Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
51
52 #include <asm/cacheflush.h>
53
54 #ifndef CONFIG_ARM
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #endif
58
59 #include "fec.h"
60
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
63 #else
64 #define FEC_ALIGNMENT 0x3
65 #endif
66
67 #define DRIVER_NAME "fec"
68
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
75 /* Controller has GBIT support */
76 #define FEC_QUIRK_HAS_GBIT (1 << 3)
77
78 static struct platform_device_id fec_devtype[] = {
79 {
80 /* keep it for coldfire */
81 .name = DRIVER_NAME,
82 .driver_data = 0,
83 }, {
84 .name = "imx25-fec",
85 .driver_data = FEC_QUIRK_USE_GASKET,
86 }, {
87 .name = "imx27-fec",
88 .driver_data = 0,
89 }, {
90 .name = "imx28-fec",
91 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
92 }, {
93 .name = "imx6q-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
95 }, {
96 /* sentinel */
97 }
98 };
99 MODULE_DEVICE_TABLE(platform, fec_devtype);
100
101 enum imx_fec_type {
102 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
103 IMX27_FEC, /* runs on i.mx27/35/51 */
104 IMX28_FEC,
105 IMX6Q_FEC,
106 };
107
108 static const struct of_device_id fec_dt_ids[] = {
109 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
110 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
111 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
112 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
113 { /* sentinel */ }
114 };
115 MODULE_DEVICE_TABLE(of, fec_dt_ids);
116
117 static unsigned char macaddr[ETH_ALEN];
118 module_param_array(macaddr, byte, NULL, 0);
119 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
120
121 #if defined(CONFIG_M5272)
122 /*
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
125 */
126 #if defined(CONFIG_NETtel)
127 #define FEC_FLASHMAC 0xf0006006
128 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129 #define FEC_FLASHMAC 0xf0006000
130 #elif defined(CONFIG_CANCam)
131 #define FEC_FLASHMAC 0xf0020000
132 #elif defined (CONFIG_M5272C3)
133 #define FEC_FLASHMAC (0xffe04000 + 4)
134 #elif defined(CONFIG_MOD5272)
135 #define FEC_FLASHMAC 0xffc0406b
136 #else
137 #define FEC_FLASHMAC 0
138 #endif
139 #endif /* CONFIG_M5272 */
140
141 /* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
146 */
147 #define FEC_ENET_RX_PAGES 8
148 #define FEC_ENET_RX_FRSIZE 2048
149 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151 #define FEC_ENET_TX_FRSIZE 2048
152 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153 #define TX_RING_SIZE 16 /* Must be power of two */
154 #define TX_RING_MOD_MASK 15 /* for this to work */
155
156 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
157 #error "FEC: descriptor ring size constants too large"
158 #endif
159
160 /* Interrupt events/masks. */
161 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
171
172 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
173
174 /* The FEC stores dest/src/type, data, and checksum for receive packets.
175 */
176 #define PKT_MAXBUF_SIZE 1518
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1520
179
180 /* This device has up to three irqs on some platforms */
181 #define FEC_IRQ_NUM 3
182
183 /*
184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
187 */
188 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
190 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
191 #else
192 #define OPT_FRAME_SIZE 0
193 #endif
194
195 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
202 */
203 struct fec_enet_private {
204 /* Hardware registers of the FEC device */
205 void __iomem *hwp;
206
207 struct net_device *netdev;
208
209 struct clk *clk;
210
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce[TX_RING_SIZE];
213 struct sk_buff* tx_skbuff[TX_RING_SIZE];
214 struct sk_buff* rx_skbuff[RX_RING_SIZE];
215 ushort skb_cur;
216 ushort skb_dirty;
217
218 /* CPM dual port RAM relative addresses */
219 dma_addr_t bd_dma;
220 /* Address of Rx and Tx buffers */
221 struct bufdesc *rx_bd_base;
222 struct bufdesc *tx_bd_base;
223 /* The next free ring entry */
224 struct bufdesc *cur_rx, *cur_tx;
225 /* The ring entries to be free()ed */
226 struct bufdesc *dirty_tx;
227
228 uint tx_full;
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
230 spinlock_t hw_lock;
231
232 struct platform_device *pdev;
233
234 int opened;
235 int dev_id;
236
237 /* Phylib and MDIO interface */
238 struct mii_bus *mii_bus;
239 struct phy_device *phy_dev;
240 int mii_timeout;
241 uint phy_speed;
242 phy_interface_t phy_interface;
243 int link;
244 int full_duplex;
245 struct completion mdio_done;
246 int irq[FEC_IRQ_NUM];
247 };
248
249 /* FEC MII MMFR bits definition */
250 #define FEC_MMFR_ST (1 << 30)
251 #define FEC_MMFR_OP_READ (2 << 28)
252 #define FEC_MMFR_OP_WRITE (1 << 28)
253 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
254 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
255 #define FEC_MMFR_TA (2 << 16)
256 #define FEC_MMFR_DATA(v) (v & 0xffff)
257
258 #define FEC_MII_TIMEOUT 30000 /* us */
259
260 /* Transmitter timeout */
261 #define TX_TIMEOUT (2 * HZ)
262
263 static int mii_cnt;
264
265 static void *swap_buffer(void *bufaddr, int len)
266 {
267 int i;
268 unsigned int *buf = bufaddr;
269
270 for (i = 0; i < (len + 3) / 4; i++, buf++)
271 *buf = cpu_to_be32(*buf);
272
273 return bufaddr;
274 }
275
276 static netdev_tx_t
277 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
278 {
279 struct fec_enet_private *fep = netdev_priv(ndev);
280 const struct platform_device_id *id_entry =
281 platform_get_device_id(fep->pdev);
282 struct bufdesc *bdp;
283 void *bufaddr;
284 unsigned short status;
285 unsigned long flags;
286
287 if (!fep->link) {
288 /* Link is down or autonegotiation is in progress. */
289 return NETDEV_TX_BUSY;
290 }
291
292 spin_lock_irqsave(&fep->hw_lock, flags);
293 /* Fill in a Tx ring entry */
294 bdp = fep->cur_tx;
295
296 status = bdp->cbd_sc;
297
298 if (status & BD_ENET_TX_READY) {
299 /* Ooops. All transmit buffers are full. Bail out.
300 * This should not happen, since ndev->tbusy should be set.
