Revert "cxgb3: Check and handle the dma mapping errors"
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb3 / sge.c
1 /*
2 * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved.
3 *
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
9 *
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
13 *
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
17 *
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
22 *
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
31 */
32 #include <linux/skbuff.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/if_vlan.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/slab.h>
40 #include <linux/prefetch.h>
41 #include <net/arp.h>
42 #include "common.h"
43 #include "regs.h"
44 #include "sge_defs.h"
45 #include "t3_cpl.h"
46 #include "firmware_exports.h"
47 #include "cxgb3_offload.h"
48
49 #define USE_GTS 0
50
51 #define SGE_RX_SM_BUF_SIZE 1536
52
53 #define SGE_RX_COPY_THRES 256
54 #define SGE_RX_PULL_LEN 128
55
56 #define SGE_PG_RSVD SMP_CACHE_BYTES
57 /*
58 * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks.
59 * It must be a divisor of PAGE_SIZE. If set to 0 FL0 will use sk_buffs
60 * directly.
61 */
62 #define FL0_PG_CHUNK_SIZE 2048
63 #define FL0_PG_ORDER 0
64 #define FL0_PG_ALLOC_SIZE (PAGE_SIZE << FL0_PG_ORDER)
65 #define FL1_PG_CHUNK_SIZE (PAGE_SIZE > 8192 ? 16384 : 8192)
66 #define FL1_PG_ORDER (PAGE_SIZE > 8192 ? 0 : 1)
67 #define FL1_PG_ALLOC_SIZE (PAGE_SIZE << FL1_PG_ORDER)
68
69 #define SGE_RX_DROP_THRES 16
70 #define RX_RECLAIM_PERIOD (HZ/4)
71
72 /*
73 * Max number of Rx buffers we replenish at a time.
74 */
75 #define MAX_RX_REFILL 16U
76 /*
77 * Period of the Tx buffer reclaim timer. This timer does not need to run
78 * frequently as Tx buffers are usually reclaimed by new Tx packets.
79 */
80 #define TX_RECLAIM_PERIOD (HZ / 4)
81 #define TX_RECLAIM_TIMER_CHUNK 64U
82 #define TX_RECLAIM_CHUNK 16U
83
84 /* WR size in bytes */
85 #define WR_LEN (WR_FLITS * 8)
86
87 /*
88 * Types of Tx queues in each queue set. Order here matters, do not change.
89 */
90 enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL };
91
92 /* Values for sge_txq.flags */
93 enum {
94 TXQ_RUNNING = 1 << 0, /* fetch engine is running */
95 TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */
96 };
97
98 struct tx_desc {
99 __be64 flit[TX_DESC_FLITS];
100 };
101
102 struct rx_desc {
103 __be32 addr_lo;
104 __be32 len_gen;
105 __be32 gen2;
106 __be32 addr_hi;
107 };
108
109 struct tx_sw_desc { /* SW state per Tx descriptor */
110 struct sk_buff *skb;
111 u8 eop; /* set if last descriptor for packet */
112 u8 addr_idx; /* buffer index of first SGL entry in descriptor */
113 u8 fragidx; /* first page fragment associated with descriptor */
114 s8 sflit; /* start flit of first SGL entry in descriptor */
115 };
116
117 struct rx_sw_desc { /* SW state per Rx descriptor */
118 union {
119 struct sk_buff *skb;
120 struct fl_pg_chunk pg_chunk;
121 };
122 DEFINE_DMA_UNMAP_ADDR(dma_addr);
123 };
124
125 struct rsp_desc { /* response queue descriptor */
126 struct rss_header rss_hdr;
127 __be32 flags;
128 __be32 len_cq;
129 u8 imm_data[47];
130 u8 intr_gen;
131 };
132
133 /*
134 * Holds unmapping information for Tx packets that need deferred unmapping.
135 * This structure lives at skb->head and must be allocated by callers.
136 */
137 struct deferred_unmap_info {
138 struct pci_dev *pdev;
139 dma_addr_t addr[MAX_SKB_FRAGS + 1];
140 };
141
142 /*
143 * Maps a number of flits to the number of Tx descriptors that can hold them.
144 * The formula is
145 *
146 * desc = 1 + (flits - 2) / (WR_FLITS - 1).
147 *
148 * HW allows up to 4 descriptors to be combined into a WR.
149 */
150 static u8 flit_desc_map[] = {
151 0,
152 #if SGE_NUM_GENBITS == 1
153 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
154 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
155 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
156 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
157 #elif SGE_NUM_GENBITS == 2
158 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
159 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
160 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
161 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
162 #else
163 # error "SGE_NUM_GENBITS must be 1 or 2"
164 #endif
165 };
166
167 static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx)
168 {
169 return container_of(q, struct sge_qset, fl[qidx]);
170 }
171
172 static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q)
173 {
174 return container_of(q, struct sge_qset, rspq);
175 }
176
177 static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx)
178 {
179 return container_of(q, struct sge_qset, txq[qidx]);
180 }
181
182 /**
183 * refill_rspq - replenish an SGE response queue
184 * @adapter: the adapter
185 * @q: the response queue to replenish
186 * @credits: how many new responses to make available
187 *
188 * Replenishes a response queue by making the supplied number of responses
189 * available to HW.
190 */
191 static inline void refill_rspq(struct adapter *adapter,
192 const struct sge_rspq *q, unsigned int credits)
193 {
194 rmb();
195 t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN,
196 V_RSPQ(q->cntxt_id) | V_CREDITS(credits));
197 }
198
199 /**
200 * need_skb_unmap - does the platform need unmapping of sk_buffs?
201 *
202 * Returns true if the platform needs sk_buff unmapping. The compiler
203 * optimizes away unnecessary code if this returns true.
204 */
205 static inline int need_skb_unmap(void)
206 {
207 #ifdef CONFIG_NEED_DMA_MAP_STATE
208 return 1;
209 #else
210 return 0;
211 #endif
212 }
213
214 /**
215 * unmap_skb - unmap a packet main body and its page fragments
216 * @skb: the packet
217 * @q: the Tx queue containing Tx descriptors for the packet
218 * @cidx: index of Tx descriptor
219 * @pdev: the PCI device
220 *
221 * Unmap the main body of an sk_buff and its page fragments, if any.
222 * Because of the fairly complicated structure of our SGLs and the desire
223 * to conserve space for metadata, the information necessary to unmap an
224 * sk_buff is spread across the sk_buff itself (buffer lengths), the HW Tx
225 * descriptors (the physical addresses of the various data buffers), and
226 * the SW descriptor state (assorted indices). The send functions
227 * initialize the indices for the first packet descriptor so we can unmap
228 * the buffers held in the first Tx descriptor here, and we have enough
229 * information at this point to set the state for the next Tx descriptor.
230 *
231 * Note that it is possible to clean up the first descriptor of a packet
232 * before the send routines have written the next descriptors, but this
233 * race does not cause any problem. We just end up writing the unmapping
234 * info for the descriptor first.
235 */
236 static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q,
237 unsigned int cidx, struct pci_dev *pdev)
238 {
239 const struct sg_ent *sgp;
240 struct tx_sw_desc *d = &q->sdesc[cidx];
241 int nfrags, frag_idx, curflit, j = d->addr_idx;
242
243 sgp = (struct sg_ent *)&q->desc[cidx].flit[d->sflit];
244 frag_idx = d->fragidx;
245
246 if (frag_idx == 0 && skb_headlen(skb)) {
247 pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]),
248 skb_headlen(skb), PCI_DMA_TODEVICE);
249 j = 1;
250 }
251
252 curflit = d->sflit + 1 + j;
253 nfrags = skb_shinfo(skb)->nr_frags;
254
255 while (frag_idx < nfrags && curflit < WR_FLITS) {
256 pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]),
257 skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]),
258 PCI_DMA_TODEVICE);
259 j ^= 1;
260 if (j == 0) {
261 sgp++;
262 curflit++;
263 }
264 curflit++;
265 frag_idx++;
266 }
267
268 if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */
269 d = cidx + 1 == q->size ? q->sdesc : d + 1;
270 d->fragidx = frag_idx;
271 d->addr_idx = j;
272 d->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */
273 }
274 }
275
276 /**
277 * free_tx_desc - reclaims Tx descriptors and their buffers
278 * @adapter: the adapter
279 * @q: the Tx queue to reclaim descriptors from
280 * @n: the number of descriptors to reclaim
281 *
282 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
283 * Tx buffers. Called with the Tx queue lock held.
284 */
285 static void free_tx_desc(struct adapter *adapter, struct sge_txq *q,
286 unsigned int n)
287 {
288 struct tx_sw_desc *d;
289 struct pci_dev *pdev = adapter->pdev;
290 unsigned int cidx = q->cidx;
291
292 const int need_unmap = need_skb_unmap() &&
293 q->cntxt_id >= FW_TUNNEL_SGEEC_START;
294
295 d = &q->sdesc[cidx];
296 while (n--) {
297 if (d->skb) { /* an SGL is present */
298 if (need_unmap)
299 unmap_skb(d->skb, q, cidx, pdev);
300 if (d->eop) {
301 kfree_skb(d->skb);
302 d->skb = NULL;
303 }
304 }
305 ++d;
306 if (++cidx == q->size) {
307 cidx = 0;
308 d = q->sdesc;
309 }
310 }
311 q->cidx = cidx;
312 }
313
314 /**
315 * reclaim_completed_tx - reclaims completed Tx descriptors
316 * @adapter: the adapter
317 * @q: the Tx queue to reclaim completed descriptors from
318 * @chunk: maximum number of descriptors to reclaim
319 *
320 * Reclaims Tx descriptors that the SGE has indicated it has processed,
321 * and frees the associated buffers if possible. Called with the Tx
322 * queue's lock held.
323 */
324 static inline unsigned int reclaim_completed_tx(struct adapter *adapter,
325 struct sge_txq *q,
326 unsigned int chunk)
327 {
328 unsigned int reclaim = q->processed - q->cleaned;
329
330 reclaim = min(chunk, reclaim);
331 if (reclaim) {
332 free_tx_desc(adapter, q, reclaim);
333 q->cleaned += reclaim;
334 q->in_use -= reclaim;
335 }
336 return q->processed - q->cleaned;
337 }
338
339 /**
340 * should_restart_tx - are there enough resources to restart a Tx queue?
341 * @q: the Tx queue
342 *
343 * Checks if there are enough descriptors to restart a suspended Tx queue.
344 */
345 static inline int should_restart_tx(const struct sge_txq *q)
346 {
347 unsigned int r = q->processed - q->cleaned;
348
349 return q->in_use - r < (q->size >> 1);
350 }
351
352 static void clear_rx_desc(struct pci_dev *pdev, const struct sge_fl *q,
353 struct rx_sw_desc *d)
354 {
355 if (q->use_pages && d->pg_chunk.page) {
356 (*d->pg_chunk.p_cnt)--;
357 if (!*d->pg_chunk.p_cnt)
358 pci_unmap_page(pdev,
359 d->pg_chunk.mapping,
360 q->alloc_size, PCI_DMA_FROMDEVICE);
361
362 put_page(d->pg_chunk.page);
363 d->pg_chunk.page = NULL;
364 } else {
365 pci_unmap_single(pdev, dma_unmap_addr(d, dma_addr),
366 q->buf_size, PCI_DMA_FROMDEVICE);
367 kfree_skb(d->skb);
368 d->skb = NULL;
369 }
370 }
371
372 /**
373 * free_rx_bufs - free the Rx buffers on an SGE free list
374 * @pdev: the PCI device associated with the adapter
375 * @rxq: the SGE free list to clean up
376 *
377 * Release the buffers on an SGE free-buffer Rx queue. HW fetching from
378 * this queue should be stopped before calling this function.
379 */
380 static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q)
381 {
382 unsigned int cidx = q->cidx;
383
384 while (q->credits--) {
385 struct rx_sw_desc *d = &q->sdesc[cidx];
386
387
388 clear_rx_desc(pdev, q, d);
389 if (++cidx == q->size)
390 cidx = 0;
391 }
392
393 if (q->pg_chunk.page) {
394 __free_pages(q->pg_chunk.page, q->order);
395 q->pg_chunk.page = NULL;
396 }
397 }
398
399 /**
400 * add_one_rx_buf - add a packet buffer to a free-buffer list
401 * @va: buffer start VA
402 * @len: the buffer length
403 * @d: the HW Rx descriptor to write
404 * @sd: the SW Rx descriptor to write
405 * @gen: the generation bit value
406 * @pdev: the PCI device associated with the adapter
407 *
408 * Add a buffer of the given length to the supplied HW and SW Rx
409 * descriptors.
410 */
411 static inline int add_one_rx_buf(void *va, unsigned int len,
412 struct rx_desc *d, struct rx_sw_desc *sd,
413 unsigned int gen, struct pci_dev *pdev)
414 {
415 dma_addr_t mapping;
416
417 mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE);
418 if (unlikely(pci_dma_mapping_error(pdev, mapping)))
419 return -ENOMEM;
420
421 dma_unmap_addr_set(sd, dma_addr, mapping);
422
423 d->addr_lo = cpu_to_be32(mapping);
424 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
425 wmb();
426 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
427 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
428 return 0;
429 }
430
431 static inline int add_one_rx_chunk(dma_addr_t mapping, struct rx_desc *d,
432 unsigned int gen)
433 {
434 d->addr_lo = cpu_to_be32(mapping);
435 d->addr_hi = cpu_to_be32((u64) mapping >> 32);
436 wmb();
437 d->len_gen = cpu_to_be32(V_FLD_GEN1(gen));
438 d->gen2 = cpu_to_be32(V_FLD_GEN2(gen));
439 return 0;
440 }
441
442 static int alloc_pg_chunk(struct adapter *adapter, struct sge_fl *q,
443 struct rx_sw_desc *sd, gfp_t gfp,
444 unsigned int order)
445 {
446 if (!q->pg_chunk.page) {
447 dma_addr_t mapping;
448
449 q->pg_chunk.page = alloc_pages(gfp, order);
450 if (unlikely(!q->pg_chunk.page))
451 return -ENOMEM;
452 q->pg_chunk.va = page_address(q->pg_chunk.page);
453 q->pg_chunk.p_cnt = q->pg_chunk.va + (PAGE_SIZE << order) -
454 SGE_PG_RSVD;
455 q->pg_chunk.offset = 0;
456 mapping = pci_map_page(adapter->pdev, q->pg_chunk.page,
457 0, q->alloc_size, PCI_DMA_FROMDEVICE);
458 q->pg_chunk.mapping = mapping;
459 }
460 sd->pg_chunk = q->pg_chunk;
461
462 prefetch(sd->pg_chunk.p_cnt);
463
464 q->pg_chunk.offset += q->buf_size;
465 if (q->pg_chunk.offset == (PAGE_SIZE << order))
466 q->pg_chunk.page = NULL;
467 else {
468 q->pg_chunk.va += q->buf_size;
469 get_page(q->pg_chunk.page);
470 }
471
472 if (sd->pg_chunk.offset == 0)
473 *sd->pg_chunk.p_cnt = 1;
474 else
475 *sd->pg_chunk.p_cnt += 1;
476
477 return 0;
478 }
479
480 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
481 {
482 if (q->pend_cred >= q->credits / 4) {
483 q->pend_cred = 0;
484 wmb();
485 t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id));
486 }
487 }
488
489 /**
490 * refill_fl - refill an SGE free-buffer list
491 * @adapter: the adapter
492 * @q: the free-list to refill
493 * @n: the number of new buffers to allocate
494 * @gfp: the gfp flags for allocating new buffers
495 *
496 * (Re)populate an SGE free-buffer list with up to @n new packet buffers,
497 * allocated with the supplied gfp flags. The caller must assure that
498 * @n does not exceed the queue's capacity.
