4fb756d219f700bfb82a37d62e9cb078fca22024
[deliverable/linux.git] / drivers / net / ethernet / dlink / dl2k.c
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
25
26 static char version[] =
27 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10; /* Rx frame count each interrupt */
37 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
39
40
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54
55
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
59
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 void __iomem *ioaddr = np->ioaddr;
63
64 dw16(IntEnable, DEFAULT_INTR);
65 }
66
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 u16 data);
97
98 static const struct ethtool_ops ethtool_ops;
99
100 static const struct net_device_ops netdev_ops = {
101 .ndo_open = rio_open,
102 .ndo_start_xmit = start_xmit,
103 .ndo_stop = rio_close,
104 .ndo_get_stats = get_stats,
105 .ndo_validate_addr = eth_validate_addr,
106 .ndo_set_mac_address = eth_mac_addr,
107 .ndo_set_rx_mode = set_multicast,
108 .ndo_do_ioctl = rio_ioctl,
109 .ndo_tx_timeout = rio_tx_timeout,
110 .ndo_change_mtu = change_mtu,
111 };
112
113 static int
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 struct net_device *dev;
117 struct netdev_private *np;
118 static int card_idx;
119 int chip_idx = ent->driver_data;
120 int err, irq;
121 void __iomem *ioaddr;
122 static int version_printed;
123 void *ring_space;
124 dma_addr_t ring_dma;
125
126 if (!version_printed++)
127 printk ("%s", version);
128
129 err = pci_enable_device (pdev);
130 if (err)
131 return err;
132
133 irq = pdev->irq;
134 err = pci_request_regions (pdev, "dl2k");
135 if (err)
136 goto err_out_disable;
137
138 pci_set_master (pdev);
139
140 err = -ENOMEM;
141
142 dev = alloc_etherdev (sizeof (*np));
143 if (!dev)
144 goto err_out_res;
145 SET_NETDEV_DEV(dev, &pdev->dev);
146
147 np = netdev_priv(dev);
148
149 /* IO registers range. */
150 ioaddr = pci_iomap(pdev, 0, 0);
151 if (!ioaddr)
152 goto err_out_dev;
153 np->eeprom_addr = ioaddr;
154
155 #ifdef MEM_MAPPING
156 /* MM registers range. */
157 ioaddr = pci_iomap(pdev, 1, 0);
158 if (!ioaddr)
159 goto err_out_iounmap;
160 #endif
161 np->ioaddr = ioaddr;
162 np->chip_id = chip_idx;
163 np->pdev = pdev;
164 spin_lock_init (&np->tx_lock);
165 spin_lock_init (&np->rx_lock);
166
167 /* Parse manual configuration */
168 np->an_enable = 1;
169 np->tx_coalesce = 1;
170 if (card_idx < MAX_UNITS) {
171 if (media[card_idx] != NULL) {
172 np->an_enable = 0;
173 if (strcmp (media[card_idx], "auto") == 0 ||
174 strcmp (media[card_idx], "autosense") == 0 ||
175 strcmp (media[card_idx], "0") == 0 ) {
176 np->an_enable = 2;
177 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 strcmp (media[card_idx], "4") == 0) {
179 np->speed = 100;
180 np->full_duplex = 1;
181 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 strcmp (media[card_idx], "3") == 0) {
183 np->speed = 100;
184 np->full_duplex = 0;
185 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 strcmp (media[card_idx], "2") == 0) {
187 np->speed = 10;
188 np->full_duplex = 1;
189 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 strcmp (media[card_idx], "1") == 0) {
191 np->speed = 10;
192 np->full_duplex = 0;
193 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 strcmp (media[card_idx], "6") == 0) {
195 np->speed=1000;
196 np->full_duplex=1;
197 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 strcmp (media[card_idx], "5") == 0) {
199 np->speed = 1000;
200 np->full_duplex = 0;
201 } else {
202 np->an_enable = 1;
203 }
204 }
205 if (jumbo[card_idx] != 0) {
206 np->jumbo = 1;
207 dev->mtu = MAX_JUMBO;
208 } else {
209 np->jumbo = 0;
210 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 dev->mtu = mtu[card_idx];
212 }
213 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 vlan[card_idx] : 0;
215 if (rx_coalesce > 0 && rx_timeout > 0) {
216 np->rx_coalesce = rx_coalesce;
217 np->rx_timeout = rx_timeout;
218 np->coalesce = 1;
219 }
220 np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 np->rx_flow = (rx_flow == 0) ? 0 : 1;
222
223 if (tx_coalesce < 1)
224 tx_coalesce = 1;
225 else if (tx_coalesce > TX_RING_SIZE-1)
226 tx_coalesce = TX_RING_SIZE - 1;
227 }
228 dev->netdev_ops = &netdev_ops;
229 dev->watchdog_timeo = TX_TIMEOUT;
230 SET_ETHTOOL_OPS(dev, &ethtool_ops);
231 #if 0
232 dev->features = NETIF_F_IP_CSUM;
233 #endif
234 pci_set_drvdata (pdev, dev);
235
236 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 if (!ring_space)
238 goto err_out_iounmap;
239 np->tx_ring = ring_space;
240 np->tx_ring_dma = ring_dma;
241
242 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 if (!ring_space)
244 goto err_out_unmap_tx;
245 np->rx_ring = ring_space;
246 np->rx_ring_dma = ring_dma;
247
248 /* Parse eeprom data */
249 parse_eeprom (dev);
250
251 /* Find PHY address */
252 err = find_miiphy (dev);
253 if (err)
254 goto err_out_unmap_rx;
255
256 /* Fiber device? */
257 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258 np->link_status = 0;
259 /* Set media and reset PHY */
260 if (np->phy_media) {
261 /* default Auto-Negotiation for fiber deivices */
262 if (np->an_enable == 2) {
263 np->an_enable = 1;
264 }
265 mii_set_media_pcs (dev);
266 } else {
267 /* Auto-Negotiation is mandatory for 1000BASE-T,
268 IEEE 802.3ab Annex 28D page 14 */
269 if (np->speed == 1000)
270 np->an_enable = 1;
271 mii_set_media (dev);
272 }
273
274 err = register_netdev (dev);
275 if (err)
276 goto err_out_unmap_rx;
277
278 card_idx++;
279
280 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281 dev->name, np->name, dev->dev_addr, irq);
282 if (tx_coalesce > 1)
283 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284 tx_coalesce);
285 if (np->coalesce)
286 printk(KERN_INFO
287 "rx_coalesce:\t%d packets\n"
288 "rx_timeout: \t%d ns\n",
289 np->rx_coalesce, np->rx_timeout*640);
290 if (np->vlan)
291 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292 return 0;
293
294 err_out_unmap_rx:
295 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296 err_out_unmap_tx:
297 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298 err_out_iounmap:
299 #ifdef MEM_MAPPING
300 pci_iounmap(pdev, np->ioaddr);
301 #endif
302 pci_iounmap(pdev, np->eeprom_addr);
303 err_out_dev:
304 free_netdev (dev);
305 err_out_res:
306 pci_release_regions (pdev);
307 err_out_disable:
308 pci_disable_device (pdev);
309 return err;
310 }
311
312 static int
313 find_miiphy (struct net_device *dev)
314 {
315 struct netdev_private *np = netdev_priv(dev);
316 int i, phy_found = 0;
317 np = netdev_priv(dev);
318 np->phy_addr = 1;
319
320 for (i = 31; i >= 0; i--) {
321 int mii_status = mii_read (dev, i, 1);
322 if (mii_status != 0xffff && mii_status != 0x0000) {
323 np->phy_addr = i;
324 phy_found++;
325 }
326 }
327 if (!phy_found) {
328 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329 return -ENODEV;
330 }
331 return 0;
332 }
333
334 static int
335 parse_eeprom (struct net_device *dev)
336 {
337 struct netdev_private *np = netdev_priv(dev);
338 void __iomem *ioaddr = np->ioaddr;
339 int i, j;
340 u8 sromdata[256];
341 u8 *psib;
342 u32 crc;
343 PSROM_t psrom = (PSROM_t) sromdata;
344
345 int cid, next;
346
347 for (i = 0; i < 128; i++)
348 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349
350 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
351 /* Check CRC */
352 crc = ~ether_crc_le (256 - 4, sromdata);
353 if (psrom->crc != cpu_to_le32(crc)) {
354 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355 dev->name);
356 return -1;
357 }
358 }
359
360 /* Set MAC address */
361 for (i = 0; i < 6; i++)
362 dev->dev_addr[i] = psrom->mac_addr[i];
363
364 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365 return 0;
366 }
367
368 /* Parse Software Information Block */
369 i = 0x30;
370 psib = (u8 *) sromdata;
371 do {
372 cid = psib[i++];
373 next = psib[i++];
374 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375 printk (KERN_ERR "Cell data error\n");
376 return -1;
377 }
378 switch (cid) {
379 case 0: /* Format version */
380 break;
381 case 1: /* End of cell */
382 return 0;
383 case 2: /* Duplex Polarity */
384 np->duplex_polarity = psib[i];
385 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386 break;
387 case 3: /* Wake Polarity */
388 np->wake_polarity = psib[i];
389 break;
390 case 9: /* Adapter description */
391 j = (next - i > 255) ? 255 : next - i;
392 memcpy (np->name, &(psib[i]), j);
393 break;
394 case 4:
395 case 5:
396 case 6:
397 case 7:
398 case 8: /* Reversed */
399 break;
400 default: /* Unknown cell */
401 return -1;
402 }
403 i = next;
404 } while (1);
405
406 return 0;
407 }
408
409 static int
410 rio_open (struct net_device *dev)
411 {
412 struct netdev_private *np = netdev_priv(dev);
413 void __iomem *ioaddr = np->ioaddr;
414 const int irq = np->pdev->irq;
415 int i;
416 u16 macctrl;
417
418 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419 if (i)
420 return i;
421
422 /* Reset all logic functions */
423 dw16(ASICCtrl + 2,
424 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425 mdelay(10);
426
427 /* DebugCtrl bit 4, 5, 9 must set */
428 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429
430 /* Jumbo frame */
431 if (np->jumbo != 0)
432 dw16(MaxFrameSize, MAX_JUMBO+14);
433
434 alloc_list (dev);
435
436 /* Get station address */
437 for (i = 0; i < 6; i++)
438 dw8(StationAddr0 + i, dev->dev_addr[i]);
439
440 set_multicast (dev);
441 if (np->coalesce) {
442 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443 }
444 /* Set RIO to poll every N*320nsec. */
445 dw8(RxDMAPollPeriod, 0x20);
446 dw8(TxDMAPollPeriod, 0xff);
447 dw8(RxDMABurstThresh, 0x30);
448 dw8(RxDMAUrgentThresh, 0x30);
449 dw32(RmonStatMask, 0x0007ffff);
450 /* clear statistics */
451 clear_stats (dev);
452
453 /* VLAN supported */
454 if (np->vlan) {
455 /* priority field in RxDMAIntCtrl */
456 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457 /* VLANId */
458 dw16(VLANId, np->vlan);
459 /* Length/Type should be 0x8100 */
460 dw32(VLANTag, 0x8100 << 16 | np->vlan);
461 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 VLAN information tagged by TFC' VID, CFI fields. */
463 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464 }
465
466 init_timer (&np->timer);
467 np->timer.expires = jiffies + 1*HZ;
468 np->timer.data = (unsigned long) dev;
469 np->timer.function = rio_timer;
470 add_timer (&np->timer);
471
472 /* Start Tx/Rx */
473 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
474
475 macctrl = 0;
476 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
477 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
478 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
479 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
480 dw16(MACCtrl, macctrl);
481
482 netif_start_queue (dev);
483
484 dl2k_enable_int(np);
485 return 0;
486 }
487
488 static void
489 rio_timer (unsigned long data)
490 {
491 struct net_device *dev = (struct net_device *)data;
492 struct netdev_private *np = netdev_priv(dev);
493 unsigned int entry;
494 int next_tick = 1*HZ;
495 unsigned long flags;
496
497 spin_lock_irqsave(&np->rx_lock, flags);
498 /* Recover rx ring exhausted error */
499 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501 /* Re-allocate skbuffs to fill the descriptor ring */
502 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503 struct sk_buff *skb;
504 entry = np->old_rx % RX_RING_SIZE;
505 /* Dropped packets don't need to re-allocate */
506 if (np->rx_skbuff[entry] == NULL) {
507 skb = netdev_alloc_skb_ip_align(dev,
508 np->rx_buf_sz);
509 if (skb == NULL) {
510 np->rx_ring[entry].fraginfo = 0;
511 printk (KERN_INFO
512 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
513 dev->name, entry);
514 break;
515 }
516 np->rx_skbuff[entry] = skb;
517 np->rx_ring[entry].fraginfo =
518 cpu_to_le64 (pci_map_single
519 (np->pdev, skb->data, np->rx_buf_sz,
520 PCI_DMA_FROMDEVICE));
521 }
522 np->rx_ring[entry].fraginfo |=