301 */
302 printk("%s: tx queue full!.\n", ndev->name);
303 spin_unlock_irqrestore(&fep->hw_lock, flags);
304 return NETDEV_TX_BUSY;
305 }
306
307 /* Clear all of the status flags */
308 status &= ~BD_ENET_TX_STATS;
309
310 /* Set buffer length and buffer pointer */
311 bufaddr = skb->data;
312 bdp->cbd_datlen = skb->len;
313
314 /*
315 * On some FEC implementations data must be aligned on
316 * 4-byte boundaries. Use bounce buffers to copy data
317 * and get it aligned. Ugh.
318 */
319 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
320 unsigned int index;
321 index = bdp - fep->tx_bd_base;
322 memcpy(fep->tx_bounce[index], skb->data, skb->len);
323 bufaddr = fep->tx_bounce[index];
324 }
325
326 /*
327 * Some design made an incorrect assumption on endian mode of
328 * the system that it's running on. As the result, driver has to
329 * swap every frame going to and coming from the controller.
330 */
331 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
332 swap_buffer(bufaddr, skb->len);
333
334 /* Save skb pointer */
335 fep->tx_skbuff[fep->skb_cur] = skb;
336
337 ndev->stats.tx_bytes += skb->len;
338 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
339
340 /* Push the data cache so the CPM does not get stale memory
341 * data.
342 */
343 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
344 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
345
346 /* Send it on its way. Tell FEC it's ready, interrupt when done,
347 * it's the last BD of the frame, and to put the CRC on the end.
348 */
349 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
350 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
351 bdp->cbd_sc = status;
352
353 /* Trigger transmission start */
354 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
355
356 /* If this was the last BD in the ring, start at the beginning again. */
357 if (status & BD_ENET_TX_WRAP)
358 bdp = fep->tx_bd_base;
359 else
360 bdp++;
361
362 if (bdp == fep->dirty_tx) {
363 fep->tx_full = 1;
364 netif_stop_queue(ndev);
365 }
366
367 fep->cur_tx = bdp;
368
369 skb_tx_timestamp(skb);
370
371 spin_unlock_irqrestore(&fep->hw_lock, flags);
372
373 return NETDEV_TX_OK;
374 }
375
376 /* This function is called to start or restart the FEC during a link
377 * change. This only happens when switching between half and full
378 * duplex.
379 */
380 static void
381 fec_restart(struct net_device *ndev, int duplex)
382 {
383 struct fec_enet_private *fep = netdev_priv(ndev);
384 const struct platform_device_id *id_entry =
385 platform_get_device_id(fep->pdev);
386 int i;
387 u32 temp_mac[2];
388 u32 rcntl = OPT_FRAME_SIZE | 0x04;
389 u32 ecntl = 0x2; /* ETHEREN */
390
391 /* Whack a reset. We should wait for this. */
392 writel(1, fep->hwp + FEC_ECNTRL);
393 udelay(10);
394
395 /*
396 * enet-mac reset will reset mac address registers too,
397 * so need to reconfigure it.
398 */
399 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
400 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
401 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
402 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
403 }
404
405 /* Clear any outstanding interrupt. */
406 writel(0xffc00000, fep->hwp + FEC_IEVENT);
407
408 /* Reset all multicast. */
409 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
410 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
411 #ifndef CONFIG_M5272
412 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
413 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
414 #endif
415
416 /* Set maximum receive buffer size. */
417 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
418
419 /* Set receive and transmit descriptor base. */
420 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
421 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
422 fep->hwp + FEC_X_DES_START);
423
424 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
425 fep->cur_rx = fep->rx_bd_base;
426
427 /* Reset SKB transmit buffers. */
428 fep->skb_cur = fep->skb_dirty = 0;
429 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
430 if (fep->tx_skbuff[i]) {
431 dev_kfree_skb_any(fep->tx_skbuff[i]);
432 fep->tx_skbuff[i] = NULL;
433 }
434 }
435
436 /* Enable MII mode */
437 if (duplex) {
438 /* FD enable */
439 writel(0x04, fep->hwp + FEC_X_CNTRL);
440 } else {
441 /* No Rcv on Xmit */
442 rcntl |= 0x02;
443 writel(0x0, fep->hwp + FEC_X_CNTRL);
444 }
445
446 fep->full_duplex = duplex;
447
448 /* Set MII speed */
449 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
450
451 /*
452 * The phy interface and speed need to get configured
453 * differently on enet-mac.
454 */
455 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
456 /* Enable flow control and length check */
457 rcntl |= 0x40000000 | 0x00000020;
458
459 /* RGMII, RMII or MII */
460 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
461 rcntl |= (1 << 6);
462 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
463 rcntl |= (1 << 8);
464 else
465 rcntl &= ~(1 << 8);
466
467 /* 1G, 100M or 10M */
468 if (fep->phy_dev) {
469 if (fep->phy_dev->speed == SPEED_1000)
470 ecntl |= (1 << 5);
471 else if (fep->phy_dev->speed == SPEED_100)
472 rcntl &= ~(1 << 9);
473 else
474 rcntl |= (1 << 9);
475 }
476 } else {
477 #ifdef FEC_MIIGSK_ENR
478 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
479 u32 cfgr;
480 /* disable the gasket and wait */
481 writel(0, fep->hwp + FEC_MIIGSK_ENR);
482 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
483 udelay(1);
484
485 /*
486 * configure the gasket:
487 * RMII, 50 MHz, no loopback, no echo
488 * MII, 25 MHz, no loopback, no echo
489 */
490 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
491 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
492 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
493 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
494 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
495
496 /* re-enable the gasket */
497 writel(2, fep->hwp + FEC_MIIGSK_ENR);
498 }
499 #endif
500 }
501 writel(rcntl, fep->hwp + FEC_R_CNTRL);
502
503 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
504 /* enable ENET endian swap */
505 ecntl |= (1 << 8);
506 /* enable ENET store and forward mode */
507 writel(1 << 8, fep->hwp + FEC_X_WMRK);
508 }
509
510 /* And last, enable the transmit and receive processing */
