Merge tag 'iio-fixes-for-3.11a' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / net / ethernet / davicom / dm9000.c
1 /*
2 * Davicom DM9000 Fast Ethernet driver for Linux.
3 * Copyright (C) 1997 Sten Wang
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16 *
17 * Additional updates, Copyright:
18 * Ben Dooks <ben@simtec.co.uk>
19 * Sascha Hauer <s.hauer@pengutronix.de>
20 */
21
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/ethtool.h>
35 #include <linux/dm9000.h>
36 #include <linux/delay.h>
37 #include <linux/platform_device.h>
38 #include <linux/irq.h>
39 #include <linux/slab.h>
40
41 #include <asm/delay.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44
45 #include "dm9000.h"
46
47 /* Board/System/Debug information/definition ---------------- */
48
49 #define DM9000_PHY 0x40 /* PHY address 0x01 */
50
51 #define CARDNAME "dm9000"
52 #define DRV_VERSION "1.31"
53
54 /*
55 * Transmit timeout, default 5 seconds.
56 */
57 static int watchdog = 5000;
58 module_param(watchdog, int, 0400);
59 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
60
61 /*
62 * Debug messages level
63 */
64 static int debug;
65 module_param(debug, int, 0644);
66 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
67
68 /* DM9000 register address locking.
69 *
70 * The DM9000 uses an address register to control where data written
71 * to the data register goes. This means that the address register
72 * must be preserved over interrupts or similar calls.
73 *
74 * During interrupt and other critical calls, a spinlock is used to
75 * protect the system, but the calls themselves save the address
76 * in the address register in case they are interrupting another
77 * access to the device.
78 *
79 * For general accesses a lock is provided so that calls which are
80 * allowed to sleep are serialised so that the address register does
81 * not need to be saved. This lock also serves to serialise access
82 * to the EEPROM and PHY access registers which are shared between
83 * these two devices.
84 */
85
86 /* The driver supports the original DM9000E, and now the two newer
87 * devices, DM9000A and DM9000B.
88 */
89
90 enum dm9000_type {
91 TYPE_DM9000E, /* original DM9000 */
92 TYPE_DM9000A,
93 TYPE_DM9000B
94 };
95
96 /* Structure/enum declaration ------------------------------- */
97 typedef struct board_info {
98
99 void __iomem *io_addr; /* Register I/O base address */
100 void __iomem *io_data; /* Data I/O address */
101 u16 irq; /* IRQ */
102
103 u16 tx_pkt_cnt;
104 u16 queue_pkt_len;
105 u16 queue_start_addr;
106 u16 queue_ip_summed;
107 u16 dbug_cnt;
108 u8 io_mode; /* 0:word, 2:byte */
109 u8 phy_addr;
110 u8 imr_all;
111
112 unsigned int flags;
113 unsigned int in_suspend :1;
114 unsigned int wake_supported :1;
115
116 enum dm9000_type type;
117
118 void (*inblk)(void __iomem *port, void *data, int length);
119 void (*outblk)(void __iomem *port, void *data, int length);
120 void (*dumpblk)(void __iomem *port, int length);
121
122 struct device *dev; /* parent device */
123
124 struct resource *addr_res; /* resources found */
125 struct resource *data_res;
126 struct resource *addr_req; /* resources requested */
127 struct resource *data_req;
128 struct resource *irq_res;
129
130 int irq_wake;
131
132 struct mutex addr_lock; /* phy and eeprom access lock */
133
134 struct delayed_work phy_poll;
135 struct net_device *ndev;
136
137 spinlock_t lock;
138
139 struct mii_if_info mii;
140 u32 msg_enable;
141 u32 wake_state;
142
143 int ip_summed;
144 } board_info_t;
145
146 /* debug code */
147
148 #define dm9000_dbg(db, lev, msg...) do { \
149 if ((lev) < debug) { \
150 dev_dbg(db->dev, msg); \
151 } \
152 } while (0)
153
154 static inline board_info_t *to_dm9000_board(struct net_device *dev)
155 {
156 return netdev_priv(dev);
157 }
158
159 /* DM9000 network board routine ---------------------------- */
160
161 static void
162 dm9000_reset(board_info_t * db)
163 {
164 dev_dbg(db->dev, "resetting device\n");
165
166 /* RESET device */
167 writeb(DM9000_NCR, db->io_addr);
168 udelay(200);
169 writeb(NCR_RST, db->io_data);
170 udelay(200);
171 }
172
173 /*
174 * Read a byte from I/O port
175 */
176 static u8
177 ior(board_info_t * db, int reg)
178 {
179 writeb(reg, db->io_addr);
180 return readb(db->io_data);
181 }
182
183 /*
184 * Write a byte to I/O port
185 */
186
187 static void
188 iow(board_info_t * db, int reg, int value)
189 {
190 writeb(reg, db->io_addr);
191 writeb(value, db->io_data);
192 }
193
194 /* routines for sending block to chip */
195
196 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
197 {
198 iowrite8_rep(reg, data, count);
199 }
200
201 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
202 {
203 iowrite16_rep(reg, data, (count+1) >> 1);
204 }
205
206 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
207 {
208 iowrite32_rep(reg, data, (count+3) >> 2);
209 }
210
211 /* input block from chip to memory */
212
213 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
214 {
215 ioread8_rep(reg, data, count);
216 }
217
218
219 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
220 {
221 ioread16_rep(reg, data, (count+1) >> 1);
222 }
223
224 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
225 {
226 ioread32_rep(reg, data, (count+3) >> 2);
227 }
228
229 /* dump block from chip to null */
230
231 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
232 {
233 int i;
234 int tmp;
235
236 for (i = 0; i < count; i++)
237 tmp = readb(reg);
238 }
239
240 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
241 {
242 int i;
243 int tmp;
244
245 count = (count + 1) >> 1;
246
247 for (i = 0; i < count; i++)
248 tmp = readw(reg);
249 }
250
251 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
252 {
253 int i;
254 int tmp;
255
256 count = (count + 3) >> 2;
257
258 for (i = 0; i < count; i++)
259 tmp = readl(reg);
260 }
261
262 /*
263 * Sleep, either by using msleep() or if we are suspending, then
264 * use mdelay() to sleep.
