bfb2bb00c493d46c910e125e2cfaf66d51802e72
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58 #include <linux/pinctrl/consumer.h>
59
60 #include <asm/cacheflush.h>
61
62 #include "fec.h"
63
64 static void set_multicast_list(struct net_device *ndev);
65
66 #if defined(CONFIG_ARM)
67 #define FEC_ALIGNMENT 0xf
68 #else
69 #define FEC_ALIGNMENT 0x3
70 #endif
71
72 #define DRIVER_NAME "fec"
73
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V 0xFFF0
81
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC (1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET (1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT (1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM (1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN (1 << 6)
96 /* ENET IP errata ERR006358
97 *
98 * If the ready bit in the transmit buffer descriptor (TxBD[R]) is previously
99 * detected as not set during a prior frame transmission, then the
100 * ENET_TDAR[TDAR] bit is cleared at a later time, even if additional TxBDs
101 * were added to the ring and the ENET_TDAR[TDAR] bit is set. This results in
102 * frames not being transmitted until there is a 0-to-1 transition on
103 * ENET_TDAR[TDAR].
104 */
105 #define FEC_QUIRK_ERR006358 (1 << 7)
106
107 static struct platform_device_id fec_devtype[] = {
108 {
109 /* keep it for coldfire */
110 .name = DRIVER_NAME,
111 .driver_data = 0,
112 }, {
113 .name = "imx25-fec",
114 .driver_data = FEC_QUIRK_USE_GASKET,
115 }, {
116 .name = "imx27-fec",
117 .driver_data = 0,
118 }, {
119 .name = "imx28-fec",
120 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
121 }, {
122 .name = "imx6q-fec",
123 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
124 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
125 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
126 }, {
127 .name = "mvf600-fec",
128 .driver_data = FEC_QUIRK_ENET_MAC,
129 }, {
130 /* sentinel */
131 }
132 };
133 MODULE_DEVICE_TABLE(platform, fec_devtype);
134
135 enum imx_fec_type {
136 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
137 IMX27_FEC, /* runs on i.mx27/35/51 */
138 IMX28_FEC,
139 IMX6Q_FEC,
140 MVF600_FEC,
141 };
142
143 static const struct of_device_id fec_dt_ids[] = {
144 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
145 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
146 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
147 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
148 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
149 { /* sentinel */ }
150 };
151 MODULE_DEVICE_TABLE(of, fec_dt_ids);
152
153 static unsigned char macaddr[ETH_ALEN];
154 module_param_array(macaddr, byte, NULL, 0);
155 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
156
157 #if defined(CONFIG_M5272)
158 /*
159 * Some hardware gets it MAC address out of local flash memory.
160 * if this is non-zero then assume it is the address to get MAC from.
161 */
162 #if defined(CONFIG_NETtel)
163 #define FEC_FLASHMAC 0xf0006006
164 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
165 #define FEC_FLASHMAC 0xf0006000
166 #elif defined(CONFIG_CANCam)
167 #define FEC_FLASHMAC 0xf0020000
168 #elif defined (CONFIG_M5272C3)
169 #define FEC_FLASHMAC (0xffe04000 + 4)
170 #elif defined(CONFIG_MOD5272)
171 #define FEC_FLASHMAC 0xffc0406b
172 #else
173 #define FEC_FLASHMAC 0
174 #endif
175 #endif /* CONFIG_M5272 */
176
177 /* Interrupt events/masks. */
178 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
179 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
180 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
181 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
182 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
183 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
184 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
185 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
186 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
187 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
188
189 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
190 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
191
192 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
193 */
194 #define PKT_MAXBUF_SIZE 1522
195 #define PKT_MINBUF_SIZE 64
196 #define PKT_MAXBLR_SIZE 1536
197
198 /* FEC receive acceleration */
199 #define FEC_RACC_IPDIS (1 << 1)
200 #define FEC_RACC_PRODIS (1 << 2)
201 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
202
203 /*
204 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
205 * size bits. Other FEC hardware does not, so we need to take that into
206 * account when setting it.
207 */
208 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
209 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
210 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
211 #else
212 #define OPT_FRAME_SIZE 0
213 #endif
214
215 /* FEC MII MMFR bits definition */
216 #define FEC_MMFR_ST (1 << 30)
217 #define FEC_MMFR_OP_READ (2 << 28)
218 #define FEC_MMFR_OP_WRITE (1 << 28)
219 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
220 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
221 #define FEC_MMFR_TA (2 << 16)
222 #define FEC_MMFR_DATA(v) (v & 0xffff)
223
224 #define FEC_MII_TIMEOUT 30000 /* us */
225
226 /* Transmitter timeout */
227 #define TX_TIMEOUT (2 * HZ)
228
229 #define FEC_PAUSE_FLAG_AUTONEG 0x1
230 #define FEC_PAUSE_FLAG_ENABLE 0x2
231
232 #define TSO_HEADER_SIZE 128
233 /* Max number of allowed TCP segments for software TSO */
234 #define FEC_MAX_TSO_SEGS 100
235 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
236
237 #define IS_TSO_HEADER(txq, addr) \
238 ((addr >= txq->tso_hdrs_dma) && \
239 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
240
241 static int mii_cnt;
242
243 static inline
244 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
245 {
246 struct bufdesc *new_bd = bdp + 1;
247 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
248 struct bufdesc_ex *ex_base;
249 struct bufdesc *base;
250 int ring_size;
251
252 if (bdp >= fep->tx_bd_base) {
253 base = fep->tx_bd_base;
254 ring_size = fep->tx_ring_size;
255 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
256 } else {
257 base = fep->rx_bd_base;
258 ring_size = fep->rx_ring_size;
259 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
260 }
261
262 if (fep->bufdesc_ex)
263 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
264 ex_base : ex_new_bd);
265 else
266 return (new_bd >= (base + ring_size)) ?
267 base : new_bd;
268 }
269
270 static inline
271 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, struct fec_enet_private *fep)
272 {
273 struct bufdesc *new_bd = bdp - 1;
274 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
275 struct bufdesc_ex *ex_base;
276 struct bufdesc *base;
277 int ring_size;
278
279 if (bdp >= fep->tx_bd_base) {
280 base = fep->tx_bd_base;
281 ring_size = fep->tx_ring_size;
282 ex_base = (struct bufdesc_ex *)fep->tx_bd_base;
283 } else {
284 base = fep->rx_bd_base;
285 ring_size = fep->rx_ring_size;
286 ex_base = (struct bufdesc_ex *)fep->rx_bd_base;
287 }
288
289 if (fep->bufdesc_ex)
290 return (struct bufdesc *)((ex_new_bd < ex_base) ?
291 (ex_new_bd + ring_size) : ex_new_bd);
292 else
293 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
294 }
295
296 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
297 struct fec_enet_private *fep)
298 {
299 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
300 }
301
302 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep)
303 {
304 int entries;
305
306 entries = ((const char *)fep->dirty_tx -
307 (const char *)fep->cur_tx) / fep->bufdesc_size - 1;
308
309 return entries > 0 ? entries : entries + fep->tx_ring_size;
310 }
311
312 static void *swap_buffer(void *bufaddr, int len)
313 {
314 int i;
315 unsigned int *buf = bufaddr;
316
317 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
318 *buf = cpu_to_be32(*buf);
319
320 return bufaddr;
321 }
322
323 static inline bool is_ipv4_pkt(struct sk_buff *skb)
324 {
325 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
326 }
327
328 static int
329 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
330 {
331 /* Only run for packets requiring a checksum. */
332 if (skb->ip_summed != CHECKSUM_PARTIAL)
333 return 0;
334
335 if (unlikely(skb_cow_head(skb, 0)))
336 return -1;
337
338 if (is_ipv4_pkt(skb))
339 ip_hdr(skb)->check = 0;
340 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
341
342 return 0;
343 }
344
345 static void
346 fec_enet_submit_work(struct bufdesc *bdp, struct fec_enet_private *fep)
347 {
348 const struct platform_device_id *id_entry =
349 platform_get_device_id(fep->pdev);
350 struct bufdesc *bdp_pre;
351
352 bdp_pre = fec_enet_get_prevdesc(bdp, fep);
353 if ((id_entry->driver_data & FEC_QUIRK_ERR006358) &&
354 !(bdp_pre->cbd_sc & BD_ENET_TX_READY)) {
355 fep->delay_work.trig_tx = true;
356 schedule_delayed_work(&(fep->delay_work.delay_work),
357 msecs_to_jiffies(1));
358 }
359 }
360
361 static int
362 fec_enet_txq_submit_frag_skb(struct sk_buff *skb, struct net_device *ndev)
363 {
364 struct fec_enet_private *fep = netdev_priv(ndev);
365 const struct platform_device_id *id_entry =
366 platform_get_device_id(fep->pdev);
367 struct bufdesc *bdp = fep->cur_tx;
368 struct bufdesc_ex *ebdp;
369 int nr_frags = skb_shinfo(skb)->nr_frags;
370 int frag, frag_len;
371 unsigned short status;
372 unsigned int estatus = 0;
373 skb_frag_t *this_frag;
374 unsigned int index;
375 void *bufaddr;
376 dma_addr_t addr;
377 int i;
378
379 for (frag = 0; frag < nr_frags; frag++) {
380 this_frag = &skb_shinfo(skb)->frags[frag];
381 bdp = fec_enet_get_nextdesc(bdp, fep);
382 ebdp = (struct bufdesc_ex *)bdp;
383
384 status = bdp->cbd_sc;
385 status &= ~BD_ENET_TX_STATS;
386 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
387 frag_len = skb_shinfo(skb)->frags[frag].size;
388
389 /* Handle the last BD specially */
390 if (frag == nr_frags - 1) {
391 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
392 if (fep->bufdesc_ex) {
393 estatus |= BD_ENET_TX_INT;
394 if (unlikely(skb_shinfo(skb)->tx_flags &
395 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
396 estatus |= BD_ENET_TX_TS;
397 }
398 }
399
400 if (fep->bufdesc_ex) {
401 if (skb->ip_summed == CHECKSUM_PARTIAL)
402 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
403 ebdp->cbd_bdu = 0;
404 ebdp->cbd_esc = estatus;
405 }
406
407 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
408
409 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
410 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
411 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
412 memcpy(fep->tx_bounce[index], bufaddr, frag_len);
413 bufaddr = fep->tx_bounce[index];
414
415 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
416 swap_buffer(bufaddr, frag_len);
417 }
418
419 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
420 DMA_TO_DEVICE);
421 if (dma_mapping_error(&fep->pdev->dev, addr)) {
422 dev_kfree_skb_any(skb);
423 if (net_ratelimit())
424 netdev_err(ndev, "Tx DMA memory map failed\n");
425 goto dma_mapping_error;
426 }
427
428 bdp->cbd_bufaddr = addr;
