d6cfa9063b4ce7b9dcf67177faff33c8de6ce7ec
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / cxgb4_main.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <asm/uaccess.h>
67
68 #include "cxgb4.h"
69 #include "t4_regs.h"
70 #include "t4_values.h"
71 #include "t4_msg.h"
72 #include "t4fw_api.h"
73 #include "t4fw_version.h"
74 #include "cxgb4_dcb.h"
75 #include "cxgb4_debugfs.h"
76 #include "clip_tbl.h"
77 #include "l2t.h"
78
79 char cxgb4_driver_name[] = KBUILD_MODNAME;
80
81 #ifdef DRV_VERSION
82 #undef DRV_VERSION
83 #endif
84 #define DRV_VERSION "2.0.0-ko"
85 const char cxgb4_driver_version[] = DRV_VERSION;
86 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
87
88 /* Host shadow copy of ingress filter entry. This is in host native format
89 * and doesn't match the ordering or bit order, etc. of the hardware of the
90 * firmware command. The use of bit-field structure elements is purely to
91 * remind ourselves of the field size limitations and save memory in the case
92 * where the filter table is large.
93 */
94 struct filter_entry {
95 /* Administrative fields for filter.
96 */
97 u32 valid:1; /* filter allocated and valid */
98 u32 locked:1; /* filter is administratively locked */
99
100 u32 pending:1; /* filter action is pending firmware reply */
101 u32 smtidx:8; /* Source MAC Table index for smac */
102 struct l2t_entry *l2t; /* Layer Two Table entry for dmac */
103
104 /* The filter itself. Most of this is a straight copy of information
105 * provided by the extended ioctl(). Some fields are translated to
106 * internal forms -- for instance the Ingress Queue ID passed in from
107 * the ioctl() is translated into the Absolute Ingress Queue ID.
108 */
109 struct ch_filter_specification fs;
110 };
111
112 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
113 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
114 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
115
116 /* Macros needed to support the PCI Device ID Table ...
117 */
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
119 static const struct pci_device_id cxgb4_pci_tbl[] = {
120 #define CH_PCI_DEVICE_ID_FUNCTION 0x4
121
122 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
123 * called for both.
124 */
125 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
126
127 #define CH_PCI_ID_TABLE_ENTRY(devid) \
128 {PCI_VDEVICE(CHELSIO, (devid)), 4}
129
130 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
131 { 0, } \
132 }
133
134 #include "t4_pci_id_tbl.h"
135
136 #define FW4_FNAME "cxgb4/t4fw.bin"
137 #define FW5_FNAME "cxgb4/t5fw.bin"
138 #define FW6_FNAME "cxgb4/t6fw.bin"
139 #define FW4_CFNAME "cxgb4/t4-config.txt"
140 #define FW5_CFNAME "cxgb4/t5-config.txt"
141 #define FW6_CFNAME "cxgb4/t6-config.txt"
142 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
143 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
144 #define PHY_AQ1202_DEVICEID 0x4409
145 #define PHY_BCM84834_DEVICEID 0x4486
146
147 MODULE_DESCRIPTION(DRV_DESC);
148 MODULE_AUTHOR("Chelsio Communications");
149 MODULE_LICENSE("Dual BSD/GPL");
150 MODULE_VERSION(DRV_VERSION);
151 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
152 MODULE_FIRMWARE(FW4_FNAME);
153 MODULE_FIRMWARE(FW5_FNAME);
154 MODULE_FIRMWARE(FW6_FNAME);
155
156 /*
157 * Normally we're willing to become the firmware's Master PF but will be happy
158 * if another PF has already become the Master and initialized the adapter.
159 * Setting "force_init" will cause this driver to forcibly establish itself as
160 * the Master PF and initialize the adapter.
161 */
162 static uint force_init;
163
164 module_param(force_init, uint, 0644);
165 MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
166 "deprecated parameter");
167
168 static int dflt_msg_enable = DFLT_MSG_ENABLE;
169
170 module_param(dflt_msg_enable, int, 0644);
171 MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap");
172
173 /*
174 * The driver uses the best interrupt scheme available on a platform in the
175 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
176 * of these schemes the driver may consider as follows:
177 *
178 * msi = 2: choose from among all three options
179 * msi = 1: only consider MSI and INTx interrupts
180 * msi = 0: force INTx interrupts
181 */
182 static int msi = 2;
183
184 module_param(msi, int, 0644);
185 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
186
187 /*
188 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
189 * offset by 2 bytes in order to have the IP headers line up on 4-byte
190 * boundaries. This is a requirement for many architectures which will throw
191 * a machine check fault if an attempt is made to access one of the 4-byte IP
192 * header fields on a non-4-byte boundary. And it's a major performance issue
193 * even on some architectures which allow it like some implementations of the
194 * x86 ISA. However, some architectures don't mind this and for some very
195 * edge-case performance sensitive applications (like forwarding large volumes
196 * of small packets), setting this DMA offset to 0 will decrease the number of
197 * PCI-E Bus transfers enough to measurably affect performance.
198 */
199 static int rx_dma_offset = 2;
200
201 #ifdef CONFIG_PCI_IOV
202 /* Configure the number of PCI-E Virtual Function which are to be instantiated
203 * on SR-IOV Capable Physical Functions.
204 */
205 static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
206
207 module_param_array(num_vf, uint, NULL, 0644);
208 MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3");
209 #endif
210
211 /* TX Queue select used to determine what algorithm to use for selecting TX
212 * queue. Select between the kernel provided function (select_queue=0) or user
213 * cxgb_select_queue function (select_queue=1)
214 *
215 * Default: select_queue=0
216 */
217 static int select_queue;
218 module_param(select_queue, int, 0644);
219 MODULE_PARM_DESC(select_queue,
220 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
221
222 static struct dentry *cxgb4_debugfs_root;
223
224 static LIST_HEAD(adapter_list);
225 static DEFINE_MUTEX(uld_mutex);
226 /* Adapter list to be accessed from atomic context */
227 static LIST_HEAD(adap_rcu_list);
228 static DEFINE_SPINLOCK(adap_rcu_lock);
229 static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
230 static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
231
232 static void link_report(struct net_device *dev)
233 {
234 if (!netif_carrier_ok(dev))
235 netdev_info(dev, "link down\n");
236 else {
237 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
238
239 const char *s;
240 const struct port_info *p = netdev_priv(dev);
241
242 switch (p->link_cfg.speed) {
243 case 10000:
244 s = "10Gbps";
245 break;
246 case 1000:
247 s = "1000Mbps";
248 break;
249 case 100:
250 s = "100Mbps";
251 break;
252 case 40000:
253 s = "40Gbps";
254 break;
255 default:
256 pr_info("%s: unsupported speed: %d\n",
257 dev->name, p->link_cfg.speed);
258 return;
259 }
260
261 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
262 fc[p->link_cfg.fc]);
263 }
264 }
265
266 #ifdef CONFIG_CHELSIO_T4_DCB
267 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
268 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
269 {
270 struct port_info *pi = netdev_priv(dev);
271 struct adapter *adap = pi->adapter;
272 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
273 int i;
274
275 /* We use a simple mapping of Port TX Queue Index to DCB
276 * Priority when we're enabling DCB.
277 */
278 for (i = 0; i < pi->nqsets; i++, txq++) {
279 u32 name, value;
280 int err;
281
282 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
283 FW_PARAMS_PARAM_X_V(
284 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
285 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
286 value = enable ? i : 0xffffffff;
287
288 /* Since we can be called while atomic (from "interrupt
289 * level") we need to issue the Set Parameters Commannd
290 * without sleeping (timeout < 0).
291 */
292 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
293 &name, &value,
294 -FW_CMD_MAX_TIMEOUT);
295
296 if (err)
297 dev_err(adap->pdev_dev,
298 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
299 enable ? "set" : "unset", pi->port_id, i, -err);
300 else
301 txq->dcb_prio = value;
302 }
303 }
304 #endif /* CONFIG_CHELSIO_T4_DCB */
305
306 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
307 {
308 struct net_device *dev = adapter->port[port_id];
309
310 /* Skip changes from disabled ports. */
311 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
312 if (link_stat)
313 netif_carrier_on(dev);
314 else {
315 #ifdef CONFIG_CHELSIO_T4_DCB
316 cxgb4_dcb_state_init(dev);
317 dcb_tx_queue_prio_enable(dev, false);
318 #endif /* CONFIG_CHELSIO_T4_DCB */
319 netif_carrier_off(dev);
320 }
321
322 link_report(dev);
323 }
324 }
325
326 void t4_os_portmod_changed(const struct adapter *adap, int port_id)
327 {
328 static const char *mod_str[] = {
329 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
330 };
331
332 const struct net_device *dev = adap->port[port_id];
333 const struct port_info *pi = netdev_priv(dev);
334
335 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
336 netdev_info(dev, "port module unplugged\n");
337 else if (pi->mod_type < ARRAY_SIZE(mod_str))
338 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
339 }
340
341 /*
342 * Configure the exact and hash address filters to handle a port's multicast
343 * and secondary unicast MAC addresses.
344 */
345 static int set_addr_filters(const struct net_device *dev, bool sleep)
346 {
347 u64 mhash = 0;
348 u64 uhash = 0;
349 bool free = true;
350 u16 filt_idx[7];
351 const u8 *addr[7];
352 int ret, naddr = 0;
353 const struct netdev_hw_addr *ha;
354 int uc_cnt = netdev_uc_count(dev);
355 int mc_cnt = netdev_mc_count(dev);
356 const struct port_info *pi = netdev_priv(dev);
357 unsigned int mb = pi->adapter->pf;
358
359 /* first do the secondary unicast addresses */
360 netdev_for_each_uc_addr(ha, dev) {
361 addr[naddr++] = ha->addr;
362 if (--uc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
363 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
364 naddr, addr, filt_idx, &uhash, sleep);
365 if (ret < 0)
366 return ret;
367
368 free = false;
369 naddr = 0;
370 }
371 }
372
373 /* next set up the multicast addresses */
374 netdev_for_each_mc_addr(ha, dev) {
375 addr[naddr++] = ha->addr;
376 if (--mc_cnt == 0 || naddr >= ARRAY_SIZE(addr)) {
377 ret = t4_alloc_mac_filt(pi->adapter, mb, pi->viid, free,
378 naddr, addr, filt_idx, &mhash, sleep);
379 if (ret < 0)
380 return ret;
381
382 free = false;
383 naddr = 0;
384 }
385 }
386
387 return t4_set_addr_hash(pi->adapter, mb, pi->viid, uhash != 0,
388 uhash | mhash, sleep);
389 }
390
391 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
392 module_param(dbfifo_int_thresh, int, 0644);
393 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
394
395 /*
396 * usecs to sleep while draining the dbfifo
397 */
398 static int dbfifo_drain_delay = 1000;
399 module_param(dbfifo_drain_delay, int, 0644);
400 MODULE_PARM_DESC(dbfifo_drain_delay,
401 "usecs to sleep while draining the dbfifo");
402
403 /*
404 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
405 * If @mtu is -1 it is left unchanged.
406 */
407 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
408 {
409 int ret;
410 struct port_info *pi = netdev_priv(dev);
411
412 ret = set_addr_filters(dev, sleep_ok);
413 if (ret == 0)
414 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, mtu,
415 (dev->flags & IFF_PROMISC) ? 1 : 0,
416 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
417 sleep_ok);
418 return ret;
419 }
420
421 /**
422 * link_start - enable a port
423 * @dev: the port to enable
424 *
425 * Performs the MAC and PHY actions needed to enable a port.
426 */
427 static int link_start(struct net_device *dev)
428 {
429 int ret;
430 struct port_info *pi = netdev_priv(dev);
431 unsigned int mb = pi->adapter->pf;
432
433 /*
434 * We do not set address filters and promiscuity here, the stack does
435 * that step explicitly.
436 */
437 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
438 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
439 if (ret == 0) {
440 ret = t4_change_mac(pi->adapter, mb, pi->viid,
441 pi->xact_addr_filt, dev->dev_addr, true,
442 true);
443 if (ret >= 0) {
444 pi->xact_addr_filt = ret;
445 ret = 0;
446 }
447 }
448 if (ret == 0)
449 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
450 &pi->link_cfg);
451 if (ret == 0) {
452 local_bh_disable();
453 ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
454 true, CXGB4_DCB_ENABLED);
455 local_bh_enable();
456 }
457
458 return ret;
459 }
460
461 int cxgb4_dcb_enabled(const struct net_device *dev)
462 {
463 #ifdef CONFIG_CHELSIO_T4_DCB
464 struct port_info *pi = netdev_priv(dev);
465
466 if (!pi->dcb.enabled)
467 return 0;
468
469 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
470 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
471 #else
472 return 0;
473 #endif
474 }
475 EXPORT_SYMBOL(cxgb4_dcb_enabled);
476
477 #ifdef CONFIG_CHELSIO_T4_DCB
478 /* Handle a Data Center Bridging update message from the firmware. */
479 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
480 {
481 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
482 struct net_device *dev = adap->port[port];
483 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
484 int new_dcb_enabled;
485
486 cxgb4_dcb_handle_fw_update(adap, pcmd);
487 new_dcb_enabled = cxgb4_dcb_enabled(dev);
488
489 /* If the DCB has become enabled or disabled on the port then we're
490 * going to need to set up/tear down DCB Priority parameters for the
491 * TX Queues associated with the port.
492 */
493 if (new_dcb_enabled != old_dcb_enabled)
494 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
495 }
496 #endif /* CONFIG_CHELSIO_T4_DCB */
497
498 /* Clear a filter and release any of its resources that we own. This also
499 * clears the filter's "pending" status.
500 */
501 static void clear_filter(struct adapter *adap, struct filter_entry *f)
502 {
503 /* If the new or old filter have loopback rewriteing rules then we'll
504 * need to free any existing Layer Two Table (L2T) entries of the old
505 * filter rule. The firmware will handle freeing up any Source MAC
506 * Table (SMT) entries used for rewriting Source MAC Addresses in
507 * loopback rules.
508 */
509 if (f->l2t)
510 cxgb4_l2t_release(f->l2t);
511
512 /* The zeroing of the filter rule below clears the filter valid,
513 * pending, locked flags, l2t pointer, etc. so it's all we need for
514 * this operation.
515 */
516 memset(f, 0, sizeof(*f));
517 }
518
519 /* Handle a filter write/deletion reply.
520 */
521 static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
522 {
523 unsigned int idx = GET_TID(rpl);
524 unsigned int nidx = idx - adap->tids.ftid_base;
525 unsigned int ret;
526 struct filter_entry *f;
527
528 if (idx >= adap->tids.ftid_base && nidx <
529 (adap->tids.nftids + adap->tids.nsftids)) {
530 idx = nidx;
531 ret = TCB_COOKIE_G(rpl->cookie);
532 f = &adap->tids.ftid_tab[idx];
533
534 if (ret == FW_FILTER_WR_FLT_DELETED) {
535 /* Clear the filter when we get confirmation from the
536 * hardware that the filter has been deleted.
537 */
538 clear_filter(adap, f);
539 } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
540 dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
541 idx);
542 clear_filter(adap, f);
543 } else if (ret == FW_FILTER_WR_FLT_ADDED) {
544 f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
545 f->pending = 0; /* asynchronous setup completed */
546 f->valid = 1;
547 } else {
548 /* Something went wrong. Issue a warning about the
549 * problem and clear everything out.
550 */
551 dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
552 idx, ret);
553 clear_filter(adap, f);
554 }
555 }
556 }
557
558 /* Response queue handler for the FW event queue.
559 */
560 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
561 const struct pkt_gl *gl)
562 {
563 u8 opcode = ((const struct rss_header *)rsp)->opcode;
564
565 rsp++; /* skip RSS header */
566
567 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
568 */
569 if (unlikely(opcode == CPL_FW4_MSG &&
570 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
571 rsp++;
572 opcode = ((const struct rss_header *)rsp)->opcode;
573 rsp++;
574 if (opcode != CPL_SGE_EGR_UPDATE) {
575 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
576 , opcode);
577 goto out;
578 }
579 }
580
581 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
582 const struct cpl_sge_egr_update *p = (void *)rsp;
583 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
584 struct sge_txq *txq;
585
586 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
587 txq->restarts++;
588 if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
589 struct sge_eth_txq *eq;
590
591 eq = container_of(txq, struct sge_eth_txq, q);
592 netif_tx_wake_queue(eq->txq);
593 } else {
594 struct sge_ofld_txq *oq;
595
596 oq = container_of(txq, struct sge_ofld_txq, q);
597 tasklet_schedule(&oq->qresume_tsk);
598 }
599 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
600 const struct cpl_fw6_msg *p = (void *)rsp;
601
602 #ifdef CONFIG_CHELSIO_T4_DCB
603 const struct fw_port_cmd *pcmd = (const void *)p->data;
604 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
605 unsigned int action =
606 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
607
608 if (cmd == FW_PORT_CMD &&
609 action == FW_PORT_ACTION_GET_PORT_INFO) {
610 int port = FW_PORT_CMD_PORTID_G(
611 be32_to_cpu(pcmd->op_to_portid));
612 struct net_device *dev = q->adap->port[port];
613 int state_input = ((pcmd->u.info.dcbxdis_pkd &
614 FW_PORT_CMD_DCBXDIS_F)
615 ? CXGB4_DCB_INPUT_FW_DISABLED
616 : CXGB4_DCB_INPUT_FW_ENABLED);
617
618 cxgb4_dcb_state_fsm(dev, state_input);
619 }
620
621 if (cmd == FW_PORT_CMD &&
622 action == FW_PORT_ACTION_L2_DCB_CFG)
623 dcb_rpl(q->adap, pcmd);
624 else
625 #endif
626 if (p->type == 0)
627 t4_handle_fw_rpl(q->adap, p->data);
628 } else if (opcode == CPL_L2T_WRITE_RPL) {
629 const struct cpl_l2t_write_rpl *p = (void *)rsp;
630
631 do_l2t_write_rpl(q->adap, p);
632 } else if (opcode == CPL_SET_TCB_RPL) {
633 const struct cpl_set_tcb_rpl *p = (void *)rsp;
634
635 filter_rpl(q->adap, p);
636 } else
637 dev_err(q->adap->pdev_dev,
638 "unexpected CPL %#x on FW event queue\n", opcode);
639 out:
640 return 0;
641 }
642
643 /**
644 * uldrx_handler - response queue handler for ULD queues
645 * @q: the response queue that received the packet
646 * @rsp: the response queue descriptor holding the offload message
647 * @gl: the gather list of packet fragments
648 *
649 * Deliver an ingress offload packet to a ULD. All processing is done by
650 * the ULD, we just maintain statistics.
651 */
652 static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
653 const struct pkt_gl *gl)
654 {
655 struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
656
657 /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
658 */
659 if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
660 ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
661 rsp += 2;
662
663 if (ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld], rsp, gl)) {
664 rxq->stats.nomem++;
665 return -1;
666 }
667 if (gl == NULL)
668 rxq->stats.imm++;
669 else if (gl == CXGB4_MSG_AN)
670 rxq->stats.an++;
671 else
672 rxq->stats.pkts++;
673 return 0;
674 }
675
676 static void disable_msi(struct adapter *adapter)
677 {
678 if (adapter->flags & USING_MSIX) {
679 pci_disable_msix(adapter->pdev);
680 adapter->flags &= ~USING_MSIX;
681 } else if (adapter->flags & USING_MSI) {
682 pci_disable_msi(adapter->pdev);
683 adapter->flags &= ~USING_MSI;
684 }
685 }
686
687 /*
688 * Interrupt handler for non-data events used with MSI-X.
689 */
690 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
691 {
692 struct adapter *adap = cookie;
693 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
694
695 if (v & PFSW_F) {
696 adap->swintr = 1;
697 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
698 }
699 if (adap->flags & MASTER_PF)
700 t4_slow_intr_handler(adap);
701 return IRQ_HANDLED;
702 }
703
704 /*
705 * Name the MSI-X interrupts.