499 */
500 static int refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp)
501 {
502 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
503 struct rx_desc *d = &q->desc[q->pidx];
504 unsigned int count = 0;
505
506 while (n--) {
507 dma_addr_t mapping;
508 int err;
509
510 if (q->use_pages) {
511 if (unlikely(alloc_pg_chunk(adap, q, sd, gfp,
512 q->order))) {
513 nomem: q->alloc_failed++;
514 break;
515 }
516 mapping = sd->pg_chunk.mapping + sd->pg_chunk.offset;
517 dma_unmap_addr_set(sd, dma_addr, mapping);
518
519 add_one_rx_chunk(mapping, d, q->gen);
520 pci_dma_sync_single_for_device(adap->pdev, mapping,
521 q->buf_size - SGE_PG_RSVD,
522 PCI_DMA_FROMDEVICE);
523 } else {
524 void *buf_start;
525
526 struct sk_buff *skb = alloc_skb(q->buf_size, gfp);
527 if (!skb)
528 goto nomem;
529
530 sd->skb = skb;
531 buf_start = skb->data;
532 err = add_one_rx_buf(buf_start, q->buf_size, d, sd,
533 q->gen, adap->pdev);
534 if (unlikely(err)) {
535 clear_rx_desc(adap->pdev, q, sd);
536 break;
537 }
538 }
539
540 d++;
541 sd++;
542 if (++q->pidx == q->size) {
543 q->pidx = 0;
544 q->gen ^= 1;
545 sd = q->sdesc;
546 d = q->desc;
547 }
548 count++;
549 }
550
551 q->credits += count;
552 q->pend_cred += count;
553 ring_fl_db(adap, q);
554
555 return count;
556 }
557
558 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
559 {
560 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits),
561 GFP_ATOMIC | __GFP_COMP);
562 }
563
564 /**
565 * recycle_rx_buf - recycle a receive buffer
566 * @adapter: the adapter
567 * @q: the SGE free list
568 * @idx: index of buffer to recycle
569 *
570 * Recycles the specified buffer on the given free list by adding it at
571 * the next available slot on the list.
572 */
573 static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q,
574 unsigned int idx)
575 {
576 struct rx_desc *from = &q->desc[idx];
577 struct rx_desc *to = &q->desc[q->pidx];
578
579 q->sdesc[q->pidx] = q->sdesc[idx];
580 to->addr_lo = from->addr_lo; /* already big endian */
581 to->addr_hi = from->addr_hi; /* likewise */
582 wmb();
583 to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen));
584 to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen));
585
586 if (++q->pidx == q->size) {
587 q->pidx = 0;
588 q->gen ^= 1;
589 }
590
591 q->credits++;
592 q->pend_cred++;
593 ring_fl_db(adap, q);
594 }
595
596 /**
597 * alloc_ring - allocate resources for an SGE descriptor ring
598 * @pdev: the PCI device
599 * @nelem: the number of descriptors
600 * @elem_size: the size of each descriptor
601 * @sw_size: the size of the SW state associated with each ring element
602 * @phys: the physical address of the allocated ring
603 * @metadata: address of the array holding the SW state for the ring
604 *
605 * Allocates resources for an SGE descriptor ring, such as Tx queues,
606 * free buffer lists, or response queues. Each SGE ring requires
607 * space for its HW descriptors plus, optionally, space for the SW state
608 * associated with each HW entry (the metadata). The function returns
609 * three values: the virtual address for the HW ring (the return value
610 * of the function), the physical address of the HW ring, and the address
611 * of the SW ring.
612 */
613 static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size,
614 size_t sw_size, dma_addr_t * phys, void *metadata)
615 {
616 size_t len = nelem * elem_size;
617 void *s = NULL;
618 void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL);
619
620 if (!p)
621 return NULL;
622 if (sw_size && metadata) {
623 s = kcalloc(nelem, sw_size, GFP_KERNEL);
624
625 if (!s) {
626 dma_free_coherent(&pdev->dev, len, p, *phys);
627 return NULL;
628 }
629 *(void **)metadata = s;
630 }
631 memset(p, 0, len);
632 return p;
633 }
634
635 /**
636 * t3_reset_qset - reset a sge qset
637 * @q: the queue set
638 *
639 * Reset the qset structure.
640 * the NAPI structure is preserved in the event of
641 * the qset's reincarnation, for example during EEH recovery.
642 */
643 static void t3_reset_qset(struct sge_qset *q)
644 {
645 if (q->adap &&
646 !(q->adap->flags & NAPI_INIT)) {
647 memset(q, 0, sizeof(*q));
648 return;
649 }
650
651 q->adap = NULL;
652 memset(&q->rspq, 0, sizeof(q->rspq));
653 memset(q->fl, 0, sizeof(struct sge_fl) * SGE_RXQ_PER_SET);
654 memset(q->txq, 0, sizeof(struct sge_txq) * SGE_TXQ_PER_SET);
655 q->txq_stopped = 0;
656 q->tx_reclaim_timer.function = NULL; /* for t3_stop_sge_timers() */
657 q->rx_reclaim_timer.function = NULL;
658 q->nomem = 0;
659 napi_free_frags(&q->napi);
660 }
661
662
663 /**
664 * free_qset - free the resources of an SGE queue set
665 * @adapter: the adapter owning the queue set
666 * @q: the queue set
667 *
668 * Release the HW and SW resources associated with an SGE queue set, such
669 * as HW contexts, packet buffers, and descriptor rings. Traffic to the
670 * queue set must be quiesced prior to calling this.
671 */
672 static void t3_free_qset(struct adapter *adapter, struct sge_qset *q)
673 {
674 int i;
675 struct pci_dev *pdev = adapter->pdev;
676
677 for (i = 0; i < SGE_RXQ_PER_SET; ++i)
678 if (q->fl[i].desc) {
679 spin_lock_irq(&adapter->sge.reg_lock);
680 t3_sge_disable_fl(adapter, q->fl[i].cntxt_id);
681 spin_unlock_irq(&adapter->sge.reg_lock);
682 free_rx_bufs(pdev, &q->fl[i]);
683 kfree(q->fl[i].sdesc);
684 dma_free_coherent(&pdev->dev,
685 q->fl[i].size *
686 sizeof(struct rx_desc), q->fl[i].desc,
687 q->fl[i].phys_addr);
688 }
689
690 for (i = 0; i < SGE_TXQ_PER_SET; ++i)
691 if (q->txq[i].desc) {
692 spin_lock_irq(&adapter->sge.reg_lock);
693 t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0);
694 spin_unlock_irq(&adapter->sge.reg_lock);
695 if (q->txq[i].sdesc) {
696 free_tx_desc(adapter, &q->txq[i],
697 q->txq[i].in_use);
698 kfree(q->txq[i].sdesc);
699 }
700 dma_free_coherent(&pdev->dev,
701 q->txq[i].size *
702 sizeof(struct tx_desc),
703 q->txq[i].desc, q->txq[i].phys_addr);
704 __skb_queue_purge(&q->txq[i].sendq);
705 }
706
707 if (q->rspq.desc) {
708 spin_lock_irq(&adapter->sge.reg_lock);
709 t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id);
710 spin_unlock_irq(&adapter->sge.reg_lock);
711 dma_free_coherent(&pdev->dev,
712 q->rspq.size * sizeof(struct rsp_desc),
713 q->rspq.desc, q->rspq.phys_addr);
714 }
715
716 t3_reset_qset(q);
717 }
718
719 /**
720 * init_qset_cntxt - initialize an SGE queue set context info
721 * @qs: the queue set
722 * @id: the queue set id
723 *
724 * Initializes the TIDs and context ids for the queues of a queue set.
725 */
726 static void init_qset_cntxt(struct sge_qset *qs, unsigned int id)
727 {
728 qs->rspq.cntxt_id = id;
729 qs->fl[0].cntxt_id = 2 * id;
730 qs->fl[1].cntxt_id = 2 * id + 1;
731 qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id;
732 qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id;
733 qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id;
734 qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id;
735 qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id;
736 }
737
738 /**
739 * sgl_len - calculates the size of an SGL of the given capacity
740 * @n: the number of SGL entries
741 *
742 * Calculates the number of flits needed for a scatter/gather list that
743 * can hold the given number of entries.
744 */
745 static inline unsigned int sgl_len(unsigned int n)
746 {
747 /* alternatively: 3 * (n / 2) + 2 * (n & 1) */
748 return (3 * n) / 2 + (n & 1);
749 }
750
751 /**
752 * flits_to_desc - returns the num of Tx descriptors for the given flits
753 * @n: the number of flits
754 *
755 * Calculates the number of Tx descriptors needed for the supplied number
756 * of flits.
757 */
758 static inline unsigned int flits_to_desc(unsigned int n)
759 {
760 BUG_ON(n >= ARRAY_SIZE(flit_desc_map));
761 return flit_desc_map[n];
762 }
763
764 /**
765 * get_packet - return the next ingress packet buffer from a free list
766 * @adap: the adapter that received the packet
767 * @fl: the SGE free list holding the packet
768 * @len: the packet length including any SGE padding
769 * @drop_thres: # of remaining buffers before we start dropping packets
770 *
771 * Get the next packet from a free list and complete setup of the
772 * sk_buff. If the packet is small we make a copy and recycle the
773 * original buffer, otherwise we use the original buffer itself. If a
774 * positive drop threshold is supplied packets are dropped and their
775 * buffers recycled if (a) the number of remaining buffers is under the
776 * threshold and the packet is too big to copy, or (b) the packet should
777 * be copied but there is no memory for the copy.
778 */
779 static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl,
780 unsigned int len, unsigned int drop_thres)
781 {
782 struct sk_buff *skb = NULL;
783 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
784
785 prefetch(sd->skb->data);
786 fl->credits--;
787
788 if (len <= SGE_RX_COPY_THRES) {
789 skb = alloc_skb(len, GFP_ATOMIC);
790 if (likely(skb != NULL)) {
791 __skb_put(skb, len);
792 pci_dma_sync_single_for_cpu(adap->pdev,
793 dma_unmap_addr(sd, dma_addr), len,
794 PCI_DMA_FROMDEVICE);
795 memcpy(skb->data, sd->skb->data, len);
796 pci_dma_sync_single_for_device(adap->pdev,
797 dma_unmap_addr(sd, dma_addr), len,
798 PCI_DMA_FROMDEVICE);
799 } else if (!drop_thres)
800 goto use_orig_buf;
801 recycle:
802 recycle_rx_buf(adap, fl, fl->cidx);
803 return skb;
804 }
805
806 if (unlikely(fl->credits < drop_thres) &&
807 refill_fl(adap, fl, min(MAX_RX_REFILL, fl->size - fl->credits - 1),
808 GFP_ATOMIC | __GFP_COMP) == 0)
809 goto recycle;
810
811 use_orig_buf:
812 pci_unmap_single(adap->pdev, dma_unmap_addr(sd, dma_addr),
813 fl->buf_size, PCI_DMA_FROMDEVICE);
814 skb = sd->skb;
815 skb_put(skb, len);
816 __refill_fl(adap, fl);
817 return skb;
818 }
819
820 /**
821 * get_packet_pg - return the next ingress packet buffer from a free list
822 * @adap: the adapter that received the packet
823 * @fl: the SGE free list holding the packet
824 * @len: the packet length including any SGE padding
825 * @drop_thres: # of remaining buffers before we start dropping packets
826 *
827 * Get the next packet from a free list populated with page chunks.
828 * If the packet is small we make a copy and recycle the original buffer,
829 * otherwise we attach the original buffer as a page fragment to a fresh
830 * sk_buff. If a positive drop threshold is supplied packets are dropped
831 * and their buffers recycled if (a) the number of remaining buffers is
832 * under the threshold and the packet is too big to copy, or (b) there's
833 * no system memory.
834 *
835 * Note: this function is similar to @get_packet but deals with Rx buffers
836 * that are page chunks rather than sk_buffs.
