Merge tag 'for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kishon/linux...
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/in.h>
37 #include <linux/ip.h>
38 #include <net/ip.h>
39 #include <net/tso.h>
40 #include <linux/tcp.h>
41 #include <linux/udp.h>
42 #include <linux/icmp.h>
43 #include <linux/spinlock.h>
44 #include <linux/workqueue.h>
45 #include <linux/bitops.h>
46 #include <linux/io.h>
47 #include <linux/irq.h>
48 #include <linux/clk.h>
49 #include <linux/platform_device.h>
50 #include <linux/phy.h>
51 #include <linux/fec.h>
52 #include <linux/of.h>
53 #include <linux/of_device.h>
54 #include <linux/of_gpio.h>
55 #include <linux/of_mdio.h>
56 #include <linux/of_net.h>
57 #include <linux/regulator/consumer.h>
58 #include <linux/if_vlan.h>
59 #include <linux/pinctrl/consumer.h>
60 #include <linux/prefetch.h>
61
62 #include <asm/cacheflush.h>
63
64 #include "fec.h"
65
66 static void set_multicast_list(struct net_device *ndev);
67 static void fec_enet_itr_coal_init(struct net_device *ndev);
68
69 #define DRIVER_NAME "fec"
70
71 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
72
73 /* Pause frame feild and FIFO threshold */
74 #define FEC_ENET_FCE (1 << 5)
75 #define FEC_ENET_RSEM_V 0x84
76 #define FEC_ENET_RSFL_V 16
77 #define FEC_ENET_RAEM_V 0x8
78 #define FEC_ENET_RAFL_V 0x8
79 #define FEC_ENET_OPD_V 0xFFF0
80
81 static struct platform_device_id fec_devtype[] = {
82 {
83 /* keep it for coldfire */
84 .name = DRIVER_NAME,
85 .driver_data = 0,
86 }, {
87 .name = "imx25-fec",
88 .driver_data = FEC_QUIRK_USE_GASKET,
89 }, {
90 .name = "imx27-fec",
91 .driver_data = 0,
92 }, {
93 .name = "imx28-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
95 FEC_QUIRK_SINGLE_MDIO,
96 }, {
97 .name = "imx6q-fec",
98 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
99 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
100 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358,
101 }, {
102 .name = "mvf600-fec",
103 .driver_data = FEC_QUIRK_ENET_MAC,
104 }, {
105 .name = "imx6sx-fec",
106 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
107 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
108 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
109 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE,
110 }, {
111 /* sentinel */
112 }
113 };
114 MODULE_DEVICE_TABLE(platform, fec_devtype);
115
116 enum imx_fec_type {
117 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
118 IMX27_FEC, /* runs on i.mx27/35/51 */
119 IMX28_FEC,
120 IMX6Q_FEC,
121 MVF600_FEC,
122 IMX6SX_FEC,
123 };
124
125 static const struct of_device_id fec_dt_ids[] = {
126 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
127 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
128 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
129 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
130 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
131 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
132 { /* sentinel */ }
133 };
134 MODULE_DEVICE_TABLE(of, fec_dt_ids);
135
136 static unsigned char macaddr[ETH_ALEN];
137 module_param_array(macaddr, byte, NULL, 0);
138 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
139
140 #if defined(CONFIG_M5272)
141 /*
142 * Some hardware gets it MAC address out of local flash memory.
143 * if this is non-zero then assume it is the address to get MAC from.
144 */
145 #if defined(CONFIG_NETtel)
146 #define FEC_FLASHMAC 0xf0006006
147 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
148 #define FEC_FLASHMAC 0xf0006000
149 #elif defined(CONFIG_CANCam)
150 #define FEC_FLASHMAC 0xf0020000
151 #elif defined (CONFIG_M5272C3)
152 #define FEC_FLASHMAC (0xffe04000 + 4)
153 #elif defined(CONFIG_MOD5272)
154 #define FEC_FLASHMAC 0xffc0406b
155 #else
156 #define FEC_FLASHMAC 0
157 #endif
158 #endif /* CONFIG_M5272 */
159
160 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
161 */
162 #define PKT_MAXBUF_SIZE 1522
163 #define PKT_MINBUF_SIZE 64
164 #define PKT_MAXBLR_SIZE 1536
165
166 /* FEC receive acceleration */
167 #define FEC_RACC_IPDIS (1 << 1)
168 #define FEC_RACC_PRODIS (1 << 2)
169 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
170
171 /*
172 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
173 * size bits. Other FEC hardware does not, so we need to take that into
174 * account when setting it.
175 */
176 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
177 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
178 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
179 #else
180 #define OPT_FRAME_SIZE 0
181 #endif
182
183 /* FEC MII MMFR bits definition */
184 #define FEC_MMFR_ST (1 << 30)
185 #define FEC_MMFR_OP_READ (2 << 28)
186 #define FEC_MMFR_OP_WRITE (1 << 28)
187 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
188 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
189 #define FEC_MMFR_TA (2 << 16)
190 #define FEC_MMFR_DATA(v) (v & 0xffff)
191 /* FEC ECR bits definition */
192 #define FEC_ECR_MAGICEN (1 << 2)
193 #define FEC_ECR_SLEEP (1 << 3)
194
195 #define FEC_MII_TIMEOUT 30000 /* us */
196
197 /* Transmitter timeout */
198 #define TX_TIMEOUT (2 * HZ)
199
200 #define FEC_PAUSE_FLAG_AUTONEG 0x1
201 #define FEC_PAUSE_FLAG_ENABLE 0x2
202 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
203 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
204 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
205
206 #define COPYBREAK_DEFAULT 256
207
208 #define TSO_HEADER_SIZE 128
209 /* Max number of allowed TCP segments for software TSO */
210 #define FEC_MAX_TSO_SEGS 100
211 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
212
213 #define IS_TSO_HEADER(txq, addr) \
214 ((addr >= txq->tso_hdrs_dma) && \
215 (addr < txq->tso_hdrs_dma + txq->tx_ring_size * TSO_HEADER_SIZE))
216
217 static int mii_cnt;
218
219 static inline
220 struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
221 struct fec_enet_private *fep,
222 int queue_id)
223 {
224 struct bufdesc *new_bd = bdp + 1;
225 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp + 1;
226 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
227 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
228 struct bufdesc_ex *ex_base;
229 struct bufdesc *base;
230 int ring_size;
231
232 if (bdp >= txq->tx_bd_base) {
233 base = txq->tx_bd_base;
234 ring_size = txq->tx_ring_size;
235 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
236 } else {
237 base = rxq->rx_bd_base;
238 ring_size = rxq->rx_ring_size;
239 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
240 }
241
242 if (fep->bufdesc_ex)
243 return (struct bufdesc *)((ex_new_bd >= (ex_base + ring_size)) ?