523 cpu_to_le64((u64)np->rx_buf_sz << 48);
524 np->rx_ring[entry].status = 0;
525 } /* end for */
526 } /* end if */
527 spin_unlock_irqrestore (&np->rx_lock, flags);
528 np->timer.expires = jiffies + next_tick;
529 add_timer(&np->timer);
530 }
531
532 static void
533 rio_tx_timeout (struct net_device *dev)
534 {
535 struct netdev_private *np = netdev_priv(dev);
536 void __iomem *ioaddr = np->ioaddr;
537
538 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 dev->name, dr32(TxStatus));
540 rio_free_tx(dev, 0);
541 dev->if_port = 0;
542 dev->trans_start = jiffies; /* prevent tx timeout */
543 }
544
545 /* allocate and initialize Tx and Rx descriptors */
546 static void
547 alloc_list (struct net_device *dev)
548 {
549 struct netdev_private *np = netdev_priv(dev);
550 void __iomem *ioaddr = np->ioaddr;
551 int i;
552
553 np->cur_rx = np->cur_tx = 0;
554 np->old_rx = np->old_tx = 0;
555 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
556
557 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558 for (i = 0; i < TX_RING_SIZE; i++) {
559 np->tx_skbuff[i] = NULL;
560 np->tx_ring[i].status = cpu_to_le64 (TFDDone);
561 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
562 ((i+1)%TX_RING_SIZE) *
563 sizeof (struct netdev_desc));
564 }
565
566 /* Initialize Rx descriptors */
567 for (i = 0; i < RX_RING_SIZE; i++) {
568 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
569 ((i + 1) % RX_RING_SIZE) *
570 sizeof (struct netdev_desc));
571 np->rx_ring[i].status = 0;
572 np->rx_ring[i].fraginfo = 0;
573 np->rx_skbuff[i] = NULL;
574 }
575
576 /* Allocate the rx buffers */
577 for (i = 0; i < RX_RING_SIZE; i++) {
578 /* Allocated fixed size of skbuff */
579 struct sk_buff *skb;
580
581 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
582 np->rx_skbuff[i] = skb;
583 if (skb == NULL)
584 break;
585
586 /* Rubicon now supports 40 bits of addressing space. */
587 np->rx_ring[i].fraginfo =
588 cpu_to_le64 ( pci_map_single (
589 np->pdev, skb->data, np->rx_buf_sz,
590 PCI_DMA_FROMDEVICE));
591 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
592 }
593
594 /* Set RFDListPtr */
595 dw32(RFDListPtr0, np->rx_ring_dma);
596 dw32(RFDListPtr1, 0);
597 }
598
599 static netdev_tx_t
600 start_xmit (struct sk_buff *skb, struct net_device *dev)
601 {
602 struct netdev_private *np = netdev_priv(dev);
603 void __iomem *ioaddr = np->ioaddr;
604 struct netdev_desc *txdesc;
605 unsigned entry;
606 u64 tfc_vlan_tag = 0;
607
608 if (np->link_status == 0) { /* Link Down */
609 dev_kfree_skb(skb);
610 return NETDEV_TX_OK;
611 }
612 entry = np->cur_tx % TX_RING_SIZE;
613 np->tx_skbuff[entry] = skb;
614 txdesc = &np->tx_ring[entry];
615
616 #if 0
617 if (skb->ip_summed == CHECKSUM_PARTIAL) {
618 txdesc->status |=
619 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
620 IPChecksumEnable);
621 }
622 #endif
623 if (np->vlan) {
624 tfc_vlan_tag = VLANTagInsert |
625 ((u64)np->vlan << 32) |
626 ((u64)skb->priority << 45);
627 }
628 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
629 skb->len,
630 PCI_DMA_TODEVICE));
631 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
632
633 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
634 * Work around: Always use 1 descriptor in 10Mbps mode */
635 if (entry % np->tx_coalesce == 0 || np->speed == 10)
636 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
637 WordAlignDisable |
638 TxDMAIndicate |
639 (1 << FragCountShift));
640 else
641 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
642 WordAlignDisable |
643 (1 << FragCountShift));
644
645 /* TxDMAPollNow */
646 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
647 /* Schedule ISR */
648 dw32(CountDown, 10000);
649 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
650 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
651 < TX_QUEUE_LEN - 1 && np->speed != 10) {
652 /* do nothing */
653 } else if (!netif_queue_stopped(dev)) {
654 netif_stop_queue (dev);
655 }
656
657 /* The first TFDListPtr */
658 if (!dr32(TFDListPtr0)) {
659 dw32(TFDListPtr0, np->tx_ring_dma +
660 entry * sizeof (struct netdev_desc));
661 dw32(TFDListPtr1, 0);
662 }
663
664 return NETDEV_TX_OK;
665 }
666
667 static irqreturn_t
668 rio_interrupt (int irq, void *dev_instance)
669 {
670 struct net_device *dev = dev_instance;
671 struct netdev_private *np = netdev_priv(dev);
672 void __iomem *ioaddr = np->ioaddr;
673 unsigned int_status;
674 int cnt = max_intrloop;
675 int handled = 0;
676
677 while (1) {
678 int_status = dr16(IntStatus);
679 dw16(IntStatus, int_status);
680 int_status &= DEFAULT_INTR;
681 if (int_status == 0 || --cnt < 0)
682 break;
683 handled = 1;
684 /* Processing received packets */
685 if (int_status & RxDMAComplete)
686 receive_packet (dev);
687 /* TxDMAComplete interrupt */
688 if ((int_status & (TxDMAComplete|IntRequested))) {
689 int tx_status;
690 tx_status = dr32(TxStatus);
691 if (tx_status & 0x01)
692 tx_error (dev, tx_status);
693 /* Free used tx skbuffs */
694 rio_free_tx (dev, 1);
695 }
696
697 /* Handle uncommon events */
698 if (int_status &
699 (HostError | LinkEvent | UpdateStats))
700 rio_error (dev, int_status);
701 }
702 if (np->cur_tx != np->old_tx)
703 dw32(CountDown, 100);
704 return IRQ_RETVAL(handled);
705 }
706
707 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
708 {
709 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
710 }
711
712 static void
713 rio_free_tx (struct net_device *dev, int irq)
714 {
715 struct netdev_private *np = netdev_priv(dev);
716 int entry = np->old_tx % TX_RING_SIZE;
717 int tx_use = 0;
718 unsigned long flag = 0;
719
720 if (irq)
721 spin_lock(&np->tx_lock);
722 else
723 spin_lock_irqsave(&np->tx_lock, flag);
724
725 /* Free used tx skbuffs */
726 while (entry != np->cur_tx) {
727 struct sk_buff *skb;
728
729 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
730 break;
731 skb = np->tx_skbuff[entry];
732 pci_unmap_single (np->pdev,
733 desc_to_dma(&np->tx_ring[entry]),
734 skb->len, PCI_DMA_TODEVICE);