511 writel(ecntl, fep->hwp + FEC_ECNTRL);
512 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
513
514 /* Enable interrupts we wish to service */
515 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
516 }
517
518 static void
519 fec_stop(struct net_device *ndev)
520 {
521 struct fec_enet_private *fep = netdev_priv(ndev);
522 const struct platform_device_id *id_entry =
523 platform_get_device_id(fep->pdev);
524 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
525
526 /* We cannot expect a graceful transmit stop without link !!! */
527 if (fep->link) {
528 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
529 udelay(10);
530 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
531 printk("fec_stop : Graceful transmit stop did not complete !\n");
532 }
533
534 /* Whack a reset. We should wait for this. */
535 writel(1, fep->hwp + FEC_ECNTRL);
536 udelay(10);
537 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
538 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
539
540 /* We have to keep ENET enabled to have MII interrupt stay working */
541 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
542 writel(2, fep->hwp + FEC_ECNTRL);
543 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
544 }
545 }
546
547
548 static void
549 fec_timeout(struct net_device *ndev)
550 {
551 struct fec_enet_private *fep = netdev_priv(ndev);
552
553 ndev->stats.tx_errors++;
554
555 fec_restart(ndev, fep->full_duplex);
556 netif_wake_queue(ndev);
557 }
558
559 static void
560 fec_enet_tx(struct net_device *ndev)
561 {
562 struct fec_enet_private *fep;
563 struct bufdesc *bdp;
564 unsigned short status;
565 struct sk_buff *skb;
566
567 fep = netdev_priv(ndev);
568 spin_lock(&fep->hw_lock);
569 bdp = fep->dirty_tx;
570
571 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
572 if (bdp == fep->cur_tx && fep->tx_full == 0)
573 break;
574
575 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
576 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
577 bdp->cbd_bufaddr = 0;
578
579 skb = fep->tx_skbuff[fep->skb_dirty];
580 /* Check for errors. */
581 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
582 BD_ENET_TX_RL | BD_ENET_TX_UN |
583 BD_ENET_TX_CSL)) {
584 ndev->stats.tx_errors++;
585 if (status & BD_ENET_TX_HB) /* No heartbeat */
586 ndev->stats.tx_heartbeat_errors++;
587 if (status & BD_ENET_TX_LC) /* Late collision */
588 ndev->stats.tx_window_errors++;
589 if (status & BD_ENET_TX_RL) /* Retrans limit */
590 ndev->stats.tx_aborted_errors++;
591 if (status & BD_ENET_TX_UN) /* Underrun */
592 ndev->stats.tx_fifo_errors++;
593 if (status & BD_ENET_TX_CSL) /* Carrier lost */
594 ndev->stats.tx_carrier_errors++;
595 } else {
596 ndev->stats.tx_packets++;
597 }
598
599 if (status & BD_ENET_TX_READY)
600 printk("HEY! Enet xmit interrupt and TX_READY.\n");
601
602 /* Deferred means some collisions occurred during transmit,
603 * but we eventually sent the packet OK.
604 */
605 if (status & BD_ENET_TX_DEF)
606 ndev->stats.collisions++;
607
608 /* Free the sk buffer associated with this last transmit */
609 dev_kfree_skb_any(skb);
610 fep->tx_skbuff[fep->skb_dirty] = NULL;
611 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
612
613 /* Update pointer to next buffer descriptor to be transmitted */
614 if (status & BD_ENET_TX_WRAP)
615 bdp = fep->tx_bd_base;
616 else
617 bdp++;
618
619 /* Since we have freed up a buffer, the ring is no longer full
620 */
621 if (fep->tx_full) {
622 fep->tx_full = 0;
623 if (netif_queue_stopped(ndev))
624 netif_wake_queue(ndev);
625 }
626 }
627 fep->dirty_tx = bdp;
628 spin_unlock(&fep->hw_lock);
629 }
630
631
632 /* During a receive, the cur_rx points to the current incoming buffer.
633 * When we update through the ring, if the next incoming buffer has
634 * not been given to the system, we just set the empty indicator,
635 * effectively tossing the packet.
636 */
637 static void
638 fec_enet_rx(struct net_device *ndev)
639 {
640 struct fec_enet_private *fep = netdev_priv(ndev);
641 const struct platform_device_id *id_entry =
642 platform_get_device_id(fep->pdev);
643 struct bufdesc *bdp;
644 unsigned short status;
645 struct sk_buff *skb;
646 ushort pkt_len;
647 __u8 *data;
648
649 #ifdef CONFIG_M532x
650 flush_cache_all();
651 #endif
652
653 spin_lock(&fep->hw_lock);
654
655 /* First, grab all of the stats for the incoming packet.
656 * These get messed up if we get called due to a busy condition.
657 */
658 bdp = fep->cur_rx;
659
660 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
661
662 /* Since we have allocated space to hold a complete frame,
663 * the last indicator should be set.
664 */
665 if ((status & BD_ENET_RX_LAST) == 0)
666 printk("FEC ENET: rcv is not +last\n");
667
668 if (!fep->opened)
669 goto rx_processing_done;
670
671 /* Check for errors. */
672 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
673 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
674 ndev->stats.rx_errors++;
675 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
676 /* Frame too long or too short. */
677 ndev->stats.rx_length_errors++;
678 }
679 if (status & BD_ENET_RX_NO) /* Frame alignment */
680 ndev->stats.rx_frame_errors++;
681 if (status & BD_ENET_RX_CR) /* CRC Error */
682 ndev->stats.rx_crc_errors++;
683 if (status & BD_ENET_RX_OV) /* FIFO overrun */
684 ndev->stats.rx_fifo_errors++;
685 }
686
687 /* Report late collisions as a frame error.
688 * On this error, the BD is closed, but we don't know what we
689 * have in the buffer. So, just drop this frame on the floor.
690 */
691 if (status & BD_ENET_RX_CL) {
692 ndev->stats.rx_errors++;
693 ndev->stats.rx_frame_errors++;
694 goto rx_processing_done;
695 }
696
697 /* Process the incoming frame. */
698 ndev->stats.rx_packets++;
699 pkt_len = bdp->cbd_datlen;
700 ndev->stats.rx_bytes += pkt_len;
701 data = (__u8*)__va(bdp->cbd_bufaddr);
702
703 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
704 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
705
706 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
707 swap_buffer(data, pkt_len);
708
709 /* This does 16 byte alignment, exactly what we need.
710 * The packet length includes FCS, but we don't want to
711 * include that when passing upstream as it messes up
712 * bridging applications.
