ASoC: fsl: Add S/PDIF CPU DAI driver
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_net.h>
56 #include <linux/regulator/consumer.h>
57 #include <linux/if_vlan.h>
58
59 #include <asm/cacheflush.h>
60
61 #include "fec.h"
62
63 static void set_multicast_list(struct net_device *ndev);
64
65 #if defined(CONFIG_ARM)
66 #define FEC_ALIGNMENT 0xf
67 #else
68 #define FEC_ALIGNMENT 0x3
69 #endif
70
71 #define DRIVER_NAME "fec"
72 #define FEC_NAPI_WEIGHT 64
73
74 /* Pause frame feild and FIFO threshold */
75 #define FEC_ENET_FCE (1 << 5)
76 #define FEC_ENET_RSEM_V 0x84
77 #define FEC_ENET_RSFL_V 16
78 #define FEC_ENET_RAEM_V 0x8
79 #define FEC_ENET_RAFL_V 0x8
80 #define FEC_ENET_OPD_V 0xFFF0
81
82 /* Controller is ENET-MAC */
83 #define FEC_QUIRK_ENET_MAC (1 << 0)
84 /* Controller needs driver to swap frame */
85 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
86 /* Controller uses gasket */
87 #define FEC_QUIRK_USE_GASKET (1 << 2)
88 /* Controller has GBIT support */
89 #define FEC_QUIRK_HAS_GBIT (1 << 3)
90 /* Controller has extend desc buffer */
91 #define FEC_QUIRK_HAS_BUFDESC_EX (1 << 4)
92 /* Controller has hardware checksum support */
93 #define FEC_QUIRK_HAS_CSUM (1 << 5)
94 /* Controller has hardware vlan support */
95 #define FEC_QUIRK_HAS_VLAN (1 << 6)
96
97 static struct platform_device_id fec_devtype[] = {
98 {
99 /* keep it for coldfire */
100 .name = DRIVER_NAME,
101 .driver_data = 0,
102 }, {
103 .name = "imx25-fec",
104 .driver_data = FEC_QUIRK_USE_GASKET,
105 }, {
106 .name = "imx27-fec",
107 .driver_data = 0,
108 }, {
109 .name = "imx28-fec",
110 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
111 }, {
112 .name = "imx6q-fec",
113 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
114 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
115 FEC_QUIRK_HAS_VLAN,
116 }, {
117 .name = "mvf600-fec",
118 .driver_data = FEC_QUIRK_ENET_MAC,
119 }, {
120 /* sentinel */
121 }
122 };
123 MODULE_DEVICE_TABLE(platform, fec_devtype);
124
125 enum imx_fec_type {
126 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
127 IMX27_FEC, /* runs on i.mx27/35/51 */
128 IMX28_FEC,
129 IMX6Q_FEC,
130 MVF600_FEC,
131 };
132
133 static const struct of_device_id fec_dt_ids[] = {
134 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
135 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
136 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
137 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
138 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
139 { /* sentinel */ }
140 };
141 MODULE_DEVICE_TABLE(of, fec_dt_ids);
142
143 static unsigned char macaddr[ETH_ALEN];
144 module_param_array(macaddr, byte, NULL, 0);
145 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
146
147 #if defined(CONFIG_M5272)
148 /*
149 * Some hardware gets it MAC address out of local flash memory.
150 * if this is non-zero then assume it is the address to get MAC from.
151 */
152 #if defined(CONFIG_NETtel)
153 #define FEC_FLASHMAC 0xf0006006
154 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
155 #define FEC_FLASHMAC 0xf0006000
156 #elif defined(CONFIG_CANCam)
157 #define FEC_FLASHMAC 0xf0020000
158 #elif defined (CONFIG_M5272C3)
159 #define FEC_FLASHMAC (0xffe04000 + 4)
160 #elif defined(CONFIG_MOD5272)
161 #define FEC_FLASHMAC 0xffc0406b
162 #else
163 #define FEC_FLASHMAC 0
164 #endif
165 #endif /* CONFIG_M5272 */
166
167 #if (((RX_RING_SIZE + TX_RING_SIZE) * 32) > PAGE_SIZE)
168 #error "FEC: descriptor ring size constants too large"
169 #endif
170
171 /* Interrupt events/masks. */
172 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
173 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
174 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
175 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
176 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
177 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
178 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
179 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
180 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
181 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
182
183 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
184 #define FEC_RX_DISABLED_IMASK (FEC_DEFAULT_IMASK & (~FEC_ENET_RXF))
185
186 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
187 */
188 #define PKT_MAXBUF_SIZE 1522
189 #define PKT_MINBUF_SIZE 64
190 #define PKT_MAXBLR_SIZE 1536
191
192 /* FEC receive acceleration */
193 #define FEC_RACC_IPDIS (1 << 1)
194 #define FEC_RACC_PRODIS (1 << 2)
195 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
196
197 /*
198 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
199 * size bits. Other FEC hardware does not, so we need to take that into
200 * account when setting it.
201 */
202 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
203 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
204 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
205 #else
206 #define OPT_FRAME_SIZE 0
207 #endif
208
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST (1 << 30)
211 #define FEC_MMFR_OP_READ (2 << 28)
212 #define FEC_MMFR_OP_WRITE (1 << 28)
213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215 #define FEC_MMFR_TA (2 << 16)
216 #define FEC_MMFR_DATA(v) (v & 0xffff)
217
218 #define FEC_MII_TIMEOUT 30000 /* us */
219
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
222
223 #define FEC_PAUSE_FLAG_AUTONEG 0x1
224 #define FEC_PAUSE_FLAG_ENABLE 0x2
225
226 static int mii_cnt;
227
228 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp, int is_ex)
229 {
230 struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
231 if (is_ex)
232 return (struct bufdesc *)(ex + 1);
233 else
234 return bdp + 1;
235 }
236
237 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp, int is_ex)
238 {
239 struct bufdesc_ex *ex = (struct bufdesc_ex *)bdp;
240 if (is_ex)
241 return (struct bufdesc *)(ex - 1);
242 else
243 return bdp - 1;
244 }
245
246 static void *swap_buffer(void *bufaddr, int len)
247 {
248 int i;
249 unsigned int *buf = bufaddr;
250
251 for (i = 0; i < DIV_ROUND_UP(len, 4); i++, buf++)
252 *buf = cpu_to_be32(*buf);
253
254 return bufaddr;
255 }
256
257 static int
258 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
259 {
260 /* Only run for packets requiring a checksum. */
261 if (skb->ip_summed != CHECKSUM_PARTIAL)
262 return 0;
263
264 if (unlikely(skb_cow_head(skb, 0)))
265 return -1;
266
267 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
268
269 return 0;
270 }
271
272 static netdev_tx_t
273 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
274 {
275 struct fec_enet_private *fep = netdev_priv(ndev);
276 const struct platform_device_id *id_entry =
277 platform_get_device_id(fep->pdev);
278 struct bufdesc *bdp;
279 void *bufaddr;
280 unsigned short status;
281 unsigned int index;
282
283 if (!fep->link) {
284 /* Link is down or auto-negotiation is in progress. */
285 return NETDEV_TX_BUSY;
286 }
287
288 /* Fill in a Tx ring entry */
289 bdp = fep->cur_tx;
290
291 status = bdp->cbd_sc;
292
293 if (status & BD_ENET_TX_READY) {
294 /* Ooops. All transmit buffers are full. Bail out.
295 * This should not happen, since ndev->tbusy should be set.
296 */
297 netdev_err(ndev, "tx queue full!\n");
298 return NETDEV_TX_BUSY;
299 }
300
301 /* Protocol checksum off-load for TCP and UDP. */
302 if (fec_enet_clear_csum(skb, ndev)) {
303 kfree_skb(skb);
304 return NETDEV_TX_OK;
305 }
306
307 /* Clear all of the status flags */
308 status &= ~BD_ENET_TX_STATS;
309
310 /* Set buffer length and buffer pointer */
311 bufaddr = skb->data;
312 bdp->cbd_datlen = skb->len;
313
314 /*
315 * On some FEC implementations data must be aligned on
316 * 4-byte boundaries. Use bounce buffers to copy data
317 * and get it aligned. Ugh.
318 */
319 if (fep->bufdesc_ex)
320 index = (struct bufdesc_ex *)bdp -
321 (struct bufdesc_ex *)fep->tx_bd_base;
322 else
323 index = bdp - fep->tx_bd_base;
324
325 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
326 memcpy(fep->tx_bounce[index], skb->data, skb->len);
327 bufaddr = fep->tx_bounce[index];
328 }
329
330 /*
331 * Some design made an incorrect assumption on endian mode of
332 * the system that it's running on. As the result, driver has to
333 * swap every frame going to and coming from the controller.
334 */
335 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
336 swap_buffer(bufaddr, skb->len);
337
338 /* Save skb pointer */
339 fep->tx_skbuff[index] = skb;
340
341 /* Push the data cache so the CPM does not get stale memory
342 * data.