735 if (irq)
736 dev_kfree_skb_irq (skb);
737 else
738 dev_kfree_skb (skb);
739
740 np->tx_skbuff[entry] = NULL;
741 entry = (entry + 1) % TX_RING_SIZE;
742 tx_use++;
743 }
744 if (irq)
745 spin_unlock(&np->tx_lock);
746 else
747 spin_unlock_irqrestore(&np->tx_lock, flag);
748 np->old_tx = entry;
749
750 /* If the ring is no longer full, clear tx_full and
751 call netif_wake_queue() */
752
753 if (netif_queue_stopped(dev) &&
754 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
755 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
756 netif_wake_queue (dev);
757 }
758 }
759
760 static void
761 tx_error (struct net_device *dev, int tx_status)
762 {
763 struct netdev_private *np = netdev_priv(dev);
764 void __iomem *ioaddr = np->ioaddr;
765 int frame_id;
766 int i;
767
768 frame_id = (tx_status & 0xffff0000);
769 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
770 dev->name, tx_status, frame_id);
771 np->stats.tx_errors++;
772 /* Ttransmit Underrun */
773 if (tx_status & 0x10) {
774 np->stats.tx_fifo_errors++;
775 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
776 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
777 dw16(ASICCtrl + 2,
778 TxReset | DMAReset | FIFOReset | NetworkReset);
779 /* Wait for ResetBusy bit clear */
780 for (i = 50; i > 0; i--) {
781 if (!(dr16(ASICCtrl + 2) & ResetBusy))
782 break;
783 mdelay (1);
784 }
785 rio_free_tx (dev, 1);
786 /* Reset TFDListPtr */
787 dw32(TFDListPtr0, np->tx_ring_dma +
788 np->old_tx * sizeof (struct netdev_desc));
789 dw32(TFDListPtr1, 0);
790
791 /* Let TxStartThresh stay default value */
792 }
793 /* Late Collision */
794 if (tx_status & 0x04) {
795 np->stats.tx_fifo_errors++;
796 /* TxReset and clear FIFO */
797 dw16(ASICCtrl + 2, TxReset | FIFOReset);
798 /* Wait reset done */
799 for (i = 50; i > 0; i--) {
800 if (!(dr16(ASICCtrl + 2) & ResetBusy))
801 break;
802 mdelay (1);
803 }
804 /* Let TxStartThresh stay default value */
805 }
806 /* Maximum Collisions */
807 #ifdef ETHER_STATS
808 if (tx_status & 0x08)
809 np->stats.collisions16++;
810 #else
811 if (tx_status & 0x08)
812 np->stats.collisions++;
813 #endif
814 /* Restart the Tx */
815 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
816 }
817
818 static int
819 receive_packet (struct net_device *dev)
820 {
821 struct netdev_private *np = netdev_priv(dev);
822 int entry = np->cur_rx % RX_RING_SIZE;
823 int cnt = 30;
824
825 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
826 while (1) {
827 struct netdev_desc *desc = &np->rx_ring[entry];
828 int pkt_len;
829 u64 frame_status;
830
831 if (!(desc->status & cpu_to_le64(RFDDone)) ||
832 !(desc->status & cpu_to_le64(FrameStart)) ||
833 !(desc->status & cpu_to_le64(FrameEnd)))
834 break;
835
836 /* Chip omits the CRC. */
837 frame_status = le64_to_cpu(desc->status);
838 pkt_len = frame_status & 0xffff;
839 if (--cnt < 0)
840 break;
841 /* Update rx error statistics, drop packet. */
842 if (frame_status & RFS_Errors) {
843 np->stats.rx_errors++;
844 if (frame_status & (RxRuntFrame | RxLengthError))
845 np->stats.rx_length_errors++;
846 if (frame_status & RxFCSError)
847 np->stats.rx_crc_errors++;
848 if (frame_status & RxAlignmentError && np->speed != 1000)
849 np->stats.rx_frame_errors++;
850 if (frame_status & RxFIFOOverrun)
851 np->stats.rx_fifo_errors++;
852 } else {
853 struct sk_buff *skb;
854
855 /* Small skbuffs for short packets */
856 if (pkt_len > copy_thresh) {
857 pci_unmap_single (np->pdev,
858 desc_to_dma(desc),
859 np->rx_buf_sz,
860 PCI_DMA_FROMDEVICE);
861 skb_put (skb = np->rx_skbuff[entry], pkt_len);
862 np->rx_skbuff[entry] = NULL;
863 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
864 pci_dma_sync_single_for_cpu(np->pdev,
865 desc_to_dma(desc),
866 np->rx_buf_sz,
867 PCI_DMA_FROMDEVICE);
868 skb_copy_to_linear_data (skb,
869 np->rx_skbuff[entry]->data,
870 pkt_len);
871 skb_put (skb, pkt_len);
872 pci_dma_sync_single_for_device(np->pdev,
873 desc_to_dma(desc),
874 np->rx_buf_sz,
875 PCI_DMA_FROMDEVICE);
876 }
877 skb->protocol = eth_type_trans (skb, dev);
878 #if 0
879 /* Checksum done by hw, but csum value unavailable. */
880 if (np->pdev->pci_rev_id >= 0x0c &&
881 !(frame_status & (TCPError | UDPError | IPError))) {
882 skb->ip_summed = CHECKSUM_UNNECESSARY;
883 }
884 #endif
885 netif_rx (skb);
886 }
887 entry = (entry + 1) % RX_RING_SIZE;
888 }
889 spin_lock(&np->rx_lock);
890 np->cur_rx = entry;
891 /* Re-allocate skbuffs to fill the descriptor ring */
892 entry = np->old_rx;
893 while (entry != np->cur_rx) {
894 struct sk_buff *skb;
895 /* Dropped packets don't need to re-allocate */
896 if (np->rx_skbuff[entry] == NULL) {
897 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
898 if (skb == NULL) {
899 np->rx_ring[entry].fraginfo = 0;
900 printk (KERN_INFO
901 "%s: receive_packet: "
902 "Unable to re-allocate Rx skbuff.#%d\n",
903 dev->name, entry);
904 break;
905 }
906 np->rx_skbuff[entry] = skb;
907 np->rx_ring[entry].fraginfo =
908 cpu_to_le64 (pci_map_single
909 (np->pdev, skb->data, np->rx_buf_sz,
910 PCI_DMA_FROMDEVICE));
911 }
912 np->rx_ring[entry].fraginfo |=
913 cpu_to_le64((u64)np->rx_buf_sz << 48);
914 np->rx_ring[entry].status = 0;
915 entry = (entry + 1) % RX_RING_SIZE;
916 }
917 np->old_rx = entry;
918 spin_unlock(&np->rx_lock);
919 return 0;
920 }
921
922 static void
923 rio_error (struct net_device *dev, int int_status)
924 {
925 struct netdev_private *np = netdev_priv(dev);
926 void __iomem *ioaddr = np->ioaddr;
927 u16 macctrl;
928
929 /* Link change event */
930 if (int_status & LinkEvent) {
931 if (mii_wait_link (dev, 10) == 0) {
932 printk (KERN_INFO "%s: Link up\n", dev->name);
933 if (np->phy_media)
934 mii_get_media_pcs (dev);
935 else
936 mii_get_media (dev);
937 if (np->speed == 1000)
938 np->tx_coalesce = tx_coalesce;
939 else
940 np->tx_coalesce = 1;
941 macctrl = 0;
942 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
943 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
944 macctrl |= (np->tx_flow) ?
