAD(&t->list_node);
1298 t->dev = dev;
1299
1300 T3C_DATA(dev) = t;
1301 dev->recv = process_rx;
1302 dev->neigh_update = t3_l2t_update;
1303
1304 /* Register netevent handler once */
1305 if (list_empty(&adapter_list))
1306 register_netevent_notifier(&nb);
1307
1308 t->nofail_skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_KERNEL);
1309 t->release_list_incomplete = 0;
1310
1311 add_adapter(adapter);
1312 return 0;
1313
1314 out_free_l2t:
1315 t3_free_l2t(L2DATA(dev));
1316 RCU_INIT_POINTER(dev->l2opt, NULL);
1317 out_free:
1318 kfree(t);
1319 return err;
1320 }
1321
1322 static void clean_l2_data(struct rcu_head *head)
1323 {
1324 struct l2t_data *d = container_of(head, struct l2t_data, rcu_head);
1325 t3_free_l2t(d);
1326 }
1327
1328
1329 void cxgb3_offload_deactivate(struct adapter *adapter)
1330 {
1331 struct t3cdev *tdev = &adapter->tdev;
1332 struct t3c_data *t = T3C_DATA(tdev);
1333 struct l2t_data *d;
1334
1335 remove_adapter(adapter);
1336 if (list_empty(&adapter_list))
1337 unregister_netevent_notifier(&nb);
1338
1339 free_tid_maps(&t->tid_maps);
1340 T3C_DATA(tdev) = NULL;
1341 rcu_read_lock();
1342 d = L2DATA(tdev);
1343 rcu_read_unlock();
1344 RCU_INIT_POINTER(tdev->l2opt, NULL);
1345 call_rcu(&d->rcu_head, clean_l2_data);
1346 if (t->nofail_skb)
1347 kfree_skb(t->nofail_skb);
1348 kfree(t);
1349 }
1350
1351 static inline void register_tdev(struct t3cdev *tdev)
1352 {
1353 static int unit;
1354
1355 mutex_lock(&cxgb3_db_lock);
1356 snprintf(tdev->name, sizeof(tdev->name), "ofld_dev%d", unit++);
1357 list_add_tail(&tdev->ofld_dev_list, &ofld_dev_list);
1358 mutex_unlock(&cxgb3_db_lock);
1359 }
1360
1361 static inline void unregister_tdev(struct t3cdev *tdev)
1362 {
1363 mutex_lock(&cxgb3_db_lock);
1364 list_del(&tdev->ofld_dev_list);
1365 mutex_unlock(&cxgb3_db_lock);
1366 }
1367
1368 static inline int adap2type(struct adapter *adapter)
1369 {
1370 int type = 0;
1371
1372 switch (adapter->params.rev) {
1373 case T3_REV_A:
1374 type = T3A;
1375 break;
1376 case T3_REV_B:
1377 case T3_REV_B2:
1378 type = T3B;
1379 break;
1380 case T3_REV_C:
1381 type = T3C;
1382 break;
1383 }
1384 return type;
1385 }
1386
1387 void __devinit cxgb3_adapter_ofld(struct adapter *adapter)
1388 {
1389 struct t3cdev *tdev = &adapter->tdev;
1390
1391 INIT_LIST_HEAD(&tdev->ofld_dev_list);
1392
1393 cxgb3_set_dummy_ops(tdev);
1394 tdev->send = t3_offload_tx;
1395 tdev->ctl = cxgb_offload_ctl;
1396 tdev->type = adap2type(adapter);
1397
1398 register_tdev(tdev);
1399 }
1400
1401 void __devexit cxgb3_adapter_unofld(struct adapter *adapter)
1402 {
1403 struct t3cdev *tdev = &adapter->tdev;
1404
1405 tdev->recv = NULL;
1406 tdev->neigh_update = NULL;
1407
1408 unregister_tdev(tdev);
1409 }
1410
1411 void __init cxgb3_offload_init(void)
1412 {
1413 int i;
1414
1415 for (i = 0; i < NUM_CPL_CMDS; ++i)
1416 cpl_handlers[i] = do_bad_cpl;
1417
1418 t3_register_cpl_handler(CPL_SMT_WRITE_RPL, do_smt_write_rpl);
1419 t3_register_cpl_handler(CPL_L2T_WRITE_RPL, do_l2t_write_rpl);
1420 t3_register_cpl_handler(CPL_RTE_WRITE_RPL, do_rte_write_rpl);
1421 t3_register_cpl_handler(CPL_PASS_OPEN_RPL, do_stid_rpl);
1422 t3_register_cpl_handler(CPL_CLOSE_LISTSRV_RPL, do_stid_rpl);
1423 t3_register_cpl_handler(CPL_PASS_ACCEPT_REQ, do_cr);
1424 t3_register_cpl_handler(CPL_PASS_ESTABLISH, do_hwtid_rpl);
1425 t3_register_cpl_handler(CPL_ABORT_RPL_RSS, do_hwtid_rpl);
1426 t3_register_cpl_handler(CPL_ABORT_RPL, do_hwtid_rpl);
1427 t3_register_cpl_handler(CPL_RX_URG_NOTIFY, do_hwtid_rpl);
1428 t3_register_cpl_handler(CPL_RX_DATA, do_hwtid_rpl);
1429 t3_register_cpl_handler(CPL_TX_DATA_ACK, do_hwtid_rpl);
1430 t3_register_cpl_handler(CPL_TX_DMA_ACK, do_hwtid_rpl);
1431 t3_register_cpl_handler(CPL_ACT_OPEN_RPL, do_act_open_rpl);
1432 t3_register_cpl_handler(CPL_PEER_CLOSE, do_hwtid_rpl);
1433 t3_register_cpl_handler(CPL_CLOSE_CON_RPL, do_hwtid_rpl);
1434 t3_register_cpl_handler(CPL_ABORT_REQ_RSS, do_abort_req_rss);
1435 t3_register_cpl_handler(CPL_ACT_ESTABLISH, do_act_establish);
1436 t3_register_cpl_handler(CPL_SET_TCB_RPL, do_hwtid_rpl);
1437 t3_register_cpl_handler(CPL_GET_TCB_RPL, do_hwtid_rpl);
1438 t3_register_cpl_handler(CPL_RDMA_TERMINATE, do_term);
1439 t3_register_cpl_handler(CPL_RDMA_EC_STATUS, do_hwtid_rpl);
1440 t3_register_cpl_handler(CPL_TRACE_PKT, do_trace);
1441 t3_register_cpl_handler(CPL_RX_DATA_DDP, do_hwtid_rpl);
1442 t3_register_cpl_handler(CPL_RX_DDP_COMPLETE, do_hwtid_rpl);
1443 t3_register_cpl_handler(CPL_ISCSI_HDR, do_hwtid_rpl);
1444 }
This page took 0.063414 seconds and 5 git commands to generate.