706 */
707 static void name_msix_vecs(struct adapter *adap)
708 {
709 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
710
711 /* non-data interrupts */
712 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
713
714 /* FW events */
715 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
716 adap->port[0]->name);
717
718 /* Ethernet queues */
719 for_each_port(adap, j) {
720 struct net_device *d = adap->port[j];
721 const struct port_info *pi = netdev_priv(d);
722
723 for (i = 0; i < pi->nqsets; i++, msi_idx++)
724 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
725 d->name, i);
726 }
727
728 /* offload queues */
729 for_each_iscsirxq(&adap->sge, i)
730 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
731 adap->port[0]->name, i);
732
733 for_each_iscsitrxq(&adap->sge, i)
734 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
735 adap->port[0]->name, i);
736
737 for_each_rdmarxq(&adap->sge, i)
738 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
739 adap->port[0]->name, i);
740
741 for_each_rdmaciq(&adap->sge, i)
742 snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
743 adap->port[0]->name, i);
744 }
745
746 static int request_msix_queue_irqs(struct adapter *adap)
747 {
748 struct sge *s = &adap->sge;
749 int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
750 int iscsitqidx = 0;
751 int msi_index = 2;
752
753 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
754 adap->msix_info[1].desc, &s->fw_evtq);
755 if (err)
756 return err;
757
758 for_each_ethrxq(s, ethqidx) {
759 err = request_irq(adap->msix_info[msi_index].vec,
760 t4_sge_intr_msix, 0,
761 adap->msix_info[msi_index].desc,
762 &s->ethrxq[ethqidx].rspq);
763 if (err)
764 goto unwind;
765 msi_index++;
766 }
767 for_each_iscsirxq(s, iscsiqidx) {
768 err = request_irq(adap->msix_info[msi_index].vec,
769 t4_sge_intr_msix, 0,
770 adap->msix_info[msi_index].desc,
771 &s->iscsirxq[iscsiqidx].rspq);
772 if (err)
773 goto unwind;
774 msi_index++;
775 }
776 for_each_iscsitrxq(s, iscsitqidx) {
777 err = request_irq(adap->msix_info[msi_index].vec,
778 t4_sge_intr_msix, 0,
779 adap->msix_info[msi_index].desc,
780 &s->iscsitrxq[iscsitqidx].rspq);
781 if (err)
782 goto unwind;
783 msi_index++;
784 }
785 for_each_rdmarxq(s, rdmaqidx) {
786 err = request_irq(adap->msix_info[msi_index].vec,
787 t4_sge_intr_msix, 0,
788 adap->msix_info[msi_index].desc,
789 &s->rdmarxq[rdmaqidx].rspq);
790 if (err)
791 goto unwind;
792 msi_index++;
793 }
794 for_each_rdmaciq(s, rdmaciqqidx) {
795 err = request_irq(adap->msix_info[msi_index].vec,
796 t4_sge_intr_msix, 0,
797 adap->msix_info[msi_index].desc,
798 &s->rdmaciq[rdmaciqqidx].rspq);
799 if (err)
800 goto unwind;
801 msi_index++;
802 }
803 return 0;
804
805 unwind:
806 while (--rdmaciqqidx >= 0)
807 free_irq(adap->msix_info[--msi_index].vec,
808 &s->rdmaciq[rdmaciqqidx].rspq);
809 while (--rdmaqidx >= 0)
810 free_irq(adap->msix_info[--msi_index].vec,
811 &s->rdmarxq[rdmaqidx].rspq);
812 while (--iscsitqidx >= 0)
813 free_irq(adap->msix_info[--msi_index].vec,
814 &s->iscsitrxq[iscsitqidx].rspq);
815 while (--iscsiqidx >= 0)
816 free_irq(adap->msix_info[--msi_index].vec,
817 &s->iscsirxq[iscsiqidx].rspq);
818 while (--ethqidx >= 0)
819 free_irq(adap->msix_info[--msi_index].vec,
820 &s->ethrxq[ethqidx].rspq);
821 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
822 return err;
823 }
824
825 static void free_msix_queue_irqs(struct adapter *adap)
826 {
827 int i, msi_index = 2;
828 struct sge *s = &adap->sge;
829
830 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
831 for_each_ethrxq(s, i)
832 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
833 for_each_iscsirxq(s, i)
834 free_irq(adap->msix_info[msi_index++].vec,
835 &s->iscsirxq[i].rspq);
836 for_each_iscsitrxq(s, i)
837 free_irq(adap->msix_info[msi_index++].vec,
838 &s->iscsitrxq[i].rspq);
839 for_each_rdmarxq(s, i)
840 free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
841 for_each_rdmaciq(s, i)
842 free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
843 }
844
845 /**
846 * cxgb4_write_rss - write the RSS table for a given port
847 * @pi: the port
848 * @queues: array of queue indices for RSS
849 *
850 * Sets up the portion of the HW RSS table for the port's VI to distribute
851 * packets to the Rx queues in @queues.
852 * Should never be called before setting up sge eth rx queues
853 */
854 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
855 {
856 u16 *rss;
857 int i, err;
858 struct adapter *adapter = pi->adapter;
859 const struct sge_eth_rxq *rxq;
860
861 rxq = &adapter->sge.ethrxq[pi->first_qset];
862 rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
863 if (!rss)
864 return -ENOMEM;
865
866 /* map the queue indices to queue ids */
867 for (i = 0; i < pi->rss_size; i++, queues++)
868 rss[i] = rxq[*queues].rspq.abs_id;
869
870 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
871 pi->rss_size, rss, pi->rss_size);
872 /* If Tunnel All Lookup isn't specified in the global RSS
873 * Configuration, then we need to specify a default Ingress
874 * Queue for any ingress packets which aren't hashed. We'll
875 * use our first ingress queue ...
876 */
877 if (!err)
878 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
879 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
880 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
881 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
882 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
883 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
884 rss[0]);
885 kfree(rss);
886 return err;
887 }
888
889 /**
890 * setup_rss - configure RSS
891 * @adap: the adapter
892 *
893 * Sets up RSS for each port.
894 */
895 static int setup_rss(struct adapter *adap)
896 {
897 int i, j, err;
898
899 for_each_port(adap, i) {
900 const struct port_info *pi = adap2pinfo(adap, i);
901
902 /* Fill default values with equal distribution */
903 for (j = 0; j < pi->rss_size; j++)
904 pi->rss[j] = j % pi->nqsets;
905
906 err = cxgb4_write_rss(pi, pi->rss);
907 if (err)
908 return err;
909 }
910 return 0;
911 }
912
913 /*
914 * Return the channel of the ingress queue with the given qid.
915 */
916 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
917 {
918 qid -= p->ingr_start;
919 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
920 }
921
922 /*
923 * Wait until all NAPI handlers are descheduled.
924 */
925 static void quiesce_rx(struct adapter *adap)
926 {
927 int i;
928
929 for (i = 0; i < adap->sge.ingr_sz; i++) {
930 struct sge_rspq *q = adap->sge.ingr_map[i];
931
932 if (q && q->handler) {
933 napi_disable(&q->napi);
934 local_bh_disable();
935 while (!cxgb_poll_lock_napi(q))
936 mdelay(1);
937 local_bh_enable();
938 }
939
940 }
941 }
942
943 /* Disable interrupt and napi handler */
944 static void disable_interrupts(struct adapter *adap)
945 {
946 if (adap->flags & FULL_INIT_DONE) {
947 t4_intr_disable(adap);
948 if (adap->flags & USING_MSIX) {
949 free_msix_queue_irqs(adap);
950 free_irq(adap->msix_info[0].vec, adap);
951 } else {
952 free_irq(adap->pdev->irq, adap);
953 }
954 quiesce_rx(adap);
955 }
956 }
957
958 /*
959 * Enable NAPI scheduling and interrupt generation for all Rx queues.
960 */
961 static void enable_rx(struct adapter *adap)
962 {
963 int i;
964
965 for (i = 0; i < adap->sge.ingr_sz; i++) {
966 struct sge_rspq *q = adap->sge.ingr_map[i];
967
968 if (!q)
969 continue;
970 if (q->handler) {
971 cxgb_busy_poll_init_lock(q);
972 napi_enable(&q->napi);
973 }
974 /* 0-increment GTS to start the timer and enable interrupts */
975 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
976 SEINTARM_V(q->intr_params) |
977 INGRESSQID_V(q->cntxt_id));
978 }
979 }
980
981 static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
982 unsigned int nq, unsigned int per_chan, int msi_idx,
983 u16 *ids)
984 {
985 int i, err;
986
987 for (i = 0; i < nq; i++, q++) {
988 if (msi_idx > 0)
989 msi_idx++;
990 err = t4_sge_alloc_rxq(adap, &q->rspq, false,
991 adap->port[i / per_chan],
992 msi_idx, q->fl.size ? &q->fl : NULL,
993 uldrx_handler, 0);
994 if (err)
995 return err;
996 memset(&q->stats, 0, sizeof(q->stats));
997 if (ids)
998 ids[i] = q->rspq.abs_id;
999 }
1000 return 0;
1001 }
1002
1003 /**
1004 * setup_sge_queues - configure SGE Tx/Rx/response queues
1005 * @adap: the adapter
1006 *
1007 * Determines how many sets of SGE queues to use and initializes them.
1008 * We support multiple queue sets per port if we have MSI-X, otherwise
1009 * just one queue set per port.
1010 */
1011 static int setup_sge_queues(struct adapter *adap)
1012 {
1013 int err, msi_idx, i, j;
1014 struct sge *s = &adap->sge;
1015
1016 bitmap_zero(s->starving_fl, s->egr_sz);
1017 bitmap_zero(s->txq_maperr, s->egr_sz);
1018
1019 if (adap->flags & USING_MSIX)
1020 msi_idx = 1; /* vector 0 is for non-queue interrupts */
1021 else {
1022 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1023 NULL, NULL, -1);
1024 if (err)
1025 return err;
1026 msi_idx = -((int)s->intrq.abs_id + 1);
1027 }
1028
1029 /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1030 * don't forget to update the following which need to be
1031 * synchronized to and changes here.
1032 *
1033 * 1. The calculations of MAX_INGQ in cxgb4.h.
1034 *
1035 * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1036 * to accommodate any new/deleted Ingress Queues
1037 * which need MSI-X Vectors.
1038 *
1039 * 3. Update sge_qinfo_show() to include information on the
1040 * new/deleted queues.
1041 */
1042 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1043 msi_idx, NULL, fwevtq_handler, -1);
1044 if (err) {
1045 freeout: t4_free_sge_resources(adap);
1046 return err;
1047 }
1048
1049 for_each_port(adap, i) {
1050 struct net_device *dev = adap->port[i];
1051 struct port_info *pi = netdev_priv(dev);
1052 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1053 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1054
1055 for (j = 0; j < pi->nqsets; j++, q++) {
1056 if (msi_idx > 0)
1057 msi_idx++;
1058 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1059 msi_idx, &q->fl,
1060 t4_ethrx_handler,
1061 t4_get_mps_bg_map(adap,
1062 pi->tx_chan));
1063 if (err)
1064 goto freeout;
1065 q->rspq.idx = j;
1066 memset(&q->stats, 0, sizeof(q->stats));
1067 }
1068 for (j = 0; j < pi->nqsets; j++, t++) {
1069 err = t4_sge_alloc_eth_txq(adap, t, dev,
1070 netdev_get_tx_queue(dev, j),
1071 s->fw_evtq.cntxt_id);
1072 if (err)
1073 goto freeout;
1074 }
1075 }
1076
1077 j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1078 for_each_iscsirxq(s, i) {
1079 err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1080 adap->port[i / j],
1081 s->fw_evtq.cntxt_id);
1082 if (err)
1083 goto freeout;
1084 }
1085
1086 #define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids) do { \
1087 err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids); \
1088 if (err) \
1089 goto freeout; \
1090 if (msi_idx > 0) \
1091 msi_idx += nq; \
1092 } while (0)
1093
1094 ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq);
1095 ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq);
1096 ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq);
1097 j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1098 ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq);
1099
1100 #undef ALLOC_OFLD_RXQS
1101
1102 for_each_port(adap, i) {
1103 /*
1104 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1105 * have RDMA queues, and that's the right value.
1106 */
1107 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1108 s->fw_evtq.cntxt_id,
1109 s->rdmarxq[i].rspq.cntxt_id);
1110 if (err)
1111 goto freeout;
1112 }
1113
1114 t4_write_reg(adap, is_t4(adap->params.chip) ?
1115 MPS_TRC_RSS_CONTROL_A :
1116 MPS_T5_TRC_RSS_CONTROL_A,
1117 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1118 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1119 return 0;
1120 }
1121
1122 /*
1123 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1124 * The allocated memory is cleared.
1125 */
1126 void *t4_alloc_mem(size_t size)
1127 {
1128 void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1129
1130 if (!p)
1131 p = vzalloc(size);
1132 return p;
1133 }
1134
1135 /*
1136 * Free memory allocated through alloc_mem().
1137 */
1138 void t4_free_mem(void *addr)
1139 {
1140 kvfree(addr);
1141 }
1142
1143 /* Send a Work Request to write the filter at a specified index. We construct
1144 * a Firmware Filter Work Request to have the work done and put the indicated
1145 * filter into "pending" mode which will prevent any further actions against
1146 * it till we get a reply from the firmware on the completion status of the
1147 * request.
1148 */
1149 static int set_filter_wr(struct adapter *adapter, int fidx)
1150 {
1151 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1152 struct sk_buff *skb;
1153 struct fw_filter_wr *fwr;
1154 unsigned int ftid;
1155
1156 skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1157 if (!skb)
1158 return -ENOMEM;
1159
1160 /* If the new filter requires loopback Destination MAC and/or VLAN
1161 * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1162 * the filter.
1163 */
1164 if (f->fs.newdmac || f->fs.newvlan) {
1165 /* allocate L2T entry for new filter */
1166 f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1167 f->fs.eport, f->fs.dmac);
1168 if (f->l2t == NULL) {
1169 kfree_skb(skb);
1170 return -ENOMEM;
1171 }
1172 }
1173
1174 ftid = adapter->tids.ftid_base + fidx;
1175
1176 fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1177 memset(fwr, 0, sizeof(*fwr));
1178
1179 /* It would be nice to put most of the following in t4_hw.c but most
1180 * of the work is translating the cxgbtool ch_filter_specification
1181 * into the Work Request and the definition of that structure is
1182 * currently in cxgbtool.h which isn't appropriate to pull into the
1183 * common code. We may eventually try to come up with a more neutral
1184 * filter specification structure but for now it's easiest to simply
1185 * put this fairly direct code in line ...
1186 */
1187 fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1188 fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1189 fwr->tid_to_iq =
1190 htonl(FW_FILTER_WR_TID_V(ftid) |
1191 FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1192 FW_FILTER_WR_NOREPLY_V(0) |
1193 FW_FILTER_WR_IQ_V(f->fs.iq));
1194 fwr->del_filter_to_l2tix =
1195 htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1196 FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1197 FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1198 FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1199 FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1200 FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1201 FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1202 FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1203 FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1204 f->fs.newvlan == VLAN_REWRITE) |
1205 FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1206 f->fs.newvlan == VLAN_REWRITE) |
1207 FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1208 FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1209 FW_FILTER_WR_PRIO_V(f->fs.prio) |
1210 FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1211 fwr->ethtype = htons(f->fs.val.ethtype);
1212 fwr->ethtypem = htons(f->fs.mask.ethtype);
1213 fwr->frag_to_ovlan_vldm =
1214 (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1215 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1216 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1217 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1218 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1219 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1220 fwr->smac_sel = 0;
1221 fwr->rx_chan_rx_rpl_iq =
1222 htons(FW_FILTER_WR_RX_CHAN_V(0) |
1223 FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1224 fwr->maci_to_matchtypem =
1225 htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1226 FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1227 FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1228 FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1229 FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1230 FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1231 FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1232 FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1233 fwr->ptcl = f->fs.val.proto;
1234 fwr->ptclm = f->fs.mask.proto;
1235 fwr->ttyp = f->fs.val.tos;
1236 fwr->ttypm = f->fs.mask.tos;
1237 fwr->ivlan = htons(f->fs.val.ivlan);
1238 fwr->ivlanm = htons(f->fs.mask.ivlan);
1239 fwr->ovlan = htons(f->fs.val.ovlan);
1240 fwr->ovlanm = htons(f->fs.mask.ovlan);
1241 memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1242 memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1243 memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1244 memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1245 fwr->lp = htons(f->fs.val.lport);
1246 fwr->lpm = htons(f->fs.mask.lport);
1247 fwr->fp = htons(f->fs.val.fport);
1248 fwr->fpm = htons(f->fs.mask.fport);
1249 if (f->fs.newsmac)
1250 memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1251
1252 /* Mark the filter as "pending" and ship off the Filter Work Request.
1253 * When we get the Work Request Reply we'll clear the pending status.
1254 */
1255 f->pending = 1;
1256 set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1257 t4_ofld_send(adapter, skb);
1258 return 0;
1259 }
1260
1261 /* Delete the filter at a specified index.
1262 */
1263 static int del_filter_wr(struct adapter *adapter, int fidx)
1264 {
1265 struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1266 struct sk_buff *skb;
1267 struct fw_filter_wr *fwr;
1268 unsigned int len, ftid;
1269
1270 len = sizeof(*fwr);
1271 ftid = adapter->tids.ftid_base + fidx;
1272
1273 skb = alloc_skb(len, GFP_KERNEL);
1274 if (!skb)
1275 return -ENOMEM;
1276
1277 fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1278 t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1279
1280 /* Mark the filter as "pending" and ship off the Filter Work Request.
1281 * When we get the Work Request Reply we'll clear the pending status.
1282 */
1283 f->pending = 1;
1284 t4_mgmt_tx(adapter, skb);
1285 return 0;
1286 }
1287
1288 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1289 void *accel_priv, select_queue_fallback_t fallback)
1290 {
1291 int txq;
1292
1293 #ifdef CONFIG_CHELSIO_T4_DCB
1294 /* If a Data Center Bridging has been successfully negotiated on this
1295 * link then we'll use the skb's priority to map it to a TX Queue.
1296 * The skb's priority is determined via the VLAN Tag Priority Code
1297 * Point field.
1298 */
1299 if (cxgb4_dcb_enabled(dev)) {
1300 u16 vlan_tci;
1301 int err;
1302
1303 err = vlan_get_tag(skb, &vlan_tci);
1304 if (unlikely(err)) {
1305 if (net_ratelimit())
1306 netdev_warn(dev,
1307 "TX Packet without VLAN Tag on DCB Link\n");
1308 txq = 0;
1309 } else {
1310 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1311 #ifdef CONFIG_CHELSIO_T4_FCOE
1312 if (skb->protocol == htons(ETH_P_FCOE))
1313 txq = skb->priority & 0x7;
1314 #endif /* CONFIG_CHELSIO_T4_FCOE */
1315 }
1316 return txq;
1317 }
1318 #endif /* CONFIG_CHELSIO_T4_DCB */
1319
1320 if (select_queue) {
1321 txq = (skb_rx_queue_recorded(skb)
1322 ? skb_get_rx_queue(skb)
1323 : smp_processor_id());
1324
1325 while (unlikely(txq >= dev->real_num_tx_queues))
1326 txq -= dev->real_num_tx_queues;
1327
1328 return txq;
1329 }
1330
1331 return fallback(dev, skb) % dev->real_num_tx_queues;
1332 }
1333
1334 static int closest_timer(const struct sge *s, int time)
1335 {
1336 int i, delta, match = 0, min_delta = INT_MAX;
1337
1338 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1339 delta = time - s->timer_val[i];
1340 if (delta < 0)
1341 delta = -delta;
1342 if (delta < min_delta) {
1343 min_delta = delta;
1344 match = i;
1345 }
1346 }
1347 return match;
1348 }
1349
1350 static int closest_thres(const struct sge *s, int thres)
1351 {
1352 int i, delta, match = 0, min_delta = INT_MAX;
1353
1354 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1355 delta = thres - s->counter_val[i];
1356 if (delta < 0)
1357 delta = -delta;
1358 if (delta < min_delta) {
1359 min_delta = delta;
1360 match = i;
1361 }
1362 }
1363 return match;
1364 }
1365
1366 /**
1367 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1368 * @q: the Rx queue
1369 * @us: the hold-off time in us, or 0 to disable timer
1370 * @cnt: the hold-off packet count, or 0 to disable counter
1371 *
1372 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1373 * one of the two needs to be enabled for the queue to generate interrupts.