343 */
344 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
345 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
346
347 /* Send it on its way. Tell FEC it's ready, interrupt when done,
348 * it's the last BD of the frame, and to put the CRC on the end.
349 */
350 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
351 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
352 bdp->cbd_sc = status;
353
354 if (fep->bufdesc_ex) {
355
356 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
357 ebdp->cbd_bdu = 0;
358 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
359 fep->hwts_tx_en)) {
360 ebdp->cbd_esc = (BD_ENET_TX_TS | BD_ENET_TX_INT);
361 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
362 } else {
363 ebdp->cbd_esc = BD_ENET_TX_INT;
364
365 /* Enable protocol checksum flags
366 * We do not bother with the IP Checksum bits as they
367 * are done by the kernel
368 */
369 if (skb->ip_summed == CHECKSUM_PARTIAL)
370 ebdp->cbd_esc |= BD_ENET_TX_PINS;
371 }
372 }
373 /* If this was the last BD in the ring, start at the beginning again. */
374 if (status & BD_ENET_TX_WRAP)
375 bdp = fep->tx_bd_base;
376 else
377 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
378
379 fep->cur_tx = bdp;
380
381 if (fep->cur_tx == fep->dirty_tx)
382 netif_stop_queue(ndev);
383
384 /* Trigger transmission start */
385 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
386
387 skb_tx_timestamp(skb);
388
389 return NETDEV_TX_OK;
390 }
391
392 /* Init RX & TX buffer descriptors
393 */
394 static void fec_enet_bd_init(struct net_device *dev)
395 {
396 struct fec_enet_private *fep = netdev_priv(dev);
397 struct bufdesc *bdp;
398 unsigned int i;
399
400 /* Initialize the receive buffer descriptors. */
401 bdp = fep->rx_bd_base;
402 for (i = 0; i < RX_RING_SIZE; i++) {
403
404 /* Initialize the BD for every fragment in the page. */
405 if (bdp->cbd_bufaddr)
406 bdp->cbd_sc = BD_ENET_RX_EMPTY;
407 else
408 bdp->cbd_sc = 0;
409 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
410 }
411
412 /* Set the last buffer to wrap */
413 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
414 bdp->cbd_sc |= BD_SC_WRAP;
415
416 fep->cur_rx = fep->rx_bd_base;
417
418 /* ...and the same for transmit */
419 bdp = fep->tx_bd_base;
420 fep->cur_tx = bdp;
421 for (i = 0; i < TX_RING_SIZE; i++) {
422
423 /* Initialize the BD for every fragment in the page. */
424 bdp->cbd_sc = 0;
425 if (bdp->cbd_bufaddr && fep->tx_skbuff[i]) {
426 dev_kfree_skb_any(fep->tx_skbuff[i]);
427 fep->tx_skbuff[i] = NULL;
428 }
429 bdp->cbd_bufaddr = 0;
430 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
431 }
432
433 /* Set the last buffer to wrap */
434 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
435 bdp->cbd_sc |= BD_SC_WRAP;
436 fep->dirty_tx = bdp;
437 }
438
439 /* This function is called to start or restart the FEC during a link
440 * change. This only happens when switching between half and full
441 * duplex.
442 */
443 static void
444 fec_restart(struct net_device *ndev, int duplex)
445 {
446 struct fec_enet_private *fep = netdev_priv(ndev);
447 const struct platform_device_id *id_entry =
448 platform_get_device_id(fep->pdev);
449 int i;
450 u32 val;
451 u32 temp_mac[2];
452 u32 rcntl = OPT_FRAME_SIZE | 0x04;
453 u32 ecntl = 0x2; /* ETHEREN */
454
455 if (netif_running(ndev)) {
456 netif_device_detach(ndev);
457 napi_disable(&fep->napi);
458 netif_stop_queue(ndev);
459 netif_tx_lock_bh(ndev);
460 }
461
462 /* Whack a reset. We should wait for this. */
463 writel(1, fep->hwp + FEC_ECNTRL);
464 udelay(10);
465
466 /*
467 * enet-mac reset will reset mac address registers too,
468 * so need to reconfigure it.
469 */
470 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
471 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
472 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
473 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
474 }
475
476 /* Clear any outstanding interrupt. */
477 writel(0xffc00000, fep->hwp + FEC_IEVENT);
478
479 /* Setup multicast filter. */
480 set_multicast_list(ndev);
481 #ifndef CONFIG_M5272
482 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
483 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
484 #endif
485
486 /* Set maximum receive buffer size. */
487 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
488
489 fec_enet_bd_init(ndev);
490
491 /* Set receive and transmit descriptor base. */
492 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
493 if (fep->bufdesc_ex)
494 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc_ex)
495 * RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
496 else
497 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc)
498 * RX_RING_SIZE, fep->hwp + FEC_X_DES_START);
499
500
501 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
502 if (fep->tx_skbuff[i]) {
503 dev_kfree_skb_any(fep->tx_skbuff[i]);
504 fep->tx_skbuff[i] = NULL;
505 }
506 }
507
508 /* Enable MII mode */
509 if (duplex) {
510 /* FD enable */
511 writel(0x04, fep->hwp + FEC_X_CNTRL);
512 } else {
513 /* No Rcv on Xmit */
514 rcntl |= 0x02;
515 writel(0x0, fep->hwp + FEC_X_CNTRL);
516 }
517
518 fep->full_duplex = duplex;
519
520 /* Set MII speed */
521 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
522
523 #if !defined(CONFIG_M5272)
524 /* set RX checksum */
525 val = readl(fep->hwp + FEC_RACC);
526 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
527 val |= FEC_RACC_OPTIONS;
528 else
529 val &= ~FEC_RACC_OPTIONS;
530 writel(val, fep->hwp + FEC_RACC);
531 #endif
532
533 /*
534 * The phy interface and speed need to get configured
535 * differently on enet-mac.
536 */
537 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
538 /* Enable flow control and length check */
539 rcntl |= 0x40000000 | 0x00000020;
540
541 /* RGMII, RMII or MII */
542 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
543 rcntl |= (1 << 6);
544 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
545 rcntl |= (1 << 8);
546 else
547 rcntl &= ~(1 << 8);
548
549 /* 1G, 100M or 10M */
550 if (fep->phy_dev) {
551 if (fep->phy_dev->speed == SPEED_1000)
552 ecntl |= (1 << 5);
553 else if (fep->phy_dev->speed == SPEED_100)
554 rcntl &= ~(1 << 9);
555 else
556 rcntl |= (1 << 9);
557 }
558 } else {
559 #ifdef FEC_MIIGSK_ENR
560 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
561 u32 cfgr;
562 /* disable the gasket and wait */
563 writel(0, fep->hwp + FEC_MIIGSK_ENR);
564 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
565 udelay(1);
566
567 /*
568 * configure the gasket:
569 * RMII, 50 MHz, no loopback, no echo
570 * MII, 25 MHz, no loopback, no echo
571 */
572 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
573 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
574 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
575 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
576 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
577
578 /* re-enable the gasket */
579 writel(2, fep->hwp + FEC_MIIGSK_ENR);
580 }
581 #endif
582 }
583
584 #if !defined(CONFIG_M5272)
585 /* enable pause frame*/
586 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
587 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
588 fep->phy_dev && fep->phy_dev->pause)) {
589 rcntl |= FEC_ENET_FCE;
590
591 /* set FIFO threshold parameter to reduce overrun */
592 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
593 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
594 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
595 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
596
597 /* OPD */
598 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
599 } else {
600 rcntl &= ~FEC_ENET_FCE;
601 }
602 #endif /* !defined(CONFIG_M5272) */
603
604 writel(rcntl, fep->hwp + FEC_R_CNTRL);
605
606 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
607 /* enable ENET endian swap */
608 ecntl |= (1 << 8);
609 /* enable ENET store and forward mode */
610 writel(1 << 8, fep->hwp + FEC_X_WMRK);
611 }
612
613 if (fep->bufdesc_ex)
614 ecntl |= (1 << 4);
615
616 #ifndef CONFIG_M5272
617 /* Enable the MIB statistic event counters */
618 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
619 #endif
620
621 /* And last, enable the transmit and receive processing */
622 writel(ecntl, fep->hwp + FEC_ECNTRL);
623 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
624
625 if (fep->bufdesc_ex)