244 ex_base : ex_new_bd);
245 else
246 return (new_bd >= (base + ring_size)) ?
247 base : new_bd;
248 }
249
250 static inline
251 struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
252 struct fec_enet_private *fep,
253 int queue_id)
254 {
255 struct bufdesc *new_bd = bdp - 1;
256 struct bufdesc_ex *ex_new_bd = (struct bufdesc_ex *)bdp - 1;
257 struct fec_enet_priv_tx_q *txq = fep->tx_queue[queue_id];
258 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[queue_id];
259 struct bufdesc_ex *ex_base;
260 struct bufdesc *base;
261 int ring_size;
262
263 if (bdp >= txq->tx_bd_base) {
264 base = txq->tx_bd_base;
265 ring_size = txq->tx_ring_size;
266 ex_base = (struct bufdesc_ex *)txq->tx_bd_base;
267 } else {
268 base = rxq->rx_bd_base;
269 ring_size = rxq->rx_ring_size;
270 ex_base = (struct bufdesc_ex *)rxq->rx_bd_base;
271 }
272
273 if (fep->bufdesc_ex)
274 return (struct bufdesc *)((ex_new_bd < ex_base) ?
275 (ex_new_bd + ring_size) : ex_new_bd);
276 else
277 return (new_bd < base) ? (new_bd + ring_size) : new_bd;
278 }
279
280 static int fec_enet_get_bd_index(struct bufdesc *base, struct bufdesc *bdp,
281 struct fec_enet_private *fep)
282 {
283 return ((const char *)bdp - (const char *)base) / fep->bufdesc_size;
284 }
285
286 static int fec_enet_get_free_txdesc_num(struct fec_enet_private *fep,
287 struct fec_enet_priv_tx_q *txq)
288 {
289 int entries;
290
291 entries = ((const char *)txq->dirty_tx -
292 (const char *)txq->cur_tx) / fep->bufdesc_size - 1;
293
294 return entries > 0 ? entries : entries + txq->tx_ring_size;
295 }
296
297 static void swap_buffer(void *bufaddr, int len)
298 {
299 int i;
300 unsigned int *buf = bufaddr;
301
302 for (i = 0; i < len; i += 4, buf++)
303 swab32s(buf);
304 }
305
306 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
307 {
308 int i;
309 unsigned int *src = src_buf;
310 unsigned int *dst = dst_buf;
311
312 for (i = 0; i < len; i += 4, src++, dst++)
313 *dst = swab32p(src);
314 }
315
316 static void fec_dump(struct net_device *ndev)
317 {
318 struct fec_enet_private *fep = netdev_priv(ndev);
319 struct bufdesc *bdp;
320 struct fec_enet_priv_tx_q *txq;
321 int index = 0;
322
323 netdev_info(ndev, "TX ring dump\n");
324 pr_info("Nr SC addr len SKB\n");
325
326 txq = fep->tx_queue[0];
327 bdp = txq->tx_bd_base;
328
329 do {
330 pr_info("%3u %c%c 0x%04x 0x%08lx %4u %p\n",
331 index,
332 bdp == txq->cur_tx ? 'S' : ' ',
333 bdp == txq->dirty_tx ? 'H' : ' ',
334 bdp->cbd_sc, bdp->cbd_bufaddr, bdp->cbd_datlen,
335 txq->tx_skbuff[index]);
336 bdp = fec_enet_get_nextdesc(bdp, fep, 0);
337 index++;
338 } while (bdp != txq->tx_bd_base);
339 }
340
341 static inline bool is_ipv4_pkt(struct sk_buff *skb)
342 {
343 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
344 }
345
346 static int
347 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
348 {
349 /* Only run for packets requiring a checksum. */
350 if (skb->ip_summed != CHECKSUM_PARTIAL)
351 return 0;
352
353 if (unlikely(skb_cow_head(skb, 0)))
354 return -1;
355
356 if (is_ipv4_pkt(skb))
357 ip_hdr(skb)->check = 0;
358 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
359
360 return 0;
361 }
362
363 static int
364 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
365 struct sk_buff *skb,
366 struct net_device *ndev)
367 {
368 struct fec_enet_private *fep = netdev_priv(ndev);
369 struct bufdesc *bdp = txq->cur_tx;
370 struct bufdesc_ex *ebdp;
371 int nr_frags = skb_shinfo(skb)->nr_frags;
372 unsigned short queue = skb_get_queue_mapping(skb);
373 int frag, frag_len;
374 unsigned short status;
375 unsigned int estatus = 0;
376 skb_frag_t *this_frag;
377 unsigned int index;
378 void *bufaddr;
379 dma_addr_t addr;
380 int i;
381
382 for (frag = 0; frag < nr_frags; frag++) {
383 this_frag = &skb_shinfo(skb)->frags[frag];
384 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
385 ebdp = (struct bufdesc_ex *)bdp;
386
387 status = bdp->cbd_sc;
388 status &= ~BD_ENET_TX_STATS;
389 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
390 frag_len = skb_shinfo(skb)->frags[frag].size;
391
392 /* Handle the last BD specially */
393 if (frag == nr_frags - 1) {
394 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
395 if (fep->bufdesc_ex) {
396 estatus |= BD_ENET_TX_INT;
397 if (unlikely(skb_shinfo(skb)->tx_flags &
398 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
399 estatus |= BD_ENET_TX_TS;
400 }
401 }
402
403 if (fep->bufdesc_ex) {
