cxgb4vf: Fix ethtool get_settings for VF driver
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47 #include <linux/mdio.h>
48
49 #include "t4vf_common.h"
50 #include "t4vf_defs.h"
51
52 #include "../cxgb4/t4_regs.h"
53 #include "../cxgb4/t4_msg.h"
54
55 /*
56 * Generic information about the driver.
57 */
58 #define DRV_VERSION "2.0.0-ko"
59 #define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
60
61 /*
62 * Module Parameters.
63 * ==================
64 */
65
66 /*
67 * Default ethtool "message level" for adapters.
68 */
69 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
70 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
71 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
72
73 static int dflt_msg_enable = DFLT_MSG_ENABLE;
74
75 module_param(dflt_msg_enable, int, 0644);
76 MODULE_PARM_DESC(dflt_msg_enable,
77 "default adapter ethtool message level bitmap");
78
79 /*
80 * The driver uses the best interrupt scheme available on a platform in the
81 * order MSI-X then MSI. This parameter determines which of these schemes the
82 * driver may consider as follows:
83 *
84 * msi = 2: choose from among MSI-X and MSI
85 * msi = 1: only consider MSI interrupts
86 *
87 * Note that unlike the Physical Function driver, this Virtual Function driver
88 * does _not_ support legacy INTx interrupts (this limitation is mandated by
89 * the PCI-E SR-IOV standard).
90 */
91 #define MSI_MSIX 2
92 #define MSI_MSI 1
93 #define MSI_DEFAULT MSI_MSIX
94
95 static int msi = MSI_DEFAULT;
96
97 module_param(msi, int, 0644);
98 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
99
100 /*
101 * Fundamental constants.
102 * ======================
103 */
104
105 enum {
106 MAX_TXQ_ENTRIES = 16384,
107 MAX_RSPQ_ENTRIES = 16384,
108 MAX_RX_BUFFERS = 16384,
109
110 MIN_TXQ_ENTRIES = 32,
111 MIN_RSPQ_ENTRIES = 128,
112 MIN_FL_ENTRIES = 16,
113
114 /*
115 * For purposes of manipulating the Free List size we need to
116 * recognize that Free Lists are actually Egress Queues (the host
117 * produces free buffers which the hardware consumes), Egress Queues
118 * indices are all in units of Egress Context Units bytes, and free
119 * list entries are 64-bit PCI DMA addresses. And since the state of
120 * the Producer Index == the Consumer Index implies an EMPTY list, we
121 * always have at least one Egress Unit's worth of Free List entries
122 * unused. See sge.c for more details ...
123 */
124 EQ_UNIT = SGE_EQ_IDXSIZE,
125 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
126 MIN_FL_RESID = FL_PER_EQ_UNIT,
127 };
128
129 /*
130 * Global driver state.
131 * ====================
132 */
133
134 static struct dentry *cxgb4vf_debugfs_root;
135
136 /*
137 * OS "Callback" functions.
138 * ========================
139 */
140
141 /*
142 * The link status has changed on the indicated "port" (Virtual Interface).
143 */
144 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
145 {
146 struct net_device *dev = adapter->port[pidx];
147
148 /*
149 * If the port is disabled or the current recorded "link up"
150 * status matches the new status, just return.
151 */
152 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
153 return;
154
155 /*
156 * Tell the OS that the link status has changed and print a short
157 * informative message on the console about the event.
158 */
159 if (link_ok) {
160 const char *s;
161 const char *fc;
162 const struct port_info *pi = netdev_priv(dev);
163
164 netif_carrier_on(dev);
165
166 switch (pi->link_cfg.speed) {
167 case 40000:
168 s = "40Gbps";
169 break;
170
171 case 10000:
172 s = "10Gbps";
173 break;
174
175 case 1000:
176 s = "1000Mbps";
177 break;
178
179 case 100:
180 s = "100Mbps";
181 break;
182
183 default:
184 s = "unknown";
185 break;
186 }
187
188 switch (pi->link_cfg.fc) {
189 case PAUSE_RX:
190 fc = "RX";
191 break;
192
193 case PAUSE_TX:
194 fc = "TX";
195 break;
196
197 case PAUSE_RX|PAUSE_TX:
198 fc = "RX/TX";
199 break;
200
201 default:
202 fc = "no";
203 break;
204 }
205
206 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
207 } else {
208 netif_carrier_off(dev);
209 netdev_info(dev, "link down\n");
210 }
211 }
212
213 /*
214 * THe port module type has changed on the indicated "port" (Virtual
215 * Interface).
216 */
217 void t4vf_os_portmod_changed(struct adapter *adapter, int pidx)
218 {
219 static const char * const mod_str[] = {
220 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
221 };
222 const struct net_device *dev = adapter->port[pidx];
223 const struct port_info *pi = netdev_priv(dev);
224
225 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
226 dev_info(adapter->pdev_dev, "%s: port module unplugged\n",
227 dev->name);
228 else if (pi->mod_type < ARRAY_SIZE(mod_str))
229 dev_info(adapter->pdev_dev, "%s: %s port module inserted\n",
230 dev->name, mod_str[pi->mod_type]);
231 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
232 dev_info(adapter->pdev_dev, "%s: unsupported optical port "
233 "module inserted\n", dev->name);
234 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
235 dev_info(adapter->pdev_dev, "%s: unknown port module inserted,"
236 "forcing TWINAX\n", dev->name);
237 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
238 dev_info(adapter->pdev_dev, "%s: transceiver module error\n",
239 dev->name);
240 else
241 dev_info(adapter->pdev_dev, "%s: unknown module type %d "
242 "inserted\n", dev->name, pi->mod_type);
243 }
244
245 /*
246 * Net device operations.
247 * ======================
248 */
249
250
251
252
253 /*
254 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
255 * Interface).
256 */
257 static int link_start(struct net_device *dev)
258 {
259 int ret;
260 struct port_info *pi = netdev_priv(dev);
261
262 /*
263 * We do not set address filters and promiscuity here, the stack does
264 * that step explicitly. Enable vlan accel.
265 */
266 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
267 true);
268 if (ret == 0) {
269 ret = t4vf_change_mac(pi->adapter, pi->viid,
270 pi->xact_addr_filt, dev->dev_addr, true);
271 if (ret >= 0) {
272 pi->xact_addr_filt = ret;
273 ret = 0;
274 }
275 }
276
277 /*
278 * We don't need to actually "start the link" itself since the
279 * firmware will do that for us when the first Virtual Interface
280 * is enabled on a port.
281 */
282 if (ret == 0)
283 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
284 return ret;
285 }
286
287 /*
288 * Name the MSI-X interrupts.
289 */
290 static void name_msix_vecs(struct adapter *adapter)
291 {
292 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
293 int pidx;
294
295 /*
296 * Firmware events.
297 */
298 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
299 "%s-FWeventq", adapter->name);
300 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
301
302 /*
303 * Ethernet queues.
304 */
305 for_each_port(adapter, pidx) {
306 struct net_device *dev = adapter->port[pidx];
307 const struct port_info *pi = netdev_priv(dev);
308 int qs, msi;
309
310 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
311 snprintf(adapter->msix_info[msi].desc, namelen,
312 "%s-%d", dev->name, qs);
313 adapter->msix_info[msi].desc[namelen] = 0;
314 }
315 }
316 }
317
318 /*
319 * Request all of our MSI-X resources.
320 */
321 static int request_msix_queue_irqs(struct adapter *adapter)
322 {
323 struct sge *s = &adapter->sge;
324 int rxq, msi, err;
325
326 /*
327 * Firmware events.
328 */
329 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
330 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
331 if (err)
332 return err;
333
334 /*
335 * Ethernet queues.
336 */
337 msi = MSIX_IQFLINT;
338 for_each_ethrxq(s, rxq) {
339 err = request_irq(adapter->msix_info[msi].vec,
340 t4vf_sge_intr_msix, 0,
341 adapter->msix_info[msi].desc,
342 &s->ethrxq[rxq].rspq);
343 if (err)
344 goto err_free_irqs;
345 msi++;
346 }
347 return 0;
348
349 err_free_irqs:
350 while (--rxq >= 0)
351 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
352 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
353 return err;
354 }
355
356 /*
357 * Free our MSI-X resources.
358 */
359 static void free_msix_queue_irqs(struct adapter *adapter)
360 {
361 struct sge *s = &adapter->sge;
362 int rxq, msi;
363
364 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
365 msi = MSIX_IQFLINT;
366 for_each_ethrxq(s, rxq)
367 free_irq(adapter->msix_info[msi++].vec,
368 &s->ethrxq[rxq].rspq);
369 }
370
371 /*
372 * Turn on NAPI and start up interrupts on a response queue.
373 */
374 static void qenable(struct sge_rspq *rspq)
375 {
376 napi_enable(&rspq->napi);
377
378 /*
379 * 0-increment the Going To Sleep register to start the timer and
380 * enable interrupts.
381 */
382 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
383 CIDXINC(0) |
384 SEINTARM(rspq->intr_params) |
385 INGRESSQID(rspq->cntxt_id));
386 }
387
388 /*
389 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
390 */
391 static void enable_rx(struct adapter *adapter)
392 {
393 int rxq;
394 struct sge *s = &adapter->sge;
395
396 for_each_ethrxq(s, rxq)
397 qenable(&s->ethrxq[rxq].rspq);
398 qenable(&s->fw_evtq);
399
400 /*
401 * The interrupt queue doesn't use NAPI so we do the 0-increment of
402 * its Going To Sleep register here to get it started.
403 */
404 if (adapter->flags & USING_MSI)
405 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
406 CIDXINC(0) |
407 SEINTARM(s->intrq.intr_params) |
408 INGRESSQID(s->intrq.cntxt_id));
409
410 }
411
412 /*
413 * Wait until all NAPI handlers are descheduled.
414 */
415 static void quiesce_rx(struct adapter *adapter)
416 {
417 struct sge *s = &adapter->sge;
418 int rxq;
419
420 for_each_ethrxq(s, rxq)
421 napi_disable(&s->ethrxq[rxq].rspq.napi);
422 napi_disable(&s->fw_evtq.napi);
423 }
424
425 /*
426 * Response queue handler for the firmware event queue.
427 */
428 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
429 const struct pkt_gl *gl)
430 {
431 /*
432 * Extract response opcode and get pointer to CPL message body.
433 */
434 struct adapter *adapter = rspq->adapter;
435 u8 opcode = ((const struct rss_header *)rsp)->opcode;
436 void *cpl = (void *)(rsp + 1);
437
438 switch (opcode) {
439 case CPL_FW6_MSG: {
440 /*
441 * We've received an asynchronous message from the firmware.
442 */
443 const struct cpl_fw6_msg *fw_msg = cpl;
444 if (fw_msg->type == FW6_TYPE_CMD_RPL)
445 t4vf_handle_fw_rpl(adapter, fw_msg->data);
446 break;
447 }
448
449 case CPL_FW4_MSG: {
450 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
451 */
452 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
453 opcode = G_CPL_OPCODE(ntohl(p->opcode_qid));
454 if (opcode != CPL_SGE_EGR_UPDATE) {
455 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
456 , opcode);
457 break;
458 }
459 cpl = (void *)p;
460 /*FALLTHROUGH*/
461 }
462
463 case CPL_SGE_EGR_UPDATE: {
464 /*
465 * We've received an Egress Queue Status Update message. We
466 * get these, if the SGE is configured to send these when the
467 * firmware passes certain points in processing our TX
468 * Ethernet Queue or if we make an explicit request for one.
469 * We use these updates to determine when we may need to
470 * restart a TX Ethernet Queue which was stopped for lack of
471 * free TX Queue Descriptors ...
472 */
473 const struct cpl_sge_egr_update *p = cpl;
474 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
475 struct sge *s = &adapter->sge;
476 struct sge_txq *tq;
477 struct sge_eth_txq *txq;
478 unsigned int eq_idx;
479
480 /*
481 * Perform sanity checking on the Queue ID to make sure it
482 * really refers to one of our TX Ethernet Egress Queues which
483 * is active and matches the queue's ID. None of these error
484 * conditions should ever happen so we may want to either make
485 * them fatal and/or conditionalized under DEBUG.
486 */
487 eq_idx = EQ_IDX(s, qid);
488 if (unlikely(eq_idx >= MAX_EGRQ)) {
489 dev_err(adapter->pdev_dev,
490 "Egress Update QID %d out of range\n", qid);
491 break;
492 }
493 tq = s->egr_map[eq_idx];
494 if (unlikely(tq == NULL)) {
495 dev_err(adapter->pdev_dev,
496 "Egress Update QID %d TXQ=NULL\n", qid);
497 break;
498 }
499 txq = container_of(tq, struct sge_eth_txq, q);
500 if (unlikely(tq->abs_id != qid)) {
501 dev_err(adapter->pdev_dev,
502 "Egress Update QID %d refers to TXQ %d\n",
503 qid, tq->abs_id);
504 break;
505 }
506
507 /*
508 * Restart a stopped TX Queue which has less than half of its
509 * TX ring in use ...
510 */
511 txq->q.restarts++;
512 netif_tx_wake_queue(txq->txq);
513 break;
514 }
515
516 default:
517 dev_err(adapter->pdev_dev,
518 "unexpected CPL %#x on FW event queue\n", opcode);
519 }
520
521 return 0;
522 }
523
524 /*
525 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
526 * to use and initializes them. We support multiple "Queue Sets" per port if
527 * we have MSI-X, otherwise just one queue set per port.
528 */
529 static int setup_sge_queues(struct adapter *adapter)
530 {
531 struct sge *s = &adapter->sge;
532 int err, pidx, msix;
533
534 /*
535 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
536 * state.
537 */
538 bitmap_zero(s->starving_fl, MAX_EGRQ);
539
540 /*
541 * If we're using MSI interrupt mode we need to set up a "forwarded
542 * interrupt" queue which we'll set up with our MSI vector. The rest
543 * of the ingress queues will be set up to forward their interrupts to
544 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
545 * the intrq's queue ID as the interrupt forwarding queue for the
546 * subsequent calls ...
547 */
548 if (adapter->flags & USING_MSI) {
549 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
550 adapter->port[0], 0, NULL, NULL);
551 if (err)
552 goto err_free_queues;
553 }
554
555 /*
556 * Allocate our ingress queue for asynchronous firmware messages.
557 */
558 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
559 MSIX_FW, NULL, fwevtq_handler);
560 if (err)
561 goto err_free_queues;
562
563 /*
564 * Allocate each "port"'s initial Queue Sets. These can be changed
565 * later on ... up to the point where any interface on the adapter is
566 * brought up at which point lots of things get nailed down
567 * permanently ...
568 */
569 msix = MSIX_IQFLINT;
570 for_each_port(adapter, pidx) {
571 struct net_device *dev = adapter->port[pidx];
572 struct port_info *pi = netdev_priv(dev);
573 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
574 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
575 int qs;
576
577 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
578 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
579 dev, msix++,
580 &rxq->fl, t4vf_ethrx_handler);
581 if (err)
582 goto err_free_queues;
583
584 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
585 netdev_get_tx_queue(dev, qs),
586 s->fw_evtq.cntxt_id);
587 if (err)
588 goto err_free_queues;
589
590 rxq->rspq.idx = qs;
591 memset(&rxq->stats, 0, sizeof(rxq->stats));
592 }
593 }
594
595 /*
596 * Create the reverse mappings for the queues.
597 */
598 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
599 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
600 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
601 for_each_port(adapter, pidx) {
602 struct net_device *dev = adapter->port[pidx];
603 struct port_info *pi = netdev_priv(dev);
604 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
605 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
606 int qs;
607
608 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
609 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
610 EQ_MAP(s, txq->q.abs_id) = &txq->q;
611
612 /*
613 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
614 * for Free Lists but since all of the Egress Queues
615 * (including Free Lists) have Relative Queue IDs
616 * which are computed as Absolute - Base Queue ID, we
617 * can synthesize the Absolute Queue IDs for the Free
618 * Lists. This is useful for debugging purposes when
619 * we want to dump Queue Contexts via the PF Driver.
620 */
621 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
622 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
623 }
624 }
625 return 0;
626
627 err_free_queues:
628 t4vf_free_sge_resources(adapter);
629 return err;
630 }
631
632 /*
633 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
634 * queues. We configure the RSS CPU lookup table to distribute to the number
635 * of HW receive queues, and the response queue lookup table to narrow that
636 * down to the response queues actually configured for each "port" (Virtual
637 * Interface). We always configure the RSS mapping for all ports since the
638 * mapping table has plenty of entries.
639 */
640 static int setup_rss(struct adapter *adapter)
641 {
642 int pidx;
643
644 for_each_port(adapter, pidx) {
645 struct port_info *pi = adap2pinfo(adapter, pidx);
646 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
647 u16 rss[MAX_PORT_QSETS];
648 int qs, err;
649
650 for (qs = 0; qs < pi->nqsets; qs++)
651 rss[qs] = rxq[qs].rspq.abs_id;
652
653 err = t4vf_config_rss_range(adapter, pi->viid,
654 0, pi->rss_size, rss, pi->nqsets);
655 if (err)
656 return err;
657
658 /*
659 * Perform Global RSS Mode-specific initialization.
660 */
661 switch (adapter->params.rss.mode) {
662 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
663 /*
664 * If Tunnel All Lookup isn't specified in the global
665 * RSS Configuration, then we need to specify a
666 * default Ingress Queue for any ingress packets which
667 * aren't hashed. We'll use our first ingress queue
668 * ...
669 */
670 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
671 union rss_vi_config config;
672 err = t4vf_read_rss_vi_config(adapter,
673 pi->viid,
674 &config);
675 if (err)
676 return err;
677 config.basicvirtual.defaultq =
678 rxq[0].rspq.abs_id;
679 err = t4vf_write_rss_vi_config(adapter,
680 pi->viid,
681 &config);
682 if (err)
683 return err;
684 }
685 break;
686 }
687 }
688
689 return 0;
690 }
691
692 /*
693 * Bring the adapter up. Called whenever we go from no "ports" open to having
694 * one open. This function performs the actions necessary to make an adapter
695 * operational, such as completing the initialization of HW modules, and
696 * enabling interrupts. Must be called with the rtnl lock held. (Note that
697 * this is called "cxgb_up" in the PF Driver.)
698 */
699 static int adapter_up(struct adapter *adapter)
700 {
701 int err;
702
703 /*
704 * If this is the first time we've been called, perform basic
705 * adapter setup. Once we've done this, many of our adapter
706 * parameters can no longer be changed ...
707 */
708 if ((adapter->flags & FULL_INIT_DONE) == 0) {
709 err = setup_sge_queues(adapter);
710 if (err)
711 return err;
712 err = setup_rss(adapter);
713 if (err) {
714 t4vf_free_sge_resources(adapter);
715 return err;
716 }
717
718 if (adapter->flags & USING_MSIX)
719 name_msix_vecs(adapter);
720 adapter->flags |= FULL_INIT_DONE;
721 }
722
723 /*
724 * Acquire our interrupt resources. We only support MSI-X and MSI.
725 */
726 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
727 if (adapter->flags & USING_MSIX)
728 err = request_msix_queue_irqs(adapter);
729 else
730 err = request_irq(adapter->pdev->irq,
731 t4vf_intr_handler(adapter), 0,
732 adapter->name, adapter);
733 if (err) {
734 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
735 err);
736 return err;
737 }
738
739 /*
740 * Enable NAPI ingress processing and return success.
741 */
742 enable_rx(adapter);
743 t4vf_sge_start(adapter);
744 return 0;
745 }
746
747 /*
748 * Bring the adapter down. Called whenever the last "port" (Virtual
749 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
750 * Driver.)
751 */
752 static void adapter_down(struct adapter *adapter)
753 {
754 /*
755 * Free interrupt resources.
756 */
757 if (adapter->flags & USING_MSIX)
758 free_msix_queue_irqs(adapter);
759 else
760 free_irq(adapter->pdev->irq, adapter);
761
762 /*
763 * Wait for NAPI handlers to finish.
764 */
765 quiesce_rx(adapter);
766 }
767
768 /*
769 * Start up a net device.
770 */
771 static int cxgb4vf_open(struct net_device *dev)
772 {
773 int err;
774 struct port_info *pi = netdev_priv(dev);
775 struct adapter *adapter = pi->adapter;
776
777 /*
778 * If this is the first interface that we're opening on the "adapter",
779 * bring the "adapter" up now.
780 */
781 if (adapter->open_device_map == 0) {
782 err = adapter_up(adapter);
783 if (err)
784 return err;
785 }
786
787 /*
788 * Note that this interface is up and start everything up ...
789 */
790 netif_set_real_num_tx_queues(dev, pi->nqsets);
791 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
792 if (err)
793 goto err_unwind;
794 err = link_start(dev);
795 if (err)
796 goto err_unwind;
797
798 netif_tx_start_all_queues(dev);
799 set_bit(pi->port_id, &adapter->open_device_map);
800 return 0;
801
802 err_unwind:
803 if (adapter->open_device_map == 0)
804 adapter_down(adapter);
805 return err;
806 }
807
808 /*
809 * Shut down a net device. This routine is called "cxgb_close" in the PF
810 * Driver ...
811 */
812 static int cxgb4vf_stop(struct net_device *dev)
813 {
814 struct port_info *pi = netdev_priv(dev);
815 struct adapter *adapter = pi->adapter;
816
817 netif_tx_stop_all_queues(dev);
818 netif_carrier_off(dev);
819 t4vf_enable_vi(adapter, pi->viid, false, false);
820 pi->link_cfg.link_ok = 0;
821
822 clear_bit(pi->port_id, &adapter->open_device_map);
823 if (adapter->open_device_map == 0)
824 adapter_down(adapter);
825 return 0;
826 }
827
828 /*
829 * Translate our basic statistics into the standard "ifconfig" statistics.
830 */
831 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
832 {
833 struct t4vf_port_stats stats;
834 struct port_info *pi = netdev2pinfo(dev);
835 struct adapter *adapter = pi->adapter;
836 struct net_device_stats *ns = &dev->stats;
837 int err;
838
839 spin_lock(&adapter->stats_lock);
840 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
841 spin_unlock(&adapter->stats_lock);
842
843 memset(ns, 0, sizeof(*ns));
844 if (err)
845 return ns;
846
847 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
848 stats.tx_ucast_bytes + stats.tx_offload_bytes);
849 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
850 stats.tx_ucast_frames + stats.tx_offload_frames);
851 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
852 stats.rx_ucast_bytes);
853 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
854 stats.rx_ucast_frames);
855 ns->multicast = stats.rx_mcast_frames;
856 ns->tx_errors = stats.tx_drop_frames;
857 ns->rx_errors = stats.rx_err_frames;
858
859 return ns;
860 }
861
862 /*
863 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
864 * at a specified offset within the list, into an array of addrss pointers and
865 * return the number collected.
866 */
867 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
868 const u8 **addr,
869 unsigned int offset,
870 unsigned int maxaddrs)
871 {
872 unsigned int index = 0;
873 unsigned int naddr = 0;
874 const struct netdev_hw_addr *ha;
875
876 for_each_dev_addr(dev, ha)
877 if (index++ >= offset) {
878 addr[naddr++] = ha->addr;
879 if (naddr >= maxaddrs)
880 break;
881 }
882 return naddr;
883 }
884
885 /*
886 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
887 * at a specified offset within the list, into an array of addrss pointers and
888 * return the number collected.
889 */
890 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
891 const u8 **addr,
892 unsigned int offset,
893 unsigned int maxaddrs)
894 {
895 unsigned int index = 0;
896 unsigned int naddr = 0;
897 const struct netdev_hw_addr *ha;
898
899 netdev_for_each_mc_addr(ha, dev)
900 if (index++ >= offset) {
901 addr[naddr++] = ha->addr;
902 if (naddr >= maxaddrs)
903 break;
904 }
905 return naddr;
906 }
907
908 /*
909 * Configure the exact and hash address filters to handle a port's multicast
910 * and secondary unicast MAC addresses.
911 */
912 static int set_addr_filters(const struct net_device *dev, bool sleep)
913 {
914 u64 mhash = 0;
915 u64 uhash = 0;
916 bool free = true;
917 unsigned int offset, naddr;
918 const u8 *addr[7];
919 int ret;
920 const struct port_info *pi = netdev_priv(dev);
921
922 /* first do the secondary unicast addresses */
923 for (offset = 0; ; offset += naddr) {
924 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
925 ARRAY_SIZE(addr));
926 if (naddr == 0)
927 break;
928
929 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
930 naddr, addr, NULL, &uhash, sleep);
931 if (ret < 0)
932 return ret;
933
934 free = false;
935 }
936
937 /* next set up the multicast addresses */
938 for (offset = 0; ; offset += naddr) {
939 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
940 ARRAY_SIZE(addr));
941 if (naddr == 0)
942 break;
943
944 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
945 naddr, addr, NULL, &mhash, sleep);
946 if (ret < 0)
947 return ret;
948 free = false;
949 }
950
951 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
952 uhash | mhash, sleep);
953 }
954
955 /*
956 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
957 * If @mtu is -1 it is left unchanged.
958 */
959 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
960 {
961 int ret;
962 struct port_info *pi = netdev_priv(dev);
963
964 ret = set_addr_filters(dev, sleep_ok);
965 if (ret == 0)
966 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
967 (dev->flags & IFF_PROMISC) != 0,
968 (dev->flags & IFF_ALLMULTI) != 0,
969 1, -1, sleep_ok);
970 return ret;
971 }
972
973 /*
974 * Set the current receive modes on the device.
975 */
976 static void cxgb4vf_set_rxmode(struct net_device *dev)
977 {
978 /* unfortunately we can't return errors to the stack */
979 set_rxmode(dev, -1, false);
980 }
981
982 /*
983 * Find the entry in the interrupt holdoff timer value array which comes
984 * closest to the specified interrupt holdoff value.
985 */
986 static int closest_timer(const struct sge *s, int us)
987 {
988 int i, timer_idx = 0, min_delta = INT_MAX;
989
990 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
991 int delta = us - s->timer_val[i];
992 if (delta < 0)
993 delta = -delta;
994 if (delta < min_delta) {
995 min_delta = delta;
996 timer_idx = i;
997 }
998 }
999 return timer_idx;
1000 }
1001
1002 static int closest_thres(const struct sge *s, int thres)
1003 {
1004 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
1005
1006 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1007 delta = thres - s->counter_val[i];
1008 if (delta < 0)
1009 delta = -delta;
1010 if (delta < min_delta) {
1011 min_delta = delta;
1012 pktcnt_idx = i;
1013 }
1014 }
1015 return pktcnt_idx;
1016 }
1017
1018 /*
1019 * Return a queue's interrupt hold-off time in us. 0 means no timer.
1020 */
1021 static unsigned int qtimer_val(const struct adapter *adapter,
1022 const struct sge_rspq *rspq)
1023 {
1024 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
1025
1026 return timer_idx < SGE_NTIMERS
1027 ? adapter->sge.timer_val[timer_idx]
1028 : 0;
1029 }
1030
1031 /**
1032 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1033 * @adapter: the adapter
1034 * @rspq: the RX response queue
1035 * @us: the hold-off time in us, or 0 to disable timer
1036 * @cnt: the hold-off packet count, or 0 to disable counter
1037 *
1038 * Sets an RX response queue's interrupt hold-off time and packet count.
1039 * At least one of the two needs to be enabled for the queue to generate
1040 * interrupts.
1041 */
1042 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1043 unsigned int us, unsigned int cnt)
1044 {
1045 unsigned int timer_idx;
1046
1047 /*
1048 * If both the interrupt holdoff timer and count are specified as
1049 * zero, default to a holdoff count of 1 ...
1050 */
1051 if ((us | cnt) == 0)
1052 cnt = 1;
1053
1054 /*
1055 * If an interrupt holdoff count has been specified, then find the
1056 * closest configured holdoff count and use that. If the response
1057 * queue has already been created, then update its queue context
1058 * parameters ...
1059 */
1060 if (cnt) {
1061 int err;
1062 u32 v, pktcnt_idx;
1063
1064 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1065 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1066 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1067 FW_PARAMS_PARAM_X_V(
1068 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1069 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1070 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1071 if (err)
1072 return err;
1073 }
1074 rspq->pktcnt_idx = pktcnt_idx;
1075 }
1076
1077 /*
1078 * Compute the closest holdoff timer index from the supplied holdoff
1079 * timer value.
1080 */
1081 timer_idx = (us == 0
1082 ? SGE_TIMER_RSTRT_CNTR
1083 : closest_timer(&adapter->sge, us));
1084
1085 /*
1086 * Update the response queue's interrupt coalescing parameters and
1087 * return success.
1088 */
1089 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1090 (cnt > 0 ? QINTR_CNT_EN : 0));
1091 return 0;
1092 }
1093
1094 /*
1095 * Return a version number to identify the type of adapter. The scheme is:
1096 * - bits 0..9: chip version
1097 * - bits 10..15: chip revision
1098 */
1099 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1100 {
1101 /*
1102 * Chip version 4, revision 0x3f (cxgb4vf).
1103 */
1104 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1105 }
1106
1107 /*
1108 * Execute the specified ioctl command.
1109 */
1110 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1111 {
1112 int ret = 0;
1113
1114 switch (cmd) {
1115 /*
1116 * The VF Driver doesn't have access to any of the other
1117 * common Ethernet device ioctl()'s (like reading/writing
1118 * PHY registers, etc.
1119 */
1120
1121 default:
1122 ret = -EOPNOTSUPP;
1123 break;
1124 }
1125 return ret;
1126 }
1127
1128 /*
1129 * Change the device's MTU.
1130 */
1131 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1132 {
1133 int ret;
1134 struct port_info *pi = netdev_priv(dev);
1135
1136 /* accommodate SACK */
1137 if (new_mtu < 81)
1138 return -EINVAL;
1139
1140 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1141 -1, -1, -1, -1, true);
1142 if (!ret)
1143 dev->mtu = new_mtu;
1144 return ret;
1145 }
1146
1147 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1148 netdev_features_t features)
1149 {
1150 /*
1151 * Since there is no support for separate rx/tx vlan accel
1152 * enable/disable make sure tx flag is always in same state as rx.
1153 */
1154 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1155 features |= NETIF_F_HW_VLAN_CTAG_TX;
1156 else
1157 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1158
1159 return features;
1160 }
1161
1162 static int cxgb4vf_set_features(struct net_device *dev,
1163 netdev_features_t features)
1164 {
1165 struct port_info *pi = netdev_priv(dev);
1166 netdev_features_t changed = dev->features ^ features;
1167
1168 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1169 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1170 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1171
1172 return 0;
1173 }
1174
1175 /*
1176 * Change the devices MAC address.
1177 */
1178 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1179 {
1180 int ret;
1181 struct sockaddr *addr = _addr;
1182 struct port_info *pi = netdev_priv(dev);
1183
1184 if (!is_valid_ether_addr(addr->sa_data))
1185 return -EADDRNOTAVAIL;
1186
1187 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1188 addr->sa_data, true);
1189 if (ret < 0)
1190 return ret;
1191
1192 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1193 pi->xact_addr_filt = ret;
1194 return 0;
1195 }
1196
1197 #ifdef CONFIG_NET_POLL_CONTROLLER
1198 /*
1199 * Poll all of our receive queues. This is called outside of normal interrupt
1200 * context.
1201 */
1202 static void cxgb4vf_poll_controller(struct net_device *dev)
1203 {
1204 struct port_info *pi = netdev_priv(dev);
1205 struct adapter *adapter = pi->adapter;
1206
1207 if (adapter->flags & USING_MSIX) {
1208 struct sge_eth_rxq *rxq;
1209 int nqsets;
1210
1211 rxq = &adapter->sge.ethrxq[pi->first_qset];
1212 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1213 t4vf_sge_intr_msix(0, &rxq->rspq);
1214 rxq++;
1215 }
1216 } else
1217 t4vf_intr_handler(adapter)(0, adapter);
1218 }
1219 #endif
1220
1221 /*
1222 * Ethtool operations.
1223 * ===================
1224 *
1225 * Note that we don't support any ethtool operations which change the physical
1226 * state of the port to which we're linked.
1227 */
1228
1229 static unsigned int t4vf_from_fw_linkcaps(enum fw_port_type type,
1230 unsigned int caps)
1231 {
1232 unsigned int v = 0;
1233
1234 if (type == FW_PORT_TYPE_BT_SGMII || type == FW_PORT_TYPE_BT_XFI ||
1235 type == FW_PORT_TYPE_BT_XAUI) {
1236 v |= SUPPORTED_TP;
1237 if (caps & FW_PORT_CAP_SPEED_100M)
1238 v |= SUPPORTED_100baseT_Full;
1239 if (caps & FW_PORT_CAP_SPEED_1G)
1240 v |= SUPPORTED_1000baseT_Full;
1241 if (caps & FW_PORT_CAP_SPEED_10G)
1242 v |= SUPPORTED_10000baseT_Full;
1243 } else if (type == FW_PORT_TYPE_KX4 || type == FW_PORT_TYPE_KX) {
1244 v |= SUPPORTED_Backplane;
1245 if (caps & FW_PORT_CAP_SPEED_1G)
1246 v |= SUPPORTED_1000baseKX_Full;
1247 if (caps & FW_PORT_CAP_SPEED_10G)
1248 v |= SUPPORTED_10000baseKX4_Full;
1249 } else if (type == FW_PORT_TYPE_KR)
1250 v |= SUPPORTED_Backplane | SUPPORTED_10000baseKR_Full;
1251 else if (type == FW_PORT_TYPE_BP_AP)
1252 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1253 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full;
1254 else if (type == FW_PORT_TYPE_BP4_AP)
1255 v |= SUPPORTED_Backplane | SUPPORTED_10000baseR_FEC |
1256 SUPPORTED_10000baseKR_Full | SUPPORTED_1000baseKX_Full |
1257 SUPPORTED_10000baseKX4_Full;
1258 else if (type == FW_PORT_TYPE_FIBER_XFI ||
1259 type == FW_PORT_TYPE_FIBER_XAUI ||
1260 type == FW_PORT_TYPE_SFP ||
1261 type == FW_PORT_TYPE_QSFP_10G ||
1262 type == FW_PORT_TYPE_QSA) {
1263 v |= SUPPORTED_FIBRE;
1264 if (caps & FW_PORT_CAP_SPEED_1G)
1265 v |= SUPPORTED_1000baseT_Full;
1266 if (caps & FW_PORT_CAP_SPEED_10G)
1267 v |= SUPPORTED_10000baseT_Full;
1268 } else if (type == FW_PORT_TYPE_BP40_BA ||
1269 type == FW_PORT_TYPE_QSFP) {
1270 v |= SUPPORTED_40000baseSR4_Full;
1271 v |= SUPPORTED_FIBRE;
1272 }
1273
1274 if (caps & FW_PORT_CAP_ANEG)
1275 v |= SUPPORTED_Autoneg;
1276 return v;
1277 }
1278
1279 static int cxgb4vf_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1280 {
1281 const struct port_info *p = netdev_priv(dev);
1282
1283 if (p->port_type == FW_PORT_TYPE_BT_SGMII ||
1284 p->port_type == FW_PORT_TYPE_BT_XFI ||
1285 p->port_type == FW_PORT_TYPE_BT_XAUI)
1286 cmd->port = PORT_TP;
1287 else if (p->port_type == FW_PORT_TYPE_FIBER_XFI ||
1288 p->port_type == FW_PORT_TYPE_FIBER_XAUI)
1289 cmd->port = PORT_FIBRE;
1290 else if (p->port_type == FW_PORT_TYPE_SFP ||
1291 p->port_type == FW_PORT_TYPE_QSFP_10G ||
1292 p->port_type == FW_PORT_TYPE_QSA ||
1293 p->port_type == FW_PORT_TYPE_QSFP) {
1294 if (p->mod_type == FW_PORT_MOD_TYPE_LR ||
1295 p->mod_type == FW_PORT_MOD_TYPE_SR ||
1296 p->mod_type == FW_PORT_MOD_TYPE_ER ||
1297 p->mod_type == FW_PORT_MOD_TYPE_LRM)
1298 cmd->port = PORT_FIBRE;
1299 else if (p->mod_type == FW_PORT_MOD_TYPE_TWINAX_PASSIVE ||
1300 p->mod_type == FW_PORT_MOD_TYPE_TWINAX_ACTIVE)
1301 cmd->port = PORT_DA;
1302 else
1303 cmd->port = PORT_OTHER;
1304 } else
1305 cmd->port = PORT_OTHER;
1306
1307 if (p->mdio_addr >= 0) {
1308 cmd->phy_address = p->mdio_addr;
1309 cmd->transceiver = XCVR_EXTERNAL;
1310 cmd->mdio_support = p->port_type == FW_PORT_TYPE_BT_SGMII ?
1311 MDIO_SUPPORTS_C22 : MDIO_SUPPORTS_C45;
1312 } else {
1313 cmd->phy_address = 0; /* not really, but no better option */
1314 cmd->transceiver = XCVR_INTERNAL;
1315 cmd->mdio_support = 0;
1316 }
1317
1318 cmd->supported = t4vf_from_fw_linkcaps(p->port_type,
1319 p->link_cfg.supported);
1320 cmd->advertising = t4vf_from_fw_linkcaps(p->port_type,
1321 p->link_cfg.advertising);
1322 ethtool_cmd_speed_set(cmd,
1323 netif_carrier_ok(dev) ? p->link_cfg.speed : 0);
1324 cmd->duplex = DUPLEX_FULL;
1325 cmd->autoneg = p->link_cfg.autoneg;
1326 cmd->maxtxpkt = 0;
1327 cmd->maxrxpkt = 0;
1328 return 0;
1329 }
1330
1331 /*
1332 * Return our driver information.
1333 */
1334 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1335 struct ethtool_drvinfo *drvinfo)
1336 {
1337 struct adapter *adapter = netdev2adap(dev);
1338
1339 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1340 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1341 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1342 sizeof(drvinfo->bus_info));
1343 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1344 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1345 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1346 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1347 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1348 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1349 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1350 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1351 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1352 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1353 }
1354
1355 /*
1356 * Return current adapter message level.
1357 */
1358 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1359 {
1360 return netdev2adap(dev)->msg_enable;
1361 }
1362
1363 /*
1364 * Set current adapter message level.
1365 */
1366 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1367 {
1368 netdev2adap(dev)->msg_enable = msglevel;
1369 }
1370
1371 /*
1372 * Return the device's current Queue Set ring size parameters along with the
1373 * allowed maximum values. Since ethtool doesn't understand the concept of
1374 * multi-queue devices, we just return the current values associated with the
1375 * first Queue Set.
1376 */
1377 static void cxgb4vf_get_ringparam(struct net_device *dev,
1378 struct ethtool_ringparam *rp)
1379 {
1380 const struct port_info *pi = netdev_priv(dev);
1381 const struct sge *s = &pi->adapter->sge;
1382
1383 rp->rx_max_pending = MAX_RX_BUFFERS;
1384 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1385 rp->rx_jumbo_max_pending = 0;
1386 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1387
1388 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1389 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1390 rp->rx_jumbo_pending = 0;
1391 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1392 }
1393
1394 /*
1395 * Set the Queue Set ring size parameters for the device. Again, since
1396 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1397 * apply these new values across all of the Queue Sets associated with the
1398 * device -- after vetting them of course!
1399 */
1400 static int cxgb4vf_set_ringparam(struct net_device *dev,
1401 struct ethtool_ringparam *rp)
1402 {
1403 const struct port_info *pi = netdev_priv(dev);
1404 struct adapter *adapter = pi->adapter;
1405 struct sge *s = &adapter->sge;
1406 int qs;
1407
1408 if (rp->rx_pending > MAX_RX_BUFFERS ||
1409 rp->rx_jumbo_pending ||
1410 rp->tx_pending > MAX_TXQ_ENTRIES ||
1411 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1412 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1413 rp->rx_pending < MIN_FL_ENTRIES ||
1414 rp->tx_pending < MIN_TXQ_ENTRIES)
1415 return -EINVAL;
1416
1417 if (adapter->flags & FULL_INIT_DONE)
1418 return -EBUSY;
1419
1420 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1421 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1422 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1423 s->ethtxq[qs].q.size = rp->tx_pending;
1424 }
1425 return 0;
1426 }
1427
1428 /*
1429 * Return the interrupt holdoff timer and count for the first Queue Set on the
1430 * device. Our extension ioctl() (the cxgbtool interface) allows the
1431 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1432 */
1433 static int cxgb4vf_get_coalesce(struct net_device *dev,
1434 struct ethtool_coalesce *coalesce)
1435 {
1436 const struct port_info *pi = netdev_priv(dev);
1437 const struct adapter *adapter = pi->adapter;
1438 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1439
1440 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1441 coalesce->rx_max_coalesced_frames =
1442 ((rspq->intr_params & QINTR_CNT_EN)
1443 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1444 : 0);
1445 return 0;
1446 }
1447
1448 /*
1449 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1450 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1451 * the interrupt holdoff timer on any of the device's Queue Sets.
1452 */
1453 static int cxgb4vf_set_coalesce(struct net_device *dev,
1454 struct ethtool_coalesce *coalesce)
1455 {
1456 const struct port_info *pi = netdev_priv(dev);
1457 struct adapter *adapter = pi->adapter;
1458
1459 return set_rxq_intr_params(adapter,
1460 &adapter->sge.ethrxq[pi->first_qset].rspq,
1461 coalesce->rx_coalesce_usecs,
1462 coalesce->rx_max_coalesced_frames);
1463 }
1464
1465 /*
1466 * Report current port link pause parameter settings.
1467 */
1468 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1469 struct ethtool_pauseparam *pauseparam)
1470 {
1471 struct port_info *pi = netdev_priv(dev);
1472
1473 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1474 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1475 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1476 }
1477
1478 /*
1479 * Identify the port by blinking the port's LED.
1480 */
1481 static int cxgb4vf_phys_id(struct net_device *dev,
1482 enum ethtool_phys_id_state state)
1483 {
1484 unsigned int val;
1485 struct port_info *pi = netdev_priv(dev);
1486
1487 if (state == ETHTOOL_ID_ACTIVE)
1488 val = 0xffff;
1489 else if (state == ETHTOOL_ID_INACTIVE)
1490 val = 0;
1491 else
1492 return -EINVAL;
1493
1494 return t4vf_identify_port(pi->adapter, pi->viid, val);
1495 }
1496
1497 /*
1498 * Port stats maintained per queue of the port.
1499 */
1500 struct queue_port_stats {
1501 u64 tso;
1502 u64 tx_csum;
1503 u64 rx_csum;
1504 u64 vlan_ex;
1505 u64 vlan_ins;
1506 u64 lro_pkts;
1507 u64 lro_merged;
1508 };
1509
1510 /*
1511 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1512 * these need to match the order of statistics returned by
1513 * t4vf_get_port_stats().
1514 */
1515 static const char stats_strings[][ETH_GSTRING_LEN] = {
1516 /*
1517 * These must match the layout of the t4vf_port_stats structure.
1518 */
1519 "TxBroadcastBytes ",
1520 "TxBroadcastFrames ",
1521 "TxMulticastBytes ",
1522 "TxMulticastFrames ",
1523 "TxUnicastBytes ",
1524 "TxUnicastFrames ",
1525 "TxDroppedFrames ",
1526 "TxOffloadBytes ",
1527 "TxOffloadFrames ",
1528 "RxBroadcastBytes ",
1529 "RxBroadcastFrames ",
1530 "RxMulticastBytes ",
1531 "RxMulticastFrames ",
1532 "RxUnicastBytes ",
1533 "RxUnicastFrames ",
1534 "RxErrorFrames ",
1535
1536 /*
1537 * These are accumulated per-queue statistics and must match the
1538 * order of the fields in the queue_port_stats structure.
1539 */
1540 "TSO ",
1541 "TxCsumOffload ",
1542 "RxCsumGood ",
1543 "VLANextractions ",
1544 "VLANinsertions ",
1545 "GROPackets ",
1546 "GROMerged ",
1547 };
1548
1549 /*
1550 * Return the number of statistics in the specified statistics set.
1551 */
1552 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1553 {
1554 switch (sset) {
1555 case ETH_SS_STATS:
1556 return ARRAY_SIZE(stats_strings);
1557 default:
1558 return -EOPNOTSUPP;
1559 }
1560 /*NOTREACHED*/
1561 }
1562
1563 /*
1564 * Return the strings for the specified statistics set.
1565 */
1566 static void cxgb4vf_get_strings(struct net_device *dev,
1567 u32 sset,
1568 u8 *data)
1569 {
1570 switch (sset) {
1571 case ETH_SS_STATS:
1572 memcpy(data, stats_strings, sizeof(stats_strings));
1573 break;
1574 }
1575 }
1576
1577 /*
1578 * Small utility routine to accumulate queue statistics across the queues of
1579 * a "port".
1580 */
1581 static void collect_sge_port_stats(const struct adapter *adapter,
1582 const struct port_info *pi,
1583 struct queue_port_stats *stats)
1584 {
1585 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1586 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1587 int qs;
1588
1589 memset(stats, 0, sizeof(*stats));
1590 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1591 stats->tso += txq->tso;
1592 stats->tx_csum += txq->tx_cso;
1593 stats->rx_csum += rxq->stats.rx_cso;
1594 stats->vlan_ex += rxq->stats.vlan_ex;
1595 stats->vlan_ins += txq->vlan_ins;
1596 stats->lro_pkts += rxq->stats.lro_pkts;
1597 stats->lro_merged += rxq->stats.lro_merged;
1598 }
1599 }
1600
1601 /*
1602 * Return the ETH_SS_STATS statistics set.
1603 */
1604 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1605 struct ethtool_stats *stats,
1606 u64 *data)
1607 {
1608 struct port_info *pi = netdev2pinfo(dev);
1609 struct adapter *adapter = pi->adapter;
1610 int err = t4vf_get_port_stats(adapter, pi->pidx,
1611 (struct t4vf_port_stats *)data);
1612 if (err)
1613 memset(data, 0, sizeof(struct t4vf_port_stats));
1614
1615 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1616 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1617 }
1618
1619 /*
1620 * Return the size of our register map.
1621 */
1622 static int cxgb4vf_get_regs_len(struct net_device *dev)
1623 {
1624 return T4VF_REGMAP_SIZE;
1625 }
1626
1627 /*
1628 * Dump a block of registers, start to end inclusive, into a buffer.
1629 */
1630 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1631 unsigned int start, unsigned int end)
1632 {
1633 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1634
1635 for ( ; start <= end; start += sizeof(u32)) {
1636 /*
1637 * Avoid reading the Mailbox Control register since that
1638 * can trigger a Mailbox Ownership Arbitration cycle and
1639 * interfere with communication with the firmware.
1640 */
1641 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1642 *bp++ = 0xffff;
1643 else
1644 *bp++ = t4_read_reg(adapter, start);
1645 }
1646 }
1647
1648 /*
1649 * Copy our entire register map into the provided buffer.
1650 */
1651 static void cxgb4vf_get_regs(struct net_device *dev,
1652 struct ethtool_regs *regs,
1653 void *regbuf)
1654 {
1655 struct adapter *adapter = netdev2adap(dev);
1656
1657 regs->version = mk_adap_vers(adapter);
1658
1659 /*
1660 * Fill in register buffer with our register map.
1661 */
1662 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1663
1664 reg_block_dump(adapter, regbuf,
1665 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1666 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1667 reg_block_dump(adapter, regbuf,
1668 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1669 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1670
1671 /* T5 adds new registers in the PL Register map.
1672 */
1673 reg_block_dump(adapter, regbuf,
1674 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1675 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1676 ? A_PL_VF_WHOAMI : A_PL_VF_REVISION));
1677 reg_block_dump(adapter, regbuf,
1678 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1679 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1680
1681 reg_block_dump(adapter, regbuf,
1682 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1683 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1684 }
1685
1686 /*
1687 * Report current Wake On LAN settings.
1688 */
1689 static void cxgb4vf_get_wol(struct net_device *dev,
1690 struct ethtool_wolinfo *wol)
1691 {
1692 wol->supported = 0;
1693 wol->wolopts = 0;
1694 memset(&wol->sopass, 0, sizeof(wol->sopass));
1695 }
1696
1697 /*
1698 * TCP Segmentation Offload flags which we support.
1699 */
1700 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1701
1702 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1703 .get_settings = cxgb4vf_get_settings,
1704 .get_drvinfo = cxgb4vf_get_drvinfo,
1705 .get_msglevel = cxgb4vf_get_msglevel,
1706 .set_msglevel = cxgb4vf_set_msglevel,
1707 .get_ringparam = cxgb4vf_get_ringparam,
1708 .set_ringparam = cxgb4vf_set_ringparam,
1709 .get_coalesce = cxgb4vf_get_coalesce,
1710 .set_coalesce = cxgb4vf_set_coalesce,
1711 .get_pauseparam = cxgb4vf_get_pauseparam,
1712 .get_link = ethtool_op_get_link,
1713 .get_strings = cxgb4vf_get_strings,
1714 .set_phys_id = cxgb4vf_phys_id,
1715 .get_sset_count = cxgb4vf_get_sset_count,
1716 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1717 .get_regs_len = cxgb4vf_get_regs_len,
1718 .get_regs = cxgb4vf_get_regs,
1719 .get_wol = cxgb4vf_get_wol,
1720 };
1721
1722 /*
1723 * /sys/kernel/debug/cxgb4vf support code and data.
1724 * ================================================
1725 */
1726
1727 /*
1728 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1729 */
1730 #define QPL 4
1731
1732 static int sge_qinfo_show(struct seq_file *seq, void *v)
1733 {
1734 struct adapter *adapter = seq->private;
1735 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1736 int qs, r = (uintptr_t)v - 1;
1737
1738 if (r)
1739 seq_putc(seq, '\n');
1740
1741 #define S3(fmt_spec, s, v) \
1742 do {\
1743 seq_printf(seq, "%-12s", s); \
1744 for (qs = 0; qs < n; ++qs) \
1745 seq_printf(seq, " %16" fmt_spec, v); \
1746 seq_putc(seq, '\n'); \
1747 } while (0)
1748 #define S(s, v) S3("s", s, v)
1749 #define T(s, v) S3("u", s, txq[qs].v)
1750 #define R(s, v) S3("u", s, rxq[qs].v)
1751
1752 if (r < eth_entries) {
1753 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1754 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1755 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1756
1757 S("QType:", "Ethernet");
1758 S("Interface:",
1759 (rxq[qs].rspq.netdev
1760 ? rxq[qs].rspq.netdev->name
1761 : "N/A"));
1762 S3("d", "Port:",
1763 (rxq[qs].rspq.netdev
1764 ? ((struct port_info *)
1765 netdev_priv(rxq[qs].rspq.netdev))->port_id
1766 : -1));
1767 T("TxQ ID:", q.abs_id);
1768 T("TxQ size:", q.size);
1769 T("TxQ inuse:", q.in_use);
1770 T("TxQ PIdx:", q.pidx);
1771 T("TxQ CIdx:", q.cidx);
1772 R("RspQ ID:", rspq.abs_id);
1773 R("RspQ size:", rspq.size);
1774 R("RspQE size:", rspq.iqe_len);
1775 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1776 S3("u", "Intr pktcnt:",
1777 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1778 R("RspQ CIdx:", rspq.cidx);
1779 R("RspQ Gen:", rspq.gen);
1780 R("FL ID:", fl.abs_id);
1781 R("FL size:", fl.size - MIN_FL_RESID);
1782 R("FL avail:", fl.avail);
1783 R("FL PIdx:", fl.pidx);
1784 R("FL CIdx:", fl.cidx);
1785 return 0;
1786 }
1787
1788 r -= eth_entries;
1789 if (r == 0) {
1790 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1791
1792 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1793 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1794 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1795 qtimer_val(adapter, evtq));
1796 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1797 adapter->sge.counter_val[evtq->pktcnt_idx]);
1798 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1799 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1800 } else if (r == 1) {
1801 const struct sge_rspq *intrq = &adapter->sge.intrq;
1802
1803 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1804 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1805 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1806 qtimer_val(adapter, intrq));
1807 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1808 adapter->sge.counter_val[intrq->pktcnt_idx]);
1809 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1810 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1811 }
1812
1813 #undef R
1814 #undef T
1815 #undef S
1816 #undef S3
1817
1818 return 0;
1819 }
1820
1821 /*
1822 * Return the number of "entries" in our "file". We group the multi-Queue
1823 * sections with QPL Queue Sets per "entry". The sections of the output are:
1824 *
1825 * Ethernet RX/TX Queue Sets
1826 * Firmware Event Queue
1827 * Forwarded Interrupt Queue (if in MSI mode)
1828 */
1829 static int sge_queue_entries(const struct adapter *adapter)
1830 {
1831 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1832 ((adapter->flags & USING_MSI) != 0);
1833 }
1834
1835 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1836 {
1837 int entries = sge_queue_entries(seq->private);
1838
1839 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1840 }
1841
1842 static void sge_queue_stop(struct seq_file *seq, void *v)
1843 {
1844 }
1845
1846 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1847 {
1848 int entries = sge_queue_entries(seq->private);
1849
1850 ++*pos;
1851 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1852 }
1853
1854 static const struct seq_operations sge_qinfo_seq_ops = {
1855 .start = sge_queue_start,
1856 .next = sge_queue_next,
1857 .stop = sge_queue_stop,
1858 .show = sge_qinfo_show
1859 };
1860
1861 static int sge_qinfo_open(struct inode *inode, struct file *file)
1862 {
1863 int res = seq_open(file, &sge_qinfo_seq_ops);
1864
1865 if (!res) {
1866 struct seq_file *seq = file->private_data;
1867 seq->private = inode->i_private;
1868 }
1869 return res;
1870 }
1871
1872 static const struct file_operations sge_qinfo_debugfs_fops = {
1873 .owner = THIS_MODULE,
1874 .open = sge_qinfo_open,
1875 .read = seq_read,
1876 .llseek = seq_lseek,
1877 .release = seq_release,
1878 };
1879
1880 /*
1881 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1882 */
1883 #define QPL 4
1884
1885 static int sge_qstats_show(struct seq_file *seq, void *v)
1886 {
1887 struct adapter *adapter = seq->private;
1888 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1889 int qs, r = (uintptr_t)v - 1;
1890
1891 if (r)
1892 seq_putc(seq, '\n');
1893
1894 #define S3(fmt, s, v) \
1895 do { \
1896 seq_printf(seq, "%-16s", s); \
1897 for (qs = 0; qs < n; ++qs) \
1898 seq_printf(seq, " %8" fmt, v); \
1899 seq_putc(seq, '\n'); \
1900 } while (0)
1901 #define S(s, v) S3("s", s, v)
1902
1903 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1904 #define T(s, v) T3("lu", s, v)
1905
1906 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1907 #define R(s, v) R3("lu", s, v)
1908
1909 if (r < eth_entries) {
1910 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1911 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1912 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1913
1914 S("QType:", "Ethernet");
1915 S("Interface:",
1916 (rxq[qs].rspq.netdev
1917 ? rxq[qs].rspq.netdev->name
1918 : "N/A"));
1919 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1920 R("RxPackets:", stats.pkts);
1921 R("RxCSO:", stats.rx_cso);
1922 R("VLANxtract:", stats.vlan_ex);
1923 R("LROmerged:", stats.lro_merged);
1924 R("LROpackets:", stats.lro_pkts);
1925 R("RxDrops:", stats.rx_drops);
1926 T("TSO:", tso);
1927 T("TxCSO:", tx_cso);
1928 T("VLANins:", vlan_ins);
1929 T("TxQFull:", q.stops);
1930 T("TxQRestarts:", q.restarts);
1931 T("TxMapErr:", mapping_err);
1932 R("FLAllocErr:", fl.alloc_failed);
1933 R("FLLrgAlcErr:", fl.large_alloc_failed);
1934 R("FLStarving:", fl.starving);
1935 return 0;
1936 }
1937
1938 r -= eth_entries;
1939 if (r == 0) {
1940 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1941
1942 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1943 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1944 evtq->unhandled_irqs);
1945 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1946 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1947 } else if (r == 1) {
1948 const struct sge_rspq *intrq = &adapter->sge.intrq;
1949
1950 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1951 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1952 intrq->unhandled_irqs);
1953 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1954 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1955 }
1956
1957 #undef R
1958 #undef T
1959 #undef S
1960 #undef R3
1961 #undef T3
1962 #undef S3
1963
1964 return 0;
1965 }
1966
1967 /*
1968 * Return the number of "entries" in our "file". We group the multi-Queue
1969 * sections with QPL Queue Sets per "entry". The sections of the output are:
1970 *
1971 * Ethernet RX/TX Queue Sets
1972 * Firmware Event Queue
1973 * Forwarded Interrupt Queue (if in MSI mode)
1974 */
1975 static int sge_qstats_entries(const struct adapter *adapter)
1976 {
1977 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1978 ((adapter->flags & USING_MSI) != 0);
1979 }
1980
1981 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1982 {
1983 int entries = sge_qstats_entries(seq->private);
1984
1985 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1986 }
1987
1988 static void sge_qstats_stop(struct seq_file *seq, void *v)
1989 {
1990 }
1991
1992 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1993 {
1994 int entries = sge_qstats_entries(seq->private);
1995
1996 (*pos)++;
1997 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1998 }
1999
2000 static const struct seq_operations sge_qstats_seq_ops = {
2001 .start = sge_qstats_start,
2002 .next = sge_qstats_next,
2003 .stop = sge_qstats_stop,
2004 .show = sge_qstats_show
2005 };
2006
2007 static int sge_qstats_open(struct inode *inode, struct file *file)
2008 {
2009 int res = seq_open(file, &sge_qstats_seq_ops);
2010
2011 if (res == 0) {
2012 struct seq_file *seq = file->private_data;
2013 seq->private = inode->i_private;
2014 }
2015 return res;
2016 }
2017
2018 static const struct file_operations sge_qstats_proc_fops = {
2019 .owner = THIS_MODULE,
2020 .open = sge_qstats_open,
2021 .read = seq_read,
2022 .llseek = seq_lseek,
2023 .release = seq_release,
2024 };
2025
2026 /*
2027 * Show PCI-E SR-IOV Virtual Function Resource Limits.
2028 */
2029 static int resources_show(struct seq_file *seq, void *v)
2030 {
2031 struct adapter *adapter = seq->private;
2032 struct vf_resources *vfres = &adapter->params.vfres;
2033
2034 #define S(desc, fmt, var) \
2035 seq_printf(seq, "%-60s " fmt "\n", \
2036 desc " (" #var "):", vfres->var)
2037
2038 S("Virtual Interfaces", "%d", nvi);
2039 S("Egress Queues", "%d", neq);
2040 S("Ethernet Control", "%d", nethctrl);
2041 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
2042 S("Ingress Queues", "%d", niq);
2043 S("Traffic Class", "%d", tc);
2044 S("Port Access Rights Mask", "%#x", pmask);
2045 S("MAC Address Filters", "%d", nexactf);
2046 S("Firmware Command Read Capabilities", "%#x", r_caps);
2047 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
2048
2049 #undef S
2050
2051 return 0;
2052 }
2053
2054 static int resources_open(struct inode *inode, struct file *file)
2055 {
2056 return single_open(file, resources_show, inode->i_private);
2057 }
2058
2059 static const struct file_operations resources_proc_fops = {
2060 .owner = THIS_MODULE,
2061 .open = resources_open,
2062 .read = seq_read,
2063 .llseek = seq_lseek,
2064 .release = single_release,
2065 };
2066
2067 /*
2068 * Show Virtual Interfaces.
2069 */
2070 static int interfaces_show(struct seq_file *seq, void *v)
2071 {
2072 if (v == SEQ_START_TOKEN) {
2073 seq_puts(seq, "Interface Port VIID\n");
2074 } else {
2075 struct adapter *adapter = seq->private;
2076 int pidx = (uintptr_t)v - 2;
2077 struct net_device *dev = adapter->port[pidx];
2078 struct port_info *pi = netdev_priv(dev);
2079
2080 seq_printf(seq, "%9s %4d %#5x\n",
2081 dev->name, pi->port_id, pi->viid);
2082 }
2083 return 0;
2084 }
2085
2086 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
2087 {
2088 return pos <= adapter->params.nports
2089 ? (void *)(uintptr_t)(pos + 1)
2090 : NULL;
2091 }
2092
2093 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
2094 {
2095 return *pos
2096 ? interfaces_get_idx(seq->private, *pos)
2097 : SEQ_START_TOKEN;
2098 }
2099
2100 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
2101 {
2102 (*pos)++;
2103 return interfaces_get_idx(seq->private, *pos);
2104 }
2105
2106 static void interfaces_stop(struct seq_file *seq, void *v)
2107 {
2108 }
2109
2110 static const struct seq_operations interfaces_seq_ops = {
2111 .start = interfaces_start,
2112 .next = interfaces_next,
2113 .stop = interfaces_stop,
2114 .show = interfaces_show
2115 };
2116
2117 static int interfaces_open(struct inode *inode, struct file *file)
2118 {
2119 int res = seq_open(file, &interfaces_seq_ops);
2120
2121 if (res == 0) {
2122 struct seq_file *seq = file->private_data;
2123 seq->private = inode->i_private;
2124 }
2125 return res;
2126 }
2127
2128 static const struct file_operations interfaces_proc_fops = {
2129 .owner = THIS_MODULE,
2130 .open = interfaces_open,
2131 .read = seq_read,
2132 .llseek = seq_lseek,
2133 .release = seq_release,
2134 };
2135
2136 /*
2137 * /sys/kernel/debugfs/cxgb4vf/ files list.
2138 */
2139 struct cxgb4vf_debugfs_entry {
2140 const char *name; /* name of debugfs node */
2141 umode_t mode; /* file system mode */
2142 const struct file_operations *fops;
2143 };
2144
2145 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2146 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2147 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2148 { "resources", S_IRUGO, &resources_proc_fops },
2149 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2150 };
2151
2152 /*
2153 * Module and device initialization and cleanup code.
2154 * ==================================================
2155 */
2156
2157 /*
2158 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2159 * directory (debugfs_root) has already been set up.
2160 */
2161 static int setup_debugfs(struct adapter *adapter)
2162 {
2163 int i;
2164
2165 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2166
2167 /*
2168 * Debugfs support is best effort.
2169 */
2170 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2171 (void)debugfs_create_file(debugfs_files[i].name,
2172 debugfs_files[i].mode,
2173 adapter->debugfs_root,
2174 (void *)adapter,
2175 debugfs_files[i].fops);
2176
2177 return 0;
2178 }
2179
2180 /*
2181 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2182 * it to our caller to tear down the directory (debugfs_root).
2183 */
2184 static void cleanup_debugfs(struct adapter *adapter)
2185 {
2186 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2187
2188 /*
2189 * Unlike our sister routine cleanup_proc(), we don't need to remove
2190 * individual entries because a call will be made to
2191 * debugfs_remove_recursive(). We just need to clean up any ancillary
2192 * persistent state.
2193 */
2194 /* nothing to do */
2195 }
2196
2197 /*
2198 * Perform early "adapter" initialization. This is where we discover what
2199 * adapter parameters we're going to be using and initialize basic adapter
2200 * hardware support.
2201 */
2202 static int adap_init0(struct adapter *adapter)
2203 {
2204 struct vf_resources *vfres = &adapter->params.vfres;
2205 struct sge_params *sge_params = &adapter->params.sge;
2206 struct sge *s = &adapter->sge;
2207 unsigned int ethqsets;
2208 int err;
2209 u32 param, val = 0;
2210
2211 /*
2212 * Wait for the device to become ready before proceeding ...
2213 */
2214 err = t4vf_wait_dev_ready(adapter);
2215 if (err) {
2216 dev_err(adapter->pdev_dev, "device didn't become ready:"
2217 " err=%d\n", err);
2218 return err;
2219 }
2220
2221 /*
2222 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2223 * 2.6.31 and later we can't call pci_reset_function() in order to
2224 * issue an FLR because of a self- deadlock on the device semaphore.
2225 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2226 * cases where they're needed -- for instance, some versions of KVM
2227 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2228 * use the firmware based reset in order to reset any per function
2229 * state.
2230 */
2231 err = t4vf_fw_reset(adapter);
2232 if (err < 0) {
2233 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2234 return err;
2235 }
2236
2237 /*
2238 * Grab basic operational parameters. These will predominantly have
2239 * been set up by the Physical Function Driver or will be hard coded
2240 * into the adapter. We just have to live with them ... Note that
2241 * we _must_ get our VPD parameters before our SGE parameters because
2242 * we need to know the adapter's core clock from the VPD in order to
2243 * properly decode the SGE Timer Values.
2244 */
2245 err = t4vf_get_dev_params(adapter);
2246 if (err) {
2247 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2248 " device parameters: err=%d\n", err);
2249 return err;
2250 }
2251 err = t4vf_get_vpd_params(adapter);
2252 if (err) {
2253 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2254 " VPD parameters: err=%d\n", err);
2255 return err;
2256 }
2257 err = t4vf_get_sge_params(adapter);
2258 if (err) {
2259 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2260 " SGE parameters: err=%d\n", err);
2261 return err;
2262 }
2263 err = t4vf_get_rss_glb_config(adapter);
2264 if (err) {
2265 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2266 " RSS parameters: err=%d\n", err);
2267 return err;
2268 }
2269 if (adapter->params.rss.mode !=
2270 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2271 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2272 " mode %d\n", adapter->params.rss.mode);
2273 return -EINVAL;
2274 }
2275 err = t4vf_sge_init(adapter);
2276 if (err) {
2277 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2278 " err=%d\n", err);
2279 return err;
2280 }
2281
2282 /* If we're running on newer firmware, let it know that we're
2283 * prepared to deal with encapsulated CPL messages. Older
2284 * firmware won't understand this and we'll just get
2285 * unencapsulated messages ...
2286 */
2287 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2288 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2289 val = 1;
2290 (void) t4vf_set_params(adapter, 1, &param, &val);
2291
2292 /*
2293 * Retrieve our RX interrupt holdoff timer values and counter
2294 * threshold values from the SGE parameters.
2295 */
2296 s->timer_val[0] = core_ticks_to_us(adapter,
2297 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2298 s->timer_val[1] = core_ticks_to_us(adapter,
2299 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2300 s->timer_val[2] = core_ticks_to_us(adapter,
2301 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2302 s->timer_val[3] = core_ticks_to_us(adapter,
2303 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2304 s->timer_val[4] = core_ticks_to_us(adapter,
2305 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2306 s->timer_val[5] = core_ticks_to_us(adapter,
2307 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2308
2309 s->counter_val[0] =
2310 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2311 s->counter_val[1] =
2312 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2313 s->counter_val[2] =
2314 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2315 s->counter_val[3] =
2316 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2317
2318 /*
2319 * Grab our Virtual Interface resource allocation, extract the
2320 * features that we're interested in and do a bit of sanity testing on
2321 * what we discover.
2322 */
2323 err = t4vf_get_vfres(adapter);
2324 if (err) {
2325 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2326 " resources: err=%d\n", err);
2327 return err;
2328 }
2329
2330 /*
2331 * The number of "ports" which we support is equal to the number of
2332 * Virtual Interfaces with which we've been provisioned.
2333 */
2334 adapter->params.nports = vfres->nvi;
2335 if (adapter->params.nports > MAX_NPORTS) {
2336 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2337 " virtual interfaces\n", MAX_NPORTS,
2338 adapter->params.nports);
2339 adapter->params.nports = MAX_NPORTS;
2340 }
2341
2342 /*
2343 * We need to reserve a number of the ingress queues with Free List
2344 * and Interrupt capabilities for special interrupt purposes (like
2345 * asynchronous firmware messages, or forwarded interrupts if we're
2346 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2347 * matched up one-for-one with Ethernet/Control egress queues in order
2348 * to form "Queue Sets" which will be aportioned between the "ports".
2349 * For each Queue Set, we'll need the ability to allocate two Egress
2350 * Contexts -- one for the Ingress Queue Free List and one for the TX
2351 * Ethernet Queue.
2352 */
2353 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2354 if (vfres->nethctrl != ethqsets) {
2355 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2356 " ingress/egress queues (%d/%d); using minimum for"
2357 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2358 ethqsets = min(vfres->nethctrl, ethqsets);
2359 }
2360 if (vfres->neq < ethqsets*2) {
2361 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2362 " to support Queue Sets (%d); reducing allowed Queue"
2363 " Sets\n", vfres->neq, ethqsets);
2364 ethqsets = vfres->neq/2;
2365 }
2366 if (ethqsets > MAX_ETH_QSETS) {
2367 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2368 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2369 ethqsets = MAX_ETH_QSETS;
2370 }
2371 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2372 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2373 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2374 }
2375 adapter->sge.max_ethqsets = ethqsets;
2376
2377 /*
2378 * Check for various parameter sanity issues. Most checks simply
2379 * result in us using fewer resources than our provissioning but we
2380 * do need at least one "port" with which to work ...
2381 */
2382 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2383 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2384 " virtual interfaces (too few Queue Sets)\n",
2385 adapter->sge.max_ethqsets, adapter->params.nports);
2386 adapter->params.nports = adapter->sge.max_ethqsets;
2387 }
2388 if (adapter->params.nports == 0) {
2389 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2390 "usable!\n");
2391 return -EINVAL;
2392 }
2393 return 0;
2394 }
2395
2396 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2397 u8 pkt_cnt_idx, unsigned int size,
2398 unsigned int iqe_size)
2399 {
2400 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2401 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2402 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2403 ? pkt_cnt_idx
2404 : 0);
2405 rspq->iqe_len = iqe_size;
2406 rspq->size = size;
2407 }
2408
2409 /*
2410 * Perform default configuration of DMA queues depending on the number and
2411 * type of ports we found and the number of available CPUs. Most settings can
2412 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2413 * being brought up for the first time.
2414 */
2415 static void cfg_queues(struct adapter *adapter)
2416 {
2417 struct sge *s = &adapter->sge;
2418 int q10g, n10g, qidx, pidx, qs;
2419 size_t iqe_size;
2420
2421 /*
2422 * We should not be called till we know how many Queue Sets we can
2423 * support. In particular, this means that we need to know what kind
2424 * of interrupts we'll be using ...
2425 */
2426 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2427
2428 /*
2429 * Count the number of 10GbE Virtual Interfaces that we have.
2430 */
2431 n10g = 0;
2432 for_each_port(adapter, pidx)
2433 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2434
2435 /*
2436 * We default to 1 queue per non-10G port and up to # of cores queues
2437 * per 10G port.
2438 */
2439 if (n10g == 0)
2440 q10g = 0;
2441 else {
2442 int n1g = (adapter->params.nports - n10g);
2443 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2444 if (q10g > num_online_cpus())
2445 q10g = num_online_cpus();
2446 }
2447
2448 /*
2449 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2450 * The layout will be established in setup_sge_queues() when the
2451 * adapter is brough up for the first time.
2452 */
2453 qidx = 0;
2454 for_each_port(adapter, pidx) {
2455 struct port_info *pi = adap2pinfo(adapter, pidx);
2456
2457 pi->first_qset = qidx;
2458 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2459 qidx += pi->nqsets;
2460 }
2461 s->ethqsets = qidx;
2462
2463 /*
2464 * The Ingress Queue Entry Size for our various Response Queues needs
2465 * to be big enough to accommodate the largest message we can receive
2466 * from the chip/firmware; which is 64 bytes ...
2467 */
2468 iqe_size = 64;
2469
2470 /*
2471 * Set up default Queue Set parameters ... Start off with the
2472 * shortest interrupt holdoff timer.
2473 */
2474 for (qs = 0; qs < s->max_ethqsets; qs++) {
2475 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2476 struct sge_eth_txq *txq = &s->ethtxq[qs];
2477
2478 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2479 rxq->fl.size = 72;
2480 txq->q.size = 1024;
2481 }
2482
2483 /*
2484 * The firmware event queue is used for link state changes and
2485 * notifications of TX DMA completions.
2486 */
2487 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2488
2489 /*
2490 * The forwarded interrupt queue is used when we're in MSI interrupt
2491 * mode. In this mode all interrupts associated with RX queues will
2492 * be forwarded to a single queue which we'll associate with our MSI
2493 * interrupt vector. The messages dropped in the forwarded interrupt
2494 * queue will indicate which ingress queue needs servicing ... This
2495 * queue needs to be large enough to accommodate all of the ingress
2496 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2497 * from equalling the CIDX if every ingress queue has an outstanding
2498 * interrupt). The queue doesn't need to be any larger because no
2499 * ingress queue will ever have more than one outstanding interrupt at
2500 * any time ...
2501 */
2502 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2503 iqe_size);
2504 }
2505
2506 /*
2507 * Reduce the number of Ethernet queues across all ports to at most n.
2508 * n provides at least one queue per port.
2509 */
2510 static void reduce_ethqs(struct adapter *adapter, int n)
2511 {
2512 int i;
2513 struct port_info *pi;
2514
2515 /*
2516 * While we have too many active Ether Queue Sets, interate across the
2517 * "ports" and reduce their individual Queue Set allocations.
2518 */
2519 BUG_ON(n < adapter->params.nports);
2520 while (n < adapter->sge.ethqsets)
2521 for_each_port(adapter, i) {
2522 pi = adap2pinfo(adapter, i);
2523 if (pi->nqsets > 1) {
2524 pi->nqsets--;
2525 adapter->sge.ethqsets--;
2526 if (adapter->sge.ethqsets <= n)
2527 break;
2528 }
2529 }
2530
2531 /*
2532 * Reassign the starting Queue Sets for each of the "ports" ...
2533 */
2534 n = 0;
2535 for_each_port(adapter, i) {
2536 pi = adap2pinfo(adapter, i);
2537 pi->first_qset = n;
2538 n += pi->nqsets;
2539 }
2540 }
2541
2542 /*
2543 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2544 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2545 * need. Minimally we need one for every Virtual Interface plus those needed
2546 * for our "extras". Note that this process may lower the maximum number of
2547 * allowed Queue Sets ...
2548 */
2549 static int enable_msix(struct adapter *adapter)
2550 {
2551 int i, want, need, nqsets;
2552 struct msix_entry entries[MSIX_ENTRIES];
2553 struct sge *s = &adapter->sge;
2554
2555 for (i = 0; i < MSIX_ENTRIES; ++i)
2556 entries[i].entry = i;
2557
2558 /*
2559 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2560 * plus those needed for our "extras" (for example, the firmware
2561 * message queue). We _need_ at least one "Queue Set" per Virtual
2562 * Interface plus those needed for our "extras". So now we get to see
2563 * if the song is right ...
2564 */
2565 want = s->max_ethqsets + MSIX_EXTRAS;
2566 need = adapter->params.nports + MSIX_EXTRAS;
2567
2568 want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2569 if (want < 0)
2570 return want;
2571
2572 nqsets = want - MSIX_EXTRAS;
2573 if (nqsets < s->max_ethqsets) {
2574 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2575 " for %d Queue Sets\n", nqsets);
2576 s->max_ethqsets = nqsets;
2577 if (nqsets < s->ethqsets)
2578 reduce_ethqs(adapter, nqsets);
2579 }
2580 for (i = 0; i < want; ++i)
2581 adapter->msix_info[i].vec = entries[i].vector;
2582
2583 return 0;
2584 }
2585
2586 static const struct net_device_ops cxgb4vf_netdev_ops = {
2587 .ndo_open = cxgb4vf_open,
2588 .ndo_stop = cxgb4vf_stop,
2589 .ndo_start_xmit = t4vf_eth_xmit,
2590 .ndo_get_stats = cxgb4vf_get_stats,
2591 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2592 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2593 .ndo_validate_addr = eth_validate_addr,
2594 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2595 .ndo_change_mtu = cxgb4vf_change_mtu,
2596 .ndo_fix_features = cxgb4vf_fix_features,
2597 .ndo_set_features = cxgb4vf_set_features,
2598 #ifdef CONFIG_NET_POLL_CONTROLLER
2599 .ndo_poll_controller = cxgb4vf_poll_controller,
2600 #endif
2601 };
2602
2603 /*
2604 * "Probe" a device: initialize a device and construct all kernel and driver
2605 * state needed to manage the device. This routine is called "init_one" in
2606 * the PF Driver ...
2607 */
2608 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2609 const struct pci_device_id *ent)
2610 {
2611 int pci_using_dac;
2612 int err, pidx;
2613 unsigned int pmask;
2614 struct adapter *adapter;
2615 struct port_info *pi;
2616 struct net_device *netdev;
2617
2618 /*
2619 * Print our driver banner the first time we're called to initialize a
2620 * device.
2621 */
2622 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2623
2624 /*
2625 * Initialize generic PCI device state.
2626 */
2627 err = pci_enable_device(pdev);
2628 if (err) {
2629 dev_err(&pdev->dev, "cannot enable PCI device\n");
2630 return err;
2631 }
2632
2633 /*
2634 * Reserve PCI resources for the device. If we can't get them some
2635 * other driver may have already claimed the device ...
2636 */
2637 err = pci_request_regions(pdev, KBUILD_MODNAME);
2638 if (err) {
2639 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2640 goto err_disable_device;
2641 }
2642
2643 /*
2644 * Set up our DMA mask: try for 64-bit address masking first and
2645 * fall back to 32-bit if we can't get 64 bits ...
2646 */
2647 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2648 if (err == 0) {
2649 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2650 if (err) {
2651 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2652 " coherent allocations\n");
2653 goto err_release_regions;
2654 }
2655 pci_using_dac = 1;
2656 } else {
2657 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2658 if (err != 0) {
2659 dev_err(&pdev->dev, "no usable DMA configuration\n");
2660 goto err_release_regions;
2661 }
2662 pci_using_dac = 0;
2663 }
2664
2665 /*
2666 * Enable bus mastering for the device ...
2667 */
2668 pci_set_master(pdev);
2669
2670 /*
2671 * Allocate our adapter data structure and attach it to the device.
2672 */
2673 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2674 if (!adapter) {
2675 err = -ENOMEM;
2676 goto err_release_regions;
2677 }
2678 pci_set_drvdata(pdev, adapter);
2679 adapter->pdev = pdev;
2680 adapter->pdev_dev = &pdev->dev;
2681
2682 /*
2683 * Initialize SMP data synchronization resources.
2684 */
2685 spin_lock_init(&adapter->stats_lock);
2686
2687 /*
2688 * Map our I/O registers in BAR0.
2689 */
2690 adapter->regs = pci_ioremap_bar(pdev, 0);
2691 if (!adapter->regs) {
2692 dev_err(&pdev->dev, "cannot map device registers\n");
2693 err = -ENOMEM;
2694 goto err_free_adapter;
2695 }
2696
2697 /* Wait for the device to become ready before proceeding ...
2698 */
2699 err = t4vf_prep_adapter(adapter);
2700 if (err) {
2701 dev_err(adapter->pdev_dev, "device didn't become ready:"
2702 " err=%d\n", err);
2703 goto err_unmap_bar0;
2704 }
2705
2706 /* For T5 and later we want to use the new BAR-based User Doorbells,
2707 * so we need to map BAR2 here ...
2708 */
2709 if (!is_t4(adapter->params.chip)) {
2710 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2711 pci_resource_len(pdev, 2));
2712 if (!adapter->bar2) {
2713 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2714 err = -ENOMEM;
2715 goto err_unmap_bar0;
2716 }
2717 }
2718 /*
2719 * Initialize adapter level features.
2720 */
2721 adapter->name = pci_name(pdev);
2722 adapter->msg_enable = dflt_msg_enable;
2723 err = adap_init0(adapter);
2724 if (err)
2725 goto err_unmap_bar;
2726
2727 /*
2728 * Allocate our "adapter ports" and stitch everything together.