626 fec_ptp_start_cyclecounter(ndev);
627
628 /* Enable interrupts we wish to service */
629 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
630
631 if (netif_running(ndev)) {
632 netif_tx_unlock_bh(ndev);
633 netif_wake_queue(ndev);
634 napi_enable(&fep->napi);
635 netif_device_attach(ndev);
636 }
637 }
638
639 static void
640 fec_stop(struct net_device *ndev)
641 {
642 struct fec_enet_private *fep = netdev_priv(ndev);
643 const struct platform_device_id *id_entry =
644 platform_get_device_id(fep->pdev);
645 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
646
647 /* We cannot expect a graceful transmit stop without link !!! */
648 if (fep->link) {
649 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
650 udelay(10);
651 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
652 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
653 }
654
655 /* Whack a reset. We should wait for this. */
656 writel(1, fep->hwp + FEC_ECNTRL);
657 udelay(10);
658 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
659 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
660
661 /* We have to keep ENET enabled to have MII interrupt stay working */
662 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
663 writel(2, fep->hwp + FEC_ECNTRL);
664 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
665 }
666 }
667
668
669 static void
670 fec_timeout(struct net_device *ndev)
671 {
672 struct fec_enet_private *fep = netdev_priv(ndev);
673
674 ndev->stats.tx_errors++;
675
676 fep->delay_work.timeout = true;
677 schedule_delayed_work(&(fep->delay_work.delay_work), 0);
678 }
679
680 static void fec_enet_work(struct work_struct *work)
681 {
682 struct fec_enet_private *fep =
683 container_of(work,
684 struct fec_enet_private,
685 delay_work.delay_work.work);
686
687 if (fep->delay_work.timeout) {
688 fep->delay_work.timeout = false;
689 fec_restart(fep->netdev, fep->full_duplex);
690 netif_wake_queue(fep->netdev);
691 }
692 }
693
694 static void
695 fec_enet_tx(struct net_device *ndev)
696 {
697 struct fec_enet_private *fep;
698 struct bufdesc *bdp;
699 unsigned short status;
700 struct sk_buff *skb;
701 int index = 0;
702
703 fep = netdev_priv(ndev);
704 bdp = fep->dirty_tx;
705
706 /* get next bdp of dirty_tx */
707 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
708 bdp = fep->tx_bd_base;
709 else
710 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
711
712 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
713
714 /* current queue is empty */
715 if (bdp == fep->cur_tx)
716 break;
717
718 if (fep->bufdesc_ex)
719 index = (struct bufdesc_ex *)bdp -
720 (struct bufdesc_ex *)fep->tx_bd_base;
721 else
722 index = bdp - fep->tx_bd_base;
723
724 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
725 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
726 bdp->cbd_bufaddr = 0;
727
728 skb = fep->tx_skbuff[index];
729
730 /* Check for errors. */
731 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
732 BD_ENET_TX_RL | BD_ENET_TX_UN |
733 BD_ENET_TX_CSL)) {
734 ndev->stats.tx_errors++;
735 if (status & BD_ENET_TX_HB) /* No heartbeat */
736 ndev->stats.tx_heartbeat_errors++;
737 if (status & BD_ENET_TX_LC) /* Late collision */
738 ndev->stats.tx_window_errors++;
739 if (status & BD_ENET_TX_RL) /* Retrans limit */
740 ndev->stats.tx_aborted_errors++;
741 if (status & BD_ENET_TX_UN) /* Underrun */
742 ndev->stats.tx_fifo_errors++;
743 if (status & BD_ENET_TX_CSL) /* Carrier lost */
744 ndev->stats.tx_carrier_errors++;
745 } else {
746 ndev->stats.tx_packets++;
747 ndev->stats.tx_bytes += bdp->cbd_datlen;
748 }
749
750 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
751 fep->bufdesc_ex) {
752 struct skb_shared_hwtstamps shhwtstamps;
753 unsigned long flags;
754 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
755
756 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
757 spin_lock_irqsave(&fep->tmreg_lock, flags);
758 shhwtstamps.hwtstamp = ns_to_ktime(
759 timecounter_cyc2time(&fep->tc, ebdp->ts));
760 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
761 skb_tstamp_tx(skb, &shhwtstamps);
762 }
763
764 if (status & BD_ENET_TX_READY)
765 netdev_err(ndev, "HEY! Enet xmit interrupt and TX_READY\n");
766
767 /* Deferred means some collisions occurred during transmit,
768 * but we eventually sent the packet OK.
769 */
770 if (status & BD_ENET_TX_DEF)
771 ndev->stats.collisions++;
772
773 /* Free the sk buffer associated with this last transmit */
774 dev_kfree_skb_any(skb);
775 fep->tx_skbuff[index] = NULL;
776
777 fep->dirty_tx = bdp;
778
779 /* Update pointer to next buffer descriptor to be transmitted */
780 if (status & BD_ENET_TX_WRAP)
781 bdp = fep->tx_bd_base;
782 else
783 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
784
785 /* Since we have freed up a buffer, the ring is no longer full
786 */
787 if (fep->dirty_tx != fep->cur_tx) {
788 if (netif_queue_stopped(ndev))
789 netif_wake_queue(ndev);
790 }
791 }
792 return;
793 }
794
795
796 /* During a receive, the cur_rx points to the current incoming buffer.
797 * When we update through the ring, if the next incoming buffer has
798 * not been given to the system, we just set the empty indicator,
799 * effectively tossing the packet.
800 */
801 static int
802 fec_enet_rx(struct net_device *ndev, int budget)
803 {
804 struct fec_enet_private *fep = netdev_priv(ndev);
805 const struct platform_device_id *id_entry =
806 platform_get_device_id(fep->pdev);
807 struct bufdesc *bdp;
808 unsigned short status;
809 struct sk_buff *skb;
810 ushort pkt_len;
811 __u8 *data;
812 int pkt_received = 0;
813 struct bufdesc_ex *ebdp = NULL;
814 bool vlan_packet_rcvd = false;
815 u16 vlan_tag;
816
817 #ifdef CONFIG_M532x
818 flush_cache_all();
819 #endif
820
821 /* First, grab all of the stats for the incoming packet.
822 * These get messed up if we get called due to a busy condition.
823 */
824 bdp = fep->cur_rx;
825
826 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
827
828 if (pkt_received >= budget)
829 break;
830 pkt_received++;
831
832 /* Since we have allocated space to hold a complete frame,
833 * the last indicator should be set.
834 */
835 if ((status & BD_ENET_RX_LAST) == 0)
836 netdev_err(ndev, "rcv is not +last\n");
837
838 if (!fep->opened)
839 goto rx_processing_done;
840
841 /* Check for errors. */
842 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
843 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
844 ndev->stats.rx_errors++;
845 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
846 /* Frame too long or too short. */
847 ndev->stats.rx_length_errors++;
848 }
849 if (status & BD_ENET_RX_NO) /* Frame alignment */
850 ndev->stats.rx_frame_errors++;
851 if (status & BD_ENET_RX_CR) /* CRC Error */
852 ndev->stats.rx_crc_errors++;
853 if (status & BD_ENET_RX_OV) /* FIFO overrun */
854 ndev->stats.rx_fifo_errors++;
855 }
856
857 /* Report late collisions as a frame error.
858 * On this error, the BD is closed, but we don't know what we
859 * have in the buffer. So, just drop this frame on the floor.
860 */
861 if (status & BD_ENET_RX_CL) {
862 ndev->stats.rx_errors++;
863 ndev->stats.rx_frame_errors++;
864 goto rx_processing_done;
865 }
866
867 /* Process the incoming frame. */
868 ndev->stats.rx_packets++;
869 pkt_len = bdp->cbd_datlen;
870 ndev->stats.rx_bytes += pkt_len;
871 data = (__u8*)__va(bdp->cbd_bufaddr);
872
873 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
874 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
875
876 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
877 swap_buffer(data, pkt_len);
878
879 /* Extract the enhanced buffer descriptor */
880 ebdp = NULL;
881 if (fep->bufdesc_ex)
882 ebdp = (struct bufdesc_ex *)bdp;
883
884 /* If this is a VLAN packet remove the VLAN Tag */
885 vlan_packet_rcvd = false;
886 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
887 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
888 /* Push and remove the vlan tag */
889 struct vlan_hdr *vlan_header =
890 (struct vlan_hdr *) (data + ETH_HLEN);
891 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
892 pkt_len -= VLAN_HLEN;
893
894 vlan_packet_rcvd = true;
895 }
896
897 /* This does 16 byte alignment, exactly what we need.
898 * The packet length includes FCS, but we don't want to
899 * include that when passing upstream as it messes up
900 * bridging applications.