404 if (fep->quirks & FEC_QUIRK_HAS_AVB)
405 estatus |= FEC_TX_BD_FTYPE(queue);
406 if (skb->ip_summed == CHECKSUM_PARTIAL)
407 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
408 ebdp->cbd_bdu = 0;
409 ebdp->cbd_esc = estatus;
410 }
411
412 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
413
414 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
415 if (((unsigned long) bufaddr) & fep->tx_align ||
416 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
417 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
418 bufaddr = txq->tx_bounce[index];
419
420 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
421 swap_buffer(bufaddr, frag_len);
422 }
423
424 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
425 DMA_TO_DEVICE);
426 if (dma_mapping_error(&fep->pdev->dev, addr)) {
427 dev_kfree_skb_any(skb);
428 if (net_ratelimit())
429 netdev_err(ndev, "Tx DMA memory map failed\n");
430 goto dma_mapping_error;
431 }
432
433 bdp->cbd_bufaddr = addr;
434 bdp->cbd_datlen = frag_len;
435 bdp->cbd_sc = status;
436 }
437
438 txq->cur_tx = bdp;
439
440 return 0;
441
442 dma_mapping_error:
443 bdp = txq->cur_tx;
444 for (i = 0; i < frag; i++) {
445 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
446 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
447 bdp->cbd_datlen, DMA_TO_DEVICE);
448 }
449 return NETDEV_TX_OK;
450 }
451
452 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
453 struct sk_buff *skb, struct net_device *ndev)
454 {
455 struct fec_enet_private *fep = netdev_priv(ndev);
456 int nr_frags = skb_shinfo(skb)->nr_frags;
457 struct bufdesc *bdp, *last_bdp;
458 void *bufaddr;
459 dma_addr_t addr;
460 unsigned short status;
461 unsigned short buflen;
462 unsigned short queue;
463 unsigned int estatus = 0;
464 unsigned int index;
465 int entries_free;
466 int ret;
467
468 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
469 if (entries_free < MAX_SKB_FRAGS + 1) {
470 dev_kfree_skb_any(skb);
471 if (net_ratelimit())
472 netdev_err(ndev, "NOT enough BD for SG!\n");
473 return NETDEV_TX_OK;
474 }
475
476 /* Protocol checksum off-load for TCP and UDP. */
477 if (fec_enet_clear_csum(skb, ndev)) {
478 dev_kfree_skb_any(skb);
479 return NETDEV_TX_OK;
480 }
481
482 /* Fill in a Tx ring entry */
483 bdp = txq->cur_tx;
484 status = bdp->cbd_sc;
485 status &= ~BD_ENET_TX_STATS;
486
487 /* Set buffer length and buffer pointer */
488 bufaddr = skb->data;
489 buflen = skb_headlen(skb);
490
491 queue = skb_get_queue_mapping(skb);
492 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
493 if (((unsigned long) bufaddr) & fep->tx_align ||
494 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
495 memcpy(txq->tx_bounce[index], skb->data, buflen);
496 bufaddr = txq->tx_bounce[index];
497
498 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
499 swap_buffer(bufaddr, buflen);
500 }
501
502 /* Push the data cache so the CPM does not get stale memory data. */
503 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
504 if (dma_mapping_error(&fep->pdev->dev, addr)) {
505 dev_kfree_skb_any(skb);
506 if (net_ratelimit())
507 netdev_err(ndev, "Tx DMA memory map failed\n");
508 return NETDEV_TX_OK;
509 }
510
511 if (nr_frags) {
512 ret = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
513 if (ret)
514 return ret;
515 } else {
516 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
517 if (fep->bufdesc_ex) {
518 estatus = BD_ENET_TX_INT;
519 if (unlikely(skb_shinfo(skb)->tx_flags &
520 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
521 estatus |= BD_ENET_TX_TS;
522 }
523 }
524
525 if (fep->bufdesc_ex) {
526
527 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
528
529 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
530 fep->hwts_tx_en))
531 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
532
533 if (fep->quirks & FEC_QUIRK_HAS_AVB)
534 estatus |= FEC_TX_BD_FTYPE(queue);
535
536 if (skb->ip_summed == CHECKSUM_PARTIAL)
537 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
538
539 ebdp->cbd_bdu = 0;
540 ebdp->cbd_esc = estatus;
541 }
542
543 last_bdp = txq->cur_tx;
544 index = fec_enet_get_bd_index(txq->tx_bd_base, last_bdp, fep);
545 /* Save skb pointer */
546 txq->tx_skbuff[index] = skb;
547
548 bdp->cbd_datlen = buflen;
549 bdp->cbd_bufaddr = addr;
550
551 /* Send it on its way. Tell FEC it's ready, interrupt when done,
552 * it's the last BD of the frame, and to put the CRC on the end.
