Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso...
[deliverable/linux.git] / drivers / net / ethernet / chelsio / cxgb4vf / sge.c
1 /*
2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
3 * driver for Linux.
4 *
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/skbuff.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/if_vlan.h>
40 #include <linux/ip.h>
41 #include <net/ipv6.h>
42 #include <net/tcp.h>
43 #include <linux/dma-mapping.h>
44 #include <linux/prefetch.h>
45
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
48
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_values.h"
51 #include "../cxgb4/t4fw_api.h"
52 #include "../cxgb4/t4_msg.h"
53
54 /*
55 * Constants ...
56 */
57 enum {
58 /*
59 * Egress Queue sizes, producer and consumer indices are all in units
60 * of Egress Context Units bytes. Note that as far as the hardware is
61 * concerned, the free list is an Egress Queue (the host produces free
62 * buffers which the hardware consumes) and free list entries are
63 * 64-bit PCI DMA addresses.
64 */
65 EQ_UNIT = SGE_EQ_IDXSIZE,
66 FL_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
67 TXD_PER_EQ_UNIT = EQ_UNIT / sizeof(__be64),
68
69 /*
70 * Max number of TX descriptors we clean up at a time. Should be
71 * modest as freeing skbs isn't cheap and it happens while holding
72 * locks. We just need to free packets faster than they arrive, we
73 * eventually catch up and keep the amortized cost reasonable.
74 */
75 MAX_TX_RECLAIM = 16,
76
77 /*
78 * Max number of Rx buffers we replenish at a time. Again keep this
79 * modest, allocating buffers isn't cheap either.
80 */
81 MAX_RX_REFILL = 16,
82
83 /*
84 * Period of the Rx queue check timer. This timer is infrequent as it
85 * has something to do only when the system experiences severe memory
86 * shortage.
87 */
88 RX_QCHECK_PERIOD = (HZ / 2),
89
90 /*
91 * Period of the TX queue check timer and the maximum number of TX
92 * descriptors to be reclaimed by the TX timer.
93 */
94 TX_QCHECK_PERIOD = (HZ / 2),
95 MAX_TIMER_TX_RECLAIM = 100,
96
97 /*
98 * Suspend an Ethernet TX queue with fewer available descriptors than
99 * this. We always want to have room for a maximum sized packet:
100 * inline immediate data + MAX_SKB_FRAGS. This is the same as
101 * calc_tx_flits() for a TSO packet with nr_frags == MAX_SKB_FRAGS
102 * (see that function and its helpers for a description of the
103 * calculation).
104 */
105 ETHTXQ_MAX_FRAGS = MAX_SKB_FRAGS + 1,
106 ETHTXQ_MAX_SGL_LEN = ((3 * (ETHTXQ_MAX_FRAGS-1))/2 +
107 ((ETHTXQ_MAX_FRAGS-1) & 1) +
108 2),
109 ETHTXQ_MAX_HDR = (sizeof(struct fw_eth_tx_pkt_vm_wr) +
110 sizeof(struct cpl_tx_pkt_lso_core) +
111 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64),
112 ETHTXQ_MAX_FLITS = ETHTXQ_MAX_SGL_LEN + ETHTXQ_MAX_HDR,
113
114 ETHTXQ_STOP_THRES = 1 + DIV_ROUND_UP(ETHTXQ_MAX_FLITS, TXD_PER_EQ_UNIT),
115
116 /*
117 * Max TX descriptor space we allow for an Ethernet packet to be
118 * inlined into a WR. This is limited by the maximum value which
119 * we can specify for immediate data in the firmware Ethernet TX
120 * Work Request.
121 */
122 MAX_IMM_TX_PKT_LEN = FW_WR_IMMDLEN_M,
123
124 /*
125 * Max size of a WR sent through a control TX queue.
126 */
127 MAX_CTRL_WR_LEN = 256,
128
129 /*
130 * Maximum amount of data which we'll ever need to inline into a
131 * TX ring: max(MAX_IMM_TX_PKT_LEN, MAX_CTRL_WR_LEN).
132 */
133 MAX_IMM_TX_LEN = (MAX_IMM_TX_PKT_LEN > MAX_CTRL_WR_LEN
134 ? MAX_IMM_TX_PKT_LEN
135 : MAX_CTRL_WR_LEN),
136
137 /*
138 * For incoming packets less than RX_COPY_THRES, we copy the data into
139 * an skb rather than referencing the data. We allocate enough
140 * in-line room in skb's to accommodate pulling in RX_PULL_LEN bytes
141 * of the data (header).
142 */
143 RX_COPY_THRES = 256,
144 RX_PULL_LEN = 128,
145
146 /*
147 * Main body length for sk_buffs used for RX Ethernet packets with
148 * fragments. Should be >= RX_PULL_LEN but possibly bigger to give
149 * pskb_may_pull() some room.
150 */
151 RX_SKB_LEN = 512,
152 };
153
154 /*
155 * Software state per TX descriptor.
156 */
157 struct tx_sw_desc {
158 struct sk_buff *skb; /* socket buffer of TX data source */
159 struct ulptx_sgl *sgl; /* scatter/gather list in TX Queue */
160 };
161
162 /*
163 * Software state per RX Free List descriptor. We keep track of the allocated
164 * FL page, its size, and its PCI DMA address (if the page is mapped). The FL
165 * page size and its PCI DMA mapped state are stored in the low bits of the
166 * PCI DMA address as per below.
167 */
168 struct rx_sw_desc {
169 struct page *page; /* Free List page buffer */
170 dma_addr_t dma_addr; /* PCI DMA address (if mapped) */
171 /* and flags (see below) */
172 };
173
174 /*
175 * The low bits of rx_sw_desc.dma_addr have special meaning. Note that the
176 * SGE also uses the low 4 bits to determine the size of the buffer. It uses
177 * those bits to index into the SGE_FL_BUFFER_SIZE[index] register array.
178 * Since we only use SGE_FL_BUFFER_SIZE0 and SGE_FL_BUFFER_SIZE1, these low 4
179 * bits can only contain a 0 or a 1 to indicate which size buffer we're giving
180 * to the SGE. Thus, our software state of "is the buffer mapped for DMA" is
181 * maintained in an inverse sense so the hardware never sees that bit high.
182 */
183 enum {
184 RX_LARGE_BUF = 1 << 0, /* buffer is SGE_FL_BUFFER_SIZE[1] */
185 RX_UNMAPPED_BUF = 1 << 1, /* buffer is not mapped */
186 };
187
188 /**
189 * get_buf_addr - return DMA buffer address of software descriptor
190 * @sdesc: pointer to the software buffer descriptor
191 *
192 * Return the DMA buffer address of a software descriptor (stripping out
193 * our low-order flag bits).
194 */
195 static inline dma_addr_t get_buf_addr(const struct rx_sw_desc *sdesc)
196 {
197 return sdesc->dma_addr & ~(dma_addr_t)(RX_LARGE_BUF | RX_UNMAPPED_BUF);
198 }
199
200 /**
201 * is_buf_mapped - is buffer mapped for DMA?
202 * @sdesc: pointer to the software buffer descriptor
203 *
204 * Determine whether the buffer associated with a software descriptor in
205 * mapped for DMA or not.
206 */
207 static inline bool is_buf_mapped(const struct rx_sw_desc *sdesc)
208 {
209 return !(sdesc->dma_addr & RX_UNMAPPED_BUF);
210 }
211
212 /**
213 * need_skb_unmap - does the platform need unmapping of sk_buffs?
214 *
215 * Returns true if the platform needs sk_buff unmapping. The compiler
216 * optimizes away unnecessary code if this returns true.
217 */
218 static inline int need_skb_unmap(void)
219 {
220 #ifdef CONFIG_NEED_DMA_MAP_STATE
221 return 1;
222 #else
223 return 0;
224 #endif
225 }
226
227 /**
228 * txq_avail - return the number of available slots in a TX queue
229 * @tq: the TX queue
230 *
231 * Returns the number of available descriptors in a TX queue.
232 */
233 static inline unsigned int txq_avail(const struct sge_txq *tq)
234 {
235 return tq->size - 1 - tq->in_use;
236 }
237
238 /**
239 * fl_cap - return the capacity of a Free List
240 * @fl: the Free List
241 *
242 * Returns the capacity of a Free List. The capacity is less than the
243 * size because an Egress Queue Index Unit worth of descriptors needs to
244 * be left unpopulated, otherwise the Producer and Consumer indices PIDX
245 * and CIDX will match and the hardware will think the FL is empty.
246 */
247 static inline unsigned int fl_cap(const struct sge_fl *fl)
248 {
249 return fl->size - FL_PER_EQ_UNIT;
250 }
251
252 /**
253 * fl_starving - return whether a Free List is starving.
254 * @adapter: pointer to the adapter
255 * @fl: the Free List
256 *
257 * Tests specified Free List to see whether the number of buffers
258 * available to the hardware has falled below our "starvation"
259 * threshold.
260 */
261 static inline bool fl_starving(const struct adapter *adapter,
262 const struct sge_fl *fl)
263 {
264 const struct sge *s = &adapter->sge;
265
266 return fl->avail - fl->pend_cred <= s->fl_starve_thres;
267 }
268
269 /**
270 * map_skb - map an skb for DMA to the device
271 * @dev: the egress net device
272 * @skb: the packet to map
273 * @addr: a pointer to the base of the DMA mapping array
274 *
275 * Map an skb for DMA to the device and return an array of DMA addresses.
276 */
277 static int map_skb(struct device *dev, const struct sk_buff *skb,
278 dma_addr_t *addr)
279 {
280 const skb_frag_t *fp, *end;
281 const struct skb_shared_info *si;
282
283 *addr = dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE);
284 if (dma_mapping_error(dev, *addr))
285 goto out_err;
286
287 si = skb_shinfo(skb);
288 end = &si->frags[si->nr_frags];
289 for (fp = si->frags; fp < end; fp++) {
290 *++addr = skb_frag_dma_map(dev, fp, 0, skb_frag_size(fp),
291 DMA_TO_DEVICE);
292 if (dma_mapping_error(dev, *addr))
293 goto unwind;
294 }
295 return 0;
296
297 unwind:
298 while (fp-- > si->frags)
299 dma_unmap_page(dev, *--addr, skb_frag_size(fp), DMA_TO_DEVICE);
300 dma_unmap_single(dev, addr[-1], skb_headlen(skb), DMA_TO_DEVICE);
301
302 out_err:
303 return -ENOMEM;
304 }
305
306 static void unmap_sgl(struct device *dev, const struct sk_buff *skb,
307 const struct ulptx_sgl *sgl, const struct sge_txq *tq)
308 {
309 const struct ulptx_sge_pair *p;
310 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
311
312 if (likely(skb_headlen(skb)))
313 dma_unmap_single(dev, be64_to_cpu(sgl->addr0),
314 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
315 else {
316 dma_unmap_page(dev, be64_to_cpu(sgl->addr0),
317 be32_to_cpu(sgl->len0), DMA_TO_DEVICE);
318 nfrags--;
319 }
320
321 /*
322 * the complexity below is because of the possibility of a wrap-around
323 * in the middle of an SGL
324 */
325 for (p = sgl->sge; nfrags >= 2; nfrags -= 2) {
326 if (likely((u8 *)(p + 1) <= (u8 *)tq->stat)) {
327 unmap:
328 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
329 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
330 dma_unmap_page(dev, be64_to_cpu(p->addr[1]),
331 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
332 p++;
333 } else if ((u8 *)p == (u8 *)tq->stat) {
334 p = (const struct ulptx_sge_pair *)tq->desc;
335 goto unmap;
336 } else if ((u8 *)p + 8 == (u8 *)tq->stat) {
337 const __be64 *addr = (const __be64 *)tq->desc;
338
339 dma_unmap_page(dev, be64_to_cpu(addr[0]),
340 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
341 dma_unmap_page(dev, be64_to_cpu(addr[1]),
342 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
343 p = (const struct ulptx_sge_pair *)&addr[2];
344 } else {
345 const __be64 *addr = (const __be64 *)tq->desc;
346
347 dma_unmap_page(dev, be64_to_cpu(p->addr[0]),
348 be32_to_cpu(p->len[0]), DMA_TO_DEVICE);
349 dma_unmap_page(dev, be64_to_cpu(addr[0]),
350 be32_to_cpu(p->len[1]), DMA_TO_DEVICE);
351 p = (const struct ulptx_sge_pair *)&addr[1];
352 }
353 }
354 if (nfrags) {
355 __be64 addr;
356
357 if ((u8 *)p == (u8 *)tq->stat)
358 p = (const struct ulptx_sge_pair *)tq->desc;
359 addr = ((u8 *)p + 16 <= (u8 *)tq->stat
360 ? p->addr[0]
361 : *(const __be64 *)tq->desc);
362 dma_unmap_page(dev, be64_to_cpu(addr), be32_to_cpu(p->len[0]),
363 DMA_TO_DEVICE);
364 }
365 }
366
367 /**
368 * free_tx_desc - reclaims TX descriptors and their buffers
369 * @adapter: the adapter
370 * @tq: the TX queue to reclaim descriptors from
371 * @n: the number of descriptors to reclaim
372 * @unmap: whether the buffers should be unmapped for DMA
373 *
374 * Reclaims TX descriptors from an SGE TX queue and frees the associated
375 * TX buffers. Called with the TX queue lock held.
