Merge tag 'armsoc-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / drivers / net / ethernet / dlink / dl2k.c
1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3 Copyright (c) 2001, 2002 by D-Link Corporation
4 Written by Edward Peng.<edward_peng@dlink.com.tw>
5 Created 03-May-2001, base on Linux' sundance.c.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11 */
12
13 #define DRV_NAME "DL2000/TC902x-based linux driver"
14 #define DRV_VERSION "v1.19"
15 #define DRV_RELDATE "2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18
19 #define dw32(reg, val) iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val) iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val) iowrite8(val, ioaddr + (reg))
22 #define dr32(reg) ioread32(ioaddr + (reg))
23 #define dr16(reg) ioread16(ioaddr + (reg))
24 #define dr8(reg) ioread8(ioaddr + (reg))
25
26 static char version[] =
27 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10; /* Rx frame count each interrupt */
37 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
39
40
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54
55
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58 UpdateStats | LinkEvent)
59
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 void __iomem *ioaddr = np->ioaddr;
63
64 dw16(IntEnable, DEFAULT_INTR);
65 }
66
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
74 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
75 static void rio_free_tx (struct net_device *dev, int irq);
76 static void tx_error (struct net_device *dev, int tx_status);
77 static int receive_packet (struct net_device *dev);
78 static void rio_error (struct net_device *dev, int int_status);
79 static int change_mtu (struct net_device *dev, int new_mtu);
80 static void set_multicast (struct net_device *dev);
81 static struct net_device_stats *get_stats (struct net_device *dev);
82 static int clear_stats (struct net_device *dev);
83 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
84 static int rio_close (struct net_device *dev);
85 static int find_miiphy (struct net_device *dev);
86 static int parse_eeprom (struct net_device *dev);
87 static int read_eeprom (struct netdev_private *, int eep_addr);
88 static int mii_wait_link (struct net_device *dev, int wait);
89 static int mii_set_media (struct net_device *dev);
90 static int mii_get_media (struct net_device *dev);
91 static int mii_set_media_pcs (struct net_device *dev);
92 static int mii_get_media_pcs (struct net_device *dev);
93 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
94 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
95 u16 data);
96
97 static const struct ethtool_ops ethtool_ops;
98
99 static const struct net_device_ops netdev_ops = {
100 .ndo_open = rio_open,
101 .ndo_start_xmit = start_xmit,
102 .ndo_stop = rio_close,
103 .ndo_get_stats = get_stats,
104 .ndo_validate_addr = eth_validate_addr,
105 .ndo_set_mac_address = eth_mac_addr,
106 .ndo_set_rx_mode = set_multicast,
107 .ndo_do_ioctl = rio_ioctl,
108 .ndo_tx_timeout = rio_tx_timeout,
109 .ndo_change_mtu = change_mtu,
110 };
111
112 static int
113 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
114 {
115 struct net_device *dev;
116 struct netdev_private *np;
117 static int card_idx;
118 int chip_idx = ent->driver_data;
119 int err, irq;
120 void __iomem *ioaddr;
121 static int version_printed;
122 void *ring_space;
123 dma_addr_t ring_dma;
124
125 if (!version_printed++)
126 printk ("%s", version);
127
128 err = pci_enable_device (pdev);
129 if (err)
130 return err;
131
132 irq = pdev->irq;
133 err = pci_request_regions (pdev, "dl2k");
134 if (err)
135 goto err_out_disable;
136
137 pci_set_master (pdev);
138
139 err = -ENOMEM;
140
141 dev = alloc_etherdev (sizeof (*np));
142 if (!dev)
143 goto err_out_res;
144 SET_NETDEV_DEV(dev, &pdev->dev);
145
146 np = netdev_priv(dev);
147
148 /* IO registers range. */
149 ioaddr = pci_iomap(pdev, 0, 0);
150 if (!ioaddr)
151 goto err_out_dev;
152 np->eeprom_addr = ioaddr;
153
154 #ifdef MEM_MAPPING
155 /* MM registers range. */
156 ioaddr = pci_iomap(pdev, 1, 0);
157 if (!ioaddr)
158 goto err_out_iounmap;
159 #endif
160 np->ioaddr = ioaddr;
161 np->chip_id = chip_idx;
162 np->pdev = pdev;
163 spin_lock_init (&np->tx_lock);
164 spin_lock_init (&np->rx_lock);
165
166 /* Parse manual configuration */
167 np->an_enable = 1;
168 np->tx_coalesce = 1;
169 if (card_idx < MAX_UNITS) {
170 if (media[card_idx] != NULL) {
171 np->an_enable = 0;
172 if (strcmp (media[card_idx], "auto") == 0 ||
173 strcmp (media[card_idx], "autosense") == 0 ||
174 strcmp (media[card_idx], "0") == 0 ) {
175 np->an_enable = 2;
176 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
177 strcmp (media[card_idx], "4") == 0) {
178 np->speed = 100;
179 np->full_duplex = 1;
180 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
181 strcmp (media[card_idx], "3") == 0) {
182 np->speed = 100;
183 np->full_duplex = 0;
184 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
185 strcmp (media[card_idx], "2") == 0) {
186 np->speed = 10;
187 np->full_duplex = 1;
188 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
189 strcmp (media[card_idx], "1") == 0) {
190 np->speed = 10;
191 np->full_duplex = 0;
192 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
193 strcmp (media[card_idx], "6") == 0) {
194 np->speed=1000;
195 np->full_duplex=1;
196 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
197 strcmp (media[card_idx], "5") == 0) {
198 np->speed = 1000;
199 np->full_duplex = 0;
200 } else {
201 np->an_enable = 1;
202 }
203 }
204 if (jumbo[card_idx] != 0) {
205 np->jumbo = 1;
206 dev->mtu = MAX_JUMBO;
207 } else {
208 np->jumbo = 0;
209 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
210 dev->mtu = mtu[card_idx];
211 }
212 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
213 vlan[card_idx] : 0;
214 if (rx_coalesce > 0 && rx_timeout > 0) {
215 np->rx_coalesce = rx_coalesce;
216 np->rx_timeout = rx_timeout;
217 np->coalesce = 1;
218 }
219 np->tx_flow = (tx_flow == 0) ? 0 : 1;
220 np->rx_flow = (rx_flow == 0) ? 0 : 1;
221
222 if (tx_coalesce < 1)
223 tx_coalesce = 1;
224 else if (tx_coalesce > TX_RING_SIZE-1)
225 tx_coalesce = TX_RING_SIZE - 1;
226 }
227 dev->netdev_ops = &netdev_ops;
228 dev->watchdog_timeo = TX_TIMEOUT;
229 dev->ethtool_ops = &ethtool_ops;
230 #if 0
231 dev->features = NETIF_F_IP_CSUM;
232 #endif
233 pci_set_drvdata (pdev, dev);
234
235 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
236 if (!ring_space)
237 goto err_out_iounmap;
238 np->tx_ring = ring_space;
239 np->tx_ring_dma = ring_dma;
240
241 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
242 if (!ring_space)
243 goto err_out_unmap_tx;
244 np->rx_ring = ring_space;
245 np->rx_ring_dma = ring_dma;
246
247 /* Parse eeprom data */
248 parse_eeprom (dev);
249
250 /* Find PHY address */
251 err = find_miiphy (dev);
252 if (err)
253 goto err_out_unmap_rx;
254
255 /* Fiber device? */
256 np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
257 np->link_status = 0;
258 /* Set media and reset PHY */
259 if (np->phy_media) {
260 /* default Auto-Negotiation for fiber deivices */
261 if (np->an_enable == 2) {
262 np->an_enable = 1;
263 }
264 } else {
265 /* Auto-Negotiation is mandatory for 1000BASE-T,
266 IEEE 802.3ab Annex 28D page 14 */
267 if (np->speed == 1000)
268 np->an_enable = 1;
269 }
270
271 err = register_netdev (dev);
272 if (err)
273 goto err_out_unmap_rx;
274
275 card_idx++;
276
277 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
278 dev->name, np->name, dev->dev_addr, irq);
279 if (tx_coalesce > 1)
