MAINTAINERS: Add phy-miphy28lp.c and phy-miphy365x.c to ARCH/STI architecture
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61
62 #include <asm/cacheflush.h>
63
64 #include "fec.h"
65
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69 #define DRIVER_NAME "fec"
70
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE (1 << 5)
75 #define FEC_ENET_RSEM_V 0x84
76 #define FEC_ENET_RSFL_V 16
77 #define FEC_ENET_RAEM_V 0x8
78 #define FEC_ENET_RAFL_V 0x8
79 #define FEC_ENET_OPD_V 0xFFF0
80
81 static struct platform_device_id fec_devtype[] = {
82 {
83 /* keep it for coldfire */
84 .name = DRIVER_NAME,
85 .driver_data = 0,
86 }, {
87 .name = "imx25-fec",
88 .driver_data = FEC_QUIRK_USE_GASKET,
89 }, {
90 .name = "imx27-fec",
91 .driver_data = 0,
92 }, {
93 .name = "imx28-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 FEC_QUIRK_SINGLE_MDIO,
96 }, {
97 .name = "imx6q-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 }, {
102 .name = "mvf600-fec",
103 .driver_data = FEC_QUIRK_ENET_MAC,
104 }, {
105 .name = "imx6sx-fec",
106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 }, {
111 /* sentinel */
112 }
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115
116 enum imx_fec_type {
117 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
118 IMX27_FEC, /* runs on i.mx27/35/51 */
119 IMX28_FEC,
120 IMX6Q_FEC,
121 MVF600_FEC,
122 IMX6SX_FEC,
123 };
124
125 static const struct of_device_id fec_dt_ids[] = {
126 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 { /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139
140 #if defined(CONFIG_M5272)
141 /*
142 * Some hardware gets it MAC address out of local flash memory.
143 * if this is non-zero then assume it is the address to get MAC from.
144 */
145 #if defined(CONFIG_NETtel)
146 #define FEC_FLASHMAC 0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define FEC_FLASHMAC 0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define FEC_FLASHMAC 0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define FEC_FLASHMAC (0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC 0xffc0406b
155 #else
156 #define FEC_FLASHMAC 0
157 #endif
158 #endif /* CONFIG_M5272 */
159
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161 */
162 #define PKT_MAXBUF_SIZE 1522
163 #define PKT_MINBUF_SIZE 64
164 #define PKT_MAXBLR_SIZE 1536
165
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS (1 << 1)
168 #define FEC_RACC_PRODIS (1 << 2)
169 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170
171 /*
172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173 * size bits. Other FEC hardware does not, so we need to take that into
174 * account when setting it.
175 */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
179 #else
180 #define OPT_FRAME_SIZE 0
181 #endif
182
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST (1 << 30)
185 #define FEC_MMFR_OP_READ (2 << 28)
186 #define FEC_MMFR_OP_WRITE (1 << 28)
187 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
189 #define FEC_MMFR_TA (2 << 16)
190 #define FEC_MMFR_DATA(v) (v & 0xffff)
191 /* FEC ECR bits definition */
192 #define FEC_ECR_MAGICEN (1 << 2)
193 #define FEC_ECR_SLEEP (1 << 3)
194
195 #define FEC_MII_TIMEOUT 30000 /* us */
196
197 /* Transmitter timeout */
198 #define TX_TIMEOUT (2 * HZ)
199
200 #define FEC_PAUSE_FLAG_AUTONEG 0x1
201 #define FEC_PAUSE_FLAG_ENABLE 0x2
202 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
203 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
204 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
205
206 #define COPYBREAK_DEFAULT 256
207
208 #define TSO_HEADER_SIZE 128
209 /* Max number of allowed TCP segments for software TSO */
210 #define FEC_MAX_TSO_SEGS 100
211 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212
213 #define IS_TSO_HEADER(txq, addr) \
214 ((addr >= txq->tso_hdrs_dma) && \
215 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216
217 static int mii_cnt;
218
219 static inline
220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221 struct fec_enet_private *fep,
222 int queue_id)
223 {
224 struct bufdesc *new_bd = bdp + 1;
225 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228 struct bufdesc_ex *ex_base;
229 struct bufdesc *base;
230 int ring_size;
231
232 if (bdp >= txq->tx_bd_base) {
233 base = txq->tx_bd_base;
234 ring_size = txq->tx_ring_size;
235 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236 } else {
237 base = rxq->rx_bd_base;
238 ring_size = rxq->rx_ring_size;
239 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240 }
241
242 if (fep->bufdesc_ex)
243 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244 ex_base : ex_new_bd);
245 else
246 return (new_bd >= (base + ring_size)) ?
247 base : new_bd;
248 }
249
250 static inline
251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252 struct fec_enet_private *fep,
253 int queue_id)
254 {
255 struct bufdesc *new_bd = bdp - 1;
256 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259 struct bufdesc_ex *ex_base;
260 struct bufdesc *base;
261 int ring_size;
262
263 if (bdp >= txq->tx_bd_base) {
264 base = txq->tx_bd_base;
265 ring_size = txq->tx_ring_size;
266 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267 } else {
268 base = rxq->rx_bd_base;
269 ring_size = rxq->rx_ring_size;
270 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271 }
272
273 if (fep->bufdesc_ex)
274 return (struct bufdesc *)((ex_new_bd < ex_base) ?
275 (ex_new_bd + ring_size) : ex_new_bd);
276 else
277 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278 }
279
280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281 struct fec_enet_private *fep)
282 {
283 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284 }
285
286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287 struct fec_enet_priv_tx_q *txq)
288 {
289 int entries;
290
291 entries = ((const char *)txq->dirty_tx -
292 (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293
294 return entries > 0 ? entries : entries + txq->tx_ring_size;
295 }
296
297 static void swap_buffer(void *bufaddr, int len)
298 {
299 int i;
300 unsigned int *buf = bufaddr;
301
302 for (i = 0; i < len; i += 4, buf++)
303 swab32s(buf);
304 }
305
306 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307 {
308 int i;
309 unsigned int *src = src_buf;
310 unsigned int *dst = dst_buf;
311
312 for (i = 0; i < len; i += 4, src++, dst++)
313 *dst = swab32p(src);
314 }
315
316 static void fec_dump(struct net_device *ndev)
317 {
318 struct fec_enet_private *fep = netdev_priv(ndev);
319 struct bufdesc *bdp;
320 struct fec_enet_priv_tx_q *txq;
321 int index = 0;
322
323 netdev_info(ndev, "TX ring dump\n");
324 pr_info("Nr SC addr len SKB\n");
325
326 txq = fep->tx_queue[0];
327 bdp = txq->tx_bd_base;
328
329 do {
330 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331 index,
332 bdp == txq->cur_tx ? 'S' : ' ',
333 bdp == txq->dirty_tx ? 'H' : ' ',
334 bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335 txq->tx_skbuff[index]);
336 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337 index++;
338 } while (bdp != txq->tx_bd_base);
339 }
340
341 static inline bool is_ipv4_pkt(struct sk_buff *skb)
342 {
343 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344 }
345
346 static int
347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348 {
349 /* Only run for packets requiring a checksum. */
350 if (skb->ip_summed != CHECKSUM_PARTIAL)
351 return 0;
352
353 if (unlikely(skb_cow_head(skb, 0)))
354 return -1;
355
356 if (is_ipv4_pkt(skb))
357 ip_hdr(skb)->check = 0;
358 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359
360 return 0;
361 }
362
363 static int
364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365 struct sk_buff *skb,
366 struct net_device *ndev)
367 {
368 struct fec_enet_private *fep = netdev_priv(ndev);
369 struct bufdesc *bdp = txq->cur_tx;
370 struct bufdesc_ex *ebdp;
371 int nr_frags = skb_shinfo(skb)->nr_frags;
372 unsigned short queue = skb_get_queue_mapping(skb);
373 int frag, frag_len;
374 unsigned short status;
375 unsigned int estatus = 0;
376 skb_frag_t *this_frag;
377 unsigned int index;
378 void *bufaddr;
379 dma_addr_t addr;
380 int i;
381
382 for (frag = 0; frag < nr_frags; frag++) {
383 this_frag = &skb_shinfo(skb)->frags[frag];
384 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385 ebdp = (struct bufdesc_ex *)bdp;
386
387 status = bdp->cbd_sc;
388 status &= ~BD_ENET_TX_STATS;
389 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390 frag_len = skb_shinfo(skb)->frags[frag].size;
391
392 /* Handle the last BD specially */
393 if (frag == nr_frags - 1) {
394 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395 if (fep->bufdesc_ex) {
396 estatus |= BD_ENET_TX_INT;
397 if (unlikely(skb_shinfo(skb)->tx_flags &
398 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399 estatus |= BD_ENET_TX_TS;
400 }
401 }
402
403 if (fep->bufdesc_ex) {
404 if (fep->quirks & FEC_QUIRK_HAS_AVB)
405 estatus |= FEC_TX_BD_FTYPE(queue);
406 if (skb->ip_summed == CHECKSUM_PARTIAL)
407 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 ebdp->cbd_bdu = 0;
409 ebdp->cbd_esc = estatus;
410 }
411
412 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413
414 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415 if (((unsigned long) bufaddr) & fep->tx_align ||
416 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418 bufaddr = txq->tx_bounce[index];
419
420 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421 swap_buffer(bufaddr, frag_len);
422 }
423
424 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 DMA_TO_DEVICE);
426 if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 dev_kfree_skb_any(skb);
428 if (net_ratelimit())
429 netdev_err(ndev, "Tx DMA memory map failed\n");
430 goto dma_mapping_error;
431 }
432
433 bdp->cbd_bufaddr = addr;
434 bdp->cbd_datlen = frag_len;
435 bdp->cbd_sc = status;
436 }
437
438 txq->cur_tx = bdp;
439
440 return 0;
441
442 dma_mapping_error:
443 bdp = txq->cur_tx;
444 for (i = 0; i < frag; i++) {
445 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 bdp->cbd_datlen, DMA_TO_DEVICE);
448 }
449 return NETDEV_TX_OK;
450 }
451
452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453 struct sk_buff *skb, struct net_device *ndev)
454 {
455 struct fec_enet_private *fep = netdev_priv(ndev);
456 int nr_frags = skb_shinfo(skb)->nr_frags;
457 struct bufdesc *bdp, *last_bdp;
458 void *bufaddr;
459 dma_addr_t addr;
460 unsigned short status;
461 unsigned short buflen;
462 unsigned short queue;
463 unsigned int estatus = 0;
464 unsigned int index;
465 int entries_free;
466 int ret;
467
468 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 if (entries_free < MAX_SKB_FRAGS + 1) {
470 dev_kfree_skb_any(skb);
471 if (net_ratelimit())
472 netdev_err(ndev, "NOT enough BD for SG!\n");
473 return NETDEV_TX_OK;
474 }
475
476 /* Protocol checksum off-load for TCP and UDP. */
477 if (fec_enet_clear_csum(skb, ndev)) {
478 dev_kfree_skb_any(skb);
479 return NETDEV_TX_OK;
480 }
481
482 /* Fill in a Tx ring entry */
483 bdp = txq->cur_tx;
484 status = bdp->cbd_sc;
485 status &= ~BD_ENET_TX_STATS;
486
487 /* Set buffer length and buffer pointer */
488 bufaddr = skb->data;
489 buflen = skb_headlen(skb);
490
491 queue = skb_get_queue_mapping(skb);
492 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493 if (((unsigned long) bufaddr) & fep->tx_align ||
494 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495 memcpy(txq->tx_bounce[index], skb->data, buflen);
496 bufaddr = txq->tx_bounce[index];
497
498 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499 swap_buffer(bufaddr, buflen);
500 }
501
502 /* Push the data cache so the CPM does not get stale memory data. */
503 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 dev_kfree_skb_any(skb);
506 if (net_ratelimit())
507 netdev_err(ndev, "Tx DMA memory map failed\n");
508 return NETDEV_TX_OK;
509 }
510
511 if (nr_frags) {
512 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513 if (ret)
514 return ret;
515 } else {
516 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 if (fep->bufdesc_ex) {
518 estatus = BD_ENET_TX_INT;
519 if (unlikely(skb_shinfo(skb)->tx_flags &
520 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 estatus |= BD_ENET_TX_TS;
522 }
523 }
524
525 if (fep->bufdesc_ex) {
526
527 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528
529 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 fep->hwts_tx_en))
531 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532
533 if (fep->quirks & FEC_QUIRK_HAS_AVB)
534 estatus |= FEC_TX_BD_FTYPE(queue);
535
536 if (skb->ip_summed == CHECKSUM_PARTIAL)
537 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538
539 ebdp->cbd_bdu = 0;
540 ebdp->cbd_esc = estatus;
541 }
542
543 last_bdp = txq->cur_tx;
544 index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 /* Save skb pointer */
546 txq->tx_skbuff[index] = skb;
547
548 bdp->cbd_datlen = buflen;
549 bdp->cbd_bufaddr = addr;
550
551 /* Send it on its way. Tell FEC it's ready, interrupt when done,
552 * it's the last BD of the frame, and to put the CRC on the end.
