Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4 / sge.c
1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
39 #include <linux/ip.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
43 #include <linux/export.h>
44 #include <net/ipv6.h>
45 #include <net/tcp.h>
46 #ifdef CONFIG_NET_RX_BUSY_POLL
47 #include <net/busy_poll.h>
48 #endif /* CONFIG_NET_RX_BUSY_POLL */
49 #include "cxgb4.h"
50 #include "t4_regs.h"
51 #include "t4_values.h"
52 #include "t4_msg.h"
53 #include "t4fw_api.h"
54
55 /*
56 * Rx buffer size. We use largish buffers if possible but settle for single
57 * pages under memory shortage.
58 */
59 #if PAGE_SHIFT >= 16
60 # define FL_PG_ORDER 0
61 #else
62 # define FL_PG_ORDER (16 - PAGE_SHIFT)
63 #endif
64
65 /* RX_PULL_LEN should be <= RX_COPY_THRES */
66 #define RX_COPY_THRES 256
67 #define RX_PULL_LEN 128
68
69 /*
70 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
71 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
72 */
73 #define RX_PKT_SKB_LEN 512
74
75 /*
76 * Max number of Tx descriptors we clean up at a time. Should be modest as
77 * freeing skbs isn't cheap and it happens while holding locks. We just need
78 * to free packets faster than they arrive, we eventually catch up and keep
79 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
80 */
81 #define MAX_TX_RECLAIM 16
82
83 /*
84 * Max number of Rx buffers we replenish at a time. Again keep this modest,
85 * allocating buffers isn't cheap either.
86 */
87 #define MAX_RX_REFILL 16U
88
89 /*
90 * Period of the Rx queue check timer. This timer is infrequent as it has
91 * something to do only when the system experiences severe memory shortage.
92 */
93 #define RX_QCHECK_PERIOD (HZ / 2)
94
95 /*
96 * Period of the Tx queue check timer.
97 */
98 #define TX_QCHECK_PERIOD (HZ / 2)
99
100 /* SGE Hung Ingress DMA Threshold Warning time (in Hz) and Warning Repeat Rate
101 * (in RX_QCHECK_PERIOD multiples). If we find one of the SGE Ingress DMA
102 * State Machines in the same state for this amount of time (in HZ) then we'll
103 * issue a warning about a potential hang. We'll repeat the warning as the
104 * SGE Ingress DMA Channel appears to be hung every N RX_QCHECK_PERIODs till
105 * the situation clears. If the situation clears, we'll note that as well.
106 */
107 #define SGE_IDMA_WARN_THRESH (1 * HZ)
108 #define SGE_IDMA_WARN_REPEAT (20 * RX_QCHECK_PERIOD)
109
110 /*
111 * Max number of Tx descriptors to be reclaimed by the Tx timer.
112 */
113 #define MAX_TIMER_TX_RECLAIM 100
114
115 /*
116 * Timer index used when backing off due to memory shortage.
117 */
118 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
119
120 /*
121 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
122 * attempt to refill it.
123 */
124 #define FL_STARVE_THRES 4
125
126 /*
127 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
128 * This is the same as calc_tx_descs() for a TSO packet with
129 * nr_frags == MAX_SKB_FRAGS.
130 */
131 #define ETHTXQ_STOP_THRES \
132 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
133
134 /*
135 * Suspension threshold for non-Ethernet Tx queues. We require enough room
136 * for a full sized WR.
137 */
138 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
139
140 /*
141 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
142 * into a WR.
143 */
144 #define MAX_IMM_TX_PKT_LEN 128
145
146 /*
147 * Max size of a WR sent through a control Tx queue.
148 */
149 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
150
151 struct tx_sw_desc { /* SW state per Tx descriptor */
152 struct sk_buff *skb;
153 struct ulptx_sgl *sgl;
154 };
155
156 struct rx_sw_desc { /* SW state per Rx descriptor */
157 struct page *page;
158 dma_addr_t dma_addr;
159 };
160
161 /*
162 * Rx buffer sizes for "useskbs" Free List buffers (one ingress packet pe skb
163 * buffer). We currently only support two sizes for 1500- and 9000-byte MTUs.
164 * We could easily support more but there doesn't seem to be much need for
165 * that ...
166 */
167 #define FL_MTU_SMALL 1500
168 #define FL_MTU_LARGE 9000
169
170 static inline unsigned int fl_mtu_bufsize(struct adapter *adapter,
171 unsigned int mtu)
172 {
173 struct sge *s = &adapter->sge;
174
175 return ALIGN(s->pktshift + ETH_HLEN + VLAN_HLEN + mtu, s->fl_align);
176 }
177
178 #define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL)
179 #define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE)
180
181 /*
182 * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses
183 * these to specify the buffer size as an index into the SGE Free List Buffer
184 * Size register array. We also use bit 4, when the buffer has been unmapped
185 * for DMA, but this is of course never sent to the hardware and is only used
186 * to prevent double unmappings. All of the above requires that the Free List
187 * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are
188 * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal
189 * Free List Buffer alignment is 32 bytes, this works out for us ...
190 */
191 enum {
192 RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */
193 RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */
194 RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */
195
196 /*
197 * XXX We shouldn't depend on being able to use these indices.
198 * XXX Especially when some other Master PF has initialized the
199 * XXX adapter or we use the Firmware Configuration File. We
200 * XXX should really search through the Host Buffer Size register
201 * XXX array for the appropriately sized buffer indices.
202 */
203 RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */
204 RX_LARGE_PG_BUF = 0x1, /* buffer large (FL_PG_ORDER) page buffer */
205
206 RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */
207 RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */
208 };
209
210 static int timer_pkt_quota[] = {1, 1, 2, 3, 4, 5};
211 #define MIN_NAPI_WORK 1
212
213 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *d)
214 {
215 return d->dma_addr & ~(dma_addr_t)RX_BUF_FLAGS;
216 }
217
218 static inline bool is_buf_mapped(const struct rx_sw_desc *d)
219 {
220 return !(d->dma_addr & RX_UNMAPPED_BUF);
221 }
222
223 /**
224 * txq_avail - return the number of available slots in a Tx queue
225 * @q: the Tx queue
226 *
227 * Returns the number of descriptors in a Tx queue available to write new
228 * packets.
229 */
230 static inline unsigned int txq_avail(const struct sge_txq *q)
231 {
232 return q->size - 1 - q->in_use;
233 }
234
235 /**
236 * fl_cap - return the capacity of a free-buffer list
237 * @fl: the FL
238 *
239 * Returns the capacity of a free-buffer list. The capacity is less than
240 * the size because one descriptor needs to be left unpopulated, otherwise
241 * HW will think the FL is empty.
242 */
243 static inline unsigned int fl_cap(const struct sge_fl *fl)
244 {
245 return fl->size - 8; /* 1 descriptor = 8 buffers */
246 }
247
248 static inline bool fl_starving(const struct sge_fl *fl)
249 {
250 return fl->avail - fl->pend_cred <= FL_STARVE_THRES;
251 }
252
253 static int map_skb(struct device *dev, const struct sk_buff *skb,
254 dma_addr_t *addr)
255 {
256 const skb_frag_t *fp, *end;
257 const struct skb_shared_info *si;
258
259 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
260 if (dma_mapping_error(dev, *addr))
261 goto out_err;
262
263 si = skb_shinfo(skb);
264 end = &si->frags[si->nr_frags];
265
266 for (fp = si->frags; fp < end; fp++) {
267 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
268 DMA_TO_DEVICE);
269 if (dma_mapping_error(dev, *addr))
270 goto unwind;
271 }
272 return 0;
273
274 unwind:
275 while (fp-- > si->frags)
276 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
277
278 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
279 out_err:
280 return -ENOMEM;
281 }
282
283 #ifdef CONFIG_NEED_DMA_MAP_STATE
284 static void unmap_skb(struct device *dev, const struct sk_buff *skb,
285 const dma_addr_t *addr)
286 {
287 const skb_frag_t *fp, *end;
288 const struct skb_shared_info *si;
289
290 dma_unmap_single(dev, *addr++, skb_headlen(skb), DMA_TO_DEVICE);
291
292 si = skb_shinfo(skb);
293 end = &si->frags[si->nr_frags];
294 for (fp = si->frags; fp < end; fp++)
295 dma_unmap_page(dev, *addr++, skb_frag_size(fp), DMA_TO_DEVICE);
296 }
297
298 /**
299 * deferred_unmap_destructor - unmap a packet when it is freed
300 * @skb: the packet
301 *
302 * This is the packet destructor used for Tx packets that need to remain
303 * mapped until they are freed rather than until their Tx descriptors are
304 * freed.
305 */
306 static void deferred_unmap_destructor(struct sk_buff *skb)
307 {
308 unmap_skb(skb->dev->dev.parent, skb, (dma_addr_t *)skb->head);
309 }
310 #endif
311
312 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
313 const struct ulptx_sgl *sgl, const struct sge_txq *q)
314 {
315 const struct ulptx_sge_pair *p;
316 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
317
318 if (likely(skb_headlen(skb)))
319 dma_unmap_single(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
320 DMA_TO_DEVICE);
321 else {
322 dma_unmap_page(dev, be64_to_cpu(sgl->addr0), ntohl(sgl->len0),
323 DMA_TO_DEVICE);
324 nfrags--;
325 }
326
327 /*
328 * the complexity below is because of the possibility of a wrap-around
329 * in the middle of an SGL
330 */
331 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
332 if (likely((u8 *)(p + 1) <= (u8 *)q->stat)) {
333 unmap: dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
334 ntohl(p->len[0]), DMA_TO_DEVICE);
335 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
336 ntohl(p->len[1]), DMA_TO_DEVICE);
337 p++;
338 } else if ((u8 *)p == (u8 *)q->stat) {
339 p = (const struct ulptx_sge_pair *)q->desc;
340 goto unmap;
341 } else if ((u8 *)p + 8 == (u8 *)q->stat) {
342 const __be64 *addr = (const __be64 *)q->desc;
343
344 dma_unmap_page(dev, be64_to_cpu(addr[0]),
345 ntohl(p->len[0]), DMA_TO_DEVICE);
346 dma_unmap_page(dev, be64_to_cpu(addr[1]),
347 ntohl(p->len[1]), DMA_TO_DEVICE);
348 p = (const struct ulptx_sge_pair *)&addr[2];
349 } else {
350 const __be64 *addr = (const __be64 *)q->desc;
351
352 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
353 ntohl(p->len[0]), DMA_TO_DEVICE);
354 dma_unmap_page(dev, be64_to_cpu(addr[0]),
355 ntohl(p->len[1]), DMA_TO_DEVICE);
356 p = (const struct ulptx_sge_pair *)&addr[1];
357 }
358 }
359 if (nfrags) {
360 __be64 addr;
361
362 if ((u8 *)p == (u8 *)q->stat)
363 p = (const struct ulptx_sge_pair *)q->desc;
364 addr = (u8 *)p + 16 <= (u8 *)q->stat ? p->addr[0] :
365 *(const __be64 *)q->desc;
366 dma_unmap_page(dev, be64_to_cpu(addr), ntohl(p->len[0]),
367 DMA_TO_DEVICE);
368 }
369 }
370
371 /**
372 * free_tx_desc - reclaims Tx descriptors and their buffers
373 * @adapter: the adapter
374 * @q: the Tx queue to reclaim descriptors from
375 * @n: the number of descriptors to reclaim
376 * @unmap: whether the buffers should be unmapped for DMA
377 *
378 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
379 * Tx buffers. Called with the Tx queue lock held.
380 */
381 static void free_tx_desc(struct adapter *adap, struct sge_txq *q,
382 unsigned int n, bool unmap)
383 {
384 struct tx_sw_desc *d;
385 unsigned int cidx = q->cidx;
386 struct device *dev = adap->pdev_dev;
387
388 d = &q->sdesc[cidx];
389 while (n--) {
390 if (d->skb) { /* an SGL is present */
391 if (unmap)
392 unmap_sgl(dev, d->skb, d->sgl, q);
393 dev_consume_skb_any(d->skb);
394 d->skb = NULL;
395 }
396 ++d;
397 if (++cidx == q->size) {
398 cidx = 0;
399 d = q->sdesc;
400 }
401 }
402 q->cidx = cidx;
403 }
404
405 /*
406 * Return the number of reclaimable descriptors in a Tx queue.
407 */
408 static inline int reclaimable(const struct sge_txq *q)
409 {
410 int hw_cidx = ntohs(q->stat->cidx);
411 hw_cidx -= q->cidx;
412 return hw_cidx < 0 ? hw_cidx + q->size : hw_cidx;
413 }
414
415 /**
416 * reclaim_completed_tx - reclaims completed Tx descriptors
417 * @adap: the adapter
418 * @q: the Tx queue to reclaim completed descriptors from
419 * @unmap: whether the buffers should be unmapped for DMA
420 *
421 * Reclaims Tx descriptors that the SGE has indicated it has processed,
422 * and frees the associated buffers if possible. Called with the Tx
423 * queue locked.
424 */
425 static inline void reclaim_completed_tx(struct adapter *adap, struct sge_txq *q,
426 bool unmap)
427 {
428 int avail = reclaimable(q);
429
430 if (avail) {
431 /*
432 * Limit the amount of clean up work we do at a time to keep
433 * the Tx lock hold time O(1).