280 printk(KERN_INFO "tx_coalesce:\t%d packets\n",
281 tx_coalesce);
282 if (np->coalesce)
283 printk(KERN_INFO
284 "rx_coalesce:\t%d packets\n"
285 "rx_timeout: \t%d ns\n",
286 np->rx_coalesce, np->rx_timeout*640);
287 if (np->vlan)
288 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
289 return 0;
290
291 err_out_unmap_rx:
292 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
293 err_out_unmap_tx:
294 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
295 err_out_iounmap:
296 #ifdef MEM_MAPPING
297 pci_iounmap(pdev, np->ioaddr);
298 #endif
299 pci_iounmap(pdev, np->eeprom_addr);
300 err_out_dev:
301 free_netdev (dev);
302 err_out_res:
303 pci_release_regions (pdev);
304 err_out_disable:
305 pci_disable_device (pdev);
306 return err;
307 }
308
309 static int
310 find_miiphy (struct net_device *dev)
311 {
312 struct netdev_private *np = netdev_priv(dev);
313 int i, phy_found = 0;
314 np = netdev_priv(dev);
315 np->phy_addr = 1;
316
317 for (i = 31; i >= 0; i--) {
318 int mii_status = mii_read (dev, i, 1);
319 if (mii_status != 0xffff && mii_status != 0x0000) {
320 np->phy_addr = i;
321 phy_found++;
322 }
323 }
324 if (!phy_found) {
325 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
326 return -ENODEV;
327 }
328 return 0;
329 }
330
331 static int
332 parse_eeprom (struct net_device *dev)
333 {
334 struct netdev_private *np = netdev_priv(dev);
335 void __iomem *ioaddr = np->ioaddr;
336 int i, j;
337 u8 sromdata[256];
338 u8 *psib;
339 u32 crc;
340 PSROM_t psrom = (PSROM_t) sromdata;
341
342 int cid, next;
343
344 for (i = 0; i < 128; i++)
345 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
346
347 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
348 /* Check CRC */
349 crc = ~ether_crc_le (256 - 4, sromdata);
350 if (psrom->crc != cpu_to_le32(crc)) {
351 printk (KERN_ERR "%s: EEPROM data CRC error.\n",
352 dev->name);
353 return -1;
354 }
355 }
356
357 /* Set MAC address */
358 for (i = 0; i < 6; i++)
359 dev->dev_addr[i] = psrom->mac_addr[i];
360
361 if (np->chip_id == CHIP_IP1000A) {
362 np->led_mode = psrom->led_mode;
363 return 0;
364 }
365
366 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
367 return 0;
368 }
369
370 /* Parse Software Information Block */
371 i = 0x30;
372 psib = (u8 *) sromdata;
373 do {
374 cid = psib[i++];
375 next = psib[i++];
376 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
377 printk (KERN_ERR "Cell data error\n");
378 return -1;
379 }
380 switch (cid) {
381 case 0: /* Format version */
382 break;
383 case 1: /* End of cell */
384 return 0;
385 case 2: /* Duplex Polarity */
386 np->duplex_polarity = psib[i];
387 dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
388 break;
389 case 3: /* Wake Polarity */
390 np->wake_polarity = psib[i];
391 break;
392 case 9: /* Adapter description */
393 j = (next - i > 255) ? 255 : next - i;
394 memcpy (np->name, &(psib[i]), j);
395 break;
396 case 4:
397 case 5:
398 case 6:
399 case 7:
400 case 8: /* Reversed */
401 break;
402 default: /* Unknown cell */
403 return -1;
404 }
405 i = next;
406 } while (1);
407
408 return 0;
409 }
410
411 static void rio_set_led_mode(struct net_device *dev)
412 {
413 struct netdev_private *np = netdev_priv(dev);
414 void __iomem *ioaddr = np->ioaddr;
415 u32 mode;
416
417 if (np->chip_id != CHIP_IP1000A)
418 return;
419
420 mode = dr32(ASICCtrl);
421 mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
422
423 if (np->led_mode & 0x01)
424 mode |= IPG_AC_LED_MODE;
425 if (np->led_mode & 0x02)
426 mode |= IPG_AC_LED_MODE_BIT_1;
427 if (np->led_mode & 0x08)
428 mode |= IPG_AC_LED_SPEED;
429
430 dw32(ASICCtrl, mode);
431 }
432
433 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
434 {
435 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
436 }
437
438 static void free_list(struct net_device *dev)
439 {
440 struct netdev_private *np = netdev_priv(dev);
441 struct sk_buff *skb;
442 int i;
443
444 /* Free all the skbuffs in the queue. */
445 for (i = 0; i < RX_RING_SIZE; i++) {
446 skb = np->rx_skbuff[i];
447 if (skb) {
448 pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
449 skb->len, PCI_DMA_FROMDEVICE);
450 dev_kfree_skb(skb);
451 np->rx_skbuff[i] = NULL;
452 }
453 np->rx_ring[i].status = 0;
454 np->rx_ring[i].fraginfo = 0;
455 }
456 for (i = 0; i < TX_RING_SIZE; i++) {
457 skb = np->tx_skbuff[i];
458 if (skb) {
459 pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
460 skb->len, PCI_DMA_TODEVICE);
461 dev_kfree_skb(skb);
462 np->tx_skbuff[i] = NULL;
463 }
464 }
465 }
466
467 static void rio_reset_ring(struct netdev_private *np)
468 {
469 int i;
470
471 np->cur_rx = 0;
472 np->cur_tx = 0;
473 np->old_rx = 0;
474 np->old_tx = 0;
475
476 for (i = 0; i < TX_RING_SIZE; i++)
477 np->tx_ring[i].status = cpu_to_le64(TFDDone);
478
479 for (i = 0; i < RX_RING_SIZE; i++)
480 np->rx_ring[i].status = 0;
481 }
482
483 /* allocate and initialize Tx and Rx descriptors */
484 static int alloc_list(struct net_device *dev)
485 {
486 struct netdev_private *np = netdev_priv(dev);
487 int i;
488
489 rio_reset_ring(np);
490 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
491
492 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
493 for (i = 0; i < TX_RING_SIZE; i++) {
494 np->tx_skbuff[i] = NULL;
495 np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
496 ((i + 1) % TX_RING_SIZE) *
497 sizeof(struct netdev_desc));
498 }
499
500 /* Initialize Rx descriptors & allocate buffers */
501 for (i = 0; i < RX_RING_SIZE; i++) {
502 /* Allocated fixed size of skbuff */
503 struct sk_buff *skb;
504
505 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
506 np->rx_skbuff[i] = skb;
507 if (!skb) {
508 free_list(dev);
509 return -ENOMEM;
510 }
511
512 np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
513 ((i + 1) % RX_RING_SIZE) *
514 sizeof(struct netdev_desc));
515 /* Rubicon now supports 40 bits of addressing space. */
516 np->rx_ring[i].fraginfo =
517 cpu_to_le64(pci_map_single(
518 np->pdev, skb->data, np->rx_buf_sz,
519 PCI_DMA_FROMDEVICE));
520 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
521 }
522
523 return 0;
524 }
525
526 static void rio_hw_init(struct net_device *dev)
527 {
528 struct netdev_private *np = netdev_priv(dev);
529 void __iomem *ioaddr = np->ioaddr;
530 int i;
531 u16 macctrl;
532
533 /* Reset all logic functions */
534 dw16(ASICCtrl + 2,
535 GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
536 mdelay(10);
537
538 rio_set_led_mode(dev);
539
540 /* DebugCtrl bit 4, 5, 9 must set */
541 dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
542
543 if (np->chip_id == CHIP_IP1000A &&
544 (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
545 /* PHY magic taken from ipg driver, undocumented registers */
546 mii_write(dev, np->phy_addr, 31, 0x0001);
547 mii_write(dev, np->phy_addr, 27, 0x01e0);
548 mii_write(dev, np->phy_addr, 31, 0x0002);
549 mii_write(dev, np->phy_addr, 27, 0xeb8e);
550 mii_write(dev, np->phy_addr, 31, 0x0000);
551 mii_write(dev, np->phy_addr, 30, 0x005e);
552 /* advertise 1000BASE-T half & full duplex, prefer MASTER */
553 mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
554 }
555
556 if (np->phy_media)
557 mii_set_media_pcs(dev);
558 else
559 mii_set_media(dev);
560
561 /* Jumbo frame */
562 if (np->jumbo != 0)
563 dw16(MaxFrameSize, MAX_JUMBO+14);
564
565 /* Set RFDListPtr */
566 dw32(RFDListPtr0, np->rx_ring_dma);
567 dw32(RFDListPtr1, 0);
568
569 /* Set station address */
570 /* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
571 * too. However, it doesn't work on IP1000A so we use 16-bit access.