553 */
554 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 bdp->cbd_sc = status;
556
557 /* If this was the last BD in the ring, start at the beginning again. */
558 bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559
560 skb_tx_timestamp(skb);
561
562 txq->cur_tx = bdp;
563
564 /* Trigger transmission start */
565 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566
567 return 0;
568 }
569
570 static int
571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572 struct net_device *ndev,
573 struct bufdesc *bdp, int index, char *data,
574 int size, bool last_tcp, bool is_last)
575 {
576 struct fec_enet_private *fep = netdev_priv(ndev);
577 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578 unsigned short queue = skb_get_queue_mapping(skb);
579 unsigned short status;
580 unsigned int estatus = 0;
581 dma_addr_t addr;
582
583 status = bdp->cbd_sc;
584 status &= ~BD_ENET_TX_STATS;
585
586 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587
588 if (((unsigned long) data) & fep->tx_align ||
589 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590 memcpy(txq->tx_bounce[index], data, size);
591 data = txq->tx_bounce[index];
592
593 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594 swap_buffer(data, size);
595 }
596
597 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598 if (dma_mapping_error(&fep->pdev->dev, addr)) {
599 dev_kfree_skb_any(skb);
600 if (net_ratelimit())
601 netdev_err(ndev, "Tx DMA memory map failed\n");
602 return NETDEV_TX_BUSY;
603 }
604
605 bdp->cbd_datlen = size;
606 bdp->cbd_bufaddr = addr;
607
608 if (fep->bufdesc_ex) {
609 if (fep->quirks & FEC_QUIRK_HAS_AVB)
610 estatus |= FEC_TX_BD_FTYPE(queue);
611 if (skb->ip_summed == CHECKSUM_PARTIAL)
612 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613 ebdp->cbd_bdu = 0;
614 ebdp->cbd_esc = estatus;
615 }
616
617 /* Handle the last BD specially */
618 if (last_tcp)
619 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620 if (is_last) {
621 status |= BD_ENET_TX_INTR;
622 if (fep->bufdesc_ex)
623 ebdp->cbd_esc |= BD_ENET_TX_INT;
624 }
625
626 bdp->cbd_sc = status;
627
628 return 0;
629 }
630
631 static int
632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633 struct sk_buff *skb, struct net_device *ndev,
634 struct bufdesc *bdp, int index)
635 {
636 struct fec_enet_private *fep = netdev_priv(ndev);
637 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639 unsigned short queue = skb_get_queue_mapping(skb);
640 void *bufaddr;
641 unsigned long dmabuf;
642 unsigned short status;
643 unsigned int estatus = 0;
644
645 status = bdp->cbd_sc;
646 status &= ~BD_ENET_TX_STATS;
647 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648
649 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651 if (((unsigned long)bufaddr) & fep->tx_align ||
652 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654 bufaddr = txq->tx_bounce[index];
655
656 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657 swap_buffer(bufaddr, hdr_len);
658
659 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660 hdr_len, DMA_TO_DEVICE);
661 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662 dev_kfree_skb_any(skb);
663 if (net_ratelimit())
664 netdev_err(ndev, "Tx DMA memory map failed\n");
665 return NETDEV_TX_BUSY;
666 }
667 }
668
669 bdp->cbd_bufaddr = dmabuf;
670 bdp->cbd_datlen = hdr_len;
671
672 if (fep->bufdesc_ex) {
673 if (fep->quirks & FEC_QUIRK_HAS_AVB)
674 estatus |= FEC_TX_BD_FTYPE(queue);
675 if (skb->ip_summed == CHECKSUM_PARTIAL)
676 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677 ebdp->cbd_bdu = 0;
678 ebdp->cbd_esc = estatus;
679 }
680
681 bdp->cbd_sc = status;
682
683 return 0;
684 }
685
686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687 struct sk_buff *skb,
688 struct net_device *ndev)
689 {
690 struct fec_enet_private *fep = netdev_priv(ndev);
691 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692 int total_len, data_left;
693 struct bufdesc *bdp = txq->cur_tx;
694 unsigned short queue = skb_get_queue_mapping(skb);
695 struct tso_t tso;
696 unsigned int index = 0;
697 int ret;
698
699 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700 dev_kfree_skb_any(skb);
701 if (net_ratelimit())
702 netdev_err(ndev, "NOT enough BD for TSO!\n");
703 return NETDEV_TX_OK;
704 }
705
706 /* Protocol checksum off-load for TCP and UDP. */
707 if (fec_enet_clear_csum(skb, ndev)) {
708 dev_kfree_skb_any(skb);
709 return NETDEV_TX_OK;
710 }
711
712 /* Initialize the TSO handler, and prepare the first payload */
713 tso_start(skb, &tso);
714
715 total_len = skb->len - hdr_len;
716 while (total_len > 0) {
717 char *hdr;
718
719 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721 total_len -= data_left;
722
723 /* prepare packet headers: MAC + IP + TCP */
724 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727 if (ret)
728 goto err_release;
729
730 while (data_left > 0) {
731 int size;
732
733 size = min_t(int, tso.size, data_left);
734 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735 index = fec_enet_get_bd_index(txq->tx_bd_base,
736 bdp, fep);
737 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738 bdp, index,
739 tso.data, size,
740 size == data_left,
741 total_len == 0);
742 if (ret)
743 goto err_release;
744
745 data_left -= size;
746 tso_build_data(skb, &tso, size);
747 }
748
749 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750 }
751
752 /* Save skb pointer */
753 txq->tx_skbuff[index] = skb;
754
755 skb_tx_timestamp(skb);
756 txq->cur_tx = bdp;
757
758 /* Trigger transmission start */
759 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765
766 return 0;
767
768 err_release:
769 /* TODO: Release all used data descriptors for TSO */
770 return ret;
771 }
772
773 static netdev_tx_t
774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775 {
776 struct fec_enet_private *fep = netdev_priv(ndev);
777 int entries_free;
778 unsigned short queue;
779 struct fec_enet_priv_tx_q *txq;
780 struct netdev_queue *nq;
781 int ret;
782
783 queue = skb_get_queue_mapping(skb);
784 txq = fep->tx_queue[queue];
785 nq = netdev_get_tx_queue(ndev, queue);
786
787 if (skb_is_gso(skb))
788 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789 else
790 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791 if (ret)
792 return ret;
793
794 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795 if (entries_free <= txq->tx_stop_threshold)
796 netif_tx_stop_queue(nq);
797
798 return NETDEV_TX_OK;
799 }
800
801 /* Init RX & TX buffer descriptors
802 */
803 static void fec_enet_bd_init(struct net_device *dev)
804 {
805 struct fec_enet_private *fep = netdev_priv(dev);
806 struct fec_enet_priv_tx_q *txq;
807 struct fec_enet_priv_rx_q *rxq;
808 struct bufdesc *bdp;
809 unsigned int i;
810 unsigned int q;
811
812 for (q = 0; q < fep->num_rx_queues; q++) {
813 /* Initialize the receive buffer descriptors. */
814 rxq = fep->rx_queue[q];
815 bdp = rxq->rx_bd_base;
816
817 for (i = 0; i < rxq->rx_ring_size; i++) {
818
819 /* Initialize the BD for every fragment in the page. */
820 if (bdp->cbd_bufaddr)
821 bdp->cbd_sc = BD_ENET_RX_EMPTY;
822 else
823 bdp->cbd_sc = 0;
824 bdp = fec_enet_get_nextdesc(bdp, fep, q);
825 }
826
827 /* Set the last buffer to wrap */
828 bdp = fec_enet_get_prevdesc(bdp, fep, q);
829 bdp->cbd_sc |= BD_SC_WRAP;
830
831 rxq->cur_rx = rxq->rx_bd_base;
832 }
833
834 for (q = 0; q < fep->num_tx_queues; q++) {
835 /* ...and the same for transmit */
836 txq = fep->tx_queue[q];
837 bdp = txq->tx_bd_base;
838 txq->cur_tx = bdp;
839
840 for (i = 0; i < txq->tx_ring_size; i++) {
841 /* Initialize the BD for every fragment in the page. */
842 bdp->cbd_sc = 0;
843 if (txq->tx_skbuff[i]) {
844 dev_kfree_skb_any(txq->tx_skbuff[i]);
845 txq->tx_skbuff[i] = NULL;
846 }
847 bdp->cbd_bufaddr = 0;
848 bdp = fec_enet_get_nextdesc(bdp, fep, q);
849 }
850
851 /* Set the last buffer to wrap */
852 bdp = fec_enet_get_prevdesc(bdp, fep, q);
853 bdp->cbd_sc |= BD_SC_WRAP;
854 txq->dirty_tx = bdp;
855 }
856 }
857
858 static void fec_enet_active_rxring(struct net_device *ndev)
859 {
860 struct fec_enet_private *fep = netdev_priv(ndev);
861 int i;
862
863 for (i = 0; i < fep->num_rx_queues; i++)
864 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865 }
866
867 static void fec_enet_enable_ring(struct net_device *ndev)
868 {
869 struct fec_enet_private *fep = netdev_priv(ndev);
870 struct fec_enet_priv_tx_q *txq;
871 struct fec_enet_priv_rx_q *rxq;
872 int i;
873
874 for (i = 0; i < fep->num_rx_queues; i++) {
875 rxq = fep->rx_queue[i];
876 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878
879 /* enable DMA1/2 */
880 if (i)
881 writel(RCMR_MATCHEN | RCMR_CMP(i),
882 fep->hwp + FEC_RCMR(i));
883 }
884
885 for (i = 0; i < fep->num_tx_queues; i++) {
886 txq = fep->tx_queue[i];
887 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888
889 /* enable DMA1/2 */
890 if (i)
891 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892 fep->hwp + FEC_DMA_CFG(i));
893 }
894 }
895
896 static void fec_enet_reset_skb(struct net_device *ndev)
897 {
898 struct fec_enet_private *fep = netdev_priv(ndev);
899 struct fec_enet_priv_tx_q *txq;
900 int i, j;
901
902 for (i = 0; i < fep->num_tx_queues; i++) {
903 txq = fep->tx_queue[i];
904
905 for (j = 0; j < txq->tx_ring_size; j++) {
906 if (txq->tx_skbuff[j]) {
907 dev_kfree_skb_any(txq->tx_skbuff[j]);
908 txq->tx_skbuff[j] = NULL;
909 }
910 }
911 }
912 }
913
914 /*
915 * This function is called to start or restart the FEC during a link
916 * change, transmit timeout, or to reconfigure the FEC. The network
917 * packet processing for this device must be stopped before this call.
918 */
919 static void
920 fec_restart(struct net_device *ndev)
921 {
922 struct fec_enet_private *fep = netdev_priv(ndev);
923 u32 val;
924 u32 temp_mac[2];
925 u32 rcntl = OPT_FRAME_SIZE | 0x04;
926 u32 ecntl = 0x2; /* ETHEREN */
927
928 /* Whack a reset. We should wait for this.
929 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930 * instead of reset MAC itself.
931 */
932 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933 writel(0, fep->hwp + FEC_ECNTRL);
934 } else {
935 writel(1, fep->hwp + FEC_ECNTRL);
936 udelay(10);
937 }
938
939 /*
940 * enet-mac reset will reset mac address registers too,
941 * so need to reconfigure it.
942 */
943 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947 }
948
949 /* Clear any outstanding interrupt. */
950 writel(0xffffffff, fep->hwp + FEC_IEVENT);
951
952 fec_enet_bd_init(ndev);
953
954 fec_enet_enable_ring(ndev);
955
956 /* Reset tx SKB buffers. */
957 fec_enet_reset_skb(ndev);
958
959 /* Enable MII mode */
960 if (fep->full_duplex == DUPLEX_FULL) {
961 /* FD enable */
962 writel(0x04, fep->hwp + FEC_X_CNTRL);
963 } else {
964 /* No Rcv on Xmit */
965 rcntl |= 0x02;
966 writel(0x0, fep->hwp + FEC_X_CNTRL);
967 }
968
969 /* Set MII speed */
970 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971
972 #if !defined(CONFIG_M5272)
973 /* set RX checksum */
974 val = readl(fep->hwp + FEC_RACC);
975 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976 val |= FEC_RACC_OPTIONS;
977 else
978 val &= ~FEC_RACC_OPTIONS;
979 writel(val, fep->hwp + FEC_RACC);
980 #endif
981
982 /*
983 * The phy interface and speed need to get configured
984 * differently on enet-mac.