434 */
435 if (avail > MAX_TX_RECLAIM)
436 avail = MAX_TX_RECLAIM;
437
438 free_tx_desc(adap, q, avail, unmap);
439 q->in_use -= avail;
440 }
441 }
442
443 static inline int get_buf_size(struct adapter *adapter,
444 const struct rx_sw_desc *d)
445 {
446 struct sge *s = &adapter->sge;
447 unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE;
448 int buf_size;
449
450 switch (rx_buf_size_idx) {
451 case RX_SMALL_PG_BUF:
452 buf_size = PAGE_SIZE;
453 break;
454
455 case RX_LARGE_PG_BUF:
456 buf_size = PAGE_SIZE << s->fl_pg_order;
457 break;
458
459 case RX_SMALL_MTU_BUF:
460 buf_size = FL_MTU_SMALL_BUFSIZE(adapter);
461 break;
462
463 case RX_LARGE_MTU_BUF:
464 buf_size = FL_MTU_LARGE_BUFSIZE(adapter);
465 break;
466
467 default:
468 BUG_ON(1);
469 }
470
471 return buf_size;
472 }
473
474 /**
475 * free_rx_bufs - free the Rx buffers on an SGE free list
476 * @adap: the adapter
477 * @q: the SGE free list to free buffers from
478 * @n: how many buffers to free
479 *
480 * Release the next @n buffers on an SGE free-buffer Rx queue. The
481 * buffers must be made inaccessible to HW before calling this function.
482 */
483 static void free_rx_bufs(struct adapter *adap, struct sge_fl *q, int n)
484 {
485 while (n--) {
486 struct rx_sw_desc *d = &q->sdesc[q->cidx];
487
488 if (is_buf_mapped(d))
489 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
490 get_buf_size(adap, d),
491 PCI_DMA_FROMDEVICE);
492 put_page(d->page);
493 d->page = NULL;
494 if (++q->cidx == q->size)
495 q->cidx = 0;
496 q->avail--;
497 }
498 }
499
500 /**
501 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
502 * @adap: the adapter
503 * @q: the SGE free list
504 *
505 * Unmap the current buffer on an SGE free-buffer Rx queue. The
506 * buffer must be made inaccessible to HW before calling this function.
507 *
508 * This is similar to @free_rx_bufs above but does not free the buffer.
509 * Do note that the FL still loses any further access to the buffer.
510 */
511 static void unmap_rx_buf(struct adapter *adap, struct sge_fl *q)
512 {
513 struct rx_sw_desc *d = &q->sdesc[q->cidx];
514
515 if (is_buf_mapped(d))
516 dma_unmap_page(adap->pdev_dev, get_buf_addr(d),
517 get_buf_size(adap, d), PCI_DMA_FROMDEVICE);
518 d->page = NULL;
519 if (++q->cidx == q->size)
520 q->cidx = 0;
521 q->avail--;
522 }
523
524 static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q)
525 {
526 u32 val;
527 if (q->pend_cred >= 8) {
528 if (is_t4(adap->params.chip))
529 val = PIDX_V(q->pend_cred / 8);
530 else
531 val = PIDX_T5_V(q->pend_cred / 8) |
532 DBTYPE_F;
533 val |= DBPRIO_F;
534 wmb();
535
536 /* If we don't have access to the new User Doorbell (T5+), use
537 * the old doorbell mechanism; otherwise use the new BAR2
538 * mechanism.
539 */
540 if (unlikely(q->bar2_addr == NULL)) {
541 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
542 val | QID_V(q->cntxt_id));
543 } else {
544 writel(val | QID_V(q->bar2_qid),
545 q->bar2_addr + SGE_UDB_KDOORBELL);
546
547 /* This Write memory Barrier will force the write to
548 * the User Doorbell area to be flushed.
549 */
550 wmb();
551 }
552 q->pend_cred &= 7;
553 }
554 }
555
556 static inline void set_rx_sw_desc(struct rx_sw_desc *sd, struct page *pg,
557 dma_addr_t mapping)
558 {
559 sd->page = pg;
560 sd->dma_addr = mapping; /* includes size low bits */
561 }
562
563 /**
564 * refill_fl - refill an SGE Rx buffer ring
565 * @adap: the adapter
566 * @q: the ring to refill
567 * @n: the number of new buffers to allocate
568 * @gfp: the gfp flags for the allocations
569 *
570 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
571 * allocated with the supplied gfp flags. The caller must assure that
572 * @n does not exceed the queue's capacity. If afterwards the queue is
573 * found critically low mark it as starving in the bitmap of starving FLs.
574 *
575 * Returns the number of buffers allocated.
576 */
577 static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n,
578 gfp_t gfp)
579 {
580 struct sge *s = &adap->sge;
581 struct page *pg;
582 dma_addr_t mapping;
583 unsigned int cred = q->avail;
584 __be64 *d = &q->desc[q->pidx];
585 struct rx_sw_desc *sd = &q->sdesc[q->pidx];
586
587 gfp |= __GFP_NOWARN;
588
589 if (s->fl_pg_order == 0)
590 goto alloc_small_pages;
591
592 /*
593 * Prefer large buffers
594 */
595 while (n) {
596 pg = __dev_alloc_pages(gfp, s->fl_pg_order);
597 if (unlikely(!pg)) {
598 q->large_alloc_failed++;
599 break; /* fall back to single pages */
600 }
601
602 mapping = dma_map_page(adap->pdev_dev, pg, 0,
603 PAGE_SIZE << s->fl_pg_order,
604 PCI_DMA_FROMDEVICE);
605 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
606 __free_pages(pg, s->fl_pg_order);
607 goto out; /* do not try small pages for this error */
608 }
609 mapping |= RX_LARGE_PG_BUF;
610 *d++ = cpu_to_be64(mapping);
611
612 set_rx_sw_desc(sd, pg, mapping);
613 sd++;
614
615 q->avail++;
616 if (++q->pidx == q->size) {
617 q->pidx = 0;
618 sd = q->sdesc;
619 d = q->desc;
620 }
621 n--;
622 }
623
624 alloc_small_pages:
625 while (n--) {
626 pg = __dev_alloc_page(gfp);
627 if (unlikely(!pg)) {
628 q->alloc_failed++;
629 break;
630 }
631
632 mapping = dma_map_page(adap->pdev_dev, pg, 0, PAGE_SIZE,
633 PCI_DMA_FROMDEVICE);
634 if (unlikely(dma_mapping_error(adap->pdev_dev, mapping))) {
635 put_page(pg);
636 goto out;
637 }
638 *d++ = cpu_to_be64(mapping);
639
640 set_rx_sw_desc(sd, pg, mapping);
641 sd++;
642
643 q->avail++;
644 if (++q->pidx == q->size) {
645 q->pidx = 0;
646 sd = q->sdesc;
647 d = q->desc;
648 }
649 }
650
651 out: cred = q->avail - cred;
652 q->pend_cred += cred;
653 ring_fl_db(adap, q);
654
655 if (unlikely(fl_starving(q))) {
656 smp_wmb();
657 set_bit(q->cntxt_id - adap->sge.egr_start,
658 adap->sge.starving_fl);
659 }
660
661 return cred;
662 }
663
664 static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl)
665 {
666 refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail),
667 GFP_ATOMIC);
668 }
669
670 /**
671 * alloc_ring - allocate resources for an SGE descriptor ring
672 * @dev: the PCI device's core device
673 * @nelem: the number of descriptors
674 * @elem_size: the size of each descriptor
675 * @sw_size: the size of the SW state associated with each ring element
676 * @phys: the physical address of the allocated ring
677 * @metadata: address of the array holding the SW state for the ring
678 * @stat_size: extra space in HW ring for status information
679 * @node: preferred node for memory allocations
680 *
681 * Allocates resources for an SGE descriptor ring, such as Tx queues,
682 * free buffer lists, or response queues. Each SGE ring requires
683 * space for its HW descriptors plus, optionally, space for the SW state
684 * associated with each HW entry (the metadata). The function returns
685 * three values: the virtual address for the HW ring (the return value
686 * of the function), the bus address of the HW ring, and the address
687 * of the SW ring.
688 */
689 static void *alloc_ring(struct device *dev, size_t nelem, size_t elem_size,
690 size_t sw_size, dma_addr_t *phys, void *metadata,
691 size_t stat_size, int node)
692 {
693 size_t len = nelem * elem_size + stat_size;
694 void *s = NULL;
695 void *p = dma_alloc_coherent(dev, len, phys, GFP_KERNEL);
696
697 if (!p)
698 return NULL;
699 if (sw_size) {
700 s = kzalloc_node(nelem * sw_size, GFP_KERNEL, node);
701
702 if (!s) {
703 dma_free_coherent(dev, len, p, *phys);
704 return NULL;
705 }
706 }
707 if (metadata)
708 *(void **)metadata = s;
709 memset(p, 0, len);
710 return p;
711 }
712
713 /**
714 * sgl_len - calculates the size of an SGL of the given capacity
715 * @n: the number of SGL entries
716 *
717 * Calculates the number of flits needed for a scatter/gather list that
718 * can hold the given number of entries.
719 */
720 static inline unsigned int sgl_len(unsigned int n)
721 {
722 n--;
723 return (3 * n) / 2 + (n & 1) + 2;
724 }
725
726 /**
727 * flits_to_desc - returns the num of Tx descriptors for the given flits
728 * @n: the number of flits
729 *
730 * Returns the number of Tx descriptors needed for the supplied number
731 * of flits.
732 */
733 static inline unsigned int flits_to_desc(unsigned int n)
734 {
735 BUG_ON(n > SGE_MAX_WR_LEN / 8);
736 return DIV_ROUND_UP(n, 8);
737 }
738
739 /**
740 * is_eth_imm - can an Ethernet packet be sent as immediate data?
741 * @skb: the packet
742 *
743 * Returns whether an Ethernet packet is small enough to fit as
744 * immediate data. Return value corresponds to headroom required.
745 */
746 static inline int is_eth_imm(const struct sk_buff *skb)
747 {
748 int hdrlen = skb_shinfo(skb)->gso_size ?
749 sizeof(struct cpl_tx_pkt_lso_core) : 0;
750
751 hdrlen += sizeof(struct cpl_tx_pkt);
752 if (skb->len <= MAX_IMM_TX_PKT_LEN - hdrlen)
753 return hdrlen;
754 return 0;
755 }
756
757 /**
758 * calc_tx_flits - calculate the number of flits for a packet Tx WR
759 * @skb: the packet
760 *
761 * Returns the number of flits needed for a Tx WR for the given Ethernet
762 * packet, including the needed WR and CPL headers.
763 */
764 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
765 {
766 unsigned int flits;
767 int hdrlen = is_eth_imm(skb);
768
769 if (hdrlen)
770 return DIV_ROUND_UP(skb->len + hdrlen, sizeof(__be64));
771
772 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 4;
773 if (skb_shinfo(skb)->gso_size)
774 flits += 2;
775 return flits;
776 }
777
778 /**
779 * calc_tx_descs - calculate the number of Tx descriptors for a packet
780 * @skb: the packet
781 *
782 * Returns the number of Tx descriptors needed for the given Ethernet
783 * packet, including the needed WR and CPL headers.
784 */
785 static inline unsigned int calc_tx_descs(const struct sk_buff *skb)
786 {
787 return flits_to_desc(calc_tx_flits(skb));
788 }
789
790 /**
791 * write_sgl - populate a scatter/gather list for a packet
792 * @skb: the packet
793 * @q: the Tx queue we are writing into
794 * @sgl: starting location for writing the SGL
795 * @end: points right after the end of the SGL
796 * @start: start offset into skb main-body data to include in the SGL
797 * @addr: the list of bus addresses for the SGL elements
798 *
799 * Generates a gather list for the buffers that make up a packet.
800 * The caller must provide adequate space for the SGL that will be written.
801 * The SGL includes all of the packet's page fragments and the data in its
802 * main body except for the first @start bytes. @sgl must be 16-byte
803 * aligned and within a Tx descriptor with available space. @end points
804 * right after the end of the SGL but does not account for any potential
805 * wrap around, i.e., @end > @sgl.
806 */
807 static void write_sgl(const struct sk_buff *skb, struct sge_txq *q,
808 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
809 const dma_addr_t *addr)
810 {
811 unsigned int i, len;
812 struct ulptx_sge_pair *to;
813 const struct skb_shared_info *si = skb_shinfo(skb);
814 unsigned int nfrags = si->nr_frags;
815 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
816
817 len = skb_headlen(skb) - start;
818 if (likely(len)) {
819 sgl->len0 = htonl(len);
820 sgl->addr0 = cpu_to_be64(addr[0] + start);
821 nfrags++;
822 } else {
823 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
824 sgl->addr0 = cpu_to_be64(addr[1]);
825 }
826
827 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
828 ULPTX_NSGE_V(nfrags));
829 if (likely(--nfrags == 0))
830 return;
831 /*
832 * Most of the complexity below deals with the possibility we hit the
833 * end of the queue in the middle of writing the SGL. For this case
834 * only we create the SGL in a temporary buffer and then copy it.
835 */
836 to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge;
837
838 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
839 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
840 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
841 to->addr[0] = cpu_to_be64(addr[i]);
842 to->addr[1] = cpu_to_be64(addr[++i]);
843 }
844 if (nfrags) {
845 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
846 to->len[1] = cpu_to_be32(0);
847 to->addr[0] = cpu_to_be64(addr[i + 1]);
848 }
849 if (unlikely((u8 *)end > (u8 *)q->stat)) {
850 unsigned int part0 = (u8 *)q->stat - (u8 *)sgl->sge, part1;
851
852 if (likely(part0))
853 memcpy(sgl->sge, buf, part0);
854 part1 = (u8 *)end - (u8 *)q->stat;
855 memcpy(q->desc, (u8 *)buf + part0, part1);
856 end = (void *)q->desc + part1;
857 }
858 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
859 *end = 0;
860 }
861
862 /* This function copies 64 byte coalesced work request to
863 * memory mapped BAR2 space. For coalesced WR SGE fetches
864 * data from the FIFO instead of from Host.