265 */
266 static void dm9000_msleep(board_info_t *db, unsigned int ms)
267 {
268 if (db->in_suspend)
269 mdelay(ms);
270 else
271 msleep(ms);
272 }
273
274 /* Read a word from phyxcer */
275 static int
276 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
277 {
278 board_info_t *db = netdev_priv(dev);
279 unsigned long flags;
280 unsigned int reg_save;
281 int ret;
282
283 mutex_lock(&db->addr_lock);
284
285 spin_lock_irqsave(&db->lock, flags);
286
287 /* Save previous register address */
288 reg_save = readb(db->io_addr);
289
290 /* Fill the phyxcer register into REG_0C */
291 iow(db, DM9000_EPAR, DM9000_PHY | reg);
292
293 /* Issue phyxcer read command */
294 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
295
296 writeb(reg_save, db->io_addr);
297 spin_unlock_irqrestore(&db->lock, flags);
298
299 dm9000_msleep(db, 1); /* Wait read complete */
300
301 spin_lock_irqsave(&db->lock, flags);
302 reg_save = readb(db->io_addr);
303
304 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */
305
306 /* The read data keeps on REG_0D & REG_0E */
307 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
308
309 /* restore the previous address */
310 writeb(reg_save, db->io_addr);
311 spin_unlock_irqrestore(&db->lock, flags);
312
313 mutex_unlock(&db->addr_lock);
314
315 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
316 return ret;
317 }
318
319 /* Write a word to phyxcer */
320 static void
321 dm9000_phy_write(struct net_device *dev,
322 int phyaddr_unused, int reg, int value)
323 {
324 board_info_t *db = netdev_priv(dev);
325 unsigned long flags;
326 unsigned long reg_save;
327
328 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
329 mutex_lock(&db->addr_lock);
330
331 spin_lock_irqsave(&db->lock, flags);
332
333 /* Save previous register address */
334 reg_save = readb(db->io_addr);
335
336 /* Fill the phyxcer register into REG_0C */
337 iow(db, DM9000_EPAR, DM9000_PHY | reg);
338
339 /* Fill the written data into REG_0D & REG_0E */
340 iow(db, DM9000_EPDRL, value);
341 iow(db, DM9000_EPDRH, value >> 8);
342
343 /* Issue phyxcer write command */
344 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
345
346 writeb(reg_save, db->io_addr);
347 spin_unlock_irqrestore(&db->lock, flags);
348
349 dm9000_msleep(db, 1); /* Wait write complete */
350
351 spin_lock_irqsave(&db->lock, flags);
352 reg_save = readb(db->io_addr);
353
354 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */
355
356 /* restore the previous address */
357 writeb(reg_save, db->io_addr);
358
359 spin_unlock_irqrestore(&db->lock, flags);
360 mutex_unlock(&db->addr_lock);
361 }
362
363 /* dm9000_set_io
364 *
365 * select the specified set of io routines to use with the
366 * device
367 */
368
369 static void dm9000_set_io(struct board_info *db, int byte_width)
370 {
371 /* use the size of the data resource to work out what IO
372 * routines we want to use
373 */
374
375 switch (byte_width) {
376 case 1:
377 db->dumpblk = dm9000_dumpblk_8bit;
378 db->outblk = dm9000_outblk_8bit;
379 db->inblk = dm9000_inblk_8bit;
380 break;
381
382
383 case 3:
384 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
385 case 2:
386 db->dumpblk = dm9000_dumpblk_16bit;
387 db->outblk = dm9000_outblk_16bit;
388 db->inblk = dm9000_inblk_16bit;
389 break;
390
391 case 4:
392 default:
393 db->dumpblk = dm9000_dumpblk_32bit;
394 db->outblk = dm9000_outblk_32bit;
395 db->inblk = dm9000_inblk_32bit;
396 break;
397 }
398 }
399
400 static void dm9000_schedule_poll(board_info_t *db)
401 {
402 if (db->type == TYPE_DM9000E)
403 schedule_delayed_work(&db->phy_poll, HZ * 2);
404 }
405
406 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
407 {
408 board_info_t *dm = to_dm9000_board(dev);
409
410 if (!netif_running(dev))
411 return -EINVAL;
412
413 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
414 }
415
416 static unsigned int
417 dm9000_read_locked(board_info_t *db, int reg)
418 {
419 unsigned long flags;
420 unsigned int ret;
421
422 spin_lock_irqsave(&db->lock, flags);
423 ret = ior(db, reg);
424 spin_unlock_irqrestore(&db->lock, flags);
425
426 return ret;
427 }
428
429 static int dm9000_wait_eeprom(board_info_t *db)
430 {
431 unsigned int status;
432 int timeout = 8; /* wait max 8msec */
433
434 /* The DM9000 data sheets say we should be able to
435 * poll the ERRE bit in EPCR to wait for the EEPROM
436 * operation. From testing several chips, this bit
437 * does not seem to work.
438 *
439 * We attempt to use the bit, but fall back to the
440 * timeout (which is why we do not return an error
441 * on expiry) to say that the EEPROM operation has
442 * completed.