429 bdp->cbd_datlen = frag_len;
430 bdp->cbd_sc = status;
431 }
432
433 fep->cur_tx = bdp;
434
435 return 0;
436
437 dma_mapping_error:
438 bdp = fep->cur_tx;
439 for (i = 0; i < frag; i++) {
440 bdp = fec_enet_get_nextdesc(bdp, fep);
441 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
442 bdp->cbd_datlen, DMA_TO_DEVICE);
443 }
444 return NETDEV_TX_OK;
445 }
446
447 static int fec_enet_txq_submit_skb(struct sk_buff *skb, struct net_device *ndev)
448 {
449 struct fec_enet_private *fep = netdev_priv(ndev);
450 const struct platform_device_id *id_entry =
451 platform_get_device_id(fep->pdev);
452 int nr_frags = skb_shinfo(skb)->nr_frags;
453 struct bufdesc *bdp, *last_bdp;
454 void *bufaddr;
455 dma_addr_t addr;
456 unsigned short status;
457 unsigned short buflen;
458 unsigned int estatus = 0;
459 unsigned int index;
460 int entries_free;
461 int ret;
462
463 entries_free = fec_enet_get_free_txdesc_num(fep);
464 if (entries_free < MAX_SKB_FRAGS + 1) {
465 dev_kfree_skb_any(skb);
466 if (net_ratelimit())
467 netdev_err(ndev, "NOT enough BD for SG!\n");
468 return NETDEV_TX_OK;
469 }
470
471 /* Protocol checksum off-load for TCP and UDP. */
472 if (fec_enet_clear_csum(skb, ndev)) {
473 dev_kfree_skb_any(skb);
474 return NETDEV_TX_OK;
475 }
476
477 /* Fill in a Tx ring entry */
478 bdp = fep->cur_tx;
479 status = bdp->cbd_sc;
480 status &= ~BD_ENET_TX_STATS;
481
482 /* Set buffer length and buffer pointer */
483 bufaddr = skb->data;
484 buflen = skb_headlen(skb);
485
486 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
487 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
488 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
489 memcpy(fep->tx_bounce[index], skb->data, buflen);
490 bufaddr = fep->tx_bounce[index];
491
492 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
493 swap_buffer(bufaddr, buflen);
494 }
495
496 /* Push the data cache so the CPM does not get stale memory data. */
497 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
498 if (dma_mapping_error(&fep->pdev->dev, addr)) {
499 dev_kfree_skb_any(skb);
500 if (net_ratelimit())
501 netdev_err(ndev, "Tx DMA memory map failed\n");
502 return NETDEV_TX_OK;
503 }
504
505 if (nr_frags) {
506 ret = fec_enet_txq_submit_frag_skb(skb, ndev);
507 if (ret)
508 return ret;
509 } else {
510 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
511 if (fep->bufdesc_ex) {
512 estatus = BD_ENET_TX_INT;
513 if (unlikely(skb_shinfo(skb)->tx_flags &
514 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
515 estatus |= BD_ENET_TX_TS;
516 }
517 }
518
519 if (fep->bufdesc_ex) {
520
521 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
522
523 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
524 fep->hwts_tx_en))
525 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
526
527 if (skb->ip_summed == CHECKSUM_PARTIAL)
528 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
529
530 ebdp->cbd_bdu = 0;
531 ebdp->cbd_esc = estatus;
532 }
533
534 last_bdp = fep->cur_tx;
535 index = fec_enet_get_bd_index(fep->tx_bd_base, last_bdp, fep);
536 /* Save skb pointer */
537 fep->tx_skbuff[index] = skb;
538
539 bdp->cbd_datlen = buflen;
540 bdp->cbd_bufaddr = addr;
541
542 /* Send it on its way. Tell FEC it's ready, interrupt when done,
543 * it's the last BD of the frame, and to put the CRC on the end.
544 */
545 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
546 bdp->cbd_sc = status;
547
548 fec_enet_submit_work(bdp, fep);
549
550 /* If this was the last BD in the ring, start at the beginning again. */
551 bdp = fec_enet_get_nextdesc(last_bdp, fep);
552
553 skb_tx_timestamp(skb);
554
555 fep->cur_tx = bdp;
556
557 /* Trigger transmission start */
558 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
559
560 return 0;
561 }
562
563 static int
564 fec_enet_txq_put_data_tso(struct sk_buff *skb, struct net_device *ndev,
565 struct bufdesc *bdp, int index, char *data,
566 int size, bool last_tcp, bool is_last)
567 {
568 struct fec_enet_private *fep = netdev_priv(ndev);
569 const struct platform_device_id *id_entry =
570 platform_get_device_id(fep->pdev);
571 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
572 unsigned short status;
573 unsigned int estatus = 0;
574 dma_addr_t addr;
575
576 status = bdp->cbd_sc;
577 status &= ~BD_ENET_TX_STATS;
578
579 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
580
581 if (((unsigned long) data) & FEC_ALIGNMENT ||
582 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
583 memcpy(fep->tx_bounce[index], data, size);
584 data = fep->tx_bounce[index];
585
586 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
587 swap_buffer(data, size);
588 }
589
590 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
591 if (dma_mapping_error(&fep->pdev->dev, addr)) {
592 dev_kfree_skb_any(skb);
593 if (net_ratelimit())
594 netdev_err(ndev, "Tx DMA memory map failed\n");
595 return NETDEV_TX_BUSY;
596 }
597
598 bdp->cbd_datlen = size;
599 bdp->cbd_bufaddr = addr;
600
601 if (fep->bufdesc_ex) {
602 if (skb->ip_summed == CHECKSUM_PARTIAL)
603 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
604 ebdp->cbd_bdu = 0;
605 ebdp->cbd_esc = estatus;
606 }
607
608 /* Handle the last BD specially */
609 if (last_tcp)
610 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
611 if (is_last) {
612 status |= BD_ENET_TX_INTR;
613 if (fep->bufdesc_ex)
614 ebdp->cbd_esc |= BD_ENET_TX_INT;
615 }
616
617 bdp->cbd_sc = status;
618
619 return 0;
620 }
621
622 static int
623 fec_enet_txq_put_hdr_tso(struct sk_buff *skb, struct net_device *ndev,
624 struct bufdesc *bdp, int index)
625 {
626 struct fec_enet_private *fep = netdev_priv(ndev);
627 const struct platform_device_id *id_entry =
628 platform_get_device_id(fep->pdev);
629 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
630 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
631 void *bufaddr;
632 unsigned long dmabuf;
633 unsigned short status;
634 unsigned int estatus = 0;
635
636 status = bdp->cbd_sc;
637 status &= ~BD_ENET_TX_STATS;
638 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
639
640 bufaddr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
641 dmabuf = fep->tso_hdrs_dma + index * TSO_HEADER_SIZE;
642 if (((unsigned long) bufaddr) & FEC_ALIGNMENT ||
643 id_entry->driver_data & FEC_QUIRK_SWAP_FRAME) {
644 memcpy(fep->tx_bounce[index], skb->data, hdr_len);
645 bufaddr = fep->tx_bounce[index];
646
647 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
648 swap_buffer(bufaddr, hdr_len);
649
650 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
651 hdr_len, DMA_TO_DEVICE);
652 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
653 dev_kfree_skb_any(skb);
654 if (net_ratelimit())
655 netdev_err(ndev, "Tx DMA memory map failed\n");
656 return NETDEV_TX_BUSY;
657 }
658 }
659
660 bdp->cbd_bufaddr = dmabuf;
661 bdp->cbd_datlen = hdr_len;
662
663 if (fep->bufdesc_ex) {
664 if (skb->ip_summed == CHECKSUM_PARTIAL)
665 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
666 ebdp->cbd_bdu = 0;
667 ebdp->cbd_esc = estatus;
668 }
669
670 bdp->cbd_sc = status;
671
672 return 0;
673 }
674
675 static int fec_enet_txq_submit_tso(struct sk_buff *skb, struct net_device *ndev)
676 {
677 struct fec_enet_private *fep = netdev_priv(ndev);
678 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
679 int total_len, data_left;
680 struct bufdesc *bdp = fep->cur_tx;
681 struct tso_t tso;
682 unsigned int index = 0;
683 int ret;
684
685 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep)) {
686 dev_kfree_skb_any(skb);
687 if (net_ratelimit())
688 netdev_err(ndev, "NOT enough BD for TSO!\n");
689 return NETDEV_TX_OK;
690 }
691
692 /* Protocol checksum off-load for TCP and UDP. */
693 if (fec_enet_clear_csum(skb, ndev)) {
694 dev_kfree_skb_any(skb);
695 return NETDEV_TX_OK;
696 }
697
698 /* Initialize the TSO handler, and prepare the first payload */
699 tso_start(skb, &tso);
700
701 total_len = skb->len - hdr_len;
702 while (total_len > 0) {
703 char *hdr;
704
705 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
706 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
707 total_len -= data_left;
708
709 /* prepare packet headers: MAC + IP + TCP */
710 hdr = fep->tso_hdrs + index * TSO_HEADER_SIZE;
711 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
712 ret = fec_enet_txq_put_hdr_tso(skb, ndev, bdp, index);
713 if (ret)
714 goto err_release;
715
716 while (data_left > 0) {
717 int size;
718
719 size = min_t(int, tso.size, data_left);
720 bdp = fec_enet_get_nextdesc(bdp, fep);
721 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
722 ret = fec_enet_txq_put_data_tso(skb, ndev, bdp, index, tso.data,
723 size, size == data_left,
724 total_len == 0);
725 if (ret)
726 goto err_release;
727
728 data_left -= size;
729 tso_build_data(skb, &tso, size);
730 }
731
732 bdp = fec_enet_get_nextdesc(bdp, fep);
733 }
734
735 /* Save skb pointer */
736 fep->tx_skbuff[index] = skb;
737
738 fec_enet_submit_work(bdp, fep);
739
740 skb_tx_timestamp(skb);
741 fep->cur_tx = bdp;
742
743 /* Trigger transmission start */
744 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
745
746 return 0;
747
748 err_release:
749 /* TODO: Release all used data descriptors for TSO */
750 return ret;
751 }
752
753 static netdev_tx_t
754 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
755 {
756 struct fec_enet_private *fep = netdev_priv(ndev);
757 int entries_free;
758 int ret;
759
760 if (skb_is_gso(skb))
761 ret = fec_enet_txq_submit_tso(skb, ndev);
762 else
763 ret = fec_enet_txq_submit_skb(skb, ndev);
764 if (ret)
765 return ret;
766
767 entries_free = fec_enet_get_free_txdesc_num(fep);
768 if (entries_free <= fep->tx_stop_threshold)
769 netif_stop_queue(ndev);
770
771 return NETDEV_TX_OK;
772 }
773
774 /* Init RX & TX buffer descriptors
775 */
776 static void fec_enet_bd_init(struct net_device *dev)
777 {
778 struct fec_enet_private *fep = netdev_priv(dev);
779 struct bufdesc *bdp;
780 unsigned int i;
781
782 /* Initialize the receive buffer descriptors. */
783 bdp = fep->rx_bd_base;
784 for (i = 0; i < fep->rx_ring_size; i++) {
785
786 /* Initialize the BD for every fragment in the page. */
787 if (bdp->cbd_bufaddr)
788 bdp->cbd_sc = BD_ENET_RX_EMPTY;
789 else
790 bdp->cbd_sc = 0;
791 bdp = fec_enet_get_nextdesc(bdp, fep);
792 }
793
794 /* Set the last buffer to wrap */
795 bdp = fec_enet_get_prevdesc(bdp, fep);
796 bdp->cbd_sc |= BD_SC_WRAP;
797
798 fep->cur_rx = fep->rx_bd_base;
799
800 /* ...and the same for transmit */
801 bdp = fep->tx_bd_base;
802 fep->cur_tx = bdp;
803 for (i = 0; i < fep->tx_ring_size; i++) {
804
805 /* Initialize the BD for every fragment in the page. */
806 bdp->cbd_sc = 0;
807 if (fep->tx_skbuff[i]) {
808 dev_kfree_skb_any(fep->tx_skbuff[i]);
809 fep->tx_skbuff[i] = NULL;
810 }
811 bdp->cbd_bufaddr = 0;
812 bdp = fec_enet_get_nextdesc(bdp, fep);
813 }
814
815 /* Set the last buffer to wrap */
816 bdp = fec_enet_get_prevdesc(bdp, fep);
817 bdp->cbd_sc |= BD_SC_WRAP;
818 fep->dirty_tx = bdp;
819 }
820
821 /* This function is called to start or restart the FEC during a link
822 * change. This only happens when switching between half and full
823 * duplex.