865 */
866 static void cxgb_pio_copy(u64 __iomem *dst, u64 *src)
867 {
868 int count = 8;
869
870 while (count) {
871 writeq(*src, dst);
872 src++;
873 dst++;
874 count--;
875 }
876 }
877
878 /**
879 * ring_tx_db - check and potentially ring a Tx queue's doorbell
880 * @adap: the adapter
881 * @q: the Tx queue
882 * @n: number of new descriptors to give to HW
883 *
884 * Ring the doorbel for a Tx queue.
885 */
886 static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q, int n)
887 {
888 wmb(); /* write descriptors before telling HW */
889
890 /* If we don't have access to the new User Doorbell (T5+), use the old
891 * doorbell mechanism; otherwise use the new BAR2 mechanism.
892 */
893 if (unlikely(q->bar2_addr == NULL)) {
894 u32 val = PIDX_V(n);
895 unsigned long flags;
896
897 /* For T4 we need to participate in the Doorbell Recovery
898 * mechanism.
899 */
900 spin_lock_irqsave(&q->db_lock, flags);
901 if (!q->db_disabled)
902 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
903 QID_V(q->cntxt_id) | val);
904 else
905 q->db_pidx_inc += n;
906 q->db_pidx = q->pidx;
907 spin_unlock_irqrestore(&q->db_lock, flags);
908 } else {
909 u32 val = PIDX_T5_V(n);
910
911 /* T4 and later chips share the same PIDX field offset within
912 * the doorbell, but T5 and later shrank the field in order to
913 * gain a bit for Doorbell Priority. The field was absurdly
914 * large in the first place (14 bits) so we just use the T5
915 * and later limits and warn if a Queue ID is too large.
916 */
917 WARN_ON(val & DBPRIO_F);
918
919 /* If we're only writing a single TX Descriptor and we can use
920 * Inferred QID registers, we can use the Write Combining
921 * Gather Buffer; otherwise we use the simple doorbell.
922 */
923 if (n == 1 && q->bar2_qid == 0) {
924 int index = (q->pidx
925 ? (q->pidx - 1)
926 : (q->size - 1));
927 u64 *wr = (u64 *)&q->desc[index];
928
929 cxgb_pio_copy((u64 __iomem *)
930 (q->bar2_addr + SGE_UDB_WCDOORBELL),
931 wr);
932 } else {
933 writel(val | QID_V(q->bar2_qid),
934 q->bar2_addr + SGE_UDB_KDOORBELL);
935 }
936
937 /* This Write Memory Barrier will force the write to the User
938 * Doorbell area to be flushed. This is needed to prevent
939 * writes on different CPUs for the same queue from hitting
940 * the adapter out of order. This is required when some Work
941 * Requests take the Write Combine Gather Buffer path (user
942 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
943 * take the traditional path where we simply increment the
944 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
945 * hardware DMA read the actual Work Request.
946 */
947 wmb();
948 }
949 }
950
951 /**
952 * inline_tx_skb - inline a packet's data into Tx descriptors
953 * @skb: the packet
954 * @q: the Tx queue where the packet will be inlined
955 * @pos: starting position in the Tx queue where to inline the packet
956 *
957 * Inline a packet's contents directly into Tx descriptors, starting at
958 * the given position within the Tx DMA ring.
959 * Most of the complexity of this operation is dealing with wrap arounds
960 * in the middle of the packet we want to inline.
961 */
962 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *q,
963 void *pos)
964 {
965 u64 *p;
966 int left = (void *)q->stat - pos;
967
968 if (likely(skb->len <= left)) {
969 if (likely(!skb->data_len))
970 skb_copy_from_linear_data(skb, pos, skb->len);
971 else
972 skb_copy_bits(skb, 0, pos, skb->len);
973 pos += skb->len;
974 } else {
975 skb_copy_bits(skb, 0, pos, left);
976 skb_copy_bits(skb, left, q->desc, skb->len - left);
977 pos = (void *)q->desc + (skb->len - left);
978 }
979
980 /* 0-pad to multiple of 16 */
981 p = PTR_ALIGN(pos, 8);
982 if ((uintptr_t)p & 8)
983 *p = 0;
984 }
985
986 /*
987 * Figure out what HW csum a packet wants and return the appropriate control
988 * bits.
989 */
990 static u64 hwcsum(const struct sk_buff *skb)
991 {
992 int csum_type;
993 const struct iphdr *iph = ip_hdr(skb);
994
995 if (iph->version == 4) {
996 if (iph->protocol == IPPROTO_TCP)
997 csum_type = TX_CSUM_TCPIP;
998 else if (iph->protocol == IPPROTO_UDP)
999 csum_type = TX_CSUM_UDPIP;
1000 else {
1001 nocsum: /*
1002 * unknown protocol, disable HW csum
1003 * and hope a bad packet is detected
1004 */
1005 return TXPKT_L4CSUM_DIS;
1006 }
1007 } else {
1008 /*
1009 * this doesn't work with extension headers
1010 */
1011 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1012
1013 if (ip6h->nexthdr == IPPROTO_TCP)
1014 csum_type = TX_CSUM_TCPIP6;
1015 else if (ip6h->nexthdr == IPPROTO_UDP)
1016 csum_type = TX_CSUM_UDPIP6;
1017 else
1018 goto nocsum;
1019 }
1020
1021 if (likely(csum_type >= TX_CSUM_TCPIP))
1022 return TXPKT_CSUM_TYPE(csum_type) |
1023 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1024 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1025 else {
1026 int start = skb_transport_offset(skb);
1027
1028 return TXPKT_CSUM_TYPE(csum_type) | TXPKT_CSUM_START(start) |
1029 TXPKT_CSUM_LOC(start + skb->csum_offset);
1030 }
1031 }
1032
1033 static void eth_txq_stop(struct sge_eth_txq *q)
1034 {
1035 netif_tx_stop_queue(q->txq);
1036 q->q.stops++;
1037 }
1038
1039 static inline void txq_advance(struct sge_txq *q, unsigned int n)
1040 {
1041 q->in_use += n;
1042 q->pidx += n;
1043 if (q->pidx >= q->size)
1044 q->pidx -= q->size;
1045 }
1046
1047 /**
1048 * t4_eth_xmit - add a packet to an Ethernet Tx queue
1049 * @skb: the packet
1050 * @dev: the egress net device
1051 *
1052 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
1053 */
1054 netdev_tx_t t4_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1055 {
1056 int len;
1057 u32 wr_mid;
1058 u64 cntrl, *end;
1059 int qidx, credits;
1060 unsigned int flits, ndesc;
1061 struct adapter *adap;
1062 struct sge_eth_txq *q;
1063 const struct port_info *pi;
1064 struct fw_eth_tx_pkt_wr *wr;
1065 struct cpl_tx_pkt_core *cpl;
1066 const struct skb_shared_info *ssi;
1067 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1068 bool immediate = false;
1069
1070 /*
1071 * The chip min packet length is 10 octets but play safe and reject
1072 * anything shorter than an Ethernet header.
1073 */
1074 if (unlikely(skb->len < ETH_HLEN)) {
1075 out_free: dev_kfree_skb_any(skb);
1076 return NETDEV_TX_OK;
1077 }
1078
1079 pi = netdev_priv(dev);
1080 adap = pi->adapter;
1081 qidx = skb_get_queue_mapping(skb);
1082 q = &adap->sge.ethtxq[qidx + pi->first_qset];
1083
1084 reclaim_completed_tx(adap, &q->q, true);
1085
1086 flits = calc_tx_flits(skb);
1087 ndesc = flits_to_desc(flits);
1088 credits = txq_avail(&q->q) - ndesc;
1089
1090 if (unlikely(credits < 0)) {
1091 eth_txq_stop(q);
1092 dev_err(adap->pdev_dev,
1093 "%s: Tx ring %u full while queue awake!\n",
1094 dev->name, qidx);
1095 return NETDEV_TX_BUSY;
1096 }
1097
1098 if (is_eth_imm(skb))
1099 immediate = true;
1100
1101 if (!immediate &&
1102 unlikely(map_skb(adap->pdev_dev, skb, addr) < 0)) {
1103 q->mapping_err++;
1104 goto out_free;
1105 }
1106
1107 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1108 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1109 eth_txq_stop(q);
1110 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1111 }
1112
1113 wr = (void *)&q->q.desc[q->q.pidx];
1114 wr->equiq_to_len16 = htonl(wr_mid);
1115 wr->r3 = cpu_to_be64(0);
1116 end = (u64 *)wr + flits;
1117
1118 len = immediate ? skb->len : 0;
1119 ssi = skb_shinfo(skb);
1120 if (ssi->gso_size) {
1121 struct cpl_tx_pkt_lso *lso = (void *)wr;
1122 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1123 int l3hdr_len = skb_network_header_len(skb);
1124 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1125
1126 len += sizeof(*lso);
1127 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1128 FW_WR_IMMDLEN_V(len));
1129 lso->c.lso_ctrl = htonl(LSO_OPCODE(CPL_TX_PKT_LSO) |
1130 LSO_FIRST_SLICE | LSO_LAST_SLICE |
1131 LSO_IPV6(v6) |
1132 LSO_ETHHDR_LEN(eth_xtra_len / 4) |
1133 LSO_IPHDR_LEN(l3hdr_len / 4) |
1134 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1135 lso->c.ipid_ofst = htons(0);
1136 lso->c.mss = htons(ssi->gso_size);
1137 lso->c.seqno_offset = htonl(0);
1138 if (is_t4(adap->params.chip))
1139 lso->c.len = htonl(skb->len);
1140 else
1141 lso->c.len = htonl(LSO_T5_XFER_SIZE(skb->len));
1142 cpl = (void *)(lso + 1);
1143 cntrl = TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1144 TXPKT_IPHDR_LEN(l3hdr_len) |
1145 TXPKT_ETHHDR_LEN(eth_xtra_len);
1146 q->tso++;
1147 q->tx_cso += ssi->gso_segs;
1148 } else {
1149 len += sizeof(*cpl);
1150 wr->op_immdlen = htonl(FW_WR_OP_V(FW_ETH_TX_PKT_WR) |
1151 FW_WR_IMMDLEN_V(len));
1152 cpl = (void *)(wr + 1);
1153 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1154 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1155 q->tx_cso++;
1156 } else
1157 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1158 }
1159
1160 if (skb_vlan_tag_present(skb)) {
1161 q->vlan_ins++;
1162 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
1163 }
1164
1165 cpl->ctrl0 = htonl(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1166 TXPKT_INTF(pi->tx_chan) | TXPKT_PF(adap->fn));
1167 cpl->pack = htons(0);
1168 cpl->len = htons(skb->len);
1169 cpl->ctrl1 = cpu_to_be64(cntrl);
1170
1171 if (immediate) {
1172 inline_tx_skb(skb, &q->q, cpl + 1);
1173 dev_consume_skb_any(skb);
1174 } else {
1175 int last_desc;
1176
1177 write_sgl(skb, &q->q, (struct ulptx_sgl *)(cpl + 1), end, 0,
1178 addr);
1179 skb_orphan(skb);
1180
1181 last_desc = q->q.pidx + ndesc - 1;
1182 if (last_desc >= q->q.size)
1183 last_desc -= q->q.size;
1184 q->q.sdesc[last_desc].skb = skb;
1185 q->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1);
1186 }
1187
1188 txq_advance(&q->q, ndesc);
1189
1190 ring_tx_db(adap, &q->q, ndesc);
1191 return NETDEV_TX_OK;
1192 }
1193
1194 /**
1195 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1196 * @q: the SGE control Tx queue
1197 *
1198 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1199 * that send only immediate data (presently just the control queues) and
1200 * thus do not have any sk_buffs to release.
1201 */
1202 static inline void reclaim_completed_tx_imm(struct sge_txq *q)
1203 {
1204 int hw_cidx = ntohs(q->stat->cidx);
1205 int reclaim = hw_cidx - q->cidx;
1206
1207 if (reclaim < 0)
1208 reclaim += q->size;
1209
1210 q->in_use -= reclaim;
1211 q->cidx = hw_cidx;
1212 }
1213
1214 /**
1215 * is_imm - check whether a packet can be sent as immediate data
1216 * @skb: the packet
1217 *
1218 * Returns true if a packet can be sent as a WR with immediate data.
1219 */
1220 static inline int is_imm(const struct sk_buff *skb)
1221 {
1222 return skb->len <= MAX_CTRL_WR_LEN;
1223 }
1224
1225 /**
1226 * ctrlq_check_stop - check if a control queue is full and should stop
1227 * @q: the queue
1228 * @wr: most recent WR written to the queue
1229 *
1230 * Check if a control queue has become full and should be stopped.
1231 * We clean up control queue descriptors very lazily, only when we are out.
1232 * If the queue is still full after reclaiming any completed descriptors
1233 * we suspend it and have the last WR wake it up.
1234 */
1235 static void ctrlq_check_stop(struct sge_ctrl_txq *q, struct fw_wr_hdr *wr)
1236 {
1237 reclaim_completed_tx_imm(&q->q);
1238 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1239 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1240 q->q.stops++;
1241 q->full = 1;
1242 }
1243 }
1244
1245 /**
1246 * ctrl_xmit - send a packet through an SGE control Tx queue
1247 * @q: the control queue
1248 * @skb: the packet
1249 *
1250 * Send a packet through an SGE control Tx queue. Packets sent through
1251 * a control queue must fit entirely as immediate data.