553 */
554 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
555 bdp->cbd_sc = status;
556
557 /* If this was the last BD in the ring, start at the beginning again. */
558 bdp = fec_enet_get_nextdesc(last_bdp, fep, queue);
559
560 skb_tx_timestamp(skb);
561
562 txq->cur_tx = bdp;
563
564 /* Trigger transmission start */
565 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
566
567 return 0;
568 }
569
570 static int
571 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
572 struct net_device *ndev,
573 struct bufdesc *bdp, int index, char *data,
574 int size, bool last_tcp, bool is_last)
575 {
576 struct fec_enet_private *fep = netdev_priv(ndev);
577 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
578 unsigned short queue = skb_get_queue_mapping(skb);
579 unsigned short status;
580 unsigned int estatus = 0;
581 dma_addr_t addr;
582
583 status = bdp->cbd_sc;
584 status &= ~BD_ENET_TX_STATS;
585
586 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
587
588 if (((unsigned long) data) & fep->tx_align ||
589 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
590 memcpy(txq->tx_bounce[index], data, size);
591 data = txq->tx_bounce[index];
592
593 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
594 swap_buffer(data, size);
595 }
596
597 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
598 if (dma_mapping_error(&fep->pdev->dev, addr)) {
599 dev_kfree_skb_any(skb);
600 if (net_ratelimit())
601 netdev_err(ndev, "Tx DMA memory map failed\n");
602 return NETDEV_TX_BUSY;
603 }
604
605 bdp->cbd_datlen = size;
606 bdp->cbd_bufaddr = addr;
607
608 if (fep->bufdesc_ex) {
609 if (fep->quirks & FEC_QUIRK_HAS_AVB)
610 estatus |= FEC_TX_BD_FTYPE(queue);
611 if (skb->ip_summed == CHECKSUM_PARTIAL)
612 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
613 ebdp->cbd_bdu = 0;
614 ebdp->cbd_esc = estatus;
615 }
616
617 /* Handle the last BD specially */
618 if (last_tcp)
619 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
620 if (is_last) {
621 status |= BD_ENET_TX_INTR;
622 if (fep->bufdesc_ex)
623 ebdp->cbd_esc |= BD_ENET_TX_INT;
624 }
625
626 bdp->cbd_sc = status;
627
628 return 0;
629 }
630
631 static int
632 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
633 struct sk_buff *skb, struct net_device *ndev,
634 struct bufdesc *bdp, int index)
635 {
636 struct fec_enet_private *fep = netdev_priv(ndev);
637 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
638 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
639 unsigned short queue = skb_get_queue_mapping(skb);
640 void *bufaddr;
641 unsigned long dmabuf;
642 unsigned short status;
643 unsigned int estatus = 0;
644
645 status = bdp->cbd_sc;
646 status &= ~BD_ENET_TX_STATS;
647 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
648
649 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
650 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
651 if (((unsigned long)bufaddr) & fep->tx_align ||
652 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
653 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
654 bufaddr = txq->tx_bounce[index];
655
656 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
657 swap_buffer(bufaddr, hdr_len);
658
659 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
660 hdr_len, DMA_TO_DEVICE);
661 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
662 dev_kfree_skb_any(skb);
663 if (net_ratelimit())
664 netdev_err(ndev, "Tx DMA memory map failed\n");
665 return NETDEV_TX_BUSY;
666 }
667 }
668
669 bdp->cbd_bufaddr = dmabuf;
670 bdp->cbd_datlen = hdr_len;
671
672 if (fep->bufdesc_ex) {
673 if (fep->quirks & FEC_QUIRK_HAS_AVB)
674 estatus |= FEC_TX_BD_FTYPE(queue);
675 if (skb->ip_summed == CHECKSUM_PARTIAL)
676 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
677 ebdp->cbd_bdu = 0;
678 ebdp->cbd_esc = estatus;
679 }
680
681 bdp->cbd_sc = status;
682
683 return 0;
684 }
685
686 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
687 struct sk_buff *skb,
688 struct net_device *ndev)
689 {
690 struct fec_enet_private *fep = netdev_priv(ndev);
691 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
692 int total_len, data_left;
693 struct bufdesc *bdp = txq->cur_tx;
694 unsigned short queue = skb_get_queue_mapping(skb);
695 struct tso_t tso;
696 unsigned int index = 0;
697 int ret;
698
699 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(fep, txq)) {
700 dev_kfree_skb_any(skb);
701 if (net_ratelimit())
702 netdev_err(ndev, "NOT enough BD for TSO!\n");
703 return NETDEV_TX_OK;
704 }
705
706 /* Protocol checksum off-load for TCP and UDP. */
707 if (fec_enet_clear_csum(skb, ndev)) {
708 dev_kfree_skb_any(skb);
709 return NETDEV_TX_OK;
710 }
711
712 /* Initialize the TSO handler, and prepare the first payload */
713 tso_start(skb, &tso);
714
715 total_len = skb->len - hdr_len;
716 while (total_len > 0) {
717 char *hdr;
718
719 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
720 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
721 total_len -= data_left;
722
723 /* prepare packet headers: MAC + IP + TCP */
724 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
725 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
726 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
727 if (ret)
728 goto err_release;
729
730 while (data_left > 0) {
731 int size;
732
733 size = min_t(int, tso.size, data_left);
734 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
735 index = fec_enet_get_bd_index(txq->tx_bd_base,
736 bdp, fep);
737 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