376 */
377 static void free_tx_desc(struct adapter *adapter, struct sge_txq *tq,
378 unsigned int n, bool unmap)
379 {
380 struct tx_sw_desc *sdesc;
381 unsigned int cidx = tq->cidx;
382 struct device *dev = adapter->pdev_dev;
383
384 const int need_unmap = need_skb_unmap() && unmap;
385
386 sdesc = &tq->sdesc[cidx];
387 while (n--) {
388 /*
389 * If we kept a reference to the original TX skb, we need to
390 * unmap it from PCI DMA space (if required) and free it.
391 */
392 if (sdesc->skb) {
393 if (need_unmap)
394 unmap_sgl(dev, sdesc->skb, sdesc->sgl, tq);
395 dev_consume_skb_any(sdesc->skb);
396 sdesc->skb = NULL;
397 }
398
399 sdesc++;
400 if (++cidx == tq->size) {
401 cidx = 0;
402 sdesc = tq->sdesc;
403 }
404 }
405 tq->cidx = cidx;
406 }
407
408 /*
409 * Return the number of reclaimable descriptors in a TX queue.
410 */
411 static inline int reclaimable(const struct sge_txq *tq)
412 {
413 int hw_cidx = be16_to_cpu(tq->stat->cidx);
414 int reclaimable = hw_cidx - tq->cidx;
415 if (reclaimable < 0)
416 reclaimable += tq->size;
417 return reclaimable;
418 }
419
420 /**
421 * reclaim_completed_tx - reclaims completed TX descriptors
422 * @adapter: the adapter
423 * @tq: the TX queue to reclaim completed descriptors from
424 * @unmap: whether the buffers should be unmapped for DMA
425 *
426 * Reclaims TX descriptors that the SGE has indicated it has processed,
427 * and frees the associated buffers if possible. Called with the TX
428 * queue locked.
429 */
430 static inline void reclaim_completed_tx(struct adapter *adapter,
431 struct sge_txq *tq,
432 bool unmap)
433 {
434 int avail = reclaimable(tq);
435
436 if (avail) {
437 /*
438 * Limit the amount of clean up work we do at a time to keep
439 * the TX lock hold time O(1).
440 */
441 if (avail > MAX_TX_RECLAIM)
442 avail = MAX_TX_RECLAIM;
443
444 free_tx_desc(adapter, tq, avail, unmap);
445 tq->in_use -= avail;
446 }
447 }
448
449 /**
450 * get_buf_size - return the size of an RX Free List buffer.
451 * @adapter: pointer to the associated adapter
452 * @sdesc: pointer to the software buffer descriptor
453 */
454 static inline int get_buf_size(const struct adapter *adapter,
455 const struct rx_sw_desc *sdesc)
456 {
457 const struct sge *s = &adapter->sge;
458
459 return (s->fl_pg_order > 0 && (sdesc->dma_addr & RX_LARGE_BUF)
460 ? (PAGE_SIZE << s->fl_pg_order) : PAGE_SIZE);
461 }
462
463 /**
464 * free_rx_bufs - free RX buffers on an SGE Free List
465 * @adapter: the adapter
466 * @fl: the SGE Free List to free buffers from
467 * @n: how many buffers to free
468 *
469 * Release the next @n buffers on an SGE Free List RX queue. The
470 * buffers must be made inaccessible to hardware before calling this
471 * function.
472 */
473 static void free_rx_bufs(struct adapter *adapter, struct sge_fl *fl, int n)
474 {
475 while (n--) {
476 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
477
478 if (is_buf_mapped(sdesc))
479 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
480 get_buf_size(adapter, sdesc),
481 PCI_DMA_FROMDEVICE);
482 put_page(sdesc->page);
483 sdesc->page = NULL;
484 if (++fl->cidx == fl->size)
485 fl->cidx = 0;
486 fl->avail--;
487 }
488 }
489
490 /**
491 * unmap_rx_buf - unmap the current RX buffer on an SGE Free List
492 * @adapter: the adapter
493 * @fl: the SGE Free List
494 *
495 * Unmap the current buffer on an SGE Free List RX queue. The
496 * buffer must be made inaccessible to HW before calling this function.
497 *
498 * This is similar to @free_rx_bufs above but does not free the buffer.
499 * Do note that the FL still loses any further access to the buffer.
500 * This is used predominantly to "transfer ownership" of an FL buffer
501 * to another entity (typically an skb's fragment list).
502 */
503 static void unmap_rx_buf(struct adapter *adapter, struct sge_fl *fl)
504 {
505 struct rx_sw_desc *sdesc = &fl->sdesc[fl->cidx];
506
507 if (is_buf_mapped(sdesc))
508 dma_unmap_page(adapter->pdev_dev, get_buf_addr(sdesc),
509 get_buf_size(adapter, sdesc),
510 PCI_DMA_FROMDEVICE);
511 sdesc->page = NULL;
512 if (++fl->cidx == fl->size)
513 fl->cidx = 0;
514 fl->avail--;
515 }
516
517 /**
518 * ring_fl_db - righ doorbell on free list
519 * @adapter: the adapter
520 * @fl: the Free List whose doorbell should be rung ...
521 *
522 * Tell the Scatter Gather Engine that there are new free list entries
523 * available.
524 */
525 static inline void ring_fl_db(struct adapter *adapter, struct sge_fl *fl)
526 {
527 u32 val;
528
529 /* The SGE keeps track of its Producer and Consumer Indices in terms
530 * of Egress Queue Units so we can only tell it about integral numbers
531 * of multiples of Free List Entries per Egress Queue Units ...
532 */
533 if (fl->pend_cred >= FL_PER_EQ_UNIT) {
534 if (is_t4(adapter->params.chip))
535 val = PIDX_V(fl->pend_cred / FL_PER_EQ_UNIT);
536 else
537 val = PIDX_T5_V(fl->pend_cred / FL_PER_EQ_UNIT) |
538 DBTYPE_F;
539 val |= DBPRIO_F;
540
541 /* Make sure all memory writes to the Free List queue are
542 * committed before we tell the hardware about them.
543 */
544 wmb();
545
546 /* If we don't have access to the new User Doorbell (T5+), use
547 * the old doorbell mechanism; otherwise use the new BAR2
548 * mechanism.
549 */
550 if (unlikely(fl->bar2_addr == NULL)) {
551 t4_write_reg(adapter,
552 T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
553 QID_V(fl->cntxt_id) | val);
554 } else {
555 writel(val | QID_V(fl->bar2_qid),
556 fl->bar2_addr + SGE_UDB_KDOORBELL);
557
558 /* This Write memory Barrier will force the write to
559 * the User Doorbell area to be flushed.
560 */
561 wmb();
562 }
563 fl->pend_cred %= FL_PER_EQ_UNIT;
564 }
565 }
566
567 /**
568 * set_rx_sw_desc - initialize software RX buffer descriptor
569 * @sdesc: pointer to the softwore RX buffer descriptor
570 * @page: pointer to the page data structure backing the RX buffer
571 * @dma_addr: PCI DMA address (possibly with low-bit flags)
572 */
573 static inline void set_rx_sw_desc(struct rx_sw_desc *sdesc, struct page *page,
574 dma_addr_t dma_addr)
575 {
576 sdesc->page = page;
577 sdesc->dma_addr = dma_addr;
578 }
579
580 /*
581 * Support for poisoning RX buffers ...
582 */
583 #define POISON_BUF_VAL -1
584
585 static inline void poison_buf(struct page *page, size_t sz)
586 {
587 #if POISON_BUF_VAL >= 0
588 memset(page_address(page), POISON_BUF_VAL, sz);
589 #endif
590 }
591
592 /**
593 * refill_fl - refill an SGE RX buffer ring
594 * @adapter: the adapter
595 * @fl: the Free List ring to refill
596 * @n: the number of new buffers to allocate
597 * @gfp: the gfp flags for the allocations
598 *
599 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
600 * allocated with the supplied gfp flags. The caller must assure that
601 * @n does not exceed the queue's capacity -- i.e. (cidx == pidx) _IN
602 * EGRESS QUEUE UNITS_ indicates an empty Free List! Returns the number
603 * of buffers allocated. If afterwards the queue is found critically low,
604 * mark it as starving in the bitmap of starving FLs.
605 */
606 static unsigned int refill_fl(struct adapter *adapter, struct sge_fl *fl,
607 int n, gfp_t gfp)
608 {
609 struct sge *s = &adapter->sge;
610 struct page *page;
611 dma_addr_t dma_addr;
612 unsigned int cred = fl->avail;
613 __be64 *d = &fl->desc[fl->pidx];
614 struct rx_sw_desc *sdesc = &fl->sdesc[fl->pidx];
615
616 /*
617 * Sanity: ensure that the result of adding n Free List buffers
618 * won't result in wrapping the SGE's Producer Index around to
619 * it's Consumer Index thereby indicating an empty Free List ...
620 */
621 BUG_ON(fl->avail + n > fl->size - FL_PER_EQ_UNIT);
622
623 gfp |= __GFP_NOWARN;
624
625 /*
626 * If we support large pages, prefer large buffers and fail over to
627 * small pages if we can't allocate large pages to satisfy the refill.
628 * If we don't support large pages, drop directly into the small page
629 * allocation code.
630 */
631 if (s->fl_pg_order == 0)
632 goto alloc_small_pages;
633
634 while (n) {
635 page = __dev_alloc_pages(gfp, s->fl_pg_order);
636 if (unlikely(!page)) {
637 /*
638 * We've failed inour attempt to allocate a "large
639 * page". Fail over to the "small page" allocation
640 * below.
641 */
642 fl->large_alloc_failed++;
643 break;
644 }
645 poison_buf(page, PAGE_SIZE << s->fl_pg_order);
646
647 dma_addr = dma_map_page(adapter->pdev_dev, page, 0,
648 PAGE_SIZE << s->fl_pg_order,
649 PCI_DMA_FROMDEVICE);
650 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
651 /*
652 * We've run out of DMA mapping space. Free up the
653 * buffer and return with what we've managed to put
654 * into the free list. We don't want to fail over to
655 * the small page allocation below in this case
656 * because DMA mapping resources are typically
657 * critical resources once they become scarse.
658 */
659 __free_pages(page, s->fl_pg_order);
660 goto out;
661 }
662 dma_addr |= RX_LARGE_BUF;
663 *d++ = cpu_to_be64(dma_addr);
664
665 set_rx_sw_desc(sdesc, page, dma_addr);
666 sdesc++;
667
668 fl->avail++;
669 if (++fl->pidx == fl->size) {
670 fl->pidx = 0;
671 sdesc = fl->sdesc;
672 d = fl->desc;
673 }
674 n--;
675 }
676
677 alloc_small_pages:
678 while (n--) {
679 page = __dev_alloc_page(gfp);
680 if (unlikely(!page)) {
681 fl->alloc_failed++;
682 break;
683 }
684 poison_buf(page, PAGE_SIZE);
685
686 dma_addr = dma_map_page(adapter->pdev_dev, page, 0, PAGE_SIZE,
687 PCI_DMA_FROMDEVICE);
688 if (unlikely(dma_mapping_error(adapter->pdev_dev, dma_addr))) {
689 put_page(page);
690 break;
691 }
692 *d++ = cpu_to_be64(dma_addr);
693
694 set_rx_sw_desc(sdesc, page, dma_addr);
695 sdesc++;
696
697 fl->avail++;
698 if (++fl->pidx == fl->size) {
699 fl->pidx = 0;
700 sdesc = fl->sdesc;
701 d = fl->desc;
702 }
703 }
704
705 out:
706 /*
707 * Update our accounting state to incorporate the new Free List
708 * buffers, tell the hardware about them and return the number of
709 * buffers which we were able to allocate.
710 */
711 cred = fl->avail - cred;
712 fl->pend_cred += cred;
713 ring_fl_db(adapter, fl);
714
715 if (unlikely(fl_starving(adapter, fl))) {
716 smp_wmb();
717 set_bit(fl->cntxt_id, adapter->sge.starving_fl);
718 }
719
720 return cred;
721 }
722
723 /*
724 * Refill a Free List to its capacity or the Maximum Refill Increment,
725 * whichever is smaller ...
726 */
727 static inline void __refill_fl(struct adapter *adapter, struct sge_fl *fl)
728 {
729 refill_fl(adapter, fl,
730 min((unsigned int)MAX_RX_REFILL, fl_cap(fl) - fl->avail),
731 GFP_ATOMIC);
732 }
733
734 /**
735 * alloc_ring - allocate resources for an SGE descriptor ring
736 * @dev: the PCI device's core device
737 * @nelem: the number of descriptors
738 * @hwsize: the size of each hardware descriptor
739 * @swsize: the size of each software descriptor
740 * @busaddrp: the physical PCI bus address of the allocated ring
741 * @swringp: return address pointer for software ring
742 * @stat_size: extra space in hardware ring for status information
743 *
744 * Allocates resources for an SGE descriptor ring, such as TX queues,
745 * free buffer lists, response queues, etc. Each SGE ring requires
746 * space for its hardware descriptors plus, optionally, space for software
747 * state associated with each hardware entry (the metadata). The function
748 * returns three values: the virtual address for the hardware ring (the
749 * return value of the function), the PCI bus address of the hardware
750 * ring (in *busaddrp), and the address of the software ring (in swringp).