824 */
825 static void
826 fec_restart(struct net_device *ndev, int duplex)
827 {
828 struct fec_enet_private *fep = netdev_priv(ndev);
829 const struct platform_device_id *id_entry =
830 platform_get_device_id(fep->pdev);
831 int i;
832 u32 val;
833 u32 temp_mac[2];
834 u32 rcntl = OPT_FRAME_SIZE | 0x04;
835 u32 ecntl = 0x2; /* ETHEREN */
836
837 if (netif_running(ndev)) {
838 netif_device_detach(ndev);
839 napi_disable(&fep->napi);
840 netif_tx_disable(ndev);
841 netif_tx_lock_bh(ndev);
842 }
843
844 /* Whack a reset. We should wait for this. */
845 writel(1, fep->hwp + FEC_ECNTRL);
846 udelay(10);
847
848 /*
849 * enet-mac reset will reset mac address registers too,
850 * so need to reconfigure it.
851 */
852 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
853 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
854 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
855 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
856 }
857
858 /* Clear any outstanding interrupt. */
859 writel(0xffc00000, fep->hwp + FEC_IEVENT);
860
861 /* Set maximum receive buffer size. */
862 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
863
864 fec_enet_bd_init(ndev);
865
866 /* Set receive and transmit descriptor base. */
867 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
868 if (fep->bufdesc_ex)
869 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
870 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
871 else
872 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
873 * fep->rx_ring_size, fep->hwp + FEC_X_DES_START);
874
875
876 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
877 if (fep->tx_skbuff[i]) {
878 dev_kfree_skb_any(fep->tx_skbuff[i]);
879 fep->tx_skbuff[i] = NULL;
880 }
881 }
882
883 /* Enable MII mode */
884 if (duplex) {
885 /* FD enable */
886 writel(0x04, fep->hwp + FEC_X_CNTRL);
887 } else {
888 /* No Rcv on Xmit */
889 rcntl |= 0x02;
890 writel(0x0, fep->hwp + FEC_X_CNTRL);
891 }
892
893 fep->full_duplex = duplex;
894
895 /* Set MII speed */
896 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
897
898 #if !defined(CONFIG_M5272)
899 /* set RX checksum */
900 val = readl(fep->hwp + FEC_RACC);
901 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
902 val |= FEC_RACC_OPTIONS;
903 else
904 val &= ~FEC_RACC_OPTIONS;
905 writel(val, fep->hwp + FEC_RACC);
906 #endif
907
908 /*
909 * The phy interface and speed need to get configured
910 * differently on enet-mac.
911 */
912 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
913 /* Enable flow control and length check */
914 rcntl |= 0x40000000 | 0x00000020;
915
916 /* RGMII, RMII or MII */
917 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
918 rcntl |= (1 << 6);
919 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
920 rcntl |= (1 << 8);
921 else
922 rcntl &= ~(1 << 8);
923
924 /* 1G, 100M or 10M */
925 if (fep->phy_dev) {
926 if (fep->phy_dev->speed == SPEED_1000)
927 ecntl |= (1 << 5);
928 else if (fep->phy_dev->speed == SPEED_100)
929 rcntl &= ~(1 << 9);
930 else
931 rcntl |= (1 << 9);
932 }
933 } else {
934 #ifdef FEC_MIIGSK_ENR
935 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
936 u32 cfgr;
937 /* disable the gasket and wait */
938 writel(0, fep->hwp + FEC_MIIGSK_ENR);
939 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
940 udelay(1);
941
942 /*
943 * configure the gasket:
944 * RMII, 50 MHz, no loopback, no echo
945 * MII, 25 MHz, no loopback, no echo
946 */
947 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
948 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
949 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
950 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
951 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
952
953 /* re-enable the gasket */
954 writel(2, fep->hwp + FEC_MIIGSK_ENR);
955 }
956 #endif
957 }
958
959 #if !defined(CONFIG_M5272)
960 /* enable pause frame*/
961 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
962 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
963 fep->phy_dev && fep->phy_dev->pause)) {
964 rcntl |= FEC_ENET_FCE;
965
966 /* set FIFO threshold parameter to reduce overrun */
967 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
968 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
969 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
970 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
971
972 /* OPD */
973 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
974 } else {
975 rcntl &= ~FEC_ENET_FCE;
976 }
977 #endif /* !defined(CONFIG_M5272) */
978
979 writel(rcntl, fep->hwp + FEC_R_CNTRL);
980
981 /* Setup multicast filter. */
982 set_multicast_list(ndev);
983 #ifndef CONFIG_M5272
984 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
985 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
986 #endif
987
988 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
989 /* enable ENET endian swap */
990 ecntl |= (1 << 8);
991 /* enable ENET store and forward mode */
992 writel(1 << 8, fep->hwp + FEC_X_WMRK);
993 }
994
995 if (fep->bufdesc_ex)
996 ecntl |= (1 << 4);
997
998 #ifndef CONFIG_M5272
999 /* Enable the MIB statistic event counters */
1000 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1001 #endif
1002
1003 /* And last, enable the transmit and receive processing */
1004 writel(ecntl, fep->hwp + FEC_ECNTRL);
1005 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1006
1007 if (fep->bufdesc_ex)
1008 fec_ptp_start_cyclecounter(ndev);
1009
1010 /* Enable interrupts we wish to service */
1011 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1012
1013 if (netif_running(ndev)) {
1014 netif_tx_unlock_bh(ndev);
1015 netif_wake_queue(ndev);
1016 napi_enable(&fep->napi);
1017 netif_device_attach(ndev);
1018 }
1019 }
1020
1021 static void
1022 fec_stop(struct net_device *ndev)
1023 {
1024 struct fec_enet_private *fep = netdev_priv(ndev);
1025 const struct platform_device_id *id_entry =
1026 platform_get_device_id(fep->pdev);
1027 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1028
1029 /* We cannot expect a graceful transmit stop without link !!! */
1030 if (fep->link) {
1031 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1032 udelay(10);
1033 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1034 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1035 }
1036
1037 /* Whack a reset. We should wait for this. */
1038 writel(1, fep->hwp + FEC_ECNTRL);
1039 udelay(10);
1040 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1041 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1042
1043 /* We have to keep ENET enabled to have MII interrupt stay working */
1044 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
1045 writel(2, fep->hwp + FEC_ECNTRL);
1046 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1047 }
1048 }
1049
1050
1051 static void
1052 fec_timeout(struct net_device *ndev)
1053 {
1054 struct fec_enet_private *fep = netdev_priv(ndev);
1055
1056 ndev->stats.tx_errors++;
1057
1058 fep->delay_work.timeout = true;
1059 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
1060 }
1061
1062 static void fec_enet_work(struct work_struct *work)
1063 {
1064 struct fec_enet_private *fep =
1065 container_of(work,
1066 struct fec_enet_private,
1067 delay_work.delay_work.work);
1068 struct net_device *ndev = fep->netdev;
1069
1070 if (fep->delay_work.timeout) {
1071 fep->delay_work.timeout = false;
1072 rtnl_lock();
1073 if (netif_device_present(ndev) || netif_running(ndev)) {
1074 fec_restart(ndev, fep->full_duplex);
1075 netif_wake_queue(ndev);
1076 }
1077 rtnl_unlock();
1078 }
1079
1080 if (fep->delay_work.trig_tx) {
1081 fep->delay_work.trig_tx = false;
1082 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
1083 }
1084 }
1085
1086 static void
1087 fec_enet_tx(struct net_device *ndev)
1088 {
1089 struct fec_enet_private *fep;
1090 struct bufdesc *bdp;
1091 unsigned short status;
1092 struct sk_buff *skb;
1093 int index = 0;
1094 int entries_free;
1095
1096 fep = netdev_priv(ndev);
1097 bdp = fep->dirty_tx;
1098
1099 /* get next bdp of dirty_tx */
1100 bdp = fec_enet_get_nextdesc(bdp, fep);
1101
1102 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1103
1104 /* current queue is empty */
1105 if (bdp == fep->cur_tx)
1106 break;
1107
1108 index = fec_enet_get_bd_index(fep->tx_bd_base, bdp, fep);
1109
1110 skb = fep->tx_skbuff[index];
1111 fep->tx_skbuff[index] = NULL;
1112 if (!IS_TSO_HEADER(fep, bdp->cbd_bufaddr))
1113 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1114 bdp->cbd_datlen, DMA_TO_DEVICE);
1115 bdp->cbd_bufaddr = 0;
1116 if (!skb) {
1117 bdp = fec_enet_get_nextdesc(bdp, fep);
1118 continue;
1119 }
1120
1121 /* Check for errors. */
1122 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1123 BD_ENET_TX_RL | BD_ENET_TX_UN |
1124 BD_ENET_TX_CSL)) {
1125 ndev->stats.tx_errors++;
1126 if (status & BD_ENET_TX_HB) /* No heartbeat */
1127 ndev->stats.tx_heartbeat_errors++;
1128 if (status & BD_ENET_TX_LC) /* Late collision */
1129 ndev->stats.tx_window_errors++;
1130 if (status & BD_ENET_TX_RL) /* Retrans limit */
1131 ndev->stats.tx_aborted_errors++;
1132 if (status & BD_ENET_TX_UN) /* Underrun */
1133 ndev->stats.tx_fifo_errors++;
1134 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1135 ndev->stats.tx_carrier_errors++;
1136 } else {
1137 ndev->stats.tx_packets++;
1138 ndev->stats.tx_bytes += skb->len;
1139 }
1140
1141 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1142 fep->bufdesc_ex) {
1143 struct skb_shared_hwtstamps shhwtstamps;
1144 unsigned long flags;
1145 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1146
1147 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1148 spin_lock_irqsave(&fep->tmreg_lock, flags);
1149 shhwtstamps.hwtstamp = ns_to_ktime(
1150 timecounter_cyc2time(&fep->tc, ebdp->ts));
1151 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1152 skb_tstamp_tx(skb, &shhwtstamps);
1153 }
1154
1155 if (status & BD_ENET_TX_READY)
1156 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
1157
1158 /* Deferred means some collisions occurred during transmit,
1159 * but we eventually sent the packet OK.