738 bdp, index,
739 tso.data, size,
740 size == data_left,
741 total_len == 0);
742 if (ret)
743 goto err_release;
744
745 data_left -= size;
746 tso_build_data(skb, &tso, size);
747 }
748
749 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
750 }
751
752 /* Save skb pointer */
753 txq->tx_skbuff[index] = skb;
754
755 skb_tx_timestamp(skb);
756 txq->cur_tx = bdp;
757
758 /* Trigger transmission start */
759 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
760 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
761 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
762 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)) ||
763 !readl(fep->hwp + FEC_X_DES_ACTIVE(queue)))
764 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue));
765
766 return 0;
767
768 err_release:
769 /* TODO: Release all used data descriptors for TSO */
770 return ret;
771 }
772
773 static netdev_tx_t
774 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
775 {
776 struct fec_enet_private *fep = netdev_priv(ndev);
777 int entries_free;
778 unsigned short queue;
779 struct fec_enet_priv_tx_q *txq;
780 struct netdev_queue *nq;
781 int ret;
782
783 queue = skb_get_queue_mapping(skb);
784 txq = fep->tx_queue[queue];
785 nq = netdev_get_tx_queue(ndev, queue);
786
787 if (skb_is_gso(skb))
788 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
789 else
790 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
791 if (ret)
792 return ret;
793
794 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
795 if (entries_free <= txq->tx_stop_threshold)
796 netif_tx_stop_queue(nq);
797
798 return NETDEV_TX_OK;
799 }
800
801 /* Init RX & TX buffer descriptors
802 */
803 static void fec_enet_bd_init(struct net_device *dev)
804 {
805 struct fec_enet_private *fep = netdev_priv(dev);
806 struct fec_enet_priv_tx_q *txq;
807 struct fec_enet_priv_rx_q *rxq;
808 struct bufdesc *bdp;
809 unsigned int i;
810 unsigned int q;
811
812 for (q = 0; q < fep->num_rx_queues; q++) {
813 /* Initialize the receive buffer descriptors. */
814 rxq = fep->rx_queue[q];
815 bdp = rxq->rx_bd_base;
816
817 for (i = 0; i < rxq->rx_ring_size; i++) {
818
819 /* Initialize the BD for every fragment in the page. */
820 if (bdp->cbd_bufaddr)
821 bdp->cbd_sc = BD_ENET_RX_EMPTY;
822 else
823 bdp->cbd_sc = 0;
824 bdp = fec_enet_get_nextdesc(bdp, fep, q);
825 }
826
827 /* Set the last buffer to wrap */
828 bdp = fec_enet_get_prevdesc(bdp, fep, q);
829 bdp->cbd_sc |= BD_SC_WRAP;
830
831 rxq->cur_rx = rxq->rx_bd_base;
832 }
833
834 for (q = 0; q < fep->num_tx_queues; q++) {
835 /* ...and the same for transmit */
836 txq = fep->tx_queue[q];
837 bdp = txq->tx_bd_base;
838 txq->cur_tx = bdp;
839
840 for (i = 0; i < txq->tx_ring_size; i++) {
841 /* Initialize the BD for every fragment in the page. */
842 bdp->cbd_sc = 0;
843 if (txq->tx_skbuff[i]) {
844 dev_kfree_skb_any(txq->tx_skbuff[i]);
845 txq->tx_skbuff[i] = NULL;
846 }
847 bdp->cbd_bufaddr = 0;
848 bdp = fec_enet_get_nextdesc(bdp, fep, q);
849 }
850
851 /* Set the last buffer to wrap */
852 bdp = fec_enet_get_prevdesc(bdp, fep, q);
853 bdp->cbd_sc |= BD_SC_WRAP;
854 txq->dirty_tx = bdp;
855 }
856 }
857
858 static void fec_enet_active_rxring(struct net_device *ndev)
859 {
860 struct fec_enet_private *fep = netdev_priv(ndev);
861 int i;
862
863 for (i = 0; i < fep->num_rx_queues; i++)
864 writel(0, fep->hwp + FEC_R_DES_ACTIVE(i));
865 }
866
867 static void fec_enet_enable_ring(struct net_device *ndev)
868 {
869 struct fec_enet_private *fep = netdev_priv(ndev);
870 struct fec_enet_priv_tx_q *txq;
871 struct fec_enet_priv_rx_q *rxq;
872 int i;
873
874 for (i = 0; i < fep->num_rx_queues; i++) {
875 rxq = fep->rx_queue[i];
876 writel(rxq->bd_dma, fep->hwp + FEC_R_DES_START(i));
877 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
878
879 /* enable DMA1/2 */
880 if (i)
881 writel(RCMR_MATCHEN | RCMR_CMP(i),
882 fep->hwp + FEC_RCMR(i));
883 }
884
885 for (i = 0; i < fep->num_tx_queues; i++) {
886 txq = fep->tx_queue[i];
887 writel(txq->bd_dma, fep->hwp + FEC_X_DES_START(i));
888
889 /* enable DMA1/2 */
890 if (i)
891 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
892 fep->hwp + FEC_DMA_CFG(i));
893 }
894 }
895
896 static void fec_enet_reset_skb(struct net_device *ndev)
897 {
898 struct fec_enet_private *fep = netdev_priv(ndev);
899 struct fec_enet_priv_tx_q *txq;
900 int i, j;
901
902 for (i = 0; i < fep->num_tx_queues; i++) {
903 txq = fep->tx_queue[i];
904
905 for (j = 0; j < txq->tx_ring_size; j++) {
906 if (txq->tx_skbuff[j]) {
907 dev_kfree_skb_any(txq->tx_skbuff[j]);
908 txq->tx_skbuff[j] = NULL;
909 }
910 }
911 }
912 }
913
914 /*
915 * This function is called to start or restart the FEC during a link
916 * change, transmit timeout, or to reconfigure the FEC. The network
917 * packet processing for this device must be stopped before this call.
918 */
919 static void
920 fec_restart(struct net_device *ndev)
921 {
922 struct fec_enet_private *fep = netdev_priv(ndev);
923 u32 val;
924 u32 temp_mac[2];
925 u32 rcntl = OPT_FRAME_SIZE | 0x04;
926 u32 ecntl = 0x2; /* ETHEREN */
927
928 /* Whack a reset. We should wait for this.
929 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
930 * instead of reset MAC itself.
931 */
932 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
933 writel(0, fep->hwp + FEC_ECNTRL);
934 } else {
935 writel(1, fep->hwp + FEC_ECNTRL);
936 udelay(10);
937 }
938
939 /*
940 * enet-mac reset will reset mac address registers too,
941 * so need to reconfigure it.