901 */
902 skb = netdev_alloc_skb(ndev, pkt_len - 4 + NET_IP_ALIGN);
903
904 if (unlikely(!skb)) {
905 ndev->stats.rx_dropped++;
906 } else {
907 int payload_offset = (2 * ETH_ALEN);
908 skb_reserve(skb, NET_IP_ALIGN);
909 skb_put(skb, pkt_len - 4); /* Make room */
910
911 /* Extract the frame data without the VLAN header. */
912 skb_copy_to_linear_data(skb, data, (2 * ETH_ALEN));
913 if (vlan_packet_rcvd)
914 payload_offset = (2 * ETH_ALEN) + VLAN_HLEN;
915 skb_copy_to_linear_data_offset(skb, (2 * ETH_ALEN),
916 data + payload_offset,
917 pkt_len - 4 - (2 * ETH_ALEN));
918
919 skb->protocol = eth_type_trans(skb, ndev);
920
921 /* Get receive timestamp from the skb */
922 if (fep->hwts_rx_en && fep->bufdesc_ex) {
923 struct skb_shared_hwtstamps *shhwtstamps =
924 skb_hwtstamps(skb);
925 unsigned long flags;
926
927 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
928
929 spin_lock_irqsave(&fep->tmreg_lock, flags);
930 shhwtstamps->hwtstamp = ns_to_ktime(
931 timecounter_cyc2time(&fep->tc, ebdp->ts));
932 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
933 }
934
935 if (fep->bufdesc_ex &&
936 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
937 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
938 /* don't check it */
939 skb->ip_summed = CHECKSUM_UNNECESSARY;
940 } else {
941 skb_checksum_none_assert(skb);
942 }
943 }
944
945 /* Handle received VLAN packets */
946 if (vlan_packet_rcvd)
947 __vlan_hwaccel_put_tag(skb,
948 htons(ETH_P_8021Q),
949 vlan_tag);
950
951 if (!skb_defer_rx_timestamp(skb))
952 napi_gro_receive(&fep->napi, skb);
953 }
954
955 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
956 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
957 rx_processing_done:
958 /* Clear the status flags for this buffer */
959 status &= ~BD_ENET_RX_STATS;
960
961 /* Mark the buffer empty */
962 status |= BD_ENET_RX_EMPTY;
963 bdp->cbd_sc = status;
964
965 if (fep->bufdesc_ex) {
966 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
967
968 ebdp->cbd_esc = BD_ENET_RX_INT;
969 ebdp->cbd_prot = 0;
970 ebdp->cbd_bdu = 0;
971 }
972
973 /* Update BD pointer to next entry */
974 if (status & BD_ENET_RX_WRAP)
975 bdp = fep->rx_bd_base;
976 else
977 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
978 /* Doing this here will keep the FEC running while we process
979 * incoming frames. On a heavily loaded network, we should be
980 * able to keep up at the expense of system resources.
981 */
982 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
983 }
984 fep->cur_rx = bdp;
985
986 return pkt_received;
987 }
988
989 static irqreturn_t
990 fec_enet_interrupt(int irq, void *dev_id)
991 {
992 struct net_device *ndev = dev_id;
993 struct fec_enet_private *fep = netdev_priv(ndev);
994 uint int_events;
995 irqreturn_t ret = IRQ_NONE;
996
997 do {
998 int_events = readl(fep->hwp + FEC_IEVENT);
999 writel(int_events, fep->hwp + FEC_IEVENT);
1000
1001 if (int_events & (FEC_ENET_RXF | FEC_ENET_TXF)) {
1002 ret = IRQ_HANDLED;
1003
1004 /* Disable the RX interrupt */
1005 if (napi_schedule_prep(&fep->napi)) {
1006 writel(FEC_RX_DISABLED_IMASK,
1007 fep->hwp + FEC_IMASK);
1008 __napi_schedule(&fep->napi);
1009 }
1010 }
1011
1012 if (int_events & FEC_ENET_MII) {
1013 ret = IRQ_HANDLED;
1014 complete(&fep->mdio_done);
1015 }
1016 } while (int_events);
1017
1018 return ret;
1019 }
1020
1021 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1022 {
1023 struct net_device *ndev = napi->dev;
1024 int pkts = fec_enet_rx(ndev, budget);
1025 struct fec_enet_private *fep = netdev_priv(ndev);
1026
1027 fec_enet_tx(ndev);
1028
1029 if (pkts < budget) {
1030 napi_complete(napi);
1031 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1032 }
1033 return pkts;
1034 }
1035
1036 /* ------------------------------------------------------------------------- */
1037 static void fec_get_mac(struct net_device *ndev)
1038 {
1039 struct fec_enet_private *fep = netdev_priv(ndev);
1040 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1041 unsigned char *iap, tmpaddr[ETH_ALEN];
1042
1043 /*
1044 * try to get mac address in following order:
1045 *
1046 * 1) module parameter via kernel command line in form
1047 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1048 */
1049 iap = macaddr;
1050
1051 /*
1052 * 2) from device tree data
1053 */
1054 if (!is_valid_ether_addr(iap)) {
1055 struct device_node *np = fep->pdev->dev.of_node;
1056 if (np) {
1057 const char *mac = of_get_mac_address(np);
1058 if (mac)
1059 iap = (unsigned char *) mac;
1060 }
1061 }
1062
1063 /*
1064 * 3) from flash or fuse (via platform data)
1065 */
1066 if (!is_valid_ether_addr(iap)) {
1067 #ifdef CONFIG_M5272
1068 if (FEC_FLASHMAC)
1069 iap = (unsigned char *)FEC_FLASHMAC;
1070 #else
1071 if (pdata)
1072 iap = (unsigned char *)&pdata->mac;
1073 #endif
1074 }
1075
1076 /*
1077 * 4) FEC mac registers set by bootloader
1078 */
1079 if (!is_valid_ether_addr(iap)) {
1080 *((unsigned long *) &tmpaddr[0]) =
1081 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
1082 *((unsigned short *) &tmpaddr[4]) =
1083 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1084 iap = &tmpaddr[0];
1085 }
1086
1087 /*
1088 * 5) random mac address
1089 */
1090 if (!is_valid_ether_addr(iap)) {
1091 /* Report it and use a random ethernet address instead */
1092 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1093 eth_hw_addr_random(ndev);
1094 netdev_info(ndev, "Using random MAC address: %pM\n",
1095 ndev->dev_addr);
1096 return;
1097 }
1098
1099 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1100
1101 /* Adjust MAC if using macaddr */
1102 if (iap == macaddr)
1103 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1104 }
1105
1106 /* ------------------------------------------------------------------------- */
1107
1108 /*
1109 * Phy section
1110 */
1111 static void fec_enet_adjust_link(struct net_device *ndev)
1112 {
1113 struct fec_enet_private *fep = netdev_priv(ndev);
1114 struct phy_device *phy_dev = fep->phy_dev;
1115 int status_change = 0;
1116
1117 /* Prevent a state halted on mii error */
1118 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1119 phy_dev->state = PHY_RESUMING;
1120 return;
1121 }
1122
1123 if (phy_dev->link) {
1124 if (!fep->link) {
1125 fep->link = phy_dev->link;
1126 status_change = 1;
1127 }
1128
1129 if (fep->full_duplex != phy_dev->duplex)
1130 status_change = 1;
1131
1132 if (phy_dev->speed != fep->speed) {
1133 fep->speed = phy_dev->speed;
1134 status_change = 1;
1135 }
1136
1137 /* if any of the above changed restart the FEC */
1138 if (status_change)
1139 fec_restart(ndev, phy_dev->duplex);
1140 } else {
1141 if (fep->link) {
1142 fec_stop(ndev);
1143 fep->link = phy_dev->link;
1144 status_change = 1;
1145 }
1146 }
1147
1148 if (status_change)
1149 phy_print_status(phy_dev);
1150 }
1151
1152 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1153 {
1154 struct fec_enet_private *fep = bus->priv;
1155 unsigned long time_left;
1156
1157 fep->mii_timeout = 0;
1158 init_completion(&fep->mdio_done);
1159
1160 /* start a read op */
1161 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1162 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1163 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1164
1165 /* wait for end of transfer */
1166 time_left = wait_for_completion_timeout(&fep->mdio_done,
1167 usecs_to_jiffies(FEC_MII_TIMEOUT));
1168 if (time_left == 0) {
1169 fep->mii_timeout = 1;
1170 netdev_err(fep->netdev, "MDIO read timeout\n");
1171 return -ETIMEDOUT;
1172 }
1173
1174 /* return value */
1175 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1176 }
1177
1178 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1179 u16 value)
1180 {
1181 struct fec_enet_private *fep = bus->priv;
1182 unsigned long time_left;
1183
1184 fep->mii_timeout = 0;
1185 init_completion(&fep->mdio_done);
1186
1187 /* start a write op */
1188 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1189 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1190 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1191 fep->hwp + FEC_MII_DATA);
1192
1193 /* wait for end of transfer */
1194 time_left = wait_for_completion_timeout(&fep->mdio_done,
1195 usecs_to_jiffies(FEC_MII_TIMEOUT));
1196 if (time_left == 0) {
1197 fep->mii_timeout = 1;
1198 netdev_err(fep->netdev, "MDIO write timeout\n");
1199 return -ETIMEDOUT;
1200 }
1201
1202 return 0;
1203 }
1204
1205 static int fec_enet_mdio_reset(struct mii_bus *bus)
1206 {
1207 return 0;
1208 }
1209
1210 static int fec_enet_mii_probe(struct net_device *ndev)
1211 {
1212 struct fec_enet_private *fep = netdev_priv(ndev);
1213 const struct platform_device_id *id_entry =
1214 platform_get_device_id(fep->pdev);
1215 struct phy_device *phy_dev = NULL;
1216 char mdio_bus_id[MII_BUS_ID_SIZE];
1217 char phy_name[MII_BUS_ID_SIZE + 3];
1218 int phy_id;
1219 int dev_id = fep->dev_id;
1220
1221 fep->phy_dev = NULL;
1222
1223 /* check for attached phy */
1224 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1225 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1226 continue;
1227 if (fep->mii_bus->phy_map[phy_id] == NULL)
1228 continue;
1229 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1230 continue;
1231 if (dev_id--)
1232 continue;
1233 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1234 break;
1235 }
1236
1237 if (phy_id >= PHY_MAX_ADDR) {
1238 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1239 strncpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1240 phy_id = 0;
1241 }
1242
1243 snprintf(phy_name, sizeof(phy_name), PHY_ID_FMT, mdio_bus_id, phy_id);
1244 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1245 fep->phy_interface);
1246 if (IS_ERR(phy_dev)) {
1247 netdev_err(ndev, "could not attach to PHY\n");
1248 return PTR_ERR(phy_dev);
1249 }
1250
1251 /* mask with MAC supported features */
1252 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT) {
1253 phy_dev->supported &= PHY_GBIT_FEATURES;
1254 #if !defined(CONFIG_M5272)
1255 phy_dev->supported |= SUPPORTED_Pause;
1256 #endif
1257 }
1258 else
1259 phy_dev->supported &= PHY_BASIC_FEATURES;
1260
1261 phy_dev->advertising = phy_dev->supported;
1262
1263 fep->phy_dev = phy_dev;
1264 fep->link = 0;
1265 fep->full_duplex = 0;
1266
1267 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1268 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1269 fep->phy_dev->irq);
1270
1271 return 0;
1272 }
1273
1274 static int fec_enet_mii_init(struct platform_device *pdev)
1275 {
1276 static struct mii_bus *fec0_mii_bus;
1277 struct net_device *ndev = platform_get_drvdata(pdev);
1278 struct fec_enet_private *fep = netdev_priv(ndev);
1279 const struct platform_device_id *id_entry =
1280 platform_get_device_id(fep->pdev);
1281 int err = -ENXIO, i;
1282
1283 /*
1284 * The dual fec interfaces are not equivalent with enet-mac.