443 */
444
445 while (1) {
446 status = dm9000_read_locked(db, DM9000_EPCR);
447
448 if ((status & EPCR_ERRE) == 0)
449 break;
450
451 msleep(1);
452
453 if (timeout-- < 0) {
454 dev_dbg(db->dev, "timeout waiting EEPROM\n");
455 break;
456 }
457 }
458
459 return 0;
460 }
461
462 /*
463 * Read a word data from EEPROM
464 */
465 static void
466 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
467 {
468 unsigned long flags;
469
470 if (db->flags & DM9000_PLATF_NO_EEPROM) {
471 to[0] = 0xff;
472 to[1] = 0xff;
473 return;
474 }
475
476 mutex_lock(&db->addr_lock);
477
478 spin_lock_irqsave(&db->lock, flags);
479
480 iow(db, DM9000_EPAR, offset);
481 iow(db, DM9000_EPCR, EPCR_ERPRR);
482
483 spin_unlock_irqrestore(&db->lock, flags);
484
485 dm9000_wait_eeprom(db);
486
487 /* delay for at-least 150uS */
488 msleep(1);
489
490 spin_lock_irqsave(&db->lock, flags);
491
492 iow(db, DM9000_EPCR, 0x0);
493
494 to[0] = ior(db, DM9000_EPDRL);
495 to[1] = ior(db, DM9000_EPDRH);
496
497 spin_unlock_irqrestore(&db->lock, flags);
498
499 mutex_unlock(&db->addr_lock);
500 }
501
502 /*
503 * Write a word data to SROM
504 */
505 static void
506 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
507 {
508 unsigned long flags;
509
510 if (db->flags & DM9000_PLATF_NO_EEPROM)
511 return;
512
513 mutex_lock(&db->addr_lock);
514
515 spin_lock_irqsave(&db->lock, flags);
516 iow(db, DM9000_EPAR, offset);
517 iow(db, DM9000_EPDRH, data[1]);
518 iow(db, DM9000_EPDRL, data[0]);
519 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
520 spin_unlock_irqrestore(&db->lock, flags);
521
522 dm9000_wait_eeprom(db);
523
524 mdelay(1); /* wait at least 150uS to clear */
525
526 spin_lock_irqsave(&db->lock, flags);
527 iow(db, DM9000_EPCR, 0);
528 spin_unlock_irqrestore(&db->lock, flags);
529
530 mutex_unlock(&db->addr_lock);
531 }
532
533 /* ethtool ops */
534
535 static void dm9000_get_drvinfo(struct net_device *dev,
536 struct ethtool_drvinfo *info)
537 {
538 board_info_t *dm = to_dm9000_board(dev);
539
540 strlcpy(info->driver, CARDNAME, sizeof(info->driver));
541 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
542 strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
543 sizeof(info->bus_info));
544 }
545
546 static u32 dm9000_get_msglevel(struct net_device *dev)
547 {
548 board_info_t *dm = to_dm9000_board(dev);
549
550 return dm->msg_enable;
551 }
552
553 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
554 {
555 board_info_t *dm = to_dm9000_board(dev);
556
557 dm->msg_enable = value;
558 }
559
560 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
561 {
562 board_info_t *dm = to_dm9000_board(dev);
563
564 mii_ethtool_gset(&dm->mii, cmd);
565 return 0;
566 }
567
568 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
569 {
570 board_info_t *dm = to_dm9000_board(dev);
571
572 return mii_ethtool_sset(&dm->mii, cmd);
573 }
574
575 static int dm9000_nway_reset(struct net_device *dev)
576 {
577 board_info_t *dm = to_dm9000_board(dev);
578 return mii_nway_restart(&dm->mii);
579 }
580
581 static int dm9000_set_features(struct net_device *dev,
582 netdev_features_t features)
583 {
584 board_info_t *dm = to_dm9000_board(dev);
585 netdev_features_t changed = dev->features ^ features;
586 unsigned long flags;
587
588 if (!(changed & NETIF_F_RXCSUM))
589 return 0;
590
591 spin_lock_irqsave(&dm->lock, flags);
592 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
593 spin_unlock_irqrestore(&dm->lock, flags);
594
595 return 0;
596 }
597
598 static u32 dm9000_get_link(struct net_device *dev)
599 {
600 board_info_t *dm = to_dm9000_board(dev);
601 u32 ret;
602
603 if (dm->flags & DM9000_PLATF_EXT_PHY)
604 ret = mii_link_ok(&dm->mii);
605 else
606 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
607
608 return ret;
609 }
610
611 #define DM_EEPROM_MAGIC (0x444D394B)
612
613 static int dm9000_get_eeprom_len(struct net_device *dev)
614 {
615 return 128;
616 }
617
618 static int dm9000_get_eeprom(struct net_device *dev,
619 struct ethtool_eeprom *ee, u8 *data)
620 {
621 board_info_t *dm = to_dm9000_board(dev);
622 int offset = ee->offset;
623 int len = ee->len;
624 int i;
625
626 /* EEPROM access is aligned to two bytes */
627
628 if ((len & 1) != 0 || (offset & 1) != 0)
629 return -EINVAL;
630
631 if (dm->flags & DM9000_PLATF_NO_EEPROM)
632 return -ENOENT;
633
634 ee->magic = DM_EEPROM_MAGIC;
635
636 for (i = 0; i < len; i += 2)
637 dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
638
639 return 0;
640 }
641
642 static int dm9000_set_eeprom(struct net_device *dev,
643 struct ethtool_eeprom *ee, u8 *data)
644 {
645 board_info_t *dm = to_dm9000_board(dev);
646 int offset = ee->offset;
647 int len = ee->len;
648 int done;
649
650 /* EEPROM access is aligned to two bytes */
651
652 if (dm->flags & DM9000_PLATF_NO_EEPROM)
653 return -ENOENT;
654
655 if (ee->magic != DM_EEPROM_MAGIC)
656 return -EINVAL;
657
658 while (len > 0) {
659 if (len & 1 || offset & 1) {
660 int which = offset & 1;
661 u8 tmp[2];
662
663 dm9000_read_eeprom(dm, offset / 2, tmp);
664 tmp[which] = *data;
665 dm9000_write_eeprom(dm, offset / 2, tmp);
666
667 done = 1;
668 } else {
669 dm9000_write_eeprom(dm, offset / 2, data);
670 done = 2;
671 }
672
673 data += done;
674 offset += done;
675 len -= done;
676 }
677
678 return 0;
679 }
680
681 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
682 {
683 board_info_t *dm = to_dm9000_board(dev);
684
685 memset(w, 0, sizeof(struct ethtool_wolinfo));
686
687 /* note, we could probably support wake-phy too */
688 w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
689 w->wolopts = dm->wake_state;
690 }
691
692 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
693 {
694 board_info_t *dm = to_dm9000_board(dev);
695 unsigned long flags;
696 u32 opts = w->wolopts;
697 u32 wcr = 0;
698
699 if (!dm->wake_supported)
700 return -EOPNOTSUPP;
701
702 if (opts & ~WAKE_MAGIC)
703 return -EINVAL;
704
705 if (opts & WAKE_MAGIC)
706 wcr |= WCR_MAGICEN;
707
708 mutex_lock(&dm->addr_lock);
709
710 spin_lock_irqsave(&dm->lock, flags);
711 iow(dm, DM9000_WCR, wcr);
712 spin_unlock_irqrestore(&dm->lock, flags);
713
714 mutex_unlock(&dm->addr_lock);
715
716 if (dm->wake_state != opts) {
717 /* change in wol state, update IRQ state */
718
719 if (!dm->wake_state)
720 irq_set_irq_wake(dm->irq_wake, 1);
721 else if (dm->wake_state && !opts)
722 irq_set_irq_wake(dm->irq_wake, 0);
723 }
724
725 dm->wake_state = opts;
726 return 0;
727 }
728
729 static const struct ethtool_ops dm9000_ethtool_ops = {
730 .get_drvinfo = dm9000_get_drvinfo,
731 .get_settings = dm9000_get_settings,
732 .set_settings = dm9000_set_settings,
733 .get_msglevel = dm9000_get_msglevel,
734 .set_msglevel = dm9000_set_msglevel,
735 .nway_reset = dm9000_nway_reset,