572 */
573 for (i = 0; i < 3; i++)
574 dw16(StationAddr0 + 2 * i,
575 cpu_to_le16(((u16 *)dev->dev_addr)[i]));
576
577 set_multicast (dev);
578 if (np->coalesce) {
579 dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
580 }
581 /* Set RIO to poll every N*320nsec. */
582 dw8(RxDMAPollPeriod, 0x20);
583 dw8(TxDMAPollPeriod, 0xff);
584 dw8(RxDMABurstThresh, 0x30);
585 dw8(RxDMAUrgentThresh, 0x30);
586 dw32(RmonStatMask, 0x0007ffff);
587 /* clear statistics */
588 clear_stats (dev);
589
590 /* VLAN supported */
591 if (np->vlan) {
592 /* priority field in RxDMAIntCtrl */
593 dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
594 /* VLANId */
595 dw16(VLANId, np->vlan);
596 /* Length/Type should be 0x8100 */
597 dw32(VLANTag, 0x8100 << 16 | np->vlan);
598 /* Enable AutoVLANuntagging, but disable AutoVLANtagging.
599 VLAN information tagged by TFC' VID, CFI fields. */
600 dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
601 }
602
603 /* Start Tx/Rx */
604 dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
605
606 macctrl = 0;
607 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
608 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
609 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
610 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
611 dw16(MACCtrl, macctrl);
612 }
613
614 static void rio_hw_stop(struct net_device *dev)
615 {
616 struct netdev_private *np = netdev_priv(dev);
617 void __iomem *ioaddr = np->ioaddr;
618
619 /* Disable interrupts */
620 dw16(IntEnable, 0);
621
622 /* Stop Tx and Rx logics */
623 dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
624 }
625
626 static int rio_open(struct net_device *dev)
627 {
628 struct netdev_private *np = netdev_priv(dev);
629 const int irq = np->pdev->irq;
630 int i;
631
632 i = alloc_list(dev);
633 if (i)
634 return i;
635
636 rio_hw_init(dev);
637
638 i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
639 if (i) {
640 rio_hw_stop(dev);
641 free_list(dev);
642 return i;
643 }
644
645 setup_timer(&np->timer, rio_timer, (unsigned long)dev);
646 np->timer.expires = jiffies + 1 * HZ;
647 add_timer(&np->timer);
648
649 netif_start_queue (dev);
650
651 dl2k_enable_int(np);
652 return 0;
653 }
654
655 static void
656 rio_timer (unsigned long data)
657 {
658 struct net_device *dev = (struct net_device *)data;
659 struct netdev_private *np = netdev_priv(dev);
660 unsigned int entry;
661 int next_tick = 1*HZ;
662 unsigned long flags;
663
664 spin_lock_irqsave(&np->rx_lock, flags);
665 /* Recover rx ring exhausted error */
666 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
667 printk(KERN_INFO "Try to recover rx ring exhausted...\n");
668 /* Re-allocate skbuffs to fill the descriptor ring */
669 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
670 struct sk_buff *skb;
671 entry = np->old_rx % RX_RING_SIZE;
672 /* Dropped packets don't need to re-allocate */
673 if (np->rx_skbuff[entry] == NULL) {
674 skb = netdev_alloc_skb_ip_align(dev,
675 np->rx_buf_sz);
676 if (skb == NULL) {
677 np->rx_ring[entry].fraginfo = 0;
678 printk (KERN_INFO
679 "%s: Still unable to re-allocate Rx skbuff.#%d\n",
680 dev->name, entry);
681 break;
682 }
683 np->rx_skbuff[entry] = skb;
684 np->rx_ring[entry].fraginfo =
685 cpu_to_le64 (pci_map_single
686 (np->pdev, skb->data, np->rx_buf_sz,
687 PCI_DMA_FROMDEVICE));
688 }
689 np->rx_ring[entry].fraginfo |=
690 cpu_to_le64((u64)np->rx_buf_sz << 48);
691 np->rx_ring[entry].status = 0;
692 } /* end for */
693 } /* end if */
694 spin_unlock_irqrestore (&np->rx_lock, flags);
695 np->timer.expires = jiffies + next_tick;
696 add_timer(&np->timer);
697 }
698
699 static void
700 rio_tx_timeout (struct net_device *dev)
701 {
702 struct netdev_private *np = netdev_priv(dev);
703 void __iomem *ioaddr = np->ioaddr;
704
705 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
706 dev->name, dr32(TxStatus));
707 rio_free_tx(dev, 0);
708 dev->if_port = 0;
709 dev->trans_start = jiffies; /* prevent tx timeout */
710 }
711
712 static netdev_tx_t
713 start_xmit (struct sk_buff *skb, struct net_device *dev)
714 {
715 struct netdev_private *np = netdev_priv(dev);
716 void __iomem *ioaddr = np->ioaddr;
717 struct netdev_desc *txdesc;
718 unsigned entry;
719 u64 tfc_vlan_tag = 0;
720
721 if (np->link_status == 0) { /* Link Down */
722 dev_kfree_skb(skb);
723 return NETDEV_TX_OK;
724 }
725 entry = np->cur_tx % TX_RING_SIZE;
726 np->tx_skbuff[entry] = skb;
727 txdesc = &np->tx_ring[entry];
728
729 #if 0
730 if (skb->ip_summed == CHECKSUM_PARTIAL) {
731 txdesc->status |=
732 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
733 IPChecksumEnable);
734 }
735 #endif
736 if (np->vlan) {
737 tfc_vlan_tag = VLANTagInsert |
738 ((u64)np->vlan << 32) |
739 ((u64)skb->priority << 45);
740 }
741 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
742 skb->len,
743 PCI_DMA_TODEVICE));
744 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
745
746 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
747 * Work around: Always use 1 descriptor in 10Mbps mode */
748 if (entry % np->tx_coalesce == 0 || np->speed == 10)
749 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
750 WordAlignDisable |
751 TxDMAIndicate |
752 (1 << FragCountShift));
753 else
754 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
755 WordAlignDisable |
756 (1 << FragCountShift));
757
758 /* TxDMAPollNow */
759 dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
760 /* Schedule ISR */
761 dw32(CountDown, 10000);
762 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
763 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
764 < TX_QUEUE_LEN - 1 && np->speed != 10) {
765 /* do nothing */
766 } else if (!netif_queue_stopped(dev)) {
767 netif_stop_queue (dev);
768 }
769
770 /* The first TFDListPtr */
771 if (!dr32(TFDListPtr0)) {
772 dw32(TFDListPtr0, np->tx_ring_dma +
773 entry * sizeof (struct netdev_desc));
774 dw32(TFDListPtr1, 0);
775 }
776
777 return NETDEV_TX_OK;
778 }
779
780 static irqreturn_t
781 rio_interrupt (int irq, void *dev_instance)
782 {
783 struct net_device *dev = dev_instance;
784 struct netdev_private *np = netdev_priv(dev);
785 void __iomem *ioaddr = np->ioaddr;
786 unsigned int_status;
787 int cnt = max_intrloop;