1285 * Here are the differences:
1286 *
1287 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1288 * - fec0 acts as the 1588 time master while fec1 is slave
1289 * - external phys can only be configured by fec0
1290 *
1291 * That is to say fec1 can not work independently. It only works
1292 * when fec0 is working. The reason behind this design is that the
1293 * second interface is added primarily for Switch mode.
1294 *
1295 * Because of the last point above, both phys are attached on fec0
1296 * mdio interface in board design, and need to be configured by
1297 * fec0 mii_bus.
1298 */
1299 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && fep->dev_id > 0) {
1300 /* fec1 uses fec0 mii_bus */
1301 if (mii_cnt && fec0_mii_bus) {
1302 fep->mii_bus = fec0_mii_bus;
1303 mii_cnt++;
1304 return 0;
1305 }
1306 return -ENOENT;
1307 }
1308
1309 fep->mii_timeout = 0;
1310
1311 /*
1312 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1313 *
1314 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1315 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1316 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1317 * document.
1318 */
1319 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ahb), 5000000);
1320 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1321 fep->phy_speed--;
1322 fep->phy_speed <<= 1;
1323 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1324
1325 fep->mii_bus = mdiobus_alloc();
1326 if (fep->mii_bus == NULL) {
1327 err = -ENOMEM;
1328 goto err_out;
1329 }
1330
1331 fep->mii_bus->name = "fec_enet_mii_bus";
1332 fep->mii_bus->read = fec_enet_mdio_read;
1333 fep->mii_bus->write = fec_enet_mdio_write;
1334 fep->mii_bus->reset = fec_enet_mdio_reset;
1335 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
1336 pdev->name, fep->dev_id + 1);
1337 fep->mii_bus->priv = fep;
1338 fep->mii_bus->parent = &pdev->dev;
1339
1340 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1341 if (!fep->mii_bus->irq) {
1342 err = -ENOMEM;
1343 goto err_out_free_mdiobus;
1344 }
1345
1346 for (i = 0; i < PHY_MAX_ADDR; i++)
1347 fep->mii_bus->irq[i] = PHY_POLL;
1348
1349 if (mdiobus_register(fep->mii_bus))
1350 goto err_out_free_mdio_irq;
1351
1352 mii_cnt++;
1353
1354 /* save fec0 mii_bus */
1355 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1356 fec0_mii_bus = fep->mii_bus;
1357
1358 return 0;
1359
1360 err_out_free_mdio_irq:
1361 kfree(fep->mii_bus->irq);
1362 err_out_free_mdiobus:
1363 mdiobus_free(fep->mii_bus);
1364 err_out:
1365 return err;
1366 }
1367
1368 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1369 {
1370 if (--mii_cnt == 0) {
1371 mdiobus_unregister(fep->mii_bus);
1372 kfree(fep->mii_bus->irq);
1373 mdiobus_free(fep->mii_bus);
1374 }
1375 }
1376
1377 static int fec_enet_get_settings(struct net_device *ndev,
1378 struct ethtool_cmd *cmd)
1379 {
1380 struct fec_enet_private *fep = netdev_priv(ndev);
1381 struct phy_device *phydev = fep->phy_dev;
1382
1383 if (!phydev)
1384 return -ENODEV;
1385
1386 return phy_ethtool_gset(phydev, cmd);
1387 }
1388
1389 static int fec_enet_set_settings(struct net_device *ndev,
1390 struct ethtool_cmd *cmd)
1391 {
1392 struct fec_enet_private *fep = netdev_priv(ndev);
1393 struct phy_device *phydev = fep->phy_dev;
1394
1395 if (!phydev)
1396 return -ENODEV;
1397
1398 return phy_ethtool_sset(phydev, cmd);
1399 }
1400
1401 static void fec_enet_get_drvinfo(struct net_device *ndev,
1402 struct ethtool_drvinfo *info)
1403 {
1404 struct fec_enet_private *fep = netdev_priv(ndev);
1405
1406 strlcpy(info->driver, fep->pdev->dev.driver->name,
1407 sizeof(info->driver));
1408 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
1409 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
1410 }
1411
1412 static int fec_enet_get_ts_info(struct net_device *ndev,
1413 struct ethtool_ts_info *info)
1414 {
1415 struct fec_enet_private *fep = netdev_priv(ndev);
1416
1417 if (fep->bufdesc_ex) {
1418
1419 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
1420 SOF_TIMESTAMPING_RX_SOFTWARE |
1421 SOF_TIMESTAMPING_SOFTWARE |
1422 SOF_TIMESTAMPING_TX_HARDWARE |
1423 SOF_TIMESTAMPING_RX_HARDWARE |
1424 SOF_TIMESTAMPING_RAW_HARDWARE;
1425 if (fep->ptp_clock)
1426 info->phc_index = ptp_clock_index(fep->ptp_clock);
1427 else
1428 info->phc_index = -1;
1429
1430 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
1431 (1 << HWTSTAMP_TX_ON);
1432
1433 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
1434 (1 << HWTSTAMP_FILTER_ALL);
1435 return 0;
1436 } else {
1437 return ethtool_op_get_ts_info(ndev, info);
1438 }
1439 }
1440
1441 #if !defined(CONFIG_M5272)
1442
1443 static void fec_enet_get_pauseparam(struct net_device *ndev,
1444 struct ethtool_pauseparam *pause)
1445 {
1446 struct fec_enet_private *fep = netdev_priv(ndev);
1447
1448 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
1449 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
1450 pause->rx_pause = pause->tx_pause;
1451 }
1452
1453 static int fec_enet_set_pauseparam(struct net_device *ndev,
1454 struct ethtool_pauseparam *pause)
1455 {
1456 struct fec_enet_private *fep = netdev_priv(ndev);
1457
1458 if (pause->tx_pause != pause->rx_pause) {
1459 netdev_info(ndev,
1460 "hardware only support enable/disable both tx and rx");
1461 return -EINVAL;
1462 }
1463
1464 fep->pause_flag = 0;
1465
1466 /* tx pause must be same as rx pause */
1467 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
1468 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
1469
1470 if (pause->rx_pause || pause->autoneg) {
1471 fep->phy_dev->supported |= ADVERTISED_Pause;
1472 fep->phy_dev->advertising |= ADVERTISED_Pause;
1473 } else {
1474 fep->phy_dev->supported &= ~ADVERTISED_Pause;
1475 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
1476 }
1477
1478 if (pause->autoneg) {
1479 if (netif_running(ndev))
1480 fec_stop(ndev);
1481 phy_start_aneg(fep->phy_dev);
1482 }
1483 if (netif_running(ndev))
1484 fec_restart(ndev, 0);
1485
1486 return 0;
1487 }
1488
1489 static const struct fec_stat {
1490 char name[ETH_GSTRING_LEN];
1491 u16 offset;
1492 } fec_stats[] = {
1493 /* RMON TX */
1494 { "tx_dropped", RMON_T_DROP },
1495 { "tx_packets", RMON_T_PACKETS },
1496 { "tx_broadcast", RMON_T_BC_PKT },
1497 { "tx_multicast", RMON_T_MC_PKT },
1498 { "tx_crc_errors", RMON_T_CRC_ALIGN },
1499 { "tx_undersize", RMON_T_UNDERSIZE },
1500 { "tx_oversize", RMON_T_OVERSIZE },
1501 { "tx_fragment", RMON_T_FRAG },
1502 { "tx_jabber", RMON_T_JAB },
1503 { "tx_collision", RMON_T_COL },
1504 { "tx_64byte", RMON_T_P64 },
1505 { "tx_65to127byte", RMON_T_P65TO127 },
1506 { "tx_128to255byte", RMON_T_P128TO255 },