1160 */
1161 if (status & BD_ENET_TX_DEF)
1162 ndev->stats.collisions++;
1163
1164 /* Free the sk buffer associated with this last transmit */
1165 dev_kfree_skb_any(skb);
1166
1167 fep->dirty_tx = bdp;
1168
1169 /* Update pointer to next buffer descriptor to be transmitted */
1170 bdp = fec_enet_get_nextdesc(bdp, fep);
1171
1172 /* Since we have freed up a buffer, the ring is no longer full
1173 */
1174 if (netif_queue_stopped(ndev)) {
1175 entries_free = fec_enet_get_free_txdesc_num(fep);
1176 if (entries_free >= fep->tx_wake_threshold)
1177 netif_wake_queue(ndev);
1178 }
1179 }
1180 return;
1181 }
1182
1183 /* During a receive, the cur_rx points to the current incoming buffer.
1184 * When we update through the ring, if the next incoming buffer has
1185 * not been given to the system, we just set the empty indicator,
1186 * effectively tossing the packet.
1187 */
1188 static int
1189 fec_enet_rx(struct net_device *ndev, int budget)
1190 {
1191 struct fec_enet_private *fep = netdev_priv(ndev);
1192 const struct platform_device_id *id_entry =
1193 platform_get_device_id(fep->pdev);
1194 struct bufdesc *bdp;
1195 unsigned short status;
1196 struct sk_buff *skb;
1197 ushort pkt_len;
1198 __u8 *data;
1199 int pkt_received = 0;
1200 struct bufdesc_ex *ebdp = NULL;
1201 bool vlan_packet_rcvd = false;
1202 u16 vlan_tag;
1203 int index = 0;
1204
1205 #ifdef CONFIG_M532x
1206 flush_cache_all();
1207 #endif
1208
1209 /* First, grab all of the stats for the incoming packet.
1210 * These get messed up if we get called due to a busy condition.
1211 */
1212 bdp = fep->cur_rx;
1213
1214 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1215
1216 if (pkt_received >= budget)
1217 break;
1218 pkt_received++;
1219
1220 /* Since we have allocated space to hold a complete frame,
1221 * the last indicator should be set.
1222 */
1223 if ((status & BD_ENET_RX_LAST) == 0)
1224 netdev_err(ndev, "rcv is not +last\n");
1225
1226 /* Check for errors. */
1227 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1228 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1229 ndev->stats.rx_errors++;
1230 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1231 /* Frame too long or too short. */
1232 ndev->stats.rx_length_errors++;
1233 }
1234 if (status & BD_ENET_RX_NO) /* Frame alignment */
1235 ndev->stats.rx_frame_errors++;
1236 if (status & BD_ENET_RX_CR) /* CRC Error */
1237 ndev->stats.rx_crc_errors++;
1238 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1239 ndev->stats.rx_fifo_errors++;
1240 }
1241
1242 /* Report late collisions as a frame error.
1243 * On this error, the BD is closed, but we don't know what we
1244 * have in the buffer. So, just drop this frame on the floor.
1245 */
1246 if (status & BD_ENET_RX_CL) {
1247 ndev->stats.rx_errors++;
1248 ndev->stats.rx_frame_errors++;
1249 goto rx_processing_done;
1250 }
1251
1252 /* Process the incoming frame. */
1253 ndev->stats.rx_packets++;
1254 pkt_len = bdp->cbd_datlen;
1255 ndev->stats.rx_bytes += pkt_len;
1256
1257 index = fec_enet_get_bd_index(fep->rx_bd_base, bdp, fep);
1258 data = fep->rx_skbuff[index]->data;
1259 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1260 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1261
1262 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
1263 swap_buffer(data, pkt_len);
1264
1265 /* Extract the enhanced buffer descriptor */
1266 ebdp = NULL;
1267 if (fep->bufdesc_ex)
1268 ebdp = (struct bufdesc_ex *)bdp;
1269
1270 /* If this is a VLAN packet remove the VLAN Tag */
1271 vlan_packet_rcvd = false;
1272 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1273 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1274 /* Push and remove the vlan tag */
1275 struct vlan_hdr *vlan_header =
1276 (struct vlan_hdr *) (data + ETH_HLEN);
1277 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1278 pkt_len -= VLAN_HLEN;
1279
1280 vlan_packet_rcvd = true;
1281 }
1282
1283 /* This does 16 byte alignment, exactly what we need.
1284 * The packet length includes FCS, but we don't want to
1285 * include that when passing upstream as it messes up
1286 * bridging applications.
1287 */
1288 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
1289
1290 if (unlikely(!skb)) {
1291 ndev->stats.rx_dropped++;
1292 } else {
1293 int payload_offset = (2 * ETH_ALEN);
1294 skb_reserve(skb, NET_IP_ALIGN);
1295 skb_put(skb, pkt_len - 4); /* Make room */
1296
1297 /* Extract the frame data without the VLAN header. */
1298 skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
1299 if (vlan_packet_rcvd)
1300 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
1301 skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
1302 data + payload_offset,
1303 pkt_len - 4 - (2 * ETH_ALEN));
1304
1305 skb->protocol = eth_type_trans(skb, ndev);
1306
1307 /* Get receive timestamp from the skb */
1308 if (fep->hwts_rx_en && fep->bufdesc_ex) {
1309 struct skb_shared_hwtstamps *shhwtstamps =
1310 skb_hwtstamps(skb);
1311 unsigned long flags;
1312
1313 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
1314
1315 spin_lock_irqsave(&fep->tmreg_lock, flags);
1316 shhwtstamps->hwtstamp = ns_to_ktime(
1317 timecounter_cyc2time(&fep->tc, ebdp->ts));
1318 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1319 }
1320
1321 if (fep->bufdesc_ex &&
1322 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1323 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1324 /* don't check it */
1325 skb->ip_summed = CHECKSUM_UNNECESSARY;
1326 } else {
1327 skb_checksum_none_assert(skb);
1328 }
1329 }
1330
1331 /* Handle received VLAN packets */
1332 if (vlan_packet_rcvd)
1333 __vlan_hwaccel_put_tag(skb,
1334 htons(ETH_P_8021Q),
1335 vlan_tag);
1336
1337 napi_gro_receive(&fep->napi, skb);
1338 }
1339
1340 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1341 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1342 rx_processing_done:
1343 /* Clear the status flags for this buffer */
1344 status &= ~BD_ENET_RX_STATS;
1345
1346 /* Mark the buffer empty */
1347 status |= BD_ENET_RX_EMPTY;
1348 bdp->cbd_sc = status;
1349
1350 if (fep->bufdesc_ex) {
1351 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1352
1353 ebdp->cbd_esc = BD_ENET_RX_INT;
1354 ebdp->cbd_prot = 0;
1355 ebdp->cbd_bdu = 0;
1356 }
1357
1358 /* Update BD pointer to next entry */
1359 bdp = fec_enet_get_nextdesc(bdp, fep);
1360
1361 /* Doing this here will keep the FEC running while we process
1362 * incoming frames. On a heavily loaded network, we should be
1363 * able to keep up at the expense of system resources.
1364 */
1365 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
1366 }
1367 fep->cur_rx = bdp;
1368
1369 return pkt_received;
1370 }
1371
1372 static irqreturn_t
1373 fec_enet_interrupt(int irq, void *dev_id)
1374 {
1375 struct net_device *ndev = dev_id;
1376 struct fec_enet_private *fep = netdev_priv(ndev);
1377 const unsigned napi_mask = FEC_ENET_RXF | FEC_ENET_TXF;
1378 uint int_events;
1379 irqreturn_t ret = IRQ_NONE;
1380
1381 int_events = readl(fep->hwp + FEC_IEVENT);
1382 writel(int_events & ~napi_mask, fep->hwp + FEC_IEVENT);
1383
1384 if (int_events & napi_mask) {
1385 ret = IRQ_HANDLED;
1386
1387 /* Disable the NAPI interrupts */
1388 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1389 napi_schedule(&fep->napi);
1390 }
1391
1392 if (int_events & FEC_ENET_MII) {
1393 ret = IRQ_HANDLED;
1394 complete(&fep->mdio_done);
1395 }
1396
1397 return ret;
1398 }
1399
1400 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1401 {
1402 struct net_device *ndev = napi->dev;
1403 struct fec_enet_private *fep = netdev_priv(ndev);
1404 int pkts;
1405
1406 /*
1407 * Clear any pending transmit or receive interrupts before
1408 * processing the rings to avoid racing with the hardware.