751 * Both the hardware and software rings are returned zeroed out.
752 */
753 static void *alloc_ring(struct device *dev, size_t nelem, size_t hwsize,
754 size_t swsize, dma_addr_t *busaddrp, void *swringp,
755 size_t stat_size)
756 {
757 /*
758 * Allocate the hardware ring and PCI DMA bus address space for said.
759 */
760 size_t hwlen = nelem * hwsize + stat_size;
761 void *hwring = dma_alloc_coherent(dev, hwlen, busaddrp, GFP_KERNEL);
762
763 if (!hwring)
764 return NULL;
765
766 /*
767 * If the caller wants a software ring, allocate it and return a
768 * pointer to it in *swringp.
769 */
770 BUG_ON((swsize != 0) != (swringp != NULL));
771 if (swsize) {
772 void *swring = kcalloc(nelem, swsize, GFP_KERNEL);
773
774 if (!swring) {
775 dma_free_coherent(dev, hwlen, hwring, *busaddrp);
776 return NULL;
777 }
778 *(void **)swringp = swring;
779 }
780
781 /*
782 * Zero out the hardware ring and return its address as our function
783 * value.
784 */
785 memset(hwring, 0, hwlen);
786 return hwring;
787 }
788
789 /**
790 * sgl_len - calculates the size of an SGL of the given capacity
791 * @n: the number of SGL entries
792 *
793 * Calculates the number of flits (8-byte units) needed for a Direct
794 * Scatter/Gather List that can hold the given number of entries.
795 */
796 static inline unsigned int sgl_len(unsigned int n)
797 {
798 /*
799 * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA
800 * addresses. The DSGL Work Request starts off with a 32-bit DSGL
801 * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N,
802 * repeated sequences of { Length[i], Length[i+1], Address[i],
803 * Address[i+1] } (this ensures that all addresses are on 64-bit
804 * boundaries). If N is even, then Length[N+1] should be set to 0 and
805 * Address[N+1] is omitted.
806 *
807 * The following calculation incorporates all of the above. It's
808 * somewhat hard to follow but, briefly: the "+2" accounts for the
809 * first two flits which include the DSGL header, Length0 and
810 * Address0; the "(3*(n-1))/2" covers the main body of list entries (3
811 * flits for every pair of the remaining N) +1 if (n-1) is odd; and
812 * finally the "+((n-1)&1)" adds the one remaining flit needed if
813 * (n-1) is odd ...
814 */
815 n--;
816 return (3 * n) / 2 + (n & 1) + 2;
817 }
818
819 /**
820 * flits_to_desc - returns the num of TX descriptors for the given flits
821 * @flits: the number of flits
822 *
823 * Returns the number of TX descriptors needed for the supplied number
824 * of flits.
825 */
826 static inline unsigned int flits_to_desc(unsigned int flits)
827 {
828 BUG_ON(flits > SGE_MAX_WR_LEN / sizeof(__be64));
829 return DIV_ROUND_UP(flits, TXD_PER_EQ_UNIT);
830 }
831
832 /**
833 * is_eth_imm - can an Ethernet packet be sent as immediate data?
834 * @skb: the packet
835 *
836 * Returns whether an Ethernet packet is small enough to fit completely as
837 * immediate data.
838 */
839 static inline int is_eth_imm(const struct sk_buff *skb)
840 {
841 /*
842 * The VF Driver uses the FW_ETH_TX_PKT_VM_WR firmware Work Request
843 * which does not accommodate immediate data. We could dike out all
844 * of the support code for immediate data but that would tie our hands
845 * too much if we ever want to enhace the firmware. It would also
846 * create more differences between the PF and VF Drivers.
847 */
848 return false;
849 }
850
851 /**
852 * calc_tx_flits - calculate the number of flits for a packet TX WR
853 * @skb: the packet
854 *
855 * Returns the number of flits needed for a TX Work Request for the
856 * given Ethernet packet, including the needed WR and CPL headers.
857 */
858 static inline unsigned int calc_tx_flits(const struct sk_buff *skb)
859 {
860 unsigned int flits;
861
862 /*
863 * If the skb is small enough, we can pump it out as a work request
864 * with only immediate data. In that case we just have to have the
865 * TX Packet header plus the skb data in the Work Request.
866 */
867 if (is_eth_imm(skb))
868 return DIV_ROUND_UP(skb->len + sizeof(struct cpl_tx_pkt),
869 sizeof(__be64));
870
871 /*
872 * Otherwise, we're going to have to construct a Scatter gather list
873 * of the skb body and fragments. We also include the flits necessary
874 * for the TX Packet Work Request and CPL. We always have a firmware
875 * Write Header (incorporated as part of the cpl_tx_pkt_lso and
876 * cpl_tx_pkt structures), followed by either a TX Packet Write CPL
877 * message or, if we're doing a Large Send Offload, an LSO CPL message
878 * with an embeded TX Packet Write CPL message.
879 */
880 flits = sgl_len(skb_shinfo(skb)->nr_frags + 1);
881 if (skb_shinfo(skb)->gso_size)
882 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
883 sizeof(struct cpl_tx_pkt_lso_core) +
884 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
885 else
886 flits += (sizeof(struct fw_eth_tx_pkt_vm_wr) +
887 sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64);
888 return flits;
889 }
890
891 /**
892 * write_sgl - populate a Scatter/Gather List for a packet
893 * @skb: the packet
894 * @tq: the TX queue we are writing into
895 * @sgl: starting location for writing the SGL
896 * @end: points right after the end of the SGL
897 * @start: start offset into skb main-body data to include in the SGL
898 * @addr: the list of DMA bus addresses for the SGL elements
899 *
900 * Generates a Scatter/Gather List for the buffers that make up a packet.
901 * The caller must provide adequate space for the SGL that will be written.
902 * The SGL includes all of the packet's page fragments and the data in its
903 * main body except for the first @start bytes. @pos must be 16-byte
904 * aligned and within a TX descriptor with available space. @end points
905 * write after the end of the SGL but does not account for any potential
906 * wrap around, i.e., @end > @tq->stat.
907 */
908 static void write_sgl(const struct sk_buff *skb, struct sge_txq *tq,
909 struct ulptx_sgl *sgl, u64 *end, unsigned int start,
910 const dma_addr_t *addr)
911 {
912 unsigned int i, len;
913 struct ulptx_sge_pair *to;
914 const struct skb_shared_info *si = skb_shinfo(skb);
915 unsigned int nfrags = si->nr_frags;
916 struct ulptx_sge_pair buf[MAX_SKB_FRAGS / 2 + 1];
917
918 len = skb_headlen(skb) - start;
919 if (likely(len)) {
920 sgl->len0 = htonl(len);
921 sgl->addr0 = cpu_to_be64(addr[0] + start);
922 nfrags++;
923 } else {
924 sgl->len0 = htonl(skb_frag_size(&si->frags[0]));
925 sgl->addr0 = cpu_to_be64(addr[1]);
926 }
927
928 sgl->cmd_nsge = htonl(ULPTX_CMD_V(ULP_TX_SC_DSGL) |
929 ULPTX_NSGE_V(nfrags));
930 if (likely(--nfrags == 0))
931 return;
932 /*
933 * Most of the complexity below deals with the possibility we hit the
934 * end of the queue in the middle of writing the SGL. For this case
935 * only we create the SGL in a temporary buffer and then copy it.
936 */
937 to = (u8 *)end > (u8 *)tq->stat ? buf : sgl->sge;
938
939 for (i = (nfrags != si->nr_frags); nfrags >= 2; nfrags -= 2, to++) {
940 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
941 to->len[1] = cpu_to_be32(skb_frag_size(&si->frags[++i]));
942 to->addr[0] = cpu_to_be64(addr[i]);
943 to->addr[1] = cpu_to_be64(addr[++i]);
944 }
945 if (nfrags) {
946 to->len[0] = cpu_to_be32(skb_frag_size(&si->frags[i]));
947 to->len[1] = cpu_to_be32(0);
948 to->addr[0] = cpu_to_be64(addr[i + 1]);
949 }
950 if (unlikely((u8 *)end > (u8 *)tq->stat)) {
951 unsigned int part0 = (u8 *)tq->stat - (u8 *)sgl->sge, part1;
952
953 if (likely(part0))
954 memcpy(sgl->sge, buf, part0);
955 part1 = (u8 *)end - (u8 *)tq->stat;
956 memcpy(tq->desc, (u8 *)buf + part0, part1);
957 end = (void *)tq->desc + part1;
958 }
959 if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */
960 *end = 0;
961 }
962
963 /**
964 * check_ring_tx_db - check and potentially ring a TX queue's doorbell
965 * @adapter: the adapter
966 * @tq: the TX queue
967 * @n: number of new descriptors to give to HW
968 *
969 * Ring the doorbel for a TX queue.
970 */
971 static inline void ring_tx_db(struct adapter *adapter, struct sge_txq *tq,
972 int n)
973 {
974 /* Make sure that all writes to the TX Descriptors are committed
975 * before we tell the hardware about them.
976 */
977 wmb();
978
979 /* If we don't have access to the new User Doorbell (T5+), use the old
980 * doorbell mechanism; otherwise use the new BAR2 mechanism.
981 */
982 if (unlikely(tq->bar2_addr == NULL)) {
983 u32 val = PIDX_V(n);
984
985 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_KDOORBELL,
986 QID_V(tq->cntxt_id) | val);
987 } else {
988 u32 val = PIDX_T5_V(n);
989
990 /* T4 and later chips share the same PIDX field offset within
991 * the doorbell, but T5 and later shrank the field in order to
992 * gain a bit for Doorbell Priority. The field was absurdly
993 * large in the first place (14 bits) so we just use the T5
994 * and later limits and warn if a Queue ID is too large.
995 */
996 WARN_ON(val & DBPRIO_F);
997
998 /* If we're only writing a single Egress Unit and the BAR2
999 * Queue ID is 0, we can use the Write Combining Doorbell
1000 * Gather Buffer; otherwise we use the simple doorbell.
1001 */
1002 if (n == 1 && tq->bar2_qid == 0) {
1003 unsigned int index = (tq->pidx
1004 ? (tq->pidx - 1)
1005 : (tq->size - 1));
1006 __be64 *src = (__be64 *)&tq->desc[index];
1007 __be64 __iomem *dst = (__be64 *)(tq->bar2_addr +
1008 SGE_UDB_WCDOORBELL);
1009 unsigned int count = EQ_UNIT / sizeof(__be64);
1010
1011 /* Copy the TX Descriptor in a tight loop in order to
1012 * try to get it to the adapter in a single Write
1013 * Combined transfer on the PCI-E Bus. If the Write
1014 * Combine fails (say because of an interrupt, etc.)
1015 * the hardware will simply take the last write as a
1016 * simple doorbell write with a PIDX Increment of 1
1017 * and will fetch the TX Descriptor from memory via
1018 * DMA.
1019 */
1020 while (count) {
1021 writeq(*src, dst);
1022 src++;
1023 dst++;
1024 count--;
1025 }
1026 } else
1027 writel(val | QID_V(tq->bar2_qid),
1028 tq->bar2_addr + SGE_UDB_KDOORBELL);
1029
1030 /* This Write Memory Barrier will force the write to the User
1031 * Doorbell area to be flushed. This is needed to prevent
1032 * writes on different CPUs for the same queue from hitting
1033 * the adapter out of order. This is required when some Work
1034 * Requests take the Write Combine Gather Buffer path (user
1035 * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some
1036 * take the traditional path where we simply increment the
1037 * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the
1038 * hardware DMA read the actual Work Request.
1039 */
1040 wmb();
1041 }
1042 }
1043
1044 /**
1045 * inline_tx_skb - inline a packet's data into TX descriptors
1046 * @skb: the packet
1047 * @tq: the TX queue where the packet will be inlined
1048 * @pos: starting position in the TX queue to inline the packet
1049 *
1050 * Inline a packet's contents directly into TX descriptors, starting at
1051 * the given position within the TX DMA ring.
1052 * Most of the complexity of this operation is dealing with wrap arounds
1053 * in the middle of the packet we want to inline.
1054 */
1055 static void inline_tx_skb(const struct sk_buff *skb, const struct sge_txq *tq,
1056 void *pos)
1057 {
1058 u64 *p;
1059 int left = (void *)tq->stat - pos;
1060
1061 if (likely(skb->len <= left)) {
1062 if (likely(!skb->data_len))
1063 skb_copy_from_linear_data(skb, pos, skb->len);
1064 else
1065 skb_copy_bits(skb, 0, pos, skb->len);
1066 pos += skb->len;
1067 } else {
1068 skb_copy_bits(skb, 0, pos, left);
1069 skb_copy_bits(skb, left, tq->desc, skb->len - left);
1070 pos = (void *)tq->desc + (skb->len - left);
1071 }
1072
1073 /* 0-pad to multiple of 16 */
1074 p = PTR_ALIGN(pos, 8);
1075 if ((uintptr_t)p & 8)
1076 *p = 0;
1077 }
1078
1079 /*
1080 * Figure out what HW csum a packet wants and return the appropriate control
1081 * bits.