736 .get_link = dm9000_get_link,
737 .get_wol = dm9000_get_wol,
738 .set_wol = dm9000_set_wol,
739 .get_eeprom_len = dm9000_get_eeprom_len,
740 .get_eeprom = dm9000_get_eeprom,
741 .set_eeprom = dm9000_set_eeprom,
742 };
743
744 static void dm9000_show_carrier(board_info_t *db,
745 unsigned carrier, unsigned nsr)
746 {
747 struct net_device *ndev = db->ndev;
748 unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
749
750 if (carrier)
751 dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
752 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
753 (ncr & NCR_FDX) ? "full" : "half");
754 else
755 dev_info(db->dev, "%s: link down\n", ndev->name);
756 }
757
758 static void
759 dm9000_poll_work(struct work_struct *w)
760 {
761 struct delayed_work *dw = to_delayed_work(w);
762 board_info_t *db = container_of(dw, board_info_t, phy_poll);
763 struct net_device *ndev = db->ndev;
764
765 if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
766 !(db->flags & DM9000_PLATF_EXT_PHY)) {
767 unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
768 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
769 unsigned new_carrier;
770
771 new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
772
773 if (old_carrier != new_carrier) {
774 if (netif_msg_link(db))
775 dm9000_show_carrier(db, new_carrier, nsr);
776
777 if (!new_carrier)
778 netif_carrier_off(ndev);
779 else
780 netif_carrier_on(ndev);
781 }
782 } else
783 mii_check_media(&db->mii, netif_msg_link(db), 0);
784
785 if (netif_running(ndev))
786 dm9000_schedule_poll(db);
787 }
788
789 /* dm9000_release_board
790 *
791 * release a board, and any mapped resources
792 */
793
794 static void
795 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
796 {
797 /* unmap our resources */
798
799 iounmap(db->io_addr);
800 iounmap(db->io_data);
801
802 /* release the resources */
803
804 release_resource(db->data_req);
805 kfree(db->data_req);
806
807 release_resource(db->addr_req);
808 kfree(db->addr_req);
809 }
810
811 static unsigned char dm9000_type_to_char(enum dm9000_type type)
812 {
813 switch (type) {
814 case TYPE_DM9000E: return 'e';
815 case TYPE_DM9000A: return 'a';
816 case TYPE_DM9000B: return 'b';
817 }
818
819 return '?';
820 }
821
822 /*
823 * Set DM9000 multicast address
824 */
825 static void
826 dm9000_hash_table_unlocked(struct net_device *dev)
827 {
828 board_info_t *db = netdev_priv(dev);
829 struct netdev_hw_addr *ha;
830 int i, oft;
831 u32 hash_val;
832 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
833 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
834
835 dm9000_dbg(db, 1, "entering %s\n", __func__);
836
837 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
838 iow(db, oft, dev->dev_addr[i]);
839
840 if (dev->flags & IFF_PROMISC)
841 rcr |= RCR_PRMSC;
842
843 if (dev->flags & IFF_ALLMULTI)
844 rcr |= RCR_ALL;
845
846 /* the multicast address in Hash Table : 64 bits */
847 netdev_for_each_mc_addr(ha, dev) {
848 hash_val = ether_crc_le(6, ha->addr) & 0x3f;
849 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
850 }
851
852 /* Write the hash table to MAC MD table */
853 for (i = 0, oft = DM9000_MAR; i < 4; i++) {
854 iow(db, oft++, hash_table[i]);
855 iow(db, oft++, hash_table[i] >> 8);
856 }
857
858 iow(db, DM9000_RCR, rcr);
859 }
860
861 static void
862 dm9000_hash_table(struct net_device *dev)
863 {
864 board_info_t *db = netdev_priv(dev);
865 unsigned long flags;
866
867 spin_lock_irqsave(&db->lock, flags);
868 dm9000_hash_table_unlocked(dev);
869 spin_unlock_irqrestore(&db->lock, flags);
870 }
871
872 /*
873 * Initialize dm9000 board
874 */
875 static void
876 dm9000_init_dm9000(struct net_device *dev)
877 {
878 board_info_t *db = netdev_priv(dev);
879 unsigned int imr;
880 unsigned int ncr;
881
882 dm9000_dbg(db, 1, "entering %s\n", __func__);
883
884 /* I/O mode */
885 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */
886
887 /* Checksum mode */
888 if (dev->hw_features & NETIF_F_RXCSUM)
889 iow(db, DM9000_RCSR,
890 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
891
892 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */
893
894 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
895 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); /* Init */
896
897 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
898
899 /* if wol is needed, then always set NCR_WAKEEN otherwise we end
900 * up dumping the wake events if we disable this. There is already
901 * a wake-mask in DM9000_WCR */
902 if (db->wake_supported)
903 ncr |= NCR_WAKEEN;
904
905 iow(db, DM9000_NCR, ncr);
906
907 /* Program operating register */
908 iow(db, DM9000_TCR, 0); /* TX Polling clear */
909 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */
910 iow(db, DM9000_FCR, 0xff); /* Flow Control */
911 iow(db, DM9000_SMCR, 0); /* Special Mode */
912 /* clear TX status */
913 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
914 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
915
916 /* Set address filter table */
917 dm9000_hash_table_unlocked(dev);
918
919 imr = IMR_PAR | IMR_PTM | IMR_PRM;
920 if (db->type != TYPE_DM9000E)
921 imr |= IMR_LNKCHNG;
922
923 db->imr_all = imr;
924
925 /* Enable TX/RX interrupt mask */
926 iow(db, DM9000_IMR, imr);
927
928 /* Init Driver variable */
929 db->tx_pkt_cnt = 0;
930 db->queue_pkt_len = 0;
931 dev->trans_start = jiffies;
932 }
933
934 /* Our watchdog timed out. Called by the networking layer */
935 static void dm9000_timeout(struct net_device *dev)
936 {
937 board_info_t *db = netdev_priv(dev);
938 u8 reg_save;
939 unsigned long flags;
940
941 /* Save previous register address */
942 spin_lock_irqsave(&db->lock, flags);
943 reg_save = readb(db->io_addr);
944
945 netif_stop_queue(dev);
946 dm9000_reset(db);
947 dm9000_init_dm9000(dev);
948 /* We can accept TX packets again */
949 dev->trans_start = jiffies; /* prevent tx timeout */
950 netif_wake_queue(dev);
951
952 /* Restore previous register address */
953 writeb(reg_save, db->io_addr);
954 spin_unlock_irqrestore(&db->lock, flags);
955 }
956
957 static void dm9000_send_packet(struct net_device *dev,
958 int ip_summed,
959 u16 pkt_len)
960 {
961 board_info_t *dm = to_dm9000_board(dev);
962
963 /* The DM9000 is not smart enough to leave fragmented packets alone. */
964 if (dm->ip_summed != ip_summed) {
965 if (ip_summed == CHECKSUM_NONE)
966 iow(dm, DM9000_TCCR, 0);
967 else
968 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
969 dm->ip_summed = ip_summed;
970 }
971
972 /* Set TX length to DM9000 */
973 iow(dm, DM9000_TXPLL, pkt_len);
974 iow(dm, DM9000_TXPLH, pkt_len >> 8);
975
976 /* Issue TX polling command */
977 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */
978 }
979
980 /*
981 * Hardware start transmission.