713 */
714 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
715
716 if (unlikely(!skb)) {
717 printk("%s: Memory squeeze, dropping packet.\n",
718 ndev->name);
719 ndev->stats.rx_dropped++;
720 } else {
721 skb_reserve(skb, NET_IP_ALIGN);
722 skb_put(skb, pkt_len - 4); /* Make room */
723 skb_copy_to_linear_data(skb, data, pkt_len - 4);
724 skb->protocol = eth_type_trans(skb, ndev);
725 if (!skb_defer_rx_timestamp(skb))
726 netif_rx(skb);
727 }
728
729 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
730 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
731 rx_processing_done:
732 /* Clear the status flags for this buffer */
733 status &= ~BD_ENET_RX_STATS;
734
735 /* Mark the buffer empty */
736 status |= BD_ENET_RX_EMPTY;
737 bdp->cbd_sc = status;
738
739 /* Update BD pointer to next entry */
740 if (status & BD_ENET_RX_WRAP)
741 bdp = fep->rx_bd_base;
742 else
743 bdp++;
744 /* Doing this here will keep the FEC running while we process
745 * incoming frames. On a heavily loaded network, we should be
746 * able to keep up at the expense of system resources.
747 */
748 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
749 }
750 fep->cur_rx = bdp;
751
752 spin_unlock(&fep->hw_lock);
753 }
754
755 static irqreturn_t
756 fec_enet_interrupt(int irq, void *dev_id)
757 {
758 struct net_device *ndev = dev_id;
759 struct fec_enet_private *fep = netdev_priv(ndev);
760 uint int_events;
761 irqreturn_t ret = IRQ_NONE;
762
763 do {
764 int_events = readl(fep->hwp + FEC_IEVENT);
765 writel(int_events, fep->hwp + FEC_IEVENT);
766
767 if (int_events & FEC_ENET_RXF) {
768 ret = IRQ_HANDLED;
769 fec_enet_rx(ndev);
770 }
771
772 /* Transmit OK, or non-fatal error. Update the buffer
773 * descriptors. FEC handles all errors, we just discover
774 * them as part of the transmit process.
775 */
776 if (int_events & FEC_ENET_TXF) {
777 ret = IRQ_HANDLED;
778 fec_enet_tx(ndev);
779 }
780
781 if (int_events & FEC_ENET_MII) {
782 ret = IRQ_HANDLED;
783 complete(&fep->mdio_done);
784 }
785 } while (int_events);
786
787 return ret;
788 }
789
790
791
792 /* ------------------------------------------------------------------------- */
793 static void __inline__ fec_get_mac(struct net_device *ndev)
794 {
795 struct fec_enet_private *fep = netdev_priv(ndev);
796 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
797 unsigned char *iap, tmpaddr[ETH_ALEN];
798
799 /*
800 * try to get mac address in following order:
801 *
802 * 1) module parameter via kernel command line in form
803 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
804 */
805 iap = macaddr;
806
807 #ifdef CONFIG_OF
808 /*
809 * 2) from device tree data
810 */
811 if (!is_valid_ether_addr(iap)) {
812 struct device_node *np = fep->pdev->dev.of_node;
813 if (np) {
814 const char *mac = of_get_mac_address(np);
815 if (mac)
816 iap = (unsigned char *) mac;
817 }
818 }
819 #endif
820
821 /*
822 * 3) from flash or fuse (via platform data)
823 */
824 if (!is_valid_ether_addr(iap)) {
825 #ifdef CONFIG_M5272
826 if (FEC_FLASHMAC)
827 iap = (unsigned char *)FEC_FLASHMAC;
828 #else
829 if (pdata)
830 iap = (unsigned char *)&pdata->mac;
831 #endif
832 }
833
834 /*
835 * 4) FEC mac registers set by bootloader
836 */
837 if (!is_valid_ether_addr(iap)) {
838 *((unsigned long *) &tmpaddr[0]) =
839 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
840 *((unsigned short *) &tmpaddr[4]) =
841 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
842 iap = &tmpaddr[0];
843 }
844
845 memcpy(ndev->dev_addr, iap, ETH_ALEN);
846
847 /* Adjust MAC if using macaddr */
848 if (iap == macaddr)
849 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
850 }
851
852 /* ------------------------------------------------------------------------- */
853
854 /*
855 * Phy section
856 */
857 static void fec_enet_adjust_link(struct net_device *ndev)
858 {
859 struct fec_enet_private *fep = netdev_priv(ndev);
860 struct phy_device *phy_dev = fep->phy_dev;
861 unsigned long flags;
862
863 int status_change = 0;
864
865 spin_lock_irqsave(&fep->hw_lock, flags);
866
867 /* Prevent a state halted on mii error */
868 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
869 phy_dev->state = PHY_RESUMING;
870 goto spin_unlock;
871 }
872
873 /* Duplex link change */
874 if (phy_dev->link) {
875 if (fep->full_duplex != phy_dev->duplex) {
876 fec_restart(ndev, phy_dev->duplex);
877 /* prevent unnecessary second fec_restart() below */
878 fep->link = phy_dev->link;
879 status_change = 1;
880 }
881 }
882
883 /* Link on or off change */
884 if (phy_dev->link != fep->link) {
885 fep->link = phy_dev->link;
886 if (phy_dev->link)
887 fec_restart(ndev, phy_dev->duplex);
888 else
889 fec_stop(ndev);
890 status_change = 1;
891 }
892
893 spin_unlock:
894 spin_unlock_irqrestore(&fep->hw_lock, flags);
895
896 if (status_change)
897 phy_print_status(phy_dev);
898 }
899
900 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
901 {
902 struct fec_enet_private *fep = bus->priv;
903 unsigned long time_left;
904
905 fep->mii_timeout = 0;
906 init_completion(&fep->mdio_done);
907
908 /* start a read op */
909 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
910 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
911 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
912
913 /* wait for end of transfer */
914 time_left = wait_for_completion_timeout(&fep->mdio_done,