1082 */
1083 static u64 hwcsum(const struct sk_buff *skb)
1084 {
1085 int csum_type;
1086 const struct iphdr *iph = ip_hdr(skb);
1087
1088 if (iph->version == 4) {
1089 if (iph->protocol == IPPROTO_TCP)
1090 csum_type = TX_CSUM_TCPIP;
1091 else if (iph->protocol == IPPROTO_UDP)
1092 csum_type = TX_CSUM_UDPIP;
1093 else {
1094 nocsum:
1095 /*
1096 * unknown protocol, disable HW csum
1097 * and hope a bad packet is detected
1098 */
1099 return TXPKT_L4CSUM_DIS;
1100 }
1101 } else {
1102 /*
1103 * this doesn't work with extension headers
1104 */
1105 const struct ipv6hdr *ip6h = (const struct ipv6hdr *)iph;
1106
1107 if (ip6h->nexthdr == IPPROTO_TCP)
1108 csum_type = TX_CSUM_TCPIP6;
1109 else if (ip6h->nexthdr == IPPROTO_UDP)
1110 csum_type = TX_CSUM_UDPIP6;
1111 else
1112 goto nocsum;
1113 }
1114
1115 if (likely(csum_type >= TX_CSUM_TCPIP))
1116 return TXPKT_CSUM_TYPE(csum_type) |
1117 TXPKT_IPHDR_LEN(skb_network_header_len(skb)) |
1118 TXPKT_ETHHDR_LEN(skb_network_offset(skb) - ETH_HLEN);
1119 else {
1120 int start = skb_transport_offset(skb);
1121
1122 return TXPKT_CSUM_TYPE(csum_type) |
1123 TXPKT_CSUM_START(start) |
1124 TXPKT_CSUM_LOC(start + skb->csum_offset);
1125 }
1126 }
1127
1128 /*
1129 * Stop an Ethernet TX queue and record that state change.
1130 */
1131 static void txq_stop(struct sge_eth_txq *txq)
1132 {
1133 netif_tx_stop_queue(txq->txq);
1134 txq->q.stops++;
1135 }
1136
1137 /*
1138 * Advance our software state for a TX queue by adding n in use descriptors.
1139 */
1140 static inline void txq_advance(struct sge_txq *tq, unsigned int n)
1141 {
1142 tq->in_use += n;
1143 tq->pidx += n;
1144 if (tq->pidx >= tq->size)
1145 tq->pidx -= tq->size;
1146 }
1147
1148 /**
1149 * t4vf_eth_xmit - add a packet to an Ethernet TX queue
1150 * @skb: the packet
1151 * @dev: the egress net device
1152 *
1153 * Add a packet to an SGE Ethernet TX queue. Runs with softirqs disabled.
1154 */
1155 int t4vf_eth_xmit(struct sk_buff *skb, struct net_device *dev)
1156 {
1157 u32 wr_mid;
1158 u64 cntrl, *end;
1159 int qidx, credits;
1160 unsigned int flits, ndesc;
1161 struct adapter *adapter;
1162 struct sge_eth_txq *txq;
1163 const struct port_info *pi;
1164 struct fw_eth_tx_pkt_vm_wr *wr;
1165 struct cpl_tx_pkt_core *cpl;
1166 const struct skb_shared_info *ssi;
1167 dma_addr_t addr[MAX_SKB_FRAGS + 1];
1168 const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) +
1169 sizeof(wr->ethmacsrc) +
1170 sizeof(wr->ethtype) +
1171 sizeof(wr->vlantci));
1172
1173 /*
1174 * The chip minimum packet length is 10 octets but the firmware
1175 * command that we are using requires that we copy the Ethernet header
1176 * (including the VLAN tag) into the header so we reject anything
1177 * smaller than that ...
1178 */
1179 if (unlikely(skb->len < fw_hdr_copy_len))
1180 goto out_free;
1181
1182 /*
1183 * Figure out which TX Queue we're going to use.
1184 */
1185 pi = netdev_priv(dev);
1186 adapter = pi->adapter;
1187 qidx = skb_get_queue_mapping(skb);
1188 BUG_ON(qidx >= pi->nqsets);
1189 txq = &adapter->sge.ethtxq[pi->first_qset + qidx];
1190
1191 /*
1192 * Take this opportunity to reclaim any TX Descriptors whose DMA
1193 * transfers have completed.
1194 */
1195 reclaim_completed_tx(adapter, &txq->q, true);
1196
1197 /*
1198 * Calculate the number of flits and TX Descriptors we're going to
1199 * need along with how many TX Descriptors will be left over after
1200 * we inject our Work Request.
1201 */
1202 flits = calc_tx_flits(skb);
1203 ndesc = flits_to_desc(flits);
1204 credits = txq_avail(&txq->q) - ndesc;
1205
1206 if (unlikely(credits < 0)) {
1207 /*
1208 * Not enough room for this packet's Work Request. Stop the
1209 * TX Queue and return a "busy" condition. The queue will get
1210 * started later on when the firmware informs us that space
1211 * has opened up.
1212 */
1213 txq_stop(txq);
1214 dev_err(adapter->pdev_dev,
1215 "%s: TX ring %u full while queue awake!\n",
1216 dev->name, qidx);
1217 return NETDEV_TX_BUSY;
1218 }
1219
1220 if (!is_eth_imm(skb) &&
1221 unlikely(map_skb(adapter->pdev_dev, skb, addr) < 0)) {
1222 /*
1223 * We need to map the skb into PCI DMA space (because it can't
1224 * be in-lined directly into the Work Request) and the mapping
1225 * operation failed. Record the error and drop the packet.
1226 */
1227 txq->mapping_err++;
1228 goto out_free;
1229 }
1230
1231 wr_mid = FW_WR_LEN16_V(DIV_ROUND_UP(flits, 2));
1232 if (unlikely(credits < ETHTXQ_STOP_THRES)) {
1233 /*
1234 * After we're done injecting the Work Request for this
1235 * packet, we'll be below our "stop threshold" so stop the TX
1236 * Queue now and schedule a request for an SGE Egress Queue
1237 * Update message. The queue will get started later on when
1238 * the firmware processes this Work Request and sends us an
1239 * Egress Queue Status Update message indicating that space
1240 * has opened up.
1241 */
1242 txq_stop(txq);
1243 wr_mid |= FW_WR_EQUEQ_F | FW_WR_EQUIQ_F;
1244 }
1245
1246 /*
1247 * Start filling in our Work Request. Note that we do _not_ handle
1248 * the WR Header wrapping around the TX Descriptor Ring. If our
1249 * maximum header size ever exceeds one TX Descriptor, we'll need to
1250 * do something else here.
1251 */
1252 BUG_ON(DIV_ROUND_UP(ETHTXQ_MAX_HDR, TXD_PER_EQ_UNIT) > 1);
1253 wr = (void *)&txq->q.desc[txq->q.pidx];
1254 wr->equiq_to_len16 = cpu_to_be32(wr_mid);
1255 wr->r3[0] = cpu_to_be64(0);
1256 wr->r3[1] = cpu_to_be64(0);
1257 skb_copy_from_linear_data(skb, (void *)wr->ethmacdst, fw_hdr_copy_len);
1258 end = (u64 *)wr + flits;
1259
1260 /*
1261 * If this is a Large Send Offload packet we'll put in an LSO CPL
1262 * message with an encapsulated TX Packet CPL message. Otherwise we
1263 * just use a TX Packet CPL message.
1264 */
1265 ssi = skb_shinfo(skb);
1266 if (ssi->gso_size) {
1267 struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
1268 bool v6 = (ssi->gso_type & SKB_GSO_TCPV6) != 0;
1269 int l3hdr_len = skb_network_header_len(skb);
1270 int eth_xtra_len = skb_network_offset(skb) - ETH_HLEN;
1271
1272 wr->op_immdlen =
1273 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1274 FW_WR_IMMDLEN_V(sizeof(*lso) +
1275 sizeof(*cpl)));
1276 /*
1277 * Fill in the LSO CPL message.
1278 */
1279 lso->lso_ctrl =
1280 cpu_to_be32(LSO_OPCODE(CPL_TX_PKT_LSO) |
1281 LSO_FIRST_SLICE |
1282 LSO_LAST_SLICE |
1283 LSO_IPV6(v6) |
1284 LSO_ETHHDR_LEN(eth_xtra_len/4) |
1285 LSO_IPHDR_LEN(l3hdr_len/4) |
1286 LSO_TCPHDR_LEN(tcp_hdr(skb)->doff));
1287 lso->ipid_ofst = cpu_to_be16(0);
1288 lso->mss = cpu_to_be16(ssi->gso_size);
1289 lso->seqno_offset = cpu_to_be32(0);
1290 if (is_t4(adapter->params.chip))
1291 lso->len = cpu_to_be32(skb->len);
1292 else
1293 lso->len = cpu_to_be32(LSO_T5_XFER_SIZE(skb->len));
1294
1295 /*
1296 * Set up TX Packet CPL pointer, control word and perform
1297 * accounting.
1298 */
1299 cpl = (void *)(lso + 1);
1300 cntrl = (TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : TX_CSUM_TCPIP) |
1301 TXPKT_IPHDR_LEN(l3hdr_len) |
1302 TXPKT_ETHHDR_LEN(eth_xtra_len));
1303 txq->tso++;
1304 txq->tx_cso += ssi->gso_segs;
1305 } else {
1306 int len;
1307
1308 len = is_eth_imm(skb) ? skb->len + sizeof(*cpl) : sizeof(*cpl);
1309 wr->op_immdlen =
1310 cpu_to_be32(FW_WR_OP_V(FW_ETH_TX_PKT_VM_WR) |
1311 FW_WR_IMMDLEN_V(len));
1312
1313 /*
1314 * Set up TX Packet CPL pointer, control word and perform
1315 * accounting.
1316 */
1317 cpl = (void *)(wr + 1);
1318 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1319 cntrl = hwcsum(skb) | TXPKT_IPCSUM_DIS;
1320 txq->tx_cso++;
1321 } else
1322 cntrl = TXPKT_L4CSUM_DIS | TXPKT_IPCSUM_DIS;
1323 }
1324
1325 /*
1326 * If there's a VLAN tag present, add that to the list of things to
1327 * do in this Work Request.
1328 */
1329 if (skb_vlan_tag_present(skb)) {
1330 txq->vlan_ins++;
1331 cntrl |= TXPKT_VLAN_VLD | TXPKT_VLAN(skb_vlan_tag_get(skb));
1332 }
1333
1334 /*
1335 * Fill in the TX Packet CPL message header.
1336 */
1337 cpl->ctrl0 = cpu_to_be32(TXPKT_OPCODE(CPL_TX_PKT_XT) |
1338 TXPKT_INTF(pi->port_id) |
1339 TXPKT_PF(0));
1340 cpl->pack = cpu_to_be16(0);
1341 cpl->len = cpu_to_be16(skb->len);
1342 cpl->ctrl1 = cpu_to_be64(cntrl);
1343
1344 #ifdef T4_TRACE
1345 T4_TRACE5(adapter->tb[txq->q.cntxt_id & 7],
1346 "eth_xmit: ndesc %u, credits %u, pidx %u, len %u, frags %u",
1347 ndesc, credits, txq->q.pidx, skb->len, ssi->nr_frags);
1348 #endif
1349
1350 /*
1351 * Fill in the body of the TX Packet CPL message with either in-lined
1352 * data or a Scatter/Gather List.
1353 */
1354 if (is_eth_imm(skb)) {
1355 /*
1356 * In-line the packet's data and free the skb since we don't
1357 * need it any longer.
1358 */
1359 inline_tx_skb(skb, &txq->q, cpl + 1);
1360 dev_consume_skb_any(skb);
1361 } else {
1362 /*
1363 * Write the skb's Scatter/Gather list into the TX Packet CPL
1364 * message and retain a pointer to the skb so we can free it
1365 * later when its DMA completes. (We store the skb pointer
1366 * in the Software Descriptor corresponding to the last TX
1367 * Descriptor used by the Work Request.)
1368 *
1369 * The retained skb will be freed when the corresponding TX
1370 * Descriptors are reclaimed after their DMAs complete.
1371 * However, this could take quite a while since, in general,
1372 * the hardware is set up to be lazy about sending DMA
1373 * completion notifications to us and we mostly perform TX
1374 * reclaims in the transmit routine.
1375 *
1376 * This is good for performamce but means that we rely on new
1377 * TX packets arriving to run the destructors of completed
1378 * packets, which open up space in their sockets' send queues.