945 TxFlowControlEnable : 0;
946 macctrl |= (np->rx_flow) ?
947 RxFlowControlEnable : 0;
948 dw16(MACCtrl, macctrl);
949 np->link_status = 1;
950 netif_carrier_on(dev);
951 } else {
952 printk (KERN_INFO "%s: Link off\n", dev->name);
953 np->link_status = 0;
954 netif_carrier_off(dev);
955 }
956 }
957
958 /* UpdateStats statistics registers */
959 if (int_status & UpdateStats) {
960 get_stats (dev);
961 }
962
963 /* PCI Error, a catastronphic error related to the bus interface
964 occurs, set GlobalReset and HostReset to reset. */
965 if (int_status & HostError) {
966 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
967 dev->name, int_status);
968 dw16(ASICCtrl + 2, GlobalReset | HostReset);
969 mdelay (500);
970 }
971 }
972
973 static struct net_device_stats *
974 get_stats (struct net_device *dev)
975 {
976 struct netdev_private *np = netdev_priv(dev);
977 void __iomem *ioaddr = np->ioaddr;
978 #ifdef MEM_MAPPING
979 int i;
980 #endif
981 unsigned int stat_reg;
982
983 /* All statistics registers need to be acknowledged,
984 else statistic overflow could cause problems */
985
986 np->stats.rx_packets += dr32(FramesRcvOk);
987 np->stats.tx_packets += dr32(FramesXmtOk);
988 np->stats.rx_bytes += dr32(OctetRcvOk);
989 np->stats.tx_bytes += dr32(OctetXmtOk);
990
991 np->stats.multicast = dr32(McstFramesRcvdOk);
992 np->stats.collisions += dr32(SingleColFrames)
993 + dr32(MultiColFrames);
994
995 /* detailed tx errors */
996 stat_reg = dr16(FramesAbortXSColls);
997 np->stats.tx_aborted_errors += stat_reg;
998 np->stats.tx_errors += stat_reg;
999
1000 stat_reg = dr16(CarrierSenseErrors);
1001 np->stats.tx_carrier_errors += stat_reg;
1002 np->stats.tx_errors += stat_reg;
1003
1004 /* Clear all other statistic register. */
1005 dr32(McstOctetXmtOk);
1006 dr16(BcstFramesXmtdOk);
1007 dr32(McstFramesXmtdOk);
1008 dr16(BcstFramesRcvdOk);
1009 dr16(MacControlFramesRcvd);
1010 dr16(FrameTooLongErrors);
1011 dr16(InRangeLengthErrors);
1012 dr16(FramesCheckSeqErrors);
1013 dr16(FramesLostRxErrors);
1014 dr32(McstOctetXmtOk);
1015 dr32(BcstOctetXmtOk);
1016 dr32(McstFramesXmtdOk);
1017 dr32(FramesWDeferredXmt);
1018 dr32(LateCollisions);
1019 dr16(BcstFramesXmtdOk);
1020 dr16(MacControlFramesXmtd);
1021 dr16(FramesWEXDeferal);
1022
1023 #ifdef MEM_MAPPING
1024 for (i = 0x100; i <= 0x150; i += 4)
1025 dr32(i);
1026 #endif
1027 dr16(TxJumboFrames);
1028 dr16(RxJumboFrames);
1029 dr16(TCPCheckSumErrors);
1030 dr16(UDPCheckSumErrors);
1031 dr16(IPCheckSumErrors);
1032 return &np->stats;
1033 }
1034
1035 static int
1036 clear_stats (struct net_device *dev)
1037 {
1038 struct netdev_private *np = netdev_priv(dev);
1039 void __iomem *ioaddr = np->ioaddr;
1040 #ifdef MEM_MAPPING
1041 int i;
1042 #endif
1043
1044 /* All statistics registers need to be acknowledged,
1045 else statistic overflow could cause problems */
1046 dr32(FramesRcvOk);
1047 dr32(FramesXmtOk);
1048 dr32(OctetRcvOk);
1049 dr32(OctetXmtOk);
1050
1051 dr32(McstFramesRcvdOk);
1052 dr32(SingleColFrames);
1053 dr32(MultiColFrames);
1054 dr32(LateCollisions);
1055 /* detailed rx errors */
1056 dr16(FrameTooLongErrors);
1057 dr16(InRangeLengthErrors);
1058 dr16(FramesCheckSeqErrors);
1059 dr16(FramesLostRxErrors);
1060
1061 /* detailed tx errors */
1062 dr16(FramesAbortXSColls);
1063 dr16(CarrierSenseErrors);
1064
1065 /* Clear all other statistic register. */
1066 dr32(McstOctetXmtOk);
1067 dr16(BcstFramesXmtdOk);
1068 dr32(McstFramesXmtdOk);
1069 dr16(BcstFramesRcvdOk);
1070 dr16(MacControlFramesRcvd);
1071 dr32(McstOctetXmtOk);
1072 dr32(BcstOctetXmtOk);
1073 dr32(McstFramesXmtdOk);
1074 dr32(FramesWDeferredXmt);
1075 dr16(BcstFramesXmtdOk);
1076 dr16(MacControlFramesXmtd);
1077 dr16(FramesWEXDeferal);
1078 #ifdef MEM_MAPPING
1079 for (i = 0x100; i <= 0x150; i += 4)
1080 dr32(i);
1081 #endif
1082 dr16(TxJumboFrames);
1083 dr16(RxJumboFrames);
1084 dr16(TCPCheckSumErrors);
1085 dr16(UDPCheckSumErrors);
1086 dr16(IPCheckSumErrors);
1087 return 0;
1088 }
1089
1090
1091 static int
1092 change_mtu (struct net_device *dev, int new_mtu)
1093 {
1094 struct netdev_private *np = netdev_priv(dev);
1095 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1096
1097 if ((new_mtu < 68) || (new_mtu > max)) {
1098 return -EINVAL;
1099 }
1100
1101 dev->mtu = new_mtu;
1102
1103 return 0;
1104 }
1105
1106 static void
1107 set_multicast (struct net_device *dev)
1108 {
1109 struct netdev_private *np = netdev_priv(dev);
1110 void __iomem *ioaddr = np->ioaddr;
1111 u32 hash_table[2];
1112 u16 rx_mode = 0;
1113
1114 hash_table[0] = hash_table[1] = 0;
1115 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1116 hash_table[1] |= 0x02000000;
1117 if (dev->flags & IFF_PROMISC) {
1118 /* Receive all frames promiscuously. */
1119 rx_mode = ReceiveAllFrames;
1120 } else if ((dev->flags & IFF_ALLMULTI) ||
1121 (netdev_mc_count(dev) > multicast_filter_limit)) {
1122 /* Receive broadcast and multicast frames */
1123 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1124 } else if (!netdev_mc_empty(dev)) {
1125 struct netdev_hw_addr *ha;
1126 /* Receive broadcast frames and multicast frames filtering
1127 by Hashtable */
1128 rx_mode =
1129 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1130 netdev_for_each_mc_addr(ha, dev) {
1131 int bit, index = 0;
1132 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1133 /* The inverted high significant 6 bits of CRC are
1134 used as an index to hashtable */
1135 for (bit = 0; bit < 6; bit++)
1136 if (crc & (1 << (31 - bit)))
1137 index |= (1 << bit);
1138 hash_table[index / 32] |= (1 << (index % 32));
1139 }
1140 } else {
1141 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1142 }
1143 if (np->vlan) {
1144 /* ReceiveVLANMatch field in ReceiveMode */
1145 rx_mode |= ReceiveVLANMatch;
1146 }
1147
1148 dw32(HashTable0, hash_table[0]);