985 */
986 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987 /* Enable flow control and length check */
988 rcntl |= 0x40000000 | 0x00000020;
989
990 /* RGMII, RMII or MII */
991 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
992 rcntl |= (1 << 6);
993 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 rcntl |= (1 << 8);
995 else
996 rcntl &= ~(1 << 8);
997
998 /* 1G, 100M or 10M */
999 if (fep->phy_dev) {
1000 if (fep->phy_dev->speed == SPEED_1000)
1001 ecntl |= (1 << 5);
1002 else if (fep->phy_dev->speed == SPEED_100)
1003 rcntl &= ~(1 << 9);
1004 else
1005 rcntl |= (1 << 9);
1006 }
1007 } else {
1008 #ifdef FEC_MIIGSK_ENR
1009 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010 u32 cfgr;
1011 /* disable the gasket and wait */
1012 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014 udelay(1);
1015
1016 /*
1017 * configure the gasket:
1018 * RMII, 50 MHz, no loopback, no echo
1019 * MII, 25 MHz, no loopback, no echo
1020 */
1021 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1024 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026
1027 /* re-enable the gasket */
1028 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029 }
1030 #endif
1031 }
1032
1033 #if !defined(CONFIG_M5272)
1034 /* enable pause frame*/
1035 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037 fep->phy_dev && fep->phy_dev->pause)) {
1038 rcntl |= FEC_ENET_FCE;
1039
1040 /* set FIFO threshold parameter to reduce overrun */
1041 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045
1046 /* OPD */
1047 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048 } else {
1049 rcntl &= ~FEC_ENET_FCE;
1050 }
1051 #endif /* !defined(CONFIG_M5272) */
1052
1053 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054
1055 /* Setup multicast filter. */
1056 set_multicast_list(ndev);
1057 #ifndef CONFIG_M5272
1058 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060 #endif
1061
1062 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063 /* enable ENET endian swap */
1064 ecntl |= (1 << 8);
1065 /* enable ENET store and forward mode */
1066 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067 }
1068
1069 if (fep->bufdesc_ex)
1070 ecntl |= (1 << 4);
1071
1072 #ifndef CONFIG_M5272
1073 /* Enable the MIB statistic event counters */
1074 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075 #endif
1076
1077 /* And last, enable the transmit and receive processing */
1078 writel(ecntl, fep->hwp + FEC_ECNTRL);
1079 fec_enet_active_rxring(ndev);
1080
1081 if (fep->bufdesc_ex)
1082 fec_ptp_start_cyclecounter(ndev);
1083
1084 /* Enable interrupts we wish to service */
1085 if (fep->link)
1086 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087 else
1088 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089
1090 /* Init the interrupt coalescing */
1091 fec_enet_itr_coal_init(ndev);
1092
1093 }
1094
1095 static void
1096 fec_stop(struct net_device *ndev)
1097 {
1098 struct fec_enet_private *fep = netdev_priv(ndev);
1099 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101 u32 val;
1102
1103 /* We cannot expect a graceful transmit stop without link !!! */
1104 if (fep->link) {
1105 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106 udelay(10);
1107 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109 }
1110
1111 /* Whack a reset. We should wait for this.
1112 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113 * instead of reset MAC itself.
1114 */
1115 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117 writel(0, fep->hwp + FEC_ECNTRL);
1118 } else {
1119 writel(1, fep->hwp + FEC_ECNTRL);
1120 udelay(10);
1121 }
1122 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123 } else {
1124 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125 val = readl(fep->hwp + FEC_ECNTRL);
1126 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127 writel(val, fep->hwp + FEC_ECNTRL);
1128
1129 if (pdata && pdata->sleep_mode_enable)
1130 pdata->sleep_mode_enable(true);
1131 }
1132 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133
1134 /* We have to keep ENET enabled to have MII interrupt stay working */
1135 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137 writel(2, fep->hwp + FEC_ECNTRL);
1138 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139 }
1140 }
1141
1142
1143 static void
1144 fec_timeout(struct net_device *ndev)
1145 {
1146 struct fec_enet_private *fep = netdev_priv(ndev);
1147
1148 fec_dump(ndev);
1149
1150 ndev->stats.tx_errors++;
1151
1152 schedule_work(&fep->tx_timeout_work);
1153 }
1154
1155 static void fec_enet_timeout_work(struct work_struct *work)
1156 {
1157 struct fec_enet_private *fep =
1158 container_of(work, struct fec_enet_private, tx_timeout_work);
1159 struct net_device *ndev = fep->netdev;
1160
1161 rtnl_lock();
1162 if (netif_device_present(ndev) || netif_running(ndev)) {
1163 napi_disable(&fep->napi);
1164 netif_tx_lock_bh(ndev);
1165 fec_restart(ndev);
1166 netif_wake_queue(ndev);
1167 netif_tx_unlock_bh(ndev);
1168 napi_enable(&fep->napi);
1169 }
1170 rtnl_unlock();
1171 }
1172
1173 static void
1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175 struct skb_shared_hwtstamps *hwtstamps)
1176 {
1177 unsigned long flags;
1178 u64 ns;
1179
1180 spin_lock_irqsave(&fep->tmreg_lock, flags);
1181 ns = timecounter_cyc2time(&fep->tc, ts);
1182 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183
1184 memset(hwtstamps, 0, sizeof(*hwtstamps));
1185 hwtstamps->hwtstamp = ns_to_ktime(ns);
1186 }
1187
1188 static void
1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190 {
1191 struct fec_enet_private *fep;
1192 struct bufdesc *bdp, *bdp_t;
1193 unsigned short status;
1194 struct sk_buff *skb;
1195 struct fec_enet_priv_tx_q *txq;
1196 struct netdev_queue *nq;
1197 int index = 0;
1198 int i, bdnum;
1199 int entries_free;
1200
1201 fep = netdev_priv(ndev);
1202
1203 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1204
1205 txq = fep->tx_queue[queue_id];
1206 /* get next bdp of dirty_tx */
1207 nq = netdev_get_tx_queue(ndev, queue_id);
1208 bdp = txq->dirty_tx;
1209
1210 /* get next bdp of dirty_tx */
1211 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1212
1213 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1214
1215 /* current queue is empty */
1216 if (bdp == txq->cur_tx)
1217 break;
1218
1219 bdp_t = bdp;
1220 bdnum = 1;
1221 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp_t, fep);
1222 skb = txq->tx_skbuff[index];
1223 while (!skb) {
1224 bdp_t = fec_enet_get_nextdesc(bdp_t, fep, queue_id);
1225 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp_t, fep);
1226 skb = txq->tx_skbuff[index];
1227 bdnum++;
1228 }
1229 if (skb_shinfo(skb)->nr_frags &&
1230 (status = bdp_t->cbd_sc) & BD_ENET_TX_READY)
1231 break;
1232
1233 for (i = 0; i < bdnum; i++) {
1234 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1235 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1236 bdp->cbd_datlen, DMA_TO_DEVICE);
1237 bdp->cbd_bufaddr = 0;
1238 if (i < bdnum - 1)
1239 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1240 }
1241 txq->tx_skbuff[index] = NULL;
1242
1243 /* Check for errors. */
1244 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1245 BD_ENET_TX_RL | BD_ENET_TX_UN |
1246 BD_ENET_TX_CSL)) {
1247 ndev->stats.tx_errors++;
1248 if (status & BD_ENET_TX_HB) /* No heartbeat */
1249 ndev->stats.tx_heartbeat_errors++;
1250 if (status & BD_ENET_TX_LC) /* Late collision */
1251 ndev->stats.tx_window_errors++;
1252 if (status & BD_ENET_TX_RL) /* Retrans limit */
1253 ndev->stats.tx_aborted_errors++;
1254 if (status & BD_ENET_TX_UN) /* Underrun */
1255 ndev->stats.tx_fifo_errors++;
1256 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1257 ndev->stats.tx_carrier_errors++;
1258 } else {
1259 ndev->stats.tx_packets++;
1260 ndev->stats.tx_bytes += skb->len;
1261 }
1262
1263 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1264 fep->bufdesc_ex) {
1265 struct skb_shared_hwtstamps shhwtstamps;
1266 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1267
1268 fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1269 skb_tstamp_tx(skb, &shhwtstamps);
1270 }
1271
1272 /* Deferred means some collisions occurred during transmit,
1273 * but we eventually sent the packet OK.
1274 */
1275 if (status & BD_ENET_TX_DEF)
1276 ndev->stats.collisions++;
1277
1278 /* Free the sk buffer associated with this last transmit */
1279 dev_kfree_skb_any(skb);
1280
1281 txq->dirty_tx = bdp;
1282
1283 /* Update pointer to next buffer descriptor to be transmitted */
1284 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1285
1286 /* Since we have freed up a buffer, the ring is no longer full
1287 */
1288 if (netif_queue_stopped(ndev)) {
1289 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1290 if (entries_free >= txq->tx_wake_threshold)
1291 netif_tx_wake_queue(nq);
1292 }
1293 }
1294
1295 /* ERR006538: Keep the transmitter going */
1296 if (bdp != txq->cur_tx &&
1297 readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1298 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1299 }
1300
1301 static void
1302 fec_enet_tx(struct net_device *ndev)
1303 {
1304 struct fec_enet_private *fep = netdev_priv(ndev);
1305 u16 queue_id;
1306 /* First process class A queue, then Class B and Best Effort queue */
1307 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1308 clear_bit(queue_id, &fep->work_tx);
1309 fec_enet_tx_queue(ndev, queue_id);
1310 }
1311 return;
1312 }
1313
1314 static int
1315 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1316 {
1317 struct fec_enet_private *fep = netdev_priv(ndev);
1318 int off;
1319
1320 off = ((unsigned long)skb->data) & fep->rx_align;
1321 if (off)
1322 skb_reserve(skb, fep->rx_align + 1 - off);
1323
1324 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1325 FEC_ENET_RX_FRSIZE - fep->rx_align,
1326 DMA_FROM_DEVICE);
1327 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1328 if (net_ratelimit())
1329 netdev_err(ndev, "Rx DMA memory map failed\n");
1330 return -ENOMEM;
1331 }
1332
1333 return 0;
1334 }
1335
1336 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1337 struct bufdesc *bdp, u32 length, bool swap)
1338 {
1339 struct fec_enet_private *fep = netdev_priv(ndev);
1340 struct sk_buff *new_skb;
1341
1342 if (length > fep->rx_copybreak)
1343 return false;
1344
1345 new_skb = netdev_alloc_skb(ndev, length);
1346 if (!new_skb)
1347 return false;
1348
1349 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1350 FEC_ENET_RX_FRSIZE - fep->rx_align,
1351 DMA_FROM_DEVICE);
1352 if (!swap)
1353 memcpy(new_skb->data, (*skb)->data, length);
1354 else
1355 swap_buffer2(new_skb->data, (*skb)->data, length);
1356 *skb = new_skb;
1357
1358 return true;
1359 }
1360
1361 /* During a receive, the cur_rx points to the current incoming buffer.
1362 * When we update through the ring, if the next incoming buffer has
1363 * not been given to the system, we just set the empty indicator,
1364 * effectively tossing the packet.
1365 */
1366 static int
1367 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1368 {
1369 struct fec_enet_private *fep = netdev_priv(ndev);
1370 struct fec_enet_priv_rx_q *rxq;
1371 struct bufdesc *bdp;
1372 unsigned short status;
1373 struct sk_buff *skb_new = NULL;
1374 struct sk_buff *skb;
1375 ushort pkt_len;
1376 __u8 *data;
1377 int pkt_received = 0;
1378 struct bufdesc_ex *ebdp = NULL;
1379 bool vlan_packet_rcvd = false;
1380 u16 vlan_tag;
1381 int index = 0;
1382 bool is_copybreak;
1383 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1384
1385 #ifdef CONFIG_M532x
1386 flush_cache_all();
1387 #endif
1388 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1389 rxq = fep->rx_queue[queue_id];
1390
1391 /* First, grab all of the stats for the incoming packet.
1392 * These get messed up if we get called due to a busy condition.
1393 */
1394 bdp = rxq->cur_rx;
1395
1396 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1397
1398 if (pkt_received >= budget)
1399 break;
1400 pkt_received++;
1401
1402 /* Since we have allocated space to hold a complete frame,
1403 * the last indicator should be set.
1404 */
1405 if ((status & BD_ENET_RX_LAST) == 0)
1406 netdev_err(ndev, "rcv is not +last\n");
1407
1408
1409 /* Check for errors. */
1410 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1411 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1412 ndev->stats.rx_errors++;
1413 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1414 /* Frame too long or too short. */
1415 ndev->stats.rx_length_errors++;
1416 }
1417 if (status & BD_ENET_RX_NO) /* Frame alignment */
1418 ndev->stats.rx_frame_errors++;
1419 if (status & BD_ENET_RX_CR) /* CRC Error */
1420 ndev->stats.rx_crc_errors++;
1421 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1422 ndev->stats.rx_fifo_errors++;
1423 }
1424
1425 /* Report late collisions as a frame error.
1426 * On this error, the BD is closed, but we don't know what we
1427 * have in the buffer. So, just drop this frame on the floor.
1428 */
1429 if (status & BD_ENET_RX_CL) {
1430 ndev->stats.rx_errors++;
1431 ndev->stats.rx_frame_errors++;
1432 goto rx_processing_done;
1433 }
1434
1435 /* Process the incoming frame. */
1436 ndev->stats.rx_packets++;
1437 pkt_len = bdp->cbd_datlen;
1438 ndev->stats.rx_bytes += pkt_len;
1439
1440 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1441 skb = rxq->rx_skbuff[index];
1442
1443 /* The packet length includes FCS, but we don't want to
1444 * include that when passing upstream as it messes up
1445 * bridging applications.