1379 * Sometimes we do not get such new packets causing TX to
1380 * stall. A single UDP transmitter is a good example of this
1381 * situation. We have a clean up timer that periodically
1382 * reclaims completed packets but it doesn't run often enough
1383 * (nor do we want it to) to prevent lengthy stalls. A
1384 * solution to this problem is to run the destructor early,
1385 * after the packet is queued but before it's DMAd. A con is
1386 * that we lie to socket memory accounting, but the amount of
1387 * extra memory is reasonable (limited by the number of TX
1388 * descriptors), the packets do actually get freed quickly by
1389 * new packets almost always, and for protocols like TCP that
1390 * wait for acks to really free up the data the extra memory
1391 * is even less. On the positive side we run the destructors
1392 * on the sending CPU rather than on a potentially different
1393 * completing CPU, usually a good thing.
1394 *
1395 * Run the destructor before telling the DMA engine about the
1396 * packet to make sure it doesn't complete and get freed
1397 * prematurely.
1398 */
1399 struct ulptx_sgl *sgl = (struct ulptx_sgl *)(cpl + 1);
1400 struct sge_txq *tq = &txq->q;
1401 int last_desc;
1402
1403 /*
1404 * If the Work Request header was an exact multiple of our TX
1405 * Descriptor length, then it's possible that the starting SGL
1406 * pointer lines up exactly with the end of our TX Descriptor
1407 * ring. If that's the case, wrap around to the beginning
1408 * here ...
1409 */
1410 if (unlikely((void *)sgl == (void *)tq->stat)) {
1411 sgl = (void *)tq->desc;
1412 end = ((void *)tq->desc + ((void *)end - (void *)tq->stat));
1413 }
1414
1415 write_sgl(skb, tq, sgl, end, 0, addr);
1416 skb_orphan(skb);
1417
1418 last_desc = tq->pidx + ndesc - 1;
1419 if (last_desc >= tq->size)
1420 last_desc -= tq->size;
1421 tq->sdesc[last_desc].skb = skb;
1422 tq->sdesc[last_desc].sgl = sgl;
1423 }
1424
1425 /*
1426 * Advance our internal TX Queue state, tell the hardware about
1427 * the new TX descriptors and return success.
1428 */
1429 txq_advance(&txq->q, ndesc);
1430 dev->trans_start = jiffies;
1431 ring_tx_db(adapter, &txq->q, ndesc);
1432 return NETDEV_TX_OK;
1433
1434 out_free:
1435 /*
1436 * An error of some sort happened. Free the TX skb and tell the
1437 * OS that we've "dealt" with the packet ...
1438 */
1439 dev_kfree_skb_any(skb);
1440 return NETDEV_TX_OK;
1441 }
1442
1443 /**
1444 * copy_frags - copy fragments from gather list into skb_shared_info
1445 * @skb: destination skb
1446 * @gl: source internal packet gather list
1447 * @offset: packet start offset in first page
1448 *
1449 * Copy an internal packet gather list into a Linux skb_shared_info
1450 * structure.
1451 */
1452 static inline void copy_frags(struct sk_buff *skb,
1453 const struct pkt_gl *gl,
1454 unsigned int offset)
1455 {
1456 int i;
1457
1458 /* usually there's just one frag */
1459 __skb_fill_page_desc(skb, 0, gl->frags[0].page,
1460 gl->frags[0].offset + offset,
1461 gl->frags[0].size - offset);
1462 skb_shinfo(skb)->nr_frags = gl->nfrags;
1463 for (i = 1; i < gl->nfrags; i++)
1464 __skb_fill_page_desc(skb, i, gl->frags[i].page,
1465 gl->frags[i].offset,
1466 gl->frags[i].size);
1467
1468 /* get a reference to the last page, we don't own it */
1469 get_page(gl->frags[gl->nfrags - 1].page);
1470 }
1471
1472 /**
1473 * t4vf_pktgl_to_skb - build an sk_buff from a packet gather list
1474 * @gl: the gather list
1475 * @skb_len: size of sk_buff main body if it carries fragments
1476 * @pull_len: amount of data to move to the sk_buff's main body
1477 *
1478 * Builds an sk_buff from the given packet gather list. Returns the
1479 * sk_buff or %NULL if sk_buff allocation failed.
1480 */
1481 static struct sk_buff *t4vf_pktgl_to_skb(const struct pkt_gl *gl,
1482 unsigned int skb_len,
1483 unsigned int pull_len)
1484 {
1485 struct sk_buff *skb;
1486
1487 /*
1488 * If the ingress packet is small enough, allocate an skb large enough
1489 * for all of the data and copy it inline. Otherwise, allocate an skb
1490 * with enough room to pull in the header and reference the rest of
1491 * the data via the skb fragment list.
1492 *
1493 * Below we rely on RX_COPY_THRES being less than the smallest Rx
1494 * buff! size, which is expected since buffers are at least
1495 * PAGE_SIZEd. In this case packets up to RX_COPY_THRES have only one
1496 * fragment.
1497 */
1498 if (gl->tot_len <= RX_COPY_THRES) {
1499 /* small packets have only one fragment */
1500 skb = alloc_skb(gl->tot_len, GFP_ATOMIC);
1501 if (unlikely(!skb))
1502 goto out;
1503 __skb_put(skb, gl->tot_len);
1504 skb_copy_to_linear_data(skb, gl->va, gl->tot_len);
1505 } else {
1506 skb = alloc_skb(skb_len, GFP_ATOMIC);
1507 if (unlikely(!skb))
1508 goto out;
1509 __skb_put(skb, pull_len);
1510 skb_copy_to_linear_data(skb, gl->va, pull_len);
1511
1512 copy_frags(skb, gl, pull_len);
1513 skb->len = gl->tot_len;
1514 skb->data_len = skb->len - pull_len;
1515 skb->truesize += skb->data_len;
1516 }
1517
1518 out:
1519 return skb;
1520 }
1521
1522 /**
1523 * t4vf_pktgl_free - free a packet gather list
1524 * @gl: the gather list
1525 *
1526 * Releases the pages of a packet gather list. We do not own the last
1527 * page on the list and do not free it.
1528 */
1529 static void t4vf_pktgl_free(const struct pkt_gl *gl)
1530 {
1531 int frag;
1532
1533 frag = gl->nfrags - 1;
1534 while (frag--)
1535 put_page(gl->frags[frag].page);
1536 }
1537
1538 /**
1539 * do_gro - perform Generic Receive Offload ingress packet processing
1540 * @rxq: ingress RX Ethernet Queue
1541 * @gl: gather list for ingress packet
1542 * @pkt: CPL header for last packet fragment
1543 *
1544 * Perform Generic Receive Offload (GRO) ingress packet processing.
1545 * We use the standard Linux GRO interfaces for this.
1546 */
1547 static void do_gro(struct sge_eth_rxq *rxq, const struct pkt_gl *gl,
1548 const struct cpl_rx_pkt *pkt)
1549 {
1550 struct adapter *adapter = rxq->rspq.adapter;
1551 struct sge *s = &adapter->sge;
1552 int ret;
1553 struct sk_buff *skb;
1554
1555 skb = napi_get_frags(&rxq->rspq.napi);
1556 if (unlikely(!skb)) {
1557 t4vf_pktgl_free(gl);
1558 rxq->stats.rx_drops++;
1559 return;
1560 }
1561
1562 copy_frags(skb, gl, s->pktshift);
1563 skb->len = gl->tot_len - s->pktshift;
1564 skb->data_len = skb->len;
1565 skb->truesize += skb->data_len;
1566 skb->ip_summed = CHECKSUM_UNNECESSARY;
1567 skb_record_rx_queue(skb, rxq->rspq.idx);
1568
1569 if (pkt->vlan_ex) {
1570 __vlan_hwaccel_put_tag(skb, cpu_to_be16(ETH_P_8021Q),
1571 be16_to_cpu(pkt->vlan));
1572 rxq->stats.vlan_ex++;
1573 }
1574 ret = napi_gro_frags(&rxq->rspq.napi);
1575
1576 if (ret == GRO_HELD)
1577 rxq->stats.lro_pkts++;
1578 else if (ret == GRO_MERGED || ret == GRO_MERGED_FREE)
1579 rxq->stats.lro_merged++;
1580 rxq->stats.pkts++;
1581 rxq->stats.rx_cso++;
1582 }
1583
1584 /**
1585 * t4vf_ethrx_handler - process an ingress ethernet packet
1586 * @rspq: the response queue that received the packet
1587 * @rsp: the response queue descriptor holding the RX_PKT message
1588 * @gl: the gather list of packet fragments
1589 *
1590 * Process an ingress ethernet packet and deliver it to the stack.
1591 */
1592 int t4vf_ethrx_handler(struct sge_rspq *rspq, const __be64 *rsp,
1593 const struct pkt_gl *gl)
1594 {
1595 struct sk_buff *skb;
1596 const struct cpl_rx_pkt *pkt = (void *)rsp;
1597 bool csum_ok = pkt->csum_calc && !pkt->err_vec &&
1598 (rspq->netdev->features & NETIF_F_RXCSUM);
1599 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1600 struct adapter *adapter = rspq->adapter;
1601 struct sge *s = &adapter->sge;
1602
1603 /*
1604 * If this is a good TCP packet and we have Generic Receive Offload
1605 * enabled, handle the packet in the GRO path.
1606 */
1607 if ((pkt->l2info & cpu_to_be32(RXF_TCP_F)) &&
1608 (rspq->netdev->features & NETIF_F_GRO) && csum_ok &&
1609 !pkt->ip_frag) {
1610 do_gro(rxq, gl, pkt);
1611 return 0;
1612 }
1613
1614 /*
1615 * Convert the Packet Gather List into an skb.
1616 */
1617 skb = t4vf_pktgl_to_skb(gl, RX_SKB_LEN, RX_PULL_LEN);
1618 if (unlikely(!skb)) {
1619 t4vf_pktgl_free(gl);
1620 rxq->stats.rx_drops++;
1621 return 0;
1622 }
1623 __skb_pull(skb, s->pktshift);
1624 skb->protocol = eth_type_trans(skb, rspq->netdev);
1625 skb_record_rx_queue(skb, rspq->idx);
1626 rxq->stats.pkts++;
1627
1628 if (csum_ok && !pkt->err_vec &&
1629 (be32_to_cpu(pkt->l2info) & (RXF_UDP_F | RXF_TCP_F))) {
1630 if (!pkt->ip_frag)
1631 skb->ip_summed = CHECKSUM_UNNECESSARY;
1632 else {
1633 __sum16 c = (__force __sum16)pkt->csum;
1634 skb->csum = csum_unfold(c);
1635 skb->ip_summed = CHECKSUM_COMPLETE;
1636 }
1637 rxq->stats.rx_cso++;
1638 } else
1639 skb_checksum_none_assert(skb);
1640
1641 if (pkt->vlan_ex) {
1642 rxq->stats.vlan_ex++;
1643 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), be16_to_cpu(pkt->vlan));
1644 }
1645
1646 netif_receive_skb(skb);
1647
1648 return 0;
1649 }
1650
1651 /**
1652 * is_new_response - check if a response is newly written
1653 * @rc: the response control descriptor
1654 * @rspq: the response queue
1655 *
1656 * Returns true if a response descriptor contains a yet unprocessed
1657 * response.
1658 */
1659 static inline bool is_new_response(const struct rsp_ctrl *rc,
1660 const struct sge_rspq *rspq)
1661 {
1662 return RSPD_GEN(rc->type_gen) == rspq->gen;
1663 }
1664
1665 /**
1666 * restore_rx_bufs - put back a packet's RX buffers
1667 * @gl: the packet gather list
1668 * @fl: the SGE Free List
1669 * @nfrags: how many fragments in @si
1670 *
1671 * Called when we find out that the current packet, @si, can't be
1672 * processed right away for some reason. This is a very rare event and
1673 * there's no effort to make this suspension/resumption process
1674 * particularly efficient.
1675 *
1676 * We implement the suspension by putting all of the RX buffers associated
1677 * with the current packet back on the original Free List. The buffers
1678 * have already been unmapped and are left unmapped, we mark them as
1679 * unmapped in order to prevent further unmapping attempts. (Effectively
1680 * this function undoes the series of @unmap_rx_buf calls which were done
1681 * to create the current packet's gather list.) This leaves us ready to
1682 * restart processing of the packet the next time we start processing the
1683 * RX Queue ...
1684 */
1685 static void restore_rx_bufs(const struct pkt_gl *gl, struct sge_fl *fl,
1686 int frags)
1687 {
1688 struct rx_sw_desc *sdesc;
1689
1690 while (frags--) {
1691 if (fl->cidx == 0)
1692 fl->cidx = fl->size - 1;
1693 else
1694 fl->cidx--;
1695 sdesc = &fl->sdesc[fl->cidx];
1696 sdesc->page = gl->frags[frags].page;
1697 sdesc->dma_addr |= RX_UNMAPPED_BUF;
1698 fl->avail++;
1699 }
1700 }
1701
1702 /**
1703 * rspq_next - advance to the next entry in a response queue
1704 * @rspq: the queue
1705 *
1706 * Updates the state of a response queue to advance it to the next entry.