1149 dw32(HashTable1, hash_table[1]);
1150 dw16(ReceiveMode, rx_mode);
1151 }
1152
1153 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1154 {
1155 struct netdev_private *np = netdev_priv(dev);
1156
1157 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1158 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1159 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1160 }
1161
1162 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1163 {
1164 struct netdev_private *np = netdev_priv(dev);
1165 if (np->phy_media) {
1166 /* fiber device */
1167 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1168 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1169 cmd->port = PORT_FIBRE;
1170 cmd->transceiver = XCVR_INTERNAL;
1171 } else {
1172 /* copper device */
1173 cmd->supported = SUPPORTED_10baseT_Half |
1174 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1175 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1176 SUPPORTED_Autoneg | SUPPORTED_MII;
1177 cmd->advertising = ADVERTISED_10baseT_Half |
1178 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1179 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1180 ADVERTISED_Autoneg | ADVERTISED_MII;
1181 cmd->port = PORT_MII;
1182 cmd->transceiver = XCVR_INTERNAL;
1183 }
1184 if ( np->link_status ) {
1185 ethtool_cmd_speed_set(cmd, np->speed);
1186 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1187 } else {
1188 ethtool_cmd_speed_set(cmd, -1);
1189 cmd->duplex = -1;
1190 }
1191 if ( np->an_enable)
1192 cmd->autoneg = AUTONEG_ENABLE;
1193 else
1194 cmd->autoneg = AUTONEG_DISABLE;
1195
1196 cmd->phy_address = np->phy_addr;
1197 return 0;
1198 }
1199
1200 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1201 {
1202 struct netdev_private *np = netdev_priv(dev);
1203 netif_carrier_off(dev);
1204 if (cmd->autoneg == AUTONEG_ENABLE) {
1205 if (np->an_enable)
1206 return 0;
1207 else {
1208 np->an_enable = 1;
1209 mii_set_media(dev);
1210 return 0;
1211 }
1212 } else {
1213 np->an_enable = 0;
1214 if (np->speed == 1000) {
1215 ethtool_cmd_speed_set(cmd, SPEED_100);
1216 cmd->duplex = DUPLEX_FULL;
1217 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1218 }
1219 switch (ethtool_cmd_speed(cmd)) {
1220 case SPEED_10:
1221 np->speed = 10;
1222 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1223 break;
1224 case SPEED_100:
1225 np->speed = 100;
1226 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1227 break;
1228 case SPEED_1000: /* not supported */
1229 default:
1230 return -EINVAL;
1231 }
1232 mii_set_media(dev);
1233 }
1234 return 0;
1235 }
1236
1237 static u32 rio_get_link(struct net_device *dev)
1238 {
1239 struct netdev_private *np = netdev_priv(dev);
1240 return np->link_status;
1241 }
1242
1243 static const struct ethtool_ops ethtool_ops = {
1244 .get_drvinfo = rio_get_drvinfo,
1245 .get_settings = rio_get_settings,
1246 .set_settings = rio_set_settings,
1247 .get_link = rio_get_link,
1248 };
1249
1250 static int
1251 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1252 {
1253 int phy_addr;
1254 struct netdev_private *np = netdev_priv(dev);
1255 struct mii_ioctl_data *miidata = if_mii(rq);
1256
1257 phy_addr = np->phy_addr;
1258 switch (cmd) {
1259 case SIOCGMIIPHY:
1260 miidata->phy_id = phy_addr;
1261 break;
1262 case SIOCGMIIREG:
1263 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1264 break;
1265 case SIOCSMIIREG:
1266 if (!capable(CAP_NET_ADMIN))
1267 return -EPERM;
1268 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1269 break;
1270 default:
1271 return -EOPNOTSUPP;
1272 }
1273 return 0;
1274 }
1275
1276 #define EEP_READ 0x0200
1277 #define EEP_BUSY 0x8000
1278 /* Read the EEPROM word */
1279 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1280 static int read_eeprom(struct netdev_private *np, int eep_addr)
1281 {
1282 void __iomem *ioaddr = np->eeprom_addr;
1283 int i = 1000;
1284
1285 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1286 while (i-- > 0) {
1287 if (!(dr16(EepromCtrl) & EEP_BUSY))
1288 return dr16(EepromData);
1289 }
1290 return 0;
1291 }
1292
1293 enum phy_ctrl_bits {
1294 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1295 MII_DUPLEX = 0x08,
1296 };
1297
1298 #define mii_delay() dr8(PhyCtrl)
1299 static void
1300 mii_sendbit (struct net_device *dev, u32 data)
1301 {
1302 struct netdev_private *np = netdev_priv(dev);
1303 void __iomem *ioaddr = np->ioaddr;
1304
1305 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1306 dw8(PhyCtrl, data);
1307 mii_delay ();
1308 dw8(PhyCtrl, data | MII_CLK);
1309 mii_delay ();
1310 }
1311
1312 static int
1313 mii_getbit (struct net_device *dev)
1314 {
1315 struct netdev_private *np = netdev_priv(dev);
1316 void __iomem *ioaddr = np->ioaddr;
1317 u8 data;
1318
1319 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1320 dw8(PhyCtrl, data);
1321 mii_delay ();
1322 dw8(PhyCtrl, data | MII_CLK);
1323 mii_delay ();
1324 return (dr8(PhyCtrl) >> 1) & 1;
1325 }
1326
1327 static void
1328 mii_send_bits (struct net_device *dev, u32 data, int len)
1329 {
1330 int i;
1331
1332 for (i = len - 1; i >= 0; i--) {
1333 mii_sendbit (dev, data & (1 << i));
1334 }
1335 }
1336
1337 static int
1338 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1339 {
1340 u32 cmd;
1341 int i;
1342 u32 retval = 0;
1343
1344 /* Preamble */
1345 mii_send_bits (dev, 0xffffffff, 32);
1346 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1347 /* ST,OP = 0110'b for read operation */
1348 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1349 mii_send_bits (dev, cmd, 14);
1350 /* Turnaround */
1351 if (mii_getbit (dev))
1352 goto err_out;
1353 /* Read data */
1354 for (i = 0; i < 16; i++) {
1355 retval |= mii_getbit (dev);
1356 retval <<= 1;
1357 }
1358 /* End cycle */
1359 mii_getbit (dev);
1360 return (retval >> 1) & 0xffff;
1361
1362 err_out:
1363 return 0;
1364 }
1365 static int