982 * Send a packet to media from the upper layer.
983 */
984 static int
985 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
986 {
987 unsigned long flags;
988 board_info_t *db = netdev_priv(dev);
989
990 dm9000_dbg(db, 3, "%s:\n", __func__);
991
992 if (db->tx_pkt_cnt > 1)
993 return NETDEV_TX_BUSY;
994
995 spin_lock_irqsave(&db->lock, flags);
996
997 /* Move data to DM9000 TX RAM */
998 writeb(DM9000_MWCMD, db->io_addr);
999
1000 (db->outblk)(db->io_data, skb->data, skb->len);
1001 dev->stats.tx_bytes += skb->len;
1002
1003 db->tx_pkt_cnt++;
1004 /* TX control: First packet immediately send, second packet queue */
1005 if (db->tx_pkt_cnt == 1) {
1006 dm9000_send_packet(dev, skb->ip_summed, skb->len);
1007 } else {
1008 /* Second packet */
1009 db->queue_pkt_len = skb->len;
1010 db->queue_ip_summed = skb->ip_summed;
1011 netif_stop_queue(dev);
1012 }
1013
1014 spin_unlock_irqrestore(&db->lock, flags);
1015
1016 /* free this SKB */
1017 dev_kfree_skb(skb);
1018
1019 return NETDEV_TX_OK;
1020 }
1021
1022 /*
1023 * DM9000 interrupt handler
1024 * receive the packet to upper layer, free the transmitted packet
1025 */
1026
1027 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1028 {
1029 int tx_status = ior(db, DM9000_NSR); /* Got TX status */
1030
1031 if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1032 /* One packet sent complete */
1033 db->tx_pkt_cnt--;
1034 dev->stats.tx_packets++;
1035
1036 if (netif_msg_tx_done(db))
1037 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1038
1039 /* Queue packet check & send */
1040 if (db->tx_pkt_cnt > 0)
1041 dm9000_send_packet(dev, db->queue_ip_summed,
1042 db->queue_pkt_len);
1043 netif_wake_queue(dev);
1044 }
1045 }
1046
1047 struct dm9000_rxhdr {
1048 u8 RxPktReady;
1049 u8 RxStatus;
1050 __le16 RxLen;
1051 } __packed;
1052
1053 /*
1054 * Received a packet and pass to upper layer
1055 */
1056 static void
1057 dm9000_rx(struct net_device *dev)
1058 {
1059 board_info_t *db = netdev_priv(dev);
1060 struct dm9000_rxhdr rxhdr;
1061 struct sk_buff *skb;
1062 u8 rxbyte, *rdptr;
1063 bool GoodPacket;
1064 int RxLen;
1065
1066 /* Check packet ready or not */
1067 do {
1068 ior(db, DM9000_MRCMDX); /* Dummy read */
1069
1070 /* Get most updated data */
1071 rxbyte = readb(db->io_data);
1072
1073 /* Status check: this byte must be 0 or 1 */
1074 if (rxbyte & DM9000_PKT_ERR) {
1075 dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1076 iow(db, DM9000_RCR, 0x00); /* Stop Device */
1077 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */
1078 return;
1079 }
1080
1081 if (!(rxbyte & DM9000_PKT_RDY))
1082 return;
1083
1084 /* A packet ready now & Get status/length */
1085 GoodPacket = true;
1086 writeb(DM9000_MRCMD, db->io_addr);
1087
1088 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1089
1090 RxLen = le16_to_cpu(rxhdr.RxLen);
1091
1092 if (netif_msg_rx_status(db))
1093 dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1094 rxhdr.RxStatus, RxLen);
1095
1096 /* Packet Status check */
1097 if (RxLen < 0x40) {
1098 GoodPacket = false;
1099 if (netif_msg_rx_err(db))
1100 dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1101 }
1102
1103 if (RxLen > DM9000_PKT_MAX) {
1104 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1105 }
1106
1107 /* rxhdr.RxStatus is identical to RSR register. */
1108 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1109 RSR_PLE | RSR_RWTO |
1110 RSR_LCS | RSR_RF)) {
1111 GoodPacket = false;
1112 if (rxhdr.RxStatus & RSR_FOE) {
1113 if (netif_msg_rx_err(db))
1114 dev_dbg(db->dev, "fifo error\n");
1115 dev->stats.rx_fifo_errors++;
1116 }
1117 if (rxhdr.RxStatus & RSR_CE) {
1118 if (netif_msg_rx_err(db))
1119 dev_dbg(db->dev, "crc error\n");
1120 dev->stats.rx_crc_errors++;
1121 }
1122 if (rxhdr.RxStatus & RSR_RF) {
1123 if (netif_msg_rx_err(db))
1124 dev_dbg(db->dev, "length error\n");
1125 dev->stats.rx_length_errors++;
1126 }
1127 }
1128
1129 /* Move data from DM9000 */
1130 if (GoodPacket &&
1131 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1132 skb_reserve(skb, 2);
1133 rdptr = (u8 *) skb_put(skb, RxLen - 4);
1134
1135 /* Read received packet from RX SRAM */
1136
1137 (db->inblk)(db->io_data, rdptr, RxLen);
1138 dev->stats.rx_bytes += RxLen;
1139
1140 /* Pass to upper layer */
1141 skb->protocol = eth_type_trans(skb, dev);
1142 if (dev->features & NETIF_F_RXCSUM) {
1143 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1144 skb->ip_summed = CHECKSUM_UNNECESSARY;
1145 else
1146 skb_checksum_none_assert(skb);
1147 }
1148 netif_rx(skb);
1149 dev->stats.rx_packets++;
1150