788 int handled = 0;
789
790 while (1) {
791 int_status = dr16(IntStatus);
792 dw16(IntStatus, int_status);
793 int_status &= DEFAULT_INTR;
794 if (int_status == 0 || --cnt < 0)
795 break;
796 handled = 1;
797 /* Processing received packets */
798 if (int_status & RxDMAComplete)
799 receive_packet (dev);
800 /* TxDMAComplete interrupt */
801 if ((int_status & (TxDMAComplete|IntRequested))) {
802 int tx_status;
803 tx_status = dr32(TxStatus);
804 if (tx_status & 0x01)
805 tx_error (dev, tx_status);
806 /* Free used tx skbuffs */
807 rio_free_tx (dev, 1);
808 }
809
810 /* Handle uncommon events */
811 if (int_status &
812 (HostError | LinkEvent | UpdateStats))
813 rio_error (dev, int_status);
814 }
815 if (np->cur_tx != np->old_tx)
816 dw32(CountDown, 100);
817 return IRQ_RETVAL(handled);
818 }
819
820 static void
821 rio_free_tx (struct net_device *dev, int irq)
822 {
823 struct netdev_private *np = netdev_priv(dev);
824 int entry = np->old_tx % TX_RING_SIZE;
825 int tx_use = 0;
826 unsigned long flag = 0;
827
828 if (irq)
829 spin_lock(&np->tx_lock);
830 else
831 spin_lock_irqsave(&np->tx_lock, flag);
832
833 /* Free used tx skbuffs */
834 while (entry != np->cur_tx) {
835 struct sk_buff *skb;
836
837 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
838 break;
839 skb = np->tx_skbuff[entry];
840 pci_unmap_single (np->pdev,
841 desc_to_dma(&np->tx_ring[entry]),
842 skb->len, PCI_DMA_TODEVICE);
843 if (irq)
844 dev_kfree_skb_irq (skb);
845 else
846 dev_kfree_skb (skb);
847
848 np->tx_skbuff[entry] = NULL;
849 entry = (entry + 1) % TX_RING_SIZE;
850 tx_use++;
851 }
852 if (irq)
853 spin_unlock(&np->tx_lock);
854 else
855 spin_unlock_irqrestore(&np->tx_lock, flag);
856 np->old_tx = entry;
857
858 /* If the ring is no longer full, clear tx_full and
859 call netif_wake_queue() */
860
861 if (netif_queue_stopped(dev) &&
862 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
863 < TX_QUEUE_LEN - 1 || np->speed == 10)) {
864 netif_wake_queue (dev);
865 }
866 }
867
868 static void
869 tx_error (struct net_device *dev, int tx_status)
870 {
871 struct netdev_private *np = netdev_priv(dev);
872 void __iomem *ioaddr = np->ioaddr;
873 int frame_id;
874 int i;
875
876 frame_id = (tx_status & 0xffff0000);
877 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
878 dev->name, tx_status, frame_id);
879 np->stats.tx_errors++;
880 /* Ttransmit Underrun */
881 if (tx_status & 0x10) {
882 np->stats.tx_fifo_errors++;
883 dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
884 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
885 dw16(ASICCtrl + 2,
886 TxReset | DMAReset | FIFOReset | NetworkReset);
887 /* Wait for ResetBusy bit clear */
888 for (i = 50; i > 0; i--) {
889 if (!(dr16(ASICCtrl + 2) & ResetBusy))
890 break;
891 mdelay (1);
892 }
893 rio_set_led_mode(dev);
894 rio_free_tx (dev, 1);
895 /* Reset TFDListPtr */
896 dw32(TFDListPtr0, np->tx_ring_dma +
897 np->old_tx * sizeof (struct netdev_desc));
898 dw32(TFDListPtr1, 0);
899
900 /* Let TxStartThresh stay default value */
901 }
902 /* Late Collision */
903 if (tx_status & 0x04) {
904 np->stats.tx_fifo_errors++;
905 /* TxReset and clear FIFO */
906 dw16(ASICCtrl + 2, TxReset | FIFOReset);
907 /* Wait reset done */
908 for (i = 50; i > 0; i--) {
909 if (!(dr16(ASICCtrl + 2) & ResetBusy))
910 break;
911 mdelay (1);
912 }
913 rio_set_led_mode(dev);
914 /* Let TxStartThresh stay default value */
915 }
916 /* Maximum Collisions */
917 #ifdef ETHER_STATS
918 if (tx_status & 0x08)
919 np->stats.collisions16++;
920 #else
921 if (tx_status & 0x08)
922 np->stats.collisions++;
923 #endif
924 /* Restart the Tx */
925 dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
926 }
927
928 static int
929 receive_packet (struct net_device *dev)
930 {
931 struct netdev_private *np = netdev_priv(dev);
932 int entry = np->cur_rx % RX_RING_SIZE;
933 int cnt = 30;
934
935 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
936 while (1) {
937 struct netdev_desc *desc = &np->rx_ring[entry];
938 int pkt_len;
939 u64 frame_status;
940
941 if (!(desc->status & cpu_to_le64(RFDDone)) ||
942 !(desc->status & cpu_to_le64(FrameStart)) ||
943 !(desc->status & cpu_to_le64(FrameEnd)))
944 break;
945
946 /* Chip omits the CRC. */
947 frame_status = le64_to_cpu(desc->status);
948 pkt_len = frame_status & 0xffff;
949 if (--cnt < 0)
950 break;
951 /* Update rx error statistics, drop packet. */
952 if (frame_status & RFS_Errors) {
953 np->stats.rx_errors++;
954 if (frame_status & (RxRuntFrame | RxLengthError))
955 np->stats.rx_length_errors++;
956 if (frame_status & RxFCSError)
957 np->stats.rx_crc_errors++;
958 if (frame_status & RxAlignmentError && np->speed != 1000)
959 np->stats.rx_frame_errors++;
960 if (frame_status & RxFIFOOverrun)
961 np->stats.rx_fifo_errors++;
962 } else {
963 struct sk_buff *skb;
964
965 /* Small skbuffs for short packets */
966 if (pkt_len > copy_thresh) {
967 pci_unmap_single (np->pdev,
968 desc_to_dma(desc),
969 np->rx_buf_sz,
970 PCI_DMA_FROMDEVICE);
971 skb_put (skb = np->rx_skbuff[entry], pkt_len);
972 np->rx_skbuff[entry] = NULL;
973 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
974 pci_dma_sync_single_for_cpu(np->pdev,
975 desc_to_dma(desc),
976 np->rx_buf_sz,
977 PCI_DMA_FROMDEVICE);
978 skb_copy_to_linear_data (skb,
979 np->rx_skbuff[entry]->data,
980 pkt_len);
981 skb_put (skb, pkt_len);
982 pci_dma_sync_single_for_device(np->pdev,
983 desc_to_dma(desc),
984 np->rx_buf_sz,
985 PCI_DMA_FROMDEVICE);
986 }
987 skb->protocol = eth_type_trans (skb, dev);
988 #if 0
989 /* Checksum done by hw, but csum value unavailable. */
990 if (np->pdev->pci_rev_id >= 0x0c &&
991 !(frame_status & (TCPError | UDPError | IPError))) {
992 skb->ip_summed = CHECKSUM_UNNECESSARY;
993 }
994 #endif
995 netif_rx (skb);
996 }
997 entry = (entry + 1) % RX_RING_SIZE;
998 }
999 spin_lock(&np->rx_lock);
1000 np->cur_rx = entry;
1001 /* Re-allocate skbuffs to fill the descriptor ring */
1002 entry = np->old_rx;
1003 while (entry != np->cur_rx) {
1004 struct sk_buff *skb;
1005 /* Dropped packets don't need to re-allocate */
1006 if (np->rx_skbuff[entry] == NULL) {
1007 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1008 if (skb == NULL) {
1009 np->rx_ring[entry].fraginfo = 0;
1010 printk (KERN_INFO