1252 */
1253 static int ctrl_xmit(struct sge_ctrl_txq *q, struct sk_buff *skb)
1254 {
1255 unsigned int ndesc;
1256 struct fw_wr_hdr *wr;
1257
1258 if (unlikely(!is_imm(skb))) {
1259 WARN_ON(1);
1260 dev_kfree_skb(skb);
1261 return NET_XMIT_DROP;
1262 }
1263
1264 ndesc = DIV_ROUND_UP(skb->len, sizeof(struct tx_desc));
1265 spin_lock(&q->sendq.lock);
1266
1267 if (unlikely(q->full)) {
1268 skb->priority = ndesc; /* save for restart */
1269 __skb_queue_tail(&q->sendq, skb);
1270 spin_unlock(&q->sendq.lock);
1271 return NET_XMIT_CN;
1272 }
1273
1274 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1275 inline_tx_skb(skb, &q->q, wr);
1276
1277 txq_advance(&q->q, ndesc);
1278 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES))
1279 ctrlq_check_stop(q, wr);
1280
1281 ring_tx_db(q->adap, &q->q, ndesc);
1282 spin_unlock(&q->sendq.lock);
1283
1284 kfree_skb(skb);
1285 return NET_XMIT_SUCCESS;
1286 }
1287
1288 /**
1289 * restart_ctrlq - restart a suspended control queue
1290 * @data: the control queue to restart
1291 *
1292 * Resumes transmission on a suspended Tx control queue.
1293 */
1294 static void restart_ctrlq(unsigned long data)
1295 {
1296 struct sk_buff *skb;
1297 unsigned int written = 0;
1298 struct sge_ctrl_txq *q = (struct sge_ctrl_txq *)data;
1299
1300 spin_lock(&q->sendq.lock);
1301 reclaim_completed_tx_imm(&q->q);
1302 BUG_ON(txq_avail(&q->q) < TXQ_STOP_THRES); /* q should be empty */
1303
1304 while ((skb = __skb_dequeue(&q->sendq)) != NULL) {
1305 struct fw_wr_hdr *wr;
1306 unsigned int ndesc = skb->priority; /* previously saved */
1307
1308 /*
1309 * Write descriptors and free skbs outside the lock to limit
1310 * wait times. q->full is still set so new skbs will be queued.
1311 */
1312 spin_unlock(&q->sendq.lock);
1313
1314 wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx];
1315 inline_tx_skb(skb, &q->q, wr);
1316 kfree_skb(skb);
1317
1318 written += ndesc;
1319 txq_advance(&q->q, ndesc);
1320 if (unlikely(txq_avail(&q->q) < TXQ_STOP_THRES)) {
1321 unsigned long old = q->q.stops;
1322
1323 ctrlq_check_stop(q, wr);
1324 if (q->q.stops != old) { /* suspended anew */
1325 spin_lock(&q->sendq.lock);
1326 goto ringdb;
1327 }
1328 }
1329 if (written > 16) {
1330 ring_tx_db(q->adap, &q->q, written);
1331 written = 0;
1332 }
1333 spin_lock(&q->sendq.lock);
1334 }
1335 q->full = 0;
1336 ringdb: if (written)
1337 ring_tx_db(q->adap, &q->q, written);
1338 spin_unlock(&q->sendq.lock);
1339 }
1340
1341 /**
1342 * t4_mgmt_tx - send a management message
1343 * @adap: the adapter
1344 * @skb: the packet containing the management message
1345 *
1346 * Send a management message through control queue 0.
1347 */
1348 int t4_mgmt_tx(struct adapter *adap, struct sk_buff *skb)
1349 {
1350 int ret;
1351
1352 local_bh_disable();
1353 ret = ctrl_xmit(&adap->sge.ctrlq[0], skb);
1354 local_bh_enable();
1355 return ret;
1356 }
1357
1358 /**
1359 * is_ofld_imm - check whether a packet can be sent as immediate data
1360 * @skb: the packet
1361 *
1362 * Returns true if a packet can be sent as an offload WR with immediate
1363 * data. We currently use the same limit as for Ethernet packets.
1364 */
1365 static inline int is_ofld_imm(const struct sk_buff *skb)
1366 {
1367 return skb->len <= MAX_IMM_TX_PKT_LEN;
1368 }
1369
1370 /**
1371 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1372 * @skb: the packet
1373 *
1374 * Returns the number of flits needed for the given offload packet.
1375 * These packets are already fully constructed and no additional headers
1376 * will be added.
1377 */
1378 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff *skb)
1379 {
1380 unsigned int flits, cnt;
1381
1382 if (is_ofld_imm(skb))
1383 return DIV_ROUND_UP(skb->len, 8);
1384
1385 flits = skb_transport_offset(skb) / 8U; /* headers */
1386 cnt = skb_shinfo(skb)->nr_frags;
1387 if (skb_tail_pointer(skb) != skb_transport_header(skb))
1388 cnt++;
1389 return flits + sgl_len(cnt);
1390 }
1391
1392 /**
1393 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1394 * @adap: the adapter
1395 * @q: the queue to stop
1396 *
1397 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1398 * inability to map packets. A periodic timer attempts to restart
1399 * queues so marked.
1400 */
1401 static void txq_stop_maperr(struct sge_ofld_txq *q)
1402 {
1403 q->mapping_err++;
1404 q->q.stops++;
1405 set_bit(q->q.cntxt_id - q->adap->sge.egr_start,
1406 q->adap->sge.txq_maperr);
1407 }
1408
1409 /**
1410 * ofldtxq_stop - stop an offload Tx queue that has become full
1411 * @q: the queue to stop
1412 * @skb: the packet causing the queue to become full
1413 *
1414 * Stops an offload Tx queue that has become full and modifies the packet
1415 * being written to request a wakeup.
1416 */
1417 static void ofldtxq_stop(struct sge_ofld_txq *q, struct sk_buff *skb)
1418 {
1419 struct fw_wr_hdr *wr = (struct fw_wr_hdr *)skb->data;
1420
1421 wr->lo |= htonl(FW_WR_EQUEQ_F | FW_WR_EQUIQ_F);
1422 q->q.stops++;
1423 q->full = 1;
1424 }
1425
1426 /**
1427 * service_ofldq - restart a suspended offload queue
1428 * @q: the offload queue
1429 *
1430 * Services an offload Tx queue by moving packets from its packet queue
1431 * to the HW Tx ring. The function starts and ends with the queue locked.
1432 */
1433 static void service_ofldq(struct sge_ofld_txq *q)
1434 {
1435 u64 *pos;
1436 int credits;
1437 struct sk_buff *skb;
1438 unsigned int written = 0;
1439 unsigned int flits, ndesc;
1440
1441 while ((skb = skb_peek(&q->sendq)) != NULL && !q->full) {
1442 /*
1443 * We drop the lock but leave skb on sendq, thus retaining
1444 * exclusive access to the state of the queue.
1445 */
1446 spin_unlock(&q->sendq.lock);
1447
1448 reclaim_completed_tx(q->adap, &q->q, false);
1449
1450 flits = skb->priority; /* previously saved */
1451 ndesc = flits_to_desc(flits);
1452 credits = txq_avail(&q->q) - ndesc;
1453 BUG_ON(credits < 0);
1454 if (unlikely(credits < TXQ_STOP_THRES))
1455 ofldtxq_stop(q, skb);
1456
1457 pos = (u64 *)&q->q.desc[q->q.pidx];
1458 if (is_ofld_imm(skb))
1459 inline_tx_skb(skb, &q->q, pos);
1460 else if (map_skb(q->adap->pdev_dev, skb,
1461 (dma_addr_t *)skb->head)) {
1462 txq_stop_maperr(q);
1463 spin_lock(&q->sendq.lock);
1464 break;
1465 } else {
1466 int last_desc, hdr_len = skb_transport_offset(skb);
1467
1468 memcpy(pos, skb->data, hdr_len);
1469 write_sgl(skb, &q->q, (void *)pos + hdr_len,
1470 pos + flits, hdr_len,
1471 (dma_addr_t *)skb->head);
1472 #ifdef CONFIG_NEED_DMA_MAP_STATE
1473 skb->dev = q->adap->port[0];
1474 skb->destructor = deferred_unmap_destructor;
1475 #endif
1476 last_desc = q->q.pidx + ndesc - 1;
1477 if (last_desc >= q->q.size)
1478 last_desc -= q->q.size;
1479 q->q.sdesc[last_desc].skb = skb;
1480 }
1481
1482 txq_advance(&q->q, ndesc);
1483 written += ndesc;
1484 if (unlikely(written > 32)) {
1485 ring_tx_db(q->adap, &q->q, written);
1486 written = 0;
1487 }
1488
1489 spin_lock(&q->sendq.lock);
1490 __skb_unlink(skb, &q->sendq);
1491 if (is_ofld_imm(skb))
1492 kfree_skb(skb);
1493 }
1494 if (likely(written))
1495 ring_tx_db(q->adap, &q->q, written);
1496 }
1497
1498 /**
1499 * ofld_xmit - send a packet through an offload queue
1500 * @q: the Tx offload queue
1501 * @skb: the packet
1502 *
1503 * Send an offload packet through an SGE offload queue.
1504 */
1505 static int ofld_xmit(struct sge_ofld_txq *q, struct sk_buff *skb)
1506 {
1507 skb->priority = calc_tx_flits_ofld(skb); /* save for restart */
1508 spin_lock(&q->sendq.lock);
1509 __skb_queue_tail(&q->sendq, skb);
1510 if (q->sendq.qlen == 1)
1511 service_ofldq(q);
1512 spin_unlock(&q->sendq.lock);
1513 return NET_XMIT_SUCCESS;
1514 }
1515
1516 /**
1517 * restart_ofldq - restart a suspended offload queue
1518 * @data: the offload queue to restart
1519 *
1520 * Resumes transmission on a suspended Tx offload queue.
1521 */
1522 static void restart_ofldq(unsigned long data)
1523 {
1524 struct sge_ofld_txq *q = (struct sge_ofld_txq *)data;
1525
1526 spin_lock(&q->sendq.lock);
1527 q->full = 0; /* the queue actually is completely empty now */
1528 service_ofldq(q);
1529 spin_unlock(&q->sendq.lock);
1530 }
1531
1532 /**
1533 * skb_txq - return the Tx queue an offload packet should use
1534 * @skb: the packet
1535 *
1536 * Returns the Tx queue an offload packet should use as indicated by bits
1537 * 1-15 in the packet's queue_mapping.
1538 */
1539 static inline unsigned int skb_txq(const struct sk_buff *skb)
1540 {
1541 return skb->queue_mapping >> 1;
1542 }
1543
1544 /**
1545 * is_ctrl_pkt - return whether an offload packet is a control packet
1546 * @skb: the packet
1547 *
1548 * Returns whether an offload packet should use an OFLD or a CTRL
1549 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1550 */
1551 static inline unsigned int is_ctrl_pkt(const struct sk_buff *skb)
1552 {
1553 return skb->queue_mapping & 1;
1554 }
1555
1556 static inline int ofld_send(struct adapter *adap, struct sk_buff *skb)
1557 {
1558 unsigned int idx = skb_txq(skb);
1559
1560 if (unlikely(is_ctrl_pkt(skb))) {
1561 /* Single ctrl queue is a requirement for LE workaround path */
1562 if (adap->tids.nsftids)
1563 idx = 0;
1564 return ctrl_xmit(&adap->sge.ctrlq[idx], skb);
1565 }
1566 return ofld_xmit(&adap->sge.ofldtxq[idx], skb);
1567 }
1568
1569 /**
1570 * t4_ofld_send - send an offload packet
1571 * @adap: the adapter
1572 * @skb: the packet
1573 *
1574 * Sends an offload packet. We use the packet queue_mapping to select the
1575 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1576 * should be sent as regular or control, bits 1-15 select the queue.
1577 */
1578 int t4_ofld_send(struct adapter *adap, struct sk_buff *skb)
1579 {
1580 int ret;
1581
1582 local_bh_disable();
1583 ret = ofld_send(adap, skb);
1584 local_bh_enable();
1585 return ret;
1586 }
1587
1588 /**
1589 * cxgb4_ofld_send - send an offload packet
1590 * @dev: the net device
1591 * @skb: the packet
1592 *
1593 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1594 * intended for ULDs.
1595 */
1596 int cxgb4_ofld_send(struct net_device *dev, struct sk_buff *skb)
1597 {
1598 return t4_ofld_send(netdev2adap(dev), skb);
1599 }
1600 EXPORT_SYMBOL(cxgb4_ofld_send);
1601
1602 static inline void copy_frags(struct sk_buff *skb,
1603 const struct pkt_gl *gl, unsigned int offset)
1604 {
1605 int i;
1606
1607 /* usually there's just one frag */
1608 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1609 gl->frags[0].offset + offset,
1610 gl->frags[0].size - offset);
1611 skb_shinfo(skb)->nr_frags = gl->nfrags;
1612 for (i = 1; i < gl->nfrags; i++)
1613 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1614 gl->frags[i].offset,
1615 gl->frags[i].size);
1616
1617 /* get a reference to the last page, we don't own it */
1618 get_page(gl->frags[gl->nfrags - 1].page);
1619 }
1620
1621 /**
1622 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1623 * @gl: the gather list
1624 * @skb_len: size of sk_buff main body if it carries fragments
1625 * @pull_len: amount of data to move to the sk_buff's main body
1626 *
1627 * Builds an sk_buff from the given packet gather list. Returns the
1628 * sk_buff or %NULL if sk_buff allocation failed.