1151 } else {
1152 /* need to dump the packet's data */
1153
1154 (db->dumpblk)(db->io_data, RxLen);
1155 }
1156 } while (rxbyte & DM9000_PKT_RDY);
1157 }
1158
1159 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1160 {
1161 struct net_device *dev = dev_id;
1162 board_info_t *db = netdev_priv(dev);
1163 int int_status;
1164 unsigned long flags;
1165 u8 reg_save;
1166
1167 dm9000_dbg(db, 3, "entering %s\n", __func__);
1168
1169 /* A real interrupt coming */
1170
1171 /* holders of db->lock must always block IRQs */
1172 spin_lock_irqsave(&db->lock, flags);
1173
1174 /* Save previous register address */
1175 reg_save = readb(db->io_addr);
1176
1177 /* Disable all interrupts */
1178 iow(db, DM9000_IMR, IMR_PAR);
1179
1180 /* Got DM9000 interrupt status */
1181 int_status = ior(db, DM9000_ISR); /* Got ISR */
1182 iow(db, DM9000_ISR, int_status); /* Clear ISR status */
1183
1184 if (netif_msg_intr(db))
1185 dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1186
1187 /* Received the coming packet */
1188 if (int_status & ISR_PRS)
1189 dm9000_rx(dev);
1190
1191 /* Trnasmit Interrupt check */
1192 if (int_status & ISR_PTS)
1193 dm9000_tx_done(dev, db);
1194
1195 if (db->type != TYPE_DM9000E) {
1196 if (int_status & ISR_LNKCHNG) {
1197 /* fire a link-change request */
1198 schedule_delayed_work(&db->phy_poll, 1);
1199 }
1200 }
1201
1202 /* Re-enable interrupt mask */
1203 iow(db, DM9000_IMR, db->imr_all);
1204
1205 /* Restore previous register address */
1206 writeb(reg_save, db->io_addr);
1207
1208 spin_unlock_irqrestore(&db->lock, flags);
1209
1210 return IRQ_HANDLED;
1211 }
1212
1213 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1214 {
1215 struct net_device *dev = dev_id;
1216 board_info_t *db = netdev_priv(dev);
1217 unsigned long flags;
1218 unsigned nsr, wcr;
1219
1220 spin_lock_irqsave(&db->lock, flags);
1221
1222 nsr = ior(db, DM9000_NSR);
1223 wcr = ior(db, DM9000_WCR);
1224
1225 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1226
1227 if (nsr & NSR_WAKEST) {
1228 /* clear, so we can avoid */
1229 iow(db, DM9000_NSR, NSR_WAKEST);
1230
1231 if (wcr & WCR_LINKST)
1232 dev_info(db->dev, "wake by link status change\n");
1233 if (wcr & WCR_SAMPLEST)
1234 dev_info(db->dev, "wake by sample packet\n");
1235 if (wcr & WCR_MAGICST )
1236 dev_info(db->dev, "wake by magic packet\n");
1237 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1238 dev_err(db->dev, "wake signalled with no reason? "
1239 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1240
1241 }
1242
1243 spin_unlock_irqrestore(&db->lock, flags);
1244
1245 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1246 }
1247
1248 #ifdef CONFIG_NET_POLL_CONTROLLER
1249 /*
1250 *Used by netconsole
1251 */
1252 static void dm9000_poll_controller(struct net_device *dev)
1253 {
1254 disable_irq(dev->irq);
1255 dm9000_interrupt(dev->irq, dev);
1256 enable_irq(dev->irq);
1257 }
1258 #endif
1259
1260 /*
1261 * Open the interface.
1262 * The interface is opened whenever "ifconfig" actives it.
1263 */
1264 static int
1265 dm9000_open(struct net_device *dev)
1266 {
1267 board_info_t *db = netdev_priv(dev);
1268 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1269
1270 if (netif_msg_ifup(db))
1271 dev_dbg(db->dev, "enabling %s\n", dev->name);
1272
1273 /* If there is no IRQ type specified, default to something that
1274 * may work, and tell the user that this is a problem */
1275
1276 if (irqflags == IRQF_TRIGGER_NONE)
1277 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1278
1279 irqflags |= IRQF_SHARED;
1280
1281 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1282 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */
1283 mdelay(1); /* delay needs by DM9000B */
1284
1285 /* Initialize DM9000 board */
1286 dm9000_reset(db);
1287 dm9000_init_dm9000(dev);
1288
1289 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1290 return -EAGAIN;
1291
1292 /* Init driver variable */
1293 db->dbug_cnt = 0;
1294
1295 mii_check_media(&db->mii, netif_msg_link(db), 1);
1296 netif_start_queue(dev);
1297
1298 dm9000_schedule_poll(db);
1299
1300 return 0;
1301 }
1302
1303 static void
1304 dm9000_shutdown(struct net_device *dev)
1305 {
1306 board_info_t *db = netdev_priv(dev);
1307
1308 /* RESET device */
1309 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
1310 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */
1311 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */
1312 iow(db, DM9000_RCR, 0x00); /* Disable RX */
1313 }
1314
1315 /*
1316 * Stop the interface.
1317 * The interface is stopped when it is brought.