915 usecs_to_jiffies(FEC_MII_TIMEOUT));
916 if (time_left == 0) {
917 fep->mii_timeout = 1;
918 printk(KERN_ERR "FEC: MDIO read timeout\n");
919 return -ETIMEDOUT;
920 }
921
922 /* return value */
923 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
924 }
925
926 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
927 u16 value)
928 {
929 struct fec_enet_private *fep = bus->priv;
930 unsigned long time_left;
931
932 fep->mii_timeout = 0;
933 init_completion(&fep->mdio_done);
934
935 /* start a write op */
936 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
937 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
938 FEC_MMFR_TA | FEC_MMFR_DATA(value),
939 fep->hwp + FEC_MII_DATA);
940
941 /* wait for end of transfer */
942 time_left = wait_for_completion_timeout(&fep->mdio_done,
943 usecs_to_jiffies(FEC_MII_TIMEOUT));
944 if (time_left == 0) {
945 fep->mii_timeout = 1;
946 printk(KERN_ERR "FEC: MDIO write timeout\n");
947 return -ETIMEDOUT;
948 }
949
950 return 0;
951 }
952
953 static int fec_enet_mdio_reset(struct mii_bus *bus)
954 {
955 return 0;
956 }
957
958 static int fec_enet_mii_probe(struct net_device *ndev)
959 {
960 struct fec_enet_private *fep = netdev_priv(ndev);
961 const struct platform_device_id *id_entry =
962 platform_get_device_id(fep->pdev);
963 struct phy_device *phy_dev = NULL;
964 char mdio_bus_id[MII_BUS_ID_SIZE];
965 char phy_name[MII_BUS_ID_SIZE + 3];
966 int phy_id;
967 int dev_id = fep->dev_id;
968
969 fep->phy_dev = NULL;
970
971 /* check for attached phy */
972 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
973 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
974 continue;
975 if (fep->mii_bus->phy_map[phy_id] == NULL)
976 continue;
977 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
978 continue;
979 if (dev_id--)
980 continue;
981 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
982 break;
983 }
984
985 if (phy_id >= PHY_MAX_ADDR) {
986 printk(KERN_INFO
987 "%s: no PHY, assuming direct connection to switch\n",
988 ndev->name);
989 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
990 phy_id = 0;
991 }
992
993 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
994 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
995 fep->phy_interface);
996 if (IS_ERR(phy_dev)) {
997 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
998 return PTR_ERR(phy_dev);
999 }
1000
1001 /* mask with MAC supported features */
1002 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
1003 phy_dev->supported &= PHY_GBIT_FEATURES;
1004 else
1005 phy_dev->supported &= PHY_BASIC_FEATURES;
1006
1007 phy_dev->advertising = phy_dev->supported;
1008
1009 fep->phy_dev = phy_dev;
1010 fep->link = 0;
1011 fep->full_duplex = 0;
1012
1013 printk(KERN_INFO
1014 "%s: Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1015 ndev->name,
1016 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1017 fep->phy_dev->irq);
1018
1019 return 0;
1020 }
1021
1022 static int fec_enet_mii_init(struct platform_device *pdev)
1023 {
1024 static struct mii_bus *fec0_mii_bus;
1025 struct net_device *ndev = platform_get_drvdata(pdev);
1026 struct fec_enet_private *fep = netdev_priv(ndev);
1027 const struct platform_device_id *id_entry =
1028 platform_get_device_id(fep->pdev);
1029 int err = -ENXIO, i;
1030
1031 /*
1032 * The dual fec interfaces are not equivalent with enet-mac.
1033 * Here are the differences:
1034 *
1035 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1036 * - fec0 acts as the 1588 time master while fec1 is slave
1037 * - external phys can only be configured by fec0
1038 *
1039 * That is to say fec1 can not work independently. It only works
1040 * when fec0 is working. The reason behind this design is that the
1041 * second interface is added primarily for Switch mode.
1042 *
1043 * Because of the last point above, both phys are attached on fec0
1044 * mdio interface in board design, and need to be configured by
1045 * fec0 mii_bus.
1046 */
1047 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1048 /* fec1 uses fec0 mii_bus */
1049 if (mii_cnt && fec0_mii_bus) {
1050 fep->mii_bus = fec0_mii_bus;
1051 mii_cnt++;
1052 return 0;
1053 }
1054 return -ENOENT;
1055 }
1056
1057 fep->mii_timeout = 0;
1058
1059 /*
1060 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1061 *
1062 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1063 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1064 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1065 * document.
1066 */
1067 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
1068 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1069 fep->phy_speed--;
1070 fep->phy_speed <<= 1;
1071 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1072
1073 fep->mii_bus = mdiobus_alloc();
1074 if (fep->mii_bus == NULL) {
1075 err = -ENOMEM;
1076 goto err_out;
1077 }
1078
1079 fep->mii_bus->name = "fec_enet_mii_bus";
1080 fep->mii_bus->read = fec_enet_mdio_read;
1081 fep->mii_bus->write = fec_enet_mdio_write;
1082 fep->mii_bus->reset = fec_enet_mdio_reset;
1083 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1084 pdev->name, fep->dev_id + 1);
1085 fep->mii_bus->priv = fep;
1086 fep->mii_bus->parent = &pdev->dev;
1087
1088 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1089 if (!fep->mii_bus->irq) {
1090 err = -ENOMEM;
1091 goto err_out_free_mdiobus;
1092 }
1093
1094 for (i = 0; i < PHY_MAX_ADDR; i++)