1707 */
1708 static inline void rspq_next(struct sge_rspq *rspq)
1709 {
1710 rspq->cur_desc = (void *)rspq->cur_desc + rspq->iqe_len;
1711 if (unlikely(++rspq->cidx == rspq->size)) {
1712 rspq->cidx = 0;
1713 rspq->gen ^= 1;
1714 rspq->cur_desc = rspq->desc;
1715 }
1716 }
1717
1718 /**
1719 * process_responses - process responses from an SGE response queue
1720 * @rspq: the ingress response queue to process
1721 * @budget: how many responses can be processed in this round
1722 *
1723 * Process responses from a Scatter Gather Engine response queue up to
1724 * the supplied budget. Responses include received packets as well as
1725 * control messages from firmware or hardware.
1726 *
1727 * Additionally choose the interrupt holdoff time for the next interrupt
1728 * on this queue. If the system is under memory shortage use a fairly
1729 * long delay to help recovery.
1730 */
1731 static int process_responses(struct sge_rspq *rspq, int budget)
1732 {
1733 struct sge_eth_rxq *rxq = container_of(rspq, struct sge_eth_rxq, rspq);
1734 struct adapter *adapter = rspq->adapter;
1735 struct sge *s = &adapter->sge;
1736 int budget_left = budget;
1737
1738 while (likely(budget_left)) {
1739 int ret, rsp_type;
1740 const struct rsp_ctrl *rc;
1741
1742 rc = (void *)rspq->cur_desc + (rspq->iqe_len - sizeof(*rc));
1743 if (!is_new_response(rc, rspq))
1744 break;
1745
1746 /*
1747 * Figure out what kind of response we've received from the
1748 * SGE.
1749 */
1750 rmb();
1751 rsp_type = RSPD_TYPE(rc->type_gen);
1752 if (likely(rsp_type == RSP_TYPE_FLBUF)) {
1753 struct page_frag *fp;
1754 struct pkt_gl gl;
1755 const struct rx_sw_desc *sdesc;
1756 u32 bufsz, frag;
1757 u32 len = be32_to_cpu(rc->pldbuflen_qid);
1758
1759 /*
1760 * If we get a "new buffer" message from the SGE we
1761 * need to move on to the next Free List buffer.
1762 */
1763 if (len & RSPD_NEWBUF) {
1764 /*
1765 * We get one "new buffer" message when we
1766 * first start up a queue so we need to ignore
1767 * it when our offset into the buffer is 0.
1768 */
1769 if (likely(rspq->offset > 0)) {
1770 free_rx_bufs(rspq->adapter, &rxq->fl,
1771 1);
1772 rspq->offset = 0;
1773 }
1774 len = RSPD_LEN(len);
1775 }
1776 gl.tot_len = len;
1777
1778 /*
1779 * Gather packet fragments.
1780 */
1781 for (frag = 0, fp = gl.frags; /**/; frag++, fp++) {
1782 BUG_ON(frag >= MAX_SKB_FRAGS);
1783 BUG_ON(rxq->fl.avail == 0);
1784 sdesc = &rxq->fl.sdesc[rxq->fl.cidx];
1785 bufsz = get_buf_size(adapter, sdesc);
1786 fp->page = sdesc->page;
1787 fp->offset = rspq->offset;
1788 fp->size = min(bufsz, len);
1789 len -= fp->size;
1790 if (!len)
1791 break;
1792 unmap_rx_buf(rspq->adapter, &rxq->fl);
1793 }
1794 gl.nfrags = frag+1;
1795
1796 /*
1797 * Last buffer remains mapped so explicitly make it
1798 * coherent for CPU access and start preloading first
1799 * cache line ...
1800 */
1801 dma_sync_single_for_cpu(rspq->adapter->pdev_dev,
1802 get_buf_addr(sdesc),
1803 fp->size, DMA_FROM_DEVICE);
1804 gl.va = (page_address(gl.frags[0].page) +
1805 gl.frags[0].offset);
1806 prefetch(gl.va);
1807
1808 /*
1809 * Hand the new ingress packet to the handler for
1810 * this Response Queue.
1811 */
1812 ret = rspq->handler(rspq, rspq->cur_desc, &gl);
1813 if (likely(ret == 0))
1814 rspq->offset += ALIGN(fp->size, s->fl_align);
1815 else
1816 restore_rx_bufs(&gl, &rxq->fl, frag);
1817 } else if (likely(rsp_type == RSP_TYPE_CPL)) {
1818 ret = rspq->handler(rspq, rspq->cur_desc, NULL);
1819 } else {
1820 WARN_ON(rsp_type > RSP_TYPE_CPL);
1821 ret = 0;
1822 }
1823
1824 if (unlikely(ret)) {
1825 /*
1826 * Couldn't process descriptor, back off for recovery.
1827 * We use the SGE's last timer which has the longest
1828 * interrupt coalescing value ...
1829 */
1830 const int NOMEM_TIMER_IDX = SGE_NTIMERS-1;
1831 rspq->next_intr_params =
1832 QINTR_TIMER_IDX(NOMEM_TIMER_IDX);
1833 break;
1834 }
1835
1836 rspq_next(rspq);
1837 budget_left--;
1838 }
1839
1840 /*
1841 * If this is a Response Queue with an associated Free List and
1842 * at least two Egress Queue units available in the Free List
1843 * for new buffer pointers, refill the Free List.
1844 */
1845 if (rspq->offset >= 0 &&
1846 rxq->fl.size - rxq->fl.avail >= 2*FL_PER_EQ_UNIT)
1847 __refill_fl(rspq->adapter, &rxq->fl);
1848 return budget - budget_left;
1849 }
1850
1851 /**
1852 * napi_rx_handler - the NAPI handler for RX processing
1853 * @napi: the napi instance
1854 * @budget: how many packets we can process in this round
1855 *
1856 * Handler for new data events when using NAPI. This does not need any
1857 * locking or protection from interrupts as data interrupts are off at
1858 * this point and other adapter interrupts do not interfere (the latter
1859 * in not a concern at all with MSI-X as non-data interrupts then have
1860 * a separate handler).
1861 */
1862 static int napi_rx_handler(struct napi_struct *napi, int budget)
1863 {
1864 unsigned int intr_params;
1865 struct sge_rspq *rspq = container_of(napi, struct sge_rspq, napi);
1866 int work_done = process_responses(rspq, budget);
1867 u32 val;
1868
1869 if (likely(work_done < budget)) {
1870 napi_complete(napi);
1871 intr_params = rspq->next_intr_params;
1872 rspq->next_intr_params = rspq->intr_params;
1873 } else
1874 intr_params = QINTR_TIMER_IDX(SGE_TIMER_UPD_CIDX);
1875
1876 if (unlikely(work_done == 0))
1877 rspq->unhandled_irqs++;
1878
1879 val = CIDXINC_V(work_done) | SEINTARM_V(intr_params);
1880 if (is_t4(rspq->adapter->params.chip)) {
1881 t4_write_reg(rspq->adapter,
1882 T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1883 val | INGRESSQID_V((u32)rspq->cntxt_id));
1884 } else {
1885 writel(val | INGRESSQID_V(rspq->bar2_qid),
1886 rspq->bar2_addr + SGE_UDB_GTS);
1887 wmb();
1888 }
1889 return work_done;
1890 }
1891
1892 /*
1893 * The MSI-X interrupt handler for an SGE response queue for the NAPI case
1894 * (i.e., response queue serviced by NAPI polling).
1895 */
1896 irqreturn_t t4vf_sge_intr_msix(int irq, void *cookie)
1897 {
1898 struct sge_rspq *rspq = cookie;
1899
1900 napi_schedule(&rspq->napi);
1901 return IRQ_HANDLED;
1902 }
1903
1904 /*
1905 * Process the indirect interrupt entries in the interrupt queue and kick off
1906 * NAPI for each queue that has generated an entry.
1907 */
1908 static unsigned int process_intrq(struct adapter *adapter)
1909 {
1910 struct sge *s = &adapter->sge;
1911 struct sge_rspq *intrq = &s->intrq;
1912 unsigned int work_done;
1913 u32 val;
1914
1915 spin_lock(&adapter->sge.intrq_lock);
1916 for (work_done = 0; ; work_done++) {
1917 const struct rsp_ctrl *rc;
1918 unsigned int qid, iq_idx;
1919 struct sge_rspq *rspq;
1920
1921 /*
1922 * Grab the next response from the interrupt queue and bail
1923 * out if it's not a new response.
1924 */
1925 rc = (void *)intrq->cur_desc + (intrq->iqe_len - sizeof(*rc));
1926 if (!is_new_response(rc, intrq))
1927 break;
1928
1929 /*
1930 * If the response isn't a forwarded interrupt message issue a
1931 * error and go on to the next response message. This should
1932 * never happen ...
1933 */
1934 rmb();
1935 if (unlikely(RSPD_TYPE(rc->type_gen) != RSP_TYPE_INTR)) {
1936 dev_err(adapter->pdev_dev,
1937 "Unexpected INTRQ response type %d\n",
1938 RSPD_TYPE(rc->type_gen));
1939 continue;
1940 }
1941
1942 /*
1943 * Extract the Queue ID from the interrupt message and perform
1944 * sanity checking to make sure it really refers to one of our
1945 * Ingress Queues which is active and matches the queue's ID.
1946 * None of these error conditions should ever happen so we may
1947 * want to either make them fatal and/or conditionalized under
1948 * DEBUG.
1949 */
1950 qid = RSPD_QID(be32_to_cpu(rc->pldbuflen_qid));
1951 iq_idx = IQ_IDX(s, qid);
1952 if (unlikely(iq_idx >= MAX_INGQ)) {
1953 dev_err(adapter->pdev_dev,
1954 "Ingress QID %d out of range\n", qid);
1955 continue;
1956 }
1957 rspq = s->ingr_map[iq_idx];
1958 if (unlikely(rspq == NULL)) {
1959 dev_err(adapter->pdev_dev,
1960 "Ingress QID %d RSPQ=NULL\n", qid);
1961 continue;
1962 }
1963 if (unlikely(rspq->abs_id != qid)) {
1964 dev_err(adapter->pdev_dev,
1965 "Ingress QID %d refers to RSPQ %d\n",
1966 qid, rspq->abs_id);
1967 continue;
1968 }
1969
1970 /*
1971 * Schedule NAPI processing on the indicated Response Queue
1972 * and move on to the next entry in the Forwarded Interrupt
1973 * Queue.
1974 */
1975 napi_schedule(&rspq->napi);
1976 rspq_next(intrq);
1977 }
1978
1979 val = CIDXINC_V(work_done) | SEINTARM_V(intrq->intr_params);
1980 if (is_t4(adapter->params.chip))
1981 t4_write_reg(adapter, T4VF_SGE_BASE_ADDR + SGE_VF_GTS,
1982 val | INGRESSQID_V(intrq->cntxt_id));
1983 else {
1984 writel(val | INGRESSQID_V(intrq->bar2_qid),
1985 intrq->bar2_addr + SGE_UDB_GTS);
1986 wmb();
1987 }
1988
1989 spin_unlock(&adapter->sge.intrq_lock);
1990
1991 return work_done;
1992 }
1993
1994 /*
1995 * The MSI interrupt handler handles data events from SGE response queues as
1996 * well as error and other async events as they all use the same MSI vector.
1997 */
1998 static irqreturn_t t4vf_intr_msi(int irq, void *cookie)
1999 {
2000 struct adapter *adapter = cookie;
2001
2002 process_intrq(adapter);
2003 return IRQ_HANDLED;
2004 }
2005
2006 /**
2007 * t4vf_intr_handler - select the top-level interrupt handler
2008 * @adapter: the adapter
2009 *
2010 * Selects the top-level interrupt handler based on the type of interrupts
2011 * (MSI-X or MSI).
2012 */
2013 irq_handler_t t4vf_intr_handler(struct adapter *adapter)
2014 {
2015 BUG_ON((adapter->flags & (USING_MSIX|USING_MSI)) == 0);
2016 if (adapter->flags & USING_MSIX)
2017 return t4vf_sge_intr_msix;
2018 else
2019 return t4vf_intr_msi;
2020 }
2021
2022 /**
2023 * sge_rx_timer_cb - perform periodic maintenance of SGE RX queues
2024 * @data: the adapter
2025 *
2026 * Runs periodically from a timer to perform maintenance of SGE RX queues.
2027 *
2028 * a) Replenishes RX queues that have run out due to memory shortage.
2029 * Normally new RX buffers are added when existing ones are consumed but
2030 * when out of memory a queue can become empty. We schedule NAPI to do
2031 * the actual refill.
2032 */
2033 static void sge_rx_timer_cb(unsigned long data)
2034 {
2035 struct adapter *adapter = (struct adapter *)data;
2036 struct sge *s = &adapter->sge;
2037 unsigned int i;
2038
2039 /*
2040 * Scan the "Starving Free Lists" flag array looking for any Free
2041 * Lists in need of more free buffers. If we find one and it's not
2042 * being actively polled, then bump its "starving" counter and attempt
2043 * to refill it. If we're successful in adding enough buffers to push
2044 * the Free List over the starving threshold, then we can clear its
2045 * "starving" status.