837 */
838 static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl,
839 struct sge_rspq *q, unsigned int len,
840 unsigned int drop_thres)
841 {
842 struct sk_buff *newskb, *skb;
843 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
844
845 dma_addr_t dma_addr = dma_unmap_addr(sd, dma_addr);
846
847 newskb = skb = q->pg_skb;
848 if (!skb && (len <= SGE_RX_COPY_THRES)) {
849 newskb = alloc_skb(len, GFP_ATOMIC);
850 if (likely(newskb != NULL)) {
851 __skb_put(newskb, len);
852 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
853 PCI_DMA_FROMDEVICE);
854 memcpy(newskb->data, sd->pg_chunk.va, len);
855 pci_dma_sync_single_for_device(adap->pdev, dma_addr,
856 len,
857 PCI_DMA_FROMDEVICE);
858 } else if (!drop_thres)
859 return NULL;
860 recycle:
861 fl->credits--;
862 recycle_rx_buf(adap, fl, fl->cidx);
863 q->rx_recycle_buf++;
864 return newskb;
865 }
866
867 if (unlikely(q->rx_recycle_buf || (!skb && fl->credits <= drop_thres)))
868 goto recycle;
869
870 prefetch(sd->pg_chunk.p_cnt);
871
872 if (!skb)
873 newskb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC);
874
875 if (unlikely(!newskb)) {
876 if (!drop_thres)
877 return NULL;
878 goto recycle;
879 }
880
881 pci_dma_sync_single_for_cpu(adap->pdev, dma_addr, len,
882 PCI_DMA_FROMDEVICE);
883 (*sd->pg_chunk.p_cnt)--;
884 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
885 pci_unmap_page(adap->pdev,
886 sd->pg_chunk.mapping,
887 fl->alloc_size,
888 PCI_DMA_FROMDEVICE);
889 if (!skb) {
890 __skb_put(newskb, SGE_RX_PULL_LEN);
891 memcpy(newskb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN);
892 skb_fill_page_desc(newskb, 0, sd->pg_chunk.page,
893 sd->pg_chunk.offset + SGE_RX_PULL_LEN,
894 len - SGE_RX_PULL_LEN);
895 newskb->len = len;
896 newskb->data_len = len - SGE_RX_PULL_LEN;
897 newskb->truesize += newskb->data_len;
898 } else {
899 skb_fill_page_desc(newskb, skb_shinfo(newskb)->nr_frags,
900 sd->pg_chunk.page,
901 sd->pg_chunk.offset, len);
902 newskb->len += len;
903 newskb->data_len += len;
904 newskb->truesize += len;
905 }
906
907 fl->credits--;
908 /*
909 * We do not refill FLs here, we let the caller do it to overlap a
910 * prefetch.
911 */
912 return newskb;
913 }
914
915 /**
916 * get_imm_packet - return the next ingress packet buffer from a response
917 * @resp: the response descriptor containing the packet data
918 *
919 * Return a packet containing the immediate data of the given response.
920 */
921 static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp)
922 {
923 struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC);
924
925 if (skb) {
926 __skb_put(skb, IMMED_PKT_SIZE);
927 skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE);
928 }
929 return skb;
930 }
931
932 /**
933 * calc_tx_descs - calculate the number of Tx descriptors for a packet
934 * @skb: the packet
935 *
936 * Returns the number of Tx descriptors needed for the given Ethernet
937 * packet. Ethernet packets require addition of WR and CPL headers.
938 */
939 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
940 {
941 unsigned int flits;
942
943 if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt))
944 return 1;
945
946 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2;
947 if (skb_shinfo(skb)->gso_size)
948 flits++;
949 return flits_to_desc(flits);
950 }
951
952 /**
953 * make_sgl - populate a scatter/gather list for a packet
954 * @skb: the packet
955 * @sgp: the SGL to populate
956 * @start: start address of skb main body data to include in the SGL
957 * @len: length of skb main body data to include in the SGL
958 * @pdev: the PCI device
959 *
960 * Generates a scatter/gather list for the buffers that make up a packet
961 * and returns the SGL size in 8-byte words. The caller must size the SGL
962 * appropriately.
963 */
964 static inline unsigned int make_sgl(const struct sk_buff *skb,
965 struct sg_ent *sgp, unsigned char *start,
966 unsigned int len, struct pci_dev *pdev)
967 {
968 dma_addr_t mapping;
969 unsigned int i, j = 0, nfrags;
970
971 if (len) {
972 mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE);
973 sgp->len[0] = cpu_to_be32(len);
974 sgp->addr[0] = cpu_to_be64(mapping);
975 j = 1;
976 }
977
978 nfrags = skb_shinfo(skb)->nr_frags;
979 for (i = 0; i < nfrags; i++) {
980 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
981
982 mapping = skb_frag_dma_map(&pdev->dev, frag, 0, skb_frag_size(frag),
983 DMA_TO_DEVICE);
984 sgp->len[j] = cpu_to_be32(skb_frag_size(frag));
985 sgp->addr[j] = cpu_to_be64(mapping);
986 j ^= 1;
987 if (j == 0)
988 ++sgp;
989 }
990 if (j)
991 sgp->len[j] = 0;
992 return ((nfrags + (len != 0)) * 3) / 2 + j;
993 }
994
995 /**
996 * check_ring_tx_db - check and potentially ring a Tx queue's doorbell
997 * @adap: the adapter
998 * @q: the Tx queue
999 *
1000 * Ring the doorbel if a Tx queue is asleep. There is a natural race,
1001 * where the HW is going to sleep just after we checked, however,
1002 * then the interrupt handler will detect the outstanding TX packet
1003 * and ring the doorbell for us.
1004 *
1005 * When GTS is disabled we unconditionally ring the doorbell.
1006 */
1007 static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q)
1008 {
1009 #if USE_GTS
1010 clear_bit(TXQ_LAST_PKT_DB, &q->flags);
1011 if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) {
1012 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1013 t3_write_reg(adap, A_SG_KDOORBELL,
1014 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1015 }
1016 #else
1017 wmb(); /* write descriptors before telling HW */
1018 t3_write_reg(adap, A_SG_KDOORBELL,
1019 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1020 #endif
1021 }
1022
1023 static inline void wr_gen2(struct tx_desc *d, unsigned int gen)
1024 {
1025 #if SGE_NUM_GENBITS == 2
1026 d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen);
1027 #endif
1028 }
1029
1030 /**
1031 * write_wr_hdr_sgl - write a WR header and, optionally, SGL
1032 * @ndesc: number of Tx descriptors spanned by the SGL
1033 * @skb: the packet corresponding to the WR
1034 * @d: first Tx descriptor to be written
1035 * @pidx: index of above descriptors
1036 * @q: the SGE Tx queue
1037 * @sgl: the SGL
1038 * @flits: number of flits to the start of the SGL in the first descriptor
1039 * @sgl_flits: the SGL size in flits
1040 * @gen: the Tx descriptor generation
1041 * @wr_hi: top 32 bits of WR header based on WR type (big endian)
1042 * @wr_lo: low 32 bits of WR header based on WR type (big endian)
1043 *
1044 * Write a work request header and an associated SGL. If the SGL is
1045 * small enough to fit into one Tx descriptor it has already been written
1046 * and we just need to write the WR header. Otherwise we distribute the
1047 * SGL across the number of descriptors it spans.
1048 */
1049 static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb,
1050 struct tx_desc *d, unsigned int pidx,
1051 const struct sge_txq *q,
1052 const struct sg_ent *sgl,
1053 unsigned int flits, unsigned int sgl_flits,
1054 unsigned int gen, __be32 wr_hi,
1055 __be32 wr_lo)
1056 {
1057 struct work_request_hdr *wrp = (struct work_request_hdr *)d;
1058 struct tx_sw_desc *sd = &q->sdesc[pidx];
1059
1060 sd->skb = skb;
1061 if (need_skb_unmap()) {
1062 sd->fragidx = 0;
1063 sd->addr_idx = 0;
1064 sd->sflit = flits;
1065 }
1066
1067 if (likely(ndesc == 1)) {
1068 sd->eop = 1;
1069 wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) |
1070 V_WR_SGLSFLT(flits)) | wr_hi;
1071 wmb();
1072 wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) |
1073 V_WR_GEN(gen)) | wr_lo;
1074 wr_gen2(d, gen);
1075 } else {
1076 unsigned int ogen = gen;
1077 const u64 *fp = (const u64 *)sgl;
1078 struct work_request_hdr *wp = wrp;
1079
1080 wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) |
1081 V_WR_SGLSFLT(flits)) | wr_hi;
1082
1083 while (sgl_flits) {
1084 unsigned int avail = WR_FLITS - flits;
1085
1086 if (avail > sgl_flits)
1087 avail = sgl_flits;
1088 memcpy(&d->flit[flits], fp, avail * sizeof(*fp));
1089 sgl_flits -= avail;
1090 ndesc--;
1091 if (!sgl_flits)
1092 break;
1093
1094 fp += avail;
1095 d++;
1096 sd->eop = 0;
1097 sd++;
1098 if (++pidx == q->size) {
1099 pidx = 0;
1100 gen ^= 1;
1101 d = q->desc;
1102 sd = q->sdesc;
1103 }
1104
1105 sd->skb = skb;
1106 wrp = (struct work_request_hdr *)d;
1107 wrp->wr_hi = htonl(V_WR_DATATYPE(1) |
1108 V_WR_SGLSFLT(1)) | wr_hi;
1109 wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS,
1110 sgl_flits + 1)) |
1111 V_WR_GEN(gen)) | wr_lo;
1112 wr_gen2(d, gen);
1113 flits = 1;
1114 }
1115 sd->eop = 1;
1116 wrp->wr_hi |= htonl(F_WR_EOP);
1117 wmb();
1118 wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo;
1119 wr_gen2((struct tx_desc *)wp, ogen);
1120 WARN_ON(ndesc != 0);
1121 }
1122 }
1123
1124 /**
1125 * write_tx_pkt_wr - write a TX_PKT work request
1126 * @adap: the adapter
1127 * @skb: the packet to send
1128 * @pi: the egress interface
1129 * @pidx: index of the first Tx descriptor to write
1130 * @gen: the generation value to use
1131 * @q: the Tx queue
1132 * @ndesc: number of descriptors the packet will occupy
1133 * @compl: the value of the COMPL bit to use
1134 *
1135 * Generate a TX_PKT work request to send the supplied packet.
1136 */
1137 static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb,
1138 const struct port_info *pi,
1139 unsigned int pidx, unsigned int gen,
1140 struct sge_txq *q, unsigned int ndesc,
1141 unsigned int compl)
1142 {
1143 unsigned int flits, sgl_flits, cntrl, tso_info;
1144 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1145 struct tx_desc *d = &q->desc[pidx];
1146 struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d;
1147
1148 cpl->len = htonl(skb->len);
1149 cntrl = V_TXPKT_INTF(pi->port_id);
1150
1151 if (vlan_tx_tag_present(skb))
1152 cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb));
1153
1154 tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size);
1155 if (tso_info) {
1156 int eth_type;
1157 struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl;
1158
1159 d->flit[2] = 0;
1160 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO);
1161 hdr->cntrl = htonl(cntrl);
1162 eth_type = skb_network_offset(skb) == ETH_HLEN ?
1163 CPL_ETH_II : CPL_ETH_II_VLAN;
1164 tso_info |= V_LSO_ETH_TYPE(eth_type) |
1165 V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) |
1166 V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff);
1167 hdr->lso_info = htonl(tso_info);
1168 flits = 3;
1169 } else {
1170 cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT);
1171 cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */
1172 cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL);
1173 cpl->cntrl = htonl(cntrl);
1174
1175 if (skb->len <= WR_LEN - sizeof(*cpl)) {
1176 q->sdesc[pidx].skb = NULL;
1177 if (!skb->data_len)
1178 skb_copy_from_linear_data(skb, &d->flit[2],
1179 skb->len);
1180 else
1181 skb_copy_bits(skb, 0, &d->flit[2], skb->len);
1182
1183 flits = (skb->len + 7) / 8 + 2;
1184 cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) |
1185 V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT)
1186 | F_WR_SOP | F_WR_EOP | compl);
1187 wmb();
1188 cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) |
1189 V_WR_TID(q->token));
1190 wr_gen2(d, gen);
1191 kfree_skb(skb);
1192 return;
1193 }
1194
1195 flits = 2;
1196 }
1197
1198 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1199 sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev);
1200
1201 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen,
1202 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl),
1203 htonl(V_WR_TID(q->token)));
1204 }
1205
1206 static inline void t3_stop_tx_queue(struct netdev_queue *txq,
1207 struct sge_qset *qs, struct sge_txq *q)
1208 {
1209 netif_tx_stop_queue(txq);
1210 set_bit(TXQ_ETH, &qs->txq_stopped);
1211 q->stops++;
1212 }
1213
1214 /**
1215 * eth_xmit - add a packet to the Ethernet Tx queue
1216 * @skb: the packet
1217 * @dev: the egress net device
1218 *
1219 * Add a packet to an SGE Tx queue. Runs with softirqs disabled.
1220 */
1221 netdev_tx_t t3_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1222 {
1223 int qidx;
1224 unsigned int ndesc, pidx, credits, gen, compl;
1225 const struct port_info *pi = netdev_priv(dev);
1226 struct adapter *adap = pi->adapter;
1227 struct netdev_queue *txq;
1228 struct sge_qset *qs;
1229 struct sge_txq *q;
1230
1231 /*
1232 * The chip min packet length is 9 octets but play safe and reject
1233 * anything shorter than an Ethernet header.
1234 */
1235 if (unlikely(skb->len < ETH_HLEN)) {
1236 dev_kfree_skb(skb);
1237 return NETDEV_TX_OK;
1238 }
1239
1240 qidx = skb_get_queue_mapping(skb);
1241 qs = &pi->qs[qidx];
1242 q = &qs->txq[TXQ_ETH];
1243 txq = netdev_get_tx_queue(dev, qidx);
1244
1245 reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1246
1247 credits = q->size - q->in_use;
1248 ndesc = calc_tx_descs(skb);
1249
1250 if (unlikely(credits < ndesc)) {
1251 t3_stop_tx_queue(txq, qs, q);
1252 dev_err(&adap->pdev->dev,
1253 "%s: Tx ring %u full while queue awake!\n",
1254 dev->name, q->cntxt_id & 7);
1255 return NETDEV_TX_BUSY;
1256 }
1257
1258 q->in_use += ndesc;
1259 if (unlikely(credits - ndesc < q->stop_thres)) {
1260 t3_stop_tx_queue(txq, qs, q);
1261
1262 if (should_restart_tx(q) &&
1263 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1264 q->restarts++;
1265 netif_tx_start_queue(txq);
1266 }
1267 }
1268
1269 gen = q->gen;
1270 q->unacked += ndesc;
1271 compl = (q->unacked & 8) << (S_WR_COMPL - 3);
1272 q->unacked &= 7;
1273 pidx = q->pidx;
1274 q->pidx += ndesc;
1275 if (q->pidx >= q->size) {
1276 q->pidx -= q->size;
1277 q->gen ^= 1;
1278 }
1279
1280 /* update port statistics */
1281 if (skb->ip_summed == CHECKSUM_PARTIAL)
1282 qs->port_stats[SGE_PSTAT_TX_CSUM]++;
1283 if (skb_shinfo(skb)->gso_size)
1284 qs->port_stats[SGE_PSTAT_TSO]++;
1285 if (vlan_tx_tag_present(skb))
1286 qs->port_stats[SGE_PSTAT_VLANINS]++;
1287
1288 /*
1289 * We do not use Tx completion interrupts to free DMAd Tx packets.