942 */
943 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
944 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
945 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
946 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
947 }
948
949 /* Clear any outstanding interrupt. */
950 writel(0xffffffff, fep->hwp + FEC_IEVENT);
951
952 fec_enet_bd_init(ndev);
953
954 fec_enet_enable_ring(ndev);
955
956 /* Reset tx SKB buffers. */
957 fec_enet_reset_skb(ndev);
958
959 /* Enable MII mode */
960 if (fep->full_duplex == DUPLEX_FULL) {
961 /* FD enable */
962 writel(0x04, fep->hwp + FEC_X_CNTRL);
963 } else {
964 /* No Rcv on Xmit */
965 rcntl |= 0x02;
966 writel(0x0, fep->hwp + FEC_X_CNTRL);
967 }
968
969 /* Set MII speed */
970 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
971
972 #if !defined(CONFIG_M5272)
973 /* set RX checksum */
974 val = readl(fep->hwp + FEC_RACC);
975 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
976 val |= FEC_RACC_OPTIONS;
977 else
978 val &= ~FEC_RACC_OPTIONS;
979 writel(val, fep->hwp + FEC_RACC);
980 #endif
981
982 /*
983 * The phy interface and speed need to get configured
984 * differently on enet-mac.
985 */
986 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
987 /* Enable flow control and length check */
988 rcntl |= 0x40000000 | 0x00000020;
989
990 /* RGMII, RMII or MII */
991 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
992 rcntl |= (1 << 6);
993 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
994 rcntl |= (1 << 8);
995 else
996 rcntl &= ~(1 << 8);
997
998 /* 1G, 100M or 10M */
999 if (fep->phy_dev) {
1000 if (fep->phy_dev->speed == SPEED_1000)
1001 ecntl |= (1 << 5);
1002 else if (fep->phy_dev->speed == SPEED_100)
1003 rcntl &= ~(1 << 9);
1004 else
1005 rcntl |= (1 << 9);
1006 }
1007 } else {
1008 #ifdef FEC_MIIGSK_ENR
1009 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
1010 u32 cfgr;
1011 /* disable the gasket and wait */
1012 writel(0, fep->hwp + FEC_MIIGSK_ENR);
1013 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
1014 udelay(1);
1015
1016 /*
1017 * configure the gasket:
1018 * RMII, 50 MHz, no loopback, no echo
1019 * MII, 25 MHz, no loopback, no echo
1020 */
1021 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
1022 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
1023 if (fep->phy_dev && fep->phy_dev->speed == SPEED_10)
1024 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
1025 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
1026
1027 /* re-enable the gasket */
1028 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1029 }
1030 #endif
1031 }
1032
1033 #if !defined(CONFIG_M5272)
1034 /* enable pause frame*/
1035 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1036 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1037 fep->phy_dev && fep->phy_dev->pause)) {
1038 rcntl |= FEC_ENET_FCE;
1039
1040 /* set FIFO threshold parameter to reduce overrun */
1041 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1042 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1043 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1044 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1045
1046 /* OPD */
1047 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1048 } else {
1049 rcntl &= ~FEC_ENET_FCE;
1050 }
1051 #endif /* !defined(CONFIG_M5272) */
1052
1053 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1054
1055 /* Setup multicast filter. */
1056 set_multicast_list(ndev);
1057 #ifndef CONFIG_M5272
1058 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1059 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1060 #endif
1061
1062 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1063 /* enable ENET endian swap */
1064 ecntl |= (1 << 8);
1065 /* enable ENET store and forward mode */
1066 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1067 }
1068
1069 if (fep->bufdesc_ex)
1070 ecntl |= (1 << 4);
1071
1072 #ifndef CONFIG_M5272
1073 /* Enable the MIB statistic event counters */
1074 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1075 #endif
1076
1077 /* And last, enable the transmit and receive processing */
1078 writel(ecntl, fep->hwp + FEC_ECNTRL);
1079 fec_enet_active_rxring(ndev);
1080
1081 if (fep->bufdesc_ex)
1082 fec_ptp_start_cyclecounter(ndev);
1083
1084 /* Enable interrupts we wish to service */
1085 if (fep->link)
1086 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1087 else
1088 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1089
1090 /* Init the interrupt coalescing */
1091 fec_enet_itr_coal_init(ndev);
1092
1093 }
1094
1095 static void
1096 fec_stop(struct net_device *ndev)
1097 {
1098 struct fec_enet_private *fep = netdev_priv(ndev);
1099 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1100 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1101 u32 val;
1102
1103 /* We cannot expect a graceful transmit stop without link !!! */
1104 if (fep->link) {
1105 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1106 udelay(10);
1107 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1108 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1109 }
1110
1111 /* Whack a reset. We should wait for this.
1112 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1113 * instead of reset MAC itself.