1446 */
1447 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1448 need_swap);
1449 if (!is_copybreak) {
1450 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1451 if (unlikely(!skb_new)) {
1452 ndev->stats.rx_dropped++;
1453 goto rx_processing_done;
1454 }
1455 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1456 FEC_ENET_RX_FRSIZE - fep->rx_align,
1457 DMA_FROM_DEVICE);
1458 }
1459
1460 prefetch(skb->data - NET_IP_ALIGN);
1461 skb_put(skb, pkt_len - 4);
1462 data = skb->data;
1463 if (!is_copybreak && need_swap)
1464 swap_buffer(data, pkt_len);
1465
1466 /* Extract the enhanced buffer descriptor */
1467 ebdp = NULL;
1468 if (fep->bufdesc_ex)
1469 ebdp = (struct bufdesc_ex *)bdp;
1470
1471 /* If this is a VLAN packet remove the VLAN Tag */
1472 vlan_packet_rcvd = false;
1473 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1474 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1475 /* Push and remove the vlan tag */
1476 struct vlan_hdr *vlan_header =
1477 (struct vlan_hdr *) (data + ETH_HLEN);
1478 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1479
1480 vlan_packet_rcvd = true;
1481
1482 skb_copy_to_linear_data_offset(skb, VLAN_HLEN,
1483 data, (2 * ETH_ALEN));
1484 skb_pull(skb, VLAN_HLEN);
1485 }
1486
1487 skb->protocol = eth_type_trans(skb, ndev);
1488
1489 /* Get receive timestamp from the skb */
1490 if (fep->hwts_rx_en && fep->bufdesc_ex)
1491 fec_enet_hwtstamp(fep, ebdp->ts,
1492 skb_hwtstamps(skb));
1493
1494 if (fep->bufdesc_ex &&
1495 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1496 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1497 /* don't check it */
1498 skb->ip_summed = CHECKSUM_UNNECESSARY;
1499 } else {
1500 skb_checksum_none_assert(skb);
1501 }
1502 }
1503
1504 /* Handle received VLAN packets */
1505 if (vlan_packet_rcvd)
1506 __vlan_hwaccel_put_tag(skb,
1507 htons(ETH_P_8021Q),
1508 vlan_tag);
1509
1510 napi_gro_receive(&fep->napi, skb);
1511
1512 if (is_copybreak) {
1513 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1514 FEC_ENET_RX_FRSIZE - fep->rx_align,
1515 DMA_FROM_DEVICE);
1516 } else {
1517 rxq->rx_skbuff[index] = skb_new;
1518 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1519 }
1520
1521 rx_processing_done:
1522 /* Clear the status flags for this buffer */
1523 status &= ~BD_ENET_RX_STATS;
1524
1525 /* Mark the buffer empty */
1526 status |= BD_ENET_RX_EMPTY;
1527 bdp->cbd_sc = status;
1528
1529 if (fep->bufdesc_ex) {
1530 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1531
1532 ebdp->cbd_esc = BD_ENET_RX_INT;
1533 ebdp->cbd_prot = 0;
1534 ebdp->cbd_bdu = 0;
1535 }
1536
1537 /* Update BD pointer to next entry */
1538 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1539
1540 /* Doing this here will keep the FEC running while we process
1541 * incoming frames. On a heavily loaded network, we should be
1542 * able to keep up at the expense of system resources.
1543 */
1544 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1545 }
1546 rxq->cur_rx = bdp;
1547 return pkt_received;
1548 }
1549
1550 static int
1551 fec_enet_rx(struct net_device *ndev, int budget)
1552 {
1553 int pkt_received = 0;
1554 u16 queue_id;
1555 struct fec_enet_private *fep = netdev_priv(ndev);
1556
1557 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1558 clear_bit(queue_id, &fep->work_rx);
1559 pkt_received += fec_enet_rx_queue(ndev,
1560 budget - pkt_received, queue_id);
1561 }
1562 return pkt_received;
1563 }
1564
1565 static bool
1566 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1567 {
1568 if (int_events == 0)
1569 return false;
1570
1571 if (int_events & FEC_ENET_RXF)
1572 fep->work_rx |= (1 << 2);
1573 if (int_events & FEC_ENET_RXF_1)
1574 fep->work_rx |= (1 << 0);
1575 if (int_events & FEC_ENET_RXF_2)
1576 fep->work_rx |= (1 << 1);
1577
1578 if (int_events & FEC_ENET_TXF)
1579 fep->work_tx |= (1 << 2);
1580 if (int_events & FEC_ENET_TXF_1)
1581 fep->work_tx |= (1 << 0);
1582 if (int_events & FEC_ENET_TXF_2)
1583 fep->work_tx |= (1 << 1);
1584
1585 return true;
1586 }
1587
1588 static irqreturn_t
1589 fec_enet_interrupt(int irq, void *dev_id)
1590 {
1591 struct net_device *ndev = dev_id;
1592 struct fec_enet_private *fep = netdev_priv(ndev);
1593 uint int_events;
1594 irqreturn_t ret = IRQ_NONE;
1595
1596 int_events = readl(fep->hwp + FEC_IEVENT);
1597 writel(int_events, fep->hwp + FEC_IEVENT);
1598 fec_enet_collect_events(fep, int_events);
1599
1600 if (fep->work_tx || fep->work_rx) {
1601 ret = IRQ_HANDLED;
1602
1603 if (napi_schedule_prep(&fep->napi)) {
1604 /* Disable the NAPI interrupts */
1605 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1606 __napi_schedule(&fep->napi);
1607 }
1608 }
1609
1610 if (int_events & FEC_ENET_MII) {
1611 ret = IRQ_HANDLED;
1612 complete(&fep->mdio_done);
1613 }
1614
1615 if (fep->ptp_clock)
1616 fec_ptp_check_pps_event(fep);
1617
1618 return ret;
1619 }
1620
1621 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1622 {
1623 struct net_device *ndev = napi->dev;
1624 struct fec_enet_private *fep = netdev_priv(ndev);
1625 int pkts;
1626
1627 pkts = fec_enet_rx(ndev, budget);
1628
1629 fec_enet_tx(ndev);
1630
1631 if (pkts < budget) {
1632 napi_complete(napi);
1633 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1634 }
1635 return pkts;
1636 }
1637
1638 /* ------------------------------------------------------------------------- */
1639 static void fec_get_mac(struct net_device *ndev)
1640 {
1641 struct fec_enet_private *fep = netdev_priv(ndev);
1642 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1643 unsigned char *iap, tmpaddr[ETH_ALEN];
1644
1645 /*
1646 * try to get mac address in following order:
1647 *
1648 * 1) module parameter via kernel command line in form
1649 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1650 */
1651 iap = macaddr;
1652
1653 /*
1654 * 2) from device tree data
1655 */
1656 if (!is_valid_ether_addr(iap)) {
1657 struct device_node *np = fep->pdev->dev.of_node;
1658 if (np) {
1659 const char *mac = of_get_mac_address(np);
1660 if (mac)
1661 iap = (unsigned char *) mac;
1662 }
1663 }
1664
1665 /*
1666 * 3) from flash or fuse (via platform data)
1667 */
1668 if (!is_valid_ether_addr(iap)) {
1669 #ifdef CONFIG_M5272
1670 if (FEC_FLASHMAC)
1671 iap = (unsigned char *)FEC_FLASHMAC;
1672 #else
1673 if (pdata)
1674 iap = (unsigned char *)&pdata->mac;
1675 #endif
1676 }
1677
1678 /*
1679 * 4) FEC mac registers set by bootloader
1680 */
1681 if (!is_valid_ether_addr(iap)) {
1682 *((__be32 *) &tmpaddr[0]) =
1683 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1684 *((__be16 *) &tmpaddr[4]) =
1685 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1686 iap = &tmpaddr[0];
1687 }
1688
1689 /*
1690 * 5) random mac address
1691 */
1692 if (!is_valid_ether_addr(iap)) {
1693 /* Report it and use a random ethernet address instead */
1694 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1695 eth_hw_addr_random(ndev);
1696 netdev_info(ndev, "Using random MAC address: %pM\n",
1697 ndev->dev_addr);
1698 return;
1699 }
1700
1701 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1702
1703 /* Adjust MAC if using macaddr */
1704 if (iap == macaddr)
1705 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1706 }
1707
1708 /* ------------------------------------------------------------------------- */
1709
1710 /*
1711 * Phy section
1712 */
1713 static void fec_enet_adjust_link(struct net_device *ndev)
1714 {
1715 struct fec_enet_private *fep = netdev_priv(ndev);
1716 struct phy_device *phy_dev = fep->phy_dev;
1717 int status_change = 0;
1718
1719 /* Prevent a state halted on mii error */
1720 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1721 phy_dev->state = PHY_RESUMING;
1722 return;
1723 }
1724
1725 /*
1726 * If the netdev is down, or is going down, we're not interested
1727 * in link state events, so just mark our idea of the link as down
1728 * and ignore the event.
1729 */
1730 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1731 fep->link = 0;
1732 } else if (phy_dev->link) {
1733 if (!fep->link) {
1734 fep->link = phy_dev->link;
1735 status_change = 1;
1736 }
1737
1738 if (fep->full_duplex != phy_dev->duplex) {
1739 fep->full_duplex = phy_dev->duplex;
1740 status_change = 1;
1741 }
1742
1743 if (phy_dev->speed != fep->speed) {
1744 fep->speed = phy_dev->speed;
1745 status_change = 1;
1746 }
1747
1748 /* if any of the above changed restart the FEC */
1749 if (status_change) {
1750 napi_disable(&fep->napi);
1751 netif_tx_lock_bh(ndev);
1752 fec_restart(ndev);
1753 netif_wake_queue(ndev);
1754 netif_tx_unlock_bh(ndev);
1755 napi_enable(&fep->napi);
1756 }
1757 } else {
1758 if (fep->link) {
1759 napi_disable(&fep->napi);
1760 netif_tx_lock_bh(ndev);
1761 fec_stop(ndev);
1762 netif_tx_unlock_bh(ndev);
1763 napi_enable(&fep->napi);
1764 fep->link = phy_dev->link;
1765 status_change = 1;
1766 }
1767 }
1768
1769 if (status_change)
1770 phy_print_status(phy_dev);
1771 }
1772
1773 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1774 {
1775 struct fec_enet_private *fep = bus->priv;
1776 unsigned long time_left;
1777
1778 fep->mii_timeout = 0;
1779 init_completion(&fep->mdio_done);
1780
1781 /* start a read op */
1782 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1783 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1784 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1785
1786 /* wait for end of transfer */
1787 time_left = wait_for_completion_timeout(&fep->mdio_done,
1788 usecs_to_jiffies(FEC_MII_TIMEOUT));
1789 if (time_left == 0) {
1790 fep->mii_timeout = 1;
1791 netdev_err(fep->netdev, "MDIO read timeout\n");
1792 return -ETIMEDOUT;
1793 }
1794
1795 /* return value */
1796 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1797 }
1798
1799 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1800 u16 value)
1801 {
1802 struct fec_enet_private *fep = bus->priv;
1803 unsigned long time_left;
1804
1805 fep->mii_timeout = 0;
1806 init_completion(&fep->mdio_done);
1807
1808 /* start a write op */
1809 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1810 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1811 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1812 fep->hwp + FEC_MII_DATA);
1813
1814 /* wait for end of transfer */
1815 time_left = wait_for_completion_timeout(&fep->mdio_done,
1816 usecs_to_jiffies(FEC_MII_TIMEOUT));
1817 if (time_left == 0) {
1818 fep->mii_timeout = 1;
1819 netdev_err(fep->netdev, "MDIO write timeout\n");
1820 return -ETIMEDOUT;
1821 }
1822
1823 return 0;
1824 }
1825
1826 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1827 {
1828 struct fec_enet_private *fep = netdev_priv(ndev);
1829 int ret;
1830
1831 if (enable) {
1832 ret = clk_prepare_enable(fep->clk_ahb);
1833 if (ret)
1834 return ret;
1835 ret = clk_prepare_enable(fep->clk_ipg);
1836 if (ret)
1837 goto failed_clk_ipg;
1838 if (fep->clk_enet_out) {
1839 ret = clk_prepare_enable(fep->clk_enet_out);
1840 if (ret)
1841 goto failed_clk_enet_out;
1842 }
1843 if (fep->clk_ptp) {
1844 mutex_lock(&fep->ptp_clk_mutex);
1845 ret = clk_prepare_enable(fep->clk_ptp);
1846 if (ret) {
1847 mutex_unlock(&fep->ptp_clk_mutex);
1848 goto failed_clk_ptp;
1849 } else {
1850 fep->ptp_clk_on = true;
1851 }
1852 mutex_unlock(&fep->ptp_clk_mutex);
1853 }
1854 if (fep->clk_ref) {
1855 ret = clk_prepare_enable(fep->clk_ref);
1856 if (ret)
1857 goto failed_clk_ref;
1858 }
1859 } else {
1860 clk_disable_unprepare(fep->clk_ahb);
1861 clk_disable_unprepare(fep->clk_ipg);
1862 if (fep->clk_enet_out)
1863 clk_disable_unprepare(fep->clk_enet_out);
1864 if (fep->clk_ptp) {
1865 mutex_lock(&fep->ptp_clk_mutex);
1866 clk_disable_unprepare(fep->clk_ptp);
1867 fep->ptp_clk_on = false;
1868 mutex_unlock(&fep->ptp_clk_mutex);
1869 }
1870 if (fep->clk_ref)
1871 clk_disable_unprepare(fep->clk_ref);
1872 }
1873
1874 return 0;
1875
1876 failed_clk_ref:
1877 if (fep->clk_ref)
1878 clk_disable_unprepare(fep->clk_ref);
1879 failed_clk_ptp:
1880 if (fep->clk_enet_out)
1881 clk_disable_unprepare(fep->clk_enet_out);
1882 failed_clk_enet_out:
1883 clk_disable_unprepare(fep->clk_ipg);
1884 failed_clk_ipg:
1885 clk_disable_unprepare(fep->clk_ahb);
1886
1887 return ret;
1888 }
1889
1890 static int fec_enet_mii_probe(struct net_device *ndev)
1891 {
1892 struct fec_enet_private *fep = netdev_priv(ndev);
1893 struct phy_device *phy_dev = NULL;
1894 char mdio_bus_id[MII_BUS_ID_SIZE];
1895 char phy_name[MII_BUS_ID_SIZE + 3];
1896 int phy_id;
1897 int dev_id = fep->dev_id;
1898
1899 fep->phy_dev = NULL;
1900
1901 if (fep->phy_node) {
1902 phy_dev = of_phy_connect(ndev, fep->phy_node,
1903 &fec_enet_adjust_link, 0,
1904 fep->phy_interface);
1905 if (!phy_dev)
1906 return -ENODEV;
1907 } else {
1908 /* check for attached phy */
1909 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1910 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1911 continue;
1912 if (fep->mii_bus->phy_map[phy_id] == NULL)
1913 continue;
1914 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1915 continue;
1916 if (dev_id--)
1917 continue;
1918 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1919 break;
1920 }
1921
1922 if (phy_id >= PHY_MAX_ADDR) {
1923 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1924 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1925 phy_id = 0;
1926 }
1927
1928 snprintf(phy_name, sizeof(phy_name),
1929 PHY_ID_FMT, mdio_bus_id, phy_id);
1930 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1931 fep->phy_interface);
1932 }
1933
1934 if (IS_ERR(phy_dev)) {
1935 netdev_err(ndev, "could not attach to PHY\n");
1936 return PTR_ERR(phy_dev);
1937 }
1938
1939 /* mask with MAC supported features */
1940 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1941 phy_dev->supported &= PHY_GBIT_FEATURES;
1942 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1943 #if !defined(CONFIG_M5272)
1944 phy_dev->supported |= SUPPORTED_Pause;
1945 #endif
1946 }
1947 else
1948 phy_dev->supported &= PHY_BASIC_FEATURES;
1949
1950 phy_dev->advertising = phy_dev->supported;
1951
1952 fep->phy_dev = phy_dev;
1953 fep->link = 0;
1954 fep->full_duplex = 0;
1955
1956 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1957 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1958 fep->phy_dev->irq);
1959
1960 return 0;
1961 }
1962
1963 static int fec_enet_mii_init(struct platform_device *pdev)
1964 {
1965 static struct mii_bus *fec0_mii_bus;
1966 struct net_device *ndev = platform_get_drvdata(pdev);
1967 struct fec_enet_private *fep = netdev_priv(ndev);
1968 struct device_node *node;
1969 int err = -ENXIO, i;
1970
1971 /*
1972 * The i.MX28 dual fec interfaces are not equal.