1507 { "tx_256to511byte", RMON_T_P256TO511 },
1508 { "tx_512to1023byte", RMON_T_P512TO1023 },
1509 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
1510 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
1511 { "tx_octets", RMON_T_OCTETS },
1512
1513 /* IEEE TX */
1514 { "IEEE_tx_drop", IEEE_T_DROP },
1515 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
1516 { "IEEE_tx_1col", IEEE_T_1COL },
1517 { "IEEE_tx_mcol", IEEE_T_MCOL },
1518 { "IEEE_tx_def", IEEE_T_DEF },
1519 { "IEEE_tx_lcol", IEEE_T_LCOL },
1520 { "IEEE_tx_excol", IEEE_T_EXCOL },
1521 { "IEEE_tx_macerr", IEEE_T_MACERR },
1522 { "IEEE_tx_cserr", IEEE_T_CSERR },
1523 { "IEEE_tx_sqe", IEEE_T_SQE },
1524 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
1525 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
1526
1527 /* RMON RX */
1528 { "rx_packets", RMON_R_PACKETS },
1529 { "rx_broadcast", RMON_R_BC_PKT },
1530 { "rx_multicast", RMON_R_MC_PKT },
1531 { "rx_crc_errors", RMON_R_CRC_ALIGN },
1532 { "rx_undersize", RMON_R_UNDERSIZE },
1533 { "rx_oversize", RMON_R_OVERSIZE },
1534 { "rx_fragment", RMON_R_FRAG },
1535 { "rx_jabber", RMON_R_JAB },
1536 { "rx_64byte", RMON_R_P64 },
1537 { "rx_65to127byte", RMON_R_P65TO127 },
1538 { "rx_128to255byte", RMON_R_P128TO255 },
1539 { "rx_256to511byte", RMON_R_P256TO511 },
1540 { "rx_512to1023byte", RMON_R_P512TO1023 },
1541 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
1542 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
1543 { "rx_octets", RMON_R_OCTETS },
1544
1545 /* IEEE RX */
1546 { "IEEE_rx_drop", IEEE_R_DROP },
1547 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
1548 { "IEEE_rx_crc", IEEE_R_CRC },
1549 { "IEEE_rx_align", IEEE_R_ALIGN },
1550 { "IEEE_rx_macerr", IEEE_R_MACERR },
1551 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
1552 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
1553 };
1554
1555 static void fec_enet_get_ethtool_stats(struct net_device *dev,
1556 struct ethtool_stats *stats, u64 *data)
1557 {
1558 struct fec_enet_private *fep = netdev_priv(dev);
1559 int i;
1560
1561 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1562 data[i] = readl(fep->hwp + fec_stats[i].offset);
1563 }
1564
1565 static void fec_enet_get_strings(struct net_device *netdev,
1566 u32 stringset, u8 *data)
1567 {
1568 int i;
1569 switch (stringset) {
1570 case ETH_SS_STATS:
1571 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
1572 memcpy(data + i * ETH_GSTRING_LEN,
1573 fec_stats[i].name, ETH_GSTRING_LEN);
1574 break;
1575 }
1576 }
1577
1578 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
1579 {
1580 switch (sset) {
1581 case ETH_SS_STATS:
1582 return ARRAY_SIZE(fec_stats);
1583 default:
1584 return -EOPNOTSUPP;
1585 }
1586 }
1587 #endif /* !defined(CONFIG_M5272) */
1588
1589 static int fec_enet_nway_reset(struct net_device *dev)
1590 {
1591 struct fec_enet_private *fep = netdev_priv(dev);
1592 struct phy_device *phydev = fep->phy_dev;
1593
1594 if (!phydev)
1595 return -ENODEV;
1596
1597 return genphy_restart_aneg(phydev);
1598 }
1599
1600 static const struct ethtool_ops fec_enet_ethtool_ops = {
1601 #if !defined(CONFIG_M5272)
1602 .get_pauseparam = fec_enet_get_pauseparam,
1603 .set_pauseparam = fec_enet_set_pauseparam,
1604 #endif
1605 .get_settings = fec_enet_get_settings,
1606 .set_settings = fec_enet_set_settings,
1607 .get_drvinfo = fec_enet_get_drvinfo,
1608 .get_link = ethtool_op_get_link,
1609 .get_ts_info = fec_enet_get_ts_info,
1610 .nway_reset = fec_enet_nway_reset,
1611 #ifndef CONFIG_M5272
1612 .get_ethtool_stats = fec_enet_get_ethtool_stats,
1613 .get_strings = fec_enet_get_strings,
1614 .get_sset_count = fec_enet_get_sset_count,
1615 #endif
1616 };
1617
1618 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1619 {
1620 struct fec_enet_private *fep = netdev_priv(ndev);
1621 struct phy_device *phydev = fep->phy_dev;
1622
1623 if (!netif_running(ndev))
1624 return -EINVAL;
1625
1626 if (!phydev)
1627 return -ENODEV;
1628
1629 if (cmd == SIOCSHWTSTAMP && fep->bufdesc_ex)
1630 return fec_ptp_ioctl(ndev, rq, cmd);
1631
1632 return phy_mii_ioctl(phydev, rq, cmd);
1633 }
1634
1635 static void fec_enet_free_buffers(struct net_device *ndev)
1636 {
1637 struct fec_enet_private *fep = netdev_priv(ndev);
1638 unsigned int i;
1639 struct sk_buff *skb;
1640 struct bufdesc *bdp;
1641
1642 bdp = fep->rx_bd_base;
1643 for (i = 0; i < RX_RING_SIZE; i++) {
1644 skb = fep->rx_skbuff[i];
1645
1646 if (bdp->cbd_bufaddr)
1647 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1648 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1649 if (skb)
1650 dev_kfree_skb(skb);
1651 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1652 }
1653
1654 bdp = fep->tx_bd_base;
1655 for (i = 0; i < TX_RING_SIZE; i++)
1656 kfree(fep->tx_bounce[i]);
1657 }
1658
1659 static int fec_enet_alloc_buffers(struct net_device *ndev)
1660 {
1661 struct fec_enet_private *fep = netdev_priv(ndev);
1662 unsigned int i;
1663 struct sk_buff *skb;
1664 struct bufdesc *bdp;
1665
1666 bdp = fep->rx_bd_base;
1667 for (i = 0; i < RX_RING_SIZE; i++) {
1668 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1669 if (!skb) {
1670 fec_enet_free_buffers(ndev);
1671 return -ENOMEM;
1672 }
1673 fep->rx_skbuff[i] = skb;
1674
1675 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1676 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1677 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1678
1679 if (fep->bufdesc_ex) {
1680 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1681 ebdp->cbd_esc = BD_ENET_RX_INT;
1682 }
1683
1684 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1685 }
1686
1687 /* Set the last buffer to wrap. */
1688 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1689 bdp->cbd_sc |= BD_SC_WRAP;
1690
1691 bdp = fep->tx_bd_base;
1692 for (i = 0; i < TX_RING_SIZE; i++) {
1693 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1694
1695 bdp->cbd_sc = 0;
1696 bdp->cbd_bufaddr = 0;
1697
1698 if (fep->bufdesc_ex) {
1699 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1700 ebdp->cbd_esc = BD_ENET_TX_INT;
1701 }
1702
1703 bdp = fec_enet_get_nextdesc(bdp, fep->bufdesc_ex);
1704 }
1705
1706 /* Set the last buffer to wrap. */
1707 bdp = fec_enet_get_prevdesc(bdp, fep->bufdesc_ex);
1708 bdp->cbd_sc |= BD_SC_WRAP;
1709
1710 return 0;
1711 }
1712
1713 static int
1714 fec_enet_open(struct net_device *ndev)
1715 {
1716 struct fec_enet_private *fep = netdev_priv(ndev);
1717 int ret;
1718
1719 napi_enable(&fep->napi);
1720
1721 /* I should reset the ring buffers here, but I don't yet know
1722 * a simple way to do that.