1409 */
1410 writel(FEC_ENET_RXF | FEC_ENET_TXF, fep->hwp + FEC_IEVENT);
1411
1412 pkts = fec_enet_rx(ndev, budget);
1413
1414 fec_enet_tx(ndev);
1415
1416 if (pkts < budget) {
1417 napi_complete(napi);
1418 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1419 }
1420 return pkts;
1421 }
1422
1423 /* ------------------------------------------------------------------------- */
1424 static void fec_get_mac(struct net_device *ndev)
1425 {
1426 struct fec_enet_private *fep = netdev_priv(ndev);
1427 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1428 unsigned char *iap, tmpaddr[ETH_ALEN];
1429
1430 /*
1431 * try to get mac address in following order:
1432 *
1433 * 1) module parameter via kernel command line in form
1434 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1435 */
1436 iap = macaddr;
1437
1438 /*
1439 * 2) from device tree data
1440 */
1441 if (!is_valid_ether_addr(iap)) {
1442 struct device_node *np = fep->pdev->dev.of_node;
1443 if (np) {
1444 const char *mac = of_get_mac_address(np);
1445 if (mac)
1446 iap = (unsigned char *) mac;
1447 }
1448 }
1449
1450 /*
1451 * 3) from flash or fuse (via platform data)
1452 */
1453 if (!is_valid_ether_addr(iap)) {
1454 #ifdef CONFIG_M5272
1455 if (FEC_FLASHMAC)
1456 iap = (unsigned char *)FEC_FLASHMAC;
1457 #else
1458 if (pdata)
1459 iap = (unsigned char *)&pdata->mac;
1460 #endif
1461 }
1462
1463 /*
1464 * 4) FEC mac registers set by bootloader
1465 */
1466 if (!is_valid_ether_addr(iap)) {
1467 *((__be32 *) &tmpaddr[0]) =
1468 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1469 *((__be16 *) &tmpaddr[4]) =
1470 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1471 iap = &tmpaddr[0];
1472 }
1473
1474 /*
1475 * 5) random mac address
1476 */
1477 if (!is_valid_ether_addr(iap)) {
1478 /* Report it and use a random ethernet address instead */
1479 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1480 eth_hw_addr_random(ndev);
1481 netdev_info(ndev, "Using random MAC address: %pM\n",
1482 ndev->dev_addr);
1483 return;
1484 }
1485
1486 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1487
1488 /* Adjust MAC if using macaddr */
1489 if (iap == macaddr)
1490 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1491 }
1492
1493 /* ------------------------------------------------------------------------- */
1494
1495 /*
1496 * Phy section
1497 */
1498 static void fec_enet_adjust_link(struct net_device *ndev)
1499 {
1500 struct fec_enet_private *fep = netdev_priv(ndev);
1501 struct phy_device *phy_dev = fep->phy_dev;
1502 int status_change = 0;
1503
1504 /* Prevent a state halted on mii error */
1505 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1506 phy_dev->state = PHY_RESUMING;
1507 return;
1508 }
1509
1510 /*
1511 * If the netdev is down, or is going down, we're not interested
1512 * in link state events, so just mark our idea of the link as down
1513 * and ignore the event.
1514 */
1515 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1516 fep->link = 0;
1517 } else if (phy_dev->link) {
1518 if (!fep->link) {
1519 fep->link = phy_dev->link;
1520 status_change = 1;
1521 }
1522
1523 if (fep->full_duplex != phy_dev->duplex)
1524 status_change = 1;
1525
1526 if (phy_dev->speed != fep->speed) {
1527 fep->speed = phy_dev->speed;
1528 status_change = 1;
1529 }
1530
1531 /* if any of the above changed restart the FEC */
1532 if (status_change)
1533 fec_restart(ndev, phy_dev->duplex);
1534 } else {
1535 if (fep->link) {
1536 fec_stop(ndev);
1537 fep->link = phy_dev->link;
1538 status_change = 1;
1539 }
1540 }
1541
1542 if (status_change)
1543 phy_print_status(phy_dev);
1544 }
1545
1546 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1547 {
1548 struct fec_enet_private *fep = bus->priv;
1549 unsigned long time_left;
1550
1551 fep->mii_timeout = 0;
1552 init_completion(&fep->mdio_done);
1553
1554 /* start a read op */
1555 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1556 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1557 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1558
1559 /* wait for end of transfer */
1560 time_left = wait_for_completion_timeout(&fep->mdio_done,
1561 usecs_to_jiffies(FEC_MII_TIMEOUT));
1562 if (time_left == 0) {
1563 fep->mii_timeout = 1;
1564 netdev_err(fep->netdev, "MDIO read timeout\n");
1565 return -ETIMEDOUT;
1566 }
1567
1568 /* return value */
1569 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1570 }
1571
1572 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1573 u16 value)
1574 {
1575 struct fec_enet_private *fep = bus->priv;
1576 unsigned long time_left;
1577
1578 fep->mii_timeout = 0;
1579 init_completion(&fep->mdio_done);
1580
1581 /* start a write op */
1582 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1583 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1584 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1585 fep->hwp + FEC_MII_DATA);
1586
1587 /* wait for end of transfer */
1588 time_left = wait_for_completion_timeout(&fep->mdio_done,
1589 usecs_to_jiffies(FEC_MII_TIMEOUT));
1590 if (time_left == 0) {
1591 fep->mii_timeout = 1;
1592 netdev_err(fep->netdev, "MDIO write timeout\n");
1593 return -ETIMEDOUT;
1594 }
1595
1596 return 0;
1597 }
1598
1599 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1600 {
1601 struct fec_enet_private *fep = netdev_priv(ndev);
1602 int ret;
1603
1604 if (enable) {
1605 ret = clk_prepare_enable(fep->clk_ahb);
1606 if (ret)
1607 return ret;
1608 ret = clk_prepare_enable(fep->clk_ipg);
1609 if (ret)
1610 goto failed_clk_ipg;
1611 if (fep->clk_enet_out) {
1612 ret = clk_prepare_enable(fep->clk_enet_out);
1613 if (ret)
1614 goto failed_clk_enet_out;
1615 }
1616 if (fep->clk_ptp) {
1617 ret = clk_prepare_enable(fep->clk_ptp);
1618 if (ret)
1619 goto failed_clk_ptp;
1620 }
1621 } else {
1622 clk_disable_unprepare(fep->clk_ahb);
1623 clk_disable_unprepare(fep->clk_ipg);
1624 if (fep->clk_enet_out)
1625 clk_disable_unprepare(fep->clk_enet_out);
1626 if (fep->clk_ptp)
1627 clk_disable_unprepare(fep->clk_ptp);
1628 }
1629
1630 return 0;
1631 failed_clk_ptp:
1632 if (fep->clk_enet_out)
1633 clk_disable_unprepare(fep->clk_enet_out);
1634 failed_clk_enet_out:
1635 clk_disable_unprepare(fep->clk_ipg);
1636 failed_clk_ipg:
1637 clk_disable_unprepare(fep->clk_ahb);
1638
1639 return ret;
1640 }
1641
1642 static int fec_enet_mii_probe(struct net_device *ndev)
1643 {
1644 struct fec_enet_private *fep = netdev_priv(ndev);
1645 const struct platform_device_id *id_entry =
1646 platform_get_device_id(fep->pdev);
1647 struct phy_device *phy_dev = NULL;
1648 char mdio_bus_id[MII_BUS_ID_SIZE];
1649 char phy_name[MII_BUS_ID_SIZE + 3];
1650 int phy_id;
1651 int dev_id = fep->dev_id;
1652
1653 fep->phy_dev = NULL;
1654
1655 /* check for attached phy */
1656 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1657 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1658 continue;
1659 if (fep->mii_bus->phy_map[phy_id] == NULL)
1660 continue;
1661 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1662 continue;
1663 if (dev_id--)
1664 continue;
1665 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1666 break;
1667 }
1668
1669 if (phy_id >= PHY_MAX_ADDR) {
1670 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1671 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1672 phy_id = 0;
1673 }
1674
1675 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1676 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1677 fep->phy_interface);
1678 if (IS_ERR(phy_dev)) {
1679 netdev_err(ndev, "could not attach to PHY\n");
1680 return PTR_ERR(phy_dev);
1681 }
1682
1683 /* mask with MAC supported features */
1684 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1685 phy_dev->supported &= PHY_GBIT_FEATURES;
1686 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1687 #if !defined(CONFIG_M5272)
1688 phy_dev->supported |= SUPPORTED_Pause;
1689 #endif
1690 }
1691 else
1692 phy_dev->supported &= PHY_BASIC_FEATURES;
1693
1694 phy_dev->advertising = phy_dev->supported;
1695
1696 fep->phy_dev = phy_dev;
1697 fep->link = 0;
1698 fep->full_duplex = 0;
1699
1700 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1701 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1702 fep->phy_dev->irq);
1703
1704 return 0;
1705 }
1706
1707 static int fec_enet_mii_init(struct platform_device *pdev)
1708 {
1709 static struct mii_bus *fec0_mii_bus;
1710 struct net_device *ndev = platform_get_drvdata(pdev);
1711 struct fec_enet_private *fep = netdev_priv(ndev);
1712 const struct platform_device_id *id_entry =
1713 platform_get_device_id(fep->pdev);
1714 int err = -ENXIO, i;
1715
1716 /*
1717 * The dual fec interfaces are not equivalent with enet-mac.
1718 * Here are the differences:
1719 *
1720 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1721 * - fec0 acts as the 1588 time master while fec1 is slave
1722 * - external phys can only be configured by fec0
1723 *
1724 * That is to say fec1 can not work independently. It only works
1725 * when fec0 is working. The reason behind this design is that the
1726 * second interface is added primarily for Switch mode.
1727 *
1728 * Because of the last point above, both phys are attached on fec0
1729 * mdio interface in board design, and need to be configured by
1730 * fec0 mii_bus.
1731 */
1732 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1733 /* fec1 uses fec0 mii_bus */
1734 if (mii_cnt && fec0_mii_bus) {
1735 fep->mii_bus = fec0_mii_bus;
1736 mii_cnt++;
1737 return 0;
1738 }
1739 return -ENOENT;
1740 }
1741
1742 fep->mii_timeout = 0;
1743
1744 /*
1745 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1746 *
1747 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1748 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1749 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1750 * document.