1629 */
1630 struct sk_buff *cxgb4_pktgl_to_skb(const struct pkt_gl *gl,
1631 unsigned int skb_len, unsigned int pull_len)
1632 {
1633 struct sk_buff *skb;
1634
1635 /*
1636 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1637 * size, which is expected since buffers are at least PAGE_SIZEd.
1638 * In this case packets up to RX_COPY_THRES have only one fragment.
1639 */
1640 if (gl->tot_len <= RX_COPY_THRES) {
1641 skb = dev_alloc_skb(gl->tot_len);
1642 if (unlikely(!skb))
1643 goto out;
1644 __skb_put(skb, gl->tot_len);
1645 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1646 } else {
1647 skb = dev_alloc_skb(skb_len);
1648 if (unlikely(!skb))
1649 goto out;
1650 __skb_put(skb, pull_len);
1651 skb_copy_to_linear_data(skb, gl->va, pull_len);
1652
1653 copy_frags(skb, gl, pull_len);
1654 skb->len = gl->tot_len;
1655 skb->data_len = skb->len - pull_len;
1656 skb->truesize += skb->data_len;
1657 }
1658 out: return skb;
1659 }
1660 EXPORT_SYMBOL(cxgb4_pktgl_to_skb);
1661
1662 /**
1663 * t4_pktgl_free - free a packet gather list
1664 * @gl: the gather list
1665 *
1666 * Releases the pages of a packet gather list. We do not own the last
1667 * page on the list and do not free it.
1668 */
1669 static void t4_pktgl_free(const struct pkt_gl *gl)
1670 {
1671 int n;
1672 const struct page_frag *p;
1673
1674 for (p = gl->frags, n = gl->nfrags - 1; n--; p++)
1675 put_page(p->page);
1676 }
1677
1678 /*
1679 * Process an MPS trace packet. Give it an unused protocol number so it won't
1680 * be delivered to anyone and send it to the stack for capture.
1681 */
1682 static noinline int handle_trace_pkt(struct adapter *adap,
1683 const struct pkt_gl *gl)
1684 {
1685 struct sk_buff *skb;
1686
1687 skb = cxgb4_pktgl_to_skb(gl, RX_PULL_LEN, RX_PULL_LEN);
1688 if (unlikely(!skb)) {
1689 t4_pktgl_free(gl);
1690 return 0;
1691 }
1692
1693 if (is_t4(adap->params.chip))
1694 __skb_pull(skb, sizeof(struct cpl_trace_pkt));
1695 else
1696 __skb_pull(skb, sizeof(struct cpl_t5_trace_pkt));
1697
1698 skb_reset_mac_header(skb);
1699 skb->protocol = htons(0xffff);
1700 skb->dev = adap->port[0];
1701 netif_receive_skb(skb);
1702 return 0;
1703 }
1704
1705 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1706 const struct cpl_rx_pkt *pkt)
1707 {
1708 struct adapter *adapter = rxq->rspq.adap;
1709 struct sge *s = &adapter->sge;
1710 int ret;
1711 struct sk_buff *skb;
1712
1713 skb = napi_get_frags(&rxq->rspq.napi);
1714 if (unlikely(!skb)) {
1715 t4_pktgl_free(gl);
1716 rxq->stats.rx_drops++;
1717 return;
1718 }
1719
1720 copy_frags(skb, gl, s->pktshift);
1721 skb->len = gl->tot_len - s->pktshift;
1722 skb->data_len = skb->len;
1723 skb->truesize += skb->data_len;
1724 skb->ip_summed = CHECKSUM_UNNECESSARY;
1725 skb_record_rx_queue(skb, rxq->rspq.idx);
1726 skb_mark_napi_id(skb, &rxq->rspq.napi);
1727 if (rxq->rspq.netdev->features & NETIF_F_RXHASH)
1728 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1729 PKT_HASH_TYPE_L3);
1730
1731 if (unlikely(pkt->vlan_ex)) {
1732 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1733 rxq->stats.vlan_ex++;
1734 }
1735 ret = napi_gro_frags(&rxq->rspq.napi);
1736 if (ret == GRO_HELD)
1737 rxq->stats.lro_pkts++;
1738 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1739 rxq->stats.lro_merged++;
1740 rxq->stats.pkts++;
1741 rxq->stats.rx_cso++;
1742 }
1743
1744 /**
1745 * t4_ethrx_handler - process an ingress ethernet packet
1746 * @q: the response queue that received the packet
1747 * @rsp: the response queue descriptor holding the RX_PKT message
1748 * @si: the gather list of packet fragments
1749 *
1750 * Process an ingress ethernet packet and deliver it to the stack.
1751 */
1752 int t4_ethrx_handler(struct sge_rspq *q, const __be64 *rsp,
1753 const struct pkt_gl *si)
1754 {
1755 bool csum_ok;
1756 struct sk_buff *skb;
1757 const struct cpl_rx_pkt *pkt;
1758 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1759 struct sge *s = &q->adap->sge;
1760 int cpl_trace_pkt = is_t4(q->adap->params.chip) ?
1761 CPL_TRACE_PKT : CPL_TRACE_PKT_T5;
1762
1763 if (unlikely(*(u8 *)rsp == cpl_trace_pkt))
1764 return handle_trace_pkt(q->adap, si);
1765
1766 pkt = (const struct cpl_rx_pkt *)rsp;
1767 csum_ok = pkt->csum_calc && !pkt->err_vec &&
1768 (q->netdev->features & NETIF_F_RXCSUM);
1769 if ((pkt->l2info & htonl(RXF_TCP_F)) &&
1770 !(cxgb_poll_busy_polling(q)) &&
1771 (q->netdev->features & NETIF_F_GRO) && csum_ok && !pkt->ip_frag) {
1772 do_gro(rxq, si, pkt);
1773 return 0;
1774 }
1775
1776 skb = cxgb4_pktgl_to_skb(si, RX_PKT_SKB_LEN, RX_PULL_LEN);
1777 if (unlikely(!skb)) {
1778 t4_pktgl_free(si);
1779 rxq->stats.rx_drops++;
1780 return 0;
1781 }
1782
1783 __skb_pull(skb, s->pktshift); /* remove ethernet header padding */
1784 skb->protocol = eth_type_trans(skb, q->netdev);
1785 skb_record_rx_queue(skb, q->idx);
1786 if (skb->dev->features & NETIF_F_RXHASH)
1787 skb_set_hash(skb, (__force u32)pkt->rsshdr.hash_val,
1788 PKT_HASH_TYPE_L3);
1789
1790 rxq->stats.pkts++;
1791
1792 if (csum_ok && (pkt->l2info & htonl(RXF_UDP_F | RXF_TCP_F))) {
1793 if (!pkt->ip_frag) {
1794 skb->ip_summed = CHECKSUM_UNNECESSARY;
1795 rxq->stats.rx_cso++;
1796 } else if (pkt->l2info & htonl(RXF_IP_F)) {
1797 __sum16 c = (__force __sum16)pkt->csum;
1798 skb->csum = csum_unfold(c);
1799 skb->ip_summed = CHECKSUM_COMPLETE;
1800 rxq->stats.rx_cso++;
1801 }
1802 } else
1803 skb_checksum_none_assert(skb);
1804
1805 if (unlikely(pkt->vlan_ex)) {
1806 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(pkt->vlan));
1807 rxq->stats.vlan_ex++;
1808 }
1809 skb_mark_napi_id(skb, &q->napi);
1810 netif_receive_skb(skb);
1811 return 0;
1812 }
1813
1814 /**
1815 * restore_rx_bufs - put back a packet's Rx buffers
1816 * @si: the packet gather list
1817 * @q: the SGE free list
1818 * @frags: number of FL buffers to restore
1819 *
1820 * Puts back on an FL the Rx buffers associated with @si. The buffers
1821 * have already been unmapped and are left unmapped, we mark them so to
1822 * prevent further unmapping attempts.
1823 *
1824 * This function undoes a series of @unmap_rx_buf calls when we find out
1825 * that the current packet can't be processed right away afterall and we
1826 * need to come back to it later. This is a very rare event and there's
1827 * no effort to make this particularly efficient.
1828 */
1829 static void restore_rx_bufs(const struct pkt_gl *si, struct sge_fl *q,
1830 int frags)
1831 {
1832 struct rx_sw_desc *d;
1833
1834 while (frags--) {
1835 if (q->cidx == 0)
1836 q->cidx = q->size - 1;
1837 else
1838 q->cidx--;
1839 d = &q->sdesc[q->cidx];
1840 d->page = si->frags[frags].page;
1841 d->dma_addr |= RX_UNMAPPED_BUF;
1842 q->avail++;
1843 }
1844 }
1845
1846 /**
1847 * is_new_response - check if a response is newly written
1848 * @r: the response descriptor
1849 * @q: the response queue
1850 *
1851 * Returns true if a response descriptor contains a yet unprocessed
1852 * response.
1853 */
1854 static inline bool is_new_response(const struct rsp_ctrl *r,
1855 const struct sge_rspq *q)
1856 {
1857 return RSPD_GEN(r->type_gen) == q->gen;
1858 }
1859
1860 /**
1861 * rspq_next - advance to the next entry in a response queue
1862 * @q: the queue
1863 *
1864 * Updates the state of a response queue to advance it to the next entry.
1865 */
1866 static inline void rspq_next(struct sge_rspq *q)
1867 {
1868 q->cur_desc = (void *)q->cur_desc + q->iqe_len;
1869 if (unlikely(++q->cidx == q->size)) {
1870 q->cidx = 0;
1871 q->gen ^= 1;
1872 q->cur_desc = q->desc;
1873 }
1874 }
1875
1876 /**
1877 * process_responses - process responses from an SGE response queue
1878 * @q: the ingress queue to process
1879 * @budget: how many responses can be processed in this round
1880 *
1881 * Process responses from an SGE response queue up to the supplied budget.
1882 * Responses include received packets as well as control messages from FW
1883 * or HW.
1884 *
1885 * Additionally choose the interrupt holdoff time for the next interrupt
1886 * on this queue. If the system is under memory shortage use a fairly
1887 * long delay to help recovery.
1888 */
1889 static int process_responses(struct sge_rspq *q, int budget)
1890 {
1891 int ret, rsp_type;
1892 int budget_left = budget;
1893 const struct rsp_ctrl *rc;
1894 struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq);
1895 struct adapter *adapter = q->adap;
1896 struct sge *s = &adapter->sge;
1897
1898 while (likely(budget_left)) {
1899 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
1900 if (!is_new_response(rc, q))
1901 break;
1902
1903 rmb();
1904 rsp_type = RSPD_TYPE(rc->type_gen);
1905 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1906 struct page_frag *fp;
1907 struct pkt_gl si;
1908 const struct rx_sw_desc *rsd;
1909 u32 len = ntohl(rc->pldbuflen_qid), bufsz, frags;
1910
1911 if (len & RSPD_NEWBUF) {
1912 if (likely(q->offset > 0)) {
1913 free_rx_bufs(q->adap, &rxq->fl, 1);
1914 q->offset = 0;
1915 }
1916 len = RSPD_LEN(len);
1917 }
1918 si.tot_len = len;
1919
1920 /* gather packet fragments */
1921 for (frags = 0, fp = si.frags; ; frags++, fp++) {
1922 rsd = &rxq->fl.sdesc[rxq->fl.cidx];
1923 bufsz = get_buf_size(adapter, rsd);
1924 fp->page = rsd->page;
1925 fp->offset = q->offset;
1926 fp->size = min(bufsz, len);
1927 len -= fp->size;
1928 if (!len)
1929 break;
1930 unmap_rx_buf(q->adap, &rxq->fl);
1931 }
1932
1933 /*
1934 * Last buffer remains mapped so explicitly make it
1935 * coherent for CPU access.
1936 */
1937 dma_sync_single_for_cpu(q->adap->pdev_dev,
1938 get_buf_addr(rsd),
1939 fp->size, DMA_FROM_DEVICE);
1940
1941 si.va = page_address(si.frags[0].page) +
1942 si.frags[0].offset;
1943 prefetch(si.va);
1944
1945 si.nfrags = frags + 1;
1946 ret = q->handler(q, q->cur_desc, &si);
1947 if (likely(ret == 0))
1948 q->offset += ALIGN(fp->size, s->fl_align);
1949 else
1950 restore_rx_bufs(&si, &rxq->fl, frags);
1951 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1952 ret = q->handler(q, q->cur_desc, NULL);
1953 } else {
1954 ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN);
1955 }
1956
1957 if (unlikely(ret)) {
1958 /* couldn't process descriptor, back off for recovery */
1959 q->next_intr_params = QINTR_TIMER_IDX(NOMEM_TMR_IDX);
1960 break;
1961 }
1962
1963 rspq_next(q);
1964 budget_left--;
1965 }
1966
1967 if (q->offset >= 0 && rxq->fl.size - rxq->fl.avail >= 16)
1968 __refill_fl(q->adap, &rxq->fl);
1969 return budget - budget_left;
1970 }
1971
1972 #ifdef CONFIG_NET_RX_BUSY_POLL
1973 int cxgb_busy_poll(struct napi_struct *napi)
1974 {
1975 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
1976 unsigned int params, work_done;
1977 u32 val;
1978
1979 if (!cxgb_poll_lock_poll(q))
1980 return LL_FLUSH_BUSY;
1981
1982 work_done = process_responses(q, 4);
1983 params = QINTR_TIMER_IDX(TIMERREG_COUNTER0_X) | QINTR_CNT_EN;
1984 q->next_intr_params = params;
1985 val = CIDXINC_V(work_done) | SEINTARM_V(params);
1986
1987 /* If we don't have access to the new User GTS (T5+), use the old
1988 * doorbell mechanism; otherwise use the new BAR2 mechanism.