1723 */
1724
1725 ret = fec_enet_alloc_buffers(ndev);
1726 if (ret)
1727 return ret;
1728
1729 /* Probe and connect to PHY when open the interface */
1730 ret = fec_enet_mii_probe(ndev);
1731 if (ret) {
1732 fec_enet_free_buffers(ndev);
1733 return ret;
1734 }
1735 phy_start(fep->phy_dev);
1736 netif_start_queue(ndev);
1737 fep->opened = 1;
1738 return 0;
1739 }
1740
1741 static int
1742 fec_enet_close(struct net_device *ndev)
1743 {
1744 struct fec_enet_private *fep = netdev_priv(ndev);
1745
1746 /* Don't know what to do yet. */
1747 napi_disable(&fep->napi);
1748 fep->opened = 0;
1749 netif_stop_queue(ndev);
1750 fec_stop(ndev);
1751
1752 if (fep->phy_dev) {
1753 phy_stop(fep->phy_dev);
1754 phy_disconnect(fep->phy_dev);
1755 }
1756
1757 fec_enet_free_buffers(ndev);
1758
1759 return 0;
1760 }
1761
1762 /* Set or clear the multicast filter for this adaptor.
1763 * Skeleton taken from sunlance driver.
1764 * The CPM Ethernet implementation allows Multicast as well as individual
1765 * MAC address filtering. Some of the drivers check to make sure it is
1766 * a group multicast address, and discard those that are not. I guess I
1767 * will do the same for now, but just remove the test if you want
1768 * individual filtering as well (do the upper net layers want or support
1769 * this kind of feature?).
1770 */
1771
1772 #define HASH_BITS 6 /* #bits in hash */
1773 #define CRC32_POLY 0xEDB88320
1774
1775 static void set_multicast_list(struct net_device *ndev)
1776 {
1777 struct fec_enet_private *fep = netdev_priv(ndev);
1778 struct netdev_hw_addr *ha;
1779 unsigned int i, bit, data, crc, tmp;
1780 unsigned char hash;
1781
1782 if (ndev->flags & IFF_PROMISC) {
1783 tmp = readl(fep->hwp + FEC_R_CNTRL);
1784 tmp |= 0x8;
1785 writel(tmp, fep->hwp + FEC_R_CNTRL);
1786 return;
1787 }
1788
1789 tmp = readl(fep->hwp + FEC_R_CNTRL);
1790 tmp &= ~0x8;
1791 writel(tmp, fep->hwp + FEC_R_CNTRL);
1792
1793 if (ndev->flags & IFF_ALLMULTI) {
1794 /* Catch all multicast addresses, so set the
1795 * filter to all 1's
1796 */
1797 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1798 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1799
1800 return;
1801 }
1802
1803 /* Clear filter and add the addresses in hash register
1804 */
1805 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1806 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1807
1808 netdev_for_each_mc_addr(ha, ndev) {
1809 /* calculate crc32 value of mac address */
1810 crc = 0xffffffff;
1811
1812 for (i = 0; i < ndev->addr_len; i++) {
1813 data = ha->addr[i];
1814 for (bit = 0; bit < 8; bit++, data >>= 1) {
1815 crc = (crc >> 1) ^
1816 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1817 }
1818 }
1819
1820 /* only upper 6 bits (HASH_BITS) are used
1821 * which point to specific bit in he hash registers
1822 */
1823 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1824
1825 if (hash > 31) {
1826 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1827 tmp |= 1 << (hash - 32);
1828 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1829 } else {
1830 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1831 tmp |= 1 << hash;
1832 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1833 }
1834 }
1835 }
1836
1837 /* Set a MAC change in hardware. */
1838 static int
1839 fec_set_mac_address(struct net_device *ndev, void *p)
1840 {
1841 struct fec_enet_private *fep = netdev_priv(ndev);
1842 struct sockaddr *addr = p;
1843
1844 if (!is_valid_ether_addr(addr->sa_data))
1845 return -EADDRNOTAVAIL;
1846
1847 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1848
1849 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1850 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1851 fep->hwp + FEC_ADDR_LOW);
1852 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1853 fep->hwp + FEC_ADDR_HIGH);
1854 return 0;
1855 }
1856
1857 #ifdef CONFIG_NET_POLL_CONTROLLER
1858 /**
1859 * fec_poll_controller - FEC Poll controller function
1860 * @dev: The FEC network adapter
1861 *
1862 * Polled functionality used by netconsole and others in non interrupt mode
1863 *
1864 */
1865 static void fec_poll_controller(struct net_device *dev)
1866 {
1867 int i;
1868 struct fec_enet_private *fep = netdev_priv(dev);
1869
1870 for (i = 0; i < FEC_IRQ_NUM; i++) {
1871 if (fep->irq[i] > 0) {
1872 disable_irq(fep->irq[i]);
1873 fec_enet_interrupt(fep->irq[i], dev);
1874 enable_irq(fep->irq[i]);
1875 }
1876 }
1877 }
1878 #endif
1879
1880 static int fec_set_features(struct net_device *netdev,
1881 netdev_features_t features)
1882 {
1883 struct fec_enet_private *fep = netdev_priv(netdev);
1884 netdev_features_t changed = features ^ netdev->features;
1885
1886 netdev->features = features;
1887
1888 /* Receive checksum has been changed */
1889 if (changed & NETIF_F_RXCSUM) {
1890 if (features & NETIF_F_RXCSUM)
1891 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1892 else
1893 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
1894
1895 if (netif_running(netdev)) {
1896 fec_stop(netdev);
1897 fec_restart(netdev, fep->phy_dev->duplex);
1898 netif_wake_queue(netdev);
1899 } else {
1900 fec_restart(netdev, fep->phy_dev->duplex);
1901 }
1902 }
1903
1904 return 0;
1905 }
1906
1907 static const struct net_device_ops fec_netdev_ops = {
1908 .ndo_open = fec_enet_open,
1909 .ndo_stop = fec_enet_close,
1910 .ndo_start_xmit = fec_enet_start_xmit,
1911 .ndo_set_rx_mode = set_multicast_list,
1912 .ndo_change_mtu = eth_change_mtu,
1913 .ndo_validate_addr = eth_validate_addr,
1914 .ndo_tx_timeout = fec_timeout,
1915 .ndo_set_mac_address = fec_set_mac_address,
1916 .ndo_do_ioctl = fec_enet_ioctl,
1917 #ifdef CONFIG_NET_POLL_CONTROLLER
1918 .ndo_poll_controller = fec_poll_controller,
1919 #endif
1920 .ndo_set_features = fec_set_features,
1921 };
1922
1923 /*
1924 * XXX: We need to clean up on failure exits here.
1925 *
1926 */
1927 static int fec_enet_init(struct net_device *ndev)
1928 {
1929 struct fec_enet_private *fep = netdev_priv(ndev);
1930 const struct platform_device_id *id_entry =
1931 platform_get_device_id(fep->pdev);
1932 struct bufdesc *cbd_base;
1933
1934 /* Allocate memory for buffer descriptors. */
1935 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1936 GFP_KERNEL);
1937 if (!cbd_base)
1938 return -ENOMEM;
1939
1940 memset(cbd_base, 0, PAGE_SIZE);
1941
1942 fep->netdev = ndev;
1943
1944 /* Get the Ethernet address */
1945 fec_get_mac(ndev);
1946
1947 /* Set receive and transmit descriptor base. */
1948 fep->rx_bd_base = cbd_base;
1949 if (fep->bufdesc_ex)
1950 fep->tx_bd_base = (struct bufdesc *)
1951 (((struct bufdesc_ex *)cbd_base) + RX_RING_SIZE);
1952 else
1953 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1954
1955 /* The FEC Ethernet specific entries in the device structure */
1956 ndev->watchdog_timeo = TX_TIMEOUT;
1957 ndev->netdev_ops = &fec_netdev_ops;
1958 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1959
1960 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
1961 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, FEC_NAPI_WEIGHT);
1962
1963 if (id_entry->driver_data & FEC_QUIRK_HAS_VLAN) {
1964 /* enable hw VLAN support */
1965 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1966 ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
1967 }
1968
1969 if (id_entry->driver_data & FEC_QUIRK_HAS_CSUM) {
1970 /* enable hw accelerator */
1971 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1972 | NETIF_F_RXCSUM);
1973 ndev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
1974 | NETIF_F_RXCSUM);
1975 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
1976 }
1977
1978 fec_restart(ndev, 0);
1979
1980 return 0;
1981 }
1982
1983 #ifdef CONFIG_OF
1984 static void fec_reset_phy(struct platform_device *pdev)
1985 {
1986 int err, phy_reset;
1987 int msec = 1;
1988 struct device_node *np = pdev->dev.of_node;
1989
1990 if (!np)
1991 return;
1992
1993 of_property_read_u32(np, "phy-reset-duration", &msec);
1994 /* A sane reset duration should not be longer than 1s */
1995 if (msec > 1000)
1996 msec = 1;
1997
1998 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1999 if (!gpio_is_valid(phy_reset))
2000 return;
2001
2002 err = devm_gpio_request_one(&pdev->dev, phy_reset,
2003 GPIOF_OUT_INIT_LOW, "phy-reset");
2004 if (err) {
2005 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
2006 return;
2007 }
2008 msleep(msec);
2009 gpio_set_value(phy_reset, 1);
2010 }
2011 #else /* CONFIG_OF */
2012 static void fec_reset_phy(struct platform_device *pdev)
2013 {
2014 /*
2015 * In case of platform probe, the reset has been done
2016 * by machine code.