2046 */
2047 for (i = 0; i < ARRAY_SIZE(s->starving_fl); i++) {
2048 unsigned long m;
2049
2050 for (m = s->starving_fl[i]; m; m &= m - 1) {
2051 unsigned int id = __ffs(m) + i * BITS_PER_LONG;
2052 struct sge_fl *fl = s->egr_map[id];
2053
2054 clear_bit(id, s->starving_fl);
2055 smp_mb__after_atomic();
2056
2057 /*
2058 * Since we are accessing fl without a lock there's a
2059 * small probability of a false positive where we
2060 * schedule napi but the FL is no longer starving.
2061 * No biggie.
2062 */
2063 if (fl_starving(adapter, fl)) {
2064 struct sge_eth_rxq *rxq;
2065
2066 rxq = container_of(fl, struct sge_eth_rxq, fl);
2067 if (napi_reschedule(&rxq->rspq.napi))
2068 fl->starving++;
2069 else
2070 set_bit(id, s->starving_fl);
2071 }
2072 }
2073 }
2074
2075 /*
2076 * Reschedule the next scan for starving Free Lists ...
2077 */
2078 mod_timer(&s->rx_timer, jiffies + RX_QCHECK_PERIOD);
2079 }
2080
2081 /**
2082 * sge_tx_timer_cb - perform periodic maintenance of SGE Tx queues
2083 * @data: the adapter
2084 *
2085 * Runs periodically from a timer to perform maintenance of SGE TX queues.
2086 *
2087 * b) Reclaims completed Tx packets for the Ethernet queues. Normally
2088 * packets are cleaned up by new Tx packets, this timer cleans up packets
2089 * when no new packets are being submitted. This is essential for pktgen,
2090 * at least.
2091 */
2092 static void sge_tx_timer_cb(unsigned long data)
2093 {
2094 struct adapter *adapter = (struct adapter *)data;
2095 struct sge *s = &adapter->sge;
2096 unsigned int i, budget;
2097
2098 budget = MAX_TIMER_TX_RECLAIM;
2099 i = s->ethtxq_rover;
2100 do {
2101 struct sge_eth_txq *txq = &s->ethtxq[i];
2102
2103 if (reclaimable(&txq->q) && __netif_tx_trylock(txq->txq)) {
2104 int avail = reclaimable(&txq->q);
2105
2106 if (avail > budget)
2107 avail = budget;
2108
2109 free_tx_desc(adapter, &txq->q, avail, true);
2110 txq->q.in_use -= avail;
2111 __netif_tx_unlock(txq->txq);
2112
2113 budget -= avail;
2114 if (!budget)
2115 break;
2116 }
2117
2118 i++;
2119 if (i >= s->ethqsets)
2120 i = 0;
2121 } while (i != s->ethtxq_rover);
2122 s->ethtxq_rover = i;
2123
2124 /*
2125 * If we found too many reclaimable packets schedule a timer in the
2126 * near future to continue where we left off. Otherwise the next timer
2127 * will be at its normal interval.
2128 */
2129 mod_timer(&s->tx_timer, jiffies + (budget ? TX_QCHECK_PERIOD : 2));
2130 }
2131
2132 /**
2133 * bar2_address - return the BAR2 address for an SGE Queue's Registers
2134 * @adapter: the adapter
2135 * @qid: the SGE Queue ID
2136 * @qtype: the SGE Queue Type (Egress or Ingress)
2137 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
2138 *
2139 * Returns the BAR2 address for the SGE Queue Registers associated with
2140 * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also
2141 * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE
2142 * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID"
2143 * Registers are supported (e.g. the Write Combining Doorbell Buffer).
2144 */
2145 static void __iomem *bar2_address(struct adapter *adapter,
2146 unsigned int qid,
2147 enum t4_bar2_qtype qtype,
2148 unsigned int *pbar2_qid)
2149 {
2150 u64 bar2_qoffset;
2151 int ret;
2152
2153 ret = t4_bar2_sge_qregs(adapter, qid, qtype,
2154 &bar2_qoffset, pbar2_qid);
2155 if (ret)
2156 return NULL;
2157
2158 return adapter->bar2 + bar2_qoffset;
2159 }
2160
2161 /**
2162 * t4vf_sge_alloc_rxq - allocate an SGE RX Queue
2163 * @adapter: the adapter
2164 * @rspq: pointer to to the new rxq's Response Queue to be filled in
2165 * @iqasynch: if 0, a normal rspq; if 1, an asynchronous event queue
2166 * @dev: the network device associated with the new rspq
2167 * @intr_dest: MSI-X vector index (overriden in MSI mode)
2168 * @fl: pointer to the new rxq's Free List to be filled in
2169 * @hnd: the interrupt handler to invoke for the rspq
2170 */
2171 int t4vf_sge_alloc_rxq(struct adapter *adapter, struct sge_rspq *rspq,
2172 bool iqasynch, struct net_device *dev,
2173 int intr_dest,
2174 struct sge_fl *fl, rspq_handler_t hnd)
2175 {
2176 struct sge *s = &adapter->sge;
2177 struct port_info *pi = netdev_priv(dev);
2178 struct fw_iq_cmd cmd, rpl;
2179 int ret, iqandst, flsz = 0;
2180
2181 /*
2182 * If we're using MSI interrupts and we're not initializing the
2183 * Forwarded Interrupt Queue itself, then set up this queue for
2184 * indirect interrupts to the Forwarded Interrupt Queue. Obviously
2185 * the Forwarded Interrupt Queue must be set up before any other
2186 * ingress queue ...
2187 */
2188 if ((adapter->flags & USING_MSI) && rspq != &adapter->sge.intrq) {
2189 iqandst = SGE_INTRDST_IQ;
2190 intr_dest = adapter->sge.intrq.abs_id;
2191 } else
2192 iqandst = SGE_INTRDST_PCI;
2193
2194 /*
2195 * Allocate the hardware ring for the Response Queue. The size needs
2196 * to be a multiple of 16 which includes the mandatory status entry
2197 * (regardless of whether the Status Page capabilities are enabled or
2198 * not).
2199 */
2200 rspq->size = roundup(rspq->size, 16);
2201 rspq->desc = alloc_ring(adapter->pdev_dev, rspq->size, rspq->iqe_len,
2202 0, &rspq->phys_addr, NULL, 0);
2203 if (!rspq->desc)
2204 return -ENOMEM;
2205
2206 /*
2207 * Fill in the Ingress Queue Command. Note: Ideally this code would
2208 * be in t4vf_hw.c but there are so many parameters and dependencies
2209 * on our Linux SGE state that we would end up having to pass tons of
2210 * parameters. We'll have to think about how this might be migrated
2211 * into OS-independent common code ...
2212 */
2213 memset(&cmd, 0, sizeof(cmd));
2214 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
2215 FW_CMD_REQUEST_F |
2216 FW_CMD_WRITE_F |
2217 FW_CMD_EXEC_F);
2218 cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_ALLOC_F |
2219 FW_IQ_CMD_IQSTART_F |
2220 FW_LEN16(cmd));
2221 cmd.type_to_iqandstindex =
2222 cpu_to_be32(FW_IQ_CMD_TYPE_V(FW_IQ_TYPE_FL_INT_CAP) |
2223 FW_IQ_CMD_IQASYNCH_V(iqasynch) |
2224 FW_IQ_CMD_VIID_V(pi->viid) |
2225 FW_IQ_CMD_IQANDST_V(iqandst) |
2226 FW_IQ_CMD_IQANUS_V(1) |
2227 FW_IQ_CMD_IQANUD_V(SGE_UPDATEDEL_INTR) |
2228 FW_IQ_CMD_IQANDSTINDEX_V(intr_dest));
2229 cmd.iqdroprss_to_iqesize =
2230 cpu_to_be16(FW_IQ_CMD_IQPCIECH_V(pi->port_id) |
2231 FW_IQ_CMD_IQGTSMODE_F |
2232 FW_IQ_CMD_IQINTCNTTHRESH_V(rspq->pktcnt_idx) |
2233 FW_IQ_CMD_IQESIZE_V(ilog2(rspq->iqe_len) - 4));
2234 cmd.iqsize = cpu_to_be16(rspq->size);
2235 cmd.iqaddr = cpu_to_be64(rspq->phys_addr);
2236
2237 if (fl) {
2238 /*
2239 * Allocate the ring for the hardware free list (with space
2240 * for its status page) along with the associated software
2241 * descriptor ring. The free list size needs to be a multiple
2242 * of the Egress Queue Unit.
2243 */
2244 fl->size = roundup(fl->size, FL_PER_EQ_UNIT);
2245 fl->desc = alloc_ring(adapter->pdev_dev, fl->size,
2246 sizeof(__be64), sizeof(struct rx_sw_desc),
2247 &fl->addr, &fl->sdesc, s->stat_len);
2248 if (!fl->desc) {
2249 ret = -ENOMEM;
2250 goto err;
2251 }
2252
2253 /*
2254 * Calculate the size of the hardware free list ring plus
2255 * Status Page (which the SGE will place after the end of the
2256 * free list ring) in Egress Queue Units.
2257 */
2258 flsz = (fl->size / FL_PER_EQ_UNIT +
2259 s->stat_len / EQ_UNIT);
2260
2261 /*
2262 * Fill in all the relevant firmware Ingress Queue Command
2263 * fields for the free list.
2264 */
2265 cmd.iqns_to_fl0congen =
2266 cpu_to_be32(
2267 FW_IQ_CMD_FL0HOSTFCMODE_V(SGE_HOSTFCMODE_NONE) |
2268 FW_IQ_CMD_FL0PACKEN_F |
2269 FW_IQ_CMD_FL0PADEN_F);
2270 cmd.fl0dcaen_to_fl0cidxfthresh =
2271 cpu_to_be16(
2272 FW_IQ_CMD_FL0FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2273 FW_IQ_CMD_FL0FBMAX_V(SGE_FETCHBURSTMAX_512B));
2274 cmd.fl0size = cpu_to_be16(flsz);
2275 cmd.fl0addr = cpu_to_be64(fl->addr);
2276 }
2277
2278 /*
2279 * Issue the firmware Ingress Queue Command and extract the results if
2280 * it completes successfully.
2281 */
2282 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2283 if (ret)
2284 goto err;
2285
2286 netif_napi_add(dev, &rspq->napi, napi_rx_handler, 64);
2287 rspq->cur_desc = rspq->desc;
2288 rspq->cidx = 0;
2289 rspq->gen = 1;
2290 rspq->next_intr_params = rspq->intr_params;
2291 rspq->cntxt_id = be16_to_cpu(rpl.iqid);
2292 rspq->bar2_addr = bar2_address(adapter,
2293 rspq->cntxt_id,
2294 T4_BAR2_QTYPE_INGRESS,
2295 &rspq->bar2_qid);
2296 rspq->abs_id = be16_to_cpu(rpl.physiqid);
2297 rspq->size--; /* subtract status entry */
2298 rspq->adapter = adapter;
2299 rspq->netdev = dev;
2300 rspq->handler = hnd;
2301
2302 /* set offset to -1 to distinguish ingress queues without FL */
2303 rspq->offset = fl ? 0 : -1;
2304
2305 if (fl) {
2306 fl->cntxt_id = be16_to_cpu(rpl.fl0id);
2307 fl->avail = 0;
2308 fl->pend_cred = 0;
2309 fl->pidx = 0;
2310 fl->cidx = 0;
2311 fl->alloc_failed = 0;
2312 fl->large_alloc_failed = 0;
2313 fl->starving = 0;
2314
2315 /* Note, we must initialize the BAR2 Free List User Doorbell
2316 * information before refilling the Free List!
2317 */
2318 fl->bar2_addr = bar2_address(adapter,
2319 fl->cntxt_id,
2320 T4_BAR2_QTYPE_EGRESS,
2321 &fl->bar2_qid);
2322
2323 refill_fl(adapter, fl, fl_cap(fl), GFP_KERNEL);
2324 }
2325
2326 return 0;
2327
2328 err:
2329 /*
2330 * An error occurred. Clean up our partial allocation state and
2331 * return the error.
2332 */
2333 if (rspq->desc) {
2334 dma_free_coherent(adapter->pdev_dev, rspq->size * rspq->iqe_len,
2335 rspq->desc, rspq->phys_addr);
2336 rspq->desc = NULL;
2337 }
2338 if (fl && fl->desc) {
2339 kfree(fl->sdesc);
2340 fl->sdesc = NULL;
2341 dma_free_coherent(adapter->pdev_dev, flsz * EQ_UNIT,
2342 fl->desc, fl->addr);
2343 fl->desc = NULL;
2344 }
2345 return ret;
2346 }
2347
2348 /**
2349 * t4vf_sge_alloc_eth_txq - allocate an SGE Ethernet TX Queue
2350 * @adapter: the adapter
2351 * @txq: pointer to the new txq to be filled in
2352 * @devq: the network TX queue associated with the new txq
2353 * @iqid: the relative ingress queue ID to which events relating to
2354 * the new txq should be directed
2355 */
2356 int t4vf_sge_alloc_eth_txq(struct adapter *adapter, struct sge_eth_txq *txq,
2357 struct net_device *dev, struct netdev_queue *devq,
2358 unsigned int iqid)
2359 {
2360 struct sge *s = &adapter->sge;
2361 int ret, nentries;
2362 struct fw_eq_eth_cmd cmd, rpl;
2363 struct port_info *pi = netdev_priv(dev);
2364
2365 /*
2366 * Calculate the size of the hardware TX Queue (including the Status
2367 * Page on the end of the TX Queue) in units of TX Descriptors.