1374 */
1375 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1376 unsigned int us, unsigned int cnt)
1377 {
1378 struct adapter *adap = q->adap;
1379
1380 if ((us | cnt) == 0)
1381 cnt = 1;
1382
1383 if (cnt) {
1384 int err;
1385 u32 v, new_idx;
1386
1387 new_idx = closest_thres(&adap->sge, cnt);
1388 if (q->desc && q->pktcnt_idx != new_idx) {
1389 /* the queue has already been created, update it */
1390 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1391 FW_PARAMS_PARAM_X_V(
1392 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1393 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1394 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1395 &v, &new_idx);
1396 if (err)
1397 return err;
1398 }
1399 q->pktcnt_idx = new_idx;
1400 }
1401
1402 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1403 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1404 return 0;
1405 }
1406
1407 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1408 {
1409 const struct port_info *pi = netdev_priv(dev);
1410 netdev_features_t changed = dev->features ^ features;
1411 int err;
1412
1413 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1414 return 0;
1415
1416 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1417 -1, -1, -1,
1418 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1419 if (unlikely(err))
1420 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1421 return err;
1422 }
1423
1424 static int setup_debugfs(struct adapter *adap)
1425 {
1426 if (IS_ERR_OR_NULL(adap->debugfs_root))
1427 return -1;
1428
1429 #ifdef CONFIG_DEBUG_FS
1430 t4_setup_debugfs(adap);
1431 #endif
1432 return 0;
1433 }
1434
1435 /*
1436 * upper-layer driver support
1437 */
1438
1439 /*
1440 * Allocate an active-open TID and set it to the supplied value.
1441 */
1442 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1443 {
1444 int atid = -1;
1445
1446 spin_lock_bh(&t->atid_lock);
1447 if (t->afree) {
1448 union aopen_entry *p = t->afree;
1449
1450 atid = (p - t->atid_tab) + t->atid_base;
1451 t->afree = p->next;
1452 p->data = data;
1453 t->atids_in_use++;
1454 }
1455 spin_unlock_bh(&t->atid_lock);
1456 return atid;
1457 }
1458 EXPORT_SYMBOL(cxgb4_alloc_atid);
1459
1460 /*
1461 * Release an active-open TID.
1462 */
1463 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1464 {
1465 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1466
1467 spin_lock_bh(&t->atid_lock);
1468 p->next = t->afree;
1469 t->afree = p;
1470 t->atids_in_use--;
1471 spin_unlock_bh(&t->atid_lock);
1472 }
1473 EXPORT_SYMBOL(cxgb4_free_atid);
1474
1475 /*
1476 * Allocate a server TID and set it to the supplied value.
1477 */
1478 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1479 {
1480 int stid;
1481
1482 spin_lock_bh(&t->stid_lock);
1483 if (family == PF_INET) {
1484 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1485 if (stid < t->nstids)
1486 __set_bit(stid, t->stid_bmap);
1487 else
1488 stid = -1;
1489 } else {
1490 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1491 if (stid < 0)
1492 stid = -1;
1493 }
1494 if (stid >= 0) {
1495 t->stid_tab[stid].data = data;
1496 stid += t->stid_base;
1497 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1498 * This is equivalent to 4 TIDs. With CLIP enabled it
1499 * needs 2 TIDs.
1500 */
1501 if (family == PF_INET)
1502 t->stids_in_use++;
1503 else
1504 t->stids_in_use += 2;
1505 }
1506 spin_unlock_bh(&t->stid_lock);
1507 return stid;
1508 }
1509 EXPORT_SYMBOL(cxgb4_alloc_stid);
1510
1511 /* Allocate a server filter TID and set it to the supplied value.
1512 */
1513 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1514 {
1515 int stid;
1516
1517 spin_lock_bh(&t->stid_lock);
1518 if (family == PF_INET) {
1519 stid = find_next_zero_bit(t->stid_bmap,
1520 t->nstids + t->nsftids, t->nstids);
1521 if (stid < (t->nstids + t->nsftids))
1522 __set_bit(stid, t->stid_bmap);
1523 else
1524 stid = -1;
1525 } else {
1526 stid = -1;
1527 }
1528 if (stid >= 0) {
1529 t->stid_tab[stid].data = data;
1530 stid -= t->nstids;
1531 stid += t->sftid_base;
1532 t->sftids_in_use++;
1533 }
1534 spin_unlock_bh(&t->stid_lock);
1535 return stid;
1536 }
1537 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1538
1539 /* Release a server TID.
1540 */
1541 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1542 {
1543 /* Is it a server filter TID? */
1544 if (t->nsftids && (stid >= t->sftid_base)) {
1545 stid -= t->sftid_base;
1546 stid += t->nstids;
1547 } else {
1548 stid -= t->stid_base;
1549 }
1550
1551 spin_lock_bh(&t->stid_lock);
1552 if (family == PF_INET)
1553 __clear_bit(stid, t->stid_bmap);
1554 else
1555 bitmap_release_region(t->stid_bmap, stid, 1);
1556 t->stid_tab[stid].data = NULL;
1557 if (stid < t->nstids) {
1558 if (family == PF_INET)
1559 t->stids_in_use--;
1560 else
1561 t->stids_in_use -= 2;
1562 } else {
1563 t->sftids_in_use--;
1564 }
1565 spin_unlock_bh(&t->stid_lock);
1566 }
1567 EXPORT_SYMBOL(cxgb4_free_stid);
1568
1569 /*
1570 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1571 */
1572 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1573 unsigned int tid)
1574 {
1575 struct cpl_tid_release *req;
1576
1577 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1578 req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1579 INIT_TP_WR(req, tid);
1580 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1581 }
1582
1583 /*
1584 * Queue a TID release request and if necessary schedule a work queue to
1585 * process it.
1586 */
1587 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1588 unsigned int tid)
1589 {
1590 void **p = &t->tid_tab[tid];
1591 struct adapter *adap = container_of(t, struct adapter, tids);
1592
1593 spin_lock_bh(&adap->tid_release_lock);
1594 *p = adap->tid_release_head;
1595 /* Low 2 bits encode the Tx channel number */
1596 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1597 if (!adap->tid_release_task_busy) {
1598 adap->tid_release_task_busy = true;
1599 queue_work(adap->workq, &adap->tid_release_task);
1600 }
1601 spin_unlock_bh(&adap->tid_release_lock);
1602 }
1603
1604 /*
1605 * Process the list of pending TID release requests.
1606 */
1607 static void process_tid_release_list(struct work_struct *work)
1608 {
1609 struct sk_buff *skb;
1610 struct adapter *adap;
1611
1612 adap = container_of(work, struct adapter, tid_release_task);
1613
1614 spin_lock_bh(&adap->tid_release_lock);
1615 while (adap->tid_release_head) {
1616 void **p = adap->tid_release_head;
1617 unsigned int chan = (uintptr_t)p & 3;
1618 p = (void *)p - chan;
1619
1620 adap->tid_release_head = *p;
1621 *p = NULL;
1622 spin_unlock_bh(&adap->tid_release_lock);
1623
1624 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1625 GFP_KERNEL)))
1626 schedule_timeout_uninterruptible(1);
1627
1628 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1629 t4_ofld_send(adap, skb);
1630 spin_lock_bh(&adap->tid_release_lock);
1631 }
1632 adap->tid_release_task_busy = false;
1633 spin_unlock_bh(&adap->tid_release_lock);
1634 }
1635
1636 /*
1637 * Release a TID and inform HW. If we are unable to allocate the release
1638 * message we defer to a work queue.
1639 */
1640 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1641 {
1642 struct sk_buff *skb;
1643 struct adapter *adap = container_of(t, struct adapter, tids);
1644
1645 WARN_ON(tid >= t->ntids);
1646
1647 if (t->tid_tab[tid]) {
1648 t->tid_tab[tid] = NULL;
1649 if (t->hash_base && (tid >= t->hash_base))
1650 atomic_dec(&t->hash_tids_in_use);
1651 else
1652 atomic_dec(&t->tids_in_use);
1653 }
1654
1655 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1656 if (likely(skb)) {
1657 mk_tid_release(skb, chan, tid);
1658 t4_ofld_send(adap, skb);
1659 } else
1660 cxgb4_queue_tid_release(t, chan, tid);
1661 }
1662 EXPORT_SYMBOL(cxgb4_remove_tid);
1663
1664 /*
1665 * Allocate and initialize the TID tables. Returns 0 on success.
1666 */
1667 static int tid_init(struct tid_info *t)
1668 {
1669 size_t size;
1670 unsigned int stid_bmap_size;
1671 unsigned int natids = t->natids;
1672 struct adapter *adap = container_of(t, struct adapter, tids);
1673
1674 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1675 size = t->ntids * sizeof(*t->tid_tab) +
1676 natids * sizeof(*t->atid_tab) +
1677 t->nstids * sizeof(*t->stid_tab) +
1678 t->nsftids * sizeof(*t->stid_tab) +
1679 stid_bmap_size * sizeof(long) +
1680 t->nftids * sizeof(*t->ftid_tab) +
1681 t->nsftids * sizeof(*t->ftid_tab);
1682
1683 t->tid_tab = t4_alloc_mem(size);
1684 if (!t->tid_tab)
1685 return -ENOMEM;
1686
1687 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1688 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1689 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1690 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1691 spin_lock_init(&t->stid_lock);
1692 spin_lock_init(&t->atid_lock);
1693
1694 t->stids_in_use = 0;
1695 t->sftids_in_use = 0;
1696 t->afree = NULL;
1697 t->atids_in_use = 0;
1698 atomic_set(&t->tids_in_use, 0);
1699 atomic_set(&t->hash_tids_in_use, 0);
1700
1701 /* Setup the free list for atid_tab and clear the stid bitmap. */
1702 if (natids) {
1703 while (--natids)
1704 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1705 t->afree = t->atid_tab;
1706 }
1707 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1708 /* Reserve stid 0 for T4/T5 adapters */
1709 if (!t->stid_base &&
1710 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1711 __set_bit(0, t->stid_bmap);
1712
1713 return 0;
1714 }
1715
1716 /**
1717 * cxgb4_create_server - create an IP server
1718 * @dev: the device
1719 * @stid: the server TID
1720 * @sip: local IP address to bind server to
1721 * @sport: the server's TCP port
1722 * @queue: queue to direct messages from this server to
1723 *
1724 * Create an IP server for the given port and address.
1725 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1726 */
1727 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1728 __be32 sip, __be16 sport, __be16 vlan,
1729 unsigned int queue)
1730 {
1731 unsigned int chan;
1732 struct sk_buff *skb;
1733 struct adapter *adap;
1734 struct cpl_pass_open_req *req;
1735 int ret;
1736
1737 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1738 if (!skb)
1739 return -ENOMEM;
1740
1741 adap = netdev2adap(dev);
1742 req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1743 INIT_TP_WR(req, 0);
1744 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1745 req->local_port = sport;
1746 req->peer_port = htons(0);
1747 req->local_ip = sip;
1748 req->peer_ip = htonl(0);
1749 chan = rxq_to_chan(&adap->sge, queue);
1750 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1751 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1752 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1753 ret = t4_mgmt_tx(adap, skb);
1754 return net_xmit_eval(ret);
1755 }
1756 EXPORT_SYMBOL(cxgb4_create_server);
1757
1758 /* cxgb4_create_server6 - create an IPv6 server
1759 * @dev: the device
1760 * @stid: the server TID
1761 * @sip: local IPv6 address to bind server to
1762 * @sport: the server's TCP port
1763 * @queue: queue to direct messages from this server to
1764 *
1765 * Create an IPv6 server for the given port and address.
1766 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1767 */
1768 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1769 const struct in6_addr *sip, __be16 sport,
1770 unsigned int queue)
1771 {
1772 unsigned int chan;
1773 struct sk_buff *skb;
1774 struct adapter *adap;
1775 struct cpl_pass_open_req6 *req;
1776 int ret;
1777
1778 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1779 if (!skb)
1780 return -ENOMEM;
1781
1782 adap = netdev2adap(dev);
1783 req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1784 INIT_TP_WR(req, 0);
1785 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1786 req->local_port = sport;
1787 req->peer_port = htons(0);
1788 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1789 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1790 req->peer_ip_hi = cpu_to_be64(0);
1791 req->peer_ip_lo = cpu_to_be64(0);
1792 chan = rxq_to_chan(&adap->sge, queue);
1793 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1794 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1795 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1796 ret = t4_mgmt_tx(adap, skb);
1797 return net_xmit_eval(ret);
1798 }
1799 EXPORT_SYMBOL(cxgb4_create_server6);
1800
1801 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1802 unsigned int queue, bool ipv6)
1803 {
1804 struct sk_buff *skb;
1805 struct adapter *adap;
1806 struct cpl_close_listsvr_req *req;
1807 int ret;
1808
1809 adap = netdev2adap(dev);
1810
1811 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1812 if (!skb)
1813 return -ENOMEM;
1814
1815 req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1816 INIT_TP_WR(req, 0);
1817 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1818 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1819 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1820 ret = t4_mgmt_tx(adap, skb);
1821 return net_xmit_eval(ret);
1822 }
1823 EXPORT_SYMBOL(cxgb4_remove_server);
1824
1825 /**
1826 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1827 * @mtus: the HW MTU table
1828 * @mtu: the target MTU
1829 * @idx: index of selected entry in the MTU table
1830 *
1831 * Returns the index and the value in the HW MTU table that is closest to
1832 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1833 * table, in which case that smallest available value is selected.
1834 */
1835 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1836 unsigned int *idx)
1837 {
1838 unsigned int i = 0;
1839
1840 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1841 ++i;
1842 if (idx)
1843 *idx = i;
1844 return mtus[i];
1845 }
1846 EXPORT_SYMBOL(cxgb4_best_mtu);
1847
1848 /**
1849 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1850 * @mtus: the HW MTU table
1851 * @header_size: Header Size
1852 * @data_size_max: maximum Data Segment Size
1853 * @data_size_align: desired Data Segment Size Alignment (2^N)
1854 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1855 *
1856 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1857 * MTU Table based solely on a Maximum MTU parameter, we break that
1858 * parameter up into a Header Size and Maximum Data Segment Size, and
1859 * provide a desired Data Segment Size Alignment. If we find an MTU in
1860 * the Hardware MTU Table which will result in a Data Segment Size with
1861 * the requested alignment _and_ that MTU isn't "too far" from the
1862 * closest MTU, then we'll return that rather than the closest MTU.
1863 */
1864 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1865 unsigned short header_size,
1866 unsigned short data_size_max,
1867 unsigned short data_size_align,
1868 unsigned int *mtu_idxp)
1869 {
1870 unsigned short max_mtu = header_size + data_size_max;
1871 unsigned short data_size_align_mask = data_size_align - 1;
1872 int mtu_idx, aligned_mtu_idx;
1873
1874 /* Scan the MTU Table till we find an MTU which is larger than our
1875 * Maximum MTU or we reach the end of the table. Along the way,
1876 * record the last MTU found, if any, which will result in a Data
1877 * Segment Length matching the requested alignment.
1878 */
1879 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1880 unsigned short data_size = mtus[mtu_idx] - header_size;
1881
1882 /* If this MTU minus the Header Size would result in a
1883 * Data Segment Size of the desired alignment, remember it.
1884 */
1885 if ((data_size & data_size_align_mask) == 0)
1886 aligned_mtu_idx = mtu_idx;
1887
1888 /* If we're not at the end of the Hardware MTU Table and the
1889 * next element is larger than our Maximum MTU, drop out of
1890 * the loop.
1891 */
1892 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1893 break;
1894 }
1895
1896 /* If we fell out of the loop because we ran to the end of the table,
1897 * then we just have to use the last [largest] entry.
1898 */
1899 if (mtu_idx == NMTUS)
1900 mtu_idx--;
1901
1902 /* If we found an MTU which resulted in the requested Data Segment
1903 * Length alignment and that's "not far" from the largest MTU which is
1904 * less than or equal to the maximum MTU, then use that.
1905 */
1906 if (aligned_mtu_idx >= 0 &&
1907 mtu_idx - aligned_mtu_idx <= 1)
1908 mtu_idx = aligned_mtu_idx;
1909
1910 /* If the caller has passed in an MTU Index pointer, pass the
1911 * MTU Index back. Return the MTU value.
1912 */
1913 if (mtu_idxp)
1914 *mtu_idxp = mtu_idx;
1915 return mtus[mtu_idx];
1916 }
1917 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1918
1919 /**
1920 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1921 * @chip: chip type
1922 * @viid: VI id of the given port
1923 *
1924 * Return the SMT index for this VI.
1925 */
1926 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1927 {
1928 /* In T4/T5, SMT contains 256 SMAC entries organized in
1929 * 128 rows of 2 entries each.
1930 * In T6, SMT contains 256 SMAC entries in 256 rows.
1931 * TODO: The below code needs to be updated when we add support
1932 * for 256 VFs.
1933 */
1934 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1935 return ((viid & 0x7f) << 1);
1936 else
1937 return (viid & 0x7f);
1938 }
1939 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1940
1941 /**
1942 * cxgb4_port_chan - get the HW channel of a port
1943 * @dev: the net device for the port
1944 *
1945 * Return the HW Tx channel of the given port.
1946 */
1947 unsigned int cxgb4_port_chan(const struct net_device *dev)
1948 {
1949 return netdev2pinfo(dev)->tx_chan;
1950 }
1951 EXPORT_SYMBOL(cxgb4_port_chan);
1952
1953 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1954 {
1955 struct adapter *adap = netdev2adap(dev);
1956 u32 v1, v2, lp_count, hp_count;
1957
1958 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1959 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1960 if (is_t4(adap->params.chip)) {
1961 lp_count = LP_COUNT_G(v1);
1962 hp_count = HP_COUNT_G(v1);
1963 } else {
1964 lp_count = LP_COUNT_T5_G(v1);
1965 hp_count = HP_COUNT_T5_G(v2);
1966 }
1967 return lpfifo ? lp_count : hp_count;
1968 }
1969 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1970
1971 /**
1972 * cxgb4_port_viid - get the VI id of a port
1973 * @dev: the net device for the port
1974 *
1975 * Return the VI id of the given port.
1976 */
1977 unsigned int cxgb4_port_viid(const struct net_device *dev)
1978 {
1979 return netdev2pinfo(dev)->viid;
1980 }
1981 EXPORT_SYMBOL(cxgb4_port_viid);
1982
1983 /**
1984 * cxgb4_port_idx - get the index of a port
1985 * @dev: the net device for the port
1986 *
1987 * Return the index of the given port.