1011 "%s: receive_packet: "
1012 "Unable to re-allocate Rx skbuff.#%d\n",
1013 dev->name, entry);
1014 break;
1015 }
1016 np->rx_skbuff[entry] = skb;
1017 np->rx_ring[entry].fraginfo =
1018 cpu_to_le64 (pci_map_single
1019 (np->pdev, skb->data, np->rx_buf_sz,
1020 PCI_DMA_FROMDEVICE));
1021 }
1022 np->rx_ring[entry].fraginfo |=
1023 cpu_to_le64((u64)np->rx_buf_sz << 48);
1024 np->rx_ring[entry].status = 0;
1025 entry = (entry + 1) % RX_RING_SIZE;
1026 }
1027 np->old_rx = entry;
1028 spin_unlock(&np->rx_lock);
1029 return 0;
1030 }
1031
1032 static void
1033 rio_error (struct net_device *dev, int int_status)
1034 {
1035 struct netdev_private *np = netdev_priv(dev);
1036 void __iomem *ioaddr = np->ioaddr;
1037 u16 macctrl;
1038
1039 /* Link change event */
1040 if (int_status & LinkEvent) {
1041 if (mii_wait_link (dev, 10) == 0) {
1042 printk (KERN_INFO "%s: Link up\n", dev->name);
1043 if (np->phy_media)
1044 mii_get_media_pcs (dev);
1045 else
1046 mii_get_media (dev);
1047 if (np->speed == 1000)
1048 np->tx_coalesce = tx_coalesce;
1049 else
1050 np->tx_coalesce = 1;
1051 macctrl = 0;
1052 macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1053 macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1054 macctrl |= (np->tx_flow) ?
1055 TxFlowControlEnable : 0;
1056 macctrl |= (np->rx_flow) ?
1057 RxFlowControlEnable : 0;
1058 dw16(MACCtrl, macctrl);
1059 np->link_status = 1;
1060 netif_carrier_on(dev);
1061 } else {
1062 printk (KERN_INFO "%s: Link off\n", dev->name);
1063 np->link_status = 0;
1064 netif_carrier_off(dev);
1065 }
1066 }
1067
1068 /* UpdateStats statistics registers */
1069 if (int_status & UpdateStats) {
1070 get_stats (dev);
1071 }
1072
1073 /* PCI Error, a catastronphic error related to the bus interface
1074 occurs, set GlobalReset and HostReset to reset. */
1075 if (int_status & HostError) {
1076 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1077 dev->name, int_status);
1078 dw16(ASICCtrl + 2, GlobalReset | HostReset);
1079 mdelay (500);
1080 rio_set_led_mode(dev);
1081 }
1082 }
1083
1084 static struct net_device_stats *
1085 get_stats (struct net_device *dev)
1086 {
1087 struct netdev_private *np = netdev_priv(dev);
1088 void __iomem *ioaddr = np->ioaddr;
1089 #ifdef MEM_MAPPING
1090 int i;
1091 #endif
1092 unsigned int stat_reg;
1093
1094 /* All statistics registers need to be acknowledged,
1095 else statistic overflow could cause problems */
1096
1097 np->stats.rx_packets += dr32(FramesRcvOk);
1098 np->stats.tx_packets += dr32(FramesXmtOk);
1099 np->stats.rx_bytes += dr32(OctetRcvOk);
1100 np->stats.tx_bytes += dr32(OctetXmtOk);
1101
1102 np->stats.multicast = dr32(McstFramesRcvdOk);
1103 np->stats.collisions += dr32(SingleColFrames)
1104 + dr32(MultiColFrames);
1105
1106 /* detailed tx errors */
1107 stat_reg = dr16(FramesAbortXSColls);
1108 np->stats.tx_aborted_errors += stat_reg;
1109 np->stats.tx_errors += stat_reg;
1110
1111 stat_reg = dr16(CarrierSenseErrors);
1112 np->stats.tx_carrier_errors += stat_reg;
1113 np->stats.tx_errors += stat_reg;
1114
1115 /* Clear all other statistic register. */
1116 dr32(McstOctetXmtOk);
1117 dr16(BcstFramesXmtdOk);
1118 dr32(McstFramesXmtdOk);
1119 dr16(BcstFramesRcvdOk);
1120 dr16(MacControlFramesRcvd);
1121 dr16(FrameTooLongErrors);
1122 dr16(InRangeLengthErrors);
1123 dr16(FramesCheckSeqErrors);
1124 dr16(FramesLostRxErrors);
1125 dr32(McstOctetXmtOk);
1126 dr32(BcstOctetXmtOk);
1127 dr32(McstFramesXmtdOk);
1128 dr32(FramesWDeferredXmt);
1129 dr32(LateCollisions);
1130 dr16(BcstFramesXmtdOk);
1131 dr16(MacControlFramesXmtd);
1132 dr16(FramesWEXDeferal);
1133
1134 #ifdef MEM_MAPPING
1135 for (i = 0x100; i <= 0x150; i += 4)
1136 dr32(i);
1137 #endif
1138 dr16(TxJumboFrames);
1139 dr16(RxJumboFrames);
1140 dr16(TCPCheckSumErrors);
1141 dr16(UDPCheckSumErrors);
1142 dr16(IPCheckSumErrors);
1143 return &np->stats;
1144 }
1145
1146 static int
1147 clear_stats (struct net_device *dev)
1148 {
1149 struct netdev_private *np = netdev_priv(dev);
1150 void __iomem *ioaddr = np->ioaddr;
1151 #ifdef MEM_MAPPING
1152 int i;
1153 #endif
1154
1155 /* All statistics registers need to be acknowledged,
1156 else statistic overflow could cause problems */
1157 dr32(FramesRcvOk);
1158 dr32(FramesXmtOk);
1159 dr32(OctetRcvOk);
1160 dr32(OctetXmtOk);
1161
1162 dr32(McstFramesRcvdOk);
1163 dr32(SingleColFrames);
1164 dr32(MultiColFrames);
1165 dr32(LateCollisions);
1166 /* detailed rx errors */
1167 dr16(FrameTooLongErrors);
1168 dr16(InRangeLengthErrors);
1169 dr16(FramesCheckSeqErrors);
1170 dr16(FramesLostRxErrors);
1171
1172 /* detailed tx errors */
1173 dr16(FramesAbortXSColls);
1174 dr16(CarrierSenseErrors);
1175
1176 /* Clear all other statistic register. */
1177 dr32(McstOctetXmtOk);
1178 dr16(BcstFramesXmtdOk);
1179 dr32(McstFramesXmtdOk);
1180 dr16(BcstFramesRcvdOk);
1181 dr16(MacControlFramesRcvd);
1182 dr32(McstOctetXmtOk);
1183 dr32(BcstOctetXmtOk);
1184 dr32(McstFramesXmtdOk);
1185 dr32(FramesWDeferredXmt);
1186 dr16(BcstFramesXmtdOk);
1187 dr16(MacControlFramesXmtd);
1188 dr16(FramesWEXDeferal);
1189 #ifdef MEM_MAPPING
1190 for (i = 0x100; i <= 0x150; i += 4)
1191 dr32(i);
1192 #endif
1193 dr16(TxJumboFrames);
1194 dr16(RxJumboFrames);
1195 dr16(TCPCheckSumErrors);
1196 dr16(UDPCheckSumErrors);
1197 dr16(IPCheckSumErrors);
1198 return 0;
1199 }
1200
1201
1202 static int
1203 change_mtu (struct net_device *dev, int new_mtu)
1204 {
1205 struct netdev_private *np = netdev_priv(dev);
1206 int max = (np->jumbo) ? MAX_JUMBO : 1536;
1207
1208 if ((new_mtu < 68) || (new_mtu > max)) {
1209 return -EINVAL;
1210 }
1211
1212 dev->mtu = new_mtu;
1213
1214 return 0;
1215 }
1216
1217 static void
1218 set_multicast (struct net_device *dev)
1219 {
1220 struct netdev_private *np = netdev_priv(dev);
1221 void __iomem *ioaddr = np->ioaddr;
1222 u32 hash_table[2];
1223 u16 rx_mode = 0;
1224
1225 hash_table[0] = hash_table[1] = 0;
1226 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1227 hash_table[1] |= 0x02000000;
1228 if (dev->flags & IFF_PROMISC) {
1229 /* Receive all frames promiscuously. */
1230 rx_mode = ReceiveAllFrames;
1231 } else if ((dev->flags & IFF_ALLMULTI) ||
1232 (netdev_mc_count(dev) > multicast_filter_limit)) {
1233 /* Receive broadcast and multicast frames */