1290 * This is good for performance but means that we rely on new Tx
1291 * packets arriving to run the destructors of completed packets,
1292 * which open up space in their sockets' send queues. Sometimes
1293 * we do not get such new packets causing Tx to stall. A single
1294 * UDP transmitter is a good example of this situation. We have
1295 * a clean up timer that periodically reclaims completed packets
1296 * but it doesn't run often enough (nor do we want it to) to prevent
1297 * lengthy stalls. A solution to this problem is to run the
1298 * destructor early, after the packet is queued but before it's DMAd.
1299 * A cons is that we lie to socket memory accounting, but the amount
1300 * of extra memory is reasonable (limited by the number of Tx
1301 * descriptors), the packets do actually get freed quickly by new
1302 * packets almost always, and for protocols like TCP that wait for
1303 * acks to really free up the data the extra memory is even less.
1304 * On the positive side we run the destructors on the sending CPU
1305 * rather than on a potentially different completing CPU, usually a
1306 * good thing. We also run them without holding our Tx queue lock,
1307 * unlike what reclaim_completed_tx() would otherwise do.
1308 *
1309 * Run the destructor before telling the DMA engine about the packet
1310 * to make sure it doesn't complete and get freed prematurely.
1311 */
1312 if (likely(!skb_shared(skb)))
1313 skb_orphan(skb);
1314
1315 write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl);
1316 check_ring_tx_db(adap, q);
1317 return NETDEV_TX_OK;
1318 }
1319
1320 /**
1321 * write_imm - write a packet into a Tx descriptor as immediate data
1322 * @d: the Tx descriptor to write
1323 * @skb: the packet
1324 * @len: the length of packet data to write as immediate data
1325 * @gen: the generation bit value to write
1326 *
1327 * Writes a packet as immediate data into a Tx descriptor. The packet
1328 * contains a work request at its beginning. We must write the packet
1329 * carefully so the SGE doesn't read it accidentally before it's written
1330 * in its entirety.
1331 */
1332 static inline void write_imm(struct tx_desc *d, struct sk_buff *skb,
1333 unsigned int len, unsigned int gen)
1334 {
1335 struct work_request_hdr *from = (struct work_request_hdr *)skb->data;
1336 struct work_request_hdr *to = (struct work_request_hdr *)d;
1337
1338 if (likely(!skb->data_len))
1339 memcpy(&to[1], &from[1], len - sizeof(*from));
1340 else
1341 skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from));
1342
1343 to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP |
1344 V_WR_BCNTLFLT(len & 7));
1345 wmb();
1346 to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) |
1347 V_WR_LEN((len + 7) / 8));
1348 wr_gen2(d, gen);
1349 kfree_skb(skb);
1350 }
1351
1352 /**
1353 * check_desc_avail - check descriptor availability on a send queue
1354 * @adap: the adapter
1355 * @q: the send queue
1356 * @skb: the packet needing the descriptors
1357 * @ndesc: the number of Tx descriptors needed
1358 * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL)
1359 *
1360 * Checks if the requested number of Tx descriptors is available on an
1361 * SGE send queue. If the queue is already suspended or not enough
1362 * descriptors are available the packet is queued for later transmission.
1363 * Must be called with the Tx queue locked.
1364 *
1365 * Returns 0 if enough descriptors are available, 1 if there aren't
1366 * enough descriptors and the packet has been queued, and 2 if the caller
1367 * needs to retry because there weren't enough descriptors at the
1368 * beginning of the call but some freed up in the mean time.
1369 */
1370 static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q,
1371 struct sk_buff *skb, unsigned int ndesc,
1372 unsigned int qid)
1373 {
1374 if (unlikely(!skb_queue_empty(&q->sendq))) {
1375 addq_exit:__skb_queue_tail(&q->sendq, skb);
1376 return 1;
1377 }
1378 if (unlikely(q->size - q->in_use < ndesc)) {
1379 struct sge_qset *qs = txq_to_qset(q, qid);
1380
1381 set_bit(qid, &qs->txq_stopped);
1382 smp_mb__after_clear_bit();
1383
1384 if (should_restart_tx(q) &&
1385 test_and_clear_bit(qid, &qs->txq_stopped))
1386 return 2;
1387
1388 q->stops++;
1389 goto addq_exit;
1390 }
1391 return 0;
1392 }
1393
1394 /**
1395 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1396 * @q: the SGE control Tx queue
1397 *
1398 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1399 * that send only immediate data (presently just the control queues) and
1400 * thus do not have any sk_buffs to release.
1401 */
1402 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1403 {
1404 unsigned int reclaim = q->processed - q->cleaned;
1405
1406 q->in_use -= reclaim;
1407 q->cleaned += reclaim;
1408 }
1409
1410 static inline int immediate(const struct sk_buff *skb)
1411 {
1412 return skb->len <= WR_LEN;
1413 }
1414
1415 /**
1416 * ctrl_xmit - send a packet through an SGE control Tx queue
1417 * @adap: the adapter
1418 * @q: the control queue
1419 * @skb: the packet
1420 *
1421 * Send a packet through an SGE control Tx queue. Packets sent through
1422 * a control queue must fit entirely as immediate data in a single Tx
1423 * descriptor and have no page fragments.
1424 */
1425 static int ctrl_xmit(struct adapter *adap, struct sge_txq *q,
1426 struct sk_buff *skb)
1427 {
1428 int ret;
1429 struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data;
1430
1431 if (unlikely(!immediate(skb))) {
1432 WARN_ON(1);
1433 dev_kfree_skb(skb);
1434 return NET_XMIT_SUCCESS;
1435 }
1436
1437 wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP);
1438 wrp->wr_lo = htonl(V_WR_TID(q->token));
1439
1440 spin_lock(&q->lock);
1441 again:reclaim_completed_tx_imm(q);
1442
1443 ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL);
1444 if (unlikely(ret)) {
1445 if (ret == 1) {
1446 spin_unlock(&q->lock);
1447 return NET_XMIT_CN;
1448 }
1449 goto again;
1450 }
1451
1452 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1453
1454 q->in_use++;
1455 if (++q->pidx >= q->size) {
1456 q->pidx = 0;
1457 q->gen ^= 1;
1458 }
1459 spin_unlock(&q->lock);
1460 wmb();
1461 t3_write_reg(adap, A_SG_KDOORBELL,
1462 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1463 return NET_XMIT_SUCCESS;
1464 }
1465
1466 /**
1467 * restart_ctrlq - restart a suspended control queue
1468 * @qs: the queue set cotaining the control queue
1469 *
1470 * Resumes transmission on a suspended Tx control queue.
1471 */
1472 static void restart_ctrlq(unsigned long data)
1473 {
1474 struct sk_buff *skb;
1475 struct sge_qset *qs = (struct sge_qset *)data;
1476 struct sge_txq *q = &qs->txq[TXQ_CTRL];
1477
1478 spin_lock(&q->lock);
1479 again:reclaim_completed_tx_imm(q);
1480
1481 while (q->in_use < q->size &&
1482 (skb = __skb_dequeue(&q->sendq)) != NULL) {
1483
1484 write_imm(&q->desc[q->pidx], skb, skb->len, q->gen);
1485
1486 if (++q->pidx >= q->size) {
1487 q->pidx = 0;
1488 q->gen ^= 1;
1489 }
1490 q->in_use++;
1491 }
1492
1493 if (!skb_queue_empty(&q->sendq)) {
1494 set_bit(TXQ_CTRL, &qs->txq_stopped);
1495 smp_mb__after_clear_bit();
1496
1497 if (should_restart_tx(q) &&
1498 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped))
1499 goto again;
1500 q->stops++;
1501 }
1502
1503 spin_unlock(&q->lock);
1504 wmb();
1505 t3_write_reg(qs->adap, A_SG_KDOORBELL,
1506 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1507 }
1508
1509 /*
1510 * Send a management message through control queue 0
1511 */
1512 int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1513 {
1514 int ret;
1515 local_bh_disable();
1516 ret = ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb);
1517 local_bh_enable();
1518
1519 return ret;
1520 }
1521
1522 /**
1523 * deferred_unmap_destructor - unmap a packet when it is freed
1524 * @skb: the packet
1525 *
1526 * This is the packet destructor used for Tx packets that need to remain
1527 * mapped until they are freed rather than until their Tx descriptors are
1528 * freed.
1529 */
1530 static void deferred_unmap_destructor(struct sk_buff *skb)
1531 {
1532 int i;
1533 const dma_addr_t *p;
1534 const struct skb_shared_info *si;
1535 const struct deferred_unmap_info *dui;
1536
1537 dui = (struct deferred_unmap_info *)skb->head;
1538 p = dui->addr;
1539
1540 if (skb_tail_pointer(skb) - skb_transport_header(skb))
1541 pci_unmap_single(dui->pdev, *p++, skb_tail_pointer(skb) -
1542 skb_transport_header(skb), PCI_DMA_TODEVICE);
1543
1544 si = skb_shinfo(skb);
1545 for (i = 0; i < si->nr_frags; i++)
1546 pci_unmap_page(dui->pdev, *p++, skb_frag_size(&si->frags[i]),
1547 PCI_DMA_TODEVICE);
1548 }
1549
1550 static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev,
1551 const struct sg_ent *sgl, int sgl_flits)
1552 {
1553 dma_addr_t *p;
1554 struct deferred_unmap_info *dui;
1555
1556 dui = (struct deferred_unmap_info *)skb->head;
1557 dui->pdev = pdev;
1558 for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) {
1559 *p++ = be64_to_cpu(sgl->addr[0]);
1560 *p++ = be64_to_cpu(sgl->addr[1]);
1561 }
1562 if (sgl_flits)
1563 *p = be64_to_cpu(sgl->addr[0]);
1564 }
1565
1566 /**
1567 * write_ofld_wr - write an offload work request
1568 * @adap: the adapter
1569 * @skb: the packet to send
1570 * @q: the Tx queue
1571 * @pidx: index of the first Tx descriptor to write
1572 * @gen: the generation value to use
1573 * @ndesc: number of descriptors the packet will occupy
1574 *
1575 * Write an offload work request to send the supplied packet. The packet
1576 * data already carry the work request with most fields populated.
1577 */
1578 static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb,
1579 struct sge_txq *q, unsigned int pidx,
1580 unsigned int gen, unsigned int ndesc)
1581 {
1582 unsigned int sgl_flits, flits;
1583 struct work_request_hdr *from;
1584 struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1];
1585 struct tx_desc *d = &q->desc[pidx];
1586
1587 if (immediate(skb)) {
1588 q->sdesc[pidx].skb = NULL;
1589 write_imm(d, skb, skb->len, gen);
1590 return;
1591 }
1592
1593 /* Only TX_DATA builds SGLs */
1594
1595 from = (struct work_request_hdr *)skb->data;
1596 memcpy(&d->flit[1], &from[1],
1597 skb_transport_offset(skb) - sizeof(*from));
1598
1599 flits = skb_transport_offset(skb) / 8;
1600 sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl;
1601 sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb),
1602 skb->tail - skb->transport_header,
1603 adap->pdev);
1604 if (need_skb_unmap()) {
1605 setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits);
1606 skb->destructor = deferred_unmap_destructor;
1607 }
1608
1609 write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits,
1610 gen, from->wr_hi, from->wr_lo);
1611 }
1612
1613 /**
1614 * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet
1615 * @skb: the packet
1616 *
1617 * Returns the number of Tx descriptors needed for the given offload
1618 * packet. These packets are already fully constructed.
1619 */
1620 static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb)
1621 {
1622 unsigned int flits, cnt;
1623
1624 if (skb->len <= WR_LEN)
1625 return 1; /* packet fits as immediate data */
1626
1627 flits = skb_transport_offset(skb) / 8; /* headers */
1628 cnt = skb_shinfo(skb)->nr_frags;
1629 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1630 cnt++;
1631 return flits_to_desc(flits + sgl_len(cnt));
1632 }
1633
1634 /**
1635 * ofld_xmit - send a packet through an offload queue
1636 * @adap: the adapter
1637 * @q: the Tx offload queue
1638 * @skb: the packet
1639 *
1640 * Send an offload packet through an SGE offload queue.
1641 */
1642 static int ofld_xmit(struct adapter *adap, struct sge_txq *q,
1643 struct sk_buff *skb)
1644 {
1645 int ret;
1646 unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen;
1647
1648 spin_lock(&q->lock);
1649 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1650
1651 ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD);
1652 if (unlikely(ret)) {
1653 if (ret == 1) {
1654 skb->priority = ndesc; /* save for restart */
1655 spin_unlock(&q->lock);
1656 return NET_XMIT_CN;
1657 }
1658 goto again;
1659 }
1660
1661 gen = q->gen;
1662 q->in_use += ndesc;
1663 pidx = q->pidx;
1664 q->pidx += ndesc;
1665 if (q->pidx >= q->size) {
1666 q->pidx -= q->size;
1667 q->gen ^= 1;
1668 }
1669 spin_unlock(&q->lock);
1670
1671 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1672 check_ring_tx_db(adap, q);
1673 return NET_XMIT_SUCCESS;
1674 }
1675
1676 /**
1677 * restart_offloadq - restart a suspended offload queue
1678 * @qs: the queue set cotaining the offload queue
1679 *
1680 * Resumes transmission on a suspended Tx offload queue.