1318 */
1319 static int
1320 dm9000_stop(struct net_device *ndev)
1321 {
1322 board_info_t *db = netdev_priv(ndev);
1323
1324 if (netif_msg_ifdown(db))
1325 dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1326
1327 cancel_delayed_work_sync(&db->phy_poll);
1328
1329 netif_stop_queue(ndev);
1330 netif_carrier_off(ndev);
1331
1332 /* free interrupt */
1333 free_irq(ndev->irq, ndev);
1334
1335 dm9000_shutdown(ndev);
1336
1337 return 0;
1338 }
1339
1340 static const struct net_device_ops dm9000_netdev_ops = {
1341 .ndo_open = dm9000_open,
1342 .ndo_stop = dm9000_stop,
1343 .ndo_start_xmit = dm9000_start_xmit,
1344 .ndo_tx_timeout = dm9000_timeout,
1345 .ndo_set_rx_mode = dm9000_hash_table,
1346 .ndo_do_ioctl = dm9000_ioctl,
1347 .ndo_change_mtu = eth_change_mtu,
1348 .ndo_set_features = dm9000_set_features,
1349 .ndo_validate_addr = eth_validate_addr,
1350 .ndo_set_mac_address = eth_mac_addr,
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 .ndo_poll_controller = dm9000_poll_controller,
1353 #endif
1354 };
1355
1356 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1357 {
1358 struct dm9000_plat_data *pdata;
1359 struct device_node *np = dev->of_node;
1360 const void *mac_addr;
1361
1362 if (!IS_ENABLED(CONFIG_OF) || !np)
1363 return NULL;
1364
1365 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1366 if (!pdata)
1367 return ERR_PTR(-ENOMEM);
1368
1369 if (of_find_property(np, "davicom,ext-phy", NULL))
1370 pdata->flags |= DM9000_PLATF_EXT_PHY;
1371 if (of_find_property(np, "davicom,no-eeprom", NULL))
1372 pdata->flags |= DM9000_PLATF_NO_EEPROM;
1373
1374 mac_addr = of_get_mac_address(np);
1375 if (mac_addr)
1376 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1377
1378 return pdata;
1379 }
1380
1381 /*
1382 * Search DM9000 board, allocate space and register it
1383 */
1384 static int
1385 dm9000_probe(struct platform_device *pdev)
1386 {
1387 struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1388 struct board_info *db; /* Point a board information structure */
1389 struct net_device *ndev;
1390 const unsigned char *mac_src;
1391 int ret = 0;
1392 int iosize;
1393 int i;
1394 u32 id_val;
1395
1396 if (!pdata) {
1397 pdata = dm9000_parse_dt(&pdev->dev);
1398 if (IS_ERR(pdata))
1399 return PTR_ERR(pdata);
1400 }
1401
1402 /* Init network device */
1403 ndev = alloc_etherdev(sizeof(struct board_info));
1404 if (!ndev)
1405 return -ENOMEM;
1406
1407 SET_NETDEV_DEV(ndev, &pdev->dev);
1408
1409 dev_dbg(&pdev->dev, "dm9000_probe()\n");
1410
1411 /* setup board info structure */
1412 db = netdev_priv(ndev);
1413
1414 db->dev = &pdev->dev;
1415 db->ndev = ndev;
1416
1417 spin_lock_init(&db->lock);
1418 mutex_init(&db->addr_lock);
1419
1420 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1421
1422 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1423 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1424 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1425
1426 if (db->addr_res == NULL || db->data_res == NULL ||
1427 db->irq_res == NULL) {
1428 dev_err(db->dev, "insufficient resources\n");
1429 ret = -ENOENT;
1430 goto out;
1431 }
1432
1433 db->irq_wake = platform_get_irq(pdev, 1);
1434 if (db->irq_wake >= 0) {
1435 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1436
1437 ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1438 IRQF_SHARED, dev_name(db->dev), ndev);
1439 if (ret) {
1440 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1441 } else {
1442
1443 /* test to see if irq is really wakeup capable */
1444 ret = irq_set_irq_wake(db->irq_wake, 1);
1445 if (ret) {
1446 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1447 db->irq_wake, ret);
1448 ret = 0;
1449 } else {
1450 irq_set_irq_wake(db->irq_wake, 0);
1451 db->wake_supported = 1;
1452 }
1453 }
1454 }
1455
1456 iosize = resource_size(db->addr_res);
1457 db->addr_req = request_mem_region(db->addr_res->start, iosize,
1458 pdev->name);
1459
1460 if (db->addr_req == NULL) {
1461 dev_err(db->dev, "cannot claim address reg area\n");
1462 ret = -EIO;
1463 goto out;
1464 }
1465
1466 db->io_addr = ioremap(db->addr_res->start, iosize);
1467
1468 if (db->io_addr == NULL) {
1469 dev_err(db->dev, "failed to ioremap address reg\n");
1470 ret = -EINVAL;
1471 goto out;
1472 }
1473
1474 iosize = resource_size(db->data_res);
1475 db->data_req = request_mem_region(db->data_res->start, iosize,
1476 pdev->name);
1477
1478 if (db->data_req == NULL) {
1479 dev_err(db->dev, "cannot claim data reg area\n");
1480 ret = -EIO;
1481 goto out;
1482 }
1483
1484 db->io_data = ioremap(db->data_res->start, iosize);
1485
1486 if (db->io_data == NULL) {
1487 dev_err(db->dev, "failed to ioremap data reg\n");
1488 ret = -EINVAL;
1489 goto out;
1490 }
1491
1492 /* fill in parameters for net-dev structure */
1493 ndev->base_addr = (unsigned long)db->io_addr;
1494 ndev->irq = db->irq_res->start;
1495
1496 /* ensure at least we have a default set of IO routines */
1497 dm9000_set_io(db, iosize);
1498
1499 /* check to see if anything is being over-ridden */
1500 if (pdata != NULL) {
1501 /* check to see if the driver wants to over-ride the
1502 * default IO width */
1503
1504 if (pdata->flags & DM9000_PLATF_8BITONLY)
1505 dm9000_set_io(db, 1);
1506
1507 if (pdata->flags & DM9000_PLATF_16BITONLY)
1508 dm9000_set_io(db, 2);
1509
1510 if (pdata->flags & DM9000_PLATF_32BITONLY)
1511 dm9000_set_io(db, 4);
1512
1513 /* check to see if there are any IO routine
1514 * over-rides */
1515
1516 if (pdata->inblk != NULL)
1517 db->inblk = pdata->inblk;
1518
1519 if (pdata->outblk != NULL)
1520 db->outblk = pdata->outblk;
1521
1522 if (pdata->dumpblk != NULL)
1523 db->dumpblk = pdata->dumpblk;
1524
1525 db->flags = pdata->flags;
1526 }
1527
1528 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1529 db->flags |= DM9000_PLATF_SIMPLE_PHY;
1530 #endif
1531
1532 /* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1533 * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1534 * while probe stage.