1114 */
1115 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1116 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1117 writel(0, fep->hwp + FEC_ECNTRL);
1118 } else {
1119 writel(1, fep->hwp + FEC_ECNTRL);
1120 udelay(10);
1121 }
1122 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1123 } else {
1124 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1125 val = readl(fep->hwp + FEC_ECNTRL);
1126 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1127 writel(val, fep->hwp + FEC_ECNTRL);
1128
1129 if (pdata && pdata->sleep_mode_enable)
1130 pdata->sleep_mode_enable(true);
1131 }
1132 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1133
1134 /* We have to keep ENET enabled to have MII interrupt stay working */
1135 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1136 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1137 writel(2, fep->hwp + FEC_ECNTRL);
1138 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1139 }
1140 }
1141
1142
1143 static void
1144 fec_timeout(struct net_device *ndev)
1145 {
1146 struct fec_enet_private *fep = netdev_priv(ndev);
1147
1148 fec_dump(ndev);
1149
1150 ndev->stats.tx_errors++;
1151
1152 schedule_work(&fep->tx_timeout_work);
1153 }
1154
1155 static void fec_enet_timeout_work(struct work_struct *work)
1156 {
1157 struct fec_enet_private *fep =
1158 container_of(work, struct fec_enet_private, tx_timeout_work);
1159 struct net_device *ndev = fep->netdev;
1160
1161 rtnl_lock();
1162 if (netif_device_present(ndev) || netif_running(ndev)) {
1163 napi_disable(&fep->napi);
1164 netif_tx_lock_bh(ndev);
1165 fec_restart(ndev);
1166 netif_wake_queue(ndev);
1167 netif_tx_unlock_bh(ndev);
1168 napi_enable(&fep->napi);
1169 }
1170 rtnl_unlock();
1171 }
1172
1173 static void
1174 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1175 struct skb_shared_hwtstamps *hwtstamps)
1176 {
1177 unsigned long flags;
1178 u64 ns;
1179
1180 spin_lock_irqsave(&fep->tmreg_lock, flags);
1181 ns = timecounter_cyc2time(&fep->tc, ts);
1182 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1183
1184 memset(hwtstamps, 0, sizeof(*hwtstamps));
1185 hwtstamps->hwtstamp = ns_to_ktime(ns);
1186 }
1187
1188 static void
1189 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1190 {
1191 struct fec_enet_private *fep;
1192 struct bufdesc *bdp;
1193 unsigned short status;
1194 struct sk_buff *skb;
1195 struct fec_enet_priv_tx_q *txq;
1196 struct netdev_queue *nq;
1197 int index = 0;
1198 int entries_free;
1199
1200 fep = netdev_priv(ndev);
1201
1202 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1203
1204 txq = fep->tx_queue[queue_id];
1205 /* get next bdp of dirty_tx */
1206 nq = netdev_get_tx_queue(ndev, queue_id);
1207 bdp = txq->dirty_tx;
1208
1209 /* get next bdp of dirty_tx */
1210 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1211
1212 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
1213
1214 /* current queue is empty */
1215 if (bdp == txq->cur_tx)
1216 break;
1217
1218 index = fec_enet_get_bd_index(txq->tx_bd_base, bdp, fep);
1219
1220 skb = txq->tx_skbuff[index];
1221 txq->tx_skbuff[index] = NULL;
1222 if (!IS_TSO_HEADER(txq, bdp->cbd_bufaddr))
1223 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1224 bdp->cbd_datlen, DMA_TO_DEVICE);
1225 bdp->cbd_bufaddr = 0;
1226 if (!skb) {
1227 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1228 continue;
1229 }
1230
1231 /* Check for errors. */
1232 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1233 BD_ENET_TX_RL | BD_ENET_TX_UN |
1234 BD_ENET_TX_CSL)) {
1235 ndev->stats.tx_errors++;
1236 if (status & BD_ENET_TX_HB) /* No heartbeat */
1237 ndev->stats.tx_heartbeat_errors++;
1238 if (status & BD_ENET_TX_LC) /* Late collision */
1239 ndev->stats.tx_window_errors++;
1240 if (status & BD_ENET_TX_RL) /* Retrans limit */
1241 ndev->stats.tx_aborted_errors++;
1242 if (status & BD_ENET_TX_UN) /* Underrun */
1243 ndev->stats.tx_fifo_errors++;
1244 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1245 ndev->stats.tx_carrier_errors++;
1246 } else {
1247 ndev->stats.tx_packets++;
1248 ndev->stats.tx_bytes += skb->len;
1249 }
1250
1251 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1252 fep->bufdesc_ex) {
1253 struct skb_shared_hwtstamps shhwtstamps;
1254 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1255
1256 fec_enet_hwtstamp(fep, ebdp->ts, &shhwtstamps);
1257 skb_tstamp_tx(skb, &shhwtstamps);
1258 }
1259
1260 /* Deferred means some collisions occurred during transmit,
1261 * but we eventually sent the packet OK.
1262 */
1263 if (status & BD_ENET_TX_DEF)
1264 ndev->stats.collisions++;
1265
1266 /* Free the sk buffer associated with this last transmit */
1267 dev_kfree_skb_any(skb);
1268
1269 txq->dirty_tx = bdp;
1270
1271 /* Update pointer to next buffer descriptor to be transmitted */
1272 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1273
1274 /* Since we have freed up a buffer, the ring is no longer full
1275 */
1276 if (netif_queue_stopped(ndev)) {
1277 entries_free = fec_enet_get_free_txdesc_num(fep, txq);
1278 if (entries_free >= txq->tx_wake_threshold)
1279 netif_tx_wake_queue(nq);
1280 }
1281 }
1282
1283 /* ERR006538: Keep the transmitter going */
1284 if (bdp != txq->cur_tx &&
1285 readl(fep->hwp + FEC_X_DES_ACTIVE(queue_id)) == 0)
1286 writel(0, fep->hwp + FEC_X_DES_ACTIVE(queue_id));
1287 }
1288
1289 static void
1290 fec_enet_tx(struct net_device *ndev)
1291 {
1292 struct fec_enet_private *fep = netdev_priv(ndev);
1293 u16 queue_id;
1294 /* First process class A queue, then Class B and Best Effort queue */
1295 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1296 clear_bit(queue_id, &fep->work_tx);
1297 fec_enet_tx_queue(ndev, queue_id);
1298 }
1299 return;
1300 }
1301
1302 static int
1303 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1304 {
1305 struct fec_enet_private *fep = netdev_priv(ndev);
1306 int off;
1307
1308 off = ((unsigned long)skb->data) & fep->rx_align;
1309 if (off)
1310 skb_reserve(skb, fep->rx_align + 1 - off);
1311
1312 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1313 FEC_ENET_RX_FRSIZE - fep->rx_align,
1314 DMA_FROM_DEVICE);
1315 if (dma_mapping_error(&fep->pdev->dev, bdp->cbd_bufaddr)) {
1316 if (net_ratelimit())
1317 netdev_err(ndev, "Rx DMA memory map failed\n");
1318 return -ENOMEM;
1319 }
1320
1321 return 0;
1322 }
1323
1324 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1325 struct bufdesc *bdp, u32 length, bool swap)
1326 {
1327 struct fec_enet_private *fep = netdev_priv(ndev);
1328 struct sk_buff *new_skb;
1329
1330 if (length > fep->rx_copybreak)
1331 return false;
1332
1333 new_skb = netdev_alloc_skb(ndev, length);
1334 if (!new_skb)
1335 return false;
1336
1337 dma_sync_single_for_cpu(&fep->pdev->dev, bdp->cbd_bufaddr,
1338 FEC_ENET_RX_FRSIZE - fep->rx_align,
1339 DMA_FROM_DEVICE);
1340 if (!swap)
1341 memcpy(new_skb->data, (*skb)->data, length);
1342 else
1343 swap_buffer2(new_skb->data, (*skb)->data, length);
1344 *skb = new_skb;
1345
1346 return true;
1347 }
1348
1349 /* During a receive, the cur_rx points to the current incoming buffer.