1973 * Here are the differences:
1974 *
1975 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1976 * - fec0 acts as the 1588 time master while fec1 is slave
1977 * - external phys can only be configured by fec0
1978 *
1979 * That is to say fec1 can not work independently. It only works
1980 * when fec0 is working. The reason behind this design is that the
1981 * second interface is added primarily for Switch mode.
1982 *
1983 * Because of the last point above, both phys are attached on fec0
1984 * mdio interface in board design, and need to be configured by
1985 * fec0 mii_bus.
1986 */
1987 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1988 /* fec1 uses fec0 mii_bus */
1989 if (mii_cnt && fec0_mii_bus) {
1990 fep->mii_bus = fec0_mii_bus;
1991 mii_cnt++;
1992 return 0;
1993 }
1994 return -ENOENT;
1995 }
1996
1997 fep->mii_timeout = 0;
1998
1999 /*
2000 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
2001 *
2002 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
2003 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
2004 * Reference Manual has an error on this, and gets fixed on i.MX6Q
2005 * document.
2006 */
2007 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
2008 if (fep->quirks & FEC_QUIRK_ENET_MAC)
2009 fep->phy_speed--;
2010 fep->phy_speed <<= 1;
2011 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2012
2013 fep->mii_bus = mdiobus_alloc();
2014 if (fep->mii_bus == NULL) {
2015 err = -ENOMEM;
2016 goto err_out;
2017 }
2018
2019 fep->mii_bus->name = "fec_enet_mii_bus";
2020 fep->mii_bus->read = fec_enet_mdio_read;
2021 fep->mii_bus->write = fec_enet_mdio_write;
2022 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2023 pdev->name, fep->dev_id + 1);
2024 fep->mii_bus->priv = fep;
2025 fep->mii_bus->parent = &pdev->dev;
2026
2027 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2028 if (!fep->mii_bus->irq) {
2029 err = -ENOMEM;
2030 goto err_out_free_mdiobus;
2031 }
2032
2033 for (i = 0; i < PHY_MAX_ADDR; i++)
2034 fep->mii_bus->irq[i] = PHY_POLL;
2035
2036 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2037 if (node) {
2038 err = of_mdiobus_register(fep->mii_bus, node);
2039 of_node_put(node);
2040 } else {
2041 err = mdiobus_register(fep->mii_bus);
2042 }
2043
2044 if (err)
2045 goto err_out_free_mdio_irq;
2046
2047 mii_cnt++;
2048
2049 /* save fec0 mii_bus */
2050 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2051 fec0_mii_bus = fep->mii_bus;
2052
2053 return 0;
2054
2055 err_out_free_mdio_irq:
2056 kfree(fep->mii_bus->irq);
2057 err_out_free_mdiobus:
2058 mdiobus_free(fep->mii_bus);
2059 err_out:
2060 return err;
2061 }
2062
2063 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2064 {
2065 if (--mii_cnt == 0) {
2066 mdiobus_unregister(fep->mii_bus);
2067 kfree(fep->mii_bus->irq);
2068 mdiobus_free(fep->mii_bus);
2069 }
2070 }
2071
2072 static int fec_enet_get_settings(struct net_device *ndev,
2073 struct ethtool_cmd *cmd)
2074 {
2075 struct fec_enet_private *fep = netdev_priv(ndev);
2076 struct phy_device *phydev = fep->phy_dev;
2077
2078 if (!phydev)
2079 return -ENODEV;
2080
2081 return phy_ethtool_gset(phydev, cmd);
2082 }
2083
2084 static int fec_enet_set_settings(struct net_device *ndev,
2085 struct ethtool_cmd *cmd)
2086 {
2087 struct fec_enet_private *fep = netdev_priv(ndev);
2088 struct phy_device *phydev = fep->phy_dev;
2089
2090 if (!phydev)
2091 return -ENODEV;
2092
2093 return phy_ethtool_sset(phydev, cmd);
2094 }
2095
2096 static void fec_enet_get_drvinfo(struct net_device *ndev,
2097 struct ethtool_drvinfo *info)
2098 {
2099 struct fec_enet_private *fep = netdev_priv(ndev);
2100
2101 strlcpy(info->driver, fep->pdev->dev.driver->name,
2102 sizeof(info->driver));
2103 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2104 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2105 }
2106
2107 static int fec_enet_get_ts_info(struct net_device *ndev,
2108 struct ethtool_ts_info *info)
2109 {
2110 struct fec_enet_private *fep = netdev_priv(ndev);
2111
2112 if (fep->bufdesc_ex) {
2113
2114 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2115 SOF_TIMESTAMPING_RX_SOFTWARE |
2116 SOF_TIMESTAMPING_SOFTWARE |
2117 SOF_TIMESTAMPING_TX_HARDWARE |
2118 SOF_TIMESTAMPING_RX_HARDWARE |
2119 SOF_TIMESTAMPING_RAW_HARDWARE;
2120 if (fep->ptp_clock)
2121 info->phc_index = ptp_clock_index(fep->ptp_clock);
2122 else
2123 info->phc_index = -1;
2124
2125 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2126 (1 << HWTSTAMP_TX_ON);
2127
2128 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2129 (1 << HWTSTAMP_FILTER_ALL);
2130 return 0;
2131 } else {
2132 return ethtool_op_get_ts_info(ndev, info);
2133 }
2134 }
2135
2136 #if !defined(CONFIG_M5272)
2137
2138 static void fec_enet_get_pauseparam(struct net_device *ndev,
2139 struct ethtool_pauseparam *pause)
2140 {
2141 struct fec_enet_private *fep = netdev_priv(ndev);
2142
2143 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2144 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2145 pause->rx_pause = pause->tx_pause;
2146 }
2147
2148 static int fec_enet_set_pauseparam(struct net_device *ndev,
2149 struct ethtool_pauseparam *pause)
2150 {
2151 struct fec_enet_private *fep = netdev_priv(ndev);
2152
2153 if (!fep->phy_dev)
2154 return -ENODEV;
2155
2156 if (pause->tx_pause != pause->rx_pause) {
2157 netdev_info(ndev,
2158 "hardware only support enable/disable both tx and rx");
2159 return -EINVAL;
2160 }
2161
2162 fep->pause_flag = 0;
2163
2164 /* tx pause must be same as rx pause */
2165 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2166 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2167
2168 if (pause->rx_pause || pause->autoneg) {
2169 fep->phy_dev->supported |= ADVERTISED_Pause;
2170 fep->phy_dev->advertising |= ADVERTISED_Pause;
2171 } else {
2172 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2173 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2174 }
2175
2176 if (pause->autoneg) {
2177 if (netif_running(ndev))
2178 fec_stop(ndev);
2179 phy_start_aneg(fep->phy_dev);
2180 }
2181 if (netif_running(ndev)) {
2182 napi_disable(&fep->napi);
2183 netif_tx_lock_bh(ndev);
2184 fec_restart(ndev);
2185 netif_wake_queue(ndev);
2186 netif_tx_unlock_bh(ndev);
2187 napi_enable(&fep->napi);
2188 }
2189
2190 return 0;
2191 }
2192
2193 static const struct fec_stat {
2194 char name[ETH_GSTRING_LEN];
2195 u16 offset;
2196 } fec_stats[] = {
2197 /* RMON TX */
2198 { "tx_dropped", RMON_T_DROP },
2199 { "tx_packets", RMON_T_PACKETS },
2200 { "tx_broadcast", RMON_T_BC_PKT },
2201 { "tx_multicast", RMON_T_MC_PKT },
2202 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2203 { "tx_undersize", RMON_T_UNDERSIZE },
2204 { "tx_oversize", RMON_T_OVERSIZE },
2205 { "tx_fragment", RMON_T_FRAG },
2206 { "tx_jabber", RMON_T_JAB },
2207 { "tx_collision", RMON_T_COL },
2208 { "tx_64byte", RMON_T_P64 },
2209 { "tx_65to127byte", RMON_T_P65TO127 },
2210 { "tx_128to255byte", RMON_T_P128TO255 },
2211 { "tx_256to511byte", RMON_T_P256TO511 },
2212 { "tx_512to1023byte", RMON_T_P512TO1023 },
2213 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2214 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2215 { "tx_octets", RMON_T_OCTETS },
2216
2217 /* IEEE TX */
2218 { "IEEE_tx_drop", IEEE_T_DROP },
2219 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2220 { "IEEE_tx_1col", IEEE_T_1COL },
2221 { "IEEE_tx_mcol", IEEE_T_MCOL },
2222 { "IEEE_tx_def", IEEE_T_DEF },
2223 { "IEEE_tx_lcol", IEEE_T_LCOL },
2224 { "IEEE_tx_excol", IEEE_T_EXCOL },
2225 { "IEEE_tx_macerr", IEEE_T_MACERR },
2226 { "IEEE_tx_cserr", IEEE_T_CSERR },
2227 { "IEEE_tx_sqe", IEEE_T_SQE },
2228 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2229 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2230
2231 /* RMON RX */
2232 { "rx_packets", RMON_R_PACKETS },
2233 { "rx_broadcast", RMON_R_BC_PKT },
2234 { "rx_multicast", RMON_R_MC_PKT },
2235 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2236 { "rx_undersize", RMON_R_UNDERSIZE },
2237 { "rx_oversize", RMON_R_OVERSIZE },
2238 { "rx_fragment", RMON_R_FRAG },
2239 { "rx_jabber", RMON_R_JAB },
2240 { "rx_64byte", RMON_R_P64 },
2241 { "rx_65to127byte", RMON_R_P65TO127 },
2242 { "rx_128to255byte", RMON_R_P128TO255 },
2243 { "rx_256to511byte", RMON_R_P256TO511 },
2244 { "rx_512to1023byte", RMON_R_P512TO1023 },
2245 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2246 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2247 { "rx_octets", RMON_R_OCTETS },
2248
2249 /* IEEE RX */
2250 { "IEEE_rx_drop", IEEE_R_DROP },
2251 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2252 { "IEEE_rx_crc", IEEE_R_CRC },
2253 { "IEEE_rx_align", IEEE_R_ALIGN },
2254 { "IEEE_rx_macerr", IEEE_R_MACERR },
2255 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2256 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2257 };
2258
2259 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2260 struct ethtool_stats *stats, u64 *data)
2261 {
2262 struct fec_enet_private *fep = netdev_priv(dev);
2263 int i;
2264
2265 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2266 data[i] = readl(fep->hwp + fec_stats[i].offset);
2267 }
2268
2269 static void fec_enet_get_strings(struct net_device *netdev,
2270 u32 stringset, u8 *data)
2271 {
2272 int i;
2273 switch (stringset) {
2274 case ETH_SS_STATS:
2275 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2276 memcpy(data + i * ETH_GSTRING_LEN,
2277 fec_stats[i].name, ETH_GSTRING_LEN);
2278 break;
2279 }
2280 }
2281
2282 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2283 {
2284 switch (sset) {
2285 case ETH_SS_STATS:
2286 return ARRAY_SIZE(fec_stats);
2287 default:
2288 return -EOPNOTSUPP;
2289 }
2290 }
2291 #endif /* !defined(CONFIG_M5272) */
2292
2293 static int fec_enet_nway_reset(struct net_device *dev)
2294 {
2295 struct fec_enet_private *fep = netdev_priv(dev);
2296 struct phy_device *phydev = fep->phy_dev;
2297
2298 if (!phydev)
2299 return -ENODEV;
2300
2301 return genphy_restart_aneg(phydev);
2302 }
2303
2304 /* ITR clock source is enet system clock (clk_ahb).