1535 */
1536
1537 iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1538
1539 /* try multiple times, DM9000 sometimes gets the read wrong */
1540 for (i = 0; i < 8; i++) {
1541 id_val = ior(db, DM9000_VIDL);
1542 id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1543 id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1544 id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1545
1546 if (id_val == DM9000_ID)
1547 break;
1548 dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1549 }
1550
1551 if (id_val != DM9000_ID) {
1552 dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1553 ret = -ENODEV;
1554 goto out;
1555 }
1556
1557 /* Identify what type of DM9000 we are working on */
1558
1559 id_val = ior(db, DM9000_CHIPR);
1560 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1561
1562 switch (id_val) {
1563 case CHIPR_DM9000A:
1564 db->type = TYPE_DM9000A;
1565 break;
1566 case CHIPR_DM9000B:
1567 db->type = TYPE_DM9000B;
1568 break;
1569 default:
1570 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1571 db->type = TYPE_DM9000E;
1572 }
1573
1574 /* dm9000a/b are capable of hardware checksum offload */
1575 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1576 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1577 ndev->features |= ndev->hw_features;
1578 }
1579
1580 /* from this point we assume that we have found a DM9000 */
1581
1582 /* driver system function */
1583 ether_setup(ndev);
1584
1585 ndev->netdev_ops = &dm9000_netdev_ops;
1586 ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
1587 ndev->ethtool_ops = &dm9000_ethtool_ops;
1588
1589 db->msg_enable = NETIF_MSG_LINK;
1590 db->mii.phy_id_mask = 0x1f;
1591 db->mii.reg_num_mask = 0x1f;
1592 db->mii.force_media = 0;
1593 db->mii.full_duplex = 0;
1594 db->mii.dev = ndev;
1595 db->mii.mdio_read = dm9000_phy_read;
1596 db->mii.mdio_write = dm9000_phy_write;
1597
1598 mac_src = "eeprom";
1599
1600 /* try reading the node address from the attached EEPROM */
1601 for (i = 0; i < 6; i += 2)
1602 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1603
1604 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1605 mac_src = "platform data";
1606 memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1607 }
1608
1609 if (!is_valid_ether_addr(ndev->dev_addr)) {
1610 /* try reading from mac */
1611
1612 mac_src = "chip";
1613 for (i = 0; i < 6; i++)
1614 ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1615 }
1616
1617 if (!is_valid_ether_addr(ndev->dev_addr)) {
1618 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1619 "set using ifconfig\n", ndev->name);
1620
1621 eth_hw_addr_random(ndev);
1622 mac_src = "random";
1623 }
1624
1625
1626 platform_set_drvdata(pdev, ndev);
1627 ret = register_netdev(ndev);
1628
1629 if (ret == 0)
1630 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1631 ndev->name, dm9000_type_to_char(db->type),
1632 db->io_addr, db->io_data, ndev->irq,
1633 ndev->dev_addr, mac_src);
1634 return 0;
1635
1636 out:
1637 dev_err(db->dev, "not found (%d).\n", ret);
1638
1639 dm9000_release_board(pdev, db);
1640 free_netdev(ndev);
1641
1642 return ret;
1643 }
1644
1645 static int
1646 dm9000_drv_suspend(struct device *dev)
1647 {
1648 struct platform_device *pdev = to_platform_device(dev);
1649 struct net_device *ndev = platform_get_drvdata(pdev);
1650 board_info_t *db;
1651
1652 if (ndev) {
1653 db = netdev_priv(ndev);
1654 db->in_suspend = 1;
1655
1656 if (!netif_running(ndev))
1657 return 0;
1658
1659 netif_device_detach(ndev);
1660
1661 /* only shutdown if not using WoL */
1662 if (!db->wake_state)
1663 dm9000_shutdown(ndev);
1664 }
1665 return 0;
1666 }
1667
1668 static int
1669 dm9000_drv_resume(struct device *dev)
1670 {
1671 struct platform_device *pdev = to_platform_device(dev);
1672 struct net_device *ndev = platform_get_drvdata(pdev);
1673 board_info_t *db = netdev_priv(ndev);
1674
1675 if (ndev) {
1676 if (netif_running(ndev)) {
1677 /* reset if we were not in wake mode to ensure if
1678 * the device was powered off it is in a known state */
1679 if (!db->wake_state) {
1680 dm9000_reset(db);
1681 dm9000_init_dm9000(ndev);
1682 }
1683
1684 netif_device_attach(ndev);
1685 }
1686
1687 db->in_suspend = 0;
1688 }
1689 return 0;
1690 }
1691
1692 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1693 .suspend = dm9000_drv_suspend,
1694 .resume = dm9000_drv_resume,
1695 };
1696
1697 static int
1698 dm9000_drv_remove(struct platform_device *pdev)
1699 {
1700 struct net_device *ndev = platform_get_drvdata(pdev);
1701
1702 unregister_netdev(ndev);
1703 dm9000_release_board(pdev, netdev_priv(ndev));
1704 free_netdev(ndev); /* free device structure */
1705
1706 dev_dbg(&pdev->dev, "released and freed device\n");
1707 return 0;
1708 }
1709
1710 #ifdef CONFIG_OF
1711 static const struct of_device_id dm9000_of_matches[] = {
1712 { .compatible = "davicom,dm9000", },
1713 { /* sentinel */ }
1714 };
1715 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1716 #endif
1717
1718 static struct platform_driver dm9000_driver = {
1719 .driver = {
1720 .name = "dm9000",
1721 .owner = THIS_MODULE,
1722 .pm = &dm9000_drv_pm_ops,
1723 .of_match_table = of_match_ptr(dm9000_of_matches),
1724 },
1725 .probe = dm9000_probe,
1726 .remove = dm9000_drv_remove,
1727 };
1728
1729 module_platform_driver(dm9000_driver);
1730
1731 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1732 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1733 MODULE_LICENSE("GPL");
1734 MODULE_ALIAS("platform:dm9000");
This page took 0.08641 seconds and 6 git commands to generate.