1751 */
1752 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1753 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1754 fep->phy_speed--;
1755 fep->phy_speed <<= 1;
1756 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1757
1758 fep->mii_bus = mdiobus_alloc();
1759 if (fep->mii_bus == NULL) {
1760 err = -ENOMEM;
1761 goto err_out;
1762 }
1763
1764 fep->mii_bus->name = "fec_enet_mii_bus";
1765 fep->mii_bus->read = fec_enet_mdio_read;
1766 fep->mii_bus->write = fec_enet_mdio_write;
1767 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1768 pdev->name, fep->dev_id + 1);
1769 fep->mii_bus->priv = fep;
1770 fep->mii_bus->parent = &pdev->dev;
1771
1772 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1773 if (!fep->mii_bus->irq) {
1774 err = -ENOMEM;
1775 goto err_out_free_mdiobus;
1776 }
1777
1778 for (i = 0; i < PHY_MAX_ADDR; i++)
1779 fep->mii_bus->irq[i] = PHY_POLL;
1780
1781 if (mdiobus_register(fep->mii_bus))
1782 goto err_out_free_mdio_irq;
1783
1784 mii_cnt++;
1785
1786 /* save fec0 mii_bus */
1787 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1788 fec0_mii_bus = fep->mii_bus;
1789
1790 return 0;
1791
1792 err_out_free_mdio_irq:
1793 kfree(fep->mii_bus->irq);
1794 err_out_free_mdiobus:
1795 mdiobus_free(fep->mii_bus);
1796 err_out:
1797 return err;
1798 }
1799
1800 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1801 {
1802 if (--mii_cnt == 0) {
1803 mdiobus_unregister(fep->mii_bus);
1804 kfree(fep->mii_bus->irq);
1805 mdiobus_free(fep->mii_bus);
1806 }
1807 }
1808
1809 static int fec_enet_get_settings(struct net_device *ndev,
1810 struct ethtool_cmd *cmd)
1811 {
1812 struct fec_enet_private *fep = netdev_priv(ndev);
1813 struct phy_device *phydev = fep->phy_dev;
1814
1815 if (!phydev)
1816 return -ENODEV;
1817
1818 return phy_ethtool_gset(phydev, cmd);
1819 }
1820
1821 static int fec_enet_set_settings(struct net_device *ndev,
1822 struct ethtool_cmd *cmd)
1823 {
1824 struct fec_enet_private *fep = netdev_priv(ndev);
1825 struct phy_device *phydev = fep->phy_dev;
1826
1827 if (!phydev)
1828 return -ENODEV;
1829
1830 return phy_ethtool_sset(phydev, cmd);
1831 }
1832
1833 static void fec_enet_get_drvinfo(struct net_device *ndev,
1834 struct ethtool_drvinfo *info)
1835 {
1836 struct fec_enet_private *fep = netdev_priv(ndev);
1837
1838 strlcpy(info->driver, fep->pdev->dev.driver->name,
1839 sizeof(info->driver));
1840 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1841 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1842 }
1843
1844 static int fec_enet_get_ts_info(struct net_device *ndev,
1845 struct ethtool_ts_info *info)
1846 {
1847 struct fec_enet_private *fep = netdev_priv(ndev);
1848
1849 if (fep->bufdesc_ex) {
1850
1851 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1852 SOF_TIMESTAMPING_RX_SOFTWARE |
1853 SOF_TIMESTAMPING_SOFTWARE |
1854 SOF_TIMESTAMPING_TX_HARDWARE |
1855 SOF_TIMESTAMPING_RX_HARDWARE |
1856 SOF_TIMESTAMPING_RAW_HARDWARE;
1857 if (fep->ptp_clock)
1858 info->phc_index = ptp_clock_index(fep->ptp_clock);
1859 else
1860 info->phc_index = -1;
1861
1862 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1863 (1 << HWTSTAMP_TX_ON);
1864
1865 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1866 (1 << HWTSTAMP_FILTER_ALL);
1867 return 0;
1868 } else {
1869 return ethtool_op_get_ts_info(ndev, info);
1870 }
1871 }
1872
1873 #if !defined(CONFIG_M5272)
1874
1875 static void fec_enet_get_pauseparam(struct net_device *ndev,
1876 struct ethtool_pauseparam *pause)
1877 {
1878 struct fec_enet_private *fep = netdev_priv(ndev);
1879
1880 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1881 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1882 pause->rx_pause = pause->tx_pause;
1883 }
1884
1885 static int fec_enet_set_pauseparam(struct net_device *ndev,
1886 struct ethtool_pauseparam *pause)
1887 {
1888 struct fec_enet_private *fep = netdev_priv(ndev);
1889
1890 if (!fep->phy_dev)
1891 return -ENODEV;
1892
1893 if (pause->tx_pause != pause->rx_pause) {
1894 netdev_info(ndev,
1895 "hardware only support enable/disable both tx and rx");
1896 return -EINVAL;
1897 }
1898
1899 fep->pause_flag = 0;
1900
1901 /* tx pause must be same as rx pause */
1902 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1903 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1904
1905 if (pause->rx_pause || pause->autoneg) {
1906 fep->phy_dev->supported |= ADVERTISED_Pause;
1907 fep->phy_dev->advertising |= ADVERTISED_Pause;
1908 } else {
1909 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1910 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1911 }
1912
1913 if (pause->autoneg) {
1914 if (netif_running(ndev))
1915 fec_stop(ndev);
1916 phy_start_aneg(fep->phy_dev);
1917 }
1918 if (netif_running(ndev))
1919 fec_restart(ndev, fep->full_duplex);
1920
1921 return 0;
1922 }
1923
1924 static const struct fec_stat {
1925 char name[ETH_GSTRING_LEN];
1926 u16 offset;
1927 } fec_stats[] = {
1928 /* RMON TX */
1929 { "tx_dropped", RMON_T_DROP },
1930 { "tx_packets", RMON_T_PACKETS },
1931 { "tx_broadcast", RMON_T_BC_PKT },
1932 { "tx_multicast", RMON_T_MC_PKT },
1933 { "tx_crc_errors", RMON_T_CRC_ALIGN },
1934 { "tx_undersize", RMON_T_UNDERSIZE },
1935 { "tx_oversize", RMON_T_OVERSIZE },
1936 { "tx_fragment", RMON_T_FRAG },
1937 { "tx_jabber", RMON_T_JAB },
1938 { "tx_collision", RMON_T_COL },
1939 { "tx_64byte", RMON_T_P64 },
1940 { "tx_65to127byte", RMON_T_P65TO127 },
1941 { "tx_128to255byte", RMON_T_P128TO255 },
1942 { "tx_256to511byte", RMON_T_P256TO511 },
1943 { "tx_512to1023byte", RMON_T_P512TO1023 },
1944 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1945 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1946 { "tx_octets", RMON_T_OCTETS },
1947
1948 /* IEEE TX */
1949 { "IEEE_tx_drop", IEEE_T_DROP },
1950 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1951 { "IEEE_tx_1col", IEEE_T_1COL },
1952 { "IEEE_tx_mcol", IEEE_T_MCOL },
1953 { "IEEE_tx_def", IEEE_T_DEF },
1954 { "IEEE_tx_lcol", IEEE_T_LCOL },
1955 { "IEEE_tx_excol", IEEE_T_EXCOL },
1956 { "IEEE_tx_macerr", IEEE_T_MACERR },
1957 { "IEEE_tx_cserr", IEEE_T_CSERR },
1958 { "IEEE_tx_sqe", IEEE_T_SQE },
1959 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1960 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1961
1962 /* RMON RX */
1963 { "rx_packets", RMON_R_PACKETS },
1964 { "rx_broadcast", RMON_R_BC_PKT },
1965 { "rx_multicast", RMON_R_MC_PKT },
1966 { "rx_crc_errors", RMON_R_CRC_ALIGN },
1967 { "rx_undersize", RMON_R_UNDERSIZE },
1968 { "rx_oversize", RMON_R_OVERSIZE },
1969 { "rx_fragment", RMON_R_FRAG },
1970 { "rx_jabber", RMON_R_JAB },
1971 { "rx_64byte", RMON_R_P64 },
1972 { "rx_65to127byte", RMON_R_P65TO127 },
1973 { "rx_128to255byte", RMON_R_P128TO255 },
1974 { "rx_256to511byte", RMON_R_P256TO511 },
1975 { "rx_512to1023byte", RMON_R_P512TO1023 },
1976 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1977 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1978 { "rx_octets", RMON_R_OCTETS },
1979
1980 /* IEEE RX */
1981 { "IEEE_rx_drop", IEEE_R_DROP },
1982 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1983 { "IEEE_rx_crc", IEEE_R_CRC },
1984 { "IEEE_rx_align", IEEE_R_ALIGN },
1985 { "IEEE_rx_macerr", IEEE_R_MACERR },
1986 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1987 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1988 };
1989
1990 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1991 struct ethtool_stats *stats, u64 *data)
1992 {
1993 struct fec_enet_private *fep = netdev_priv(dev);
1994 int i;
1995
1996 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1997 data[i] = readl(fep->hwp + fec_stats[i].offset);
1998 }
1999
2000 static void fec_enet_get_strings(struct net_device *netdev,
2001 u32 stringset, u8 *data)
2002 {
2003 int i;
2004 switch (stringset) {
2005 case ETH_SS_STATS:
2006 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2007 memcpy(data + i * ETH_GSTRING_LEN,
2008 fec_stats[i].name, ETH_GSTRING_LEN);
2009 break;
2010 }
2011 }
2012
2013 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2014 {
2015 switch (sset) {
2016 case ETH_SS_STATS:
2017 return ARRAY_SIZE(fec_stats);
2018 default:
2019 return -EOPNOTSUPP;
2020 }
2021 }
2022 #endif /* !defined(CONFIG_M5272) */
2023
2024 static int fec_enet_nway_reset(struct net_device *dev)
2025 {
2026 struct fec_enet_private *fep = netdev_priv(dev);
2027 struct phy_device *phydev = fep->phy_dev;
2028
2029 if (!phydev)
2030 return -ENODEV;
2031
2032 return genphy_restart_aneg(phydev);
2033 }
2034
2035 static const struct ethtool_ops fec_enet_ethtool_ops = {
2036 #if !defined(CONFIG_M5272)
2037 .get_pauseparam = fec_enet_get_pauseparam,
2038 .set_pauseparam = fec_enet_set_pauseparam,
2039 #endif
2040 .get_settings = fec_enet_get_settings,
2041 .set_settings = fec_enet_set_settings,
2042 .get_drvinfo = fec_enet_get_drvinfo,
2043 .get_link = ethtool_op_get_link,
2044 .get_ts_info = fec_enet_get_ts_info,
2045 .nway_reset = fec_enet_nway_reset,
2046 #ifndef CONFIG_M5272
2047 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2048 .get_strings = fec_enet_get_strings,
2049 .get_sset_count = fec_enet_get_sset_count,
2050 #endif
2051 };
2052
2053 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2054 {
2055 struct fec_enet_private *fep = netdev_priv(ndev);
2056 struct phy_device *phydev = fep->phy_dev;
2057
2058 if (!netif_running(ndev))
2059 return -EINVAL;
2060
2061 if (!phydev)
2062 return -ENODEV;
2063
2064 if (fep->bufdesc_ex) {
2065 if (cmd == SIOCSHWTSTAMP)
2066 return fec_ptp_set(ndev, rq);
2067 if (cmd == SIOCGHWTSTAMP)
2068 return fec_ptp_get(ndev, rq);
2069 }
2070
2071 return phy_mii_ioctl(phydev, rq, cmd);
2072 }
2073
2074 static void fec_enet_free_buffers(struct net_device *ndev)
2075 {
2076 struct fec_enet_private *fep = netdev_priv(ndev);
2077 unsigned int i;
2078 struct sk_buff *skb;
2079 struct bufdesc *bdp;
2080
2081 bdp = fep->rx_bd_base;
2082 for (i = 0; i < fep->rx_ring_size; i++) {
2083 skb = fep->rx_skbuff[i];
2084 fep->rx_skbuff[i] = NULL;
2085 if (skb) {
2086 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
2087 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2088 dev_kfree_skb(skb);
2089 }
2090 bdp = fec_enet_get_nextdesc(bdp, fep);
2091 }
2092
2093 bdp = fep->tx_bd_base;
2094 for (i = 0; i < fep->tx_ring_size; i++) {
2095 kfree(fep->tx_bounce[i]);
2096 fep->tx_bounce[i] = NULL;
2097 skb = fep->tx_skbuff[i];
2098 fep->tx_skbuff[i] = NULL;
2099 dev_kfree_skb(skb);
2100 }
2101 }
2102
2103 static int fec_enet_alloc_buffers(struct net_device *ndev)
2104 {
2105 struct fec_enet_private *fep = netdev_priv(ndev);
2106 unsigned int i;
2107 struct sk_buff *skb;
2108 struct bufdesc *bdp;
2109
2110 bdp = fep->rx_bd_base;
2111 for (i = 0; i < fep->rx_ring_size; i++) {
2112 dma_addr_t addr;
2113
2114 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2115 if (!skb)
2116 goto err_alloc;
2117
2118 addr = dma_map_single(&fep->pdev->dev, skb->data,
2119 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
2120 if (dma_mapping_error(&fep->pdev->dev, addr)) {
2121 dev_kfree_skb(skb);
2122 if (net_ratelimit())
2123 netdev_err(ndev, "Rx DMA memory map failed\n");
2124 goto err_alloc;
2125 }
2126
2127 fep->rx_skbuff[i] = skb;
2128 bdp->cbd_bufaddr = addr;
2129 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2130
2131 if (fep->bufdesc_ex) {
2132 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2133 ebdp->cbd_esc = BD_ENET_RX_INT;
2134 }
2135
2136 bdp = fec_enet_get_nextdesc(bdp, fep);
2137 }
2138
2139 /* Set the last buffer to wrap. */
2140 bdp = fec_enet_get_prevdesc(bdp, fep);
2141 bdp->cbd_sc |= BD_SC_WRAP;
2142
2143 bdp = fep->tx_bd_base;
2144 for (i = 0; i < fep->tx_ring_size; i++) {
2145 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2146 if (!fep->tx_bounce[i])
2147 goto err_alloc;
2148
2149 bdp->cbd_sc = 0;
2150 bdp->cbd_bufaddr = 0;
2151
2152 if (fep->bufdesc_ex) {
2153 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2154 ebdp->cbd_esc = BD_ENET_TX_INT;
2155 }
2156
2157 bdp = fec_enet_get_nextdesc(bdp, fep);
2158 }
2159
2160 /* Set the last buffer to wrap. */
2161 bdp = fec_enet_get_prevdesc(bdp, fep);
2162 bdp->cbd_sc |= BD_SC_WRAP;
2163
2164 return 0;
2165
2166 err_alloc:
2167 fec_enet_free_buffers(ndev);
2168 return -ENOMEM;
2169 }
2170
2171 static int
2172 fec_enet_open(struct net_device *ndev)
2173 {
2174 struct fec_enet_private *fep = netdev_priv(ndev);
2175 int ret;
2176
2177 pinctrl_pm_select_default_state(&fep->pdev->dev);
2178 ret = fec_enet_clk_enable(ndev, true);
2179 if (ret)
2180 return ret;
2181
2182 /* I should reset the ring buffers here, but I don't yet know
2183 * a simple way to do that.