2368 */
2369 nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc);
2370
2371 /*
2372 * Allocate the hardware ring for the TX ring (with space for its
2373 * status page) along with the associated software descriptor ring.
2374 */
2375 txq->q.desc = alloc_ring(adapter->pdev_dev, txq->q.size,
2376 sizeof(struct tx_desc),
2377 sizeof(struct tx_sw_desc),
2378 &txq->q.phys_addr, &txq->q.sdesc, s->stat_len);
2379 if (!txq->q.desc)
2380 return -ENOMEM;
2381
2382 /*
2383 * Fill in the Egress Queue Command. Note: As with the direct use of
2384 * the firmware Ingress Queue COmmand above in our RXQ allocation
2385 * routine, ideally, this code would be in t4vf_hw.c. Again, we'll
2386 * have to see if there's some reasonable way to parameterize it
2387 * into the common code ...
2388 */
2389 memset(&cmd, 0, sizeof(cmd));
2390 cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
2391 FW_CMD_REQUEST_F |
2392 FW_CMD_WRITE_F |
2393 FW_CMD_EXEC_F);
2394 cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_ALLOC_F |
2395 FW_EQ_ETH_CMD_EQSTART_F |
2396 FW_LEN16(cmd));
2397 cmd.viid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_AUTOEQUEQE_F |
2398 FW_EQ_ETH_CMD_VIID_V(pi->viid));
2399 cmd.fetchszm_to_iqid =
2400 cpu_to_be32(FW_EQ_ETH_CMD_HOSTFCMODE_V(SGE_HOSTFCMODE_STPG) |
2401 FW_EQ_ETH_CMD_PCIECHN_V(pi->port_id) |
2402 FW_EQ_ETH_CMD_IQID_V(iqid));
2403 cmd.dcaen_to_eqsize =
2404 cpu_to_be32(FW_EQ_ETH_CMD_FBMIN_V(SGE_FETCHBURSTMIN_64B) |
2405 FW_EQ_ETH_CMD_FBMAX_V(SGE_FETCHBURSTMAX_512B) |
2406 FW_EQ_ETH_CMD_CIDXFTHRESH_V(
2407 SGE_CIDXFLUSHTHRESH_32) |
2408 FW_EQ_ETH_CMD_EQSIZE_V(nentries));
2409 cmd.eqaddr = cpu_to_be64(txq->q.phys_addr);
2410
2411 /*
2412 * Issue the firmware Egress Queue Command and extract the results if
2413 * it completes successfully.
2414 */
2415 ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
2416 if (ret) {
2417 /*
2418 * The girmware Ingress Queue Command failed for some reason.
2419 * Free up our partial allocation state and return the error.
2420 */
2421 kfree(txq->q.sdesc);
2422 txq->q.sdesc = NULL;
2423 dma_free_coherent(adapter->pdev_dev,
2424 nentries * sizeof(struct tx_desc),
2425 txq->q.desc, txq->q.phys_addr);
2426 txq->q.desc = NULL;
2427 return ret;
2428 }
2429
2430 txq->q.in_use = 0;
2431 txq->q.cidx = 0;
2432 txq->q.pidx = 0;
2433 txq->q.stat = (void *)&txq->q.desc[txq->q.size];
2434 txq->q.cntxt_id = FW_EQ_ETH_CMD_EQID_G(be32_to_cpu(rpl.eqid_pkd));
2435 txq->q.bar2_addr = bar2_address(adapter,
2436 txq->q.cntxt_id,
2437 T4_BAR2_QTYPE_EGRESS,
2438 &txq->q.bar2_qid);
2439 txq->q.abs_id =
2440 FW_EQ_ETH_CMD_PHYSEQID_G(be32_to_cpu(rpl.physeqid_pkd));
2441 txq->txq = devq;
2442 txq->tso = 0;
2443 txq->tx_cso = 0;
2444 txq->vlan_ins = 0;
2445 txq->q.stops = 0;
2446 txq->q.restarts = 0;
2447 txq->mapping_err = 0;
2448 return 0;
2449 }
2450
2451 /*
2452 * Free the DMA map resources associated with a TX queue.
2453 */
2454 static void free_txq(struct adapter *adapter, struct sge_txq *tq)
2455 {
2456 struct sge *s = &adapter->sge;
2457
2458 dma_free_coherent(adapter->pdev_dev,
2459 tq->size * sizeof(*tq->desc) + s->stat_len,
2460 tq->desc, tq->phys_addr);
2461 tq->cntxt_id = 0;
2462 tq->sdesc = NULL;
2463 tq->desc = NULL;
2464 }
2465
2466 /*
2467 * Free the resources associated with a response queue (possibly including a
2468 * free list).
2469 */
2470 static void free_rspq_fl(struct adapter *adapter, struct sge_rspq *rspq,
2471 struct sge_fl *fl)
2472 {
2473 struct sge *s = &adapter->sge;
2474 unsigned int flid = fl ? fl->cntxt_id : 0xffff;
2475
2476 t4vf_iq_free(adapter, FW_IQ_TYPE_FL_INT_CAP,
2477 rspq->cntxt_id, flid, 0xffff);
2478 dma_free_coherent(adapter->pdev_dev, (rspq->size + 1) * rspq->iqe_len,
2479 rspq->desc, rspq->phys_addr);
2480 netif_napi_del(&rspq->napi);
2481 rspq->netdev = NULL;
2482 rspq->cntxt_id = 0;
2483 rspq->abs_id = 0;
2484 rspq->desc = NULL;
2485
2486 if (fl) {
2487 free_rx_bufs(adapter, fl, fl->avail);
2488 dma_free_coherent(adapter->pdev_dev,
2489 fl->size * sizeof(*fl->desc) + s->stat_len,
2490 fl->desc, fl->addr);
2491 kfree(fl->sdesc);
2492 fl->sdesc = NULL;
2493 fl->cntxt_id = 0;
2494 fl->desc = NULL;
2495 }
2496 }
2497
2498 /**
2499 * t4vf_free_sge_resources - free SGE resources
2500 * @adapter: the adapter
2501 *
2502 * Frees resources used by the SGE queue sets.
2503 */
2504 void t4vf_free_sge_resources(struct adapter *adapter)
2505 {
2506 struct sge *s = &adapter->sge;
2507 struct sge_eth_rxq *rxq = s->ethrxq;
2508 struct sge_eth_txq *txq = s->ethtxq;
2509 struct sge_rspq *evtq = &s->fw_evtq;
2510 struct sge_rspq *intrq = &s->intrq;
2511 int qs;
2512
2513 for (qs = 0; qs < adapter->sge.ethqsets; qs++, rxq++, txq++) {
2514 if (rxq->rspq.desc)
2515 free_rspq_fl(adapter, &rxq->rspq, &rxq->fl);
2516 if (txq->q.desc) {
2517 t4vf_eth_eq_free(adapter, txq->q.cntxt_id);
2518 free_tx_desc(adapter, &txq->q, txq->q.in_use, true);
2519 kfree(txq->q.sdesc);
2520 free_txq(adapter, &txq->q);
2521 }
2522 }
2523 if (evtq->desc)
2524 free_rspq_fl(adapter, evtq, NULL);
2525 if (intrq->desc)
2526 free_rspq_fl(adapter, intrq, NULL);
2527 }
2528
2529 /**
2530 * t4vf_sge_start - enable SGE operation
2531 * @adapter: the adapter
2532 *
2533 * Start tasklets and timers associated with the DMA engine.
2534 */
2535 void t4vf_sge_start(struct adapter *adapter)
2536 {
2537 adapter->sge.ethtxq_rover = 0;
2538 mod_timer(&adapter->sge.rx_timer, jiffies + RX_QCHECK_PERIOD);
2539 mod_timer(&adapter->sge.tx_timer, jiffies + TX_QCHECK_PERIOD);
2540 }
2541
2542 /**
2543 * t4vf_sge_stop - disable SGE operation
2544 * @adapter: the adapter
2545 *
2546 * Stop tasklets and timers associated with the DMA engine. Note that
2547 * this is effective only if measures have been taken to disable any HW
2548 * events that may restart them.
2549 */
2550 void t4vf_sge_stop(struct adapter *adapter)
2551 {
2552 struct sge *s = &adapter->sge;
2553
2554 if (s->rx_timer.function)
2555 del_timer_sync(&s->rx_timer);
2556 if (s->tx_timer.function)
2557 del_timer_sync(&s->tx_timer);
2558 }
2559
2560 /**
2561 * t4vf_sge_init - initialize SGE
2562 * @adapter: the adapter
2563 *
2564 * Performs SGE initialization needed every time after a chip reset.
2565 * We do not initialize any of the queue sets here, instead the driver
2566 * top-level must request those individually. We also do not enable DMA
2567 * here, that should be done after the queues have been set up.
2568 */
2569 int t4vf_sge_init(struct adapter *adapter)
2570 {
2571 struct sge_params *sge_params = &adapter->params.sge;
2572 u32 fl0 = sge_params->sge_fl_buffer_size[0];
2573 u32 fl1 = sge_params->sge_fl_buffer_size[1];
2574 struct sge *s = &adapter->sge;
2575 unsigned int ingpadboundary, ingpackboundary;
2576
2577 /*
2578 * Start by vetting the basic SGE parameters which have been set up by
2579 * the Physical Function Driver. Ideally we should be able to deal
2580 * with _any_ configuration. Practice is different ...
2581 */
2582 if (fl0 != PAGE_SIZE || (fl1 != 0 && fl1 <= fl0)) {
2583 dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n",
2584 fl0, fl1);
2585 return -EINVAL;
2586 }
2587 if ((sge_params->sge_control & RXPKTCPLMODE_F) == 0) {
2588 dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n");
2589 return -EINVAL;
2590 }
2591
2592 /*
2593 * Now translate the adapter parameters into our internal forms.
2594 */
2595 if (fl1)
2596 s->fl_pg_order = ilog2(fl1) - PAGE_SHIFT;
2597 s->stat_len = ((sge_params->sge_control & EGRSTATUSPAGESIZE_F)
2598 ? 128 : 64);
2599 s->pktshift = PKTSHIFT_G(sge_params->sge_control);
2600
2601 /* T4 uses a single control field to specify both the PCIe Padding and
2602 * Packing Boundary. T5 introduced the ability to specify these
2603 * separately. The actual Ingress Packet Data alignment boundary
2604 * within Packed Buffer Mode is the maximum of these two
2605 * specifications. (Note that it makes no real practical sense to
2606 * have the Pading Boudary be larger than the Packing Boundary but you
2607 * could set the chip up that way and, in fact, legacy T4 code would
2608 * end doing this because it would initialize the Padding Boundary and
2609 * leave the Packing Boundary initialized to 0 (16 bytes).)
2610 */
2611 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_params->sge_control) +
2612 INGPADBOUNDARY_SHIFT_X);
2613 if (is_t4(adapter->params.chip)) {
2614 s->fl_align = ingpadboundary;
2615 } else {
2616 /* T5 has a different interpretation of one of the PCIe Packing
2617 * Boundary values.
2618 */
2619 ingpackboundary = INGPACKBOUNDARY_G(sge_params->sge_control2);
2620 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
2621 ingpackboundary = 16;
2622 else
2623 ingpackboundary = 1 << (ingpackboundary +
2624 INGPACKBOUNDARY_SHIFT_X);
2625
2626 s->fl_align = max(ingpadboundary, ingpackboundary);
2627 }
2628
2629 /* A FL with <= fl_starve_thres buffers is starving and a periodic
2630 * timer will attempt to refill it. This needs to be larger than the
2631 * SGE's Egress Congestion Threshold. If it isn't, then we can get
2632 * stuck waiting for new packets while the SGE is waiting for us to
2633 * give it more Free List entries. (Note that the SGE's Egress
2634 * Congestion Threshold is in units of 2 Free List pointers.)
2635 */
2636 s->fl_starve_thres
2637 = EGRTHRESHOLD_G(sge_params->sge_congestion_control)*2 + 1;
2638
2639 /*
2640 * Set up tasklet timers.
2641 */
2642 setup_timer(&s->rx_timer, sge_rx_timer_cb, (unsigned long)adapter);
2643 setup_timer(&s->tx_timer, sge_tx_timer_cb, (unsigned long)adapter);
2644
2645 /*
2646 * Initialize Forwarded Interrupt Queue lock.
2647 */
2648 spin_lock_init(&s->intrq_lock);
2649
2650 return 0;
2651 }
This page took 0.085145 seconds and 6 git commands to generate.