1989 */
1990 if (unlikely(!q->bar2_addr))
1991 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
1992 val | INGRESSQID_V((u32)q->cntxt_id));
1993 else {
1994 writel(val | INGRESSQID_V(q->bar2_qid),
1995 q->bar2_addr + SGE_UDB_GTS);
1996 wmb();
1997 }
1998
1999 cxgb_poll_unlock_poll(q);
2000 return work_done;
2001 }
2002 #endif /* CONFIG_NET_RX_BUSY_POLL */
2003
2004 /**
2005 * napi_rx_handler - the NAPI handler for Rx processing
2006 * @napi: the napi instance
2007 * @budget: how many packets we can process in this round
2008 *
2009 * Handler for new data events when using NAPI. This does not need any
2010 * locking or protection from interrupts as data interrupts are off at
2011 * this point and other adapter interrupts do not interfere (the latter
2012 * in not a concern at all with MSI-X as non-data interrupts then have
2013 * a separate handler).
2014 */
2015 static int napi_rx_handler(struct napi_struct *napi, int budget)
2016 {
2017 unsigned int params;
2018 struct sge_rspq *q = container_of(napi, struct sge_rspq, napi);
2019 int work_done;
2020 u32 val;
2021
2022 if (!cxgb_poll_lock_napi(q))
2023 return budget;
2024
2025 work_done = process_responses(q, budget);
2026 if (likely(work_done < budget)) {
2027 int timer_index;
2028
2029 napi_complete(napi);
2030 timer_index = QINTR_TIMER_IDX_GET(q->next_intr_params);
2031
2032 if (q->adaptive_rx) {
2033 if (work_done > max(timer_pkt_quota[timer_index],
2034 MIN_NAPI_WORK))
2035 timer_index = (timer_index + 1);
2036 else
2037 timer_index = timer_index - 1;
2038
2039 timer_index = clamp(timer_index, 0, SGE_TIMERREGS - 1);
2040 q->next_intr_params = QINTR_TIMER_IDX(timer_index) |
2041 V_QINTR_CNT_EN;
2042 params = q->next_intr_params;
2043 } else {
2044 params = q->next_intr_params;
2045 q->next_intr_params = q->intr_params;
2046 }
2047 } else
2048 params = QINTR_TIMER_IDX(7);
2049
2050 val = CIDXINC_V(work_done) | SEINTARM_V(params);
2051
2052 /* If we don't have access to the new User GTS (T5+), use the old
2053 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2054 */
2055 if (unlikely(q->bar2_addr == NULL)) {
2056 t4_write_reg(q->adap, MYPF_REG(SGE_PF_GTS_A),
2057 val | INGRESSQID_V((u32)q->cntxt_id));
2058 } else {
2059 writel(val | INGRESSQID_V(q->bar2_qid),
2060 q->bar2_addr + SGE_UDB_GTS);
2061 wmb();
2062 }
2063 cxgb_poll_unlock_napi(q);
2064 return work_done;
2065 }
2066
2067 /*
2068 * The MSI-X interrupt handler for an SGE response queue.
2069 */
2070 irqreturn_t t4_sge_intr_msix(int irq, void *cookie)
2071 {
2072 struct sge_rspq *q = cookie;
2073
2074 napi_schedule(&q->napi);
2075 return IRQ_HANDLED;
2076 }
2077
2078 /*
2079 * Process the indirect interrupt entries in the interrupt queue and kick off
2080 * NAPI for each queue that has generated an entry.
2081 */
2082 static unsigned int process_intrq(struct adapter *adap)
2083 {
2084 unsigned int credits;
2085 const struct rsp_ctrl *rc;
2086 struct sge_rspq *q = &adap->sge.intrq;
2087 u32 val;
2088
2089 spin_lock(&adap->sge.intrq_lock);
2090 for (credits = 0; ; credits++) {
2091 rc = (void *)q->cur_desc + (q->iqe_len - sizeof(*rc));
2092 if (!is_new_response(rc, q))
2093 break;
2094
2095 rmb();
2096 if (RSPD_TYPE(rc->type_gen) == RSP_TYPE_INTR) {
2097 unsigned int qid = ntohl(rc->pldbuflen_qid);
2098
2099 qid -= adap->sge.ingr_start;
2100 napi_schedule(&adap->sge.ingr_map[qid]->napi);
2101 }
2102
2103 rspq_next(q);
2104 }
2105
2106 val = CIDXINC_V(credits) | SEINTARM_V(q->intr_params);
2107
2108 /* If we don't have access to the new User GTS (T5+), use the old
2109 * doorbell mechanism; otherwise use the new BAR2 mechanism.
2110 */
2111 if (unlikely(q->bar2_addr == NULL)) {
2112 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
2113 val | INGRESSQID_V(q->cntxt_id));
2114 } else {
2115 writel(val | INGRESSQID_V(q->bar2_qid),
2116 q->bar2_addr + SGE_UDB_GTS);
2117 wmb();
2118 }
2119 spin_unlock(&adap->sge.intrq_lock);
2120 return credits;
2121 }
2122
2123 /*
2124 * The MSI interrupt handler, which handles data events from SGE response queues
2125 * as well as error and other async events as they all use the same MSI vector.
2126 */
2127 static irqreturn_t t4_intr_msi(int irq, void *cookie)
2128 {
2129 struct adapter *adap = cookie;
2130
2131 t4_slow_intr_handler(adap);
2132 process_intrq(adap);
2133 return IRQ_HANDLED;
2134 }
2135
2136 /*
2137 * Interrupt handler for legacy INTx interrupts.
2138 * Handles data events from SGE response queues as well as error and other
2139 * async events as they all use the same interrupt line.
2140 */
2141 static irqreturn_t t4_intr_intx(int irq, void *cookie)
2142 {
2143 struct adapter *adap = cookie;
2144
2145 t4_write_reg(adap, MYPF_REG(PCIE_PF_CLI_A), 0);
2146 if (t4_slow_intr_handler(adap) | process_intrq(adap))
2147 return IRQ_HANDLED;
2148 return IRQ_NONE; /* probably shared interrupt */
2149 }
2150
2151 /**
2152 * t4_intr_handler - select the top-level interrupt handler
2153 * @adap: the adapter
2154 *
2155 * Selects the top-level interrupt handler based on the type of interrupts
2156 * (MSI-X, MSI, or INTx).
2157 */
2158 irq_handler_t t4_intr_handler(struct adapter *adap)
2159 {
2160 if (adap->flags & USING_MSIX)
2161 return t4_sge_intr_msix;
2162 if (adap->flags & USING_MSI)
2163 return t4_intr_msi;
2164 return t4_intr_intx;
2165 }
2166
2167 static void sge_rx_timer_cb(unsigned long data)
2168 {
2169 unsigned long m;
2170 unsigned int i, idma_same_state_cnt[2];
2171 struct adapter *adap = (struct adapter *)data;
2172 struct sge *s = &adap->sge;
2173
2174 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2175 for (m = s->starving_fl[i]; m; m &= m - 1) {
2176 struct sge_eth_rxq *rxq;
2177 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2178 struct sge_fl *fl = s->egr_map[id];
2179
2180 clear_bit(id, s->starving_fl);
2181 smp_mb__after_atomic();
2182
2183 if (fl_starving(fl)) {
2184 rxq = container_of(fl, struct sge_eth_rxq, fl);
2185 if (napi_reschedule(&rxq->rspq.napi))
2186 fl->starving++;
2187 else
2188 set_bit(id, s->starving_fl);
2189 }
2190 }
2191
2192 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 13);
2193 idma_same_state_cnt[0] = t4_read_reg(adap, SGE_DEBUG_DATA_HIGH_A);
2194 idma_same_state_cnt[1] = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2195
2196 for (i = 0; i < 2; i++) {
2197 u32 debug0, debug11;
2198
2199 /* If the Ingress DMA Same State Counter ("timer") is less
2200 * than 1s, then we can reset our synthesized Stall Timer and
2201 * continue. If we have previously emitted warnings about a
2202 * potential stalled Ingress Queue, issue a note indicating
2203 * that the Ingress Queue has resumed forward progress.
2204 */
2205 if (idma_same_state_cnt[i] < s->idma_1s_thresh) {
2206 if (s->idma_stalled[i] >= SGE_IDMA_WARN_THRESH)
2207 CH_WARN(adap, "SGE idma%d, queue%u,resumed after %d sec\n",
2208 i, s->idma_qid[i],
2209 s->idma_stalled[i]/HZ);
2210 s->idma_stalled[i] = 0;
2211 continue;
2212 }
2213
2214 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
2215 * domain. The first time we get here it'll be because we
2216 * passed the 1s Threshold; each additional time it'll be
2217 * because the RX Timer Callback is being fired on its regular
2218 * schedule.
2219 *
2220 * If the stall is below our Potential Hung Ingress Queue
2221 * Warning Threshold, continue.
2222 */
2223 if (s->idma_stalled[i] == 0)
2224 s->idma_stalled[i] = HZ;
2225 else
2226 s->idma_stalled[i] += RX_QCHECK_PERIOD;
2227
2228 if (s->idma_stalled[i] < SGE_IDMA_WARN_THRESH)
2229 continue;
2230
2231 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT Hz */
2232 if (((s->idma_stalled[i] - HZ) % SGE_IDMA_WARN_REPEAT) != 0)
2233 continue;
2234
2235 /* Read and save the SGE IDMA State and Queue ID information.
2236 * We do this every time in case it changes across time ...
2237 */
2238 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 0);
2239 debug0 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2240 s->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
2241
2242 t4_write_reg(adap, SGE_DEBUG_INDEX_A, 11);
2243 debug11 = t4_read_reg(adap, SGE_DEBUG_DATA_LOW_A);
2244 s->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
2245
2246 CH_WARN(adap, "SGE idma%u, queue%u, maybe stuck state%u %dsecs (debug0=%#x, debug11=%#x)\n",
2247 i, s->idma_qid[i], s->idma_state[i],
2248 s->idma_stalled[i]/HZ, debug0, debug11);
2249 t4_sge_decode_idma_state(adap, s->idma_state[i]);
2250 }
2251
2252 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2253 }
2254
2255 static void sge_tx_timer_cb(unsigned long data)
2256 {
2257 unsigned long m;
2258 unsigned int i, budget;
2259 struct adapter *adap = (struct adapter *)data;
2260 struct sge *s = &adap->sge;
2261
2262 for (i = 0; i < BITS_TO_LONGS(s->egr_sz); i++)
2263 for (m = s->txq_maperr[i]; m; m &= m - 1) {
2264 unsigned long id = __ffs(m) + i * BITS_PER_LONG;
2265 struct sge_ofld_txq *txq = s->egr_map[id];
2266
2267 clear_bit(id, s->txq_maperr);
2268 tasklet_schedule(&txq->qresume_tsk);
2269 }
2270
2271 budget = MAX_TIMER_TX_RECLAIM;
2272 i = s->ethtxq_rover;
2273 do {
2274 struct sge_eth_txq *q = &s->ethtxq[i];
2275
2276 if (q->q.in_use &&
2277 time_after_eq(jiffies, q->txq->trans_start + HZ / 100) &&
2278 __netif_tx_trylock(q->txq)) {
2279 int avail = reclaimable(&q->q);
2280
2281 if (avail) {
2282 if (avail > budget)
2283 avail = budget;
2284
2285 free_tx_desc(adap, &q->q, avail, true);
2286 q->q.in_use -= avail;
2287 budget -= avail;
2288 }
2289 __netif_tx_unlock(q->txq);
2290 }
2291
2292 if (++i >= s->ethqsets)
2293 i = 0;
2294 } while (budget && i != s->ethtxq_rover);
2295 s->ethtxq_rover = i;
2296 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2297 }
2298
2299 /**
2300 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2301 * @adapter: the adapter
2302 * @qid: the SGE Queue ID
2303 * @qtype: the SGE Queue Type (Egress or Ingress)
2304 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2305 *
2306 * Returns the BAR2 address for the SGE Queue Registers associated with
2307 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2308 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2309 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2310 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2311 */
2312 static void __iomem *bar2_address(struct adapter *adapter,
2313 unsigned int qid,
2314 enum t4_bar2_qtype qtype,
2315 unsigned int *pbar2_qid)
2316 {
2317 u64 bar2_qoffset;
2318 int ret;
2319
2320 ret = cxgb4_t4_bar2_sge_qregs(adapter, qid, qtype,
2321 &bar2_qoffset, pbar2_qid);
2322 if (ret)
2323 return NULL;
2324
2325 return adapter->bar2 + bar2_qoffset;
2326 }
2327
2328 int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq,
2329 struct net_device *dev, int intr_idx,
2330 struct sge_fl *fl, rspq_handler_t hnd)
2331 {
2332 int ret, flsz = 0;
2333 struct fw_iq_cmd c;
2334 struct sge *s = &adap->sge;
2335 struct port_info *pi = netdev_priv(dev);
2336
2337 /* Size needs to be multiple of 16, including status entry. */
2338 iq->size = roundup(iq->size, 16);
2339
2340 iq->desc = alloc_ring(adap->pdev_dev, iq->size, iq->iqe_len, 0,
2341 &iq->phys_addr, NULL, 0, NUMA_NO_NODE);
2342 if (!iq->desc)
2343 return -ENOMEM;
2344
2345 memset(&c, 0, sizeof(c));
2346 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
2347 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2348 FW_IQ_CMD_PFN_V(adap->fn) | FW_IQ_CMD_VFN_V(0));
2349 c.alloc_to_len16 = htonl(FW_IQ_CMD_ALLOC_F | FW_IQ_CMD_IQSTART_F |
2350 FW_LEN16(c));
2351 c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2352 FW_IQ_CMD_IQASYNCH_V(fwevtq) | FW_IQ_CMD_VIID_V(pi->viid) |
2353 FW_IQ_CMD_IQANDST_V(intr_idx < 0) | FW_IQ_CMD_IQANUD_V(1) |
2354 FW_IQ_CMD_IQANDSTINDEX_V(intr_idx >= 0 ? intr_idx :
2355 -intr_idx - 1));
2356 c.iqdroprss_to_iqesize = htons(FW_IQ_CMD_IQPCIECH_V(pi->tx_chan) |
2357 FW_IQ_CMD_IQGTSMODE_F |
2358 FW_IQ_CMD_IQINTCNTTHRESH_V(iq->pktcnt_idx) |
2359 FW_IQ_CMD_IQESIZE_V(ilog2(iq->iqe_len) - 4));
2360 c.iqsize = htons(iq->size);
2361 c.iqaddr = cpu_to_be64(iq->phys_addr);
2362
2363 if (fl) {
2364 fl->size = roundup(fl->size, 8);
2365 fl->desc = alloc_ring(adap->pdev_dev, fl->size, sizeof(__be64),
2366 sizeof(struct rx_sw_desc), &fl->addr,
2367 &fl->sdesc, s->stat_len, NUMA_NO_NODE);
2368 if (!fl->desc)
2369 goto fl_nomem;
2370
2371 flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc);
2372 c.iqns_to_fl0congen = htonl(FW_IQ_CMD_FL0PACKEN_F |
2373 FW_IQ_CMD_FL0FETCHRO_F |
2374 FW_IQ_CMD_FL0DATARO_F |
2375 FW_IQ_CMD_FL0PADEN_F);
2376 c.fl0dcaen_to_fl0cidxfthresh = htons(FW_IQ_CMD_FL0FBMIN_V(2) |
2377 FW_IQ_CMD_FL0FBMAX_V(3));
2378 c.fl0size = htons(flsz);
2379 c.fl0addr = cpu_to_be64(fl->addr);
2380 }
2381
2382 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2383 if (ret)
2384 goto err;
2385
2386 netif_napi_add(dev, &iq->napi, napi_rx_handler, 64);
2387 napi_hash_add(&iq->napi);
2388 iq->cur_desc = iq->desc;
2389 iq->cidx = 0;
2390 iq->gen = 1;
2391 iq->next_intr_params = iq->intr_params;
2392 iq->cntxt_id = ntohs(c.iqid);
2393 iq->abs_id = ntohs(c.physiqid);
2394 iq->bar2_addr = bar2_address(adap,
2395 iq->cntxt_id,
2396 T4_BAR2_QTYPE_INGRESS,
2397 &iq->bar2_qid);
2398 iq->size--; /* subtract status entry */
2399 iq->netdev = dev;
2400 iq->handler = hnd;
2401
2402 /* set offset to -1 to distinguish ingress queues without FL */
2403 iq->offset = fl ? 0 : -1;
2404
2405 adap->sge.ingr_map[iq->cntxt_id - adap->sge.ingr_start] = iq;
2406
2407 if (fl) {
2408 fl->cntxt_id = ntohs(c.fl0id);
2409 fl->avail = fl->pend_cred = 0;
2410 fl->pidx = fl->cidx = 0;
2411 fl->alloc_failed = fl->large_alloc_failed = fl->starving = 0;
2412 adap->sge.egr_map[fl->cntxt_id - adap->sge.egr_start] = fl;
2413
2414 /* Note, we must initialize the BAR2 Free List User Doorbell
2415 * information before refilling the Free List!