2184 */
2185
2186 ret = fec_enet_alloc_buffers(ndev);
2187 if (ret)
2188 return ret;
2189
2190 /* Probe and connect to PHY when open the interface */
2191 ret = fec_enet_mii_probe(ndev);
2192 if (ret) {
2193 fec_enet_free_buffers(ndev);
2194 return ret;
2195 }
2196
2197 fec_restart(ndev, fep->full_duplex);
2198 napi_enable(&fep->napi);
2199 phy_start(fep->phy_dev);
2200 netif_start_queue(ndev);
2201 return 0;
2202 }
2203
2204 static int
2205 fec_enet_close(struct net_device *ndev)
2206 {
2207 struct fec_enet_private *fep = netdev_priv(ndev);
2208
2209 phy_stop(fep->phy_dev);
2210
2211 napi_disable(&fep->napi);
2212 netif_tx_disable(ndev);
2213 if (netif_device_present(ndev))
2214 fec_stop(ndev);
2215
2216 phy_disconnect(fep->phy_dev);
2217 fep->phy_dev = NULL;
2218
2219 fec_enet_clk_enable(ndev, false);
2220 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2221 fec_enet_free_buffers(ndev);
2222
2223 return 0;
2224 }
2225
2226 /* Set or clear the multicast filter for this adaptor.
2227 * Skeleton taken from sunlance driver.
2228 * The CPM Ethernet implementation allows Multicast as well as individual
2229 * MAC address filtering. Some of the drivers check to make sure it is
2230 * a group multicast address, and discard those that are not. I guess I
2231 * will do the same for now, but just remove the test if you want
2232 * individual filtering as well (do the upper net layers want or support
2233 * this kind of feature?).
2234 */
2235
2236 #define HASH_BITS 6 /* #bits in hash */
2237 #define CRC32_POLY 0xEDB88320
2238
2239 static void set_multicast_list(struct net_device *ndev)
2240 {
2241 struct fec_enet_private *fep = netdev_priv(ndev);
2242 struct netdev_hw_addr *ha;
2243 unsigned int i, bit, data, crc, tmp;
2244 unsigned char hash;
2245
2246 if (ndev->flags & IFF_PROMISC) {
2247 tmp = readl(fep->hwp + FEC_R_CNTRL);
2248 tmp |= 0x8;
2249 writel(tmp, fep->hwp + FEC_R_CNTRL);
2250 return;
2251 }
2252
2253 tmp = readl(fep->hwp + FEC_R_CNTRL);
2254 tmp &= ~0x8;
2255 writel(tmp, fep->hwp + FEC_R_CNTRL);
2256
2257 if (ndev->flags & IFF_ALLMULTI) {
2258 /* Catch all multicast addresses, so set the
2259 * filter to all 1's
2260 */
2261 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2262 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2263
2264 return;
2265 }
2266
2267 /* Clear filter and add the addresses in hash register
2268 */
2269 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2270 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2271
2272 netdev_for_each_mc_addr(ha, ndev) {
2273 /* calculate crc32 value of mac address */
2274 crc = 0xffffffff;
2275
2276 for (i = 0; i < ndev->addr_len; i++) {
2277 data = ha->addr[i];
2278 for (bit = 0; bit < 8; bit++, data >>= 1) {
2279 crc = (crc >> 1) ^
2280 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2281 }
2282 }
2283
2284 /* only upper 6 bits (HASH_BITS) are used
2285 * which point to specific bit in he hash registers
2286 */
2287 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2288
2289 if (hash > 31) {
2290 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2291 tmp |= 1 << (hash - 32);
2292 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2293 } else {
2294 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2295 tmp |= 1 << hash;
2296 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2297 }
2298 }
2299 }
2300
2301 /* Set a MAC change in hardware. */
2302 static int
2303 fec_set_mac_address(struct net_device *ndev, void *p)
2304 {
2305 struct fec_enet_private *fep = netdev_priv(ndev);
2306 struct sockaddr *addr = p;
2307
2308 if (addr) {
2309 if (!is_valid_ether_addr(addr->sa_data))
2310 return -EADDRNOTAVAIL;
2311 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2312 }
2313
2314 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2315 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2316 fep->hwp + FEC_ADDR_LOW);
2317 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2318 fep->hwp + FEC_ADDR_HIGH);
2319 return 0;
2320 }
2321
2322 #ifdef CONFIG_NET_POLL_CONTROLLER
2323 /**
2324 * fec_poll_controller - FEC Poll controller function
2325 * @dev: The FEC network adapter
2326 *
2327 * Polled functionality used by netconsole and others in non interrupt mode
2328 *
2329 */
2330 static void fec_poll_controller(struct net_device *dev)
2331 {
2332 int i;
2333 struct fec_enet_private *fep = netdev_priv(dev);
2334
2335 for (i = 0; i < FEC_IRQ_NUM; i++) {
2336 if (fep->irq[i] > 0) {
2337 disable_irq(fep->irq[i]);
2338 fec_enet_interrupt(fep->irq[i], dev);
2339 enable_irq(fep->irq[i]);
2340 }
2341 }
2342 }
2343 #endif
2344
2345 static int fec_set_features(struct net_device *netdev,
2346 netdev_features_t features)
2347 {
2348 struct fec_enet_private *fep = netdev_priv(netdev);
2349 netdev_features_t changed = features ^ netdev->features;
2350
2351 netdev->features = features;
2352
2353 /* Receive checksum has been changed */
2354 if (changed & NETIF_F_RXCSUM) {
2355 if (features & NETIF_F_RXCSUM)
2356 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2357 else
2358 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2359
2360 if (netif_running(netdev)) {
2361 fec_stop(netdev);
2362 fec_restart(netdev, fep->phy_dev->duplex);
2363 netif_wake_queue(netdev);
2364 }
2365 }
2366
2367 return 0;
2368 }
2369
2370 static const struct net_device_ops fec_netdev_ops = {
2371 .ndo_open = fec_enet_open,
2372 .ndo_stop = fec_enet_close,
2373 .ndo_start_xmit = fec_enet_start_xmit,
2374 .ndo_set_rx_mode = set_multicast_list,
2375 .ndo_change_mtu = eth_change_mtu,
2376 .ndo_validate_addr = eth_validate_addr,
2377 .ndo_tx_timeout = fec_timeout,
2378 .ndo_set_mac_address = fec_set_mac_address,
2379 .ndo_do_ioctl = fec_enet_ioctl,
2380 #ifdef CONFIG_NET_POLL_CONTROLLER
2381 .ndo_poll_controller = fec_poll_controller,
2382 #endif
2383 .ndo_set_features = fec_set_features,
2384 };
2385
2386 /*
2387 * XXX: We need to clean up on failure exits here.