1681 */
1682 static void restart_offloadq(unsigned long data)
1683 {
1684 struct sk_buff *skb;
1685 struct sge_qset *qs = (struct sge_qset *)data;
1686 struct sge_txq *q = &qs->txq[TXQ_OFLD];
1687 const struct port_info *pi = netdev_priv(qs->netdev);
1688 struct adapter *adap = pi->adapter;
1689
1690 spin_lock(&q->lock);
1691 again: reclaim_completed_tx(adap, q, TX_RECLAIM_CHUNK);
1692
1693 while ((skb = skb_peek(&q->sendq)) != NULL) {
1694 unsigned int gen, pidx;
1695 unsigned int ndesc = skb->priority;
1696
1697 if (unlikely(q->size - q->in_use < ndesc)) {
1698 set_bit(TXQ_OFLD, &qs->txq_stopped);
1699 smp_mb__after_clear_bit();
1700
1701 if (should_restart_tx(q) &&
1702 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped))
1703 goto again;
1704 q->stops++;
1705 break;
1706 }
1707
1708 gen = q->gen;
1709 q->in_use += ndesc;
1710 pidx = q->pidx;
1711 q->pidx += ndesc;
1712 if (q->pidx >= q->size) {
1713 q->pidx -= q->size;
1714 q->gen ^= 1;
1715 }
1716 __skb_unlink(skb, &q->sendq);
1717 spin_unlock(&q->lock);
1718
1719 write_ofld_wr(adap, skb, q, pidx, gen, ndesc);
1720 spin_lock(&q->lock);
1721 }
1722 spin_unlock(&q->lock);
1723
1724 #if USE_GTS
1725 set_bit(TXQ_RUNNING, &q->flags);
1726 set_bit(TXQ_LAST_PKT_DB, &q->flags);
1727 #endif
1728 wmb();
1729 t3_write_reg(adap, A_SG_KDOORBELL,
1730 F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id));
1731 }
1732
1733 /**
1734 * queue_set - return the queue set a packet should use
1735 * @skb: the packet
1736 *
1737 * Maps a packet to the SGE queue set it should use. The desired queue
1738 * set is carried in bits 1-3 in the packet's priority.
1739 */
1740 static inline int queue_set(const struct sk_buff *skb)
1741 {
1742 return skb->priority >> 1;
1743 }
1744
1745 /**
1746 * is_ctrl_pkt - return whether an offload packet is a control packet
1747 * @skb: the packet
1748 *
1749 * Determines whether an offload packet should use an OFLD or a CTRL
1750 * Tx queue. This is indicated by bit 0 in the packet's priority.
1751 */
1752 static inline int is_ctrl_pkt(const struct sk_buff *skb)
1753 {
1754 return skb->priority & 1;
1755 }
1756
1757 /**
1758 * t3_offload_tx - send an offload packet
1759 * @tdev: the offload device to send to
1760 * @skb: the packet
1761 *
1762 * Sends an offload packet. We use the packet priority to select the
1763 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1764 * should be sent as regular or control, bits 1-3 select the queue set.
1765 */
1766 int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb)
1767 {
1768 struct adapter *adap = tdev2adap(tdev);
1769 struct sge_qset *qs = &adap->sge.qs[queue_set(skb)];
1770
1771 if (unlikely(is_ctrl_pkt(skb)))
1772 return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb);
1773
1774 return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb);
1775 }
1776
1777 /**
1778 * offload_enqueue - add an offload packet to an SGE offload receive queue
1779 * @q: the SGE response queue
1780 * @skb: the packet
1781 *
1782 * Add a new offload packet to an SGE response queue's offload packet
1783 * queue. If the packet is the first on the queue it schedules the RX
1784 * softirq to process the queue.
1785 */
1786 static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb)
1787 {
1788 int was_empty = skb_queue_empty(&q->rx_queue);
1789
1790 __skb_queue_tail(&q->rx_queue, skb);
1791
1792 if (was_empty) {
1793 struct sge_qset *qs = rspq_to_qset(q);
1794
1795 napi_schedule(&qs->napi);
1796 }
1797 }
1798
1799 /**
1800 * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts
1801 * @tdev: the offload device that will be receiving the packets
1802 * @q: the SGE response queue that assembled the bundle
1803 * @skbs: the partial bundle
1804 * @n: the number of packets in the bundle
1805 *
1806 * Delivers a (partial) bundle of Rx offload packets to an offload device.
1807 */
1808 static inline void deliver_partial_bundle(struct t3cdev *tdev,
1809 struct sge_rspq *q,
1810 struct sk_buff *skbs[], int n)
1811 {
1812 if (n) {
1813 q->offload_bundles++;
1814 tdev->recv(tdev, skbs, n);
1815 }
1816 }
1817
1818 /**
1819 * ofld_poll - NAPI handler for offload packets in interrupt mode
1820 * @dev: the network device doing the polling
1821 * @budget: polling budget
1822 *
1823 * The NAPI handler for offload packets when a response queue is serviced
1824 * by the hard interrupt handler, i.e., when it's operating in non-polling
1825 * mode. Creates small packet batches and sends them through the offload
1826 * receive handler. Batches need to be of modest size as we do prefetches
1827 * on the packets in each.
1828 */
1829 static int ofld_poll(struct napi_struct *napi, int budget)
1830 {
1831 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
1832 struct sge_rspq *q = &qs->rspq;
1833 struct adapter *adapter = qs->adap;
1834 int work_done = 0;
1835
1836 while (work_done < budget) {
1837 struct sk_buff *skb, *tmp, *skbs[RX_BUNDLE_SIZE];
1838 struct sk_buff_head queue;
1839 int ngathered;
1840
1841 spin_lock_irq(&q->lock);
1842 __skb_queue_head_init(&queue);
1843 skb_queue_splice_init(&q->rx_queue, &queue);
1844 if (skb_queue_empty(&queue)) {
1845 napi_complete(napi);
1846 spin_unlock_irq(&q->lock);
1847 return work_done;
1848 }
1849 spin_unlock_irq(&q->lock);
1850
1851 ngathered = 0;
1852 skb_queue_walk_safe(&queue, skb, tmp) {
1853 if (work_done >= budget)
1854 break;
1855 work_done++;
1856
1857 __skb_unlink(skb, &queue);
1858 prefetch(skb->data);
1859 skbs[ngathered] = skb;
1860 if (++ngathered == RX_BUNDLE_SIZE) {
1861 q->offload_bundles++;
1862 adapter->tdev.recv(&adapter->tdev, skbs,
1863 ngathered);
1864 ngathered = 0;
1865 }
1866 }
1867 if (!skb_queue_empty(&queue)) {
1868 /* splice remaining packets back onto Rx queue */
1869 spin_lock_irq(&q->lock);
1870 skb_queue_splice(&queue, &q->rx_queue);
1871 spin_unlock_irq(&q->lock);
1872 }
1873 deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered);
1874 }
1875
1876 return work_done;
1877 }
1878
1879 /**
1880 * rx_offload - process a received offload packet
1881 * @tdev: the offload device receiving the packet
1882 * @rq: the response queue that received the packet
1883 * @skb: the packet
1884 * @rx_gather: a gather list of packets if we are building a bundle
1885 * @gather_idx: index of the next available slot in the bundle
1886 *
1887 * Process an ingress offload pakcet and add it to the offload ingress
1888 * queue. Returns the index of the next available slot in the bundle.
1889 */
1890 static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq,
1891 struct sk_buff *skb, struct sk_buff *rx_gather[],
1892 unsigned int gather_idx)
1893 {
1894 skb_reset_mac_header(skb);
1895 skb_reset_network_header(skb);
1896 skb_reset_transport_header(skb);
1897
1898 if (rq->polling) {
1899 rx_gather[gather_idx++] = skb;
1900 if (gather_idx == RX_BUNDLE_SIZE) {
1901 tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE);
1902 gather_idx = 0;
1903 rq->offload_bundles++;
1904 }
1905 } else
1906 offload_enqueue(rq, skb);
1907
1908 return gather_idx;
1909 }
1910
1911 /**
1912 * restart_tx - check whether to restart suspended Tx queues
1913 * @qs: the queue set to resume
1914 *
1915 * Restarts suspended Tx queues of an SGE queue set if they have enough
1916 * free resources to resume operation.
1917 */
1918 static void restart_tx(struct sge_qset *qs)
1919 {
1920 if (test_bit(TXQ_ETH, &qs->txq_stopped) &&
1921 should_restart_tx(&qs->txq[TXQ_ETH]) &&
1922 test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) {
1923 qs->txq[TXQ_ETH].restarts++;
1924 if (netif_running(qs->netdev))
1925 netif_tx_wake_queue(qs->tx_q);
1926 }
1927
1928 if (test_bit(TXQ_OFLD, &qs->txq_stopped) &&
1929 should_restart_tx(&qs->txq[TXQ_OFLD]) &&
1930 test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) {
1931 qs->txq[TXQ_OFLD].restarts++;
1932 tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk);
1933 }
1934 if (test_bit(TXQ_CTRL, &qs->txq_stopped) &&
1935 should_restart_tx(&qs->txq[TXQ_CTRL]) &&
1936 test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) {
1937 qs->txq[TXQ_CTRL].restarts++;
1938 tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk);
1939 }
1940 }
1941
1942 /**
1943 * cxgb3_arp_process - process an ARP request probing a private IP address
1944 * @adapter: the adapter
1945 * @skb: the skbuff containing the ARP request
1946 *
1947 * Check if the ARP request is probing the private IP address
1948 * dedicated to iSCSI, generate an ARP reply if so.
1949 */
1950 static void cxgb3_arp_process(struct port_info *pi, struct sk_buff *skb)
1951 {
1952 struct net_device *dev = skb->dev;
1953 struct arphdr *arp;
1954 unsigned char *arp_ptr;
1955 unsigned char *sha;
1956 __be32 sip, tip;
1957
1958 if (!dev)
1959 return;
1960
1961 skb_reset_network_header(skb);
1962 arp = arp_hdr(skb);
1963
1964 if (arp->ar_op != htons(ARPOP_REQUEST))
1965 return;
1966
1967 arp_ptr = (unsigned char *)(arp + 1);
1968 sha = arp_ptr;
1969 arp_ptr += dev->addr_len;
1970 memcpy(&sip, arp_ptr, sizeof(sip));
1971 arp_ptr += sizeof(sip);
1972 arp_ptr += dev->addr_len;
1973 memcpy(&tip, arp_ptr, sizeof(tip));
1974
1975 if (tip != pi->iscsi_ipv4addr)
1976 return;
1977
1978 arp_send(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip, sha,
1979 pi->iscsic.mac_addr, sha);
1980
1981 }
1982
1983 static inline int is_arp(struct sk_buff *skb)
1984 {
1985 return skb->protocol == htons(ETH_P_ARP);
1986 }
1987
1988 static void cxgb3_process_iscsi_prov_pack(struct port_info *pi,
1989 struct sk_buff *skb)
1990 {
1991 if (is_arp(skb)) {
1992 cxgb3_arp_process(pi, skb);
1993 return;
1994 }
1995
1996 if (pi->iscsic.recv)
1997 pi->iscsic.recv(pi, skb);
1998
1999 }
2000
2001 /**
2002 * rx_eth - process an ingress ethernet packet
2003 * @adap: the adapter
2004 * @rq: the response queue that received the packet
2005 * @skb: the packet
2006 * @pad: amount of padding at the start of the buffer
2007 *
2008 * Process an ingress ethernet pakcet and deliver it to the stack.
2009 * The padding is 2 if the packet was delivered in an Rx buffer and 0
2010 * if it was immediate data in a response.
2011 */
2012 static void rx_eth(struct adapter *adap, struct sge_rspq *rq,
2013 struct sk_buff *skb, int pad, int lro)
2014 {
2015 struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad);
2016 struct sge_qset *qs = rspq_to_qset(rq);
2017 struct port_info *pi;
2018
2019 skb_pull(skb, sizeof(*p) + pad);
2020 skb->protocol = eth_type_trans(skb, adap->port[p->iff]);
2021 pi = netdev_priv(skb->dev);
2022 if ((skb->dev->features & NETIF_F_RXCSUM) && p->csum_valid &&
2023 p->csum == htons(0xffff) && !p->fragment) {
2024 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2025 skb->ip_summed = CHECKSUM_UNNECESSARY;
2026 } else
2027 skb_checksum_none_assert(skb);
2028 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2029
2030 if (p->vlan_valid) {
2031 qs->port_stats[SGE_PSTAT_VLANEX]++;
2032 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(p->vlan));
2033 }
2034 if (rq->polling) {
2035 if (lro)
2036 napi_gro_receive(&qs->napi, skb);
2037 else {
2038 if (unlikely(pi->iscsic.flags))
2039 cxgb3_process_iscsi_prov_pack(pi, skb);
2040 netif_receive_skb(skb);
2041 }
2042 } else
2043 netif_rx(skb);
2044 }
2045
2046 static inline int is_eth_tcp(u32 rss)
2047 {
2048 return G_HASHTYPE(ntohl(rss)) == RSS_HASH_4_TUPLE;
2049 }
2050
2051 /**
2052 * lro_add_page - add a page chunk to an LRO session
2053 * @adap: the adapter
2054 * @qs: the associated queue set
2055 * @fl: the free list containing the page chunk to add
2056 * @len: packet length
2057 * @complete: Indicates the last fragment of a frame
2058 *
2059 * Add a received packet contained in a page chunk to an existing LRO
2060 * session.
2061 */
2062 static void lro_add_page(struct adapter *adap, struct sge_qset *qs,
2063 struct sge_fl *fl, int len, int complete)
2064 {
2065 struct rx_sw_desc *sd = &fl->sdesc[fl->cidx];
2066 struct port_info *pi = netdev_priv(qs->netdev);
2067 struct sk_buff *skb = NULL;
2068 struct cpl_rx_pkt *cpl;
2069 struct skb_frag_struct *rx_frag;
2070 int nr_frags;
2071 int offset = 0;
2072
2073 if (!qs->nomem) {
2074 skb = napi_get_frags(&qs->napi);
2075 qs->nomem = !skb;
2076 }
2077
2078 fl->credits--;
2079
2080 pci_dma_sync_single_for_cpu(adap->pdev,
2081 dma_unmap_addr(sd, dma_addr),
2082 fl->buf_size - SGE_PG_RSVD,
2083 PCI_DMA_FROMDEVICE);
2084
2085 (*sd->pg_chunk.p_cnt)--;
2086 if (!*sd->pg_chunk.p_cnt && sd->pg_chunk.page != fl->pg_chunk.page)
2087 pci_unmap_page(adap->pdev,
2088 sd->pg_chunk.mapping,
2089 fl->alloc_size,
2090 PCI_DMA_FROMDEVICE);
2091
2092 if (!skb) {
2093 put_page(sd->pg_chunk.page);
2094 if (complete)
2095 qs->nomem = 0;
2096 return;
2097 }
2098
2099 rx_frag = skb_shinfo(skb)->frags;
2100 nr_frags = skb_shinfo(skb)->nr_frags;
2101
2102 if (!nr_frags) {
2103 offset = 2 + sizeof(struct cpl_rx_pkt);
2104 cpl = qs->lro_va = sd->pg_chunk.va + 2;
2105
2106 if ((qs->netdev->features & NETIF_F_RXCSUM) &&
2107 cpl->csum_valid && cpl->csum == htons(0xffff)) {
2108 skb->ip_summed = CHECKSUM_UNNECESSARY;
2109 qs->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++;
2110 } else
2111 skb->ip_summed = CHECKSUM_NONE;
2112 } else
2113 cpl = qs->lro_va;
2114
2115 len -= offset;
2116
2117 rx_frag += nr_frags;
2118 __skb_frag_set_page(rx_frag, sd->pg_chunk.page);
2119 rx_frag->page_offset = sd->pg_chunk.offset + offset;
2120 skb_frag_size_set(rx_frag, len);
2121
2122 skb->len += len;
2123 skb->data_len += len;
2124 skb->truesize += len;
2125 skb_shinfo(skb)->nr_frags++;
2126
2127 if (!complete)
2128 return;
2129
2130 skb_record_rx_queue(skb, qs - &adap->sge.qs[pi->first_qset]);
2131
2132 if (cpl->vlan_valid) {
2133 qs->port_stats[SGE_PSTAT_VLANEX]++;
2134 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
2135 }
2136 napi_gro_frags(&qs->napi);
2137 }
2138
2139 /**
2140 * handle_rsp_cntrl_info - handles control information in a response
2141 * @qs: the queue set corresponding to the response
2142 * @flags: the response control flags
2143 *
2144 * Handles the control information of an SGE response, such as GTS
2145 * indications and completion credits for the queue set's Tx queues.