1350 * When we update through the ring, if the next incoming buffer has
1351 * not been given to the system, we just set the empty indicator,
1352 * effectively tossing the packet.
1353 */
1354 static int
1355 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1356 {
1357 struct fec_enet_private *fep = netdev_priv(ndev);
1358 struct fec_enet_priv_rx_q *rxq;
1359 struct bufdesc *bdp;
1360 unsigned short status;
1361 struct sk_buff *skb_new = NULL;
1362 struct sk_buff *skb;
1363 ushort pkt_len;
1364 __u8 *data;
1365 int pkt_received = 0;
1366 struct bufdesc_ex *ebdp = NULL;
1367 bool vlan_packet_rcvd = false;
1368 u16 vlan_tag;
1369 int index = 0;
1370 bool is_copybreak;
1371 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1372
1373 #ifdef CONFIG_M532x
1374 flush_cache_all();
1375 #endif
1376 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1377 rxq = fep->rx_queue[queue_id];
1378
1379 /* First, grab all of the stats for the incoming packet.
1380 * These get messed up if we get called due to a busy condition.
1381 */
1382 bdp = rxq->cur_rx;
1383
1384 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
1385
1386 if (pkt_received >= budget)
1387 break;
1388 pkt_received++;
1389
1390 /* Since we have allocated space to hold a complete frame,
1391 * the last indicator should be set.
1392 */
1393 if ((status & BD_ENET_RX_LAST) == 0)
1394 netdev_err(ndev, "rcv is not +last\n");
1395
1396
1397 /* Check for errors. */
1398 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1399 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
1400 ndev->stats.rx_errors++;
1401 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
1402 /* Frame too long or too short. */
1403 ndev->stats.rx_length_errors++;
1404 }
1405 if (status & BD_ENET_RX_NO) /* Frame alignment */
1406 ndev->stats.rx_frame_errors++;
1407 if (status & BD_ENET_RX_CR) /* CRC Error */
1408 ndev->stats.rx_crc_errors++;
1409 if (status & BD_ENET_RX_OV) /* FIFO overrun */
1410 ndev->stats.rx_fifo_errors++;
1411 }
1412
1413 /* Report late collisions as a frame error.
1414 * On this error, the BD is closed, but we don't know what we
1415 * have in the buffer. So, just drop this frame on the floor.
1416 */
1417 if (status & BD_ENET_RX_CL) {
1418 ndev->stats.rx_errors++;
1419 ndev->stats.rx_frame_errors++;
1420 goto rx_processing_done;
1421 }
1422
1423 /* Process the incoming frame. */
1424 ndev->stats.rx_packets++;
1425 pkt_len = bdp->cbd_datlen;
1426 ndev->stats.rx_bytes += pkt_len;
1427
1428 index = fec_enet_get_bd_index(rxq->rx_bd_base, bdp, fep);
1429 skb = rxq->rx_skbuff[index];
1430
1431 /* The packet length includes FCS, but we don't want to
1432 * include that when passing upstream as it messes up
1433 * bridging applications.
1434 */
1435 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1436 need_swap);
1437 if (!is_copybreak) {
1438 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1439 if (unlikely(!skb_new)) {
1440 ndev->stats.rx_dropped++;
1441 goto rx_processing_done;
1442 }
1443 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1444 FEC_ENET_RX_FRSIZE - fep->rx_align,
1445 DMA_FROM_DEVICE);
1446 }
1447
1448 prefetch(skb->data - NET_IP_ALIGN);
1449 skb_put(skb, pkt_len - 4);
1450 data = skb->data;
1451 if (!is_copybreak && need_swap)
1452 swap_buffer(data, pkt_len);
1453
1454 /* Extract the enhanced buffer descriptor */
1455 ebdp = NULL;
1456 if (fep->bufdesc_ex)
1457 ebdp = (struct bufdesc_ex *)bdp;
1458
1459 /* If this is a VLAN packet remove the VLAN Tag */
1460 vlan_packet_rcvd = false;
1461 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1462 fep->bufdesc_ex && (ebdp->cbd_esc & BD_ENET_RX_VLAN)) {
1463 /* Push and remove the vlan tag */
1464 struct vlan_hdr *vlan_header =
1465 (struct vlan_hdr *) (data + ETH_HLEN);
1466 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1467
1468 vlan_packet_rcvd = true;
1469
1470 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1471 skb_pull(skb, VLAN_HLEN);
1472 }
1473
1474 skb->protocol = eth_type_trans(skb, ndev);
1475
1476 /* