cxgb4vf: Add and initialize some sge params for VF driver
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / cxgb4vf_main.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/init.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/netdevice.h>
44 #include <linux/etherdevice.h>
45 #include <linux/debugfs.h>
46 #include <linux/ethtool.h>
47
48 #include "t4vf_common.h"
49 #include "t4vf_defs.h"
50
51 #include "../cxgb4/t4_regs.h"
52 #include "../cxgb4/t4_msg.h"
53
54 /*
55 * Generic information about the driver.
56 */
57 #define DRV_VERSION "2.0.0-ko"
58 #define DRV_DESC "Chelsio T4/T5 Virtual Function (VF) Network Driver"
59
60 /*
61 * Module Parameters.
62 * ==================
63 */
64
65 /*
66 * Default ethtool "message level" for adapters.
67 */
68 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
69 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
70 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
71
72 static int dflt_msg_enable = DFLT_MSG_ENABLE;
73
74 module_param(dflt_msg_enable, int, 0644);
75 MODULE_PARM_DESC(dflt_msg_enable,
76 "default adapter ethtool message level bitmap");
77
78 /*
79 * The driver uses the best interrupt scheme available on a platform in the
80 * order MSI-X then MSI. This parameter determines which of these schemes the
81 * driver may consider as follows:
82 *
83 * msi = 2: choose from among MSI-X and MSI
84 * msi = 1: only consider MSI interrupts
85 *
86 * Note that unlike the Physical Function driver, this Virtual Function driver
87 * does _not_ support legacy INTx interrupts (this limitation is mandated by
88 * the PCI-E SR-IOV standard).
89 */
90 #define MSI_MSIX 2
91 #define MSI_MSI 1
92 #define MSI_DEFAULT MSI_MSIX
93
94 static int msi = MSI_DEFAULT;
95
96 module_param(msi, int, 0644);
97 MODULE_PARM_DESC(msi, "whether to use MSI-X or MSI");
98
99 /*
100 * Fundamental constants.
101 * ======================
102 */
103
104 enum {
105 MAX_TXQ_ENTRIES = 16384,
106 MAX_RSPQ_ENTRIES = 16384,
107 MAX_RX_BUFFERS = 16384,
108
109 MIN_TXQ_ENTRIES = 32,
110 MIN_RSPQ_ENTRIES = 128,
111 MIN_FL_ENTRIES = 16,
112
113 /*
114 * For purposes of manipulating the Free List size we need to
115 * recognize that Free Lists are actually Egress Queues (the host
116 * produces free buffers which the hardware consumes), Egress Queues
117 * indices are all in units of Egress Context Units bytes, and free
118 * list entries are 64-bit PCI DMA addresses. And since the state of
119 * the Producer Index == the Consumer Index implies an EMPTY list, we
120 * always have at least one Egress Unit's worth of Free List entries
121 * unused. See sge.c for more details ...
122 */
123 EQ_UNIT = SGE_EQ_IDXSIZE,
124 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
125 MIN_FL_RESID = FL_PER_EQ_UNIT,
126 };
127
128 /*
129 * Global driver state.
130 * ====================
131 */
132
133 static struct dentry *cxgb4vf_debugfs_root;
134
135 /*
136 * OS "Callback" functions.
137 * ========================
138 */
139
140 /*
141 * The link status has changed on the indicated "port" (Virtual Interface).
142 */
143 void t4vf_os_link_changed(struct adapter *adapter, int pidx, int link_ok)
144 {
145 struct net_device *dev = adapter->port[pidx];
146
147 /*
148 * If the port is disabled or the current recorded "link up"
149 * status matches the new status, just return.
150 */
151 if (!netif_running(dev) || link_ok == netif_carrier_ok(dev))
152 return;
153
154 /*
155 * Tell the OS that the link status has changed and print a short
156 * informative message on the console about the event.
157 */
158 if (link_ok) {
159 const char *s;
160 const char *fc;
161 const struct port_info *pi = netdev_priv(dev);
162
163 netif_carrier_on(dev);
164
165 switch (pi->link_cfg.speed) {
166 case 40000:
167 s = "40Gbps";
168 break;
169
170 case 10000:
171 s = "10Gbps";
172 break;
173
174 case 1000:
175 s = "1000Mbps";
176 break;
177
178 case 100:
179 s = "100Mbps";
180 break;
181
182 default:
183 s = "unknown";
184 break;
185 }
186
187 switch (pi->link_cfg.fc) {
188 case PAUSE_RX:
189 fc = "RX";
190 break;
191
192 case PAUSE_TX:
193 fc = "TX";
194 break;
195
196 case PAUSE_RX|PAUSE_TX:
197 fc = "RX/TX";
198 break;
199
200 default:
201 fc = "no";
202 break;
203 }
204
205 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s, fc);
206 } else {
207 netif_carrier_off(dev);
208 netdev_info(dev, "link down\n");
209 }
210 }
211
212 /*
213 * Net device operations.
214 * ======================
215 */
216
217
218
219
220 /*
221 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
222 * Interface).
223 */
224 static int link_start(struct net_device *dev)
225 {
226 int ret;
227 struct port_info *pi = netdev_priv(dev);
228
229 /*
230 * We do not set address filters and promiscuity here, the stack does
231 * that step explicitly. Enable vlan accel.
232 */
233 ret = t4vf_set_rxmode(pi->adapter, pi->viid, dev->mtu, -1, -1, -1, 1,
234 true);
235 if (ret == 0) {
236 ret = t4vf_change_mac(pi->adapter, pi->viid,
237 pi->xact_addr_filt, dev->dev_addr, true);
238 if (ret >= 0) {
239 pi->xact_addr_filt = ret;
240 ret = 0;
241 }
242 }
243
244 /*
245 * We don't need to actually "start the link" itself since the
246 * firmware will do that for us when the first Virtual Interface
247 * is enabled on a port.
248 */
249 if (ret == 0)
250 ret = t4vf_enable_vi(pi->adapter, pi->viid, true, true);
251 return ret;
252 }
253
254 /*
255 * Name the MSI-X interrupts.
256 */
257 static void name_msix_vecs(struct adapter *adapter)
258 {
259 int namelen = sizeof(adapter->msix_info[0].desc) - 1;
260 int pidx;
261
262 /*
263 * Firmware events.
264 */
265 snprintf(adapter->msix_info[MSIX_FW].desc, namelen,
266 "%s-FWeventq", adapter->name);
267 adapter->msix_info[MSIX_FW].desc[namelen] = 0;
268
269 /*
270 * Ethernet queues.
271 */
272 for_each_port(adapter, pidx) {
273 struct net_device *dev = adapter->port[pidx];
274 const struct port_info *pi = netdev_priv(dev);
275 int qs, msi;
276
277 for (qs = 0, msi = MSIX_IQFLINT; qs < pi->nqsets; qs++, msi++) {
278 snprintf(adapter->msix_info[msi].desc, namelen,
279 "%s-%d", dev->name, qs);
280 adapter->msix_info[msi].desc[namelen] = 0;
281 }
282 }
283 }
284
285 /*
286 * Request all of our MSI-X resources.
287 */
288 static int request_msix_queue_irqs(struct adapter *adapter)
289 {
290 struct sge *s = &adapter->sge;
291 int rxq, msi, err;
292
293 /*
294 * Firmware events.
295 */
296 err = request_irq(adapter->msix_info[MSIX_FW].vec, t4vf_sge_intr_msix,
297 0, adapter->msix_info[MSIX_FW].desc, &s->fw_evtq);
298 if (err)
299 return err;
300
301 /*
302 * Ethernet queues.
303 */
304 msi = MSIX_IQFLINT;
305 for_each_ethrxq(s, rxq) {
306 err = request_irq(adapter->msix_info[msi].vec,
307 t4vf_sge_intr_msix, 0,
308 adapter->msix_info[msi].desc,
309 &s->ethrxq[rxq].rspq);
310 if (err)
311 goto err_free_irqs;
312 msi++;
313 }
314 return 0;
315
316 err_free_irqs:
317 while (--rxq >= 0)
318 free_irq(adapter->msix_info[--msi].vec, &s->ethrxq[rxq].rspq);
319 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
320 return err;
321 }
322
323 /*
324 * Free our MSI-X resources.
325 */
326 static void free_msix_queue_irqs(struct adapter *adapter)
327 {
328 struct sge *s = &adapter->sge;
329 int rxq, msi;
330
331 free_irq(adapter->msix_info[MSIX_FW].vec, &s->fw_evtq);
332 msi = MSIX_IQFLINT;
333 for_each_ethrxq(s, rxq)
334 free_irq(adapter->msix_info[msi++].vec,
335 &s->ethrxq[rxq].rspq);
336 }
337
338 /*
339 * Turn on NAPI and start up interrupts on a response queue.
340 */
341 static void qenable(struct sge_rspq *rspq)
342 {
343 napi_enable(&rspq->napi);
344
345 /*
346 * 0-increment the Going To Sleep register to start the timer and
347 * enable interrupts.
348 */
349 t4_write_reg(rspq->adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
350 CIDXINC(0) |
351 SEINTARM(rspq->intr_params) |
352 INGRESSQID(rspq->cntxt_id));
353 }
354
355 /*
356 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
357 */
358 static void enable_rx(struct adapter *adapter)
359 {
360 int rxq;
361 struct sge *s = &adapter->sge;
362
363 for_each_ethrxq(s, rxq)
364 qenable(&s->ethrxq[rxq].rspq);
365 qenable(&s->fw_evtq);
366
367 /*
368 * The interrupt queue doesn't use NAPI so we do the 0-increment of
369 * its Going To Sleep register here to get it started.
370 */
371 if (adapter->flags & USING_MSI)
372 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
373 CIDXINC(0) |
374 SEINTARM(s->intrq.intr_params) |
375 INGRESSQID(s->intrq.cntxt_id));
376
377 }
378
379 /*
380 * Wait until all NAPI handlers are descheduled.
381 */
382 static void quiesce_rx(struct adapter *adapter)
383 {
384 struct sge *s = &adapter->sge;
385 int rxq;
386
387 for_each_ethrxq(s, rxq)
388 napi_disable(&s->ethrxq[rxq].rspq.napi);
389 napi_disable(&s->fw_evtq.napi);
390 }
391
392 /*
393 * Response queue handler for the firmware event queue.
394 */
395 static int fwevtq_handler(struct sge_rspq *rspq, const __be64 *rsp,
396 const struct pkt_gl *gl)
397 {
398 /*
399 * Extract response opcode and get pointer to CPL message body.
400 */
401 struct adapter *adapter = rspq->adapter;
402 u8 opcode = ((const struct rss_header *)rsp)->opcode;
403 void *cpl = (void *)(rsp + 1);
404
405 switch (opcode) {
406 case CPL_FW6_MSG: {
407 /*
408 * We've received an asynchronous message from the firmware.
409 */
410 const struct cpl_fw6_msg *fw_msg = cpl;
411 if (fw_msg->type == FW6_TYPE_CMD_RPL)
412 t4vf_handle_fw_rpl(adapter, fw_msg->data);
413 break;
414 }
415
416 case CPL_FW4_MSG: {
417 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
418 */
419 const struct cpl_sge_egr_update *p = (void *)(rsp + 3);
420 opcode = G_CPL_OPCODE(ntohl(p->opcode_qid));
421 if (opcode != CPL_SGE_EGR_UPDATE) {
422 dev_err(adapter->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
423 , opcode);
424 break;
425 }
426 cpl = (void *)p;
427 /*FALLTHROUGH*/
428 }
429
430 case CPL_SGE_EGR_UPDATE: {
431 /*
432 * We've received an Egress Queue Status Update message. We
433 * get these, if the SGE is configured to send these when the
434 * firmware passes certain points in processing our TX
435 * Ethernet Queue or if we make an explicit request for one.
436 * We use these updates to determine when we may need to
437 * restart a TX Ethernet Queue which was stopped for lack of
438 * free TX Queue Descriptors ...
439 */
440 const struct cpl_sge_egr_update *p = cpl;
441 unsigned int qid = EGR_QID(be32_to_cpu(p->opcode_qid));
442 struct sge *s = &adapter->sge;
443 struct sge_txq *tq;
444 struct sge_eth_txq *txq;
445 unsigned int eq_idx;
446
447 /*
448 * Perform sanity checking on the Queue ID to make sure it
449 * really refers to one of our TX Ethernet Egress Queues which
450 * is active and matches the queue's ID. None of these error
451 * conditions should ever happen so we may want to either make
452 * them fatal and/or conditionalized under DEBUG.
453 */
454 eq_idx = EQ_IDX(s, qid);
455 if (unlikely(eq_idx >= MAX_EGRQ)) {
456 dev_err(adapter->pdev_dev,
457 "Egress Update QID %d out of range\n", qid);
458 break;
459 }
460 tq = s->egr_map[eq_idx];
461 if (unlikely(tq == NULL)) {
462 dev_err(adapter->pdev_dev,
463 "Egress Update QID %d TXQ=NULL\n", qid);
464 break;
465 }
466 txq = container_of(tq, struct sge_eth_txq, q);
467 if (unlikely(tq->abs_id != qid)) {
468 dev_err(adapter->pdev_dev,
469 "Egress Update QID %d refers to TXQ %d\n",
470 qid, tq->abs_id);
471 break;
472 }
473
474 /*
475 * Restart a stopped TX Queue which has less than half of its
476 * TX ring in use ...
477 */
478 txq->q.restarts++;
479 netif_tx_wake_queue(txq->txq);
480 break;
481 }
482
483 default:
484 dev_err(adapter->pdev_dev,
485 "unexpected CPL %#x on FW event queue\n", opcode);
486 }
487
488 return 0;
489 }
490
491 /*
492 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
493 * to use and initializes them. We support multiple "Queue Sets" per port if
494 * we have MSI-X, otherwise just one queue set per port.
495 */
496 static int setup_sge_queues(struct adapter *adapter)
497 {
498 struct sge *s = &adapter->sge;
499 int err, pidx, msix;
500
501 /*
502 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
503 * state.
504 */
505 bitmap_zero(s->starving_fl, MAX_EGRQ);
506
507 /*
508 * If we're using MSI interrupt mode we need to set up a "forwarded
509 * interrupt" queue which we'll set up with our MSI vector. The rest
510 * of the ingress queues will be set up to forward their interrupts to
511 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
512 * the intrq's queue ID as the interrupt forwarding queue for the
513 * subsequent calls ...
514 */
515 if (adapter->flags & USING_MSI) {
516 err = t4vf_sge_alloc_rxq(adapter, &s->intrq, false,
517 adapter->port[0], 0, NULL, NULL);
518 if (err)
519 goto err_free_queues;
520 }
521
522 /*
523 * Allocate our ingress queue for asynchronous firmware messages.
524 */
525 err = t4vf_sge_alloc_rxq(adapter, &s->fw_evtq, true, adapter->port[0],
526 MSIX_FW, NULL, fwevtq_handler);
527 if (err)
528 goto err_free_queues;
529
530 /*
531 * Allocate each "port"'s initial Queue Sets. These can be changed
532 * later on ... up to the point where any interface on the adapter is
533 * brought up at which point lots of things get nailed down
534 * permanently ...
535 */
536 msix = MSIX_IQFLINT;
537 for_each_port(adapter, pidx) {
538 struct net_device *dev = adapter->port[pidx];
539 struct port_info *pi = netdev_priv(dev);
540 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
541 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
542 int qs;
543
544 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
545 err = t4vf_sge_alloc_rxq(adapter, &rxq->rspq, false,
546 dev, msix++,
547 &rxq->fl, t4vf_ethrx_handler);
548 if (err)
549 goto err_free_queues;
550
551 err = t4vf_sge_alloc_eth_txq(adapter, txq, dev,
552 netdev_get_tx_queue(dev, qs),
553 s->fw_evtq.cntxt_id);
554 if (err)
555 goto err_free_queues;
556
557 rxq->rspq.idx = qs;
558 memset(&rxq->stats, 0, sizeof(rxq->stats));
559 }
560 }
561
562 /*
563 * Create the reverse mappings for the queues.
564 */
565 s->egr_base = s->ethtxq[0].q.abs_id - s->ethtxq[0].q.cntxt_id;
566 s->ingr_base = s->ethrxq[0].rspq.abs_id - s->ethrxq[0].rspq.cntxt_id;
567 IQ_MAP(s, s->fw_evtq.abs_id) = &s->fw_evtq;
568 for_each_port(adapter, pidx) {
569 struct net_device *dev = adapter->port[pidx];
570 struct port_info *pi = netdev_priv(dev);
571 struct sge_eth_rxq *rxq = &s->ethrxq[pi->first_qset];
572 struct sge_eth_txq *txq = &s->ethtxq[pi->first_qset];
573 int qs;
574
575 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
576 IQ_MAP(s, rxq->rspq.abs_id) = &rxq->rspq;
577 EQ_MAP(s, txq->q.abs_id) = &txq->q;
578
579 /*
580 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
581 * for Free Lists but since all of the Egress Queues
582 * (including Free Lists) have Relative Queue IDs
583 * which are computed as Absolute - Base Queue ID, we
584 * can synthesize the Absolute Queue IDs for the Free
585 * Lists. This is useful for debugging purposes when
586 * we want to dump Queue Contexts via the PF Driver.
587 */
588 rxq->fl.abs_id = rxq->fl.cntxt_id + s->egr_base;
589 EQ_MAP(s, rxq->fl.abs_id) = &rxq->fl;
590 }
591 }
592 return 0;
593
594 err_free_queues:
595 t4vf_free_sge_resources(adapter);
596 return err;
597 }
598
599 /*
600 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
601 * queues. We configure the RSS CPU lookup table to distribute to the number
602 * of HW receive queues, and the response queue lookup table to narrow that
603 * down to the response queues actually configured for each "port" (Virtual
604 * Interface). We always configure the RSS mapping for all ports since the
605 * mapping table has plenty of entries.
606 */
607 static int setup_rss(struct adapter *adapter)
608 {
609 int pidx;
610
611 for_each_port(adapter, pidx) {
612 struct port_info *pi = adap2pinfo(adapter, pidx);
613 struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
614 u16 rss[MAX_PORT_QSETS];
615 int qs, err;
616
617 for (qs = 0; qs < pi->nqsets; qs++)
618 rss[qs] = rxq[qs].rspq.abs_id;
619
620 err = t4vf_config_rss_range(adapter, pi->viid,
621 0, pi->rss_size, rss, pi->nqsets);
622 if (err)
623 return err;
624
625 /*
626 * Perform Global RSS Mode-specific initialization.
627 */
628 switch (adapter->params.rss.mode) {
629 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL:
630 /*
631 * If Tunnel All Lookup isn't specified in the global
632 * RSS Configuration, then we need to specify a
633 * default Ingress Queue for any ingress packets which
634 * aren't hashed. We'll use our first ingress queue
635 * ...
636 */
637 if (!adapter->params.rss.u.basicvirtual.tnlalllookup) {
638 union rss_vi_config config;
639 err = t4vf_read_rss_vi_config(adapter,
640 pi->viid,
641 &config);
642 if (err)
643 return err;
644 config.basicvirtual.defaultq =
645 rxq[0].rspq.abs_id;
646 err = t4vf_write_rss_vi_config(adapter,
647 pi->viid,
648 &config);
649 if (err)
650 return err;
651 }
652 break;
653 }
654 }
655
656 return 0;
657 }
658
659 /*
660 * Bring the adapter up. Called whenever we go from no "ports" open to having
661 * one open. This function performs the actions necessary to make an adapter
662 * operational, such as completing the initialization of HW modules, and
663 * enabling interrupts. Must be called with the rtnl lock held. (Note that
664 * this is called "cxgb_up" in the PF Driver.)
665 */
666 static int adapter_up(struct adapter *adapter)
667 {
668 int err;
669
670 /*
671 * If this is the first time we've been called, perform basic
672 * adapter setup. Once we've done this, many of our adapter
673 * parameters can no longer be changed ...
674 */
675 if ((adapter->flags & FULL_INIT_DONE) == 0) {
676 err = setup_sge_queues(adapter);
677 if (err)
678 return err;
679 err = setup_rss(adapter);
680 if (err) {
681 t4vf_free_sge_resources(adapter);
682 return err;
683 }
684
685 if (adapter->flags & USING_MSIX)
686 name_msix_vecs(adapter);
687 adapter->flags |= FULL_INIT_DONE;
688 }
689
690 /*
691 * Acquire our interrupt resources. We only support MSI-X and MSI.
692 */
693 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
694 if (adapter->flags & USING_MSIX)
695 err = request_msix_queue_irqs(adapter);
696 else
697 err = request_irq(adapter->pdev->irq,
698 t4vf_intr_handler(adapter), 0,
699 adapter->name, adapter);
700 if (err) {
701 dev_err(adapter->pdev_dev, "request_irq failed, err %d\n",
702 err);
703 return err;
704 }
705
706 /*
707 * Enable NAPI ingress processing and return success.
708 */
709 enable_rx(adapter);
710 t4vf_sge_start(adapter);
711 return 0;
712 }
713
714 /*
715 * Bring the adapter down. Called whenever the last "port" (Virtual
716 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
717 * Driver.)
718 */
719 static void adapter_down(struct adapter *adapter)
720 {
721 /*
722 * Free interrupt resources.
723 */
724 if (adapter->flags & USING_MSIX)
725 free_msix_queue_irqs(adapter);
726 else
727 free_irq(adapter->pdev->irq, adapter);
728
729 /*
730 * Wait for NAPI handlers to finish.
731 */
732 quiesce_rx(adapter);
733 }
734
735 /*
736 * Start up a net device.
737 */
738 static int cxgb4vf_open(struct net_device *dev)
739 {
740 int err;
741 struct port_info *pi = netdev_priv(dev);
742 struct adapter *adapter = pi->adapter;
743
744 /*
745 * If this is the first interface that we're opening on the "adapter",
746 * bring the "adapter" up now.
747 */
748 if (adapter->open_device_map == 0) {
749 err = adapter_up(adapter);
750 if (err)
751 return err;
752 }
753
754 /*
755 * Note that this interface is up and start everything up ...
756 */
757 netif_set_real_num_tx_queues(dev, pi->nqsets);
758 err = netif_set_real_num_rx_queues(dev, pi->nqsets);
759 if (err)
760 goto err_unwind;
761 err = link_start(dev);
762 if (err)
763 goto err_unwind;
764
765 netif_tx_start_all_queues(dev);
766 set_bit(pi->port_id, &adapter->open_device_map);
767 return 0;
768
769 err_unwind:
770 if (adapter->open_device_map == 0)
771 adapter_down(adapter);
772 return err;
773 }
774
775 /*
776 * Shut down a net device. This routine is called "cxgb_close" in the PF
777 * Driver ...
778 */
779 static int cxgb4vf_stop(struct net_device *dev)
780 {
781 struct port_info *pi = netdev_priv(dev);
782 struct adapter *adapter = pi->adapter;
783
784 netif_tx_stop_all_queues(dev);
785 netif_carrier_off(dev);
786 t4vf_enable_vi(adapter, pi->viid, false, false);
787 pi->link_cfg.link_ok = 0;
788
789 clear_bit(pi->port_id, &adapter->open_device_map);
790 if (adapter->open_device_map == 0)
791 adapter_down(adapter);
792 return 0;
793 }
794
795 /*
796 * Translate our basic statistics into the standard "ifconfig" statistics.
797 */
798 static struct net_device_stats *cxgb4vf_get_stats(struct net_device *dev)
799 {
800 struct t4vf_port_stats stats;
801 struct port_info *pi = netdev2pinfo(dev);
802 struct adapter *adapter = pi->adapter;
803 struct net_device_stats *ns = &dev->stats;
804 int err;
805
806 spin_lock(&adapter->stats_lock);
807 err = t4vf_get_port_stats(adapter, pi->pidx, &stats);
808 spin_unlock(&adapter->stats_lock);
809
810 memset(ns, 0, sizeof(*ns));
811 if (err)
812 return ns;
813
814 ns->tx_bytes = (stats.tx_bcast_bytes + stats.tx_mcast_bytes +
815 stats.tx_ucast_bytes + stats.tx_offload_bytes);
816 ns->tx_packets = (stats.tx_bcast_frames + stats.tx_mcast_frames +
817 stats.tx_ucast_frames + stats.tx_offload_frames);
818 ns->rx_bytes = (stats.rx_bcast_bytes + stats.rx_mcast_bytes +
819 stats.rx_ucast_bytes);
820 ns->rx_packets = (stats.rx_bcast_frames + stats.rx_mcast_frames +
821 stats.rx_ucast_frames);
822 ns->multicast = stats.rx_mcast_frames;
823 ns->tx_errors = stats.tx_drop_frames;
824 ns->rx_errors = stats.rx_err_frames;
825
826 return ns;
827 }
828
829 /*
830 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
831 * at a specified offset within the list, into an array of addrss pointers and
832 * return the number collected.
833 */
834 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device *dev,
835 const u8 **addr,
836 unsigned int offset,
837 unsigned int maxaddrs)
838 {
839 unsigned int index = 0;
840 unsigned int naddr = 0;
841 const struct netdev_hw_addr *ha;
842
843 for_each_dev_addr(dev, ha)
844 if (index++ >= offset) {
845 addr[naddr++] = ha->addr;
846 if (naddr >= maxaddrs)
847 break;
848 }
849 return naddr;
850 }
851
852 /*
853 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
854 * at a specified offset within the list, into an array of addrss pointers and
855 * return the number collected.
856 */
857 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device *dev,
858 const u8 **addr,
859 unsigned int offset,
860 unsigned int maxaddrs)
861 {
862 unsigned int index = 0;
863 unsigned int naddr = 0;
864 const struct netdev_hw_addr *ha;
865
866 netdev_for_each_mc_addr(ha, dev)
867 if (index++ >= offset) {
868 addr[naddr++] = ha->addr;
869 if (naddr >= maxaddrs)
870 break;
871 }
872 return naddr;
873 }
874
875 /*
876 * Configure the exact and hash address filters to handle a port's multicast
877 * and secondary unicast MAC addresses.
878 */
879 static int set_addr_filters(const struct net_device *dev, bool sleep)
880 {
881 u64 mhash = 0;
882 u64 uhash = 0;
883 bool free = true;
884 unsigned int offset, naddr;
885 const u8 *addr[7];
886 int ret;
887 const struct port_info *pi = netdev_priv(dev);
888
889 /* first do the secondary unicast addresses */
890 for (offset = 0; ; offset += naddr) {
891 naddr = collect_netdev_uc_list_addrs(dev, addr, offset,
892 ARRAY_SIZE(addr));
893 if (naddr == 0)
894 break;
895
896 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
897 naddr, addr, NULL, &uhash, sleep);
898 if (ret < 0)
899 return ret;
900
901 free = false;
902 }
903
904 /* next set up the multicast addresses */
905 for (offset = 0; ; offset += naddr) {
906 naddr = collect_netdev_mc_list_addrs(dev, addr, offset,
907 ARRAY_SIZE(addr));
908 if (naddr == 0)
909 break;
910
911 ret = t4vf_alloc_mac_filt(pi->adapter, pi->viid, free,
912 naddr, addr, NULL, &mhash, sleep);
913 if (ret < 0)
914 return ret;
915 free = false;
916 }
917
918 return t4vf_set_addr_hash(pi->adapter, pi->viid, uhash != 0,
919 uhash | mhash, sleep);
920 }
921
922 /*
923 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
924 * If @mtu is -1 it is left unchanged.
925 */
926 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
927 {
928 int ret;
929 struct port_info *pi = netdev_priv(dev);
930
931 ret = set_addr_filters(dev, sleep_ok);
932 if (ret == 0)
933 ret = t4vf_set_rxmode(pi->adapter, pi->viid, -1,
934 (dev->flags & IFF_PROMISC) != 0,
935 (dev->flags & IFF_ALLMULTI) != 0,
936 1, -1, sleep_ok);
937 return ret;
938 }
939
940 /*
941 * Set the current receive modes on the device.
942 */
943 static void cxgb4vf_set_rxmode(struct net_device *dev)
944 {
945 /* unfortunately we can't return errors to the stack */
946 set_rxmode(dev, -1, false);
947 }
948
949 /*
950 * Find the entry in the interrupt holdoff timer value array which comes
951 * closest to the specified interrupt holdoff value.
952 */
953 static int closest_timer(const struct sge *s, int us)
954 {
955 int i, timer_idx = 0, min_delta = INT_MAX;
956
957 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
958 int delta = us - s->timer_val[i];
959 if (delta < 0)
960 delta = -delta;
961 if (delta < min_delta) {
962 min_delta = delta;
963 timer_idx = i;
964 }
965 }
966 return timer_idx;
967 }
968
969 static int closest_thres(const struct sge *s, int thres)
970 {
971 int i, delta, pktcnt_idx = 0, min_delta = INT_MAX;
972
973 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
974 delta = thres - s->counter_val[i];
975 if (delta < 0)
976 delta = -delta;
977 if (delta < min_delta) {
978 min_delta = delta;
979 pktcnt_idx = i;
980 }
981 }
982 return pktcnt_idx;
983 }
984
985 /*
986 * Return a queue's interrupt hold-off time in us. 0 means no timer.
987 */
988 static unsigned int qtimer_val(const struct adapter *adapter,
989 const struct sge_rspq *rspq)
990 {
991 unsigned int timer_idx = QINTR_TIMER_IDX_GET(rspq->intr_params);
992
993 return timer_idx < SGE_NTIMERS
994 ? adapter->sge.timer_val[timer_idx]
995 : 0;
996 }
997
998 /**
999 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
1000 * @adapter: the adapter
1001 * @rspq: the RX response queue
1002 * @us: the hold-off time in us, or 0 to disable timer
1003 * @cnt: the hold-off packet count, or 0 to disable counter
1004 *
1005 * Sets an RX response queue's interrupt hold-off time and packet count.
1006 * At least one of the two needs to be enabled for the queue to generate
1007 * interrupts.
1008 */
1009 static int set_rxq_intr_params(struct adapter *adapter, struct sge_rspq *rspq,
1010 unsigned int us, unsigned int cnt)
1011 {
1012 unsigned int timer_idx;
1013
1014 /*
1015 * If both the interrupt holdoff timer and count are specified as
1016 * zero, default to a holdoff count of 1 ...
1017 */
1018 if ((us | cnt) == 0)
1019 cnt = 1;
1020
1021 /*
1022 * If an interrupt holdoff count has been specified, then find the
1023 * closest configured holdoff count and use that. If the response
1024 * queue has already been created, then update its queue context
1025 * parameters ...
1026 */
1027 if (cnt) {
1028 int err;
1029 u32 v, pktcnt_idx;
1030
1031 pktcnt_idx = closest_thres(&adapter->sge, cnt);
1032 if (rspq->desc && rspq->pktcnt_idx != pktcnt_idx) {
1033 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1034 FW_PARAMS_PARAM_X_V(
1035 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1036 FW_PARAMS_PARAM_YZ_V(rspq->cntxt_id);
1037 err = t4vf_set_params(adapter, 1, &v, &pktcnt_idx);
1038 if (err)
1039 return err;
1040 }
1041 rspq->pktcnt_idx = pktcnt_idx;
1042 }
1043
1044 /*
1045 * Compute the closest holdoff timer index from the supplied holdoff
1046 * timer value.
1047 */
1048 timer_idx = (us == 0
1049 ? SGE_TIMER_RSTRT_CNTR
1050 : closest_timer(&adapter->sge, us));
1051
1052 /*
1053 * Update the response queue's interrupt coalescing parameters and
1054 * return success.
1055 */
1056 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
1057 (cnt > 0 ? QINTR_CNT_EN : 0));
1058 return 0;
1059 }
1060
1061 /*
1062 * Return a version number to identify the type of adapter. The scheme is:
1063 * - bits 0..9: chip version
1064 * - bits 10..15: chip revision
1065 */
1066 static inline unsigned int mk_adap_vers(const struct adapter *adapter)
1067 {
1068 /*
1069 * Chip version 4, revision 0x3f (cxgb4vf).
1070 */
1071 return CHELSIO_CHIP_VERSION(adapter->params.chip) | (0x3f << 10);
1072 }
1073
1074 /*
1075 * Execute the specified ioctl command.
1076 */
1077 static int cxgb4vf_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1078 {
1079 int ret = 0;
1080
1081 switch (cmd) {
1082 /*
1083 * The VF Driver doesn't have access to any of the other
1084 * common Ethernet device ioctl()'s (like reading/writing
1085 * PHY registers, etc.
1086 */
1087
1088 default:
1089 ret = -EOPNOTSUPP;
1090 break;
1091 }
1092 return ret;
1093 }
1094
1095 /*
1096 * Change the device's MTU.
1097 */
1098 static int cxgb4vf_change_mtu(struct net_device *dev, int new_mtu)
1099 {
1100 int ret;
1101 struct port_info *pi = netdev_priv(dev);
1102
1103 /* accommodate SACK */
1104 if (new_mtu < 81)
1105 return -EINVAL;
1106
1107 ret = t4vf_set_rxmode(pi->adapter, pi->viid, new_mtu,
1108 -1, -1, -1, -1, true);
1109 if (!ret)
1110 dev->mtu = new_mtu;
1111 return ret;
1112 }
1113
1114 static netdev_features_t cxgb4vf_fix_features(struct net_device *dev,
1115 netdev_features_t features)
1116 {
1117 /*
1118 * Since there is no support for separate rx/tx vlan accel
1119 * enable/disable make sure tx flag is always in same state as rx.
1120 */
1121 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1122 features |= NETIF_F_HW_VLAN_CTAG_TX;
1123 else
1124 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
1125
1126 return features;
1127 }
1128
1129 static int cxgb4vf_set_features(struct net_device *dev,
1130 netdev_features_t features)
1131 {
1132 struct port_info *pi = netdev_priv(dev);
1133 netdev_features_t changed = dev->features ^ features;
1134
1135 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
1136 t4vf_set_rxmode(pi->adapter, pi->viid, -1, -1, -1, -1,
1137 features & NETIF_F_HW_VLAN_CTAG_TX, 0);
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * Change the devices MAC address.
1144 */
1145 static int cxgb4vf_set_mac_addr(struct net_device *dev, void *_addr)
1146 {
1147 int ret;
1148 struct sockaddr *addr = _addr;
1149 struct port_info *pi = netdev_priv(dev);
1150
1151 if (!is_valid_ether_addr(addr->sa_data))
1152 return -EADDRNOTAVAIL;
1153
1154 ret = t4vf_change_mac(pi->adapter, pi->viid, pi->xact_addr_filt,
1155 addr->sa_data, true);
1156 if (ret < 0)
1157 return ret;
1158
1159 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1160 pi->xact_addr_filt = ret;
1161 return 0;
1162 }
1163
1164 #ifdef CONFIG_NET_POLL_CONTROLLER
1165 /*
1166 * Poll all of our receive queues. This is called outside of normal interrupt
1167 * context.
1168 */
1169 static void cxgb4vf_poll_controller(struct net_device *dev)
1170 {
1171 struct port_info *pi = netdev_priv(dev);
1172 struct adapter *adapter = pi->adapter;
1173
1174 if (adapter->flags & USING_MSIX) {
1175 struct sge_eth_rxq *rxq;
1176 int nqsets;
1177
1178 rxq = &adapter->sge.ethrxq[pi->first_qset];
1179 for (nqsets = pi->nqsets; nqsets; nqsets--) {
1180 t4vf_sge_intr_msix(0, &rxq->rspq);
1181 rxq++;
1182 }
1183 } else
1184 t4vf_intr_handler(adapter)(0, adapter);
1185 }
1186 #endif
1187
1188 /*
1189 * Ethtool operations.
1190 * ===================
1191 *
1192 * Note that we don't support any ethtool operations which change the physical
1193 * state of the port to which we're linked.
1194 */
1195
1196 /*
1197 * Return current port link settings.
1198 */
1199 static int cxgb4vf_get_settings(struct net_device *dev,
1200 struct ethtool_cmd *cmd)
1201 {
1202 const struct port_info *pi = netdev_priv(dev);
1203
1204 cmd->supported = pi->link_cfg.supported;
1205 cmd->advertising = pi->link_cfg.advertising;
1206 ethtool_cmd_speed_set(cmd,
1207 netif_carrier_ok(dev) ? pi->link_cfg.speed : -1);
1208 cmd->duplex = DUPLEX_FULL;
1209
1210 cmd->port = (cmd->supported & SUPPORTED_TP) ? PORT_TP : PORT_FIBRE;
1211 cmd->phy_address = pi->port_id;
1212 cmd->transceiver = XCVR_EXTERNAL;
1213 cmd->autoneg = pi->link_cfg.autoneg;
1214 cmd->maxtxpkt = 0;
1215 cmd->maxrxpkt = 0;
1216 return 0;
1217 }
1218
1219 /*
1220 * Return our driver information.
1221 */
1222 static void cxgb4vf_get_drvinfo(struct net_device *dev,
1223 struct ethtool_drvinfo *drvinfo)
1224 {
1225 struct adapter *adapter = netdev2adap(dev);
1226
1227 strlcpy(drvinfo->driver, KBUILD_MODNAME, sizeof(drvinfo->driver));
1228 strlcpy(drvinfo->version, DRV_VERSION, sizeof(drvinfo->version));
1229 strlcpy(drvinfo->bus_info, pci_name(to_pci_dev(dev->dev.parent)),
1230 sizeof(drvinfo->bus_info));
1231 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
1232 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1233 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.fwrev),
1234 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.fwrev),
1235 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.fwrev),
1236 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.fwrev),
1237 FW_HDR_FW_VER_MAJOR_G(adapter->params.dev.tprev),
1238 FW_HDR_FW_VER_MINOR_G(adapter->params.dev.tprev),
1239 FW_HDR_FW_VER_MICRO_G(adapter->params.dev.tprev),
1240 FW_HDR_FW_VER_BUILD_G(adapter->params.dev.tprev));
1241 }
1242
1243 /*
1244 * Return current adapter message level.
1245 */
1246 static u32 cxgb4vf_get_msglevel(struct net_device *dev)
1247 {
1248 return netdev2adap(dev)->msg_enable;
1249 }
1250
1251 /*
1252 * Set current adapter message level.
1253 */
1254 static void cxgb4vf_set_msglevel(struct net_device *dev, u32 msglevel)
1255 {
1256 netdev2adap(dev)->msg_enable = msglevel;
1257 }
1258
1259 /*
1260 * Return the device's current Queue Set ring size parameters along with the
1261 * allowed maximum values. Since ethtool doesn't understand the concept of
1262 * multi-queue devices, we just return the current values associated with the
1263 * first Queue Set.
1264 */
1265 static void cxgb4vf_get_ringparam(struct net_device *dev,
1266 struct ethtool_ringparam *rp)
1267 {
1268 const struct port_info *pi = netdev_priv(dev);
1269 const struct sge *s = &pi->adapter->sge;
1270
1271 rp->rx_max_pending = MAX_RX_BUFFERS;
1272 rp->rx_mini_max_pending = MAX_RSPQ_ENTRIES;
1273 rp->rx_jumbo_max_pending = 0;
1274 rp->tx_max_pending = MAX_TXQ_ENTRIES;
1275
1276 rp->rx_pending = s->ethrxq[pi->first_qset].fl.size - MIN_FL_RESID;
1277 rp->rx_mini_pending = s->ethrxq[pi->first_qset].rspq.size;
1278 rp->rx_jumbo_pending = 0;
1279 rp->tx_pending = s->ethtxq[pi->first_qset].q.size;
1280 }
1281
1282 /*
1283 * Set the Queue Set ring size parameters for the device. Again, since
1284 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1285 * apply these new values across all of the Queue Sets associated with the
1286 * device -- after vetting them of course!
1287 */
1288 static int cxgb4vf_set_ringparam(struct net_device *dev,
1289 struct ethtool_ringparam *rp)
1290 {
1291 const struct port_info *pi = netdev_priv(dev);
1292 struct adapter *adapter = pi->adapter;
1293 struct sge *s = &adapter->sge;
1294 int qs;
1295
1296 if (rp->rx_pending > MAX_RX_BUFFERS ||
1297 rp->rx_jumbo_pending ||
1298 rp->tx_pending > MAX_TXQ_ENTRIES ||
1299 rp->rx_mini_pending > MAX_RSPQ_ENTRIES ||
1300 rp->rx_mini_pending < MIN_RSPQ_ENTRIES ||
1301 rp->rx_pending < MIN_FL_ENTRIES ||
1302 rp->tx_pending < MIN_TXQ_ENTRIES)
1303 return -EINVAL;
1304
1305 if (adapter->flags & FULL_INIT_DONE)
1306 return -EBUSY;
1307
1308 for (qs = pi->first_qset; qs < pi->first_qset + pi->nqsets; qs++) {
1309 s->ethrxq[qs].fl.size = rp->rx_pending + MIN_FL_RESID;
1310 s->ethrxq[qs].rspq.size = rp->rx_mini_pending;
1311 s->ethtxq[qs].q.size = rp->tx_pending;
1312 }
1313 return 0;
1314 }
1315
1316 /*
1317 * Return the interrupt holdoff timer and count for the first Queue Set on the
1318 * device. Our extension ioctl() (the cxgbtool interface) allows the
1319 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1320 */
1321 static int cxgb4vf_get_coalesce(struct net_device *dev,
1322 struct ethtool_coalesce *coalesce)
1323 {
1324 const struct port_info *pi = netdev_priv(dev);
1325 const struct adapter *adapter = pi->adapter;
1326 const struct sge_rspq *rspq = &adapter->sge.ethrxq[pi->first_qset].rspq;
1327
1328 coalesce->rx_coalesce_usecs = qtimer_val(adapter, rspq);
1329 coalesce->rx_max_coalesced_frames =
1330 ((rspq->intr_params & QINTR_CNT_EN)
1331 ? adapter->sge.counter_val[rspq->pktcnt_idx]
1332 : 0);
1333 return 0;
1334 }
1335
1336 /*
1337 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1338 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1339 * the interrupt holdoff timer on any of the device's Queue Sets.
1340 */
1341 static int cxgb4vf_set_coalesce(struct net_device *dev,
1342 struct ethtool_coalesce *coalesce)
1343 {
1344 const struct port_info *pi = netdev_priv(dev);
1345 struct adapter *adapter = pi->adapter;
1346
1347 return set_rxq_intr_params(adapter,
1348 &adapter->sge.ethrxq[pi->first_qset].rspq,
1349 coalesce->rx_coalesce_usecs,
1350 coalesce->rx_max_coalesced_frames);
1351 }
1352
1353 /*
1354 * Report current port link pause parameter settings.
1355 */
1356 static void cxgb4vf_get_pauseparam(struct net_device *dev,
1357 struct ethtool_pauseparam *pauseparam)
1358 {
1359 struct port_info *pi = netdev_priv(dev);
1360
1361 pauseparam->autoneg = (pi->link_cfg.requested_fc & PAUSE_AUTONEG) != 0;
1362 pauseparam->rx_pause = (pi->link_cfg.fc & PAUSE_RX) != 0;
1363 pauseparam->tx_pause = (pi->link_cfg.fc & PAUSE_TX) != 0;
1364 }
1365
1366 /*
1367 * Identify the port by blinking the port's LED.
1368 */
1369 static int cxgb4vf_phys_id(struct net_device *dev,
1370 enum ethtool_phys_id_state state)
1371 {
1372 unsigned int val;
1373 struct port_info *pi = netdev_priv(dev);
1374
1375 if (state == ETHTOOL_ID_ACTIVE)
1376 val = 0xffff;
1377 else if (state == ETHTOOL_ID_INACTIVE)
1378 val = 0;
1379 else
1380 return -EINVAL;
1381
1382 return t4vf_identify_port(pi->adapter, pi->viid, val);
1383 }
1384
1385 /*
1386 * Port stats maintained per queue of the port.
1387 */
1388 struct queue_port_stats {
1389 u64 tso;
1390 u64 tx_csum;
1391 u64 rx_csum;
1392 u64 vlan_ex;
1393 u64 vlan_ins;
1394 u64 lro_pkts;
1395 u64 lro_merged;
1396 };
1397
1398 /*
1399 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1400 * these need to match the order of statistics returned by
1401 * t4vf_get_port_stats().
1402 */
1403 static const char stats_strings[][ETH_GSTRING_LEN] = {
1404 /*
1405 * These must match the layout of the t4vf_port_stats structure.
1406 */
1407 "TxBroadcastBytes ",
1408 "TxBroadcastFrames ",
1409 "TxMulticastBytes ",
1410 "TxMulticastFrames ",
1411 "TxUnicastBytes ",
1412 "TxUnicastFrames ",
1413 "TxDroppedFrames ",
1414 "TxOffloadBytes ",
1415 "TxOffloadFrames ",
1416 "RxBroadcastBytes ",
1417 "RxBroadcastFrames ",
1418 "RxMulticastBytes ",
1419 "RxMulticastFrames ",
1420 "RxUnicastBytes ",
1421 "RxUnicastFrames ",
1422 "RxErrorFrames ",
1423
1424 /*
1425 * These are accumulated per-queue statistics and must match the
1426 * order of the fields in the queue_port_stats structure.
1427 */
1428 "TSO ",
1429 "TxCsumOffload ",
1430 "RxCsumGood ",
1431 "VLANextractions ",
1432 "VLANinsertions ",
1433 "GROPackets ",
1434 "GROMerged ",
1435 };
1436
1437 /*
1438 * Return the number of statistics in the specified statistics set.
1439 */
1440 static int cxgb4vf_get_sset_count(struct net_device *dev, int sset)
1441 {
1442 switch (sset) {
1443 case ETH_SS_STATS:
1444 return ARRAY_SIZE(stats_strings);
1445 default:
1446 return -EOPNOTSUPP;
1447 }
1448 /*NOTREACHED*/
1449 }
1450
1451 /*
1452 * Return the strings for the specified statistics set.
1453 */
1454 static void cxgb4vf_get_strings(struct net_device *dev,
1455 u32 sset,
1456 u8 *data)
1457 {
1458 switch (sset) {
1459 case ETH_SS_STATS:
1460 memcpy(data, stats_strings, sizeof(stats_strings));
1461 break;
1462 }
1463 }
1464
1465 /*
1466 * Small utility routine to accumulate queue statistics across the queues of
1467 * a "port".
1468 */
1469 static void collect_sge_port_stats(const struct adapter *adapter,
1470 const struct port_info *pi,
1471 struct queue_port_stats *stats)
1472 {
1473 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[pi->first_qset];
1474 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[pi->first_qset];
1475 int qs;
1476
1477 memset(stats, 0, sizeof(*stats));
1478 for (qs = 0; qs < pi->nqsets; qs++, rxq++, txq++) {
1479 stats->tso += txq->tso;
1480 stats->tx_csum += txq->tx_cso;
1481 stats->rx_csum += rxq->stats.rx_cso;
1482 stats->vlan_ex += rxq->stats.vlan_ex;
1483 stats->vlan_ins += txq->vlan_ins;
1484 stats->lro_pkts += rxq->stats.lro_pkts;
1485 stats->lro_merged += rxq->stats.lro_merged;
1486 }
1487 }
1488
1489 /*
1490 * Return the ETH_SS_STATS statistics set.
1491 */
1492 static void cxgb4vf_get_ethtool_stats(struct net_device *dev,
1493 struct ethtool_stats *stats,
1494 u64 *data)
1495 {
1496 struct port_info *pi = netdev2pinfo(dev);
1497 struct adapter *adapter = pi->adapter;
1498 int err = t4vf_get_port_stats(adapter, pi->pidx,
1499 (struct t4vf_port_stats *)data);
1500 if (err)
1501 memset(data, 0, sizeof(struct t4vf_port_stats));
1502
1503 data += sizeof(struct t4vf_port_stats) / sizeof(u64);
1504 collect_sge_port_stats(adapter, pi, (struct queue_port_stats *)data);
1505 }
1506
1507 /*
1508 * Return the size of our register map.
1509 */
1510 static int cxgb4vf_get_regs_len(struct net_device *dev)
1511 {
1512 return T4VF_REGMAP_SIZE;
1513 }
1514
1515 /*
1516 * Dump a block of registers, start to end inclusive, into a buffer.
1517 */
1518 static void reg_block_dump(struct adapter *adapter, void *regbuf,
1519 unsigned int start, unsigned int end)
1520 {
1521 u32 *bp = regbuf + start - T4VF_REGMAP_START;
1522
1523 for ( ; start <= end; start += sizeof(u32)) {
1524 /*
1525 * Avoid reading the Mailbox Control register since that
1526 * can trigger a Mailbox Ownership Arbitration cycle and
1527 * interfere with communication with the firmware.
1528 */
1529 if (start == T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL)
1530 *bp++ = 0xffff;
1531 else
1532 *bp++ = t4_read_reg(adapter, start);
1533 }
1534 }
1535
1536 /*
1537 * Copy our entire register map into the provided buffer.
1538 */
1539 static void cxgb4vf_get_regs(struct net_device *dev,
1540 struct ethtool_regs *regs,
1541 void *regbuf)
1542 {
1543 struct adapter *adapter = netdev2adap(dev);
1544
1545 regs->version = mk_adap_vers(adapter);
1546
1547 /*
1548 * Fill in register buffer with our register map.
1549 */
1550 memset(regbuf, 0, T4VF_REGMAP_SIZE);
1551
1552 reg_block_dump(adapter, regbuf,
1553 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_FIRST,
1554 T4VF_SGE_BASE_ADDR + T4VF_MOD_MAP_SGE_LAST);
1555 reg_block_dump(adapter, regbuf,
1556 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_FIRST,
1557 T4VF_MPS_BASE_ADDR + T4VF_MOD_MAP_MPS_LAST);
1558
1559 /* T5 adds new registers in the PL Register map.
1560 */
1561 reg_block_dump(adapter, regbuf,
1562 T4VF_PL_BASE_ADDR + T4VF_MOD_MAP_PL_FIRST,
1563 T4VF_PL_BASE_ADDR + (is_t4(adapter->params.chip)
1564 ? A_PL_VF_WHOAMI : A_PL_VF_REVISION));
1565 reg_block_dump(adapter, regbuf,
1566 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_FIRST,
1567 T4VF_CIM_BASE_ADDR + T4VF_MOD_MAP_CIM_LAST);
1568
1569 reg_block_dump(adapter, regbuf,
1570 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_FIRST,
1571 T4VF_MBDATA_BASE_ADDR + T4VF_MBDATA_LAST);
1572 }
1573
1574 /*
1575 * Report current Wake On LAN settings.
1576 */
1577 static void cxgb4vf_get_wol(struct net_device *dev,
1578 struct ethtool_wolinfo *wol)
1579 {
1580 wol->supported = 0;
1581 wol->wolopts = 0;
1582 memset(&wol->sopass, 0, sizeof(wol->sopass));
1583 }
1584
1585 /*
1586 * TCP Segmentation Offload flags which we support.
1587 */
1588 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1589
1590 static const struct ethtool_ops cxgb4vf_ethtool_ops = {
1591 .get_settings = cxgb4vf_get_settings,
1592 .get_drvinfo = cxgb4vf_get_drvinfo,
1593 .get_msglevel = cxgb4vf_get_msglevel,
1594 .set_msglevel = cxgb4vf_set_msglevel,
1595 .get_ringparam = cxgb4vf_get_ringparam,
1596 .set_ringparam = cxgb4vf_set_ringparam,
1597 .get_coalesce = cxgb4vf_get_coalesce,
1598 .set_coalesce = cxgb4vf_set_coalesce,
1599 .get_pauseparam = cxgb4vf_get_pauseparam,
1600 .get_link = ethtool_op_get_link,
1601 .get_strings = cxgb4vf_get_strings,
1602 .set_phys_id = cxgb4vf_phys_id,
1603 .get_sset_count = cxgb4vf_get_sset_count,
1604 .get_ethtool_stats = cxgb4vf_get_ethtool_stats,
1605 .get_regs_len = cxgb4vf_get_regs_len,
1606 .get_regs = cxgb4vf_get_regs,
1607 .get_wol = cxgb4vf_get_wol,
1608 };
1609
1610 /*
1611 * /sys/kernel/debug/cxgb4vf support code and data.
1612 * ================================================
1613 */
1614
1615 /*
1616 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1617 */
1618 #define QPL 4
1619
1620 static int sge_qinfo_show(struct seq_file *seq, void *v)
1621 {
1622 struct adapter *adapter = seq->private;
1623 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1624 int qs, r = (uintptr_t)v - 1;
1625
1626 if (r)
1627 seq_putc(seq, '\n');
1628
1629 #define S3(fmt_spec, s, v) \
1630 do {\
1631 seq_printf(seq, "%-12s", s); \
1632 for (qs = 0; qs < n; ++qs) \
1633 seq_printf(seq, " %16" fmt_spec, v); \
1634 seq_putc(seq, '\n'); \
1635 } while (0)
1636 #define S(s, v) S3("s", s, v)
1637 #define T(s, v) S3("u", s, txq[qs].v)
1638 #define R(s, v) S3("u", s, rxq[qs].v)
1639
1640 if (r < eth_entries) {
1641 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1642 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1643 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1644
1645 S("QType:", "Ethernet");
1646 S("Interface:",
1647 (rxq[qs].rspq.netdev
1648 ? rxq[qs].rspq.netdev->name
1649 : "N/A"));
1650 S3("d", "Port:",
1651 (rxq[qs].rspq.netdev
1652 ? ((struct port_info *)
1653 netdev_priv(rxq[qs].rspq.netdev))->port_id
1654 : -1));
1655 T("TxQ ID:", q.abs_id);
1656 T("TxQ size:", q.size);
1657 T("TxQ inuse:", q.in_use);
1658 T("TxQ PIdx:", q.pidx);
1659 T("TxQ CIdx:", q.cidx);
1660 R("RspQ ID:", rspq.abs_id);
1661 R("RspQ size:", rspq.size);
1662 R("RspQE size:", rspq.iqe_len);
1663 S3("u", "Intr delay:", qtimer_val(adapter, &rxq[qs].rspq));
1664 S3("u", "Intr pktcnt:",
1665 adapter->sge.counter_val[rxq[qs].rspq.pktcnt_idx]);
1666 R("RspQ CIdx:", rspq.cidx);
1667 R("RspQ Gen:", rspq.gen);
1668 R("FL ID:", fl.abs_id);
1669 R("FL size:", fl.size - MIN_FL_RESID);
1670 R("FL avail:", fl.avail);
1671 R("FL PIdx:", fl.pidx);
1672 R("FL CIdx:", fl.cidx);
1673 return 0;
1674 }
1675
1676 r -= eth_entries;
1677 if (r == 0) {
1678 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1679
1680 seq_printf(seq, "%-12s %16s\n", "QType:", "FW event queue");
1681 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", evtq->abs_id);
1682 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1683 qtimer_val(adapter, evtq));
1684 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1685 adapter->sge.counter_val[evtq->pktcnt_idx]);
1686 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", evtq->cidx);
1687 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", evtq->gen);
1688 } else if (r == 1) {
1689 const struct sge_rspq *intrq = &adapter->sge.intrq;
1690
1691 seq_printf(seq, "%-12s %16s\n", "QType:", "Interrupt Queue");
1692 seq_printf(seq, "%-12s %16u\n", "RspQ ID:", intrq->abs_id);
1693 seq_printf(seq, "%-12s %16u\n", "Intr delay:",
1694 qtimer_val(adapter, intrq));
1695 seq_printf(seq, "%-12s %16u\n", "Intr pktcnt:",
1696 adapter->sge.counter_val[intrq->pktcnt_idx]);
1697 seq_printf(seq, "%-12s %16u\n", "RspQ Cidx:", intrq->cidx);
1698 seq_printf(seq, "%-12s %16u\n", "RspQ Gen:", intrq->gen);
1699 }
1700
1701 #undef R
1702 #undef T
1703 #undef S
1704 #undef S3
1705
1706 return 0;
1707 }
1708
1709 /*
1710 * Return the number of "entries" in our "file". We group the multi-Queue
1711 * sections with QPL Queue Sets per "entry". The sections of the output are:
1712 *
1713 * Ethernet RX/TX Queue Sets
1714 * Firmware Event Queue
1715 * Forwarded Interrupt Queue (if in MSI mode)
1716 */
1717 static int sge_queue_entries(const struct adapter *adapter)
1718 {
1719 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1720 ((adapter->flags & USING_MSI) != 0);
1721 }
1722
1723 static void *sge_queue_start(struct seq_file *seq, loff_t *pos)
1724 {
1725 int entries = sge_queue_entries(seq->private);
1726
1727 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1728 }
1729
1730 static void sge_queue_stop(struct seq_file *seq, void *v)
1731 {
1732 }
1733
1734 static void *sge_queue_next(struct seq_file *seq, void *v, loff_t *pos)
1735 {
1736 int entries = sge_queue_entries(seq->private);
1737
1738 ++*pos;
1739 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1740 }
1741
1742 static const struct seq_operations sge_qinfo_seq_ops = {
1743 .start = sge_queue_start,
1744 .next = sge_queue_next,
1745 .stop = sge_queue_stop,
1746 .show = sge_qinfo_show
1747 };
1748
1749 static int sge_qinfo_open(struct inode *inode, struct file *file)
1750 {
1751 int res = seq_open(file, &sge_qinfo_seq_ops);
1752
1753 if (!res) {
1754 struct seq_file *seq = file->private_data;
1755 seq->private = inode->i_private;
1756 }
1757 return res;
1758 }
1759
1760 static const struct file_operations sge_qinfo_debugfs_fops = {
1761 .owner = THIS_MODULE,
1762 .open = sge_qinfo_open,
1763 .read = seq_read,
1764 .llseek = seq_lseek,
1765 .release = seq_release,
1766 };
1767
1768 /*
1769 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1770 */
1771 #define QPL 4
1772
1773 static int sge_qstats_show(struct seq_file *seq, void *v)
1774 {
1775 struct adapter *adapter = seq->private;
1776 int eth_entries = DIV_ROUND_UP(adapter->sge.ethqsets, QPL);
1777 int qs, r = (uintptr_t)v - 1;
1778
1779 if (r)
1780 seq_putc(seq, '\n');
1781
1782 #define S3(fmt, s, v) \
1783 do { \
1784 seq_printf(seq, "%-16s", s); \
1785 for (qs = 0; qs < n; ++qs) \
1786 seq_printf(seq, " %8" fmt, v); \
1787 seq_putc(seq, '\n'); \
1788 } while (0)
1789 #define S(s, v) S3("s", s, v)
1790
1791 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1792 #define T(s, v) T3("lu", s, v)
1793
1794 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1795 #define R(s, v) R3("lu", s, v)
1796
1797 if (r < eth_entries) {
1798 const struct sge_eth_rxq *rxq = &adapter->sge.ethrxq[r * QPL];
1799 const struct sge_eth_txq *txq = &adapter->sge.ethtxq[r * QPL];
1800 int n = min(QPL, adapter->sge.ethqsets - QPL * r);
1801
1802 S("QType:", "Ethernet");
1803 S("Interface:",
1804 (rxq[qs].rspq.netdev
1805 ? rxq[qs].rspq.netdev->name
1806 : "N/A"));
1807 R3("u", "RspQNullInts:", rspq.unhandled_irqs);
1808 R("RxPackets:", stats.pkts);
1809 R("RxCSO:", stats.rx_cso);
1810 R("VLANxtract:", stats.vlan_ex);
1811 R("LROmerged:", stats.lro_merged);
1812 R("LROpackets:", stats.lro_pkts);
1813 R("RxDrops:", stats.rx_drops);
1814 T("TSO:", tso);
1815 T("TxCSO:", tx_cso);
1816 T("VLANins:", vlan_ins);
1817 T("TxQFull:", q.stops);
1818 T("TxQRestarts:", q.restarts);
1819 T("TxMapErr:", mapping_err);
1820 R("FLAllocErr:", fl.alloc_failed);
1821 R("FLLrgAlcErr:", fl.large_alloc_failed);
1822 R("FLStarving:", fl.starving);
1823 return 0;
1824 }
1825
1826 r -= eth_entries;
1827 if (r == 0) {
1828 const struct sge_rspq *evtq = &adapter->sge.fw_evtq;
1829
1830 seq_printf(seq, "%-8s %16s\n", "QType:", "FW event queue");
1831 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1832 evtq->unhandled_irqs);
1833 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", evtq->cidx);
1834 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", evtq->gen);
1835 } else if (r == 1) {
1836 const struct sge_rspq *intrq = &adapter->sge.intrq;
1837
1838 seq_printf(seq, "%-8s %16s\n", "QType:", "Interrupt Queue");
1839 seq_printf(seq, "%-16s %8u\n", "RspQNullInts:",
1840 intrq->unhandled_irqs);
1841 seq_printf(seq, "%-16s %8u\n", "RspQ CIdx:", intrq->cidx);
1842 seq_printf(seq, "%-16s %8u\n", "RspQ Gen:", intrq->gen);
1843 }
1844
1845 #undef R
1846 #undef T
1847 #undef S
1848 #undef R3
1849 #undef T3
1850 #undef S3
1851
1852 return 0;
1853 }
1854
1855 /*
1856 * Return the number of "entries" in our "file". We group the multi-Queue
1857 * sections with QPL Queue Sets per "entry". The sections of the output are:
1858 *
1859 * Ethernet RX/TX Queue Sets
1860 * Firmware Event Queue
1861 * Forwarded Interrupt Queue (if in MSI mode)
1862 */
1863 static int sge_qstats_entries(const struct adapter *adapter)
1864 {
1865 return DIV_ROUND_UP(adapter->sge.ethqsets, QPL) + 1 +
1866 ((adapter->flags & USING_MSI) != 0);
1867 }
1868
1869 static void *sge_qstats_start(struct seq_file *seq, loff_t *pos)
1870 {
1871 int entries = sge_qstats_entries(seq->private);
1872
1873 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1874 }
1875
1876 static void sge_qstats_stop(struct seq_file *seq, void *v)
1877 {
1878 }
1879
1880 static void *sge_qstats_next(struct seq_file *seq, void *v, loff_t *pos)
1881 {
1882 int entries = sge_qstats_entries(seq->private);
1883
1884 (*pos)++;
1885 return *pos < entries ? (void *)((uintptr_t)*pos + 1) : NULL;
1886 }
1887
1888 static const struct seq_operations sge_qstats_seq_ops = {
1889 .start = sge_qstats_start,
1890 .next = sge_qstats_next,
1891 .stop = sge_qstats_stop,
1892 .show = sge_qstats_show
1893 };
1894
1895 static int sge_qstats_open(struct inode *inode, struct file *file)
1896 {
1897 int res = seq_open(file, &sge_qstats_seq_ops);
1898
1899 if (res == 0) {
1900 struct seq_file *seq = file->private_data;
1901 seq->private = inode->i_private;
1902 }
1903 return res;
1904 }
1905
1906 static const struct file_operations sge_qstats_proc_fops = {
1907 .owner = THIS_MODULE,
1908 .open = sge_qstats_open,
1909 .read = seq_read,
1910 .llseek = seq_lseek,
1911 .release = seq_release,
1912 };
1913
1914 /*
1915 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1916 */
1917 static int resources_show(struct seq_file *seq, void *v)
1918 {
1919 struct adapter *adapter = seq->private;
1920 struct vf_resources *vfres = &adapter->params.vfres;
1921
1922 #define S(desc, fmt, var) \
1923 seq_printf(seq, "%-60s " fmt "\n", \
1924 desc " (" #var "):", vfres->var)
1925
1926 S("Virtual Interfaces", "%d", nvi);
1927 S("Egress Queues", "%d", neq);
1928 S("Ethernet Control", "%d", nethctrl);
1929 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint);
1930 S("Ingress Queues", "%d", niq);
1931 S("Traffic Class", "%d", tc);
1932 S("Port Access Rights Mask", "%#x", pmask);
1933 S("MAC Address Filters", "%d", nexactf);
1934 S("Firmware Command Read Capabilities", "%#x", r_caps);
1935 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps);
1936
1937 #undef S
1938
1939 return 0;
1940 }
1941
1942 static int resources_open(struct inode *inode, struct file *file)
1943 {
1944 return single_open(file, resources_show, inode->i_private);
1945 }
1946
1947 static const struct file_operations resources_proc_fops = {
1948 .owner = THIS_MODULE,
1949 .open = resources_open,
1950 .read = seq_read,
1951 .llseek = seq_lseek,
1952 .release = single_release,
1953 };
1954
1955 /*
1956 * Show Virtual Interfaces.
1957 */
1958 static int interfaces_show(struct seq_file *seq, void *v)
1959 {
1960 if (v == SEQ_START_TOKEN) {
1961 seq_puts(seq, "Interface Port VIID\n");
1962 } else {
1963 struct adapter *adapter = seq->private;
1964 int pidx = (uintptr_t)v - 2;
1965 struct net_device *dev = adapter->port[pidx];
1966 struct port_info *pi = netdev_priv(dev);
1967
1968 seq_printf(seq, "%9s %4d %#5x\n",
1969 dev->name, pi->port_id, pi->viid);
1970 }
1971 return 0;
1972 }
1973
1974 static inline void *interfaces_get_idx(struct adapter *adapter, loff_t pos)
1975 {
1976 return pos <= adapter->params.nports
1977 ? (void *)(uintptr_t)(pos + 1)
1978 : NULL;
1979 }
1980
1981 static void *interfaces_start(struct seq_file *seq, loff_t *pos)
1982 {
1983 return *pos
1984 ? interfaces_get_idx(seq->private, *pos)
1985 : SEQ_START_TOKEN;
1986 }
1987
1988 static void *interfaces_next(struct seq_file *seq, void *v, loff_t *pos)
1989 {
1990 (*pos)++;
1991 return interfaces_get_idx(seq->private, *pos);
1992 }
1993
1994 static void interfaces_stop(struct seq_file *seq, void *v)
1995 {
1996 }
1997
1998 static const struct seq_operations interfaces_seq_ops = {
1999 .start = interfaces_start,
2000 .next = interfaces_next,
2001 .stop = interfaces_stop,
2002 .show = interfaces_show
2003 };
2004
2005 static int interfaces_open(struct inode *inode, struct file *file)
2006 {
2007 int res = seq_open(file, &interfaces_seq_ops);
2008
2009 if (res == 0) {
2010 struct seq_file *seq = file->private_data;
2011 seq->private = inode->i_private;
2012 }
2013 return res;
2014 }
2015
2016 static const struct file_operations interfaces_proc_fops = {
2017 .owner = THIS_MODULE,
2018 .open = interfaces_open,
2019 .read = seq_read,
2020 .llseek = seq_lseek,
2021 .release = seq_release,
2022 };
2023
2024 /*
2025 * /sys/kernel/debugfs/cxgb4vf/ files list.
2026 */
2027 struct cxgb4vf_debugfs_entry {
2028 const char *name; /* name of debugfs node */
2029 umode_t mode; /* file system mode */
2030 const struct file_operations *fops;
2031 };
2032
2033 static struct cxgb4vf_debugfs_entry debugfs_files[] = {
2034 { "sge_qinfo", S_IRUGO, &sge_qinfo_debugfs_fops },
2035 { "sge_qstats", S_IRUGO, &sge_qstats_proc_fops },
2036 { "resources", S_IRUGO, &resources_proc_fops },
2037 { "interfaces", S_IRUGO, &interfaces_proc_fops },
2038 };
2039
2040 /*
2041 * Module and device initialization and cleanup code.
2042 * ==================================================
2043 */
2044
2045 /*
2046 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2047 * directory (debugfs_root) has already been set up.
2048 */
2049 static int setup_debugfs(struct adapter *adapter)
2050 {
2051 int i;
2052
2053 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2054
2055 /*
2056 * Debugfs support is best effort.
2057 */
2058 for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
2059 (void)debugfs_create_file(debugfs_files[i].name,
2060 debugfs_files[i].mode,
2061 adapter->debugfs_root,
2062 (void *)adapter,
2063 debugfs_files[i].fops);
2064
2065 return 0;
2066 }
2067
2068 /*
2069 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2070 * it to our caller to tear down the directory (debugfs_root).
2071 */
2072 static void cleanup_debugfs(struct adapter *adapter)
2073 {
2074 BUG_ON(IS_ERR_OR_NULL(adapter->debugfs_root));
2075
2076 /*
2077 * Unlike our sister routine cleanup_proc(), we don't need to remove
2078 * individual entries because a call will be made to
2079 * debugfs_remove_recursive(). We just need to clean up any ancillary
2080 * persistent state.
2081 */
2082 /* nothing to do */
2083 }
2084
2085 /*
2086 * Perform early "adapter" initialization. This is where we discover what
2087 * adapter parameters we're going to be using and initialize basic adapter
2088 * hardware support.
2089 */
2090 static int adap_init0(struct adapter *adapter)
2091 {
2092 struct vf_resources *vfres = &adapter->params.vfres;
2093 struct sge_params *sge_params = &adapter->params.sge;
2094 struct sge *s = &adapter->sge;
2095 unsigned int ethqsets;
2096 int err;
2097 u32 param, val = 0;
2098 unsigned int chipid;
2099
2100 /*
2101 * Wait for the device to become ready before proceeding ...
2102 */
2103 err = t4vf_wait_dev_ready(adapter);
2104 if (err) {
2105 dev_err(adapter->pdev_dev, "device didn't become ready:"
2106 " err=%d\n", err);
2107 return err;
2108 }
2109
2110 /*
2111 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2112 * 2.6.31 and later we can't call pci_reset_function() in order to
2113 * issue an FLR because of a self- deadlock on the device semaphore.
2114 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2115 * cases where they're needed -- for instance, some versions of KVM
2116 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2117 * use the firmware based reset in order to reset any per function
2118 * state.
2119 */
2120 err = t4vf_fw_reset(adapter);
2121 if (err < 0) {
2122 dev_err(adapter->pdev_dev, "FW reset failed: err=%d\n", err);
2123 return err;
2124 }
2125
2126 adapter->params.chip = 0;
2127 switch (adapter->pdev->device >> 12) {
2128 case CHELSIO_T4:
2129 adapter->params.chip = CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
2130 break;
2131 case CHELSIO_T5:
2132 chipid = G_REV(t4_read_reg(adapter, A_PL_VF_REV));
2133 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
2134 break;
2135 }
2136
2137 /*
2138 * Grab basic operational parameters. These will predominantly have
2139 * been set up by the Physical Function Driver or will be hard coded
2140 * into the adapter. We just have to live with them ... Note that
2141 * we _must_ get our VPD parameters before our SGE parameters because
2142 * we need to know the adapter's core clock from the VPD in order to
2143 * properly decode the SGE Timer Values.
2144 */
2145 err = t4vf_get_dev_params(adapter);
2146 if (err) {
2147 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2148 " device parameters: err=%d\n", err);
2149 return err;
2150 }
2151 err = t4vf_get_vpd_params(adapter);
2152 if (err) {
2153 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2154 " VPD parameters: err=%d\n", err);
2155 return err;
2156 }
2157 err = t4vf_get_sge_params(adapter);
2158 if (err) {
2159 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2160 " SGE parameters: err=%d\n", err);
2161 return err;
2162 }
2163 err = t4vf_get_rss_glb_config(adapter);
2164 if (err) {
2165 dev_err(adapter->pdev_dev, "unable to retrieve adapter"
2166 " RSS parameters: err=%d\n", err);
2167 return err;
2168 }
2169 if (adapter->params.rss.mode !=
2170 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
2171 dev_err(adapter->pdev_dev, "unable to operate with global RSS"
2172 " mode %d\n", adapter->params.rss.mode);
2173 return -EINVAL;
2174 }
2175 err = t4vf_sge_init(adapter);
2176 if (err) {
2177 dev_err(adapter->pdev_dev, "unable to use adapter parameters:"
2178 " err=%d\n", err);
2179 return err;
2180 }
2181
2182 /* If we're running on newer firmware, let it know that we're
2183 * prepared to deal with encapsulated CPL messages. Older
2184 * firmware won't understand this and we'll just get
2185 * unencapsulated messages ...
2186 */
2187 param = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2188 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_CPLFW4MSG_ENCAP);
2189 val = 1;
2190 (void) t4vf_set_params(adapter, 1, &param, &val);
2191
2192 /*
2193 * Retrieve our RX interrupt holdoff timer values and counter
2194 * threshold values from the SGE parameters.
2195 */
2196 s->timer_val[0] = core_ticks_to_us(adapter,
2197 TIMERVALUE0_GET(sge_params->sge_timer_value_0_and_1));
2198 s->timer_val[1] = core_ticks_to_us(adapter,
2199 TIMERVALUE1_GET(sge_params->sge_timer_value_0_and_1));
2200 s->timer_val[2] = core_ticks_to_us(adapter,
2201 TIMERVALUE0_GET(sge_params->sge_timer_value_2_and_3));
2202 s->timer_val[3] = core_ticks_to_us(adapter,
2203 TIMERVALUE1_GET(sge_params->sge_timer_value_2_and_3));
2204 s->timer_val[4] = core_ticks_to_us(adapter,
2205 TIMERVALUE0_GET(sge_params->sge_timer_value_4_and_5));
2206 s->timer_val[5] = core_ticks_to_us(adapter,
2207 TIMERVALUE1_GET(sge_params->sge_timer_value_4_and_5));
2208
2209 s->counter_val[0] =
2210 THRESHOLD_0_GET(sge_params->sge_ingress_rx_threshold);
2211 s->counter_val[1] =
2212 THRESHOLD_1_GET(sge_params->sge_ingress_rx_threshold);
2213 s->counter_val[2] =
2214 THRESHOLD_2_GET(sge_params->sge_ingress_rx_threshold);
2215 s->counter_val[3] =
2216 THRESHOLD_3_GET(sge_params->sge_ingress_rx_threshold);
2217
2218 /*
2219 * Grab our Virtual Interface resource allocation, extract the
2220 * features that we're interested in and do a bit of sanity testing on
2221 * what we discover.
2222 */
2223 err = t4vf_get_vfres(adapter);
2224 if (err) {
2225 dev_err(adapter->pdev_dev, "unable to get virtual interface"
2226 " resources: err=%d\n", err);
2227 return err;
2228 }
2229
2230 /*
2231 * The number of "ports" which we support is equal to the number of
2232 * Virtual Interfaces with which we've been provisioned.
2233 */
2234 adapter->params.nports = vfres->nvi;
2235 if (adapter->params.nports > MAX_NPORTS) {
2236 dev_warn(adapter->pdev_dev, "only using %d of %d allowed"
2237 " virtual interfaces\n", MAX_NPORTS,
2238 adapter->params.nports);
2239 adapter->params.nports = MAX_NPORTS;
2240 }
2241
2242 /*
2243 * We need to reserve a number of the ingress queues with Free List
2244 * and Interrupt capabilities for special interrupt purposes (like
2245 * asynchronous firmware messages, or forwarded interrupts if we're
2246 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2247 * matched up one-for-one with Ethernet/Control egress queues in order
2248 * to form "Queue Sets" which will be aportioned between the "ports".
2249 * For each Queue Set, we'll need the ability to allocate two Egress
2250 * Contexts -- one for the Ingress Queue Free List and one for the TX
2251 * Ethernet Queue.
2252 */
2253 ethqsets = vfres->niqflint - INGQ_EXTRAS;
2254 if (vfres->nethctrl != ethqsets) {
2255 dev_warn(adapter->pdev_dev, "unequal number of [available]"
2256 " ingress/egress queues (%d/%d); using minimum for"
2257 " number of Queue Sets\n", ethqsets, vfres->nethctrl);
2258 ethqsets = min(vfres->nethctrl, ethqsets);
2259 }
2260 if (vfres->neq < ethqsets*2) {
2261 dev_warn(adapter->pdev_dev, "Not enough Egress Contexts (%d)"
2262 " to support Queue Sets (%d); reducing allowed Queue"
2263 " Sets\n", vfres->neq, ethqsets);
2264 ethqsets = vfres->neq/2;
2265 }
2266 if (ethqsets > MAX_ETH_QSETS) {
2267 dev_warn(adapter->pdev_dev, "only using %d of %d allowed Queue"
2268 " Sets\n", MAX_ETH_QSETS, adapter->sge.max_ethqsets);
2269 ethqsets = MAX_ETH_QSETS;
2270 }
2271 if (vfres->niq != 0 || vfres->neq > ethqsets*2) {
2272 dev_warn(adapter->pdev_dev, "unused resources niq/neq (%d/%d)"
2273 " ignored\n", vfres->niq, vfres->neq - ethqsets*2);
2274 }
2275 adapter->sge.max_ethqsets = ethqsets;
2276
2277 /*
2278 * Check for various parameter sanity issues. Most checks simply
2279 * result in us using fewer resources than our provissioning but we
2280 * do need at least one "port" with which to work ...
2281 */
2282 if (adapter->sge.max_ethqsets < adapter->params.nports) {
2283 dev_warn(adapter->pdev_dev, "only using %d of %d available"
2284 " virtual interfaces (too few Queue Sets)\n",
2285 adapter->sge.max_ethqsets, adapter->params.nports);
2286 adapter->params.nports = adapter->sge.max_ethqsets;
2287 }
2288 if (adapter->params.nports == 0) {
2289 dev_err(adapter->pdev_dev, "no virtual interfaces configured/"
2290 "usable!\n");
2291 return -EINVAL;
2292 }
2293 return 0;
2294 }
2295
2296 static inline void init_rspq(struct sge_rspq *rspq, u8 timer_idx,
2297 u8 pkt_cnt_idx, unsigned int size,
2298 unsigned int iqe_size)
2299 {
2300 rspq->intr_params = (QINTR_TIMER_IDX(timer_idx) |
2301 (pkt_cnt_idx < SGE_NCOUNTERS ? QINTR_CNT_EN : 0));
2302 rspq->pktcnt_idx = (pkt_cnt_idx < SGE_NCOUNTERS
2303 ? pkt_cnt_idx
2304 : 0);
2305 rspq->iqe_len = iqe_size;
2306 rspq->size = size;
2307 }
2308
2309 /*
2310 * Perform default configuration of DMA queues depending on the number and
2311 * type of ports we found and the number of available CPUs. Most settings can
2312 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2313 * being brought up for the first time.
2314 */
2315 static void cfg_queues(struct adapter *adapter)
2316 {
2317 struct sge *s = &adapter->sge;
2318 int q10g, n10g, qidx, pidx, qs;
2319 size_t iqe_size;
2320
2321 /*
2322 * We should not be called till we know how many Queue Sets we can
2323 * support. In particular, this means that we need to know what kind
2324 * of interrupts we'll be using ...
2325 */
2326 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2327
2328 /*
2329 * Count the number of 10GbE Virtual Interfaces that we have.
2330 */
2331 n10g = 0;
2332 for_each_port(adapter, pidx)
2333 n10g += is_10g_port(&adap2pinfo(adapter, pidx)->link_cfg);
2334
2335 /*
2336 * We default to 1 queue per non-10G port and up to # of cores queues
2337 * per 10G port.
2338 */
2339 if (n10g == 0)
2340 q10g = 0;
2341 else {
2342 int n1g = (adapter->params.nports - n10g);
2343 q10g = (adapter->sge.max_ethqsets - n1g) / n10g;
2344 if (q10g > num_online_cpus())
2345 q10g = num_online_cpus();
2346 }
2347
2348 /*
2349 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2350 * The layout will be established in setup_sge_queues() when the
2351 * adapter is brough up for the first time.
2352 */
2353 qidx = 0;
2354 for_each_port(adapter, pidx) {
2355 struct port_info *pi = adap2pinfo(adapter, pidx);
2356
2357 pi->first_qset = qidx;
2358 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
2359 qidx += pi->nqsets;
2360 }
2361 s->ethqsets = qidx;
2362
2363 /*
2364 * The Ingress Queue Entry Size for our various Response Queues needs
2365 * to be big enough to accommodate the largest message we can receive
2366 * from the chip/firmware; which is 64 bytes ...
2367 */
2368 iqe_size = 64;
2369
2370 /*
2371 * Set up default Queue Set parameters ... Start off with the
2372 * shortest interrupt holdoff timer.
2373 */
2374 for (qs = 0; qs < s->max_ethqsets; qs++) {
2375 struct sge_eth_rxq *rxq = &s->ethrxq[qs];
2376 struct sge_eth_txq *txq = &s->ethtxq[qs];
2377
2378 init_rspq(&rxq->rspq, 0, 0, 1024, iqe_size);
2379 rxq->fl.size = 72;
2380 txq->q.size = 1024;
2381 }
2382
2383 /*
2384 * The firmware event queue is used for link state changes and
2385 * notifications of TX DMA completions.
2386 */
2387 init_rspq(&s->fw_evtq, SGE_TIMER_RSTRT_CNTR, 0, 512, iqe_size);
2388
2389 /*
2390 * The forwarded interrupt queue is used when we're in MSI interrupt
2391 * mode. In this mode all interrupts associated with RX queues will
2392 * be forwarded to a single queue which we'll associate with our MSI
2393 * interrupt vector. The messages dropped in the forwarded interrupt
2394 * queue will indicate which ingress queue needs servicing ... This
2395 * queue needs to be large enough to accommodate all of the ingress
2396 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2397 * from equalling the CIDX if every ingress queue has an outstanding
2398 * interrupt). The queue doesn't need to be any larger because no
2399 * ingress queue will ever have more than one outstanding interrupt at
2400 * any time ...
2401 */
2402 init_rspq(&s->intrq, SGE_TIMER_RSTRT_CNTR, 0, MSIX_ENTRIES + 1,
2403 iqe_size);
2404 }
2405
2406 /*
2407 * Reduce the number of Ethernet queues across all ports to at most n.
2408 * n provides at least one queue per port.
2409 */
2410 static void reduce_ethqs(struct adapter *adapter, int n)
2411 {
2412 int i;
2413 struct port_info *pi;
2414
2415 /*
2416 * While we have too many active Ether Queue Sets, interate across the
2417 * "ports" and reduce their individual Queue Set allocations.
2418 */
2419 BUG_ON(n < adapter->params.nports);
2420 while (n < adapter->sge.ethqsets)
2421 for_each_port(adapter, i) {
2422 pi = adap2pinfo(adapter, i);
2423 if (pi->nqsets > 1) {
2424 pi->nqsets--;
2425 adapter->sge.ethqsets--;
2426 if (adapter->sge.ethqsets <= n)
2427 break;
2428 }
2429 }
2430
2431 /*
2432 * Reassign the starting Queue Sets for each of the "ports" ...
2433 */
2434 n = 0;
2435 for_each_port(adapter, i) {
2436 pi = adap2pinfo(adapter, i);
2437 pi->first_qset = n;
2438 n += pi->nqsets;
2439 }
2440 }
2441
2442 /*
2443 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2444 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2445 * need. Minimally we need one for every Virtual Interface plus those needed
2446 * for our "extras". Note that this process may lower the maximum number of
2447 * allowed Queue Sets ...
2448 */
2449 static int enable_msix(struct adapter *adapter)
2450 {
2451 int i, want, need, nqsets;
2452 struct msix_entry entries[MSIX_ENTRIES];
2453 struct sge *s = &adapter->sge;
2454
2455 for (i = 0; i < MSIX_ENTRIES; ++i)
2456 entries[i].entry = i;
2457
2458 /*
2459 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2460 * plus those needed for our "extras" (for example, the firmware
2461 * message queue). We _need_ at least one "Queue Set" per Virtual
2462 * Interface plus those needed for our "extras". So now we get to see
2463 * if the song is right ...
2464 */
2465 want = s->max_ethqsets + MSIX_EXTRAS;
2466 need = adapter->params.nports + MSIX_EXTRAS;
2467
2468 want = pci_enable_msix_range(adapter->pdev, entries, need, want);
2469 if (want < 0)
2470 return want;
2471
2472 nqsets = want - MSIX_EXTRAS;
2473 if (nqsets < s->max_ethqsets) {
2474 dev_warn(adapter->pdev_dev, "only enough MSI-X vectors"
2475 " for %d Queue Sets\n", nqsets);
2476 s->max_ethqsets = nqsets;
2477 if (nqsets < s->ethqsets)
2478 reduce_ethqs(adapter, nqsets);
2479 }
2480 for (i = 0; i < want; ++i)
2481 adapter->msix_info[i].vec = entries[i].vector;
2482
2483 return 0;
2484 }
2485
2486 static const struct net_device_ops cxgb4vf_netdev_ops = {
2487 .ndo_open = cxgb4vf_open,
2488 .ndo_stop = cxgb4vf_stop,
2489 .ndo_start_xmit = t4vf_eth_xmit,
2490 .ndo_get_stats = cxgb4vf_get_stats,
2491 .ndo_set_rx_mode = cxgb4vf_set_rxmode,
2492 .ndo_set_mac_address = cxgb4vf_set_mac_addr,
2493 .ndo_validate_addr = eth_validate_addr,
2494 .ndo_do_ioctl = cxgb4vf_do_ioctl,
2495 .ndo_change_mtu = cxgb4vf_change_mtu,
2496 .ndo_fix_features = cxgb4vf_fix_features,
2497 .ndo_set_features = cxgb4vf_set_features,
2498 #ifdef CONFIG_NET_POLL_CONTROLLER
2499 .ndo_poll_controller = cxgb4vf_poll_controller,
2500 #endif
2501 };
2502
2503 /*
2504 * "Probe" a device: initialize a device and construct all kernel and driver
2505 * state needed to manage the device. This routine is called "init_one" in
2506 * the PF Driver ...
2507 */
2508 static int cxgb4vf_pci_probe(struct pci_dev *pdev,
2509 const struct pci_device_id *ent)
2510 {
2511 int pci_using_dac;
2512 int err, pidx;
2513 unsigned int pmask;
2514 struct adapter *adapter;
2515 struct port_info *pi;
2516 struct net_device *netdev;
2517
2518 /*
2519 * Print our driver banner the first time we're called to initialize a
2520 * device.
2521 */
2522 pr_info_once("%s - version %s\n", DRV_DESC, DRV_VERSION);
2523
2524 /*
2525 * Initialize generic PCI device state.
2526 */
2527 err = pci_enable_device(pdev);
2528 if (err) {
2529 dev_err(&pdev->dev, "cannot enable PCI device\n");
2530 return err;
2531 }
2532
2533 /*
2534 * Reserve PCI resources for the device. If we can't get them some
2535 * other driver may have already claimed the device ...
2536 */
2537 err = pci_request_regions(pdev, KBUILD_MODNAME);
2538 if (err) {
2539 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
2540 goto err_disable_device;
2541 }
2542
2543 /*
2544 * Set up our DMA mask: try for 64-bit address masking first and
2545 * fall back to 32-bit if we can't get 64 bits ...
2546 */
2547 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
2548 if (err == 0) {
2549 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
2550 if (err) {
2551 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for"
2552 " coherent allocations\n");
2553 goto err_release_regions;
2554 }
2555 pci_using_dac = 1;
2556 } else {
2557 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2558 if (err != 0) {
2559 dev_err(&pdev->dev, "no usable DMA configuration\n");
2560 goto err_release_regions;
2561 }
2562 pci_using_dac = 0;
2563 }
2564
2565 /*
2566 * Enable bus mastering for the device ...
2567 */
2568 pci_set_master(pdev);
2569
2570 /*
2571 * Allocate our adapter data structure and attach it to the device.
2572 */
2573 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2574 if (!adapter) {
2575 err = -ENOMEM;
2576 goto err_release_regions;
2577 }
2578 pci_set_drvdata(pdev, adapter);
2579 adapter->pdev = pdev;
2580 adapter->pdev_dev = &pdev->dev;
2581
2582 /*
2583 * Initialize SMP data synchronization resources.
2584 */
2585 spin_lock_init(&adapter->stats_lock);
2586
2587 /*
2588 * Map our I/O registers in BAR0.
2589 */
2590 adapter->regs = pci_ioremap_bar(pdev, 0);
2591 if (!adapter->regs) {
2592 dev_err(&pdev->dev, "cannot map device registers\n");
2593 err = -ENOMEM;
2594 goto err_free_adapter;
2595 }
2596
2597 /* Wait for the device to become ready before proceeding ...
2598 */
2599 err = t4vf_prep_adapter(adapter);
2600 if (err) {
2601 dev_err(adapter->pdev_dev, "device didn't become ready:"
2602 " err=%d\n", err);
2603 goto err_unmap_bar0;
2604 }
2605
2606 /* For T5 and later we want to use the new BAR-based User Doorbells,
2607 * so we need to map BAR2 here ...
2608 */
2609 if (!is_t4(adapter->params.chip)) {
2610 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
2611 pci_resource_len(pdev, 2));
2612 if (!adapter->bar2) {
2613 dev_err(adapter->pdev_dev, "cannot map BAR2 doorbells\n");
2614 err = -ENOMEM;
2615 goto err_unmap_bar0;
2616 }
2617 }
2618 /*
2619 * Initialize adapter level features.
2620 */
2621 adapter->name = pci_name(pdev);
2622 adapter->msg_enable = dflt_msg_enable;
2623 err = adap_init0(adapter);
2624 if (err)
2625 goto err_unmap_bar;
2626
2627 /*
2628 * Allocate our "adapter ports" and stitch everything together.
2629 */
2630 pmask = adapter->params.vfres.pmask;
2631 for_each_port(adapter, pidx) {
2632 int port_id, viid;
2633
2634 /*
2635 * We simplistically allocate our virtual interfaces
2636 * sequentially across the port numbers to which we have
2637 * access rights. This should be configurable in some manner
2638 * ...
2639 */
2640 if (pmask == 0)
2641 break;
2642 port_id = ffs(pmask) - 1;
2643 pmask &= ~(1 << port_id);
2644 viid = t4vf_alloc_vi(adapter, port_id);
2645 if (viid < 0) {
2646 dev_err(&pdev->dev, "cannot allocate VI for port %d:"
2647 " err=%d\n", port_id, viid);
2648 err = viid;
2649 goto err_free_dev;
2650 }
2651
2652 /*
2653 * Allocate our network device and stitch things together.
2654 */
2655 netdev = alloc_etherdev_mq(sizeof(struct port_info),
2656 MAX_PORT_QSETS);
2657 if (netdev == NULL) {
2658 t4vf_free_vi(adapter, viid);
2659 err = -ENOMEM;
2660 goto err_free_dev;
2661 }
2662 adapter->port[pidx] = netdev;
2663 SET_NETDEV_DEV(netdev, &pdev->dev);
2664 pi = netdev_priv(netdev);
2665 pi->adapter = adapter;
2666 pi->pidx = pidx;
2667 pi->port_id = port_id;
2668 pi->viid = viid;
2669
2670 /*
2671 * Initialize the starting state of our "port" and register
2672 * it.
2673 */
2674 pi->xact_addr_filt = -1;
2675 netif_carrier_off(netdev);
2676 netdev->irq = pdev->irq;
2677
2678 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
2679 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2680 NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_RXCSUM;
2681 netdev->vlan_features = NETIF_F_SG | TSO_FLAGS |
2682 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2683 NETIF_F_HIGHDMA;
2684 netdev->features = netdev->hw_features |
2685 NETIF_F_HW_VLAN_CTAG_TX;
2686 if (pci_using_dac)
2687 netdev->features |= NETIF_F_HIGHDMA;
2688
2689 netdev->priv_flags |= IFF_UNICAST_FLT;
2690
2691 netdev->netdev_ops = &cxgb4vf_netdev_ops;
2692 netdev->ethtool_ops = &cxgb4vf_ethtool_ops;
2693
2694 /*
2695 * Initialize the hardware/software state for the port.
2696 */
2697 err = t4vf_port_init(adapter, pidx);
2698 if (err) {
2699 dev_err(&pdev->dev, "cannot initialize port %d\n",
2700 pidx);
2701 goto err_free_dev;
2702 }
2703 }
2704
2705 /*
2706 * The "card" is now ready to go. If any errors occur during device
2707 * registration we do not fail the whole "card" but rather proceed
2708 * only with the ports we manage to register successfully. However we
2709 * must register at least one net device.
2710 */
2711 for_each_port(adapter, pidx) {
2712 netdev = adapter->port[pidx];
2713 if (netdev == NULL)
2714 continue;
2715
2716 err = register_netdev(netdev);
2717 if (err) {
2718 dev_warn(&pdev->dev, "cannot register net device %s,"
2719 " skipping\n", netdev->name);
2720 continue;
2721 }
2722
2723 set_bit(pidx, &adapter->registered_device_map);
2724 }
2725 if (adapter->registered_device_map == 0) {
2726 dev_err(&pdev->dev, "could not register any net devices\n");
2727 goto err_free_dev;
2728 }
2729
2730 /*
2731 * Set up our debugfs entries.
2732 */
2733 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root)) {
2734 adapter->debugfs_root =
2735 debugfs_create_dir(pci_name(pdev),
2736 cxgb4vf_debugfs_root);
2737 if (IS_ERR_OR_NULL(adapter->debugfs_root))
2738 dev_warn(&pdev->dev, "could not create debugfs"
2739 " directory");
2740 else
2741 setup_debugfs(adapter);
2742 }
2743
2744 /*
2745 * See what interrupts we'll be using. If we've been configured to
2746 * use MSI-X interrupts, try to enable them but fall back to using
2747 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2748 * get MSI interrupts we bail with the error.
2749 */
2750 if (msi == MSI_MSIX && enable_msix(adapter) == 0)
2751 adapter->flags |= USING_MSIX;
2752 else {
2753 err = pci_enable_msi(pdev);
2754 if (err) {
2755 dev_err(&pdev->dev, "Unable to allocate %s interrupts;"
2756 " err=%d\n",
2757 msi == MSI_MSIX ? "MSI-X or MSI" : "MSI", err);
2758 goto err_free_debugfs;
2759 }
2760 adapter->flags |= USING_MSI;
2761 }
2762
2763 /*
2764 * Now that we know how many "ports" we have and what their types are,
2765 * and how many Queue Sets we can support, we can configure our queue
2766 * resources.
2767 */
2768 cfg_queues(adapter);
2769
2770 /*
2771 * Print a short notice on the existence and configuration of the new
2772 * VF network device ...
2773 */
2774 for_each_port(adapter, pidx) {
2775 dev_info(adapter->pdev_dev, "%s: Chelsio VF NIC PCIe %s\n",
2776 adapter->port[pidx]->name,
2777 (adapter->flags & USING_MSIX) ? "MSI-X" :
2778 (adapter->flags & USING_MSI) ? "MSI" : "");
2779 }
2780
2781 /*
2782 * Return success!
2783 */
2784 return 0;
2785
2786 /*
2787 * Error recovery and exit code. Unwind state that's been created
2788 * so far and return the error.
2789 */
2790
2791 err_free_debugfs:
2792 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2793 cleanup_debugfs(adapter);
2794 debugfs_remove_recursive(adapter->debugfs_root);
2795 }
2796
2797 err_free_dev:
2798 for_each_port(adapter, pidx) {
2799 netdev = adapter->port[pidx];
2800 if (netdev == NULL)
2801 continue;
2802 pi = netdev_priv(netdev);
2803 t4vf_free_vi(adapter, pi->viid);
2804 if (test_bit(pidx, &adapter->registered_device_map))
2805 unregister_netdev(netdev);
2806 free_netdev(netdev);
2807 }
2808
2809 err_unmap_bar:
2810 if (!is_t4(adapter->params.chip))
2811 iounmap(adapter->bar2);
2812
2813 err_unmap_bar0:
2814 iounmap(adapter->regs);
2815
2816 err_free_adapter:
2817 kfree(adapter);
2818
2819 err_release_regions:
2820 pci_release_regions(pdev);
2821 pci_clear_master(pdev);
2822
2823 err_disable_device:
2824 pci_disable_device(pdev);
2825
2826 return err;
2827 }
2828
2829 /*
2830 * "Remove" a device: tear down all kernel and driver state created in the
2831 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2832 * that this is called "remove_one" in the PF Driver.)
2833 */
2834 static void cxgb4vf_pci_remove(struct pci_dev *pdev)
2835 {
2836 struct adapter *adapter = pci_get_drvdata(pdev);
2837
2838 /*
2839 * Tear down driver state associated with device.
2840 */
2841 if (adapter) {
2842 int pidx;
2843
2844 /*
2845 * Stop all of our activity. Unregister network port,
2846 * disable interrupts, etc.
2847 */
2848 for_each_port(adapter, pidx)
2849 if (test_bit(pidx, &adapter->registered_device_map))
2850 unregister_netdev(adapter->port[pidx]);
2851 t4vf_sge_stop(adapter);
2852 if (adapter->flags & USING_MSIX) {
2853 pci_disable_msix(adapter->pdev);
2854 adapter->flags &= ~USING_MSIX;
2855 } else if (adapter->flags & USING_MSI) {
2856 pci_disable_msi(adapter->pdev);
2857 adapter->flags &= ~USING_MSI;
2858 }
2859
2860 /*
2861 * Tear down our debugfs entries.
2862 */
2863 if (!IS_ERR_OR_NULL(adapter->debugfs_root)) {
2864 cleanup_debugfs(adapter);
2865 debugfs_remove_recursive(adapter->debugfs_root);
2866 }
2867
2868 /*
2869 * Free all of the various resources which we've acquired ...
2870 */
2871 t4vf_free_sge_resources(adapter);
2872 for_each_port(adapter, pidx) {
2873 struct net_device *netdev = adapter->port[pidx];
2874 struct port_info *pi;
2875
2876 if (netdev == NULL)
2877 continue;
2878
2879 pi = netdev_priv(netdev);
2880 t4vf_free_vi(adapter, pi->viid);
2881 free_netdev(netdev);
2882 }
2883 iounmap(adapter->regs);
2884 if (!is_t4(adapter->params.chip))
2885 iounmap(adapter->bar2);
2886 kfree(adapter);
2887 }
2888
2889 /*
2890 * Disable the device and release its PCI resources.
2891 */
2892 pci_disable_device(pdev);
2893 pci_clear_master(pdev);
2894 pci_release_regions(pdev);
2895 }
2896
2897 /*
2898 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2899 * delivery.
2900 */
2901 static void cxgb4vf_pci_shutdown(struct pci_dev *pdev)
2902 {
2903 struct adapter *adapter;
2904 int pidx;
2905
2906 adapter = pci_get_drvdata(pdev);
2907 if (!adapter)
2908 return;
2909
2910 /* Disable all Virtual Interfaces. This will shut down the
2911 * delivery of all ingress packets into the chip for these
2912 * Virtual Interfaces.
2913 */
2914 for_each_port(adapter, pidx)
2915 if (test_bit(pidx, &adapter->registered_device_map))
2916 unregister_netdev(adapter->port[pidx]);
2917
2918 /* Free up all Queues which will prevent further DMA and
2919 * Interrupts allowing various internal pathways to drain.
2920 */
2921 t4vf_sge_stop(adapter);
2922 if (adapter->flags & USING_MSIX) {
2923 pci_disable_msix(adapter->pdev);
2924 adapter->flags &= ~USING_MSIX;
2925 } else if (adapter->flags & USING_MSI) {
2926 pci_disable_msi(adapter->pdev);
2927 adapter->flags &= ~USING_MSI;
2928 }
2929
2930 /*
2931 * Free up all Queues which will prevent further DMA and
2932 * Interrupts allowing various internal pathways to drain.
2933 */
2934 t4vf_free_sge_resources(adapter);
2935 pci_set_drvdata(pdev, NULL);
2936 }
2937
2938 /* Macros needed to support the PCI Device ID Table ...
2939 */
2940 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
2941 static struct pci_device_id cxgb4vf_pci_tbl[] = {
2942 #define CH_PCI_DEVICE_ID_FUNCTION 0x8
2943
2944 #define CH_PCI_ID_TABLE_ENTRY(devid) \
2945 { PCI_VDEVICE(CHELSIO, (devid)), 0 }
2946
2947 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END { 0, } }
2948
2949 #include "../cxgb4/t4_pci_id_tbl.h"
2950
2951 MODULE_DESCRIPTION(DRV_DESC);
2952 MODULE_AUTHOR("Chelsio Communications");
2953 MODULE_LICENSE("Dual BSD/GPL");
2954 MODULE_VERSION(DRV_VERSION);
2955 MODULE_DEVICE_TABLE(pci, cxgb4vf_pci_tbl);
2956
2957 static struct pci_driver cxgb4vf_driver = {
2958 .name = KBUILD_MODNAME,
2959 .id_table = cxgb4vf_pci_tbl,
2960 .probe = cxgb4vf_pci_probe,
2961 .remove = cxgb4vf_pci_remove,
2962 .shutdown = cxgb4vf_pci_shutdown,
2963 };
2964
2965 /*
2966 * Initialize global driver state.
2967 */
2968 static int __init cxgb4vf_module_init(void)
2969 {
2970 int ret;
2971
2972 /*
2973 * Vet our module parameters.
2974 */
2975 if (msi != MSI_MSIX && msi != MSI_MSI) {
2976 pr_warn("bad module parameter msi=%d; must be %d (MSI-X or MSI) or %d (MSI)\n",
2977 msi, MSI_MSIX, MSI_MSI);
2978 return -EINVAL;
2979 }
2980
2981 /* Debugfs support is optional, just warn if this fails */
2982 cxgb4vf_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
2983 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2984 pr_warn("could not create debugfs entry, continuing\n");
2985
2986 ret = pci_register_driver(&cxgb4vf_driver);
2987 if (ret < 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root))
2988 debugfs_remove(cxgb4vf_debugfs_root);
2989 return ret;
2990 }
2991
2992 /*
2993 * Tear down global driver state.
2994 */
2995 static void __exit cxgb4vf_module_exit(void)
2996 {
2997 pci_unregister_driver(&cxgb4vf_driver);
2998 debugfs_remove(cxgb4vf_debugfs_root);
2999 }
3000
3001 module_init(cxgb4vf_module_init);
3002 module_exit(cxgb4vf_module_exit);
This page took 0.132992 seconds and 5 git commands to generate.