2305 * TCTT unit is cycle_ns * 64 cycle
2306 * So, the ICTT value = X us / (cycle_ns * 64)
2307 */
2308 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2309 {
2310 struct fec_enet_private *fep = netdev_priv(ndev);
2311
2312 return us * (fep->itr_clk_rate / 64000) / 1000;
2313 }
2314
2315 /* Set threshold for interrupt coalescing */
2316 static void fec_enet_itr_coal_set(struct net_device *ndev)
2317 {
2318 struct fec_enet_private *fep = netdev_priv(ndev);
2319 int rx_itr, tx_itr;
2320
2321 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2322 return;
2323
2324 /* Must be greater than zero to avoid unpredictable behavior */
2325 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2326 !fep->tx_time_itr || !fep->tx_pkts_itr)
2327 return;
2328
2329 /* Select enet system clock as Interrupt Coalescing
2330 * timer Clock Source
2331 */
2332 rx_itr = FEC_ITR_CLK_SEL;
2333 tx_itr = FEC_ITR_CLK_SEL;
2334
2335 /* set ICFT and ICTT */
2336 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2337 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2338 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2339 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2340
2341 rx_itr |= FEC_ITR_EN;
2342 tx_itr |= FEC_ITR_EN;
2343
2344 writel(tx_itr, fep->hwp + FEC_TXIC0);
2345 writel(rx_itr, fep->hwp + FEC_RXIC0);
2346 writel(tx_itr, fep->hwp + FEC_TXIC1);
2347 writel(rx_itr, fep->hwp + FEC_RXIC1);
2348 writel(tx_itr, fep->hwp + FEC_TXIC2);
2349 writel(rx_itr, fep->hwp + FEC_RXIC2);
2350 }
2351
2352 static int
2353 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2354 {
2355 struct fec_enet_private *fep = netdev_priv(ndev);
2356
2357 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2358 return -EOPNOTSUPP;
2359
2360 ec->rx_coalesce_usecs = fep->rx_time_itr;
2361 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2362
2363 ec->tx_coalesce_usecs = fep->tx_time_itr;
2364 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2365
2366 return 0;
2367 }
2368
2369 static int
2370 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2371 {
2372 struct fec_enet_private *fep = netdev_priv(ndev);
2373 unsigned int cycle;
2374
2375 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2376 return -EOPNOTSUPP;
2377
2378 if (ec->rx_max_coalesced_frames > 255) {
2379 pr_err("Rx coalesced frames exceed hardware limiation");
2380 return -EINVAL;
2381 }
2382
2383 if (ec->tx_max_coalesced_frames > 255) {
2384 pr_err("Tx coalesced frame exceed hardware limiation");
2385 return -EINVAL;
2386 }
2387
2388 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2389 if (cycle > 0xFFFF) {
2390 pr_err("Rx coalesed usec exceeed hardware limiation");
2391 return -EINVAL;
2392 }
2393
2394 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2395 if (cycle > 0xFFFF) {
2396 pr_err("Rx coalesed usec exceeed hardware limiation");
2397 return -EINVAL;
2398 }
2399
2400 fep->rx_time_itr = ec->rx_coalesce_usecs;
2401 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2402
2403 fep->tx_time_itr = ec->tx_coalesce_usecs;
2404 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2405
2406 fec_enet_itr_coal_set(ndev);
2407
2408 return 0;
2409 }
2410
2411 static void fec_enet_itr_coal_init(struct net_device *ndev)
2412 {
2413 struct ethtool_coalesce ec;
2414
2415 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2416 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2417
2418 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2419 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2420
2421 fec_enet_set_coalesce(ndev, &ec);
2422 }
2423
2424 static int fec_enet_get_tunable(struct net_device *netdev,
2425 const struct ethtool_tunable *tuna,
2426 void *data)
2427 {
2428 struct fec_enet_private *fep = netdev_priv(netdev);
2429 int ret = 0;
2430
2431 switch (tuna->id) {
2432 case ETHTOOL_RX_COPYBREAK:
2433 *(u32 *)data = fep->rx_copybreak;
2434 break;
2435 default:
2436 ret = -EINVAL;
2437 break;
2438 }
2439
2440 return ret;
2441 }
2442
2443 static int fec_enet_set_tunable(struct net_device *netdev,
2444 const struct ethtool_tunable *tuna,
2445 const void *data)
2446 {
2447 struct fec_enet_private *fep = netdev_priv(netdev);
2448 int ret = 0;
2449
2450 switch (tuna->id) {
2451 case ETHTOOL_RX_COPYBREAK:
2452 fep->rx_copybreak = *(u32 *)data;
2453 break;
2454 default:
2455 ret = -EINVAL;
2456 break;
2457 }
2458
2459 return ret;
2460 }
2461
2462 static void
2463 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2464 {
2465 struct fec_enet_private *fep = netdev_priv(ndev);
2466
2467 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2468 wol->supported = WAKE_MAGIC;
2469 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2470 } else {
2471 wol->supported = wol->wolopts = 0;
2472 }
2473 }
2474
2475 static int
2476 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2477 {
2478 struct fec_enet_private *fep = netdev_priv(ndev);
2479
2480 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2481 return -EINVAL;
2482
2483 if (wol->wolopts & ~WAKE_MAGIC)
2484 return -EINVAL;
2485
2486 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2487 if (device_may_wakeup(&ndev->dev)) {
2488 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2489 if (fep->irq[0] > 0)
2490 enable_irq_wake(fep->irq[0]);
2491 } else {
2492 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2493 if (fep->irq[0] > 0)
2494 disable_irq_wake(fep->irq[0]);
2495 }
2496
2497 return 0;
2498 }
2499
2500 static const struct ethtool_ops fec_enet_ethtool_ops = {
2501 .get_settings = fec_enet_get_settings,
2502 .set_settings = fec_enet_set_settings,
2503 .get_drvinfo = fec_enet_get_drvinfo,
2504 .nway_reset = fec_enet_nway_reset,
2505 .get_link = ethtool_op_get_link,
2506 .get_coalesce = fec_enet_get_coalesce,
2507 .set_coalesce = fec_enet_set_coalesce,
2508 #ifndef CONFIG_M5272
2509 .get_pauseparam = fec_enet_get_pauseparam,
2510 .set_pauseparam = fec_enet_set_pauseparam,
2511 .get_strings = fec_enet_get_strings,
2512 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2513 .get_sset_count = fec_enet_get_sset_count,
2514 #endif
2515 .get_ts_info = fec_enet_get_ts_info,
2516 .get_tunable = fec_enet_get_tunable,
2517 .set_tunable = fec_enet_set_tunable,
2518 .get_wol = fec_enet_get_wol,
2519 .set_wol = fec_enet_set_wol,
2520 };
2521
2522 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2523 {
2524 struct fec_enet_private *fep = netdev_priv(ndev);
2525 struct phy_device *phydev = fep->phy_dev;
2526
2527 if (!netif_running(ndev))
2528 return -EINVAL;
2529
2530 if (!phydev)
2531 return -ENODEV;
2532
2533 if (fep->bufdesc_ex) {
2534 if (cmd == SIOCSHWTSTAMP)
2535 return fec_ptp_set(ndev, rq);
2536 if (cmd == SIOCGHWTSTAMP)
2537 return fec_ptp_get(ndev, rq);
2538 }
2539
2540 return phy_mii_ioctl(phydev, rq, cmd);
2541 }
2542
2543 static void fec_enet_free_buffers(struct net_device *ndev)
2544 {
2545 struct fec_enet_private *fep = netdev_priv(ndev);
2546 unsigned int i;
2547 struct sk_buff *skb;
2548 struct bufdesc *bdp;
2549 struct fec_enet_priv_tx_q *txq;
2550 struct fec_enet_priv_rx_q *rxq;
2551 unsigned int q;
2552
2553 for (q = 0; q < fep->num_rx_queues; q++) {
2554 rxq = fep->rx_queue[q];
2555 bdp = rxq->rx_bd_base;
2556 for (i = 0; i < rxq->rx_ring_size; i++) {
2557 skb = rxq->rx_skbuff[i];
2558 rxq->rx_skbuff[i] = NULL;
2559 if (skb) {
2560 dma_unmap_single(&fep->pdev->dev,
2561 bdp->cbd_bufaddr,
2562 FEC_ENET_RX_FRSIZE - fep->rx_align,
2563 DMA_FROM_DEVICE);
2564 dev_kfree_skb(skb);
2565 }
2566 bdp = fec_enet_get_nextdesc(bdp, fep, q);
2567 }
2568 }
2569
2570 for (q = 0; q < fep->num_tx_queues; q++) {
2571 txq = fep->tx_queue[q];
2572 bdp = txq->tx_bd_base;
2573 for (i = 0; i < txq->tx_ring_size; i++) {
2574 kfree(txq->tx_bounce[i]);
2575 txq->tx_bounce[i] = NULL;
2576 skb = txq->tx_skbuff[i];
2577 txq->tx_skbuff[i] = NULL;
2578 dev_kfree_skb(skb);
2579 }
2580 }
2581 }
2582
2583 static void fec_enet_free_queue(struct net_device *ndev)
2584 {
2585 struct fec_enet_private *fep = netdev_priv(ndev);
2586 int i;
2587 struct fec_enet_priv_tx_q *txq;
2588
2589 for (i = 0; i < fep->num_tx_queues; i++)
2590 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2591 txq = fep->tx_queue[i];
2592 dma_free_coherent(NULL,
2593 txq->tx_ring_size * TSO_HEADER_SIZE,
2594 txq->tso_hdrs,
2595 txq->tso_hdrs_dma);
2596 }
2597
2598 for (i = 0; i < fep->num_rx_queues; i++)
2599 kfree(fep->rx_queue[i]);
2600 for (i = 0; i < fep->num_tx_queues; i++)
2601 kfree(fep->tx_queue[i]);
2602 }
2603
2604 static int fec_enet_alloc_queue(struct net_device *ndev)
2605 {
2606 struct fec_enet_private *fep = netdev_priv(ndev);
2607 int i;
2608 int ret = 0;
2609 struct fec_enet_priv_tx_q *txq;
2610
2611 for (i = 0; i < fep->num_tx_queues; i++) {
2612 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2613 if (!txq) {
2614 ret = -ENOMEM;
2615 goto alloc_failed;
2616 }
2617
2618 fep->tx_queue[i] = txq;
2619 txq->tx_ring_size = TX_RING_SIZE;
2620 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2621
2622 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2623 txq->tx_wake_threshold =
2624 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2625
2626 txq->tso_hdrs = dma_alloc_coherent(NULL,
2627 txq->tx_ring_size * TSO_HEADER_SIZE,
2628 &txq->tso_hdrs_dma,
2629 GFP_KERNEL);
2630 if (!txq->tso_hdrs) {
2631 ret = -ENOMEM;
2632 goto alloc_failed;
2633 }
2634 }
2635
2636 for (i = 0; i < fep->num_rx_queues; i++) {
2637 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2638 GFP_KERNEL);
2639 if (!fep->rx_queue[i]) {
2640 ret = -ENOMEM;
2641 goto alloc_failed;
2642 }
2643
2644 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2645 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2646 }
2647 return ret;
2648
2649 alloc_failed:
2650 fec_enet_free_queue(ndev);
2651 return ret;
2652 }
2653
2654 static int
2655 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2656 {
2657 struct fec_enet_private *fep = netdev_priv(ndev);
2658 unsigned int i;
2659 struct sk_buff *skb;
2660 struct bufdesc *bdp;
2661 struct fec_enet_priv_rx_q *rxq;
2662
2663 rxq = fep->rx_queue[queue];
2664 bdp = rxq->rx_bd_base;
2665 for (i = 0; i < rxq->rx_ring_size; i++) {
2666 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2667 if (!skb)
2668 goto err_alloc;
2669
2670 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2671 dev_kfree_skb(skb);
2672 goto err_alloc;
2673 }
2674
2675 rxq->rx_skbuff[i] = skb;
2676 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2677
2678 if (fep->bufdesc_ex) {
2679 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2680 ebdp->cbd_esc = BD_ENET_RX_INT;
2681 }
2682
2683 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2684 }
2685
2686 /* Set the last buffer to wrap. */
2687 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2688 bdp->cbd_sc |= BD_SC_WRAP;
2689 return 0;
2690
2691 err_alloc:
2692 fec_enet_free_buffers(ndev);
2693 return -ENOMEM;
2694 }
2695
2696 static int
2697 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2698 {
2699 struct fec_enet_private *fep = netdev_priv(ndev);
2700 unsigned int i;
2701 struct bufdesc *bdp;
2702 struct fec_enet_priv_tx_q *txq;
2703
2704 txq = fep->tx_queue[queue];
2705 bdp = txq->tx_bd_base;
2706 for (i = 0; i < txq->tx_ring_size; i++) {
2707 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2708 if (!txq->tx_bounce[i])
2709 goto err_alloc;
2710
2711 bdp->cbd_sc = 0;
2712 bdp->cbd_bufaddr = 0;
2713
2714 if (fep->bufdesc_ex) {
2715 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2716 ebdp->cbd_esc = BD_ENET_TX_INT;
2717 }
2718
2719 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2720 }
2721
2722 /* Set the last buffer to wrap. */
2723 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2724 bdp->cbd_sc |= BD_SC_WRAP;
2725
2726 return 0;
2727
2728 err_alloc:
2729 fec_enet_free_buffers(ndev);
2730 return -ENOMEM;
2731 }
2732
2733 static int fec_enet_alloc_buffers(struct net_device *ndev)
2734 {
2735 struct fec_enet_private *fep = netdev_priv(ndev);
2736 unsigned int i;
2737
2738 for (i = 0; i < fep->num_rx_queues; i++)
2739 if (fec_enet_alloc_rxq_buffers(ndev, i))
2740 return -ENOMEM;
2741
2742 for (i = 0; i < fep->num_tx_queues; i++)
2743 if (fec_enet_alloc_txq_buffers(ndev, i))
2744 return -ENOMEM;
2745 return 0;
2746 }
2747
2748 static int
2749 fec_enet_open(struct net_device *ndev)
2750 {
2751 struct fec_enet_private *fep = netdev_priv(ndev);
2752 int ret;
2753
2754 pinctrl_pm_select_default_state(&fep->pdev->dev);
2755 ret = fec_enet_clk_enable(ndev, true);
2756 if (ret)
2757 return ret;
2758
2759 /* I should reset the ring buffers here, but I don't yet know
2760 * a simple way to do that.