1988 */
1989 unsigned int cxgb4_port_idx(const struct net_device *dev)
1990 {
1991 return netdev2pinfo(dev)->port_id;
1992 }
1993 EXPORT_SYMBOL(cxgb4_port_idx);
1994
1995 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1996 struct tp_tcp_stats *v6)
1997 {
1998 struct adapter *adap = pci_get_drvdata(pdev);
1999
2000 spin_lock(&adap->stats_lock);
2001 t4_tp_get_tcp_stats(adap, v4, v6);
2002 spin_unlock(&adap->stats_lock);
2003 }
2004 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2005
2006 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2007 const unsigned int *pgsz_order)
2008 {
2009 struct adapter *adap = netdev2adap(dev);
2010
2011 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2012 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2013 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2014 HPZ3_V(pgsz_order[3]));
2015 }
2016 EXPORT_SYMBOL(cxgb4_iscsi_init);
2017
2018 int cxgb4_flush_eq_cache(struct net_device *dev)
2019 {
2020 struct adapter *adap = netdev2adap(dev);
2021
2022 return t4_sge_ctxt_flush(adap, adap->mbox);
2023 }
2024 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2025
2026 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2027 {
2028 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2029 __be64 indices;
2030 int ret;
2031
2032 spin_lock(&adap->win0_lock);
2033 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2034 sizeof(indices), (__be32 *)&indices,
2035 T4_MEMORY_READ);
2036 spin_unlock(&adap->win0_lock);
2037 if (!ret) {
2038 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2039 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2040 }
2041 return ret;
2042 }
2043
2044 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2045 u16 size)
2046 {
2047 struct adapter *adap = netdev2adap(dev);
2048 u16 hw_pidx, hw_cidx;
2049 int ret;
2050
2051 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2052 if (ret)
2053 goto out;
2054
2055 if (pidx != hw_pidx) {
2056 u16 delta;
2057 u32 val;
2058
2059 if (pidx >= hw_pidx)
2060 delta = pidx - hw_pidx;
2061 else
2062 delta = size - hw_pidx + pidx;
2063
2064 if (is_t4(adap->params.chip))
2065 val = PIDX_V(delta);
2066 else
2067 val = PIDX_T5_V(delta);
2068 wmb();
2069 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2070 QID_V(qid) | val);
2071 }
2072 out:
2073 return ret;
2074 }
2075 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2076
2077 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2078 {
2079 struct adapter *adap;
2080 u32 offset, memtype, memaddr;
2081 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2082 u32 edc0_end, edc1_end, mc0_end, mc1_end;
2083 int ret;
2084
2085 adap = netdev2adap(dev);
2086
2087 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2088
2089 /* Figure out where the offset lands in the Memory Type/Address scheme.
2090 * This code assumes that the memory is laid out starting at offset 0
2091 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2092 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
2093 * MC0, and some have both MC0 and MC1.
2094 */
2095 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2096 edc0_size = EDRAM0_SIZE_G(size) << 20;
2097 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2098 edc1_size = EDRAM1_SIZE_G(size) << 20;
2099 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2100 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2101
2102 edc0_end = edc0_size;
2103 edc1_end = edc0_end + edc1_size;
2104 mc0_end = edc1_end + mc0_size;
2105
2106 if (offset < edc0_end) {
2107 memtype = MEM_EDC0;
2108 memaddr = offset;
2109 } else if (offset < edc1_end) {
2110 memtype = MEM_EDC1;
2111 memaddr = offset - edc0_end;
2112 } else {
2113 if (offset < mc0_end) {
2114 memtype = MEM_MC0;
2115 memaddr = offset - edc1_end;
2116 } else if (is_t5(adap->params.chip)) {
2117 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2118 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2119 mc1_end = mc0_end + mc1_size;
2120 if (offset < mc1_end) {
2121 memtype = MEM_MC1;
2122 memaddr = offset - mc0_end;
2123 } else {
2124 /* offset beyond the end of any memory */
2125 goto err;
2126 }
2127 } else {
2128 /* T4/T6 only has a single memory channel */
2129 goto err;
2130 }
2131 }
2132
2133 spin_lock(&adap->win0_lock);
2134 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2135 spin_unlock(&adap->win0_lock);
2136 return ret;
2137
2138 err:
2139 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2140 stag, offset);
2141 return -EINVAL;
2142 }
2143 EXPORT_SYMBOL(cxgb4_read_tpte);
2144
2145 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2146 {
2147 u32 hi, lo;
2148 struct adapter *adap;
2149
2150 adap = netdev2adap(dev);
2151 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2152 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2153
2154 return ((u64)hi << 32) | (u64)lo;
2155 }
2156 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2157
2158 int cxgb4_bar2_sge_qregs(struct net_device *dev,
2159 unsigned int qid,
2160 enum cxgb4_bar2_qtype qtype,
2161 int user,
2162 u64 *pbar2_qoffset,
2163 unsigned int *pbar2_qid)
2164 {
2165 return t4_bar2_sge_qregs(netdev2adap(dev),
2166 qid,
2167 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2168 ? T4_BAR2_QTYPE_EGRESS
2169 : T4_BAR2_QTYPE_INGRESS),
2170 user,
2171 pbar2_qoffset,
2172 pbar2_qid);
2173 }
2174 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2175
2176 static struct pci_driver cxgb4_driver;
2177
2178 static void check_neigh_update(struct neighbour *neigh)
2179 {
2180 const struct device *parent;
2181 const struct net_device *netdev = neigh->dev;
2182
2183 if (netdev->priv_flags & IFF_802_1Q_VLAN)
2184 netdev = vlan_dev_real_dev(netdev);
2185 parent = netdev->dev.parent;
2186 if (parent && parent->driver == &cxgb4_driver.driver)
2187 t4_l2t_update(dev_get_drvdata(parent), neigh);
2188 }
2189
2190 static int netevent_cb(struct notifier_block *nb, unsigned long event,
2191 void *data)
2192 {
2193 switch (event) {
2194 case NETEVENT_NEIGH_UPDATE:
2195 check_neigh_update(data);
2196 break;
2197 case NETEVENT_REDIRECT:
2198 default:
2199 break;
2200 }
2201 return 0;
2202 }
2203
2204 static bool netevent_registered;
2205 static struct notifier_block cxgb4_netevent_nb = {
2206 .notifier_call = netevent_cb
2207 };
2208
2209 static void drain_db_fifo(struct adapter *adap, int usecs)
2210 {
2211 u32 v1, v2, lp_count, hp_count;
2212
2213 do {
2214 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2215 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2216 if (is_t4(adap->params.chip)) {
2217 lp_count = LP_COUNT_G(v1);
2218 hp_count = HP_COUNT_G(v1);
2219 } else {
2220 lp_count = LP_COUNT_T5_G(v1);
2221 hp_count = HP_COUNT_T5_G(v2);
2222 }
2223
2224 if (lp_count == 0 && hp_count == 0)
2225 break;
2226 set_current_state(TASK_UNINTERRUPTIBLE);
2227 schedule_timeout(usecs_to_jiffies(usecs));
2228 } while (1);
2229 }
2230
2231 static void disable_txq_db(struct sge_txq *q)
2232 {
2233 unsigned long flags;
2234
2235 spin_lock_irqsave(&q->db_lock, flags);
2236 q->db_disabled = 1;
2237 spin_unlock_irqrestore(&q->db_lock, flags);
2238 }
2239
2240 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2241 {
2242 spin_lock_irq(&q->db_lock);
2243 if (q->db_pidx_inc) {
2244 /* Make sure that all writes to the TX descriptors
2245 * are committed before we tell HW about them.
2246 */
2247 wmb();
2248 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2249 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2250 q->db_pidx_inc = 0;
2251 }
2252 q->db_disabled = 0;
2253 spin_unlock_irq(&q->db_lock);
2254 }
2255
2256 static void disable_dbs(struct adapter *adap)
2257 {
2258 int i;
2259
2260 for_each_ethrxq(&adap->sge, i)
2261 disable_txq_db(&adap->sge.ethtxq[i].q);
2262 for_each_iscsirxq(&adap->sge, i)
2263 disable_txq_db(&adap->sge.ofldtxq[i].q);
2264 for_each_port(adap, i)
2265 disable_txq_db(&adap->sge.ctrlq[i].q);
2266 }
2267
2268 static void enable_dbs(struct adapter *adap)
2269 {
2270 int i;
2271
2272 for_each_ethrxq(&adap->sge, i)
2273 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2274 for_each_iscsirxq(&adap->sge, i)
2275 enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2276 for_each_port(adap, i)
2277 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2278 }
2279
2280 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2281 {
2282 if (adap->uld_handle[CXGB4_ULD_RDMA])
2283 ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2284 cmd);
2285 }
2286
2287 static void process_db_full(struct work_struct *work)
2288 {
2289 struct adapter *adap;
2290
2291 adap = container_of(work, struct adapter, db_full_task);
2292
2293 drain_db_fifo(adap, dbfifo_drain_delay);
2294 enable_dbs(adap);
2295 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2296 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2297 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2298 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2299 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2300 else
2301 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2302 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2303 }
2304
2305 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2306 {
2307 u16 hw_pidx, hw_cidx;
2308 int ret;
2309
2310 spin_lock_irq(&q->db_lock);
2311 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2312 if (ret)
2313 goto out;
2314 if (q->db_pidx != hw_pidx) {
2315 u16 delta;
2316 u32 val;
2317
2318 if (q->db_pidx >= hw_pidx)
2319 delta = q->db_pidx - hw_pidx;
2320 else
2321 delta = q->size - hw_pidx + q->db_pidx;
2322
2323 if (is_t4(adap->params.chip))
2324 val = PIDX_V(delta);
2325 else
2326 val = PIDX_T5_V(delta);
2327 wmb();
2328 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2329 QID_V(q->cntxt_id) | val);
2330 }
2331 out:
2332 q->db_disabled = 0;
2333 q->db_pidx_inc = 0;
2334 spin_unlock_irq(&q->db_lock);
2335 if (ret)
2336 CH_WARN(adap, "DB drop recovery failed.\n");
2337 }
2338 static void recover_all_queues(struct adapter *adap)
2339 {
2340 int i;
2341
2342 for_each_ethrxq(&adap->sge, i)
2343 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2344 for_each_iscsirxq(&adap->sge, i)
2345 sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2346 for_each_port(adap, i)
2347 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2348 }
2349
2350 static void process_db_drop(struct work_struct *work)
2351 {
2352 struct adapter *adap;
2353
2354 adap = container_of(work, struct adapter, db_drop_task);
2355
2356 if (is_t4(adap->params.chip)) {
2357 drain_db_fifo(adap, dbfifo_drain_delay);
2358 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2359 drain_db_fifo(adap, dbfifo_drain_delay);
2360 recover_all_queues(adap);
2361 drain_db_fifo(adap, dbfifo_drain_delay);
2362 enable_dbs(adap);
2363 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2364 } else if (is_t5(adap->params.chip)) {
2365 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2366 u16 qid = (dropped_db >> 15) & 0x1ffff;
2367 u16 pidx_inc = dropped_db & 0x1fff;
2368 u64 bar2_qoffset;
2369 unsigned int bar2_qid;
2370 int ret;
2371
2372 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2373 0, &bar2_qoffset, &bar2_qid);
2374 if (ret)
2375 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2376 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2377 else
2378 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2379 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2380
2381 /* Re-enable BAR2 WC */
2382 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2383 }
2384
2385 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2386 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2387 }
2388
2389 void t4_db_full(struct adapter *adap)
2390 {
2391 if (is_t4(adap->params.chip)) {
2392 disable_dbs(adap);
2393 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2394 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2395 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2396 queue_work(adap->workq, &adap->db_full_task);
2397 }
2398 }
2399
2400 void t4_db_dropped(struct adapter *adap)
2401 {
2402 if (is_t4(adap->params.chip)) {
2403 disable_dbs(adap);
2404 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2405 }
2406 queue_work(adap->workq, &adap->db_drop_task);
2407 }
2408
2409 static void uld_attach(struct adapter *adap, unsigned int uld)
2410 {
2411 void *handle;
2412 struct cxgb4_lld_info lli;
2413 unsigned short i;
2414
2415 lli.pdev = adap->pdev;
2416 lli.pf = adap->pf;
2417 lli.l2t = adap->l2t;
2418 lli.tids = &adap->tids;
2419 lli.ports = adap->port;
2420 lli.vr = &adap->vres;
2421 lli.mtus = adap->params.mtus;
2422 if (uld == CXGB4_ULD_RDMA) {
2423 lli.rxq_ids = adap->sge.rdma_rxq;
2424 lli.ciq_ids = adap->sge.rdma_ciq;
2425 lli.nrxq = adap->sge.rdmaqs;
2426 lli.nciq = adap->sge.rdmaciqs;
2427 } else if (uld == CXGB4_ULD_ISCSI) {
2428 lli.rxq_ids = adap->sge.iscsi_rxq;
2429 lli.nrxq = adap->sge.iscsiqsets;
2430 } else if (uld == CXGB4_ULD_ISCSIT) {
2431 lli.rxq_ids = adap->sge.iscsit_rxq;
2432 lli.nrxq = adap->sge.niscsitq;
2433 }
2434 lli.ntxq = adap->sge.iscsiqsets;
2435 lli.nchan = adap->params.nports;
2436 lli.nports = adap->params.nports;
2437 lli.wr_cred = adap->params.ofldq_wr_cred;
2438 lli.adapter_type = adap->params.chip;
2439 lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2440 lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2441 lli.udb_density = 1 << adap->params.sge.eq_qpp;
2442 lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2443 lli.filt_mode = adap->params.tp.vlan_pri_map;
2444 /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2445 for (i = 0; i < NCHAN; i++)
2446 lli.tx_modq[i] = i;
2447 lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2448 lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2449 lli.fw_vers = adap->params.fw_vers;
2450 lli.dbfifo_int_thresh = dbfifo_int_thresh;
2451 lli.sge_ingpadboundary = adap->sge.fl_align;
2452 lli.sge_egrstatuspagesize = adap->sge.stat_len;
2453 lli.sge_pktshift = adap->sge.pktshift;
2454 lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2455 lli.max_ordird_qp = adap->params.max_ordird_qp;
2456 lli.max_ird_adapter = adap->params.max_ird_adapter;
2457 lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2458 lli.nodeid = dev_to_node(adap->pdev_dev);
2459
2460 handle = ulds[uld].add(&lli);
2461 if (IS_ERR(handle)) {
2462 dev_warn(adap->pdev_dev,
2463 "could not attach to the %s driver, error %ld\n",
2464 uld_str[uld], PTR_ERR(handle));
2465 return;
2466 }
2467
2468 adap->uld_handle[uld] = handle;
2469
2470 if (!netevent_registered) {
2471 register_netevent_notifier(&cxgb4_netevent_nb);
2472 netevent_registered = true;
2473 }
2474
2475 if (adap->flags & FULL_INIT_DONE)
2476 ulds[uld].state_change(handle, CXGB4_STATE_UP);
2477 }
2478
2479 static void attach_ulds(struct adapter *adap)
2480 {
2481 unsigned int i;
2482
2483 spin_lock(&adap_rcu_lock);
2484 list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2485 spin_unlock(&adap_rcu_lock);
2486
2487 mutex_lock(&uld_mutex);
2488 list_add_tail(&adap->list_node, &adapter_list);
2489 for (i = 0; i < CXGB4_ULD_MAX; i++)
2490 if (ulds[i].add)
2491 uld_attach(adap, i);
2492 mutex_unlock(&uld_mutex);
2493 }
2494
2495 static void detach_ulds(struct adapter *adap)
2496 {
2497 unsigned int i;
2498
2499 mutex_lock(&uld_mutex);
2500 list_del(&adap->list_node);
2501 for (i = 0; i < CXGB4_ULD_MAX; i++)
2502 if (adap->uld_handle[i]) {
2503 ulds[i].state_change(adap->uld_handle[i],
2504 CXGB4_STATE_DETACH);
2505 adap->uld_handle[i] = NULL;
2506 }
2507 if (netevent_registered && list_empty(&adapter_list)) {
2508 unregister_netevent_notifier(&cxgb4_netevent_nb);
2509 netevent_registered = false;
2510 }
2511 mutex_unlock(&uld_mutex);
2512
2513 spin_lock(&adap_rcu_lock);
2514 list_del_rcu(&adap->rcu_node);
2515 spin_unlock(&adap_rcu_lock);
2516 }
2517
2518 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2519 {
2520 unsigned int i;
2521
2522 mutex_lock(&uld_mutex);
2523 for (i = 0; i < CXGB4_ULD_MAX; i++)
2524 if (adap->uld_handle[i])
2525 ulds[i].state_change(adap->uld_handle[i], new_state);
2526 mutex_unlock(&uld_mutex);
2527 }
2528
2529 /**
2530 * cxgb4_register_uld - register an upper-layer driver
2531 * @type: the ULD type
2532 * @p: the ULD methods
2533 *
2534 * Registers an upper-layer driver with this driver and notifies the ULD
2535 * about any presently available devices that support its type. Returns
2536 * %-EBUSY if a ULD of the same type is already registered.
2537 */
2538 int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2539 {
2540 int ret = 0;
2541 struct adapter *adap;
2542
2543 if (type >= CXGB4_ULD_MAX)
2544 return -EINVAL;
2545 mutex_lock(&uld_mutex);
2546 if (ulds[type].add) {
2547 ret = -EBUSY;
2548 goto out;
2549 }
2550 ulds[type] = *p;
2551 list_for_each_entry(adap, &adapter_list, list_node)
2552 uld_attach(adap, type);
2553 out: mutex_unlock(&uld_mutex);
2554 return ret;
2555 }
2556 EXPORT_SYMBOL(cxgb4_register_uld);
2557
2558 /**
2559 * cxgb4_unregister_uld - unregister an upper-layer driver
2560 * @type: the ULD type
2561 *
2562 * Unregisters an existing upper-layer driver.
2563 */
2564 int cxgb4_unregister_uld(enum cxgb4_uld type)
2565 {
2566 struct adapter *adap;
2567
2568 if (type >= CXGB4_ULD_MAX)
2569 return -EINVAL;
2570 mutex_lock(&uld_mutex);
2571 list_for_each_entry(adap, &adapter_list, list_node)
2572 adap->uld_handle[type] = NULL;
2573 ulds[type].add = NULL;
2574 mutex_unlock(&uld_mutex);
2575 return 0;
2576 }
2577 EXPORT_SYMBOL(cxgb4_unregister_uld);
2578
2579 #if IS_ENABLED(CONFIG_IPV6)
2580 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2581 unsigned long event, void *data)
2582 {
2583 struct inet6_ifaddr *ifa = data;
2584 struct net_device *event_dev = ifa->idev->dev;
2585 const struct device *parent = NULL;
2586 #if IS_ENABLED(CONFIG_BONDING)
2587 struct adapter *adap;
2588 #endif
2589 if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2590 event_dev = vlan_dev_real_dev(event_dev);
2591 #if IS_ENABLED(CONFIG_BONDING)
2592 if (event_dev->flags & IFF_MASTER) {
2593 list_for_each_entry(adap, &adapter_list, list_node) {
2594 switch (event) {
2595 case NETDEV_UP:
2596 cxgb4_clip_get(adap->port[0],
2597 (const u32 *)ifa, 1);
2598 break;
2599 case NETDEV_DOWN:
2600 cxgb4_clip_release(adap->port[0],
2601 (const u32 *)ifa, 1);
2602 break;
2603 default:
2604 break;
2605 }
2606 }
2607 return NOTIFY_OK;
2608 }
2609 #endif
2610
2611 if (event_dev)
2612 parent = event_dev->dev.parent;
2613
2614 if (parent && parent->driver == &cxgb4_driver.driver) {
2615 switch (event) {
2616 case NETDEV_UP:
2617 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2618 break;
2619 case NETDEV_DOWN:
2620 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2621 break;
2622 default:
2623 break;
2624 }
2625 }
2626 return NOTIFY_OK;
2627 }
2628
2629 static bool inet6addr_registered;
2630 static struct notifier_block cxgb4_inet6addr_notifier = {
2631 .notifier_call = cxgb4_inet6addr_handler
2632 };
2633
2634 static void update_clip(const struct adapter *adap)
2635 {
2636 int i;
2637 struct net_device *dev;
2638 int ret;
2639
2640 rcu_read_lock();
2641
2642 for (i = 0; i < MAX_NPORTS; i++) {
2643 dev = adap->port[i];
2644 ret = 0;
2645
2646 if (dev)
2647 ret = cxgb4_update_root_dev_clip(dev);
2648
2649 if (ret < 0)
2650 break;
2651 }
2652 rcu_read_unlock();
2653 }
2654 #endif /* IS_ENABLED(CONFIG_IPV6) */
2655
2656 /**
2657 * cxgb_up - enable the adapter
2658 * @adap: adapter being enabled
2659 *
2660 * Called when the first port is enabled, this function performs the
2661 * actions necessary to make an adapter operational, such as completing
2662 * the initialization of HW modules, and enabling interrupts.