2017 */
2018 }
2019 #endif /* CONFIG_OF */
2020
2021 static int
2022 fec_probe(struct platform_device *pdev)
2023 {
2024 struct fec_enet_private *fep;
2025 struct fec_platform_data *pdata;
2026 struct net_device *ndev;
2027 int i, irq, ret = 0;
2028 struct resource *r;
2029 const struct of_device_id *of_id;
2030 static int dev_id;
2031
2032 of_id = of_match_device(fec_dt_ids, &pdev->dev);
2033 if (of_id)
2034 pdev->id_entry = of_id->data;
2035
2036 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2037 if (!r)
2038 return -ENXIO;
2039
2040 /* Init network device */
2041 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2042 if (!ndev)
2043 return -ENOMEM;
2044
2045 SET_NETDEV_DEV(ndev, &pdev->dev);
2046
2047 /* setup board info structure */
2048 fep = netdev_priv(ndev);
2049
2050 #if !defined(CONFIG_M5272)
2051 /* default enable pause frame auto negotiation */
2052 if (pdev->id_entry &&
2053 (pdev->id_entry->driver_data & FEC_QUIRK_HAS_GBIT))
2054 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
2055 #endif
2056
2057 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
2058 if (IS_ERR(fep->hwp)) {
2059 ret = PTR_ERR(fep->hwp);
2060 goto failed_ioremap;
2061 }
2062
2063 fep->pdev = pdev;
2064 fep->dev_id = dev_id++;
2065
2066 fep->bufdesc_ex = 0;
2067
2068 platform_set_drvdata(pdev, ndev);
2069
2070 ret = of_get_phy_mode(pdev->dev.of_node);
2071 if (ret < 0) {
2072 pdata = pdev->dev.platform_data;
2073 if (pdata)
2074 fep->phy_interface = pdata->phy;
2075 else
2076 fep->phy_interface = PHY_INTERFACE_MODE_MII;
2077 } else {
2078 fep->phy_interface = ret;
2079 }
2080
2081 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
2082 if (IS_ERR(fep->clk_ipg)) {
2083 ret = PTR_ERR(fep->clk_ipg);
2084 goto failed_clk;
2085 }
2086
2087 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
2088 if (IS_ERR(fep->clk_ahb)) {
2089 ret = PTR_ERR(fep->clk_ahb);
2090 goto failed_clk;
2091 }
2092
2093 /* enet_out is optional, depends on board */
2094 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
2095 if (IS_ERR(fep->clk_enet_out))
2096 fep->clk_enet_out = NULL;
2097
2098 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
2099 fep->bufdesc_ex =
2100 pdev->id_entry->driver_data & FEC_QUIRK_HAS_BUFDESC_EX;
2101 if (IS_ERR(fep->clk_ptp)) {
2102 fep->clk_ptp = NULL;
2103 fep->bufdesc_ex = 0;
2104 }
2105
2106 clk_prepare_enable(fep->clk_ahb);
2107 clk_prepare_enable(fep->clk_ipg);
2108 clk_prepare_enable(fep->clk_enet_out);
2109 clk_prepare_enable(fep->clk_ptp);
2110
2111 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
2112 if (!IS_ERR(fep->reg_phy)) {
2113 ret = regulator_enable(fep->reg_phy);
2114 if (ret) {
2115 dev_err(&pdev->dev,
2116 "Failed to enable phy regulator: %d\n", ret);
2117 goto failed_regulator;
2118 }
2119 } else {
2120 fep->reg_phy = NULL;
2121 }
2122
2123 fec_reset_phy(pdev);
2124
2125 if (fep->bufdesc_ex)
2126 fec_ptp_init(pdev);
2127
2128 ret = fec_enet_init(ndev);
2129 if (ret)
2130 goto failed_init;
2131
2132 for (i = 0; i < FEC_IRQ_NUM; i++) {
2133 irq = platform_get_irq(pdev, i);
2134 if (irq < 0) {
2135 if (i)
2136 break;
2137 ret = irq;
2138 goto failed_irq;
2139 }
2140 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2141 if (ret) {
2142 while (--i >= 0) {
2143 irq = platform_get_irq(pdev, i);
2144 free_irq(irq, ndev);
2145 }
2146 goto failed_irq;
2147 }
2148 }
2149
2150 ret = fec_enet_mii_init(pdev);
2151 if (ret)
2152 goto failed_mii_init;
2153
2154 /* Carrier starts down, phylib will bring it up */
2155 netif_carrier_off(ndev);
2156
2157 ret = register_netdev(ndev);
2158 if (ret)
2159 goto failed_register;
2160
2161 if (fep->bufdesc_ex && fep->ptp_clock)
2162 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
2163
2164 INIT_DELAYED_WORK(&(fep->delay_work.delay_work), fec_enet_work);
2165 return 0;
2166
2167 failed_register:
2168 fec_enet_mii_remove(fep);
2169 failed_mii_init:
2170 failed_irq:
2171 for (i = 0; i < FEC_IRQ_NUM; i++) {
2172 irq = platform_get_irq(pdev, i);
2173 if (irq > 0)
2174 free_irq(irq, ndev);
2175 }
2176 failed_init:
2177 if (fep->reg_phy)
2178 regulator_disable(fep->reg_phy);
2179 failed_regulator:
2180 clk_disable_unprepare(fep->clk_ahb);
2181 clk_disable_unprepare(fep->clk_ipg);
2182 clk_disable_unprepare(fep->clk_enet_out);
2183 clk_disable_unprepare(fep->clk_ptp);
2184 failed_clk:
2185 failed_ioremap:
2186 free_netdev(ndev);
2187
2188 return ret;
2189 }
2190
2191 static int
2192 fec_drv_remove(struct platform_device *pdev)
2193 {
2194 struct net_device *ndev = platform_get_drvdata(pdev);
2195 struct fec_enet_private *fep = netdev_priv(ndev);
2196 int i;
2197
2198 cancel_delayed_work_sync(&(fep->delay_work.delay_work));
2199 unregister_netdev(ndev);
2200 fec_enet_mii_remove(fep);
2201 del_timer_sync(&fep->time_keep);
2202 for (i = 0; i < FEC_IRQ_NUM; i++) {
2203 int irq = platform_get_irq(pdev, i);
2204 if (irq > 0)
2205 free_irq(irq, ndev);
2206 }
2207 if (fep->reg_phy)
2208 regulator_disable(fep->reg_phy);
2209 clk_disable_unprepare(fep->clk_ptp);
2210 if (fep->ptp_clock)
2211 ptp_clock_unregister(fep->ptp_clock);
2212 clk_disable_unprepare(fep->clk_enet_out);
2213 clk_disable_unprepare(fep->clk_ahb);
2214 clk_disable_unprepare(fep->clk_ipg);
2215 free_netdev(ndev);
2216
2217 return 0;
2218 }
2219
2220 #ifdef CONFIG_PM_SLEEP
2221 static int
2222 fec_suspend(struct device *dev)
2223 {
2224 struct net_device *ndev = dev_get_drvdata(dev);
2225 struct fec_enet_private *fep = netdev_priv(ndev);
2226
2227 if (netif_running(ndev)) {
2228 fec_stop(ndev);
2229 netif_device_detach(ndev);
2230 }
2231 clk_disable_unprepare(fep->clk_enet_out);
2232 clk_disable_unprepare(fep->clk_ahb);
2233 clk_disable_unprepare(fep->clk_ipg);
2234
2235 if (fep->reg_phy)
2236 regulator_disable(fep->reg_phy);
2237
2238 return 0;
2239 }
2240
2241 static int
2242 fec_resume(struct device *dev)
2243 {
2244 struct net_device *ndev = dev_get_drvdata(dev);
2245 struct fec_enet_private *fep = netdev_priv(ndev);
2246 int ret;
2247
2248 if (fep->reg_phy) {
2249 ret = regulator_enable(fep->reg_phy);
2250 if (ret)
2251 return ret;
2252 }
2253
2254 clk_prepare_enable(fep->clk_enet_out);
2255 clk_prepare_enable(fep->clk_ahb);
2256 clk_prepare_enable(fep->clk_ipg);
2257 if (netif_running(ndev)) {
2258 fec_restart(ndev, fep->full_duplex);
2259 netif_device_attach(ndev);
2260 }
2261
2262 return 0;
2263 }
2264 #endif /* CONFIG_PM_SLEEP */
2265
2266 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
2267
2268 static struct platform_driver fec_driver = {
2269 .driver = {
2270 .name = DRIVER_NAME,
2271 .owner = THIS_MODULE,
2272 .pm = &fec_pm_ops,
2273 .of_match_table = fec_dt_ids,
2274 },
2275 .id_table = fec_devtype,
2276 .probe = fec_probe,
2277 .remove = fec_drv_remove,
2278 };
2279
2280 module_platform_driver(fec_driver);
2281
2282 MODULE_LICENSE("GPL");
This page took 0.080578 seconds and 5 git commands to generate.