1234 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1235 } else if (!netdev_mc_empty(dev)) {
1236 struct netdev_hw_addr *ha;
1237 /* Receive broadcast frames and multicast frames filtering
1238 by Hashtable */
1239 rx_mode =
1240 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1241 netdev_for_each_mc_addr(ha, dev) {
1242 int bit, index = 0;
1243 int crc = ether_crc_le(ETH_ALEN, ha->addr);
1244 /* The inverted high significant 6 bits of CRC are
1245 used as an index to hashtable */
1246 for (bit = 0; bit < 6; bit++)
1247 if (crc & (1 << (31 - bit)))
1248 index |= (1 << bit);
1249 hash_table[index / 32] |= (1 << (index % 32));
1250 }
1251 } else {
1252 rx_mode = ReceiveBroadcast | ReceiveUnicast;
1253 }
1254 if (np->vlan) {
1255 /* ReceiveVLANMatch field in ReceiveMode */
1256 rx_mode |= ReceiveVLANMatch;
1257 }
1258
1259 dw32(HashTable0, hash_table[0]);
1260 dw32(HashTable1, hash_table[1]);
1261 dw16(ReceiveMode, rx_mode);
1262 }
1263
1264 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1265 {
1266 struct netdev_private *np = netdev_priv(dev);
1267
1268 strlcpy(info->driver, "dl2k", sizeof(info->driver));
1269 strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1270 strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1271 }
1272
1273 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1274 {
1275 struct netdev_private *np = netdev_priv(dev);
1276 if (np->phy_media) {
1277 /* fiber device */
1278 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1279 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1280 cmd->port = PORT_FIBRE;
1281 cmd->transceiver = XCVR_INTERNAL;
1282 } else {
1283 /* copper device */
1284 cmd->supported = SUPPORTED_10baseT_Half |
1285 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1286 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1287 SUPPORTED_Autoneg | SUPPORTED_MII;
1288 cmd->advertising = ADVERTISED_10baseT_Half |
1289 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1290 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1291 ADVERTISED_Autoneg | ADVERTISED_MII;
1292 cmd->port = PORT_MII;
1293 cmd->transceiver = XCVR_INTERNAL;
1294 }
1295 if ( np->link_status ) {
1296 ethtool_cmd_speed_set(cmd, np->speed);
1297 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1298 } else {
1299 ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1300 cmd->duplex = DUPLEX_UNKNOWN;
1301 }
1302 if ( np->an_enable)
1303 cmd->autoneg = AUTONEG_ENABLE;
1304 else
1305 cmd->autoneg = AUTONEG_DISABLE;
1306
1307 cmd->phy_address = np->phy_addr;
1308 return 0;
1309 }
1310
1311 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1312 {
1313 struct netdev_private *np = netdev_priv(dev);
1314 netif_carrier_off(dev);
1315 if (cmd->autoneg == AUTONEG_ENABLE) {
1316 if (np->an_enable)
1317 return 0;
1318 else {
1319 np->an_enable = 1;
1320 mii_set_media(dev);
1321 return 0;
1322 }
1323 } else {
1324 np->an_enable = 0;
1325 if (np->speed == 1000) {
1326 ethtool_cmd_speed_set(cmd, SPEED_100);
1327 cmd->duplex = DUPLEX_FULL;
1328 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1329 }
1330 switch (ethtool_cmd_speed(cmd)) {
1331 case SPEED_10:
1332 np->speed = 10;
1333 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1334 break;
1335 case SPEED_100:
1336 np->speed = 100;
1337 np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1338 break;
1339 case SPEED_1000: /* not supported */
1340 default:
1341 return -EINVAL;
1342 }
1343 mii_set_media(dev);
1344 }
1345 return 0;
1346 }
1347
1348 static u32 rio_get_link(struct net_device *dev)
1349 {
1350 struct netdev_private *np = netdev_priv(dev);
1351 return np->link_status;
1352 }
1353
1354 static const struct ethtool_ops ethtool_ops = {
1355 .get_drvinfo = rio_get_drvinfo,
1356 .get_settings = rio_get_settings,
1357 .set_settings = rio_set_settings,
1358 .get_link = rio_get_link,
1359 };
1360
1361 static int
1362 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1363 {
1364 int phy_addr;
1365 struct netdev_private *np = netdev_priv(dev);
1366 struct mii_ioctl_data *miidata = if_mii(rq);
1367
1368 phy_addr = np->phy_addr;
1369 switch (cmd) {
1370 case SIOCGMIIPHY:
1371 miidata->phy_id = phy_addr;
1372 break;
1373 case SIOCGMIIREG:
1374 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1375 break;
1376 case SIOCSMIIREG:
1377 if (!capable(CAP_NET_ADMIN))
1378 return -EPERM;
1379 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1380 break;
1381 default:
1382 return -EOPNOTSUPP;
1383 }
1384 return 0;
1385 }
1386
1387 #define EEP_READ 0x0200
1388 #define EEP_BUSY 0x8000
1389 /* Read the EEPROM word */
1390 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1391 static int read_eeprom(struct netdev_private *np, int eep_addr)
1392 {
1393 void __iomem *ioaddr = np->eeprom_addr;
1394 int i = 1000;
1395
1396 dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1397 while (i-- > 0) {
1398 if (!(dr16(EepromCtrl) & EEP_BUSY))
1399 return dr16(EepromData);
1400 }
1401 return 0;
1402 }
1403
1404 enum phy_ctrl_bits {
1405 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1406 MII_DUPLEX = 0x08,
1407 };
1408
1409 #define mii_delay() dr8(PhyCtrl)
1410 static void
1411 mii_sendbit (struct net_device *dev, u32 data)
1412 {
1413 struct netdev_private *np = netdev_priv(dev);
1414 void __iomem *ioaddr = np->ioaddr;
1415
1416 data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1417 dw8(PhyCtrl, data);
1418 mii_delay ();
1419 dw8(PhyCtrl, data | MII_CLK);
1420 mii_delay ();
1421 }
1422
1423 static int
1424 mii_getbit (struct net_device *dev)
1425 {
1426 struct netdev_private *np = netdev_priv(dev);
1427 void __iomem *ioaddr = np->ioaddr;
1428 u8 data;
1429
1430 data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1431 dw8(PhyCtrl, data);
1432 mii_delay ();
1433 dw8(PhyCtrl, data | MII_CLK);
1434 mii_delay ();
1435 return (dr8(PhyCtrl) >> 1) & 1;
1436 }
1437
1438 static void
1439 mii_send_bits (struct net_device *dev, u32 data, int len)
1440 {
1441 int i;
1442
1443 for (i = len - 1; i >= 0; i--) {
1444 mii_sendbit (dev, data & (1 << i));
1445 }
1446 }
1447
1448 static int
1449 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1450 {
1451 u32 cmd;
1452 int i;
1453 u32 retval = 0;
1454
1455 /* Preamble */