2663 *
2664 * Must be called with the rtnl lock held.
2665 */
2666 static int cxgb_up(struct adapter *adap)
2667 {
2668 int err;
2669
2670 err = setup_sge_queues(adap);
2671 if (err)
2672 goto out;
2673 err = setup_rss(adap);
2674 if (err)
2675 goto freeq;
2676
2677 if (adap->flags & USING_MSIX) {
2678 name_msix_vecs(adap);
2679 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2680 adap->msix_info[0].desc, adap);
2681 if (err)
2682 goto irq_err;
2683
2684 err = request_msix_queue_irqs(adap);
2685 if (err) {
2686 free_irq(adap->msix_info[0].vec, adap);
2687 goto irq_err;
2688 }
2689 } else {
2690 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2691 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2692 adap->port[0]->name, adap);
2693 if (err)
2694 goto irq_err;
2695 }
2696 enable_rx(adap);
2697 t4_sge_start(adap);
2698 t4_intr_enable(adap);
2699 adap->flags |= FULL_INIT_DONE;
2700 notify_ulds(adap, CXGB4_STATE_UP);
2701 #if IS_ENABLED(CONFIG_IPV6)
2702 update_clip(adap);
2703 #endif
2704 out:
2705 return err;
2706 irq_err:
2707 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2708 freeq:
2709 t4_free_sge_resources(adap);
2710 goto out;
2711 }
2712
2713 static void cxgb_down(struct adapter *adapter)
2714 {
2715 cancel_work_sync(&adapter->tid_release_task);
2716 cancel_work_sync(&adapter->db_full_task);
2717 cancel_work_sync(&adapter->db_drop_task);
2718 adapter->tid_release_task_busy = false;
2719 adapter->tid_release_head = NULL;
2720
2721 t4_sge_stop(adapter);
2722 t4_free_sge_resources(adapter);
2723 adapter->flags &= ~FULL_INIT_DONE;
2724 }
2725
2726 /*
2727 * net_device operations
2728 */
2729 static int cxgb_open(struct net_device *dev)
2730 {
2731 int err;
2732 struct port_info *pi = netdev_priv(dev);
2733 struct adapter *adapter = pi->adapter;
2734
2735 netif_carrier_off(dev);
2736
2737 if (!(adapter->flags & FULL_INIT_DONE)) {
2738 err = cxgb_up(adapter);
2739 if (err < 0)
2740 return err;
2741 }
2742
2743 err = link_start(dev);
2744 if (!err)
2745 netif_tx_start_all_queues(dev);
2746 return err;
2747 }
2748
2749 static int cxgb_close(struct net_device *dev)
2750 {
2751 struct port_info *pi = netdev_priv(dev);
2752 struct adapter *adapter = pi->adapter;
2753
2754 netif_tx_stop_all_queues(dev);
2755 netif_carrier_off(dev);
2756 return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2757 }
2758
2759 /* Return an error number if the indicated filter isn't writable ...
2760 */
2761 static int writable_filter(struct filter_entry *f)
2762 {
2763 if (f->locked)
2764 return -EPERM;
2765 if (f->pending)
2766 return -EBUSY;
2767
2768 return 0;
2769 }
2770
2771 /* Delete the filter at the specified index (if valid). The checks for all
2772 * the common problems with doing this like the filter being locked, currently
2773 * pending in another operation, etc.
2774 */
2775 static int delete_filter(struct adapter *adapter, unsigned int fidx)
2776 {
2777 struct filter_entry *f;
2778 int ret;
2779
2780 if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2781 return -EINVAL;
2782
2783 f = &adapter->tids.ftid_tab[fidx];
2784 ret = writable_filter(f);
2785 if (ret)
2786 return ret;
2787 if (f->valid)
2788 return del_filter_wr(adapter, fidx);
2789
2790 return 0;
2791 }
2792
2793 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2794 __be32 sip, __be16 sport, __be16 vlan,
2795 unsigned int queue, unsigned char port, unsigned char mask)
2796 {
2797 int ret;
2798 struct filter_entry *f;
2799 struct adapter *adap;
2800 int i;
2801 u8 *val;
2802
2803 adap = netdev2adap(dev);
2804
2805 /* Adjust stid to correct filter index */
2806 stid -= adap->tids.sftid_base;
2807 stid += adap->tids.nftids;
2808
2809 /* Check to make sure the filter requested is writable ...
2810 */
2811 f = &adap->tids.ftid_tab[stid];
2812 ret = writable_filter(f);
2813 if (ret)
2814 return ret;
2815
2816 /* Clear out any old resources being used by the filter before
2817 * we start constructing the new filter.
2818 */
2819 if (f->valid)
2820 clear_filter(adap, f);
2821
2822 /* Clear out filter specifications */
2823 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2824 f->fs.val.lport = cpu_to_be16(sport);
2825 f->fs.mask.lport = ~0;
2826 val = (u8 *)&sip;
2827 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2828 for (i = 0; i < 4; i++) {
2829 f->fs.val.lip[i] = val[i];
2830 f->fs.mask.lip[i] = ~0;
2831 }
2832 if (adap->params.tp.vlan_pri_map & PORT_F) {
2833 f->fs.val.iport = port;
2834 f->fs.mask.iport = mask;
2835 }
2836 }
2837
2838 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2839 f->fs.val.proto = IPPROTO_TCP;
2840 f->fs.mask.proto = ~0;
2841 }
2842
2843 f->fs.dirsteer = 1;
2844 f->fs.iq = queue;
2845 /* Mark filter as locked */
2846 f->locked = 1;
2847 f->fs.rpttid = 1;
2848
2849 ret = set_filter_wr(adap, stid);
2850 if (ret) {
2851 clear_filter(adap, f);
2852 return ret;
2853 }
2854
2855 return 0;
2856 }
2857 EXPORT_SYMBOL(cxgb4_create_server_filter);
2858
2859 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2860 unsigned int queue, bool ipv6)
2861 {
2862 int ret;
2863 struct filter_entry *f;
2864 struct adapter *adap;
2865
2866 adap = netdev2adap(dev);
2867
2868 /* Adjust stid to correct filter index */
2869 stid -= adap->tids.sftid_base;
2870 stid += adap->tids.nftids;
2871
2872 f = &adap->tids.ftid_tab[stid];
2873 /* Unlock the filter */
2874 f->locked = 0;
2875
2876 ret = delete_filter(adap, stid);
2877 if (ret)
2878 return ret;
2879
2880 return 0;
2881 }
2882 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2883
2884 static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2885 struct rtnl_link_stats64 *ns)
2886 {
2887 struct port_stats stats;
2888 struct port_info *p = netdev_priv(dev);
2889 struct adapter *adapter = p->adapter;
2890
2891 /* Block retrieving statistics during EEH error
2892 * recovery. Otherwise, the recovery might fail
2893 * and the PCI device will be removed permanently
2894 */
2895 spin_lock(&adapter->stats_lock);
2896 if (!netif_device_present(dev)) {
2897 spin_unlock(&adapter->stats_lock);
2898 return ns;
2899 }
2900 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2901 &p->stats_base);
2902 spin_unlock(&adapter->stats_lock);
2903
2904 ns->tx_bytes = stats.tx_octets;
2905 ns->tx_packets = stats.tx_frames;
2906 ns->rx_bytes = stats.rx_octets;
2907 ns->rx_packets = stats.rx_frames;
2908 ns->multicast = stats.rx_mcast_frames;
2909
2910 /* detailed rx_errors */
2911 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2912 stats.rx_runt;
2913 ns->rx_over_errors = 0;
2914 ns->rx_crc_errors = stats.rx_fcs_err;
2915 ns->rx_frame_errors = stats.rx_symbol_err;
2916 ns->rx_fifo_errors = stats.rx_ovflow0 + stats.rx_ovflow1 +
2917 stats.rx_ovflow2 + stats.rx_ovflow3 +
2918 stats.rx_trunc0 + stats.rx_trunc1 +
2919 stats.rx_trunc2 + stats.rx_trunc3;
2920 ns->rx_missed_errors = 0;
2921
2922 /* detailed tx_errors */
2923 ns->tx_aborted_errors = 0;
2924 ns->tx_carrier_errors = 0;
2925 ns->tx_fifo_errors = 0;
2926 ns->tx_heartbeat_errors = 0;
2927 ns->tx_window_errors = 0;
2928
2929 ns->tx_errors = stats.tx_error_frames;
2930 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2931 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2932 return ns;
2933 }
2934
2935 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2936 {
2937 unsigned int mbox;
2938 int ret = 0, prtad, devad;
2939 struct port_info *pi = netdev_priv(dev);
2940 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2941
2942 switch (cmd) {
2943 case SIOCGMIIPHY:
2944 if (pi->mdio_addr < 0)
2945 return -EOPNOTSUPP;
2946 data->phy_id = pi->mdio_addr;
2947 break;
2948 case SIOCGMIIREG:
2949 case SIOCSMIIREG:
2950 if (mdio_phy_id_is_c45(data->phy_id)) {
2951 prtad = mdio_phy_id_prtad(data->phy_id);
2952 devad = mdio_phy_id_devad(data->phy_id);
2953 } else if (data->phy_id < 32) {
2954 prtad = data->phy_id;
2955 devad = 0;
2956 data->reg_num &= 0x1f;
2957 } else
2958 return -EINVAL;
2959
2960 mbox = pi->adapter->pf;
2961 if (cmd == SIOCGMIIREG)
2962 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2963 data->reg_num, &data->val_out);
2964 else
2965 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2966 data->reg_num, data->val_in);
2967 break;
2968 case SIOCGHWTSTAMP:
2969 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2970 sizeof(pi->tstamp_config)) ?
2971 -EFAULT : 0;
2972 case SIOCSHWTSTAMP:
2973 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2974 sizeof(pi->tstamp_config)))
2975 return -EFAULT;
2976
2977 switch (pi->tstamp_config.rx_filter) {
2978 case HWTSTAMP_FILTER_NONE:
2979 pi->rxtstamp = false;
2980 break;
2981 case HWTSTAMP_FILTER_ALL:
2982 pi->rxtstamp = true;
2983 break;
2984 default:
2985 pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2986 return -ERANGE;
2987 }
2988
2989 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2990 sizeof(pi->tstamp_config)) ?
2991 -EFAULT : 0;
2992 default:
2993 return -EOPNOTSUPP;
2994 }
2995 return ret;
2996 }
2997
2998 static void cxgb_set_rxmode(struct net_device *dev)
2999 {
3000 /* unfortunately we can't return errors to the stack */
3001 set_rxmode(dev, -1, false);
3002 }
3003
3004 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3005 {
3006 int ret;
3007 struct port_info *pi = netdev_priv(dev);
3008
3009 if (new_mtu < 81 || new_mtu > MAX_MTU) /* accommodate SACK */
3010 return -EINVAL;
3011 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3012 -1, -1, -1, true);
3013 if (!ret)
3014 dev->mtu = new_mtu;
3015 return ret;
3016 }
3017
3018 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3019 {
3020 int ret;
3021 struct sockaddr *addr = p;
3022 struct port_info *pi = netdev_priv(dev);
3023
3024 if (!is_valid_ether_addr(addr->sa_data))
3025 return -EADDRNOTAVAIL;
3026
3027 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3028 pi->xact_addr_filt, addr->sa_data, true, true);
3029 if (ret < 0)
3030 return ret;
3031
3032 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3033 pi->xact_addr_filt = ret;
3034 return 0;
3035 }
3036
3037 #ifdef CONFIG_NET_POLL_CONTROLLER
3038 static void cxgb_netpoll(struct net_device *dev)
3039 {
3040 struct port_info *pi = netdev_priv(dev);
3041 struct adapter *adap = pi->adapter;
3042
3043 if (adap->flags & USING_MSIX) {
3044 int i;
3045 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3046
3047 for (i = pi->nqsets; i; i--, rx++)
3048 t4_sge_intr_msix(0, &rx->rspq);
3049 } else
3050 t4_intr_handler(adap)(0, adap);
3051 }
3052 #endif
3053
3054 static const struct net_device_ops cxgb4_netdev_ops = {
3055 .ndo_open = cxgb_open,
3056 .ndo_stop = cxgb_close,
3057 .ndo_start_xmit = t4_eth_xmit,
3058 .ndo_select_queue = cxgb_select_queue,
3059 .ndo_get_stats64 = cxgb_get_stats,
3060 .ndo_set_rx_mode = cxgb_set_rxmode,
3061 .ndo_set_mac_address = cxgb_set_mac_addr,
3062 .ndo_set_features = cxgb_set_features,
3063 .ndo_validate_addr = eth_validate_addr,
3064 .ndo_do_ioctl = cxgb_ioctl,
3065 .ndo_change_mtu = cxgb_change_mtu,
3066 #ifdef CONFIG_NET_POLL_CONTROLLER
3067 .ndo_poll_controller = cxgb_netpoll,
3068 #endif
3069 #ifdef CONFIG_CHELSIO_T4_FCOE
3070 .ndo_fcoe_enable = cxgb_fcoe_enable,
3071 .ndo_fcoe_disable = cxgb_fcoe_disable,
3072 #endif /* CONFIG_CHELSIO_T4_FCOE */
3073 #ifdef CONFIG_NET_RX_BUSY_POLL
3074 .ndo_busy_poll = cxgb_busy_poll,
3075 #endif
3076
3077 };
3078
3079 void t4_fatal_err(struct adapter *adap)
3080 {
3081 t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3082 t4_intr_disable(adap);
3083 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3084 }
3085
3086 static void setup_memwin(struct adapter *adap)
3087 {
3088 u32 nic_win_base = t4_get_util_window(adap);
3089
3090 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3091 }
3092
3093 static void setup_memwin_rdma(struct adapter *adap)
3094 {
3095 if (adap->vres.ocq.size) {
3096 u32 start;
3097 unsigned int sz_kb;
3098
3099 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3100 start &= PCI_BASE_ADDRESS_MEM_MASK;
3101 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3102 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3103 t4_write_reg(adap,
3104 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3105 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3106 t4_write_reg(adap,
3107 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3108 adap->vres.ocq.start);
3109 t4_read_reg(adap,
3110 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3111 }
3112 }
3113
3114 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3115 {
3116 u32 v;
3117 int ret;
3118
3119 /* get device capabilities */
3120 memset(c, 0, sizeof(*c));
3121 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3122 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3123 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3124 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3125 if (ret < 0)
3126 return ret;
3127
3128 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3129 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3130 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3131 if (ret < 0)
3132 return ret;
3133
3134 ret = t4_config_glbl_rss(adap, adap->pf,
3135 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3136 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3137 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3138 if (ret < 0)
3139 return ret;
3140
3141 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3142 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3143 FW_CMD_CAP_PF);
3144 if (ret < 0)
3145 return ret;
3146
3147 t4_sge_init(adap);
3148
3149 /* tweak some settings */
3150 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3151 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3152 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3153 v = t4_read_reg(adap, TP_PIO_DATA_A);
3154 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3155
3156 /* first 4 Tx modulation queues point to consecutive Tx channels */
3157 adap->params.tp.tx_modq_map = 0xE4;
3158 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3159 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3160
3161 /* associate each Tx modulation queue with consecutive Tx channels */
3162 v = 0x84218421;
3163 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3164 &v, 1, TP_TX_SCHED_HDR_A);
3165 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3166 &v, 1, TP_TX_SCHED_FIFO_A);
3167 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3168 &v, 1, TP_TX_SCHED_PCMD_A);
3169
3170 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3171 if (is_offload(adap)) {
3172 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3173 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3174 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3175 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3176 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3177 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3178 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3179 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3180 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3181 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3182 }
3183
3184 /* get basic stuff going */
3185 return t4_early_init(adap, adap->pf);
3186 }
3187
3188 /*
3189 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3190 */
3191 #define MAX_ATIDS 8192U
3192
3193 /*
3194 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3195 *
3196 * If the firmware we're dealing with has Configuration File support, then
3197 * we use that to perform all configuration
3198 */
3199
3200 /*
3201 * Tweak configuration based on module parameters, etc. Most of these have
3202 * defaults assigned to them by Firmware Configuration Files (if we're using
3203 * them) but need to be explicitly set if we're using hard-coded
3204 * initialization. But even in the case of using Firmware Configuration
3205 * Files, we'd like to expose the ability to change these via module
3206 * parameters so these are essentially common tweaks/settings for
3207 * Configuration Files and hard-coded initialization ...
3208 */
3209 static int adap_init0_tweaks(struct adapter *adapter)
3210 {
3211 /*
3212 * Fix up various Host-Dependent Parameters like Page Size, Cache
3213 * Line Size, etc. The firmware default is for a 4KB Page Size and
3214 * 64B Cache Line Size ...
3215 */
3216 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3217
3218 /*
3219 * Process module parameters which affect early initialization.
3220 */
3221 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3222 dev_err(&adapter->pdev->dev,
3223 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3224 rx_dma_offset);
3225 rx_dma_offset = 2;
3226 }
3227 t4_set_reg_field(adapter, SGE_CONTROL_A,
3228 PKTSHIFT_V(PKTSHIFT_M),
3229 PKTSHIFT_V(rx_dma_offset));
3230
3231 /*
3232 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3233 * adds the pseudo header itself.
3234 */
3235 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3236 CSUM_HAS_PSEUDO_HDR_F, 0);
3237
3238 return 0;
3239 }
3240
3241 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3242 * unto themselves and they contain their own firmware to perform their
3243 * tasks ...
3244 */
3245 static int phy_aq1202_version(const u8 *phy_fw_data,
3246 size_t phy_fw_size)
3247 {
3248 int offset;
3249
3250 /* At offset 0x8 you're looking for the primary image's
3251 * starting offset which is 3 Bytes wide
3252 *
3253 * At offset 0xa of the primary image, you look for the offset
3254 * of the DRAM segment which is 3 Bytes wide.
3255 *
3256 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3257 * wide
3258 */
3259 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3260 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3261 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3262
3263 offset = le24(phy_fw_data + 0x8) << 12;
3264 offset = le24(phy_fw_data + offset + 0xa);
3265 return be16(phy_fw_data + offset + 0x27e);
3266
3267 #undef be16
3268 #undef le16
3269 #undef le24
3270 }
3271
3272 static struct info_10gbt_phy_fw {
3273 unsigned int phy_fw_id; /* PCI Device ID */
3274 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3275 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3276 int phy_flash; /* Has FLASH for PHY Firmware */
3277 } phy_info_array[] = {
3278 {
3279 PHY_AQ1202_DEVICEID,
3280 PHY_AQ1202_FIRMWARE,
3281 phy_aq1202_version,
3282 1,
3283 },
3284 {
3285 PHY_BCM84834_DEVICEID,
3286 PHY_BCM84834_FIRMWARE,
3287 NULL,
3288 0,
3289 },
3290 { 0, NULL, NULL },
3291 };
3292
3293 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3294 {
3295 int i;
3296
3297 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3298 if (phy_info_array[i].phy_fw_id == devid)
3299 return &phy_info_array[i];
3300 }
3301 return NULL;
3302 }
3303
3304 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3305 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3306 * we return a negative error number. If we transfer new firmware we return 1
3307 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3308 */
3309 static int adap_init0_phy(struct adapter *adap)
3310 {
3311 const struct firmware *phyf;
3312 int ret;
3313 struct info_10gbt_phy_fw *phy_info;
3314
3315 /* Use the device ID to determine which PHY file to flash.