2761 */
2762
2763 ret = fec_enet_alloc_buffers(ndev);
2764 if (ret)
2765 goto err_enet_alloc;
2766
2767 /* Probe and connect to PHY when open the interface */
2768 ret = fec_enet_mii_probe(ndev);
2769 if (ret)
2770 goto err_enet_mii_probe;
2771
2772 fec_restart(ndev);
2773 napi_enable(&fep->napi);
2774 phy_start(fep->phy_dev);
2775 netif_tx_start_all_queues(ndev);
2776
2777 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2778 FEC_WOL_FLAG_ENABLE);
2779
2780 return 0;
2781
2782 err_enet_mii_probe:
2783 fec_enet_free_buffers(ndev);
2784 err_enet_alloc:
2785 fec_enet_clk_enable(ndev, false);
2786 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2787 return ret;
2788 }
2789
2790 static int
2791 fec_enet_close(struct net_device *ndev)
2792 {
2793 struct fec_enet_private *fep = netdev_priv(ndev);
2794
2795 phy_stop(fep->phy_dev);
2796
2797 if (netif_device_present(ndev)) {
2798 napi_disable(&fep->napi);
2799 netif_tx_disable(ndev);
2800 fec_stop(ndev);
2801 }
2802
2803 phy_disconnect(fep->phy_dev);
2804 fep->phy_dev = NULL;
2805
2806 fec_enet_clk_enable(ndev, false);
2807 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2808 fec_enet_free_buffers(ndev);
2809
2810 return 0;
2811 }
2812
2813 /* Set or clear the multicast filter for this adaptor.
2814 * Skeleton taken from sunlance driver.
2815 * The CPM Ethernet implementation allows Multicast as well as individual
2816 * MAC address filtering. Some of the drivers check to make sure it is
2817 * a group multicast address, and discard those that are not. I guess I
2818 * will do the same for now, but just remove the test if you want
2819 * individual filtering as well (do the upper net layers want or support
2820 * this kind of feature?).
2821 */
2822
2823 #define HASH_BITS 6 /* #bits in hash */
2824 #define CRC32_POLY 0xEDB88320
2825
2826 static void set_multicast_list(struct net_device *ndev)
2827 {
2828 struct fec_enet_private *fep = netdev_priv(ndev);
2829 struct netdev_hw_addr *ha;
2830 unsigned int i, bit, data, crc, tmp;
2831 unsigned char hash;
2832
2833 if (ndev->flags & IFF_PROMISC) {
2834 tmp = readl(fep->hwp + FEC_R_CNTRL);
2835 tmp |= 0x8;
2836 writel(tmp, fep->hwp + FEC_R_CNTRL);
2837 return;
2838 }
2839
2840 tmp = readl(fep->hwp + FEC_R_CNTRL);
2841 tmp &= ~0x8;
2842 writel(tmp, fep->hwp + FEC_R_CNTRL);
2843
2844 if (ndev->flags & IFF_ALLMULTI) {
2845 /* Catch all multicast addresses, so set the
2846 * filter to all 1's
2847 */
2848 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2849 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2850
2851 return;
2852 }
2853
2854 /* Clear filter and add the addresses in hash register
2855 */
2856 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2857 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2858
2859 netdev_for_each_mc_addr(ha, ndev) {
2860 /* calculate crc32 value of mac address */
2861 crc = 0xffffffff;
2862
2863 for (i = 0; i < ndev->addr_len; i++) {
2864 data = ha->addr[i];
2865 for (bit = 0; bit < 8; bit++, data >>= 1) {
2866 crc = (crc >> 1) ^
2867 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2868 }
2869 }
2870
2871 /* only upper 6 bits (HASH_BITS) are used
2872 * which point to specific bit in he hash registers
2873 */
2874 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2875
2876 if (hash > 31) {
2877 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2878 tmp |= 1 << (hash - 32);
2879 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2880 } else {
2881 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2882 tmp |= 1 << hash;
2883 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2884 }
2885 }
2886 }
2887
2888 /* Set a MAC change in hardware. */
2889 static int
2890 fec_set_mac_address(struct net_device *ndev, void *p)
2891 {
2892 struct fec_enet_private *fep = netdev_priv(ndev);
2893 struct sockaddr *addr = p;
2894
2895 if (addr) {
2896 if (!is_valid_ether_addr(addr->sa_data))
2897 return -EADDRNOTAVAIL;
2898 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2899 }
2900
2901 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2902 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2903 fep->hwp + FEC_ADDR_LOW);
2904 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2905 fep->hwp + FEC_ADDR_HIGH);
2906 return 0;
2907 }
2908
2909 #ifdef CONFIG_NET_POLL_CONTROLLER
2910 /**
2911 * fec_poll_controller - FEC Poll controller function
2912 * @dev: The FEC network adapter
2913 *
2914 * Polled functionality used by netconsole and others in non interrupt mode
2915 *
2916 */
2917 static void fec_poll_controller(struct net_device *dev)
2918 {
2919 int i;
2920 struct fec_enet_private *fep = netdev_priv(dev);
2921
2922 for (i = 0; i < FEC_IRQ_NUM; i++) {
2923 if (fep->irq[i] > 0) {
2924 disable_irq(fep->irq[i]);
2925 fec_enet_interrupt(fep->irq[i], dev);
2926 enable_irq(fep->irq[i]);
2927 }
2928 }
2929 }
2930 #endif
2931
2932 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2933 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2934 netdev_features_t features)
2935 {
2936 struct fec_enet_private *fep = netdev_priv(netdev);
2937 netdev_features_t changed = features ^ netdev->features;
2938
2939 netdev->features = features;
2940
2941 /* Receive checksum has been changed */
2942 if (changed & NETIF_F_RXCSUM) {
2943 if (features & NETIF_F_RXCSUM)
2944 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2945 else
2946 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2947 }
2948 }
2949
2950 static int fec_set_features(struct net_device *netdev,
2951 netdev_features_t features)
2952 {
2953 struct fec_enet_private *fep = netdev_priv(netdev);
2954 netdev_features_t changed = features ^ netdev->features;
2955
2956 if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2957 napi_disable(&fep->napi);
2958 netif_tx_lock_bh(netdev);
2959 fec_stop(netdev);
2960 fec_enet_set_netdev_features(netdev, features);
2961 fec_restart(netdev);
2962 netif_tx_wake_all_queues(netdev);
2963 netif_tx_unlock_bh(netdev);
2964 napi_enable(&fep->napi);
2965 } else {
2966 fec_enet_set_netdev_features(netdev, features);
2967 }
2968
2969 return 0;
2970 }
2971
2972 static const struct net_device_ops fec_netdev_ops = {
2973 .ndo_open = fec_enet_open,
2974 .ndo_stop = fec_enet_close,
2975 .ndo_start_xmit = fec_enet_start_xmit,
2976 .ndo_set_rx_mode = set_multicast_list,
2977 .ndo_change_mtu = eth_change_mtu,
2978 .ndo_validate_addr = eth_validate_addr,
2979 .ndo_tx_timeout = fec_timeout,
2980 .ndo_set_mac_address = fec_set_mac_address,
2981 .ndo_do_ioctl = fec_enet_ioctl,
2982 #ifdef CONFIG_NET_POLL_CONTROLLER
2983 .ndo_poll_controller = fec_poll_controller,
2984 #endif
2985 .ndo_set_features = fec_set_features,
2986 };
2987
2988 /*
2989 * XXX: We need to clean up on failure exits here.