2388 *
2389 */
2390 static int fec_enet_init(struct net_device *ndev)
2391 {
2392 struct fec_enet_private *fep = netdev_priv(ndev);
2393 const struct platform_device_id *id_entry =
2394 platform_get_device_id(fep->pdev);
2395 struct bufdesc *cbd_base;
2396 int bd_size;
2397
2398 /* init the tx & rx ring size */
2399 fep->tx_ring_size = TX_RING_SIZE;
2400 fep->rx_ring_size = RX_RING_SIZE;
2401
2402 fep->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2403 fep->tx_wake_threshold = (fep->tx_ring_size - fep->tx_stop_threshold) / 2;
2404
2405 if (fep->bufdesc_ex)
2406 fep->bufdesc_size = sizeof(struct bufdesc_ex);
2407 else
2408 fep->bufdesc_size = sizeof(struct bufdesc);
2409 bd_size = (fep->tx_ring_size + fep->rx_ring_size) *
2410 fep->bufdesc_size;
2411
2412 /* Allocate memory for buffer descriptors. */
2413 cbd_base = dma_alloc_coherent(NULL, bd_size, &fep->bd_dma,
2414 GFP_KERNEL);
2415 if (!cbd_base)
2416 return -ENOMEM;
2417
2418 fep->tso_hdrs = dma_alloc_coherent(NULL, fep->tx_ring_size * TSO_HEADER_SIZE,
2419 &fep->tso_hdrs_dma, GFP_KERNEL);
2420 if (!fep->tso_hdrs) {
2421 dma_free_coherent(NULL, bd_size, cbd_base, fep->bd_dma);
2422 return -ENOMEM;
2423 }
2424
2425 memset(cbd_base, 0, PAGE_SIZE);
2426
2427 fep->netdev = ndev;
2428
2429 /* Get the Ethernet address */
2430 fec_get_mac(ndev);
2431 /* make sure MAC we just acquired is programmed into the hw */
2432 fec_set_mac_address(ndev, NULL);
2433
2434 /* Set receive and transmit descriptor base. */
2435 fep->rx_bd_base = cbd_base;
2436 if (fep->bufdesc_ex)
2437 fep->tx_bd_base = (struct bufdesc *)
2438 (((struct bufdesc_ex *)cbd_base) + fep->rx_ring_size);
2439 else
2440 fep->tx_bd_base = cbd_base + fep->rx_ring_size;
2441
2442 /* The FEC Ethernet specific entries in the device structure */
2443 ndev->watchdog_timeo = TX_TIMEOUT;
2444 ndev->netdev_ops = &fec_netdev_ops;
2445 ndev->ethtool_ops = &fec_enet_ethtool_ops;
2446
2447 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
2448 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
2449
2450 if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN)
2451 /* enable hw VLAN support */
2452 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2453
2454 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
2455 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
2456
2457 /* enable hw accelerator */
2458 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
2459 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
2460 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2461 }
2462
2463 ndev->hw_features = ndev->features;
2464
2465 fec_restart(ndev, 0);
2466
2467 return 0;
2468 }
2469
2470 #ifdef CONFIG_OF
2471 static void fec_reset_phy(struct platform_device *pdev)
2472 {
2473 int err, phy_reset;
2474 int msec = 1;
2475 struct device_node *np = pdev->dev.of_node;
2476
2477 if (!np)
2478 return;
2479
2480 of_property_read_u32(np, "phy-reset-duration", &msec);
2481 /* A sane reset duration should not be longer than 1s */
2482 if (msec > 1000)
2483 msec = 1;
2484
2485 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
2486 if (!gpio_is_valid(phy_reset))
2487 return;
2488
2489 err = devm_gpio_request_one(&pdev->dev, phy_reset,
2490 GPIOF_OUT_INIT_LOW, "phy-reset");
2491 if (err) {
2492 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2493 return;
2494 }
2495 msleep(msec);
2496 gpio_set_value(phy_reset, 1);
2497 }
2498 #else /* CONFIG_OF */
2499 static void fec_reset_phy(struct platform_device *pdev)
2500 {
2501 /*
2502 * In case of platform probe, the reset has been done
2503 * by machine code.
2504 */
2505 }
2506 #endif /* CONFIG_OF */
2507
2508 static int
2509 fec_probe(struct platform_device *pdev)
2510 {
2511 struct fec_enet_private *fep;
2512 struct fec_platform_data *pdata;
2513 struct net_device *ndev;
2514 int i, irq, ret = 0;
2515 struct resource *r;
2516 const struct of_device_id *of_id;
2517 static int dev_id;
2518
2519 of_id = of_match_device(fec_dt_ids, &pdev->dev);
2520 if (of_id)
2521 pdev->id_entry = of_id->data;
2522
2523 /* Init network device */
2524 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2525 if (!ndev)
2526 return -ENOMEM;
2527
2528 SET_NETDEV_DEV(ndev, &pdev->dev);
2529
2530 /* setup board info structure */
2531 fep = netdev_priv(ndev);
2532
2533 #if !defined(CONFIG_M5272)
2534 /* default enable pause frame auto negotiation */
2535 if (pdev->id_entry &&
2536 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2537 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2538 #endif
2539
2540 /* Select default pin state */
2541 pinctrl_pm_select_default_state(&pdev->dev);
2542
2543 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2544 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2545 if (IS_ERR(fep->hwp)) {
2546 ret = PTR_ERR(fep->hwp);
2547 goto failed_ioremap;
2548 }
2549
2550 fep->pdev = pdev;
2551 fep->dev_id = dev_id++;
2552
2553 fep->bufdesc_ex = 0;
2554
2555 platform_set_drvdata(pdev, ndev);
2556
2557 ret = of_get_phy_mode(pdev->dev.of_node);
2558 if (ret < 0) {
2559 pdata = dev_get_platdata(&pdev->dev);
2560 if (pdata)
2561 fep->phy_interface = pdata->phy;
2562 else
2563 fep->phy_interface = PHY_INTERFACE_MODE_MII;
2564 } else {
2565 fep->phy_interface = ret;
2566 }
2567
2568 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2569 if (IS_ERR(fep->clk_ipg)) {
2570 ret = PTR_ERR(fep->clk_ipg);
2571 goto failed_clk;
2572 }
2573
2574 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2575 if (IS_ERR(fep->clk_ahb)) {
2576 ret = PTR_ERR(fep->clk_ahb);
2577 goto failed_clk;
2578 }
2579
2580 /* enet_out is optional, depends on board */
2581 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2582 if (IS_ERR(fep->clk_enet_out))
2583 fep->clk_enet_out = NULL;
2584
2585 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2586 fep->bufdesc_ex =
2587 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2588 if (IS_ERR(fep->clk_ptp)) {
2589 fep->clk_ptp = NULL;
2590 fep->bufdesc_ex = 0;
2591 }
2592
2593 ret = fec_enet_clk_enable(ndev, true);
2594 if (ret)
2595 goto failed_clk;
2596
2597 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2598 if (!IS_ERR(fep->reg_phy)) {
2599 ret = regulator_enable(fep->reg_phy);
2600 if (ret) {
2601 dev_err(&pdev->dev,
2602 "Failed to enable phy regulator: %d\n", ret);
2603 goto failed_regulator;
2604 }
2605 } else {
2606 fep->reg_phy = NULL;
2607 }
2608
2609 fec_reset_phy(pdev);
2610
2611 if (fep->bufdesc_ex)
2612 fec_ptp_init(pdev);
2613
2614 ret = fec_enet_init(ndev);
2615 if (ret)
2616 goto failed_init;
2617
2618 for (i = 0; i < FEC_IRQ_NUM; i++) {
2619 irq = platform_get_irq(pdev, i);
2620 if (irq < 0) {
2621 if (i)
2622 break;
2623 ret = irq;
2624 goto failed_irq;
2625 }
2626 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
2627 0, pdev->name, ndev);
2628 if (ret)
2629 goto failed_irq;
2630 }
2631
2632 ret = fec_enet_mii_init(pdev);
2633 if (ret)
2634 goto failed_mii_init;
2635
2636 /* Carrier starts down, phylib will bring it up */
2637 netif_carrier_off(ndev);
2638 fec_enet_clk_enable(ndev, false);
2639 pinctrl_pm_select_sleep_state(&pdev->dev);
2640
2641 ret = register_netdev(ndev);
2642 if (ret)
2643 goto failed_register;
2644
2645 if (fep->bufdesc_ex && fep->ptp_clock)
2646 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2647
2648 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2649 return 0;
2650
2651 failed_register:
2652 fec_enet_mii_remove(fep);
2653 failed_mii_init:
2654 failed_irq:
2655 failed_init:
2656 if (fep->reg_phy)
2657 regulator_disable(fep->reg_phy);
2658 failed_regulator:
2659 fec_enet_clk_enable(ndev, false);
2660 failed_clk:
2661 failed_ioremap:
2662 free_netdev(ndev);
2663
2664 return ret;
2665 }
2666
2667 static int
2668 fec_drv_remove(struct platform_device *pdev)
2669 {
2670 struct net_device *ndev = platform_get_drvdata(pdev);
2671 struct fec_enet_private *fep = netdev_priv(ndev);
2672
2673 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2674 unregister_netdev(ndev);
2675 fec_enet_mii_remove(fep);
2676 del_timer_sync(&fep->time_keep);
2677 if (fep->reg_phy)
2678 regulator_disable(fep->reg_phy);
2679 if (fep->ptp_clock)
2680 ptp_clock_unregister(fep->ptp_clock);
2681 fec_enet_clk_enable(ndev, false);
2682 free_netdev(ndev);
2683
2684 return 0;
2685 }
2686
2687 #ifdef CONFIG_PM_SLEEP
2688 static int
2689 fec_suspend(struct device *dev)
2690 {
2691 struct net_device *ndev = dev_get_drvdata(dev);
2692 struct fec_enet_private *fep = netdev_priv(ndev);
2693
2694 rtnl_lock();
2695 if (netif_running(ndev)) {
2696 phy_stop(fep->phy_dev);
2697 fec_stop(ndev);
2698 netif_device_detach(ndev);
2699 }
2700 rtnl_unlock();
2701
2702 fec_enet_clk_enable(ndev, false);
2703 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2704
2705 if (fep->reg_phy)
2706 regulator_disable(fep->reg_phy);
2707
2708 return 0;
2709 }
2710
2711 static int
2712 fec_resume(struct device *dev)
2713 {
2714 struct net_device *ndev = dev_get_drvdata(dev);
2715 struct fec_enet_private *fep = netdev_priv(ndev);
2716 int ret;
2717
2718 if (fep->reg_phy) {
2719 ret = regulator_enable(fep->reg_phy);
2720 if (ret)
2721 return ret;
2722 }
2723
2724 pinctrl_pm_select_default_state(&fep->pdev->dev);
2725 ret = fec_enet_clk_enable(ndev, true);
2726 if (ret)
2727 goto failed_clk;
2728
2729 rtnl_lock();
2730 if (netif_running(ndev)) {
2731 fec_restart(ndev, fep->full_duplex);
2732 netif_device_attach(ndev);
2733 phy_start(fep->phy_dev);
2734 }
2735 rtnl_unlock();
2736
2737 return 0;
2738
2739 failed_clk:
2740 if (fep->reg_phy)
2741 regulator_disable(fep->reg_phy);
2742 return ret;
2743 }
2744 #endif /* CONFIG_PM_SLEEP */
2745
2746 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2747
2748 static struct platform_driver fec_driver = {
2749 .driver = {
2750 .name = DRIVER_NAME,
2751 .owner = THIS_MODULE,
2752 .pm = &fec_pm_ops,
2753 .of_match_table = fec_dt_ids,
2754 },
2755 .id_table = fec_devtype,
2756 .probe = fec_probe,
2757 .remove = fec_drv_remove,
2758 };
2759
2760 module_platform_driver(fec_driver);
2761
2762 MODULE_ALIAS("platform:"DRIVER_NAME);
2763 MODULE_LICENSE("GPL");
This page took 0.092269 seconds and 4 git commands to generate.