3316 */
3317 phy_info = find_phy_info(adap->pdev->device);
3318 if (!phy_info) {
3319 dev_warn(adap->pdev_dev,
3320 "No PHY Firmware file found for this PHY\n");
3321 return -EOPNOTSUPP;
3322 }
3323
3324 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3325 * use that. The adapter firmware provides us with a memory buffer
3326 * where we can load a PHY firmware file from the host if we want to
3327 * override the PHY firmware File in flash.
3328 */
3329 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3330 adap->pdev_dev);
3331 if (ret < 0) {
3332 /* For adapters without FLASH attached to PHY for their
3333 * firmware, it's obviously a fatal error if we can't get the
3334 * firmware to the adapter. For adapters with PHY firmware
3335 * FLASH storage, it's worth a warning if we can't find the
3336 * PHY Firmware but we'll neuter the error ...
3337 */
3338 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3339 "/lib/firmware/%s, error %d\n",
3340 phy_info->phy_fw_file, -ret);
3341 if (phy_info->phy_flash) {
3342 int cur_phy_fw_ver = 0;
3343
3344 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3345 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3346 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3347 ret = 0;
3348 }
3349
3350 return ret;
3351 }
3352
3353 /* Load PHY Firmware onto adapter.
3354 */
3355 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3356 phy_info->phy_fw_version,
3357 (u8 *)phyf->data, phyf->size);
3358 if (ret < 0)
3359 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3360 -ret);
3361 else if (ret > 0) {
3362 int new_phy_fw_ver = 0;
3363
3364 if (phy_info->phy_fw_version)
3365 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3366 phyf->size);
3367 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3368 "Firmware /lib/firmware/%s, version %#x\n",
3369 phy_info->phy_fw_file, new_phy_fw_ver);
3370 }
3371
3372 release_firmware(phyf);
3373
3374 return ret;
3375 }
3376
3377 /*
3378 * Attempt to initialize the adapter via a Firmware Configuration File.
3379 */
3380 static int adap_init0_config(struct adapter *adapter, int reset)
3381 {
3382 struct fw_caps_config_cmd caps_cmd;
3383 const struct firmware *cf;
3384 unsigned long mtype = 0, maddr = 0;
3385 u32 finiver, finicsum, cfcsum;
3386 int ret;
3387 int config_issued = 0;
3388 char *fw_config_file, fw_config_file_path[256];
3389 char *config_name = NULL;
3390
3391 /*
3392 * Reset device if necessary.
3393 */
3394 if (reset) {
3395 ret = t4_fw_reset(adapter, adapter->mbox,
3396 PIORSTMODE_F | PIORST_F);
3397 if (ret < 0)
3398 goto bye;
3399 }
3400
3401 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3402 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3403 * to be performed after any global adapter RESET above since some
3404 * PHYs only have local RAM copies of the PHY firmware.
3405 */
3406 if (is_10gbt_device(adapter->pdev->device)) {
3407 ret = adap_init0_phy(adapter);
3408 if (ret < 0)
3409 goto bye;
3410 }
3411 /*
3412 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3413 * then use that. Otherwise, use the configuration file stored
3414 * in the adapter flash ...
3415 */
3416 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3417 case CHELSIO_T4:
3418 fw_config_file = FW4_CFNAME;
3419 break;
3420 case CHELSIO_T5:
3421 fw_config_file = FW5_CFNAME;
3422 break;
3423 case CHELSIO_T6:
3424 fw_config_file = FW6_CFNAME;
3425 break;
3426 default:
3427 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3428 adapter->pdev->device);
3429 ret = -EINVAL;
3430 goto bye;
3431 }
3432
3433 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3434 if (ret < 0) {
3435 config_name = "On FLASH";
3436 mtype = FW_MEMTYPE_CF_FLASH;
3437 maddr = t4_flash_cfg_addr(adapter);
3438 } else {
3439 u32 params[7], val[7];
3440
3441 sprintf(fw_config_file_path,
3442 "/lib/firmware/%s", fw_config_file);
3443 config_name = fw_config_file_path;
3444
3445 if (cf->size >= FLASH_CFG_MAX_SIZE)
3446 ret = -ENOMEM;
3447 else {
3448 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3449 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3450 ret = t4_query_params(adapter, adapter->mbox,
3451 adapter->pf, 0, 1, params, val);
3452 if (ret == 0) {
3453 /*
3454 * For t4_memory_rw() below addresses and
3455 * sizes have to be in terms of multiples of 4
3456 * bytes. So, if the Configuration File isn't
3457 * a multiple of 4 bytes in length we'll have
3458 * to write that out separately since we can't
3459 * guarantee that the bytes following the
3460 * residual byte in the buffer returned by
3461 * request_firmware() are zeroed out ...
3462 */
3463 size_t resid = cf->size & 0x3;
3464 size_t size = cf->size & ~0x3;
3465 __be32 *data = (__be32 *)cf->data;
3466
3467 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3468 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3469
3470 spin_lock(&adapter->win0_lock);
3471 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3472 size, data, T4_MEMORY_WRITE);
3473 if (ret == 0 && resid != 0) {
3474 union {
3475 __be32 word;
3476 char buf[4];
3477 } last;
3478 int i;
3479
3480 last.word = data[size >> 2];
3481 for (i = resid; i < 4; i++)
3482 last.buf[i] = 0;
3483 ret = t4_memory_rw(adapter, 0, mtype,
3484 maddr + size,
3485 4, &last.word,
3486 T4_MEMORY_WRITE);
3487 }
3488 spin_unlock(&adapter->win0_lock);
3489 }
3490 }
3491
3492 release_firmware(cf);
3493 if (ret)
3494 goto bye;
3495 }
3496
3497 /*
3498 * Issue a Capability Configuration command to the firmware to get it
3499 * to parse the Configuration File. We don't use t4_fw_config_file()
3500 * because we want the ability to modify various features after we've
3501 * processed the configuration file ...
3502 */
3503 memset(&caps_cmd, 0, sizeof(caps_cmd));
3504 caps_cmd.op_to_write =
3505 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3506 FW_CMD_REQUEST_F |
3507 FW_CMD_READ_F);
3508 caps_cmd.cfvalid_to_len16 =
3509 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3510 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3511 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3512 FW_LEN16(caps_cmd));
3513 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3514 &caps_cmd);
3515
3516 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3517 * Configuration File in FLASH), our last gasp effort is to use the
3518 * Firmware Configuration File which is embedded in the firmware. A
3519 * very few early versions of the firmware didn't have one embedded
3520 * but we can ignore those.
3521 */
3522 if (ret == -ENOENT) {
3523 memset(&caps_cmd, 0, sizeof(caps_cmd));
3524 caps_cmd.op_to_write =
3525 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3526 FW_CMD_REQUEST_F |
3527 FW_CMD_READ_F);
3528 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3529 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3530 sizeof(caps_cmd), &caps_cmd);
3531 config_name = "Firmware Default";
3532 }
3533
3534 config_issued = 1;
3535 if (ret < 0)
3536 goto bye;
3537
3538 finiver = ntohl(caps_cmd.finiver);
3539 finicsum = ntohl(caps_cmd.finicsum);
3540 cfcsum = ntohl(caps_cmd.cfcsum);
3541 if (finicsum != cfcsum)
3542 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3543 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3544 finicsum, cfcsum);
3545
3546 /*
3547 * And now tell the firmware to use the configuration we just loaded.
3548 */
3549 caps_cmd.op_to_write =
3550 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3551 FW_CMD_REQUEST_F |
3552 FW_CMD_WRITE_F);
3553 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3554 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3555 NULL);
3556 if (ret < 0)
3557 goto bye;
3558
3559 /*
3560 * Tweak configuration based on system architecture, module
3561 * parameters, etc.
3562 */
3563 ret = adap_init0_tweaks(adapter);
3564 if (ret < 0)
3565 goto bye;
3566
3567 /*
3568 * And finally tell the firmware to initialize itself using the
3569 * parameters from the Configuration File.
3570 */
3571 ret = t4_fw_initialize(adapter, adapter->mbox);
3572 if (ret < 0)
3573 goto bye;
3574
3575 /* Emit Firmware Configuration File information and return
3576 * successfully.
3577 */
3578 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3579 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3580 config_name, finiver, cfcsum);
3581 return 0;
3582
3583 /*
3584 * Something bad happened. Return the error ... (If the "error"
3585 * is that there's no Configuration File on the adapter we don't
3586 * want to issue a warning since this is fairly common.)
3587 */
3588 bye:
3589 if (config_issued && ret != -ENOENT)
3590 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3591 config_name, -ret);
3592 return ret;
3593 }
3594
3595 static struct fw_info fw_info_array[] = {
3596 {
3597 .chip = CHELSIO_T4,
3598 .fs_name = FW4_CFNAME,
3599 .fw_mod_name = FW4_FNAME,
3600 .fw_hdr = {
3601 .chip = FW_HDR_CHIP_T4,
3602 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3603 .intfver_nic = FW_INTFVER(T4, NIC),
3604 .intfver_vnic = FW_INTFVER(T4, VNIC),
3605 .intfver_ri = FW_INTFVER(T4, RI),
3606 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3607 .intfver_fcoe = FW_INTFVER(T4, FCOE),
3608 },
3609 }, {
3610 .chip = CHELSIO_T5,
3611 .fs_name = FW5_CFNAME,
3612 .fw_mod_name = FW5_FNAME,
3613 .fw_hdr = {
3614 .chip = FW_HDR_CHIP_T5,
3615 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3616 .intfver_nic = FW_INTFVER(T5, NIC),
3617 .intfver_vnic = FW_INTFVER(T5, VNIC),
3618 .intfver_ri = FW_INTFVER(T5, RI),
3619 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3620 .intfver_fcoe = FW_INTFVER(T5, FCOE),
3621 },
3622 }, {
3623 .chip = CHELSIO_T6,
3624 .fs_name = FW6_CFNAME,
3625 .fw_mod_name = FW6_FNAME,
3626 .fw_hdr = {
3627 .chip = FW_HDR_CHIP_T6,
3628 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3629 .intfver_nic = FW_INTFVER(T6, NIC),
3630 .intfver_vnic = FW_INTFVER(T6, VNIC),
3631 .intfver_ofld = FW_INTFVER(T6, OFLD),
3632 .intfver_ri = FW_INTFVER(T6, RI),
3633 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3634 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3635 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3636 .intfver_fcoe = FW_INTFVER(T6, FCOE),
3637 },
3638 }
3639
3640 };
3641
3642 static struct fw_info *find_fw_info(int chip)
3643 {
3644 int i;
3645
3646 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3647 if (fw_info_array[i].chip == chip)
3648 return &fw_info_array[i];
3649 }
3650 return NULL;
3651 }
3652
3653 /*
3654 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3655 */
3656 static int adap_init0(struct adapter *adap)
3657 {
3658 int ret;
3659 u32 v, port_vec;
3660 enum dev_state state;
3661 u32 params[7], val[7];
3662 struct fw_caps_config_cmd caps_cmd;
3663 int reset = 1;
3664
3665 /* Grab Firmware Device Log parameters as early as possible so we have
3666 * access to it for debugging, etc.
3667 */
3668 ret = t4_init_devlog_params(adap);
3669 if (ret < 0)
3670 return ret;
3671
3672 /* Contact FW, advertising Master capability */
3673 ret = t4_fw_hello(adap, adap->mbox, adap->mbox, MASTER_MAY, &state);
3674 if (ret < 0) {
3675 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3676 ret);
3677 return ret;
3678 }
3679 if (ret == adap->mbox)
3680 adap->flags |= MASTER_PF;
3681
3682 /*
3683 * If we're the Master PF Driver and the device is uninitialized,
3684 * then let's consider upgrading the firmware ... (We always want
3685 * to check the firmware version number in order to A. get it for
3686 * later reporting and B. to warn if the currently loaded firmware
3687 * is excessively mismatched relative to the driver.)
3688 */
3689 t4_get_fw_version(adap, &adap->params.fw_vers);
3690 t4_get_tp_version(adap, &adap->params.tp_vers);
3691 ret = t4_check_fw_version(adap);
3692 /* If firmware is too old (not supported by driver) force an update. */
3693 if (ret)
3694 state = DEV_STATE_UNINIT;
3695 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3696 struct fw_info *fw_info;
3697 struct fw_hdr *card_fw;
3698 const struct firmware *fw;
3699 const u8 *fw_data = NULL;
3700 unsigned int fw_size = 0;
3701
3702 /* This is the firmware whose headers the driver was compiled
3703 * against
3704 */
3705 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3706 if (fw_info == NULL) {
3707 dev_err(adap->pdev_dev,
3708 "unable to get firmware info for chip %d.\n",
3709 CHELSIO_CHIP_VERSION(adap->params.chip));
3710 return -EINVAL;
3711 }
3712
3713 /* allocate memory to read the header of the firmware on the
3714 * card
3715 */
3716 card_fw = t4_alloc_mem(sizeof(*card_fw));
3717
3718 /* Get FW from from /lib/firmware/ */
3719 ret = request_firmware(&fw, fw_info->fw_mod_name,
3720 adap->pdev_dev);
3721 if (ret < 0) {
3722 dev_err(adap->pdev_dev,
3723 "unable to load firmware image %s, error %d\n",
3724 fw_info->fw_mod_name, ret);
3725 } else {
3726 fw_data = fw->data;
3727 fw_size = fw->size;
3728 }
3729
3730 /* upgrade FW logic */
3731 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3732 state, &reset);
3733
3734 /* Cleaning up */
3735 release_firmware(fw);
3736 t4_free_mem(card_fw);
3737
3738 if (ret < 0)
3739 goto bye;
3740 }
3741
3742 /*
3743 * Grab VPD parameters. This should be done after we establish a
3744 * connection to the firmware since some of the VPD parameters
3745 * (notably the Core Clock frequency) are retrieved via requests to
3746 * the firmware. On the other hand, we need these fairly early on
3747 * so we do this right after getting ahold of the firmware.
3748 */
3749 ret = t4_get_vpd_params(adap, &adap->params.vpd);
3750 if (ret < 0)
3751 goto bye;
3752
3753 /*
3754 * Find out what ports are available to us. Note that we need to do
3755 * this before calling adap_init0_no_config() since it needs nports
3756 * and portvec ...
3757 */
3758 v =
3759 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3760 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3761 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3762 if (ret < 0)
3763 goto bye;
3764
3765 adap->params.nports = hweight32(port_vec);
3766 adap->params.portvec = port_vec;
3767
3768 /* If the firmware is initialized already, emit a simply note to that
3769 * effect. Otherwise, it's time to try initializing the adapter.
3770 */
3771 if (state == DEV_STATE_INIT) {
3772 dev_info(adap->pdev_dev, "Coming up as %s: "\
3773 "Adapter already initialized\n",
3774 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3775 } else {
3776 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3777 "Initializing adapter\n");
3778
3779 /* Find out whether we're dealing with a version of the
3780 * firmware which has configuration file support.
3781 */
3782 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3783 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3784 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3785 params, val);
3786
3787 /* If the firmware doesn't support Configuration Files,
3788 * return an error.
3789 */
3790 if (ret < 0) {
3791 dev_err(adap->pdev_dev, "firmware doesn't support "
3792 "Firmware Configuration Files\n");
3793 goto bye;
3794 }
3795
3796 /* The firmware provides us with a memory buffer where we can
3797 * load a Configuration File from the host if we want to
3798 * override the Configuration File in flash.
3799 */
3800 ret = adap_init0_config(adap, reset);
3801 if (ret == -ENOENT) {
3802 dev_err(adap->pdev_dev, "no Configuration File "
3803 "present on adapter.\n");
3804 goto bye;
3805 }
3806 if (ret < 0) {
3807 dev_err(adap->pdev_dev, "could not initialize "
3808 "adapter, error %d\n", -ret);
3809 goto bye;
3810 }
3811 }
3812
3813 /* Give the SGE code a chance to pull in anything that it needs ...
3814 * Note that this must be called after we retrieve our VPD parameters
3815 * in order to know how to convert core ticks to seconds, etc.
3816 */
3817 ret = t4_sge_init(adap);
3818 if (ret < 0)
3819 goto bye;
3820
3821 if (is_bypass_device(adap->pdev->device))
3822 adap->params.bypass = 1;
3823
3824 /*
3825 * Grab some of our basic fundamental operating parameters.
3826 */
3827 #define FW_PARAM_DEV(param) \
3828 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3829 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3830
3831 #define FW_PARAM_PFVF(param) \
3832 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3833 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
3834 FW_PARAMS_PARAM_Y_V(0) | \
3835 FW_PARAMS_PARAM_Z_V(0)
3836
3837 params[0] = FW_PARAM_PFVF(EQ_START);
3838 params[1] = FW_PARAM_PFVF(L2T_START);
3839 params[2] = FW_PARAM_PFVF(L2T_END);
3840 params[3] = FW_PARAM_PFVF(FILTER_START);
3841 params[4] = FW_PARAM_PFVF(FILTER_END);
3842 params[5] = FW_PARAM_PFVF(IQFLINT_START);
3843 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3844 if (ret < 0)
3845 goto bye;
3846 adap->sge.egr_start = val[0];
3847 adap->l2t_start = val[1];
3848 adap->l2t_end = val[2];
3849 adap->tids.ftid_base = val[3];
3850 adap->tids.nftids = val[4] - val[3] + 1;
3851 adap->sge.ingr_start = val[5];
3852
3853 /* qids (ingress/egress) returned from firmware can be anywhere
3854 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3855 * Hence driver needs to allocate memory for this range to
3856 * store the queue info. Get the highest IQFLINT/EQ index returned
3857 * in FW_EQ_*_CMD.alloc command.
3858 */
3859 params[0] = FW_PARAM_PFVF(EQ_END);
3860 params[1] = FW_PARAM_PFVF(IQFLINT_END);
3861 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3862 if (ret < 0)
3863 goto bye;
3864 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3865 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3866
3867 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3868 sizeof(*adap->sge.egr_map), GFP_KERNEL);
3869 if (!adap->sge.egr_map) {
3870 ret = -ENOMEM;
3871 goto bye;
3872 }
3873
3874 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3875 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3876 if (!adap->sge.ingr_map) {
3877 ret = -ENOMEM;
3878 goto bye;
3879 }
3880
3881 /* Allocate the memory for the vaious egress queue bitmaps
3882 * ie starving_fl, txq_maperr and blocked_fl.
3883 */
3884 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3885 sizeof(long), GFP_KERNEL);
3886 if (!adap->sge.starving_fl) {
3887 ret = -ENOMEM;
3888 goto bye;
3889 }
3890
3891 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3892 sizeof(long), GFP_KERNEL);
3893 if (!adap->sge.txq_maperr) {
3894 ret = -ENOMEM;
3895 goto bye;
3896 }
3897
3898 #ifdef CONFIG_DEBUG_FS
3899 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3900 sizeof(long), GFP_KERNEL);
3901 if (!adap->sge.blocked_fl) {
3902 ret = -ENOMEM;
3903 goto bye;
3904 }
3905 #endif
3906
3907 params[0] = FW_PARAM_PFVF(CLIP_START);
3908 params[1] = FW_PARAM_PFVF(CLIP_END);
3909 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3910 if (ret < 0)
3911 goto bye;
3912 adap->clipt_start = val[0];
3913 adap->clipt_end = val[1];
3914
3915 /* query params related to active filter region */
3916 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3917 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3918 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3919 /* If Active filter size is set we enable establishing
3920 * offload connection through firmware work request
3921 */
3922 if ((val[0] != val[1]) && (ret >= 0)) {
3923 adap->flags |= FW_OFLD_CONN;
3924 adap->tids.aftid_base = val[0];
3925 adap->tids.aftid_end = val[1];
3926 }
3927
3928 /* If we're running on newer firmware, let it know that we're
3929 * prepared to deal with encapsulated CPL messages. Older
3930 * firmware won't understand this and we'll just get
3931 * unencapsulated messages ...