1456 mii_send_bits (dev, 0xffffffff, 32);
1457 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1458 /* ST,OP = 0110'b for read operation */
1459 cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1460 mii_send_bits (dev, cmd, 14);
1461 /* Turnaround */
1462 if (mii_getbit (dev))
1463 goto err_out;
1464 /* Read data */
1465 for (i = 0; i < 16; i++) {
1466 retval |= mii_getbit (dev);
1467 retval <<= 1;
1468 }
1469 /* End cycle */
1470 mii_getbit (dev);
1471 return (retval >> 1) & 0xffff;
1472
1473 err_out:
1474 return 0;
1475 }
1476 static int
1477 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1478 {
1479 u32 cmd;
1480
1481 /* Preamble */
1482 mii_send_bits (dev, 0xffffffff, 32);
1483 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1484 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1485 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1486 mii_send_bits (dev, cmd, 32);
1487 /* End cycle */
1488 mii_getbit (dev);
1489 return 0;
1490 }
1491 static int
1492 mii_wait_link (struct net_device *dev, int wait)
1493 {
1494 __u16 bmsr;
1495 int phy_addr;
1496 struct netdev_private *np;
1497
1498 np = netdev_priv(dev);
1499 phy_addr = np->phy_addr;
1500
1501 do {
1502 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503 if (bmsr & BMSR_LSTATUS)
1504 return 0;
1505 mdelay (1);
1506 } while (--wait > 0);
1507 return -1;
1508 }
1509 static int
1510 mii_get_media (struct net_device *dev)
1511 {
1512 __u16 negotiate;
1513 __u16 bmsr;
1514 __u16 mscr;
1515 __u16 mssr;
1516 int phy_addr;
1517 struct netdev_private *np;
1518
1519 np = netdev_priv(dev);
1520 phy_addr = np->phy_addr;
1521
1522 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1523 if (np->an_enable) {
1524 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1525 /* Auto-Negotiation not completed */
1526 return -1;
1527 }
1528 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1529 mii_read (dev, phy_addr, MII_LPA);
1530 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1531 mssr = mii_read (dev, phy_addr, MII_STAT1000);
1532 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1533 np->speed = 1000;
1534 np->full_duplex = 1;
1535 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1536 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1537 np->speed = 1000;
1538 np->full_duplex = 0;
1539 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1540 } else if (negotiate & ADVERTISE_100FULL) {
1541 np->speed = 100;
1542 np->full_duplex = 1;
1543 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1544 } else if (negotiate & ADVERTISE_100HALF) {
1545 np->speed = 100;
1546 np->full_duplex = 0;
1547 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1548 } else if (negotiate & ADVERTISE_10FULL) {
1549 np->speed = 10;
1550 np->full_duplex = 1;
1551 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1552 } else if (negotiate & ADVERTISE_10HALF) {
1553 np->speed = 10;
1554 np->full_duplex = 0;
1555 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1556 }
1557 if (negotiate & ADVERTISE_PAUSE_CAP) {
1558 np->tx_flow &= 1;
1559 np->rx_flow &= 1;
1560 } else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1561 np->tx_flow = 0;
1562 np->rx_flow &= 1;
1563 }
1564 /* else tx_flow, rx_flow = user select */
1565 } else {
1566 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1567 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1568 case BMCR_SPEED1000:
1569 printk (KERN_INFO "Operating at 1000 Mbps, ");
1570 break;
1571 case BMCR_SPEED100:
1572 printk (KERN_INFO "Operating at 100 Mbps, ");
1573 break;
1574 case 0:
1575 printk (KERN_INFO "Operating at 10 Mbps, ");
1576 }
1577 if (bmcr & BMCR_FULLDPLX) {
1578 printk (KERN_CONT "Full duplex\n");
1579 } else {
1580 printk (KERN_CONT "Half duplex\n");
1581 }
1582 }
1583 if (np->tx_flow)
1584 printk(KERN_INFO "Enable Tx Flow Control\n");
1585 else
1586 printk(KERN_INFO "Disable Tx Flow Control\n");
1587 if (np->rx_flow)
1588 printk(KERN_INFO "Enable Rx Flow Control\n");
1589 else
1590 printk(KERN_INFO "Disable Rx Flow Control\n");
1591
1592 return 0;
1593 }
1594
1595 static int
1596 mii_set_media (struct net_device *dev)
1597 {
1598 __u16 pscr;
1599 __u16 bmcr;
1600 __u16 bmsr;
1601 __u16 anar;
1602 int phy_addr;
1603 struct netdev_private *np;
1604 np = netdev_priv(dev);
1605 phy_addr = np->phy_addr;
1606
1607 /* Does user set speed? */
1608 if (np->an_enable) {
1609 /* Advertise capabilities */
1610 bmsr = mii_read (dev, phy_addr, MII_BMSR);
1611 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1612 ~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1613 ADVERTISE_100HALF | ADVERTISE_10HALF |
1614 ADVERTISE_100BASE4);
1615 if (bmsr & BMSR_100FULL)
1616 anar |= ADVERTISE_100FULL;
1617 if (bmsr & BMSR_100HALF)
1618 anar |= ADVERTISE_100HALF;
1619 if (bmsr & BMSR_100BASE4)
1620 anar |= ADVERTISE_100BASE4;
1621 if (bmsr & BMSR_10FULL)
1622 anar |= ADVERTISE_10FULL;
1623 if (bmsr & BMSR_10HALF)
1624 anar |= ADVERTISE_10HALF;
1625 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1626 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1627
1628 /* Enable Auto crossover */
1629 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1630 pscr |= 3 << 5; /* 11'b */
1631 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1632
1633 /* Soft reset PHY */
1634 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1635 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1636 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1637 mdelay(1);
1638 } else {
1639 /* Force speed setting */
1640 /* 1) Disable Auto crossover */
1641 pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1642 pscr &= ~(3 << 5);
1643 mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1644
1645 /* 2) PHY Reset */
1646 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1647 bmcr |= BMCR_RESET;
1648 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1649
1650 /* 3) Power Down */
1651 bmcr = 0x1940; /* must be 0x1940 */
1652 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1653 mdelay (100); /* wait a certain time */
1654
1655 /* 4) Advertise nothing */
1656 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1657
1658 /* 5) Set media and Power Up */
1659 bmcr = BMCR_PDOWN;
1660 if (np->speed == 100) {