2990 *
2991 */
2992 static int fec_enet_init(struct net_device *ndev)
2993 {
2994 struct fec_enet_private *fep = netdev_priv(ndev);
2995 struct fec_enet_priv_tx_q *txq;
2996 struct fec_enet_priv_rx_q *rxq;
2997 struct bufdesc *cbd_base;
2998 dma_addr_t bd_dma;
2999 int bd_size;
3000 unsigned int i;
3001
3002 #if defined(CONFIG_ARM)
3003 fep->rx_align = 0xf;
3004 fep->tx_align = 0xf;
3005 #else
3006 fep->rx_align = 0x3;
3007 fep->tx_align = 0x3;
3008 #endif
3009
3010 fec_enet_alloc_queue(ndev);
3011
3012 if (fep->bufdesc_ex)
3013 fep->bufdesc_size = sizeof(struct bufdesc_ex);
3014 else
3015 fep->bufdesc_size = sizeof(struct bufdesc);
3016 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3017 fep->bufdesc_size;
3018
3019 /* Allocate memory for buffer descriptors. */
3020 cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3021 GFP_KERNEL);
3022 if (!cbd_base) {
3023 return -ENOMEM;
3024 }
3025
3026 memset(cbd_base, 0, bd_size);
3027
3028 /* Get the Ethernet address */
3029 fec_get_mac(ndev);
3030 /* make sure MAC we just acquired is programmed into the hw */
3031 fec_set_mac_address(ndev, NULL);
3032
3033 /* Set receive and transmit descriptor base. */
3034 for (i = 0; i < fep->num_rx_queues; i++) {
3035 rxq = fep->rx_queue[i];
3036 rxq->index = i;
3037 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3038 rxq->bd_dma = bd_dma;
3039 if (fep->bufdesc_ex) {
3040 bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3041 cbd_base = (struct bufdesc *)
3042 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3043 } else {
3044 bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3045 cbd_base += rxq->rx_ring_size;
3046 }
3047 }
3048
3049 for (i = 0; i < fep->num_tx_queues; i++) {
3050 txq = fep->tx_queue[i];
3051 txq->index = i;
3052 txq->tx_bd_base = (struct bufdesc *)cbd_base;
3053 txq->bd_dma = bd_dma;
3054 if (fep->bufdesc_ex) {
3055 bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3056 cbd_base = (struct bufdesc *)
3057 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3058 } else {
3059 bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3060 cbd_base += txq->tx_ring_size;
3061 }
3062 }
3063
3064
3065 /* The FEC Ethernet specific entries in the device structure */
3066 ndev->watchdog_timeo = TX_TIMEOUT;
3067 ndev->netdev_ops = &fec_netdev_ops;
3068 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3069
3070 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3071 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3072
3073 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3074 /* enable hw VLAN support */
3075 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3076
3077 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3078 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3079
3080 /* enable hw accelerator */
3081 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3082 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3083 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3084 }
3085
3086 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3087 fep->tx_align = 0;
3088 fep->rx_align = 0x3f;
3089 }
3090
3091 ndev->hw_features = ndev->features;
3092
3093 fec_restart(ndev);
3094
3095 return 0;
3096 }
3097
3098 #ifdef CONFIG_OF
3099 static void fec_reset_phy(struct platform_device *pdev)
3100 {
3101 int err, phy_reset;
3102 int msec = 1;
3103 struct device_node *np = pdev->dev.of_node;
3104
3105 if (!np)
3106 return;
3107
3108 of_property_read_u32(np, "phy-reset-duration", &msec);
3109 /* A sane reset duration should not be longer than 1s */
3110 if (msec > 1000)
3111 msec = 1;
3112
3113 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3114 if (!gpio_is_valid(phy_reset))
3115 return;
3116
3117 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3118 GPIOF_OUT_INIT_LOW, "phy-reset");
3119 if (err) {
3120 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3121 return;
3122 }
3123 msleep(msec);
3124 gpio_set_value(phy_reset, 1);
3125 }
3126 #else /* CONFIG_OF */
3127 static void fec_reset_phy(struct platform_device *pdev)
3128 {
3129 /*
3130 * In case of platform probe, the reset has been done
3131 * by machine code.
3132 */
3133 }
3134 #endif /* CONFIG_OF */
3135
3136 static void
3137 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3138 {
3139 struct device_node *np = pdev->dev.of_node;
3140 int err;
3141
3142 *num_tx = *num_rx = 1;
3143
3144 if (!np || !of_device_is_available(np))
3145 return;
3146
3147 /* parse the num of tx and rx queues */
3148 err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3149 if (err)
3150 *num_tx = 1;
3151
3152 err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3153 if (err)
3154 *num_rx = 1;
3155
3156 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3157 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3158 *num_tx);
3159 *num_tx = 1;
3160 return;
3161 }
3162
3163 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3164 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3165 *num_rx);
3166 *num_rx = 1;
3167 return;
3168 }
3169
3170 }
3171
3172 static int
3173 fec_probe(struct platform_device *pdev)
3174 {
3175 struct fec_enet_private *fep;
3176 struct fec_platform_data *pdata;
3177 struct net_device *ndev;
3178 int i, irq, ret = 0;
3179 struct resource *r;
3180 const struct of_device_id *of_id;
3181 static int dev_id;
3182 struct device_node *np = pdev->dev.of_node, *phy_node;
3183 int num_tx_qs;
3184 int num_rx_qs;
3185
3186 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3187
3188 /* Init network device */
3189 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3190 num_tx_qs, num_rx_qs);
3191 if (!ndev)
3192 return -ENOMEM;
3193
3194 SET_NETDEV_DEV(ndev, &pdev->dev);
3195
3196 /* setup board info structure */
3197 fep = netdev_priv(ndev);
3198
3199 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3200 if (of_id)
3201 pdev->id_entry = of_id->data;
3202 fep->quirks = pdev->id_entry->driver_data;
3203
3204 fep->netdev = ndev;
3205 fep->num_rx_queues = num_rx_qs;
3206 fep->num_tx_queues = num_tx_qs;
3207
3208 #if !defined(CONFIG_M5272)
3209 /* default enable pause frame auto negotiation */
3210 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3211 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3212 #endif
3213
3214 /* Select default pin state */
3215 pinctrl_pm_select_default_state(&pdev->dev);
3216
3217 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3218 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3219 if (IS_ERR(fep->hwp)) {
3220 ret = PTR_ERR(fep->hwp);
3221 goto failed_ioremap;
3222 }
3223
3224 fep->pdev = pdev;
3225 fep->dev_id = dev_id++;
3226
3227 platform_set_drvdata(pdev, ndev);
3228
3229 if (of_get_property(np, "fsl,magic-packet", NULL))
3230 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3231
3232 phy_node = of_parse_phandle(np, "phy-handle", 0);
3233 if (!phy_node && of_phy_is_fixed_link(np)) {
3234 ret = of_phy_register_fixed_link(np);
3235 if (ret < 0) {
3236 dev_err(&pdev->dev,
3237 "broken fixed-link specification\n");
3238 goto failed_phy;
3239 }
3240 phy_node = of_node_get(np);
3241 }
3242 fep->phy_node = phy_node;
3243
3244 ret = of_get_phy_mode(pdev->dev.of_node);
3245 if (ret < 0) {
3246 pdata = dev_get_platdata(&pdev->dev);
3247 if (pdata)
3248 fep->phy_interface = pdata->phy;
3249 else
3250 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3251 } else {
3252 fep->phy_interface = ret;
3253 }
3254
3255 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3256 if (IS_ERR(fep->clk_ipg)) {
3257 ret = PTR_ERR(fep->clk_ipg);
3258 goto failed_clk;
3259 }
3260
3261 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3262 if (IS_ERR(fep->clk_ahb)) {
3263 ret = PTR_ERR(fep->clk_ahb);
3264 goto failed_clk;
3265 }
3266
3267 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3268
3269 /* enet_out is optional, depends on board */
3270 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3271 if (IS_ERR(fep->clk_enet_out))
3272 fep->clk_enet_out = NULL;
3273
3274 fep->ptp_clk_on = false;
3275 mutex_init(&fep->ptp_clk_mutex);
3276
3277 /* clk_ref is optional, depends on board */
3278 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3279 if (IS_ERR(fep->clk_ref))
3280 fep->clk_ref = NULL;
3281
3282 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3283 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3284 if (IS_ERR(fep->clk_ptp)) {
3285 fep->clk_ptp = NULL;
3286 fep->bufdesc_ex = false;
3287 }
3288
3289 ret = fec_enet_clk_enable(ndev, true);
3290 if (ret)
3291 goto failed_clk;
3292
3293 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3294 if (!IS_ERR(fep->reg_phy)) {
3295 ret = regulator_enable(fep->reg_phy);
3296 if (ret) {
3297 dev_err(&pdev->dev,
3298 "Failed to enable phy regulator: %d\n", ret);
3299 goto failed_regulator;
3300 }
3301 } else {
3302 fep->reg_phy = NULL;
3303 }
3304
3305 fec_reset_phy(pdev);
3306
3307 if (fep->bufdesc_ex)
3308 fec_ptp_init(pdev);
3309
3310 ret = fec_enet_init(ndev);
3311 if (ret)
3312 goto failed_init;
3313
3314 for (i = 0; i < FEC_IRQ_NUM; i++) {
3315 irq = platform_get_irq(pdev, i);
3316 if (irq < 0) {
3317 if (i)
3318 break;
3319 ret = irq;
3320 goto failed_irq;
3321 }
3322 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3323 0, pdev->name, ndev);
3324 if (ret)
3325 goto failed_irq;
3326
3327 fep->irq[i] = irq;
3328 }
3329
3330 init_completion(&fep->mdio_done);
3331 ret = fec_enet_mii_init(pdev);
3332 if (ret)
3333 goto failed_mii_init;
3334
3335 /* Carrier starts down, phylib will bring it up */
3336 netif_carrier_off(ndev);
3337 fec_enet_clk_enable(ndev, false);
3338 pinctrl_pm_select_sleep_state(&pdev->dev);
3339
3340 ret = register_netdev(ndev);
3341 if (ret)
3342 goto failed_register;
3343
3344 device_init_wakeup(&ndev->dev, fep->wol_flag &
3345 FEC_WOL_HAS_MAGIC_PACKET);
3346
3347 if (fep->bufdesc_ex && fep->ptp_clock)
3348 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3349
3350 fep->rx_copybreak = COPYBREAK_DEFAULT;
3351 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3352 return 0;
3353
3354 failed_register:
3355 fec_enet_mii_remove(fep);
3356 failed_mii_init:
3357 failed_irq:
3358 failed_init:
3359 if (fep->reg_phy)
3360 regulator_disable(fep->reg_phy);
3361 failed_regulator:
3362 fec_enet_clk_enable(ndev, false);
3363 failed_clk:
3364 failed_phy:
3365 of_node_put(phy_node);
3366 failed_ioremap:
3367 free_netdev(ndev);
3368
3369 return ret;
3370 }
3371
3372 static int
3373 fec_drv_remove(struct platform_device *pdev)
3374 {
3375 struct net_device *ndev = platform_get_drvdata(pdev);
3376 struct fec_enet_private *fep = netdev_priv(ndev);
3377
3378 cancel_delayed_work_sync(&fep->time_keep);
3379 cancel_work_sync(&fep->tx_timeout_work);
3380 unregister_netdev(ndev);
3381 fec_enet_mii_remove(fep);
3382 if (fep->reg_phy)
3383 regulator_disable(fep->reg_phy);
3384 if (fep->ptp_clock)
3385 ptp_clock_unregister(fep->ptp_clock);
3386 fec_enet_clk_enable(ndev, false);
3387 of_node_put(fep->phy_node);
3388 free_netdev(ndev);
3389
3390 return 0;
3391 }
3392
3393 static int __maybe_unused fec_suspend(struct device *dev)
3394 {
3395 struct net_device *ndev = dev_get_drvdata(dev);
3396 struct fec_enet_private *fep = netdev_priv(ndev);
3397
3398 rtnl_lock();
3399 if (netif_running(ndev)) {
3400 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3401 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3402 phy_stop(fep->phy_dev);
3403 napi_disable(&fep->napi);
3404 netif_tx_lock_bh(ndev);
3405 netif_device_detach(ndev);
3406 netif_tx_unlock_bh(ndev);
3407 fec_stop(ndev);
3408 fec_enet_clk_enable(ndev, false);
3409 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3410 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3411 }
3412 rtnl_unlock();
3413
3414 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3415 regulator_disable(fep->reg_phy);
3416
3417 /* SOC supply clock to phy, when clock is disabled, phy link down
3418 * SOC control phy regulator, when regulator is disabled, phy link down
3419 */
3420 if (fep->clk_enet_out || fep->reg_phy)
3421 fep->link = 0;
3422
3423 return 0;
3424 }
3425
3426 static int __maybe_unused fec_resume(struct device *dev)
3427 {
3428 struct net_device *ndev = dev_get_drvdata(dev);
3429 struct fec_enet_private *fep = netdev_priv(ndev);
3430 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3431 int ret;
3432 int val;
3433
3434 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3435 ret = regulator_enable(fep->reg_phy);
3436 if (ret)
3437 return ret;
3438 }
3439
3440 rtnl_lock();
3441 if (netif_running(ndev)) {
3442 ret = fec_enet_clk_enable(ndev, true);
3443 if (ret) {
3444 rtnl_unlock();
3445 goto failed_clk;
3446 }
3447 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3448 if (pdata && pdata->sleep_mode_enable)
3449 pdata->sleep_mode_enable(false);
3450 val = readl(fep->hwp + FEC_ECNTRL);
3451 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3452 writel(val, fep->hwp + FEC_ECNTRL);
3453 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3454 } else {
3455 pinctrl_pm_select_default_state(&fep->pdev->dev);
3456 }
3457 fec_restart(ndev);
3458 netif_tx_lock_bh(ndev);
3459 netif_device_attach(ndev);
3460 netif_tx_unlock_bh(ndev);
3461 napi_enable(&fep->napi);
3462 phy_start(fep->phy_dev);
3463 }
3464 rtnl_unlock();
3465
3466 return 0;
3467
3468 failed_clk:
3469 if (fep->reg_phy)
3470 regulator_disable(fep->reg_phy);
3471 return ret;
3472 }
3473
3474 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3475
3476 static struct platform_driver fec_driver = {
3477 .driver = {
3478 .name = DRIVER_NAME,
3479 .pm = &fec_pm_ops,
3480 .of_match_table = fec_dt_ids,
3481 },
3482 .id_table = fec_devtype,
3483 .probe = fec_probe,
3484 .remove = fec_drv_remove,
3485 };
3486
3487 module_platform_driver(fec_driver);
3488
3489 MODULE_ALIAS("platform:"DRIVER_NAME);
3490 MODULE_LICENSE("GPL");
This page took 0.105507 seconds and 5 git commands to generate.