1366 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1367 {
1368 u32 cmd;
1369
1370 /* Preamble */
1371 mii_send_bits (dev, 0xffffffff, 32);
1372 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1373 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1374 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1375 mii_send_bits (dev, cmd, 32);
1376 /* End cycle */
1377 mii_getbit (dev);
1378 return 0;
1379 }
1380 static int
1381 mii_wait_link (struct net_device *dev, int wait)
1382 {
1383 __u16 bmsr;
1384 int phy_addr;
1385 struct netdev_private *np;
1386
1387 np = netdev_priv(dev);
1388 phy_addr = np->phy_addr;
1389
1390 do {
1391 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1392 if (bmsr & BMSR_LSTATUS)
1393 return 0;
1394 mdelay (1);
1395 } while (--wait > 0);
1396 return -1;
1397 }
1398 static int
1399 mii_get_media (struct net_device *dev)
1400 {
1401 __u16 negotiate;
1402 __u16 bmsr;
1403 __u16 mscr;
1404 __u16 mssr;
1405 int phy_addr;
1406 struct netdev_private *np;
1407
1408 np = netdev_priv(dev);
1409 phy_addr = np->phy_addr;
1410
1411 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1412 if (np->an_enable) {
1413 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1414 /* Auto-Negotiation not completed */
1415 return -1;
1416 }
1417 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1418 mii_read (dev, phy_addr, MII_LPA);
1419 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1420 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1421 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1422 np->speed = 1000;
1423 np->full_duplex = 1;
1424 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1425 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1426 np->speed = 1000;
1427 np->full_duplex = 0;
1428 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1429 } else if (negotiate & ADVERTISE_100FULL) {
1430 np->speed = 100;
1431 np->full_duplex = 1;
1432 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1433 } else if (negotiate & ADVERTISE_100HALF) {
1434 np->speed = 100;
1435 np->full_duplex = 0;
1436 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1437 } else if (negotiate & ADVERTISE_10FULL) {
1438 np->speed = 10;
1439 np->full_duplex = 1;
1440 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1441 } else if (negotiate & ADVERTISE_10HALF) {
1442 np->speed = 10;
1443 np->full_duplex = 0;
1444 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1445 }
1446 if (negotiate & ADVERTISE_PAUSE_CAP) {
1447 np->tx_flow &= 1;
1448 np->rx_flow &= 1;
1449 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1450 np->tx_flow = 0;
1451 np->rx_flow &= 1;
1452 }
1453 /* else tx_flow, rx_flow = user select */
1454 } else {
1455 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1456 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1457 case BMCR_SPEED1000:
1458 printk (KERN_INFO "Operating at 1000 Mbps, ");
1459 break;
1460 case BMCR_SPEED100:
1461 printk (KERN_INFO "Operating at 100 Mbps, ");
1462 break;
1463 case 0:
1464 printk (KERN_INFO "Operating at 10 Mbps, ");
1465 }
1466 if (bmcr & BMCR_FULLDPLX) {
1467 printk (KERN_CONT "Full duplex\n");
1468 } else {
1469 printk (KERN_CONT "Half duplex\n");
1470 }
1471 }
1472 if (np->tx_flow)
1473 printk(KERN_INFO "Enable Tx Flow Control\n");
1474 else
1475 printk(KERN_INFO "Disable Tx Flow Control\n");
1476 if (np->rx_flow)
1477 printk(KERN_INFO "Enable Rx Flow Control\n");
1478 else
1479 printk(KERN_INFO "Disable Rx Flow Control\n");
1480
1481 return 0;
1482 }
1483
1484 static int
1485 mii_set_media (struct net_device *dev)
1486 {
1487 __u16 pscr;
1488 __u16 bmcr;
1489 __u16 bmsr;
1490 __u16 anar;
1491 int phy_addr;
1492 struct netdev_private *np;
1493 np = netdev_priv(dev);
1494 phy_addr = np->phy_addr;
1495
1496 /* Does user set speed? */
1497 if (np->an_enable) {
1498 /* Advertise capabilities */
1499 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1501 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1502 ADVERTISE_100HALF | ADVERTISE_10HALF |
1503 ADVERTISE_100BASE4);
1504 if (bmsr & BMSR_100FULL)
1505 anar |= ADVERTISE_100FULL;
1506 if (bmsr & BMSR_100HALF)
1507 anar |= ADVERTISE_100HALF;
1508 if (bmsr & BMSR_100BASE4)
1509 anar |= ADVERTISE_100BASE4;
1510 if (bmsr & BMSR_10FULL)
1511 anar |= ADVERTISE_10FULL;
1512 if (bmsr & BMSR_10HALF)
1513 anar |= ADVERTISE_10HALF;
1514 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1515 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1516
1517 /* Enable Auto crossover */
1518 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1519 pscr |= 3 << 5; /* 11'b */
1520 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1521
1522 /* Soft reset PHY */
1523 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1524 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1525 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1526 mdelay(1);
1527 } else {
1528 /* Force speed setting */
1529 /* 1) Disable Auto crossover */
1530 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1531 pscr &= ~(3 << 5);
1532 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1533
1534 /* 2) PHY Reset */
1535 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1536 bmcr |= BMCR_RESET;
1537 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1538
1539 /* 3) Power Down */
1540 bmcr = 0x1940; /* must be 0x1940 */
1541 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1542 mdelay (100); /* wait a certain time */
1543
1544 /* 4) Advertise nothing */
1545 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1546
1547 /* 5) Set media and Power Up */
1548 bmcr = BMCR_PDOWN;
1549 if (np->speed == 100) {
1550 bmcr |= BMCR_SPEED100;
1551 printk (KERN_INFO "Manual 100 Mbps, ");
1552 } else if (np->speed == 10) {
1553 printk (KERN_INFO "Manual 10 Mbps, ");
1554 }
1555 if (np->full_duplex) {