2146 * HW coalesces credits, we don't do any extra SW coalescing.
2147 */
2148 static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags)
2149 {
2150 unsigned int credits;
2151
2152 #if USE_GTS
2153 if (flags & F_RSPD_TXQ0_GTS)
2154 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags);
2155 #endif
2156
2157 credits = G_RSPD_TXQ0_CR(flags);
2158 if (credits)
2159 qs->txq[TXQ_ETH].processed += credits;
2160
2161 credits = G_RSPD_TXQ2_CR(flags);
2162 if (credits)
2163 qs->txq[TXQ_CTRL].processed += credits;
2164
2165 # if USE_GTS
2166 if (flags & F_RSPD_TXQ1_GTS)
2167 clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags);
2168 # endif
2169 credits = G_RSPD_TXQ1_CR(flags);
2170 if (credits)
2171 qs->txq[TXQ_OFLD].processed += credits;
2172 }
2173
2174 /**
2175 * check_ring_db - check if we need to ring any doorbells
2176 * @adapter: the adapter
2177 * @qs: the queue set whose Tx queues are to be examined
2178 * @sleeping: indicates which Tx queue sent GTS
2179 *
2180 * Checks if some of a queue set's Tx queues need to ring their doorbells
2181 * to resume transmission after idling while they still have unprocessed
2182 * descriptors.
2183 */
2184 static void check_ring_db(struct adapter *adap, struct sge_qset *qs,
2185 unsigned int sleeping)
2186 {
2187 if (sleeping & F_RSPD_TXQ0_GTS) {
2188 struct sge_txq *txq = &qs->txq[TXQ_ETH];
2189
2190 if (txq->cleaned + txq->in_use != txq->processed &&
2191 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2192 set_bit(TXQ_RUNNING, &txq->flags);
2193 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2194 V_EGRCNTX(txq->cntxt_id));
2195 }
2196 }
2197
2198 if (sleeping & F_RSPD_TXQ1_GTS) {
2199 struct sge_txq *txq = &qs->txq[TXQ_OFLD];
2200
2201 if (txq->cleaned + txq->in_use != txq->processed &&
2202 !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) {
2203 set_bit(TXQ_RUNNING, &txq->flags);
2204 t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX |
2205 V_EGRCNTX(txq->cntxt_id));
2206 }
2207 }
2208 }
2209
2210 /**
2211 * is_new_response - check if a response is newly written
2212 * @r: the response descriptor
2213 * @q: the response queue
2214 *
2215 * Returns true if a response descriptor contains a yet unprocessed
2216 * response.
2217 */
2218 static inline int is_new_response(const struct rsp_desc *r,
2219 const struct sge_rspq *q)
2220 {
2221 return (r->intr_gen & F_RSPD_GEN2) == q->gen;
2222 }
2223
2224 static inline void clear_rspq_bufstate(struct sge_rspq * const q)
2225 {
2226 q->pg_skb = NULL;
2227 q->rx_recycle_buf = 0;
2228 }
2229
2230 #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS)
2231 #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \
2232 V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \
2233 V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \
2234 V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR))
2235
2236 /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */
2237 #define NOMEM_INTR_DELAY 2500
2238
2239 /**
2240 * process_responses - process responses from an SGE response queue
2241 * @adap: the adapter
2242 * @qs: the queue set to which the response queue belongs
2243 * @budget: how many responses can be processed in this round
2244 *
2245 * Process responses from an SGE response queue up to the supplied budget.
2246 * Responses include received packets as well as credits and other events
2247 * for the queues that belong to the response queue's queue set.
2248 * A negative budget is effectively unlimited.
2249 *
2250 * Additionally choose the interrupt holdoff time for the next interrupt
2251 * on this queue. If the system is under memory shortage use a fairly
2252 * long delay to help recovery.
2253 */
2254 static int process_responses(struct adapter *adap, struct sge_qset *qs,
2255 int budget)
2256 {
2257 struct sge_rspq *q = &qs->rspq;
2258 struct rsp_desc *r = &q->desc[q->cidx];
2259 int budget_left = budget;
2260 unsigned int sleeping = 0;
2261 struct sk_buff *offload_skbs[RX_BUNDLE_SIZE];
2262 int ngathered = 0;
2263
2264 q->next_holdoff = q->holdoff_tmr;
2265
2266 while (likely(budget_left && is_new_response(r, q))) {
2267 int packet_complete, eth, ethpad = 2;
2268 int lro = !!(qs->netdev->features & NETIF_F_GRO);
2269 struct sk_buff *skb = NULL;
2270 u32 len, flags;
2271 __be32 rss_hi, rss_lo;
2272
2273 rmb();
2274 eth = r->rss_hdr.opcode == CPL_RX_PKT;
2275 rss_hi = *(const __be32 *)r;
2276 rss_lo = r->rss_hdr.rss_hash_val;
2277 flags = ntohl(r->flags);
2278
2279 if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) {
2280 skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC);
2281 if (!skb)
2282 goto no_mem;
2283
2284 memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE);
2285 skb->data[0] = CPL_ASYNC_NOTIF;
2286 rss_hi = htonl(CPL_ASYNC_NOTIF << 24);
2287 q->async_notif++;
2288 } else if (flags & F_RSPD_IMM_DATA_VALID) {
2289 skb = get_imm_packet(r);
2290 if (unlikely(!skb)) {
2291 no_mem:
2292 q->next_holdoff = NOMEM_INTR_DELAY;
2293 q->nomem++;
2294 /* consume one credit since we tried */
2295 budget_left--;
2296 break;
2297 }
2298 q->imm_data++;
2299 ethpad = 0;
2300 } else if ((len = ntohl(r->len_cq)) != 0) {
2301 struct sge_fl *fl;
2302
2303 lro &= eth && is_eth_tcp(rss_hi);
2304
2305 fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0];
2306 if (fl->use_pages) {
2307 void *addr = fl->sdesc[fl->cidx].pg_chunk.va;
2308
2309 prefetch(addr);
2310 #if L1_CACHE_BYTES < 128
2311 prefetch(addr + L1_CACHE_BYTES);
2312 #endif
2313 __refill_fl(adap, fl);
2314 if (lro > 0) {
2315 lro_add_page(adap, qs, fl,
2316 G_RSPD_LEN(len),
2317 flags & F_RSPD_EOP);
2318 goto next_fl;
2319 }
2320
2321 skb = get_packet_pg(adap, fl, q,
2322 G_RSPD_LEN(len),
2323 eth ?
2324 SGE_RX_DROP_THRES : 0);
2325 q->pg_skb = skb;
2326 } else
2327 skb = get_packet(adap, fl, G_RSPD_LEN(len),
2328 eth ? SGE_RX_DROP_THRES : 0);
2329 if (unlikely(!skb)) {
2330 if (!eth)
2331 goto no_mem;
2332 q->rx_drops++;
2333 } else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT))
2334 __skb_pull(skb, 2);
2335 next_fl:
2336 if (++fl->cidx == fl->size)
2337 fl->cidx = 0;
2338 } else
2339 q->pure_rsps++;
2340
2341 if (flags & RSPD_CTRL_MASK) {
2342 sleeping |= flags & RSPD_GTS_MASK;
2343 handle_rsp_cntrl_info(qs, flags);
2344 }
2345
2346 r++;
2347 if (unlikely(++q->cidx == q->size)) {
2348 q->cidx = 0;
2349 q->gen ^= 1;
2350 r = q->desc;
2351 }
2352 prefetch(r);
2353
2354 if (++q->credits >= (q->size / 4)) {
2355 refill_rspq(adap, q, q->credits);
2356 q->credits = 0;
2357 }
2358
2359 packet_complete = flags &
2360 (F_RSPD_EOP | F_RSPD_IMM_DATA_VALID |
2361 F_RSPD_ASYNC_NOTIF);
2362
2363 if (skb != NULL && packet_complete) {
2364 if (eth)
2365 rx_eth(adap, q, skb, ethpad, lro);
2366 else {
2367 q->offload_pkts++;
2368 /* Preserve the RSS info in csum & priority */
2369 skb->csum = rss_hi;
2370 skb->priority = rss_lo;
2371 ngathered = rx_offload(&adap->tdev, q, skb,
2372 offload_skbs,
2373 ngathered);
2374 }
2375
2376 if (flags & F_RSPD_EOP)
2377 clear_rspq_bufstate(q);
2378 }
2379 --budget_left;
2380 }
2381
2382 deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered);
2383
2384 if (sleeping)
2385 check_ring_db(adap, qs, sleeping);
2386
2387 smp_mb(); /* commit Tx queue .processed updates */
2388 if (unlikely(qs->txq_stopped != 0))
2389 restart_tx(qs);
2390
2391 budget -= budget_left;
2392 return budget;
2393 }
2394
2395 static inline int is_pure_response(const struct rsp_desc *r)
2396 {
2397 __be32 n = r->flags & htonl(F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID);
2398
2399 return (n | r->len_cq) == 0;
2400 }
2401
2402 /**
2403 * napi_rx_handler - the NAPI handler for Rx processing
2404 * @napi: the napi instance
2405 * @budget: how many packets we can process in this round
2406 *
2407 * Handler for new data events when using NAPI.
2408 */
2409 static int napi_rx_handler(struct napi_struct *napi, int budget)
2410 {
2411 struct sge_qset *qs = container_of(napi, struct sge_qset, napi);
2412 struct adapter *adap = qs->adap;
2413 int work_done = process_responses(adap, qs, budget);
2414
2415 if (likely(work_done < budget)) {
2416 napi_complete(napi);
2417
2418 /*
2419 * Because we don't atomically flush the following
2420 * write it is possible that in very rare cases it can
2421 * reach the device in a way that races with a new
2422 * response being written plus an error interrupt
2423 * causing the NAPI interrupt handler below to return
2424 * unhandled status to the OS. To protect against
2425 * this would require flushing the write and doing
2426 * both the write and the flush with interrupts off.
2427 * Way too expensive and unjustifiable given the
2428 * rarity of the race.
2429 *
2430 * The race cannot happen at all with MSI-X.
2431 */
2432 t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) |
2433 V_NEWTIMER(qs->rspq.next_holdoff) |
2434 V_NEWINDEX(qs->rspq.cidx));
2435 }
2436 return work_done;
2437 }
2438
2439 /*
2440 * Returns true if the device is already scheduled for polling.
2441 */
2442 static inline int napi_is_scheduled(struct napi_struct *napi)
2443 {
2444 return test_bit(NAPI_STATE_SCHED, &napi->state);
2445 }
2446
2447 /**
2448 * process_pure_responses - process pure responses from a response queue
2449 * @adap: the adapter
2450 * @qs: the queue set owning the response queue
2451 * @r: the first pure response to process
2452 *
2453 * A simpler version of process_responses() that handles only pure (i.e.,
2454 * non data-carrying) responses. Such respones are too light-weight to
2455 * justify calling a softirq under NAPI, so we handle them specially in
2456 * the interrupt handler. The function is called with a pointer to a
2457 * response, which the caller must ensure is a valid pure response.
2458 *
2459 * Returns 1 if it encounters a valid data-carrying response, 0 otherwise.
2460 */
2461 static int process_pure_responses(struct adapter *adap, struct sge_qset *qs,
2462 struct rsp_desc *r)
2463 {
2464 struct sge_rspq *q = &qs->rspq;
2465 unsigned int sleeping = 0;
2466
2467 do {
2468 u32 flags = ntohl(r->flags);
2469
2470 r++;
2471 if (unlikely(++q->cidx == q->size)) {
2472 q->cidx = 0;
2473 q->gen ^= 1;
2474 r = q->desc;
2475 }
2476 prefetch(r);
2477
2478 if (flags & RSPD_CTRL_MASK) {
2479 sleeping |= flags & RSPD_GTS_MASK;
2480 handle_rsp_cntrl_info(qs, flags);
2481 }
2482
2483 q->pure_rsps++;
2484 if (++q->credits >= (q->size / 4)) {
2485 refill_rspq(adap, q, q->credits);
2486 q->credits = 0;
2487 }
2488 if (!is_new_response(r, q))
2489 break;
2490 rmb();
2491 } while (is_pure_response(r));
2492
2493 if (sleeping)
2494 check_ring_db(adap, qs, sleeping);
2495
2496 smp_mb(); /* commit Tx queue .processed updates */
2497 if (unlikely(qs->txq_stopped != 0))
2498 restart_tx(qs);
2499
2500 return is_new_response(r, q);
2501 }
2502
2503 /**
2504 * handle_responses - decide what to do with new responses in NAPI mode
2505 * @adap: the adapter
2506 * @q: the response queue
2507 *
2508 * This is used by the NAPI interrupt handlers to decide what to do with
2509 * new SGE responses. If there are no new responses it returns -1. If
2510 * there are new responses and they are pure (i.e., non-data carrying)
2511 * it handles them straight in hard interrupt context as they are very
2512 * cheap and don't deliver any packets. Finally, if there are any data
2513 * signaling responses it schedules the NAPI handler. Returns 1 if it
2514 * schedules NAPI, 0 if all new responses were pure.