3932 */
3933 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
3934 val[0] = 1;
3935 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
3936
3937 /*
3938 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
3939 * capability. Earlier versions of the firmware didn't have the
3940 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
3941 * permission to use ULPTX MEMWRITE DSGL.
3942 */
3943 if (is_t4(adap->params.chip)) {
3944 adap->params.ulptx_memwrite_dsgl = false;
3945 } else {
3946 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
3947 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
3948 1, params, val);
3949 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
3950 }
3951
3952 /*
3953 * Get device capabilities so we can determine what resources we need
3954 * to manage.
3955 */
3956 memset(&caps_cmd, 0, sizeof(caps_cmd));
3957 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3958 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3959 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3960 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
3961 &caps_cmd);
3962 if (ret < 0)
3963 goto bye;
3964
3965 if (caps_cmd.ofldcaps) {
3966 /* query offload-related parameters */
3967 params[0] = FW_PARAM_DEV(NTID);
3968 params[1] = FW_PARAM_PFVF(SERVER_START);
3969 params[2] = FW_PARAM_PFVF(SERVER_END);
3970 params[3] = FW_PARAM_PFVF(TDDP_START);
3971 params[4] = FW_PARAM_PFVF(TDDP_END);
3972 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
3973 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
3974 params, val);
3975 if (ret < 0)
3976 goto bye;
3977 adap->tids.ntids = val[0];
3978 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
3979 adap->tids.stid_base = val[1];
3980 adap->tids.nstids = val[2] - val[1] + 1;
3981 /*
3982 * Setup server filter region. Divide the available filter
3983 * region into two parts. Regular filters get 1/3rd and server
3984 * filters get 2/3rd part. This is only enabled if workarond
3985 * path is enabled.
3986 * 1. For regular filters.
3987 * 2. Server filter: This are special filters which are used
3988 * to redirect SYN packets to offload queue.
3989 */
3990 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
3991 adap->tids.sftid_base = adap->tids.ftid_base +
3992 DIV_ROUND_UP(adap->tids.nftids, 3);
3993 adap->tids.nsftids = adap->tids.nftids -
3994 DIV_ROUND_UP(adap->tids.nftids, 3);
3995 adap->tids.nftids = adap->tids.sftid_base -
3996 adap->tids.ftid_base;
3997 }
3998 adap->vres.ddp.start = val[3];
3999 adap->vres.ddp.size = val[4] - val[3] + 1;
4000 adap->params.ofldq_wr_cred = val[5];
4001
4002 adap->params.offload = 1;
4003 }
4004 if (caps_cmd.rdmacaps) {
4005 params[0] = FW_PARAM_PFVF(STAG_START);
4006 params[1] = FW_PARAM_PFVF(STAG_END);
4007 params[2] = FW_PARAM_PFVF(RQ_START);
4008 params[3] = FW_PARAM_PFVF(RQ_END);
4009 params[4] = FW_PARAM_PFVF(PBL_START);
4010 params[5] = FW_PARAM_PFVF(PBL_END);
4011 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4012 params, val);
4013 if (ret < 0)
4014 goto bye;
4015 adap->vres.stag.start = val[0];
4016 adap->vres.stag.size = val[1] - val[0] + 1;
4017 adap->vres.rq.start = val[2];
4018 adap->vres.rq.size = val[3] - val[2] + 1;
4019 adap->vres.pbl.start = val[4];
4020 adap->vres.pbl.size = val[5] - val[4] + 1;
4021
4022 params[0] = FW_PARAM_PFVF(SQRQ_START);
4023 params[1] = FW_PARAM_PFVF(SQRQ_END);
4024 params[2] = FW_PARAM_PFVF(CQ_START);
4025 params[3] = FW_PARAM_PFVF(CQ_END);
4026 params[4] = FW_PARAM_PFVF(OCQ_START);
4027 params[5] = FW_PARAM_PFVF(OCQ_END);
4028 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4029 val);
4030 if (ret < 0)
4031 goto bye;
4032 adap->vres.qp.start = val[0];
4033 adap->vres.qp.size = val[1] - val[0] + 1;
4034 adap->vres.cq.start = val[2];
4035 adap->vres.cq.size = val[3] - val[2] + 1;
4036 adap->vres.ocq.start = val[4];
4037 adap->vres.ocq.size = val[5] - val[4] + 1;
4038
4039 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4040 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4041 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4042 val);
4043 if (ret < 0) {
4044 adap->params.max_ordird_qp = 8;
4045 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4046 ret = 0;
4047 } else {
4048 adap->params.max_ordird_qp = val[0];
4049 adap->params.max_ird_adapter = val[1];
4050 }
4051 dev_info(adap->pdev_dev,
4052 "max_ordird_qp %d max_ird_adapter %d\n",
4053 adap->params.max_ordird_qp,
4054 adap->params.max_ird_adapter);
4055 }
4056 if (caps_cmd.iscsicaps) {
4057 params[0] = FW_PARAM_PFVF(ISCSI_START);
4058 params[1] = FW_PARAM_PFVF(ISCSI_END);
4059 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4060 params, val);
4061 if (ret < 0)
4062 goto bye;
4063 adap->vres.iscsi.start = val[0];
4064 adap->vres.iscsi.size = val[1] - val[0] + 1;
4065 }
4066 #undef FW_PARAM_PFVF
4067 #undef FW_PARAM_DEV
4068
4069 /* The MTU/MSS Table is initialized by now, so load their values. If
4070 * we're initializing the adapter, then we'll make any modifications
4071 * we want to the MTU/MSS Table and also initialize the congestion
4072 * parameters.
4073 */
4074 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4075 if (state != DEV_STATE_INIT) {
4076 int i;
4077
4078 /* The default MTU Table contains values 1492 and 1500.
4079 * However, for TCP, it's better to have two values which are
4080 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4081 * This allows us to have a TCP Data Payload which is a
4082 * multiple of 8 regardless of what combination of TCP Options
4083 * are in use (always a multiple of 4 bytes) which is
4084 * important for performance reasons. For instance, if no
4085 * options are in use, then we have a 20-byte IP header and a
4086 * 20-byte TCP header. In this case, a 1500-byte MSS would
4087 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4088 * which is not a multiple of 8. So using an MSS of 1488 in
4089 * this case results in a TCP Data Payload of 1448 bytes which
4090 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4091 * Stamps have been negotiated, then an MTU of 1500 bytes
4092 * results in a TCP Data Payload of 1448 bytes which, as
4093 * above, is a multiple of 8 bytes ...
4094 */
4095 for (i = 0; i < NMTUS; i++)
4096 if (adap->params.mtus[i] == 1492) {
4097 adap->params.mtus[i] = 1488;
4098 break;
4099 }
4100
4101 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4102 adap->params.b_wnd);
4103 }
4104 t4_init_sge_params(adap);
4105 adap->flags |= FW_OK;
4106 t4_init_tp_params(adap);
4107 return 0;
4108
4109 /*
4110 * Something bad happened. If a command timed out or failed with EIO
4111 * FW does not operate within its spec or something catastrophic
4112 * happened to HW/FW, stop issuing commands.
4113 */
4114 bye:
4115 kfree(adap->sge.egr_map);
4116 kfree(adap->sge.ingr_map);
4117 kfree(adap->sge.starving_fl);
4118 kfree(adap->sge.txq_maperr);
4119 #ifdef CONFIG_DEBUG_FS
4120 kfree(adap->sge.blocked_fl);
4121 #endif
4122 if (ret != -ETIMEDOUT && ret != -EIO)
4123 t4_fw_bye(adap, adap->mbox);
4124 return ret;
4125 }
4126
4127 /* EEH callbacks */
4128
4129 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4130 pci_channel_state_t state)
4131 {
4132 int i;
4133 struct adapter *adap = pci_get_drvdata(pdev);
4134
4135 if (!adap)
4136 goto out;
4137
4138 rtnl_lock();
4139 adap->flags &= ~FW_OK;
4140 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4141 spin_lock(&adap->stats_lock);
4142 for_each_port(adap, i) {
4143 struct net_device *dev = adap->port[i];
4144
4145 netif_device_detach(dev);
4146 netif_carrier_off(dev);
4147 }
4148 spin_unlock(&adap->stats_lock);
4149 disable_interrupts(adap);
4150 if (adap->flags & FULL_INIT_DONE)
4151 cxgb_down(adap);
4152 rtnl_unlock();
4153 if ((adap->flags & DEV_ENABLED)) {
4154 pci_disable_device(pdev);
4155 adap->flags &= ~DEV_ENABLED;
4156 }
4157 out: return state == pci_channel_io_perm_failure ?
4158 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4159 }
4160
4161 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4162 {
4163 int i, ret;
4164 struct fw_caps_config_cmd c;
4165 struct adapter *adap = pci_get_drvdata(pdev);
4166
4167 if (!adap) {
4168 pci_restore_state(pdev);
4169 pci_save_state(pdev);
4170 return PCI_ERS_RESULT_RECOVERED;
4171 }
4172
4173 if (!(adap->flags & DEV_ENABLED)) {
4174 if (pci_enable_device(pdev)) {
4175 dev_err(&pdev->dev, "Cannot reenable PCI "
4176 "device after reset\n");
4177 return PCI_ERS_RESULT_DISCONNECT;
4178 }
4179 adap->flags |= DEV_ENABLED;
4180 }
4181
4182 pci_set_master(pdev);
4183 pci_restore_state(pdev);
4184 pci_save_state(pdev);
4185 pci_cleanup_aer_uncorrect_error_status(pdev);
4186
4187 if (t4_wait_dev_ready(adap->regs) < 0)
4188 return PCI_ERS_RESULT_DISCONNECT;
4189 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4190 return PCI_ERS_RESULT_DISCONNECT;
4191 adap->flags |= FW_OK;
4192 if (adap_init1(adap, &c))
4193 return PCI_ERS_RESULT_DISCONNECT;
4194
4195 for_each_port(adap, i) {
4196 struct port_info *p = adap2pinfo(adap, i);
4197
4198 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4199 NULL, NULL);
4200 if (ret < 0)
4201 return PCI_ERS_RESULT_DISCONNECT;
4202 p->viid = ret;
4203 p->xact_addr_filt = -1;
4204 }
4205
4206 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4207 adap->params.b_wnd);
4208 setup_memwin(adap);
4209 if (cxgb_up(adap))
4210 return PCI_ERS_RESULT_DISCONNECT;
4211 return PCI_ERS_RESULT_RECOVERED;
4212 }
4213
4214 static void eeh_resume(struct pci_dev *pdev)
4215 {
4216 int i;
4217 struct adapter *adap = pci_get_drvdata(pdev);
4218
4219 if (!adap)
4220 return;
4221
4222 rtnl_lock();
4223 for_each_port(adap, i) {
4224 struct net_device *dev = adap->port[i];
4225
4226 if (netif_running(dev)) {
4227 link_start(dev);
4228 cxgb_set_rxmode(dev);
4229 }
4230 netif_device_attach(dev);
4231 }
4232 rtnl_unlock();
4233 }
4234
4235 static const struct pci_error_handlers cxgb4_eeh = {
4236 .error_detected = eeh_err_detected,
4237 .slot_reset = eeh_slot_reset,
4238 .resume = eeh_resume,
4239 };
4240
4241 static inline bool is_x_10g_port(const struct link_config *lc)
4242 {
4243 return (lc->supported & FW_PORT_CAP_SPEED_10G) != 0 ||
4244 (lc->supported & FW_PORT_CAP_SPEED_40G) != 0;
4245 }
4246
4247 static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4248 unsigned int us, unsigned int cnt,
4249 unsigned int size, unsigned int iqe_size)
4250 {
4251 q->adap = adap;
4252 cxgb4_set_rspq_intr_params(q, us, cnt);
4253 q->iqe_len = iqe_size;
4254 q->size = size;
4255 }
4256
4257 /*
4258 * Perform default configuration of DMA queues depending on the number and type
4259 * of ports we found and the number of available CPUs. Most settings can be
4260 * modified by the admin prior to actual use.
4261 */
4262 static void cfg_queues(struct adapter *adap)
4263 {
4264 struct sge *s = &adap->sge;
4265 int i, n10g = 0, qidx = 0;
4266 #ifndef CONFIG_CHELSIO_T4_DCB
4267 int q10g = 0;
4268 #endif
4269 int ciq_size;
4270
4271 for_each_port(adap, i)
4272 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4273 #ifdef CONFIG_CHELSIO_T4_DCB
4274 /* For Data Center Bridging support we need to be able to support up
4275 * to 8 Traffic Priorities; each of which will be assigned to its
4276 * own TX Queue in order to prevent Head-Of-Line Blocking.
4277 */
4278 if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4279 dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4280 MAX_ETH_QSETS, adap->params.nports * 8);
4281 BUG_ON(1);
4282 }
4283
4284 for_each_port(adap, i) {
4285 struct port_info *pi = adap2pinfo(adap, i);
4286
4287 pi->first_qset = qidx;
4288 pi->nqsets = 8;
4289 qidx += pi->nqsets;
4290 }
4291 #else /* !CONFIG_CHELSIO_T4_DCB */
4292 /*
4293 * We default to 1 queue per non-10G port and up to # of cores queues
4294 * per 10G port.
4295 */
4296 if (n10g)
4297 q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4298 if (q10g > netif_get_num_default_rss_queues())
4299 q10g = netif_get_num_default_rss_queues();
4300
4301 for_each_port(adap, i) {
4302 struct port_info *pi = adap2pinfo(adap, i);
4303
4304 pi->first_qset = qidx;
4305 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4306 qidx += pi->nqsets;
4307 }
4308 #endif /* !CONFIG_CHELSIO_T4_DCB */
4309
4310 s->ethqsets = qidx;
4311 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4312
4313 if (is_offload(adap)) {
4314 /*
4315 * For offload we use 1 queue/channel if all ports are up to 1G,
4316 * otherwise we divide all available queues amongst the channels
4317 * capped by the number of available cores.
4318 */
4319 if (n10g) {
4320 i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4321 num_online_cpus());
4322 s->iscsiqsets = roundup(i, adap->params.nports);
4323 } else
4324 s->iscsiqsets = adap->params.nports;
4325 /* For RDMA one Rx queue per channel suffices */
4326 s->rdmaqs = adap->params.nports;
4327 /* Try and allow at least 1 CIQ per cpu rounding down
4328 * to the number of ports, with a minimum of 1 per port.
4329 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4330 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4331 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4332 */
4333 s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4334 s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4335 adap->params.nports;
4336 s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4337
4338 if (!is_t4(adap->params.chip))
4339 s->niscsitq = s->iscsiqsets;
4340 }
4341
4342 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4343 struct sge_eth_rxq *r = &s->ethrxq[i];
4344
4345 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4346 r->fl.size = 72;
4347 }
4348
4349 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4350 s->ethtxq[i].q.size = 1024;
4351
4352 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4353 s->ctrlq[i].q.size = 512;
4354
4355 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4356 s->ofldtxq[i].q.size = 1024;
4357
4358 for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4359 struct sge_ofld_rxq *r = &s->iscsirxq[i];
4360
4361 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4362 r->rspq.uld = CXGB4_ULD_ISCSI;
4363 r->fl.size = 72;
4364 }
4365
4366 if (!is_t4(adap->params.chip)) {
4367 for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4368 struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4369
4370 init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4371 r->rspq.uld = CXGB4_ULD_ISCSIT;
4372 r->fl.size = 72;
4373 }
4374 }
4375
4376 for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4377 struct sge_ofld_rxq *r = &s->rdmarxq[i];
4378
4379 init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4380 r->rspq.uld = CXGB4_ULD_RDMA;
4381 r->fl.size = 72;
4382 }
4383
4384 ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4385 if (ciq_size > SGE_MAX_IQ_SIZE) {
4386 CH_WARN(adap, "CIQ size too small for available IQs\n");
4387 ciq_size = SGE_MAX_IQ_SIZE;
4388 }
4389
4390 for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4391 struct sge_ofld_rxq *r = &s->rdmaciq[i];
4392
4393 init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4394 r->rspq.uld = CXGB4_ULD_RDMA;
4395 }
4396
4397 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4398 init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4399 }
4400
4401 /*
4402 * Reduce the number of Ethernet queues across all ports to at most n.
4403 * n provides at least one queue per port.
4404 */
4405 static void reduce_ethqs(struct adapter *adap, int n)
4406 {
4407 int i;
4408 struct port_info *pi;
4409
4410 while (n < adap->sge.ethqsets)
4411 for_each_port(adap, i) {
4412 pi = adap2pinfo(adap, i);
4413 if (pi->nqsets > 1) {
4414 pi->nqsets--;
4415 adap->sge.ethqsets--;
4416 if (adap->sge.ethqsets <= n)
4417 break;
4418 }
4419 }
4420
4421 n = 0;
4422 for_each_port(adap, i) {
4423 pi = adap2pinfo(adap, i);
4424 pi->first_qset = n;
4425 n += pi->nqsets;
4426 }
4427 }
4428
4429 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4430 #define EXTRA_VECS 2
4431
4432 static int enable_msix(struct adapter *adap)
4433 {
4434 int ofld_need = 0;
4435 int i, want, need, allocated;
4436 struct sge *s = &adap->sge;
4437 unsigned int nchan = adap->params.nports;
4438 struct msix_entry *entries;
4439
4440 entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4441 GFP_KERNEL);
4442 if (!entries)
4443 return -ENOMEM;
4444
4445 for (i = 0; i < MAX_INGQ + 1; ++i)
4446 entries[i].entry = i;
4447
4448 want = s->max_ethqsets + EXTRA_VECS;
4449 if (is_offload(adap)) {
4450 want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4451 s->niscsitq;
4452 /* need nchan for each possible ULD */
4453 if (is_t4(adap->params.chip))
4454 ofld_need = 3 * nchan;
4455 else
4456 ofld_need = 4 * nchan;
4457 }
4458 #ifdef CONFIG_CHELSIO_T4_DCB
4459 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4460 * each port.
4461 */
4462 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4463 #else
4464 need = adap->params.nports + EXTRA_VECS + ofld_need;
4465 #endif
4466 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4467 if (allocated < 0) {
4468 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4469 " not using MSI-X\n");
4470 kfree(entries);
4471 return allocated;
4472 }
4473
4474 /* Distribute available vectors to the various queue groups.
4475 * Every group gets its minimum requirement and NIC gets top
4476 * priority for leftovers.