2729 */
2730 pmask = adapter->params.vfres.pmask;
2731 for_each_port(adapter, pidx) {
2732 int port_id, viid;
2733
2734 /*
2735 * We simplistically allocate our virtual interfaces
2736 * sequentially across the port numbers to which we have
2737 * access rights. This should be configurable in some manner
2738 * ...
2739 */
2740 if (pmask == 0)
2741 break;
2742 port_id = ffs(pmask) - 1;
2743 pmask &= ~(1 << port_id);
2744 viid = t4vf_alloc_vi(adapter, port_id);
2745 if (viid < 0) {
2746 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2747 " err=%d\n", port_id, viid);
2748 err = viid;
2749 goto err_free_dev;
2750 }
2751
2752 /*
2753 * Allocate our network device and stitch things together.
2754 */
2755 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2756 MAX_PORT_QSETS);
2757 if (netdev == NULL) {
2758 t4vf_free_vi(adapter, viid);
2759 err = -ENOMEM;
2760 goto err_free_dev;
2761 }
2762 adapter->port[pidx] = netdev;
2763 SET_NETDEV_DEV(netdev, &pdev->dev);
2764 pi = netdev_priv(netdev);
2765 pi->adapter = adapter;
2766 pi->pidx = pidx;
2767 pi->port_id = port_id;
2768 pi->viid = viid;
2769
2770 /*
2771 * Initialize the starting state of our "port" and register
2772 * it.
2773 */
2774 pi->xact_addr_filt = -1;
2775 netif_carrier_off(netdev);
2776 netdev->irq = pdev->irq;
2777
2778 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2779 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2780 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2781 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2782 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2783 NETIF_F_HIGHDMA;
2784 netdev->features = netdev->hw_features |
2785 NETIF_F_HW_VLAN_CTAG_TX;
2786 if (pci_using_dac)
2787 netdev->features |= NETIF_F_HIGHDMA;
2788
2789 netdev->priv_flags |= IFF_UNICAST_FLT;
2790
2791 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2792 netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2793
2794 /*
2795 * Initialize the hardware/software state for the port.
2796 */
2797 err = t4vf_port_init(adapter, pidx);
2798 if (err) {
2799 dev_err(&pdev->dev, "cannot initialize port %d\n",
2800 pidx);
2801 goto err_free_dev;
2802 }
2803 }
2804
2805 /*
2806 * The "card" is now ready to go. If any errors occur during device
2807 * registration we do not fail the whole "card" but rather proceed
2808 * only with the ports we manage to register successfully. However we
2809 * must register at least one net device.
2810 */
2811 for_each_port(adapter, pidx) {
2812 netdev = adapter->port[pidx];
2813 if (netdev == NULL)
2814 continue;
2815
2816 err = register_netdev(netdev);
2817 if (err) {
2818 dev_warn(&pdev->dev, "cannot register net device %s,"
2819 " skipping\n", netdev->name);
2820 continue;
2821 }
2822
2823 set_bit(pidx, &adapter->registered_device_map);
2824 }
2825 if (adapter->registered_device_map == 0) {
2826 dev_err(&pdev->dev, "could not register any net devices\n");
2827 goto err_free_dev;
2828 }
2829
2830 /*
2831 * Set up our debugfs entries.
2832 */
2833 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2834 adapter->debugfs_root =
2835 debugfs_create_dir(pci_name(pdev),
2836 cxgb4vf_debugfs_root);
2837 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2838 dev_warn(&pdev->dev, "could not create debugfs"
2839 " directory");
2840 else
2841 setup_debugfs(adapter);
2842 }
2843
2844 /*
2845 * See what interrupts we'll be using. If we've been configured to
2846 * use MSI-X interrupts, try to enable them but fall back to using
2847 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2848 * get MSI interrupts we bail with the error.
2849 */
2850 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2851 adapter->flags |= USING_MSIX;
2852 else {
2853 err = pci_enable_msi(pdev);
2854 if (err) {
2855 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2856 " err=%d\n",
2857 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2858 goto err_free_debugfs;
2859 }
2860 adapter->flags |= USING_MSI;
2861 }
2862
2863 /*
2864 * Now that we know how many "ports" we have and what their types are,
2865 * and how many Queue Sets we can support, we can configure our queue
2866 * resources.
2867 */
2868 cfg_queues(adapter);
2869
2870 /*
2871 * Print a short notice on the existence and configuration of the new
2872 * VF network device ...
2873 */
2874 for_each_port(adapter, pidx) {
2875 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2876 adapter->port[pidx]->name,
2877 (adapter->flags & USING_MSIX) ? "MSI-X" :
2878 (adapter->flags & USING_MSI) ? "MSI" : "");
2879 }
2880
2881 /*
2882 * Return success!
2883 */
2884 return 0;
2885
2886 /*
2887 * Error recovery and exit code. Unwind state that's been created
2888 * so far and return the error.
2889 */
2890
2891 err_free_debugfs:
2892 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2893 cleanup_debugfs(adapter);
2894 debugfs_remove_recursive(adapter->debugfs_root);
2895 }
2896
2897 err_free_dev:
2898 for_each_port(adapter, pidx) {
2899 netdev = adapter->port[pidx];
2900 if (netdev == NULL)
2901 continue;
2902 pi = netdev_priv(netdev);
2903 t4vf_free_vi(adapter, pi->viid);
2904 if (test_bit(pidx, &adapter->registered_device_map))
2905 unregister_netdev(netdev);
2906 free_netdev(netdev);
2907 }
2908
2909 err_unmap_bar:
2910 if (!is_t4(adapter->params.chip))
2911 iounmap(adapter->bar2);
2912
2913 err_unmap_bar0:
2914 iounmap(adapter->regs);
2915
2916 err_free_adapter:
2917 kfree(adapter);
2918
2919 err_release_regions:
2920 pci_release_regions(pdev);
2921 pci_clear_master(pdev);
2922
2923 err_disable_device:
2924 pci_disable_device(pdev);
2925
2926 return err;
2927 }
2928
2929 /*
2930 * "Remove" a device: tear down all kernel and driver state created in the
2931 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2932 * that this is called "remove_one" in the PF Driver.)
2933 */
2934 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2935 {
2936 struct adapter *adapter = pci_get_drvdata(pdev);
2937
2938 /*
2939 * Tear down driver state associated with device.
2940 */
2941 if (adapter) {
2942 int pidx;
2943
2944 /*
2945 * Stop all of our activity. Unregister network port,
2946 * disable interrupts, etc.
2947 */
2948 for_each_port(adapter, pidx)
2949 if (test_bit(pidx, &adapter->registered_device_map))
2950 unregister_netdev(adapter->port[pidx]);
2951 t4vf_sge_stop(adapter);
2952 if (adapter->flags & USING_MSIX) {
2953 pci_disable_msix(adapter->pdev);
2954 adapter->flags &= ~USING_MSIX;
2955 } else if (adapter->flags & USING_MSI) {
2956 pci_disable_msi(adapter->pdev);
2957 adapter->flags &= ~USING_MSI;
2958 }
2959
2960 /*
2961 * Tear down our debugfs entries.
2962 */
2963 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2964 cleanup_debugfs(adapter);
2965 debugfs_remove_recursive(adapter->debugfs_root);
2966 }
2967
2968 /*
2969 * Free all of the various resources which we've acquired ...
2970 */
2971 t4vf_free_sge_resources(adapter);
2972 for_each_port(adapter, pidx) {
2973 struct net_device *netdev = adapter->port[pidx];
2974 struct port_info *pi;
2975
2976 if (netdev == NULL)
2977 continue;
2978
2979 pi = netdev_priv(netdev);
2980 t4vf_free_vi(adapter, pi->viid);
2981 free_netdev(netdev);
2982 }
2983 iounmap(adapter->regs);
2984 if (!is_t4(adapter->params.chip))
2985 iounmap(adapter->bar2);
2986 kfree(adapter);
2987 }
2988
2989 /*
2990 * Disable the device and release its PCI resources.
2991 */
2992 pci_disable_device(pdev);
2993 pci_clear_master(pdev);
2994 pci_release_regions(pdev);
2995 }
2996
2997 /*
2998 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2999 * delivery.
3000 */
3001 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
3002 {
3003 struct adapter *adapter;
3004 int pidx;
3005
3006 adapter = pci_get_drvdata(pdev);
3007 if (!adapter)
3008 return;
3009
3010 /* Disable all Virtual Interfaces. This will shut down the
3011 * delivery of all ingress packets into the chip for these
3012 * Virtual Interfaces.
3013 */
3014 for_each_port(adapter, pidx)
3015 if (test_bit(pidx, &adapter->registered_device_map))
3016 unregister_netdev(adapter->port[pidx]);
3017
3018 /* Free up all Queues which will prevent further DMA and
3019 * Interrupts allowing various internal pathways to drain.
3020 */
3021 t4vf_sge_stop(adapter);
3022 if (adapter->flags & USING_MSIX) {
3023 pci_disable_msix(adapter->pdev);
3024 adapter->flags &= ~USING_MSIX;
3025 } else if (adapter->flags & USING_MSI) {
3026 pci_disable_msi(adapter->pdev);
3027 adapter->flags &= ~USING_MSI;
3028 }
3029
3030 /*
3031 * Free up all Queues which will prevent further DMA and
3032 * Interrupts allowing various internal pathways to drain.
3033 */
3034 t4vf_free_sge_resources(adapter);
3035 pci_set_drvdata(pdev, NULL);
3036 }
3037
3038 /* Macros needed to support the PCI Device ID Table ...
3039 */
3040 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
3041 static struct pci_device_id cxgb4vf_pci_tbl[] = {
3042 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
3043
3044 #define CH_PCI_ID_TABLE_ENTRY(devid) \
3045 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
3046
3047 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
3048
3049 #include "../cxgb4/t4_pci_id_tbl.h"
3050
3051 MODULE_DESCRIPTION(DRV_DESC);
3052 MODULE_AUTHOR("Chelsio Communications");
3053 MODULE_LICENSE("Dual BSD/GPL");
3054 MODULE_VERSION(DRV_VERSION);
3055 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
3056
3057 static struct pci_driver cxgb4vf_driver = {
3058 .name = KBUILD_MODNAME,
3059 .id_table = cxgb4vf_pci_tbl,
3060 .probe = cxgb4vf_pci_probe,
3061 .remove = cxgb4vf_pci_remove,
3062 .shutdown = cxgb4vf_pci_shutdown,
3063 };
3064
3065 /*
3066 * Initialize global driver state.
3067 */
3068 static int __init cxgb4vf_module_init(void)
3069 {
3070 int ret;
3071
3072 /*
3073 * Vet our module parameters.
3074 */
3075 if (msi != MSI_MSIX && msi != MSI_MSI) {
3076 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
3077 msi, MSI_MSIX, MSI_MSI);
3078 return -EINVAL;
3079 }
3080
3081 /* Debugfs support is optional, just warn if this fails */
3082 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
3083 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3084 pr_warn("could not create debugfs entry, continuing\n");
3085
3086 ret = pci_register_driver(&cxgb4vf_driver);
3087 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
3088 debugfs_remove(cxgb4vf_debugfs_root);
3089 return ret;
3090 }
3091
3092 /*
3093 * Tear down global driver state.
3094 */
3095 static void __exit cxgb4vf_module_exit(void)
3096 {
3097 pci_unregister_driver(&cxgb4vf_driver);
3098 debugfs_remove(cxgb4vf_debugfs_root);
3099 }
3100
3101 module_init(cxgb4vf_module_init);
3102 module_exit(cxgb4vf_module_exit);
This page took 0.098054 seconds and 5 git commands to generate.