2515 *
2516 * The caller must ascertain NAPI is not already running.
2517 */
2518 static inline int handle_responses(struct adapter *adap, struct sge_rspq *q)
2519 {
2520 struct sge_qset *qs = rspq_to_qset(q);
2521 struct rsp_desc *r = &q->desc[q->cidx];
2522
2523 if (!is_new_response(r, q))
2524 return -1;
2525 rmb();
2526 if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) {
2527 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2528 V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx));
2529 return 0;
2530 }
2531 napi_schedule(&qs->napi);
2532 return 1;
2533 }
2534
2535 /*
2536 * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case
2537 * (i.e., response queue serviced in hard interrupt).
2538 */
2539 static irqreturn_t t3_sge_intr_msix(int irq, void *cookie)
2540 {
2541 struct sge_qset *qs = cookie;
2542 struct adapter *adap = qs->adap;
2543 struct sge_rspq *q = &qs->rspq;
2544
2545 spin_lock(&q->lock);
2546 if (process_responses(adap, qs, -1) == 0)
2547 q->unhandled_irqs++;
2548 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2549 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2550 spin_unlock(&q->lock);
2551 return IRQ_HANDLED;
2552 }
2553
2554 /*
2555 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
2556 * (i.e., response queue serviced by NAPI polling).
2557 */
2558 static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie)
2559 {
2560 struct sge_qset *qs = cookie;
2561 struct sge_rspq *q = &qs->rspq;
2562
2563 spin_lock(&q->lock);
2564
2565 if (handle_responses(qs->adap, q) < 0)
2566 q->unhandled_irqs++;
2567 spin_unlock(&q->lock);
2568 return IRQ_HANDLED;
2569 }
2570
2571 /*
2572 * The non-NAPI MSI interrupt handler. This needs to handle data events from
2573 * SGE response queues as well as error and other async events as they all use
2574 * the same MSI vector. We use one SGE response queue per port in this mode
2575 * and protect all response queues with queue 0's lock.
2576 */
2577 static irqreturn_t t3_intr_msi(int irq, void *cookie)
2578 {
2579 int new_packets = 0;
2580 struct adapter *adap = cookie;
2581 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2582
2583 spin_lock(&q->lock);
2584
2585 if (process_responses(adap, &adap->sge.qs[0], -1)) {
2586 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) |
2587 V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx));
2588 new_packets = 1;
2589 }
2590
2591 if (adap->params.nports == 2 &&
2592 process_responses(adap, &adap->sge.qs[1], -1)) {
2593 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2594
2595 t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) |
2596 V_NEWTIMER(q1->next_holdoff) |
2597 V_NEWINDEX(q1->cidx));
2598 new_packets = 1;
2599 }
2600
2601 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2602 q->unhandled_irqs++;
2603
2604 spin_unlock(&q->lock);
2605 return IRQ_HANDLED;
2606 }
2607
2608 static int rspq_check_napi(struct sge_qset *qs)
2609 {
2610 struct sge_rspq *q = &qs->rspq;
2611
2612 if (!napi_is_scheduled(&qs->napi) &&
2613 is_new_response(&q->desc[q->cidx], q)) {
2614 napi_schedule(&qs->napi);
2615 return 1;
2616 }
2617 return 0;
2618 }
2619
2620 /*
2621 * The MSI interrupt handler for the NAPI case (i.e., response queues serviced
2622 * by NAPI polling). Handles data events from SGE response queues as well as
2623 * error and other async events as they all use the same MSI vector. We use
2624 * one SGE response queue per port in this mode and protect all response
2625 * queues with queue 0's lock.
2626 */
2627 static irqreturn_t t3_intr_msi_napi(int irq, void *cookie)
2628 {
2629 int new_packets;
2630 struct adapter *adap = cookie;
2631 struct sge_rspq *q = &adap->sge.qs[0].rspq;
2632
2633 spin_lock(&q->lock);
2634
2635 new_packets = rspq_check_napi(&adap->sge.qs[0]);
2636 if (adap->params.nports == 2)
2637 new_packets += rspq_check_napi(&adap->sge.qs[1]);
2638 if (!new_packets && t3_slow_intr_handler(adap) == 0)
2639 q->unhandled_irqs++;
2640
2641 spin_unlock(&q->lock);
2642 return IRQ_HANDLED;
2643 }
2644
2645 /*
2646 * A helper function that processes responses and issues GTS.
2647 */
2648 static inline int process_responses_gts(struct adapter *adap,
2649 struct sge_rspq *rq)
2650 {
2651 int work;
2652
2653 work = process_responses(adap, rspq_to_qset(rq), -1);
2654 t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) |
2655 V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx));
2656 return work;
2657 }
2658
2659 /*
2660 * The legacy INTx interrupt handler. This needs to handle data events from
2661 * SGE response queues as well as error and other async events as they all use
2662 * the same interrupt pin. We use one SGE response queue per port in this mode
2663 * and protect all response queues with queue 0's lock.
2664 */
2665 static irqreturn_t t3_intr(int irq, void *cookie)
2666 {
2667 int work_done, w0, w1;
2668 struct adapter *adap = cookie;
2669 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2670 struct sge_rspq *q1 = &adap->sge.qs[1].rspq;
2671
2672 spin_lock(&q0->lock);
2673
2674 w0 = is_new_response(&q0->desc[q0->cidx], q0);
2675 w1 = adap->params.nports == 2 &&
2676 is_new_response(&q1->desc[q1->cidx], q1);
2677
2678 if (likely(w0 | w1)) {
2679 t3_write_reg(adap, A_PL_CLI, 0);
2680 t3_read_reg(adap, A_PL_CLI); /* flush */
2681
2682 if (likely(w0))
2683 process_responses_gts(adap, q0);
2684
2685 if (w1)
2686 process_responses_gts(adap, q1);
2687
2688 work_done = w0 | w1;
2689 } else
2690 work_done = t3_slow_intr_handler(adap);
2691
2692 spin_unlock(&q0->lock);
2693 return IRQ_RETVAL(work_done != 0);
2694 }
2695
2696 /*
2697 * Interrupt handler for legacy INTx interrupts for T3B-based cards.
2698 * Handles data events from SGE response queues as well as error and other
2699 * async events as they all use the same interrupt pin. We use one SGE
2700 * response queue per port in this mode and protect all response queues with
2701 * queue 0's lock.
2702 */
2703 static irqreturn_t t3b_intr(int irq, void *cookie)
2704 {
2705 u32 map;
2706 struct adapter *adap = cookie;
2707 struct sge_rspq *q0 = &adap->sge.qs[0].rspq;
2708
2709 t3_write_reg(adap, A_PL_CLI, 0);
2710 map = t3_read_reg(adap, A_SG_DATA_INTR);
2711
2712 if (unlikely(!map)) /* shared interrupt, most likely */
2713 return IRQ_NONE;
2714
2715 spin_lock(&q0->lock);
2716
2717 if (unlikely(map & F_ERRINTR))
2718 t3_slow_intr_handler(adap);
2719
2720 if (likely(map & 1))
2721 process_responses_gts(adap, q0);
2722
2723 if (map & 2)
2724 process_responses_gts(adap, &adap->sge.qs[1].rspq);
2725
2726 spin_unlock(&q0->lock);
2727 return IRQ_HANDLED;
2728 }
2729
2730 /*
2731 * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards.
2732 * Handles data events from SGE response queues as well as error and other
2733 * async events as they all use the same interrupt pin. We use one SGE
2734 * response queue per port in this mode and protect all response queues with
2735 * queue 0's lock.
2736 */
2737 static irqreturn_t t3b_intr_napi(int irq, void *cookie)
2738 {
2739 u32 map;
2740 struct adapter *adap = cookie;
2741 struct sge_qset *qs0 = &adap->sge.qs[0];
2742 struct sge_rspq *q0 = &qs0->rspq;
2743
2744 t3_write_reg(adap, A_PL_CLI, 0);
2745 map = t3_read_reg(adap, A_SG_DATA_INTR);
2746
2747 if (unlikely(!map)) /* shared interrupt, most likely */
2748 return IRQ_NONE;
2749
2750 spin_lock(&q0->lock);
2751
2752 if (unlikely(map & F_ERRINTR))
2753 t3_slow_intr_handler(adap);
2754
2755 if (likely(map & 1))
2756 napi_schedule(&qs0->napi);
2757
2758 if (map & 2)
2759 napi_schedule(&adap->sge.qs[1].napi);
2760
2761 spin_unlock(&q0->lock);
2762 return IRQ_HANDLED;
2763 }
2764
2765 /**
2766 * t3_intr_handler - select the top-level interrupt handler
2767 * @adap: the adapter
2768 * @polling: whether using NAPI to service response queues
2769 *
2770 * Selects the top-level interrupt handler based on the type of interrupts
2771 * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the
2772 * response queues.
2773 */
2774 irq_handler_t t3_intr_handler(struct adapter *adap, int polling)
2775 {
2776 if (adap->flags & USING_MSIX)
2777 return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix;
2778 if (adap->flags & USING_MSI)
2779 return polling ? t3_intr_msi_napi : t3_intr_msi;
2780 if (adap->params.rev > 0)
2781 return polling ? t3b_intr_napi : t3b_intr;
2782 return t3_intr;
2783 }
2784
2785 #define SGE_PARERR (F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
2786 F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
2787 V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
2788 F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
2789 F_HIRCQPARITYERROR)
2790 #define SGE_FRAMINGERR (F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR)
2791 #define SGE_FATALERR (SGE_PARERR | SGE_FRAMINGERR | F_RSPQCREDITOVERFOW | \
2792 F_RSPQDISABLED)
2793
2794 /**
2795 * t3_sge_err_intr_handler - SGE async event interrupt handler
2796 * @adapter: the adapter
2797 *
2798 * Interrupt handler for SGE asynchronous (non-data) events.
2799 */
2800 void t3_sge_err_intr_handler(struct adapter *adapter)
2801 {
2802 unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE) &
2803 ~F_FLEMPTY;
2804
2805 if (status & SGE_PARERR)
2806 CH_ALERT(adapter, "SGE parity error (0x%x)\n",
2807 status & SGE_PARERR);
2808 if (status & SGE_FRAMINGERR)
2809 CH_ALERT(adapter, "SGE framing error (0x%x)\n",
2810 status & SGE_FRAMINGERR);
2811
2812 if (status & F_RSPQCREDITOVERFOW)
2813 CH_ALERT(adapter, "SGE response queue credit overflow\n");
2814
2815 if (status & F_RSPQDISABLED) {
2816 v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS);
2817
2818 CH_ALERT(adapter,
2819 "packet delivered to disabled response queue "
2820 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff);
2821 }
2822
2823 if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR))
2824 queue_work(cxgb3_wq, &adapter->db_drop_task);
2825
2826 if (status & (F_HIPRIORITYDBFULL | F_LOPRIORITYDBFULL))
2827 queue_work(cxgb3_wq, &adapter->db_full_task);
2828
2829 if (status & (F_HIPRIORITYDBEMPTY | F_LOPRIORITYDBEMPTY))
2830 queue_work(cxgb3_wq, &adapter->db_empty_task);
2831
2832 t3_write_reg(adapter, A_SG_INT_CAUSE, status);
2833 if (status & SGE_FATALERR)
2834 t3_fatal_err(adapter);
2835 }
2836
2837 /**
2838 * sge_timer_tx - perform periodic maintenance of an SGE qset
2839 * @data: the SGE queue set to maintain
2840 *
2841 * Runs periodically from a timer to perform maintenance of an SGE queue
2842 * set. It performs two tasks:
2843 *
2844 * Cleans up any completed Tx descriptors that may still be pending.
2845 * Normal descriptor cleanup happens when new packets are added to a Tx
2846 * queue so this timer is relatively infrequent and does any cleanup only
2847 * if the Tx queue has not seen any new packets in a while. We make a
2848 * best effort attempt to reclaim descriptors, in that we don't wait
2849 * around if we cannot get a queue's lock (which most likely is because
2850 * someone else is queueing new packets and so will also handle the clean
2851 * up). Since control queues use immediate data exclusively we don't
2852 * bother cleaning them up here.
2853 *
2854 */
2855 static void sge_timer_tx(unsigned long data)
2856 {
2857 struct sge_qset *qs = (struct sge_qset *)data;
2858 struct port_info *pi = netdev_priv(qs->netdev);
2859 struct adapter *adap = pi->adapter;
2860 unsigned int tbd[SGE_TXQ_PER_SET] = {0, 0};
2861 unsigned long next_period;
2862
2863 if (__netif_tx_trylock(qs->tx_q)) {
2864 tbd[TXQ_ETH] = reclaim_completed_tx(adap, &qs->txq[TXQ_ETH],
2865 TX_RECLAIM_TIMER_CHUNK);
2866 __netif_tx_unlock(qs->tx_q);
2867 }
2868
2869 if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) {
2870 tbd[TXQ_OFLD] = reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD],
2871 TX_RECLAIM_TIMER_CHUNK);
2872 spin_unlock(&qs->txq[TXQ_OFLD].lock);
2873 }
2874
2875 next_period = TX_RECLAIM_PERIOD >>
2876 (max(tbd[TXQ_ETH], tbd[TXQ_OFLD]) /
2877 TX_RECLAIM_TIMER_CHUNK);
2878 mod_timer(&qs->tx_reclaim_timer, jiffies + next_period);
2879 }
2880
2881 /**
2882 * sge_timer_rx - perform periodic maintenance of an SGE qset
2883 * @data: the SGE queue set to maintain
2884 *
2885 * a) Replenishes Rx queues that have run out due to memory shortage.
2886 * Normally new Rx buffers are added when existing ones are consumed but
2887 * when out of memory a queue can become empty. We try to add only a few
2888 * buffers here, the queue will be replenished fully as these new buffers
2889 * are used up if memory shortage has subsided.
2890 *
2891 * b) Return coalesced response queue credits in case a response queue is
2892 * starved.
2893 *
2894 */
2895 static void sge_timer_rx(unsigned long data)
2896 {
2897 spinlock_t *lock;
2898 struct sge_qset *qs = (struct sge_qset *)data;
2899 struct port_info *pi = netdev_priv(qs->netdev);
2900 struct adapter *adap = pi->adapter;
2901 u32 status;
2902
2903 lock = adap->params.rev > 0 ?