4477 */
4478 i = allocated - EXTRA_VECS - ofld_need;
4479 if (i < s->max_ethqsets) {
4480 s->max_ethqsets = i;
4481 if (i < s->ethqsets)
4482 reduce_ethqs(adap, i);
4483 }
4484 if (is_offload(adap)) {
4485 if (allocated < want) {
4486 s->rdmaqs = nchan;
4487 s->rdmaciqs = nchan;
4488
4489 if (!is_t4(adap->params.chip))
4490 s->niscsitq = nchan;
4491 }
4492
4493 /* leftovers go to OFLD */
4494 i = allocated - EXTRA_VECS - s->max_ethqsets -
4495 s->rdmaqs - s->rdmaciqs - s->niscsitq;
4496 s->iscsiqsets = (i / nchan) * nchan; /* round down */
4497
4498 }
4499 for (i = 0; i < allocated; ++i)
4500 adap->msix_info[i].vec = entries[i].vector;
4501 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4502 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4503 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4504 s->rdmaciqs);
4505
4506 kfree(entries);
4507 return 0;
4508 }
4509
4510 #undef EXTRA_VECS
4511
4512 static int init_rss(struct adapter *adap)
4513 {
4514 unsigned int i;
4515 int err;
4516
4517 err = t4_init_rss_mode(adap, adap->mbox);
4518 if (err)
4519 return err;
4520
4521 for_each_port(adap, i) {
4522 struct port_info *pi = adap2pinfo(adap, i);
4523
4524 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4525 if (!pi->rss)
4526 return -ENOMEM;
4527 }
4528 return 0;
4529 }
4530
4531 static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4532 enum pci_bus_speed *speed,
4533 enum pcie_link_width *width)
4534 {
4535 u32 lnkcap1, lnkcap2;
4536 int err1, err2;
4537
4538 #define PCIE_MLW_CAP_SHIFT 4 /* start of MLW mask in link capabilities */
4539
4540 *speed = PCI_SPEED_UNKNOWN;
4541 *width = PCIE_LNK_WIDTH_UNKNOWN;
4542
4543 err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4544 &lnkcap1);
4545 err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4546 &lnkcap2);
4547 if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4548 if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4549 *speed = PCIE_SPEED_8_0GT;
4550 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4551 *speed = PCIE_SPEED_5_0GT;
4552 else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4553 *speed = PCIE_SPEED_2_5GT;
4554 }
4555 if (!err1) {
4556 *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4557 if (!lnkcap2) { /* pre-r3.0 */
4558 if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4559 *speed = PCIE_SPEED_5_0GT;
4560 else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4561 *speed = PCIE_SPEED_2_5GT;
4562 }
4563 }
4564
4565 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4566 return err1 ? err1 : err2 ? err2 : -EINVAL;
4567 return 0;
4568 }
4569
4570 static void cxgb4_check_pcie_caps(struct adapter *adap)
4571 {
4572 enum pcie_link_width width, width_cap;
4573 enum pci_bus_speed speed, speed_cap;
4574
4575 #define PCIE_SPEED_STR(speed) \
4576 (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4577 speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4578 speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4579 "Unknown")
4580
4581 if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4582 dev_warn(adap->pdev_dev,
4583 "Unable to determine PCIe device BW capabilities\n");
4584 return;
4585 }
4586
4587 if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4588 speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4589 dev_warn(adap->pdev_dev,
4590 "Unable to determine PCI Express bandwidth.\n");
4591 return;
4592 }
4593
4594 dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4595 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4596 dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4597 width, width_cap);
4598 if (speed < speed_cap || width < width_cap)
4599 dev_info(adap->pdev_dev,
4600 "A slot with more lanes and/or higher speed is "
4601 "suggested for optimal performance.\n");
4602 }
4603
4604 static void print_port_info(const struct net_device *dev)
4605 {
4606 char buf[80];
4607 char *bufp = buf;
4608 const char *spd = "";
4609 const struct port_info *pi = netdev_priv(dev);
4610 const struct adapter *adap = pi->adapter;
4611
4612 if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4613 spd = " 2.5 GT/s";
4614 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4615 spd = " 5 GT/s";
4616 else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4617 spd = " 8 GT/s";
4618
4619 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4620 bufp += sprintf(bufp, "100/");
4621 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4622 bufp += sprintf(bufp, "1000/");
4623 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4624 bufp += sprintf(bufp, "10G/");
4625 if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4626 bufp += sprintf(bufp, "40G/");
4627 if (bufp != buf)
4628 --bufp;
4629 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4630
4631 netdev_info(dev, "Chelsio %s rev %d %s %sNIC %s\n",
4632 adap->params.vpd.id,
4633 CHELSIO_CHIP_RELEASE(adap->params.chip), buf,
4634 is_offload(adap) ? "R" : "",
4635 (adap->flags & USING_MSIX) ? " MSI-X" :
4636 (adap->flags & USING_MSI) ? " MSI" : "");
4637 netdev_info(dev, "S/N: %s, P/N: %s\n",
4638 adap->params.vpd.sn, adap->params.vpd.pn);
4639 }
4640
4641 static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4642 {
4643 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4644 }
4645
4646 /*
4647 * Free the following resources:
4648 * - memory used for tables
4649 * - MSI/MSI-X
4650 * - net devices
4651 * - resources FW is holding for us
4652 */
4653 static void free_some_resources(struct adapter *adapter)
4654 {
4655 unsigned int i;
4656
4657 t4_free_mem(adapter->l2t);
4658 t4_free_mem(adapter->tids.tid_tab);
4659 kfree(adapter->sge.egr_map);
4660 kfree(adapter->sge.ingr_map);
4661 kfree(adapter->sge.starving_fl);
4662 kfree(adapter->sge.txq_maperr);
4663 #ifdef CONFIG_DEBUG_FS
4664 kfree(adapter->sge.blocked_fl);
4665 #endif
4666 disable_msi(adapter);
4667
4668 for_each_port(adapter, i)
4669 if (adapter->port[i]) {
4670 struct port_info *pi = adap2pinfo(adapter, i);
4671
4672 if (pi->viid != 0)
4673 t4_free_vi(adapter, adapter->mbox, adapter->pf,
4674 0, pi->viid);
4675 kfree(adap2pinfo(adapter, i)->rss);
4676 free_netdev(adapter->port[i]);
4677 }
4678 if (adapter->flags & FW_OK)
4679 t4_fw_bye(adapter, adapter->pf);
4680 }
4681
4682 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4683 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4684 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4685 #define SEGMENT_SIZE 128
4686
4687 static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4688 {
4689 u16 device_id;
4690
4691 /* Retrieve adapter's device ID */
4692 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4693
4694 switch (device_id >> 12) {
4695 case CHELSIO_T4:
4696 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4697 case CHELSIO_T5:
4698 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4699 case CHELSIO_T6:
4700 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4701 default:
4702 dev_err(&pdev->dev, "Device %d is not supported\n",
4703 device_id);
4704 }
4705 return -EINVAL;
4706 }
4707
4708 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4709 {
4710 int func, i, err, s_qpp, qpp, num_seg;
4711 struct port_info *pi;
4712 bool highdma = false;
4713 struct adapter *adapter = NULL;
4714 void __iomem *regs;
4715 u32 whoami, pl_rev;
4716 enum chip_type chip;
4717
4718 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4719
4720 err = pci_request_regions(pdev, KBUILD_MODNAME);
4721 if (err) {
4722 /* Just info, some other driver may have claimed the device. */
4723 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4724 return err;
4725 }
4726
4727 err = pci_enable_device(pdev);
4728 if (err) {
4729 dev_err(&pdev->dev, "cannot enable PCI device\n");
4730 goto out_release_regions;
4731 }
4732
4733 regs = pci_ioremap_bar(pdev, 0);
4734 if (!regs) {
4735 dev_err(&pdev->dev, "cannot map device registers\n");
4736 err = -ENOMEM;
4737 goto out_disable_device;
4738 }
4739
4740 err = t4_wait_dev_ready(regs);
4741 if (err < 0)
4742 goto out_unmap_bar0;
4743
4744 /* We control everything through one PF */
4745 whoami = readl(regs + PL_WHOAMI_A);
4746 pl_rev = REV_G(readl(regs + PL_REV_A));
4747 chip = get_chip_type(pdev, pl_rev);
4748 func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4749 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4750 if (func != ent->driver_data) {
4751 iounmap(regs);
4752 pci_disable_device(pdev);
4753 pci_save_state(pdev); /* to restore SR-IOV later */
4754 goto sriov;
4755 }
4756
4757 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4758 highdma = true;
4759 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4760 if (err) {
4761 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4762 "coherent allocations\n");
4763 goto out_unmap_bar0;
4764 }
4765 } else {
4766 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4767 if (err) {
4768 dev_err(&pdev->dev, "no usable DMA configuration\n");
4769 goto out_unmap_bar0;
4770 }
4771 }
4772
4773 pci_enable_pcie_error_reporting(pdev);
4774 enable_pcie_relaxed_ordering(pdev);
4775 pci_set_master(pdev);
4776 pci_save_state(pdev);
4777
4778 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4779 if (!adapter) {
4780 err = -ENOMEM;
4781 goto out_unmap_bar0;
4782 }
4783
4784 adapter->workq = create_singlethread_workqueue("cxgb4");
4785 if (!adapter->workq) {
4786 err = -ENOMEM;
4787 goto out_free_adapter;
4788 }
4789
4790 /* PCI device has been enabled */
4791 adapter->flags |= DEV_ENABLED;
4792
4793 adapter->regs = regs;
4794 adapter->pdev = pdev;
4795 adapter->pdev_dev = &pdev->dev;
4796 adapter->mbox = func;
4797 adapter->pf = func;
4798 adapter->msg_enable = dflt_msg_enable;
4799 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
4800
4801 spin_lock_init(&adapter->stats_lock);
4802 spin_lock_init(&adapter->tid_release_lock);
4803 spin_lock_init(&adapter->win0_lock);
4804
4805 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
4806 INIT_WORK(&adapter->db_full_task, process_db_full);
4807 INIT_WORK(&adapter->db_drop_task, process_db_drop);
4808
4809 err = t4_prep_adapter(adapter);
4810 if (err)
4811 goto out_free_adapter;
4812
4813
4814 if (!is_t4(adapter->params.chip)) {
4815 s_qpp = (QUEUESPERPAGEPF0_S +
4816 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
4817 adapter->pf);
4818 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
4819 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
4820 num_seg = PAGE_SIZE / SEGMENT_SIZE;
4821
4822 /* Each segment size is 128B. Write coalescing is enabled only
4823 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
4824 * queue is less no of segments that can be accommodated in
4825 * a page size.
4826 */
4827 if (qpp > num_seg) {
4828 dev_err(&pdev->dev,
4829 "Incorrect number of egress queues per page\n");
4830 err = -EINVAL;
4831 goto out_free_adapter;
4832 }
4833 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
4834 pci_resource_len(pdev, 2));
4835 if (!adapter->bar2) {
4836 dev_err(&pdev->dev, "cannot map device bar2 region\n");
4837 err = -ENOMEM;
4838 goto out_free_adapter;
4839 }
4840 }
4841
4842 setup_memwin(adapter);
4843 err = adap_init0(adapter);
4844 #ifdef CONFIG_DEBUG_FS
4845 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
4846 #endif
4847 setup_memwin_rdma(adapter);
4848 if (err)
4849 goto out_unmap_bar;
4850
4851 /* configure SGE_STAT_CFG_A to read WC stats */
4852 if (!is_t4(adapter->params.chip))
4853 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
4854 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
4855 T6_STATMODE_V(0)));
4856
4857 for_each_port(adapter, i) {
4858 struct net_device *netdev;
4859
4860 netdev = alloc_etherdev_mq(sizeof(struct port_info),
4861 MAX_ETH_QSETS);
4862 if (!netdev) {
4863 err = -ENOMEM;
4864 goto out_free_dev;
4865 }
4866
4867 SET_NETDEV_DEV(netdev, &pdev->dev);
4868
4869 adapter->port[i] = netdev;
4870 pi = netdev_priv(netdev);
4871 pi->adapter = adapter;
4872 pi->xact_addr_filt = -1;
4873 pi->port_id = i;
4874 netdev->irq = pdev->irq;
4875
4876 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
4877 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
4878 NETIF_F_RXCSUM | NETIF_F_RXHASH |
4879 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
4880 if (highdma)
4881 netdev->hw_features |= NETIF_F_HIGHDMA;
4882 netdev->features |= netdev->hw_features;
4883 netdev->vlan_features = netdev->features & VLAN_FEAT;
4884
4885 netdev->priv_flags |= IFF_UNICAST_FLT;
4886
4887 netdev->netdev_ops = &cxgb4_netdev_ops;
4888 #ifdef CONFIG_CHELSIO_T4_DCB
4889 netdev->dcbnl_ops = &cxgb4_dcb_ops;
4890 cxgb4_dcb_state_init(netdev);
4891 #endif
4892 cxgb4_set_ethtool_ops(netdev);
4893 }
4894
4895 pci_set_drvdata(pdev, adapter);
4896
4897 if (adapter->flags & FW_OK) {
4898 err = t4_port_init(adapter, func, func, 0);
4899 if (err)
4900 goto out_free_dev;
4901 } else if (adapter->params.nports == 1) {
4902 /* If we don't have a connection to the firmware -- possibly
4903 * because of an error -- grab the raw VPD parameters so we
4904 * can set the proper MAC Address on the debug network
4905 * interface that we've created.
4906 */
4907 u8 hw_addr[ETH_ALEN];
4908 u8 *na = adapter->params.vpd.na;
4909
4910 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
4911 if (!err) {
4912 for (i = 0; i < ETH_ALEN; i++)
4913 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
4914 hex2val(na[2 * i + 1]));
4915 t4_set_hw_addr(adapter, 0, hw_addr);
4916 }
4917 }
4918
4919 /* Configure queues and allocate tables now, they can be needed as
4920 * soon as the first register_netdev completes.
4921 */
4922 cfg_queues(adapter);
4923
4924 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
4925 if (!adapter->l2t) {
4926 /* We tolerate a lack of L2T, giving up some functionality */
4927 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
4928 adapter->params.offload = 0;
4929 }
4930
4931 #if IS_ENABLED(CONFIG_IPV6)
4932 if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
4933 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
4934 /* CLIP functionality is not present in hardware,
4935 * hence disable all offload features
4936 */
4937 dev_warn(&pdev->dev,
4938 "CLIP not enabled in hardware, continuing\n");
4939 adapter->params.offload = 0;
4940 } else {
4941 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
4942 adapter->clipt_end);
4943 if (!adapter->clipt) {
4944 /* We tolerate a lack of clip_table, giving up
4945 * some functionality
4946 */
4947 dev_warn(&pdev->dev,
4948 "could not allocate Clip table, continuing\n");
4949 adapter->params.offload = 0;
4950 }
4951 }
4952 #endif
4953 if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
4954 dev_warn(&pdev->dev, "could not allocate TID table, "
4955 "continuing\n");
4956 adapter->params.offload = 0;
4957 }
4958
4959 if (is_offload(adapter)) {
4960 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
4961 u32 hash_base, hash_reg;
4962
4963 if (chip <= CHELSIO_T5) {
4964 hash_reg = LE_DB_TID_HASHBASE_A;
4965 hash_base = t4_read_reg(adapter, hash_reg);
4966 adapter->tids.hash_base = hash_base / 4;
4967 } else {
4968 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
4969 hash_base = t4_read_reg(adapter, hash_reg);
4970 adapter->tids.hash_base = hash_base;
4971 }
4972 }
4973 }
4974
4975 /* See what interrupts we'll be using */
4976 if (msi > 1 && enable_msix(adapter) == 0)
4977 adapter->flags |= USING_MSIX;
4978 else if (msi > 0 && pci_enable_msi(pdev) == 0)
4979 adapter->flags |= USING_MSI;
4980
4981 /* check for PCI Express bandwidth capabiltites */
4982 cxgb4_check_pcie_caps(adapter);
4983
4984 err = init_rss(adapter);
4985 if (err)
4986 goto out_free_dev;
4987
4988 /*
4989 * The card is now ready to go. If any errors occur during device
4990 * registration we do not fail the whole card but rather proceed only
4991 * with the ports we manage to register successfully. However we must
4992 * register at least one net device.
4993 */
4994 for_each_port(adapter, i) {
4995 pi = adap2pinfo(adapter, i);
4996 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
4997 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
4998
4999 err = register_netdev(adapter->port[i]);
5000 if (err)
5001 break;
5002 adapter->chan_map[pi->tx_chan] = i;
5003 print_port_info(adapter->port[i]);
5004 }
5005 if (i == 0) {
5006 dev_err(&pdev->dev, "could not register any net devices\n");
5007 goto out_free_dev;
5008 }
5009 if (err) {
5010 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5011 err = 0;
5012 }
5013
5014 if (cxgb4_debugfs_root) {
5015 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5016 cxgb4_debugfs_root);
5017 setup_debugfs(adapter);
5018 }
5019
5020 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5021 pdev->needs_freset = 1;
5022
5023 if (is_offload(adapter))
5024 attach_ulds(adapter);
5025
5026 sriov:
5027 #ifdef CONFIG_PCI_IOV
5028 if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0)
5029 if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5030 dev_info(&pdev->dev,
5031 "instantiated %u virtual functions\n",
5032 num_vf[func]);
5033 #endif
5034 return 0;
5035
5036 out_free_dev:
5037 free_some_resources(adapter);
5038 out_unmap_bar:
5039 if (!is_t4(adapter->params.chip))
5040 iounmap(adapter->bar2);
5041 out_free_adapter:
5042 if (adapter->workq)
5043 destroy_workqueue(adapter->workq);
5044
5045 kfree(adapter);
5046 out_unmap_bar0:
5047 iounmap(regs);
5048 out_disable_device:
5049 pci_disable_pcie_error_reporting(pdev);
5050 pci_disable_device(pdev);
5051 out_release_regions:
5052 pci_release_regions(pdev);
5053 return err;
5054 }
5055
5056 static void remove_one(struct pci_dev *pdev)
5057 {
5058 struct adapter *adapter = pci_get_drvdata(pdev);
5059
5060 #ifdef CONFIG_PCI_IOV
5061 pci_disable_sriov(pdev);
5062
5063 #endif
5064
5065 if (adapter) {
5066 int i;
5067
5068 /* Tear down per-adapter Work Queue first since it can contain
5069 * references to our adapter data structure.
5070 */
5071 destroy_workqueue(adapter->workq);
5072
5073 if (is_offload(adapter))
5074 detach_ulds(adapter);
5075
5076 disable_interrupts(adapter);
5077
5078 for_each_port(adapter, i)
5079 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5080 unregister_netdev(adapter->port[i]);
5081
5082 debugfs_remove_recursive(adapter->debugfs_root);
5083
5084 /* If we allocated filters, free up state associated with any
5085 * valid filters ...
5086 */
5087 if (adapter->tids.ftid_tab) {
5088 struct filter_entry *f = &adapter->tids.ftid_tab[0];
5089 for (i = 0; i < (adapter->tids.nftids +
5090 adapter->tids.nsftids); i++, f++)
5091 if (f->valid)
5092 clear_filter(adapter, f);
5093 }
5094
5095 if (adapter->flags & FULL_INIT_DONE)
5096 cxgb_down(adapter);
5097
5098 free_some_resources(adapter);
5099 #if IS_ENABLED(CONFIG_IPV6)
5100 t4_cleanup_clip_tbl(adapter);
5101 #endif
5102 iounmap(adapter->regs);
5103 if (!is_t4(adapter->params.chip))
5104 iounmap(adapter->bar2);
5105 pci_disable_pcie_error_reporting(pdev);
5106 if ((adapter->flags & DEV_ENABLED)) {
5107 pci_disable_device(pdev);
5108 adapter->flags &= ~DEV_ENABLED;
5109 }
5110 pci_release_regions(pdev);
5111 synchronize_rcu();
5112 kfree(adapter);
5113 } else
5114 pci_release_regions(pdev);
5115 }
5116
5117 static struct pci_driver cxgb4_driver = {
5118 .name = KBUILD_MODNAME,
5119 .id_table = cxgb4_pci_tbl,
5120 .probe = init_one,
5121 .remove = remove_one,
5122 .shutdown = remove_one,
5123 .err_handler = &cxgb4_eeh,
5124 };
5125
5126 static int __init cxgb4_init_module(void)
5127 {
5128 int ret;
5129
5130 /* Debugfs support is optional, just warn if this fails */
5131 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5132 if (!cxgb4_debugfs_root)
5133 pr_warn("could not create debugfs entry, continuing\n");
5134
5135 ret = pci_register_driver(&cxgb4_driver);
5136 if (ret < 0)
5137 debugfs_remove(cxgb4_debugfs_root);
5138
5139 #if IS_ENABLED(CONFIG_IPV6)
5140 if (!inet6addr_registered) {
5141 register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5142 inet6addr_registered = true;
5143 }
5144 #endif
5145
5146 return ret;
5147 }
5148
5149 static void __exit cxgb4_cleanup_module(void)
5150 {
5151 #if IS_ENABLED(CONFIG_IPV6)
5152 if (inet6addr_registered) {
5153 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5154 inet6addr_registered = false;
5155 }
5156 #endif
5157 pci_unregister_driver(&cxgb4_driver);
5158 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
5159 }
5160
5161 module_init(cxgb4_init_module);
5162 module_exit(cxgb4_cleanup_module);
This page took 0.133231 seconds and 4 git commands to generate.