1095 fep->mii_bus->irq[i] = PHY_POLL;
1096
1097 if (mdiobus_register(fep->mii_bus))
1098 goto err_out_free_mdio_irq;
1099
1100 mii_cnt++;
1101
1102 /* save fec0 mii_bus */
1103 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1104 fec0_mii_bus = fep->mii_bus;
1105
1106 return 0;
1107
1108 err_out_free_mdio_irq:
1109 kfree(fep->mii_bus->irq);
1110 err_out_free_mdiobus:
1111 mdiobus_free(fep->mii_bus);
1112 err_out:
1113 return err;
1114 }
1115
1116 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1117 {
1118 if (--mii_cnt == 0) {
1119 mdiobus_unregister(fep->mii_bus);
1120 kfree(fep->mii_bus->irq);
1121 mdiobus_free(fep->mii_bus);
1122 }
1123 }
1124
1125 static int fec_enet_get_settings(struct net_device *ndev,
1126 struct ethtool_cmd *cmd)
1127 {
1128 struct fec_enet_private *fep = netdev_priv(ndev);
1129 struct phy_device *phydev = fep->phy_dev;
1130
1131 if (!phydev)
1132 return -ENODEV;
1133
1134 return phy_ethtool_gset(phydev, cmd);
1135 }
1136
1137 static int fec_enet_set_settings(struct net_device *ndev,
1138 struct ethtool_cmd *cmd)
1139 {
1140 struct fec_enet_private *fep = netdev_priv(ndev);
1141 struct phy_device *phydev = fep->phy_dev;
1142
1143 if (!phydev)
1144 return -ENODEV;
1145
1146 return phy_ethtool_sset(phydev, cmd);
1147 }
1148
1149 static void fec_enet_get_drvinfo(struct net_device *ndev,
1150 struct ethtool_drvinfo *info)
1151 {
1152 struct fec_enet_private *fep = netdev_priv(ndev);
1153
1154 strcpy(info->driver, fep->pdev->dev.driver->name);
1155 strcpy(info->version, "Revision: 1.0");
1156 strcpy(info->bus_info, dev_name(&ndev->dev));
1157 }
1158
1159 static const struct ethtool_ops fec_enet_ethtool_ops = {
1160 .get_settings = fec_enet_get_settings,
1161 .set_settings = fec_enet_set_settings,
1162 .get_drvinfo = fec_enet_get_drvinfo,
1163 .get_link = ethtool_op_get_link,
1164 };
1165
1166 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1167 {
1168 struct fec_enet_private *fep = netdev_priv(ndev);
1169 struct phy_device *phydev = fep->phy_dev;
1170
1171 if (!netif_running(ndev))
1172 return -EINVAL;
1173
1174 if (!phydev)
1175 return -ENODEV;
1176
1177 return phy_mii_ioctl(phydev, rq, cmd);
1178 }
1179
1180 static void fec_enet_free_buffers(struct net_device *ndev)
1181 {
1182 struct fec_enet_private *fep = netdev_priv(ndev);
1183 int i;
1184 struct sk_buff *skb;
1185 struct bufdesc *bdp;
1186
1187 bdp = fep->rx_bd_base;
1188 for (i = 0; i < RX_RING_SIZE; i++) {
1189 skb = fep->rx_skbuff[i];
1190
1191 if (bdp->cbd_bufaddr)
1192 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1193 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1194 if (skb)
1195 dev_kfree_skb(skb);
1196 bdp++;
1197 }
1198
1199 bdp = fep->tx_bd_base;
1200 for (i = 0; i < TX_RING_SIZE; i++)
1201 kfree(fep->tx_bounce[i]);
1202 }
1203
1204 static int fec_enet_alloc_buffers(struct net_device *ndev)
1205 {
1206 struct fec_enet_private *fep = netdev_priv(ndev);
1207 int i;
1208 struct sk_buff *skb;
1209 struct bufdesc *bdp;
1210
1211 bdp = fep->rx_bd_base;
1212 for (i = 0; i < RX_RING_SIZE; i++) {
1213 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1214 if (!skb) {
1215 fec_enet_free_buffers(ndev);
1216 return -ENOMEM;
1217 }
1218 fep->rx_skbuff[i] = skb;
1219
1220 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1221 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1222 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1223 bdp++;
1224 }
1225
1226 /* Set the last buffer to wrap. */
1227 bdp--;
1228 bdp->cbd_sc |= BD_SC_WRAP;
1229
1230 bdp = fep->tx_bd_base;
1231 for (i = 0; i < TX_RING_SIZE; i++) {
1232 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1233
1234 bdp->cbd_sc = 0;
1235 bdp->cbd_bufaddr = 0;
1236 bdp++;
1237 }
1238
1239 /* Set the last buffer to wrap. */
1240 bdp--;
1241 bdp->cbd_sc |= BD_SC_WRAP;
1242
1243 return 0;
1244 }
1245
1246 static int
1247 fec_enet_open(struct net_device *ndev)
1248 {
1249 struct fec_enet_private *fep = netdev_priv(ndev);
1250 int ret;
1251
1252 /* I should reset the ring buffers here, but I don't yet know
1253 * a simple way to do that.
1254 */
1255
1256 ret = fec_enet_alloc_buffers(ndev);
1257 if (ret)
1258 return ret;
1259
1260 /* Probe and connect to PHY when open the interface */
1261 ret = fec_enet_mii_probe(ndev);
1262 if (ret) {
1263 fec_enet_free_buffers(ndev);
1264 return ret;
1265 }
1266 phy_start(fep->phy_dev);
1267 netif_start_queue(ndev);
1268 fep->opened = 1;
1269 return 0;
1270 }
1271
1272 static int
1273 fec_enet_close(struct net_device *ndev)
1274 {
1275 struct fec_enet_private *fep = netdev_priv(ndev);
1276
1277 /* Don't know what to do yet. */
1278 fep->opened = 0;
1279 netif_stop_queue(ndev);
1280 fec_stop(ndev);
1281
1282 if (fep->phy_dev) {
1283 phy_stop(fep->phy_dev);
1284 phy_disconnect(fep->phy_dev);
1285 }
1286
1287 fec_enet_free_buffers(ndev);
1288
1289 return 0;
1290 }
1291
1292 /* Set or clear the multicast filter for this adaptor.
1293 * Skeleton taken from sunlance driver.
1294 * The CPM Ethernet implementation allows Multicast as well as individual
1295 * MAC address filtering. Some of the drivers check to make sure it is
1296 * a group multicast address, and discard those that are not. I guess I
1297 * will do the same for now, but just remove the test if you want
1298 * individual filtering as well (do the upper net layers want or support
1299 * this kind of feature?).