2416 */
2417 fl->bar2_addr = bar2_address(adap,
2418 fl->cntxt_id,
2419 T4_BAR2_QTYPE_EGRESS,
2420 &fl->bar2_qid);
2421 refill_fl(adap, fl, fl_cap(fl), GFP_KERNEL);
2422 }
2423 return 0;
2424
2425 fl_nomem:
2426 ret = -ENOMEM;
2427 err:
2428 if (iq->desc) {
2429 dma_free_coherent(adap->pdev_dev, iq->size * iq->iqe_len,
2430 iq->desc, iq->phys_addr);
2431 iq->desc = NULL;
2432 }
2433 if (fl && fl->desc) {
2434 kfree(fl->sdesc);
2435 fl->sdesc = NULL;
2436 dma_free_coherent(adap->pdev_dev, flsz * sizeof(struct tx_desc),
2437 fl->desc, fl->addr);
2438 fl->desc = NULL;
2439 }
2440 return ret;
2441 }
2442
2443 static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id)
2444 {
2445 q->cntxt_id = id;
2446 q->bar2_addr = bar2_address(adap,
2447 q->cntxt_id,
2448 T4_BAR2_QTYPE_EGRESS,
2449 &q->bar2_qid);
2450 q->in_use = 0;
2451 q->cidx = q->pidx = 0;
2452 q->stops = q->restarts = 0;
2453 q->stat = (void *)&q->desc[q->size];
2454 spin_lock_init(&q->db_lock);
2455 adap->sge.egr_map[id - adap->sge.egr_start] = q;
2456 }
2457
2458 int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq,
2459 struct net_device *dev, struct netdev_queue *netdevq,
2460 unsigned int iqid)
2461 {
2462 int ret, nentries;
2463 struct fw_eq_eth_cmd c;
2464 struct sge *s = &adap->sge;
2465 struct port_info *pi = netdev_priv(dev);
2466
2467 /* Add status entries */
2468 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2469
2470 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2471 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2472 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2473 netdev_queue_numa_node_read(netdevq));
2474 if (!txq->q.desc)
2475 return -ENOMEM;
2476
2477 memset(&c, 0, sizeof(c));
2478 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F |
2479 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2480 FW_EQ_ETH_CMD_PFN_V(adap->fn) |
2481 FW_EQ_ETH_CMD_VFN_V(0));
2482 c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_ALLOC_F |
2483 FW_EQ_ETH_CMD_EQSTART_F | FW_LEN16(c));
2484 c.viid_pkd = htonl(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2485 FW_EQ_ETH_CMD_VIID_V(pi->viid));
2486 c.fetchszm_to_iqid = htonl(FW_EQ_ETH_CMD_HOSTFCMODE_V(2) |
2487 FW_EQ_ETH_CMD_PCIECHN_V(pi->tx_chan) |
2488 FW_EQ_ETH_CMD_FETCHRO_V(1) |
2489 FW_EQ_ETH_CMD_IQID_V(iqid));
2490 c.dcaen_to_eqsize = htonl(FW_EQ_ETH_CMD_FBMIN_V(2) |
2491 FW_EQ_ETH_CMD_FBMAX_V(3) |
2492 FW_EQ_ETH_CMD_CIDXFTHRESH_V(5) |
2493 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2494 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2495
2496 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2497 if (ret) {
2498 kfree(txq->q.sdesc);
2499 txq->q.sdesc = NULL;
2500 dma_free_coherent(adap->pdev_dev,
2501 nentries * sizeof(struct tx_desc),
2502 txq->q.desc, txq->q.phys_addr);
2503 txq->q.desc = NULL;
2504 return ret;
2505 }
2506
2507 init_txq(adap, &txq->q, FW_EQ_ETH_CMD_EQID_G(ntohl(c.eqid_pkd)));
2508 txq->txq = netdevq;
2509 txq->tso = txq->tx_cso = txq->vlan_ins = 0;
2510 txq->mapping_err = 0;
2511 return 0;
2512 }
2513
2514 int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq,
2515 struct net_device *dev, unsigned int iqid,
2516 unsigned int cmplqid)
2517 {
2518 int ret, nentries;
2519 struct fw_eq_ctrl_cmd c;
2520 struct sge *s = &adap->sge;
2521 struct port_info *pi = netdev_priv(dev);
2522
2523 /* Add status entries */
2524 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2525
2526 txq->q.desc = alloc_ring(adap->pdev_dev, nentries,
2527 sizeof(struct tx_desc), 0, &txq->q.phys_addr,
2528 NULL, 0, NUMA_NO_NODE);
2529 if (!txq->q.desc)
2530 return -ENOMEM;
2531
2532 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F |
2533 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2534 FW_EQ_CTRL_CMD_PFN_V(adap->fn) |
2535 FW_EQ_CTRL_CMD_VFN_V(0));
2536 c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_ALLOC_F |
2537 FW_EQ_CTRL_CMD_EQSTART_F | FW_LEN16(c));
2538 c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_CMPLIQID_V(cmplqid));
2539 c.physeqid_pkd = htonl(0);
2540 c.fetchszm_to_iqid = htonl(FW_EQ_CTRL_CMD_HOSTFCMODE_V(2) |
2541 FW_EQ_CTRL_CMD_PCIECHN_V(pi->tx_chan) |
2542 FW_EQ_CTRL_CMD_FETCHRO_F |
2543 FW_EQ_CTRL_CMD_IQID_V(iqid));
2544 c.dcaen_to_eqsize = htonl(FW_EQ_CTRL_CMD_FBMIN_V(2) |
2545 FW_EQ_CTRL_CMD_FBMAX_V(3) |
2546 FW_EQ_CTRL_CMD_CIDXFTHRESH_V(5) |
2547 FW_EQ_CTRL_CMD_EQSIZE_V(nentries));
2548 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2549
2550 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2551 if (ret) {
2552 dma_free_coherent(adap->pdev_dev,
2553 nentries * sizeof(struct tx_desc),
2554 txq->q.desc, txq->q.phys_addr);
2555 txq->q.desc = NULL;
2556 return ret;
2557 }
2558
2559 init_txq(adap, &txq->q, FW_EQ_CTRL_CMD_EQID_G(ntohl(c.cmpliqid_eqid)));
2560 txq->adap = adap;
2561 skb_queue_head_init(&txq->sendq);
2562 tasklet_init(&txq->qresume_tsk, restart_ctrlq, (unsigned long)txq);
2563 txq->full = 0;
2564 return 0;
2565 }
2566
2567 int t4_sge_alloc_ofld_txq(struct adapter *adap, struct sge_ofld_txq *txq,
2568 struct net_device *dev, unsigned int iqid)
2569 {
2570 int ret, nentries;
2571 struct fw_eq_ofld_cmd c;
2572 struct sge *s = &adap->sge;
2573 struct port_info *pi = netdev_priv(dev);
2574
2575 /* Add status entries */
2576 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2577
2578 txq->q.desc = alloc_ring(adap->pdev_dev, txq->q.size,
2579 sizeof(struct tx_desc), sizeof(struct tx_sw_desc),
2580 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len,
2581 NUMA_NO_NODE);
2582 if (!txq->q.desc)
2583 return -ENOMEM;
2584
2585 memset(&c, 0, sizeof(c));
2586 c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F |
2587 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
2588 FW_EQ_OFLD_CMD_PFN_V(adap->fn) |
2589 FW_EQ_OFLD_CMD_VFN_V(0));
2590 c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_ALLOC_F |
2591 FW_EQ_OFLD_CMD_EQSTART_F | FW_LEN16(c));
2592 c.fetchszm_to_iqid = htonl(FW_EQ_OFLD_CMD_HOSTFCMODE_V(2) |
2593 FW_EQ_OFLD_CMD_PCIECHN_V(pi->tx_chan) |
2594 FW_EQ_OFLD_CMD_FETCHRO_F |
2595 FW_EQ_OFLD_CMD_IQID_V(iqid));
2596 c.dcaen_to_eqsize = htonl(FW_EQ_OFLD_CMD_FBMIN_V(2) |
2597 FW_EQ_OFLD_CMD_FBMAX_V(3) |
2598 FW_EQ_OFLD_CMD_CIDXFTHRESH_V(5) |
2599 FW_EQ_OFLD_CMD_EQSIZE_V(nentries));
2600 c.eqaddr = cpu_to_be64(txq->q.phys_addr);
2601
2602 ret = t4_wr_mbox(adap, adap->fn, &c, sizeof(c), &c);
2603 if (ret) {
2604 kfree(txq->q.sdesc);
2605 txq->q.sdesc = NULL;
2606 dma_free_coherent(adap->pdev_dev,
2607 nentries * sizeof(struct tx_desc),
2608 txq->q.desc, txq->q.phys_addr);
2609 txq->q.desc = NULL;
2610 return ret;
2611 }
2612
2613 init_txq(adap, &txq->q, FW_EQ_OFLD_CMD_EQID_G(ntohl(c.eqid_pkd)));
2614 txq->adap = adap;
2615 skb_queue_head_init(&txq->sendq);
2616 tasklet_init(&txq->qresume_tsk, restart_ofldq, (unsigned long)txq);
2617 txq->full = 0;
2618 txq->mapping_err = 0;
2619 return 0;
2620 }
2621
2622 static void free_txq(struct adapter *adap, struct sge_txq *q)
2623 {
2624 struct sge *s = &adap->sge;
2625
2626 dma_free_coherent(adap->pdev_dev,
2627 q->size * sizeof(struct tx_desc) + s->stat_len,
2628 q->desc, q->phys_addr);
2629 q->cntxt_id = 0;
2630 q->sdesc = NULL;
2631 q->desc = NULL;
2632 }
2633
2634 static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq,
2635 struct sge_fl *fl)
2636 {
2637 struct sge *s = &adap->sge;
2638 unsigned int fl_id = fl ? fl->cntxt_id : 0xffff;
2639
2640 adap->sge.ingr_map[rq->cntxt_id - adap->sge.ingr_start] = NULL;
2641 t4_iq_free(adap, adap->fn, adap->fn, 0, FW_IQ_TYPE_FL_INT_CAP,
2642 rq->cntxt_id, fl_id, 0xffff);
2643 dma_free_coherent(adap->pdev_dev, (rq->size + 1) * rq->iqe_len,
2644 rq->desc, rq->phys_addr);
2645 napi_hash_del(&rq->napi);
2646 netif_napi_del(&rq->napi);
2647 rq->netdev = NULL;
2648 rq->cntxt_id = rq->abs_id = 0;
2649 rq->desc = NULL;
2650
2651 if (fl) {
2652 free_rx_bufs(adap, fl, fl->avail);
2653 dma_free_coherent(adap->pdev_dev, fl->size * 8 + s->stat_len,
2654 fl->desc, fl->addr);
2655 kfree(fl->sdesc);
2656 fl->sdesc = NULL;
2657 fl->cntxt_id = 0;
2658 fl->desc = NULL;
2659 }
2660 }
2661
2662 /**
2663 * t4_free_ofld_rxqs - free a block of consecutive Rx queues
2664 * @adap: the adapter
2665 * @n: number of queues
2666 * @q: pointer to first queue
2667 *
2668 * Release the resources of a consecutive block of offload Rx queues.