2904 &qs->rspq.lock : &adap->sge.qs[0].rspq.lock;
2905
2906 if (!spin_trylock_irq(lock))
2907 goto out;
2908
2909 if (napi_is_scheduled(&qs->napi))
2910 goto unlock;
2911
2912 if (adap->params.rev < 4) {
2913 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS);
2914
2915 if (status & (1 << qs->rspq.cntxt_id)) {
2916 qs->rspq.starved++;
2917 if (qs->rspq.credits) {
2918 qs->rspq.credits--;
2919 refill_rspq(adap, &qs->rspq, 1);
2920 qs->rspq.restarted++;
2921 t3_write_reg(adap, A_SG_RSPQ_FL_STATUS,
2922 1 << qs->rspq.cntxt_id);
2923 }
2924 }
2925 }
2926
2927 if (qs->fl[0].credits < qs->fl[0].size)
2928 __refill_fl(adap, &qs->fl[0]);
2929 if (qs->fl[1].credits < qs->fl[1].size)
2930 __refill_fl(adap, &qs->fl[1]);
2931
2932 unlock:
2933 spin_unlock_irq(lock);
2934 out:
2935 mod_timer(&qs->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
2936 }
2937
2938 /**
2939 * t3_update_qset_coalesce - update coalescing settings for a queue set
2940 * @qs: the SGE queue set
2941 * @p: new queue set parameters
2942 *
2943 * Update the coalescing settings for an SGE queue set. Nothing is done
2944 * if the queue set is not initialized yet.
2945 */
2946 void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p)
2947 {
2948 qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */
2949 qs->rspq.polling = p->polling;
2950 qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll;
2951 }
2952
2953 /**
2954 * t3_sge_alloc_qset - initialize an SGE queue set
2955 * @adapter: the adapter
2956 * @id: the queue set id
2957 * @nports: how many Ethernet ports will be using this queue set
2958 * @irq_vec_idx: the IRQ vector index for response queue interrupts
2959 * @p: configuration parameters for this queue set
2960 * @ntxq: number of Tx queues for the queue set
2961 * @netdev: net device associated with this queue set
2962 * @netdevq: net device TX queue associated with this queue set
2963 *
2964 * Allocate resources and initialize an SGE queue set. A queue set
2965 * comprises a response queue, two Rx free-buffer queues, and up to 3
2966 * Tx queues. The Tx queues are assigned roles in the order Ethernet
2967 * queue, offload queue, and control queue.
2968 */
2969 int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports,
2970 int irq_vec_idx, const struct qset_params *p,
2971 int ntxq, struct net_device *dev,
2972 struct netdev_queue *netdevq)
2973 {
2974 int i, avail, ret = -ENOMEM;
2975 struct sge_qset *q = &adapter->sge.qs[id];
2976
2977 init_qset_cntxt(q, id);
2978 setup_timer(&q->tx_reclaim_timer, sge_timer_tx, (unsigned long)q);
2979 setup_timer(&q->rx_reclaim_timer, sge_timer_rx, (unsigned long)q);
2980
2981 q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size,
2982 sizeof(struct rx_desc),
2983 sizeof(struct rx_sw_desc),
2984 &q->fl[0].phys_addr, &q->fl[0].sdesc);
2985 if (!q->fl[0].desc)
2986 goto err;
2987
2988 q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size,
2989 sizeof(struct rx_desc),
2990 sizeof(struct rx_sw_desc),
2991 &q->fl[1].phys_addr, &q->fl[1].sdesc);
2992 if (!q->fl[1].desc)
2993 goto err;
2994
2995 q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size,
2996 sizeof(struct rsp_desc), 0,
2997 &q->rspq.phys_addr, NULL);
2998 if (!q->rspq.desc)
2999 goto err;
3000
3001 for (i = 0; i < ntxq; ++i) {
3002 /*
3003 * The control queue always uses immediate data so does not
3004 * need to keep track of any sk_buffs.
3005 */
3006 size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc);
3007
3008 q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i],
3009 sizeof(struct tx_desc), sz,
3010 &q->txq[i].phys_addr,
3011 &q->txq[i].sdesc);
3012 if (!q->txq[i].desc)
3013 goto err;
3014
3015 q->txq[i].gen = 1;
3016 q->txq[i].size = p->txq_size[i];
3017 spin_lock_init(&q->txq[i].lock);
3018 skb_queue_head_init(&q->txq[i].sendq);
3019 }
3020
3021 tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq,
3022 (unsigned long)q);
3023 tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq,
3024 (unsigned long)q);
3025
3026 q->fl[0].gen = q->fl[1].gen = 1;
3027 q->fl[0].size = p->fl_size;
3028 q->fl[1].size = p->jumbo_size;
3029
3030 q->rspq.gen = 1;
3031 q->rspq.size = p->rspq_size;
3032 spin_lock_init(&q->rspq.lock);
3033 skb_queue_head_init(&q->rspq.rx_queue);
3034
3035 q->txq[TXQ_ETH].stop_thres = nports *
3036 flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3);
3037
3038 #if FL0_PG_CHUNK_SIZE > 0
3039 q->fl[0].buf_size = FL0_PG_CHUNK_SIZE;
3040 #else
3041 q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data);
3042 #endif
3043 #if FL1_PG_CHUNK_SIZE > 0
3044 q->fl[1].buf_size = FL1_PG_CHUNK_SIZE;
3045 #else
3046 q->fl[1].buf_size = is_offload(adapter) ?
3047 (16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
3048 MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt);
3049 #endif
3050
3051 q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0;
3052 q->fl[1].use_pages = FL1_PG_CHUNK_SIZE > 0;
3053 q->fl[0].order = FL0_PG_ORDER;
3054 q->fl[1].order = FL1_PG_ORDER;
3055 q->fl[0].alloc_size = FL0_PG_ALLOC_SIZE;
3056 q->fl[1].alloc_size = FL1_PG_ALLOC_SIZE;
3057
3058 spin_lock_irq(&adapter->sge.reg_lock);
3059
3060 /* FL threshold comparison uses < */
3061 ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx,
3062 q->rspq.phys_addr, q->rspq.size,
3063 q->fl[0].buf_size - SGE_PG_RSVD, 1, 0);
3064 if (ret)
3065 goto err_unlock;
3066
3067 for (i = 0; i < SGE_RXQ_PER_SET; ++i) {
3068 ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0,
3069 q->fl[i].phys_addr, q->fl[i].size,
3070 q->fl[i].buf_size - SGE_PG_RSVD,
3071 p->cong_thres, 1, 0);
3072 if (ret)
3073 goto err_unlock;
3074 }
3075
3076 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS,
3077 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr,
3078 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token,
3079 1, 0);
3080 if (ret)
3081 goto err_unlock;
3082
3083 if (ntxq > 1) {
3084 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id,
3085 USE_GTS, SGE_CNTXT_OFLD, id,
3086 q->txq[TXQ_OFLD].phys_addr,
3087 q->txq[TXQ_OFLD].size, 0, 1, 0);
3088 if (ret)
3089 goto err_unlock;
3090 }
3091
3092 if (ntxq > 2) {
3093 ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0,
3094 SGE_CNTXT_CTRL, id,
3095 q->txq[TXQ_CTRL].phys_addr,
3096 q->txq[TXQ_CTRL].size,
3097 q->txq[TXQ_CTRL].token, 1, 0);
3098 if (ret)
3099 goto err_unlock;
3100 }
3101
3102 spin_unlock_irq(&adapter->sge.reg_lock);
3103
3104 q->adap = adapter;
3105 q->netdev = dev;
3106 q->tx_q = netdevq;
3107 t3_update_qset_coalesce(q, p);
3108
3109 avail = refill_fl(adapter, &q->fl[0], q->fl[0].size,
3110 GFP_KERNEL | __GFP_COMP);
3111 if (!avail) {
3112 CH_ALERT(adapter, "free list queue 0 initialization failed\n");
3113 goto err;
3114 }
3115 if (avail < q->fl[0].size)
3116 CH_WARN(adapter, "free list queue 0 enabled with %d credits\n",
3117 avail);
3118
3119 avail = refill_fl(adapter, &q->fl[1], q->fl[1].size,
3120 GFP_KERNEL | __GFP_COMP);
3121 if (avail < q->fl[1].size)
3122 CH_WARN(adapter, "free list queue 1 enabled with %d credits\n",
3123 avail);
3124 refill_rspq(adapter, &q->rspq, q->rspq.size - 1);
3125
3126 t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) |
3127 V_NEWTIMER(q->rspq.holdoff_tmr));
3128
3129 return 0;
3130
3131 err_unlock:
3132 spin_unlock_irq(&adapter->sge.reg_lock);
3133 err:
3134 t3_free_qset(adapter, q);
3135 return ret;
3136 }
3137
3138 /**
3139 * t3_start_sge_timers - start SGE timer call backs
3140 * @adap: the adapter
3141 *
3142 * Starts each SGE queue set's timer call back
3143 */
3144 void t3_start_sge_timers(struct adapter *adap)
3145 {
3146 int i;
3147
3148 for (i = 0; i < SGE_QSETS; ++i) {
3149 struct sge_qset *q = &adap->sge.qs[i];
3150
3151 if (q->tx_reclaim_timer.function)
3152 mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
3153
3154 if (q->rx_reclaim_timer.function)
3155 mod_timer(&q->rx_reclaim_timer, jiffies + RX_RECLAIM_PERIOD);
3156 }
3157 }
3158
3159 /**
3160 * t3_stop_sge_timers - stop SGE timer call backs
3161 * @adap: the adapter
3162 *
3163 * Stops each SGE queue set's timer call back
3164 */
3165 void t3_stop_sge_timers(struct adapter *adap)
3166 {
3167 int i;
3168
3169 for (i = 0; i < SGE_QSETS; ++i) {
3170 struct sge_qset *q = &adap->sge.qs[i];
3171
3172 if (q->tx_reclaim_timer.function)
3173 del_timer_sync(&q->tx_reclaim_timer);
3174 if (q->rx_reclaim_timer.function)
3175 del_timer_sync(&q->rx_reclaim_timer);
3176 }
3177 }
3178
3179 /**
3180 * t3_free_sge_resources - free SGE resources
3181 * @adap: the adapter
3182 *
3183 * Frees resources used by the SGE queue sets.
3184 */
3185 void t3_free_sge_resources(struct adapter *adap)
3186 {
3187 int i;
3188
3189 for (i = 0; i < SGE_QSETS; ++i)
3190 t3_free_qset(adap, &adap->sge.qs[i]);
3191 }
3192
3193 /**
3194 * t3_sge_start - enable SGE
3195 * @adap: the adapter
3196 *
3197 * Enables the SGE for DMAs. This is the last step in starting packet
3198 * transfers.
3199 */
3200 void t3_sge_start(struct adapter *adap)
3201 {
3202 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE);
3203 }
3204
3205 /**
3206 * t3_sge_stop - disable SGE operation
3207 * @adap: the adapter
3208 *
3209 * Disables the DMA engine. This can be called in emeregencies (e.g.,
3210 * from error interrupts) or from normal process context. In the latter
3211 * case it also disables any pending queue restart tasklets. Note that
3212 * if it is called in interrupt context it cannot disable the restart
3213 * tasklets as it cannot wait, however the tasklets will have no effect
3214 * since the doorbells are disabled and the driver will call this again
3215 * later from process context, at which time the tasklets will be stopped
3216 * if they are still running.
3217 */
3218 void t3_sge_stop(struct adapter *adap)
3219 {
3220 t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0);
3221 if (!in_interrupt()) {
3222 int i;
3223
3224 for (i = 0; i < SGE_QSETS; ++i) {
3225 struct sge_qset *qs = &adap->sge.qs[i];
3226
3227 tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk);
3228 tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk);
3229 }
3230 }
3231 }
3232
3233 /**
3234 * t3_sge_init - initialize SGE
3235 * @adap: the adapter
3236 * @p: the SGE parameters
3237 *
3238 * Performs SGE initialization needed every time after a chip reset.
3239 * We do not initialize any of the queue sets here, instead the driver
3240 * top-level must request those individually. We also do not enable DMA
3241 * here, that should be done after the queues have been set up.
3242 */
3243 void t3_sge_init(struct adapter *adap, struct sge_params *p)
3244 {
3245 unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12);
3246
3247 ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL |
3248 F_CQCRDTCTRL | F_CONGMODE | F_TNLFLMODE | F_FATLPERREN |
3249 V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS |
3250 V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING;
3251 #if SGE_NUM_GENBITS == 1
3252 ctrl |= F_EGRGENCTRL;
3253 #endif
3254 if (adap->params.rev > 0) {
3255 if (!(adap->flags & (USING_MSIX | USING_MSI)))
3256 ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ;
3257 }
3258 t3_write_reg(adap, A_SG_CONTROL, ctrl);
3259 t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) |
3260 V_LORCQDRBTHRSH(512));
3261 t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10);
3262 t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) |
3263 V_TIMEOUT(200 * core_ticks_per_usec(adap)));
3264 t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH,
3265 adap->params.rev < T3_REV_C ? 1000 : 500);
3266 t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256);
3267 t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000);
3268 t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256);
3269 t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff));
3270 t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024);
3271 }
3272
3273 /**
3274 * t3_sge_prep - one-time SGE initialization
3275 * @adap: the associated adapter
3276 * @p: SGE parameters
3277 *
3278 * Performs one-time initialization of SGE SW state. Includes determining
3279 * defaults for the assorted SGE parameters, which admins can change until
3280 * they are used to initialize the SGE.
3281 */
3282 void t3_sge_prep(struct adapter *adap, struct sge_params *p)
3283 {
3284 int i;
3285
3286 p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) -
3287 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3288
3289 for (i = 0; i < SGE_QSETS; ++i) {
3290 struct qset_params *q = p->qset + i;
3291
3292 q->polling = adap->params.rev > 0;
3293 q->coalesce_usecs = 5;
3294 q->rspq_size = 1024;
3295 q->fl_size = 1024;
3296 q->jumbo_size = 512;
3297 q->txq_size[TXQ_ETH] = 1024;
3298 q->txq_size[TXQ_OFLD] = 1024;
3299 q->txq_size[TXQ_CTRL] = 256;
3300 q->cong_thres = 0;
3301 }
3302
3303 spin_lock_init(&adap->sge.reg_lock);
3304 }
This page took 0.1744 seconds and 5 git commands to generate.