1556 bmcr |= BMCR_FULLDPLX;
1557 printk (KERN_CONT "Full duplex\n");
1558 } else {
1559 printk (KERN_CONT "Half duplex\n");
1560 }
1561 #if 0
1562 /* Set 1000BaseT Master/Slave setting */
1563 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1564 mscr |= MII_MSCR_CFG_ENABLE;
1565 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1566 #endif
1567 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1568 mdelay(10);
1569 }
1570 return 0;
1571 }
1572
1573 static int
1574 mii_get_media_pcs (struct net_device *dev)
1575 {
1576 __u16 negotiate;
1577 __u16 bmsr;
1578 int phy_addr;
1579 struct netdev_private *np;
1580
1581 np = netdev_priv(dev);
1582 phy_addr = np->phy_addr;
1583
1584 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1585 if (np->an_enable) {
1586 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1587 /* Auto-Negotiation not completed */
1588 return -1;
1589 }
1590 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1591 mii_read (dev, phy_addr, PCS_ANLPAR);
1592 np->speed = 1000;
1593 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1594 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1595 np->full_duplex = 1;
1596 } else {
1597 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1598 np->full_duplex = 0;
1599 }
1600 if (negotiate & PCS_ANAR_PAUSE) {
1601 np->tx_flow &= 1;
1602 np->rx_flow &= 1;
1603 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1604 np->tx_flow = 0;
1605 np->rx_flow &= 1;
1606 }
1607 /* else tx_flow, rx_flow = user select */
1608 } else {
1609 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1610 printk (KERN_INFO "Operating at 1000 Mbps, ");
1611 if (bmcr & BMCR_FULLDPLX) {
1612 printk (KERN_CONT "Full duplex\n");
1613 } else {
1614 printk (KERN_CONT "Half duplex\n");
1615 }
1616 }
1617 if (np->tx_flow)
1618 printk(KERN_INFO "Enable Tx Flow Control\n");
1619 else
1620 printk(KERN_INFO "Disable Tx Flow Control\n");
1621 if (np->rx_flow)
1622 printk(KERN_INFO "Enable Rx Flow Control\n");
1623 else
1624 printk(KERN_INFO "Disable Rx Flow Control\n");
1625
1626 return 0;
1627 }
1628
1629 static int
1630 mii_set_media_pcs (struct net_device *dev)
1631 {
1632 __u16 bmcr;
1633 __u16 esr;
1634 __u16 anar;
1635 int phy_addr;
1636 struct netdev_private *np;
1637 np = netdev_priv(dev);
1638 phy_addr = np->phy_addr;
1639
1640 /* Auto-Negotiation? */
1641 if (np->an_enable) {
1642 /* Advertise capabilities */
1643 esr = mii_read (dev, phy_addr, PCS_ESR);
1644 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1645 ~PCS_ANAR_HALF_DUPLEX &
1646 ~PCS_ANAR_FULL_DUPLEX;
1647 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1648 anar |= PCS_ANAR_HALF_DUPLEX;
1649 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1650 anar |= PCS_ANAR_FULL_DUPLEX;
1651 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1652 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1653
1654 /* Soft reset PHY */
1655 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1656 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1657 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1658 mdelay(1);
1659 } else {
1660 /* Force speed setting */
1661 /* PHY Reset */
1662 bmcr = BMCR_RESET;
1663 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1664 mdelay(10);
1665 if (np->full_duplex) {
1666 bmcr = BMCR_FULLDPLX;
1667 printk (KERN_INFO "Manual full duplex\n");
1668 } else {
1669 bmcr = 0;
1670 printk (KERN_INFO "Manual half duplex\n");
1671 }
1672 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1673 mdelay(10);
1674
1675 /* Advertise nothing */
1676 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1677 }
1678 return 0;
1679 }
1680
1681
1682 static int
1683 rio_close (struct net_device *dev)
1684 {
1685 struct netdev_private *np = netdev_priv(dev);
1686 void __iomem *ioaddr = np->ioaddr;
1687
1688 struct pci_dev *pdev = np->pdev;
1689 struct sk_buff *skb;
1690 int i;
1691
1692 netif_stop_queue (dev);
1693
1694 /* Disable interrupts */
1695 dw16(IntEnable, 0);
1696
1697 /* Stop Tx and Rx logics */
1698 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1699
1700 free_irq(pdev->irq, dev);
1701 del_timer_sync (&np->timer);
1702
1703 /* Free all the skbuffs in the queue. */
1704 for (i = 0; i < RX_RING_SIZE; i++) {
1705 skb = np->rx_skbuff[i];
1706 if (skb) {
1707 pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1708 skb->len, PCI_DMA_FROMDEVICE);
1709 dev_kfree_skb (skb);
1710 np->rx_skbuff[i] = NULL;
1711 }
1712 np->rx_ring[i].status = 0;
1713 np->rx_ring[i].fraginfo = 0;
1714 }
1715 for (i = 0; i < TX_RING_SIZE; i++) {
1716 skb = np->tx_skbuff[i];
1717 if (skb) {
1718 pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1719 skb->len, PCI_DMA_TODEVICE);
1720 dev_kfree_skb (skb);
1721 np->tx_skbuff[i] = NULL;
1722 }
1723 }
1724
1725 return 0;
1726 }
1727
1728 static void
1729 rio_remove1 (struct pci_dev *pdev)
1730 {
1731 struct net_device *dev = pci_get_drvdata (pdev);
1732
1733 if (dev) {
1734 struct netdev_private *np = netdev_priv(dev);
1735
1736 unregister_netdev (dev);
1737 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1738 np->rx_ring_dma);
1739 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1740 np->tx_ring_dma);
1741 #ifdef MEM_MAPPING
1742 pci_iounmap(pdev, np->ioaddr);
1743 #endif
1744 pci_iounmap(pdev, np->eeprom_addr);
1745 free_netdev (dev);
1746 pci_release_regions (pdev);
1747 pci_disable_device (pdev);
1748 }
1749 }
1750
1751 static struct pci_driver rio_driver = {
1752 .name = "dl2k",
1753 .id_table = rio_pci_tbl,
1754 .probe = rio_probe1,
1755 .remove = rio_remove1,
1756 };
1757
1758 module_pci_driver(rio_driver);
1759 /*
1760
1761 Compile command:
1762
1763 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1764
1765 Read Documentation/networking/dl2k.txt for details.
1766
1767 */
1768
This page took 0.105076 seconds and 5 git commands to generate.