1300 */
1301
1302 #define HASH_BITS 6 /* #bits in hash */
1303 #define CRC32_POLY 0xEDB88320
1304
1305 static void set_multicast_list(struct net_device *ndev)
1306 {
1307 struct fec_enet_private *fep = netdev_priv(ndev);
1308 struct netdev_hw_addr *ha;
1309 unsigned int i, bit, data, crc, tmp;
1310 unsigned char hash;
1311
1312 if (ndev->flags & IFF_PROMISC) {
1313 tmp = readl(fep->hwp + FEC_R_CNTRL);
1314 tmp |= 0x8;
1315 writel(tmp, fep->hwp + FEC_R_CNTRL);
1316 return;
1317 }
1318
1319 tmp = readl(fep->hwp + FEC_R_CNTRL);
1320 tmp &= ~0x8;
1321 writel(tmp, fep->hwp + FEC_R_CNTRL);
1322
1323 if (ndev->flags & IFF_ALLMULTI) {
1324 /* Catch all multicast addresses, so set the
1325 * filter to all 1's
1326 */
1327 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1328 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1329
1330 return;
1331 }
1332
1333 /* Clear filter and add the addresses in hash register
1334 */
1335 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1336 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1337
1338 netdev_for_each_mc_addr(ha, ndev) {
1339 /* calculate crc32 value of mac address */
1340 crc = 0xffffffff;
1341
1342 for (i = 0; i < ndev->addr_len; i++) {
1343 data = ha->addr[i];
1344 for (bit = 0; bit < 8; bit++, data >>= 1) {
1345 crc = (crc >> 1) ^
1346 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1347 }
1348 }
1349
1350 /* only upper 6 bits (HASH_BITS) are used
1351 * which point to specific bit in he hash registers
1352 */
1353 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1354
1355 if (hash > 31) {
1356 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1357 tmp |= 1 << (hash - 32);
1358 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1359 } else {
1360 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1361 tmp |= 1 << hash;
1362 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1363 }
1364 }
1365 }
1366
1367 /* Set a MAC change in hardware. */
1368 static int
1369 fec_set_mac_address(struct net_device *ndev, void *p)
1370 {
1371 struct fec_enet_private *fep = netdev_priv(ndev);
1372 struct sockaddr *addr = p;
1373
1374 if (!is_valid_ether_addr(addr->sa_data))
1375 return -EADDRNOTAVAIL;
1376
1377 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1378
1379 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1380 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1381 fep->hwp + FEC_ADDR_LOW);
1382 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1383 fep->hwp + FEC_ADDR_HIGH);
1384 return 0;
1385 }
1386
1387 #ifdef CONFIG_NET_POLL_CONTROLLER
1388 /*
1389 * fec_poll_controller: FEC Poll controller function
1390 * @dev: The FEC network adapter
1391 *
1392 * Polled functionality used by netconsole and others in non interrupt mode
1393 *
1394 */
1395 void fec_poll_controller(struct net_device *dev)
1396 {
1397 int i;
1398 struct fec_enet_private *fep = netdev_priv(dev);
1399
1400 for (i = 0; i < FEC_IRQ_NUM; i++) {
1401 if (fep->irq[i] > 0) {
1402 disable_irq(fep->irq[i]);
1403 fec_enet_interrupt(fep->irq[i], dev);
1404 enable_irq(fep->irq[i]);
1405 }
1406 }
1407 }
1408 #endif
1409
1410 static const struct net_device_ops fec_netdev_ops = {
1411 .ndo_open = fec_enet_open,
1412 .ndo_stop = fec_enet_close,
1413 .ndo_start_xmit = fec_enet_start_xmit,
1414 .ndo_set_rx_mode = set_multicast_list,
1415 .ndo_change_mtu = eth_change_mtu,
1416 .ndo_validate_addr = eth_validate_addr,
1417 .ndo_tx_timeout = fec_timeout,
1418 .ndo_set_mac_address = fec_set_mac_address,
1419 .ndo_do_ioctl = fec_enet_ioctl,
1420 #ifdef CONFIG_NET_POLL_CONTROLLER
1421 .ndo_poll_controller = fec_poll_controller,
1422 #endif
1423 };
1424
1425 /*
1426 * XXX: We need to clean up on failure exits here.
1427 *
1428 */
1429 static int fec_enet_init(struct net_device *ndev)
1430 {
1431 struct fec_enet_private *fep = netdev_priv(ndev);
1432 struct bufdesc *cbd_base;
1433 struct bufdesc *bdp;
1434 int i;
1435
1436 /* Allocate memory for buffer descriptors. */
1437 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1438 GFP_KERNEL);
1439 if (!cbd_base) {
1440 printk("FEC: allocate descriptor memory failed?\n");
1441 return -ENOMEM;
1442 }
1443
1444 spin_lock_init(&fep->hw_lock);
1445
1446 fep->netdev = ndev;
1447
1448 /* Get the Ethernet address */
1449 fec_get_mac(ndev);
1450
1451 /* Set receive and transmit descriptor base. */
1452 fep->rx_bd_base = cbd_base;
1453 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1454
1455 /* The FEC Ethernet specific entries in the device structure */
1456 ndev->watchdog_timeo = TX_TIMEOUT;
1457 ndev->netdev_ops = &fec_netdev_ops;
1458 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1459
1460 /* Initialize the receive buffer descriptors. */
1461 bdp = fep->rx_bd_base;
1462 for (i = 0; i < RX_RING_SIZE; i++) {
1463
1464 /* Initialize the BD for every fragment in the page. */
1465 bdp->cbd_sc = 0;
1466 bdp++;
1467 }
1468
1469 /* Set the last buffer to wrap */
1470 bdp--;
1471 bdp->cbd_sc |= BD_SC_WRAP;
1472
1473 /* ...and the same for transmit */
1474 bdp = fep->tx_bd_base;
1475 for (i = 0; i < TX_RING_SIZE; i++) {
1476
1477 /* Initialize the BD for every fragment in the page. */
1478 bdp->cbd_sc = 0;
1479 bdp->cbd_bufaddr = 0;
1480 bdp++;
1481 }
1482
1483 /* Set the last buffer to wrap */
1484 bdp--;
1485 bdp->cbd_sc |= BD_SC_WRAP;
1486
1487 fec_restart(ndev, 0);
1488
1489 return 0;
1490 }
1491
1492 #ifdef CONFIG_OF
1493 static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1494 {
1495 struct device_node *np = pdev->dev.of_node;
1496
1497 if (np)
1498 return of_get_phy_mode(np);
1499
1500 return -ENODEV;
1501 }
1502
1503 static void __devinit fec_reset_phy(struct platform_device *pdev)
1504 {
1505 int err, phy_reset;
1506 struct device_node *np = pdev->dev.of_node;
1507
1508 if (!np)
1509 return;
1510
1511 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1512 err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1513 if (err) {
1514 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1515 return;
1516 }
1517 msleep(1);
1518 gpio_set_value(phy_reset, 1);
1519 }
1520 #else /* CONFIG_OF */
1521 static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1522 {
1523 return -ENODEV;
1524 }
1525
1526 static inline void fec_reset_phy(struct platform_device *pdev)
1527 {
1528 /*
1529 * In case of platform probe, the reset has been done
1530 * by machine code.