1661 bmcr |= BMCR_SPEED100;
1662 printk (KERN_INFO "Manual 100 Mbps, ");
1663 } else if (np->speed == 10) {
1664 printk (KERN_INFO "Manual 10 Mbps, ");
1665 }
1666 if (np->full_duplex) {
1667 bmcr |= BMCR_FULLDPLX;
1668 printk (KERN_CONT "Full duplex\n");
1669 } else {
1670 printk (KERN_CONT "Half duplex\n");
1671 }
1672 #if 0
1673 /* Set 1000BaseT Master/Slave setting */
1674 mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1675 mscr |= MII_MSCR_CFG_ENABLE;
1676 mscr &= ~MII_MSCR_CFG_VALUE = 0;
1677 #endif
1678 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1679 mdelay(10);
1680 }
1681 return 0;
1682 }
1683
1684 static int
1685 mii_get_media_pcs (struct net_device *dev)
1686 {
1687 __u16 negotiate;
1688 __u16 bmsr;
1689 int phy_addr;
1690 struct netdev_private *np;
1691
1692 np = netdev_priv(dev);
1693 phy_addr = np->phy_addr;
1694
1695 bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1696 if (np->an_enable) {
1697 if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1698 /* Auto-Negotiation not completed */
1699 return -1;
1700 }
1701 negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1702 mii_read (dev, phy_addr, PCS_ANLPAR);
1703 np->speed = 1000;
1704 if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1705 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1706 np->full_duplex = 1;
1707 } else {
1708 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1709 np->full_duplex = 0;
1710 }
1711 if (negotiate & PCS_ANAR_PAUSE) {
1712 np->tx_flow &= 1;
1713 np->rx_flow &= 1;
1714 } else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1715 np->tx_flow = 0;
1716 np->rx_flow &= 1;
1717 }
1718 /* else tx_flow, rx_flow = user select */
1719 } else {
1720 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1721 printk (KERN_INFO "Operating at 1000 Mbps, ");
1722 if (bmcr & BMCR_FULLDPLX) {
1723 printk (KERN_CONT "Full duplex\n");
1724 } else {
1725 printk (KERN_CONT "Half duplex\n");
1726 }
1727 }
1728 if (np->tx_flow)
1729 printk(KERN_INFO "Enable Tx Flow Control\n");
1730 else
1731 printk(KERN_INFO "Disable Tx Flow Control\n");
1732 if (np->rx_flow)
1733 printk(KERN_INFO "Enable Rx Flow Control\n");
1734 else
1735 printk(KERN_INFO "Disable Rx Flow Control\n");
1736
1737 return 0;
1738 }
1739
1740 static int
1741 mii_set_media_pcs (struct net_device *dev)
1742 {
1743 __u16 bmcr;
1744 __u16 esr;
1745 __u16 anar;
1746 int phy_addr;
1747 struct netdev_private *np;
1748 np = netdev_priv(dev);
1749 phy_addr = np->phy_addr;
1750
1751 /* Auto-Negotiation? */
1752 if (np->an_enable) {
1753 /* Advertise capabilities */
1754 esr = mii_read (dev, phy_addr, PCS_ESR);
1755 anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1756 ~PCS_ANAR_HALF_DUPLEX &
1757 ~PCS_ANAR_FULL_DUPLEX;
1758 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1759 anar |= PCS_ANAR_HALF_DUPLEX;
1760 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1761 anar |= PCS_ANAR_FULL_DUPLEX;
1762 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1763 mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1764
1765 /* Soft reset PHY */
1766 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1767 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1768 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1769 mdelay(1);
1770 } else {
1771 /* Force speed setting */
1772 /* PHY Reset */
1773 bmcr = BMCR_RESET;
1774 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1775 mdelay(10);
1776 if (np->full_duplex) {
1777 bmcr = BMCR_FULLDPLX;
1778 printk (KERN_INFO "Manual full duplex\n");
1779 } else {
1780 bmcr = 0;
1781 printk (KERN_INFO "Manual half duplex\n");
1782 }
1783 mii_write (dev, phy_addr, MII_BMCR, bmcr);
1784 mdelay(10);
1785
1786 /* Advertise nothing */
1787 mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1788 }
1789 return 0;
1790 }
1791
1792
1793 static int
1794 rio_close (struct net_device *dev)
1795 {
1796 struct netdev_private *np = netdev_priv(dev);
1797 struct pci_dev *pdev = np->pdev;
1798
1799 netif_stop_queue (dev);
1800
1801 rio_hw_stop(dev);
1802
1803 free_irq(pdev->irq, dev);
1804 del_timer_sync (&np->timer);
1805
1806 free_list(dev);
1807
1808 return 0;
1809 }
1810
1811 static void
1812 rio_remove1 (struct pci_dev *pdev)
1813 {
1814 struct net_device *dev = pci_get_drvdata (pdev);
1815
1816 if (dev) {
1817 struct netdev_private *np = netdev_priv(dev);
1818
1819 unregister_netdev (dev);
1820 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1821 np->rx_ring_dma);
1822 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1823 np->tx_ring_dma);
1824 #ifdef MEM_MAPPING
1825 pci_iounmap(pdev, np->ioaddr);
1826 #endif
1827 pci_iounmap(pdev, np->eeprom_addr);
1828 free_netdev (dev);
1829 pci_release_regions (pdev);
1830 pci_disable_device (pdev);
1831 }
1832 }
1833
1834 #ifdef CONFIG_PM_SLEEP
1835 static int rio_suspend(struct device *device)
1836 {
1837 struct net_device *dev = dev_get_drvdata(device);
1838 struct netdev_private *np = netdev_priv(dev);
1839
1840 if (!netif_running(dev))
1841 return 0;
1842
1843 netif_device_detach(dev);
1844 del_timer_sync(&np->timer);
1845 rio_hw_stop(dev);
1846
1847 return 0;
1848 }
1849
1850 static int rio_resume(struct device *device)
1851 {
1852 struct net_device *dev = dev_get_drvdata(device);
1853 struct netdev_private *np = netdev_priv(dev);
1854
1855 if (!netif_running(dev))
1856 return 0;
1857
1858 rio_reset_ring(np);
1859 rio_hw_init(dev);
1860 np->timer.expires = jiffies + 1 * HZ;
1861 add_timer(&np->timer);
1862 netif_device_attach(dev);
1863 dl2k_enable_int(np);
1864
1865 return 0;
1866 }
1867
1868 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1869 #define RIO_PM_OPS (&rio_pm_ops)
1870
1871 #else
1872
1873 #define RIO_PM_OPS NULL
1874
1875 #endif /* CONFIG_PM_SLEEP */
1876
1877 static struct pci_driver rio_driver = {
1878 .name = "dl2k",
1879 .id_table = rio_pci_tbl,
1880 .probe = rio_probe1,
1881 .remove = rio_remove1,
1882 .driver.pm = RIO_PM_OPS,
1883 };
1884
1885 module_pci_driver(rio_driver);
1886 /*
1887
1888 Compile command:
1889
1890 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1891
1892 Read Documentation/networking/dl2k.txt for details.
1893
1894 */
1895
This page took 0.070798 seconds and 5 git commands to generate.