2669 */
2670 void t4_free_ofld_rxqs(struct adapter *adap, int n, struct sge_ofld_rxq *q)
2671 {
2672 for ( ; n; n--, q++)
2673 if (q->rspq.desc)
2674 free_rspq_fl(adap, &q->rspq,
2675 q->fl.size ? &q->fl : NULL);
2676 }
2677
2678 /**
2679 * t4_free_sge_resources - free SGE resources
2680 * @adap: the adapter
2681 *
2682 * Frees resources used by the SGE queue sets.
2683 */
2684 void t4_free_sge_resources(struct adapter *adap)
2685 {
2686 int i;
2687 struct sge_eth_rxq *eq = adap->sge.ethrxq;
2688 struct sge_eth_txq *etq = adap->sge.ethtxq;
2689
2690 /* clean up Ethernet Tx/Rx queues */
2691 for (i = 0; i < adap->sge.ethqsets; i++, eq++, etq++) {
2692 if (eq->rspq.desc)
2693 free_rspq_fl(adap, &eq->rspq,
2694 eq->fl.size ? &eq->fl : NULL);
2695 if (etq->q.desc) {
2696 t4_eth_eq_free(adap, adap->fn, adap->fn, 0,
2697 etq->q.cntxt_id);
2698 free_tx_desc(adap, &etq->q, etq->q.in_use, true);
2699 kfree(etq->q.sdesc);
2700 free_txq(adap, &etq->q);
2701 }
2702 }
2703
2704 /* clean up RDMA and iSCSI Rx queues */
2705 t4_free_ofld_rxqs(adap, adap->sge.ofldqsets, adap->sge.ofldrxq);
2706 t4_free_ofld_rxqs(adap, adap->sge.rdmaqs, adap->sge.rdmarxq);
2707 t4_free_ofld_rxqs(adap, adap->sge.rdmaciqs, adap->sge.rdmaciq);
2708
2709 /* clean up offload Tx queues */
2710 for (i = 0; i < ARRAY_SIZE(adap->sge.ofldtxq); i++) {
2711 struct sge_ofld_txq *q = &adap->sge.ofldtxq[i];
2712
2713 if (q->q.desc) {
2714 tasklet_kill(&q->qresume_tsk);
2715 t4_ofld_eq_free(adap, adap->fn, adap->fn, 0,
2716 q->q.cntxt_id);
2717 free_tx_desc(adap, &q->q, q->q.in_use, false);
2718 kfree(q->q.sdesc);
2719 __skb_queue_purge(&q->sendq);
2720 free_txq(adap, &q->q);
2721 }
2722 }
2723
2724 /* clean up control Tx queues */
2725 for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) {
2726 struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i];
2727
2728 if (cq->q.desc) {
2729 tasklet_kill(&cq->qresume_tsk);
2730 t4_ctrl_eq_free(adap, adap->fn, adap->fn, 0,
2731 cq->q.cntxt_id);
2732 __skb_queue_purge(&cq->sendq);
2733 free_txq(adap, &cq->q);
2734 }
2735 }
2736
2737 if (adap->sge.fw_evtq.desc)
2738 free_rspq_fl(adap, &adap->sge.fw_evtq, NULL);
2739
2740 if (adap->sge.intrq.desc)
2741 free_rspq_fl(adap, &adap->sge.intrq, NULL);
2742
2743 /* clear the reverse egress queue map */
2744 memset(adap->sge.egr_map, 0,
2745 adap->sge.egr_sz * sizeof(*adap->sge.egr_map));
2746 }
2747
2748 void t4_sge_start(struct adapter *adap)
2749 {
2750 adap->sge.ethtxq_rover = 0;
2751 mod_timer(&adap->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2752 mod_timer(&adap->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2753 }
2754
2755 /**
2756 * t4_sge_stop - disable SGE operation
2757 * @adap: the adapter
2758 *
2759 * Stop tasklets and timers associated with the DMA engine. Note that
2760 * this is effective only if measures have been taken to disable any HW
2761 * events that may restart them.
2762 */
2763 void t4_sge_stop(struct adapter *adap)
2764 {
2765 int i;
2766 struct sge *s = &adap->sge;
2767
2768 if (in_interrupt()) /* actions below require waiting */
2769 return;
2770
2771 if (s->rx_timer.function)
2772 del_timer_sync(&s->rx_timer);
2773 if (s->tx_timer.function)
2774 del_timer_sync(&s->tx_timer);
2775
2776 for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++) {
2777 struct sge_ofld_txq *q = &s->ofldtxq[i];
2778
2779 if (q->q.desc)
2780 tasklet_kill(&q->qresume_tsk);
2781 }
2782 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++) {
2783 struct sge_ctrl_txq *cq = &s->ctrlq[i];
2784
2785 if (cq->q.desc)
2786 tasklet_kill(&cq->qresume_tsk);
2787 }
2788 }
2789
2790 /**
2791 * t4_sge_init_soft - grab core SGE values needed by SGE code
2792 * @adap: the adapter
2793 *
2794 * We need to grab the SGE operating parameters that we need to have
2795 * in order to do our job and make sure we can live with them.
2796 */
2797
2798 static int t4_sge_init_soft(struct adapter *adap)
2799 {
2800 struct sge *s = &adap->sge;
2801 u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu;
2802 u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
2803 u32 ingress_rx_threshold;
2804
2805 /*
2806 * Verify that CPL messages are going to the Ingress Queue for
2807 * process_responses() and that only packet data is going to the
2808 * Free Lists.
2809 */
2810 if ((t4_read_reg(adap, SGE_CONTROL_A) & RXPKTCPLMODE_F) !=
2811 RXPKTCPLMODE_V(RXPKTCPLMODE_SPLIT_X)) {
2812 dev_err(adap->pdev_dev, "bad SGE CPL MODE\n");
2813 return -EINVAL;
2814 }
2815
2816 /*
2817 * Validate the Host Buffer Register Array indices that we want to
2818 * use ...
2819 *
2820 * XXX Note that we should really read through the Host Buffer Size
2821 * XXX register array and find the indices of the Buffer Sizes which
2822 * XXX meet our needs!
2823 */
2824 #define READ_FL_BUF(x) \
2825 t4_read_reg(adap, SGE_FL_BUFFER_SIZE0_A+(x)*sizeof(u32))
2826
2827 fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF);
2828 fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF);
2829 fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF);
2830 fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF);
2831
2832 /* We only bother using the Large Page logic if the Large Page Buffer
2833 * is larger than our Page Size Buffer.
2834 */
2835 if (fl_large_pg <= fl_small_pg)
2836 fl_large_pg = 0;
2837
2838 #undef READ_FL_BUF
2839
2840 /* The Page Size Buffer must be exactly equal to our Page Size and the
2841 * Large Page Size Buffer should be 0 (per above) or a power of 2.
2842 */
2843 if (fl_small_pg != PAGE_SIZE ||
2844 (fl_large_pg & (fl_large_pg-1)) != 0) {
2845 dev_err(adap->pdev_dev, "bad SGE FL page buffer sizes [%d, %d]\n",
2846 fl_small_pg, fl_large_pg);
2847 return -EINVAL;
2848 }
2849 if (fl_large_pg)
2850 s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT;
2851
2852 if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap) ||
2853 fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) {
2854 dev_err(adap->pdev_dev, "bad SGE FL MTU sizes [%d, %d]\n",
2855 fl_small_mtu, fl_large_mtu);
2856 return -EINVAL;
2857 }
2858
2859 /*
2860 * Retrieve our RX interrupt holdoff timer values and counter
2861 * threshold values from the SGE parameters.
2862 */
2863 timer_value_0_and_1 = t4_read_reg(adap, SGE_TIMER_VALUE_0_AND_1_A);
2864 timer_value_2_and_3 = t4_read_reg(adap, SGE_TIMER_VALUE_2_AND_3_A);
2865 timer_value_4_and_5 = t4_read_reg(adap, SGE_TIMER_VALUE_4_AND_5_A);
2866 s->timer_val[0] = core_ticks_to_us(adap,
2867 TIMERVALUE0_G(timer_value_0_and_1));
2868 s->timer_val[1] = core_ticks_to_us(adap,
2869 TIMERVALUE1_G(timer_value_0_and_1));
2870 s->timer_val[2] = core_ticks_to_us(adap,
2871 TIMERVALUE2_G(timer_value_2_and_3));
2872 s->timer_val[3] = core_ticks_to_us(adap,
2873 TIMERVALUE3_G(timer_value_2_and_3));
2874 s->timer_val[4] = core_ticks_to_us(adap,
2875 TIMERVALUE4_G(timer_value_4_and_5));
2876 s->timer_val[5] = core_ticks_to_us(adap,
2877 TIMERVALUE5_G(timer_value_4_and_5));
2878
2879 ingress_rx_threshold = t4_read_reg(adap, SGE_INGRESS_RX_THRESHOLD_A);
2880 s->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
2881 s->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
2882 s->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
2883 s->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
2884
2885 return 0;
2886 }
2887
2888 /**
2889 * t4_sge_init - initialize SGE
2890 * @adap: the adapter
2891 *
2892 * Perform low-level SGE code initialization needed every time after a
2893 * chip reset.
2894 */
2895 int t4_sge_init(struct adapter *adap)
2896 {
2897 struct sge *s = &adap->sge;
2898 u32 sge_control, sge_control2, sge_conm_ctrl;
2899 unsigned int ingpadboundary, ingpackboundary;
2900 int ret, egress_threshold;
2901
2902 /*
2903 * Ingress Padding Boundary and Egress Status Page Size are set up by
2904 * t4_fixup_host_params().
2905 */
2906 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
2907 s->pktshift = PKTSHIFT_G(sge_control);
2908 s->stat_len = (sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
2909
2910 /* T4 uses a single control field to specify both the PCIe Padding and
2911 * Packing Boundary. T5 introduced the ability to specify these
2912 * separately. The actual Ingress Packet Data alignment boundary
2913 * within Packed Buffer Mode is the maximum of these two
2914 * specifications.
2915 */
2916 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) +
2917 INGPADBOUNDARY_SHIFT_X);
2918 if (is_t4(adap->params.chip)) {
2919 s->fl_align = ingpadboundary;
2920 } else {
2921 /* T5 has a different interpretation of one of the PCIe Packing
2922 * Boundary values.
2923 */
2924 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
2925 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
2926 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2927 ingpackboundary = 16;
2928 else
2929 ingpackboundary = 1 << (ingpackboundary +
2930 INGPACKBOUNDARY_SHIFT_X);
2931
2932 s->fl_align = max(ingpadboundary, ingpackboundary);
2933 }
2934
2935 ret = t4_sge_init_soft(adap);
2936 if (ret < 0)
2937 return ret;
2938
2939 /*
2940 * A FL with <= fl_starve_thres buffers is starving and a periodic
2941 * timer will attempt to refill it. This needs to be larger than the
2942 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2943 * stuck waiting for new packets while the SGE is waiting for us to
2944 * give it more Free List entries. (Note that the SGE's Egress
2945 * Congestion Threshold is in units of 2 Free List pointers.) For T4,
2946 * there was only a single field to control this. For T5 there's the
2947 * original field which now only applies to Unpacked Mode Free List
2948 * buffers and a new field which only applies to Packed Mode Free List
2949 * buffers.
2950 */
2951 sge_conm_ctrl = t4_read_reg(adap, SGE_CONM_CTRL_A);
2952 if (is_t4(adap->params.chip))
2953 egress_threshold = EGRTHRESHOLD_G(sge_conm_ctrl);
2954 else
2955 egress_threshold = EGRTHRESHOLDPACKING_G(sge_conm_ctrl);
2956 s->fl_starve_thres = 2*egress_threshold + 1;
2957
2958 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adap);
2959 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adap);
2960 s->idma_1s_thresh = core_ticks_per_usec(adap) * 1000000; /* 1 s */
2961 s->idma_stalled[0] = 0;
2962 s->idma_stalled[1] = 0;
2963 spin_lock_init(&s->intrq_lock);
2964
2965 return 0;
2966 }
This page took 0.095458 seconds and 5 git commands to generate.