1531 */
1532 }
1533 #endif /* CONFIG_OF */
1534
1535 static int __devinit
1536 fec_probe(struct platform_device *pdev)
1537 {
1538 struct fec_enet_private *fep;
1539 struct fec_platform_data *pdata;
1540 struct net_device *ndev;
1541 int i, irq, ret = 0;
1542 struct resource *r;
1543 const struct of_device_id *of_id;
1544 static int dev_id;
1545
1546 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1547 if (of_id)
1548 pdev->id_entry = of_id->data;
1549
1550 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1551 if (!r)
1552 return -ENXIO;
1553
1554 r = request_mem_region(r->start, resource_size(r), pdev->name);
1555 if (!r)
1556 return -EBUSY;
1557
1558 /* Init network device */
1559 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1560 if (!ndev) {
1561 ret = -ENOMEM;
1562 goto failed_alloc_etherdev;
1563 }
1564
1565 SET_NETDEV_DEV(ndev, &pdev->dev);
1566
1567 /* setup board info structure */
1568 fep = netdev_priv(ndev);
1569
1570 fep->hwp = ioremap(r->start, resource_size(r));
1571 fep->pdev = pdev;
1572 fep->dev_id = dev_id++;
1573
1574 if (!fep->hwp) {
1575 ret = -ENOMEM;
1576 goto failed_ioremap;
1577 }
1578
1579 platform_set_drvdata(pdev, ndev);
1580
1581 ret = fec_get_phy_mode_dt(pdev);
1582 if (ret < 0) {
1583 pdata = pdev->dev.platform_data;
1584 if (pdata)
1585 fep->phy_interface = pdata->phy;
1586 else
1587 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1588 } else {
1589 fep->phy_interface = ret;
1590 }
1591
1592 fec_reset_phy(pdev);
1593
1594 for (i = 0; i < FEC_IRQ_NUM; i++) {
1595 irq = platform_get_irq(pdev, i);
1596 if (irq < 0) {
1597 if (i)
1598 break;
1599 ret = irq;
1600 goto failed_irq;
1601 }
1602 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1603 if (ret) {
1604 while (--i >= 0) {
1605 irq = platform_get_irq(pdev, i);
1606 free_irq(irq, ndev);
1607 }
1608 goto failed_irq;
1609 }
1610 }
1611
1612 fep->clk = clk_get(&pdev->dev, NULL);
1613 if (IS_ERR(fep->clk)) {
1614 ret = PTR_ERR(fep->clk);
1615 goto failed_clk;
1616 }
1617 clk_prepare_enable(fep->clk);
1618
1619 ret = fec_enet_init(ndev);
1620 if (ret)
1621 goto failed_init;
1622
1623 ret = fec_enet_mii_init(pdev);
1624 if (ret)
1625 goto failed_mii_init;
1626
1627 /* Carrier starts down, phylib will bring it up */
1628 netif_carrier_off(ndev);
1629
1630 ret = register_netdev(ndev);
1631 if (ret)
1632 goto failed_register;
1633
1634 return 0;
1635
1636 failed_register:
1637 fec_enet_mii_remove(fep);
1638 failed_mii_init:
1639 failed_init:
1640 clk_disable_unprepare(fep->clk);
1641 clk_put(fep->clk);
1642 failed_clk:
1643 for (i = 0; i < FEC_IRQ_NUM; i++) {
1644 irq = platform_get_irq(pdev, i);
1645 if (irq > 0)
1646 free_irq(irq, ndev);
1647 }
1648 failed_irq:
1649 iounmap(fep->hwp);
1650 failed_ioremap:
1651 free_netdev(ndev);
1652 failed_alloc_etherdev:
1653 release_mem_region(r->start, resource_size(r));
1654
1655 return ret;
1656 }
1657
1658 static int __devexit
1659 fec_drv_remove(struct platform_device *pdev)
1660 {
1661 struct net_device *ndev = platform_get_drvdata(pdev);
1662 struct fec_enet_private *fep = netdev_priv(ndev);
1663 struct resource *r;
1664 int i;
1665
1666 unregister_netdev(ndev);
1667 fec_enet_mii_remove(fep);
1668 for (i = 0; i < FEC_IRQ_NUM; i++) {
1669 int irq = platform_get_irq(pdev, i);
1670 if (irq > 0)
1671 free_irq(irq, ndev);
1672 }
1673 clk_disable_unprepare(fep->clk);
1674 clk_put(fep->clk);
1675 iounmap(fep->hwp);
1676 free_netdev(ndev);
1677
1678 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1679 BUG_ON(!r);
1680 release_mem_region(r->start, resource_size(r));
1681
1682 platform_set_drvdata(pdev, NULL);
1683
1684 return 0;
1685 }
1686
1687 #ifdef CONFIG_PM
1688 static int
1689 fec_suspend(struct device *dev)
1690 {
1691 struct net_device *ndev = dev_get_drvdata(dev);
1692 struct fec_enet_private *fep = netdev_priv(ndev);
1693
1694 if (netif_running(ndev)) {
1695 fec_stop(ndev);
1696 netif_device_detach(ndev);
1697 }
1698 clk_disable_unprepare(fep->clk);
1699
1700 return 0;
1701 }
1702
1703 static int
1704 fec_resume(struct device *dev)
1705 {
1706 struct net_device *ndev = dev_get_drvdata(dev);
1707 struct fec_enet_private *fep = netdev_priv(ndev);
1708
1709 clk_prepare_enable(fep->clk);
1710 if (netif_running(ndev)) {
1711 fec_restart(ndev, fep->full_duplex);
1712 netif_device_attach(ndev);
1713 }
1714
1715 return 0;
1716 }
1717
1718 static const struct dev_pm_ops fec_pm_ops = {
1719 .suspend = fec_suspend,
1720 .resume = fec_resume,
1721 .freeze = fec_suspend,
1722 .thaw = fec_resume,
1723 .poweroff = fec_suspend,
1724 .restore = fec_resume,
1725 };
1726 #endif
1727
1728 static struct platform_driver fec_driver = {
1729 .driver = {
1730 .name = DRIVER_NAME,
1731 .owner = THIS_MODULE,
1732 #ifdef CONFIG_PM
1733 .pm = &fec_pm_ops,
1734 #endif
1735 .of_match_table = fec_dt_ids,
1736 },
1737 .id_table = fec_devtype,
1738 .probe = fec_probe,
1739 .remove = __devexit_p(fec_drv_remove),
1740 };
1741
1742 module_platform_driver(fec_driver);
1743
1744 MODULE_LICENSE("GPL");
This page took 0.197733 seconds and 5 git commands to generate.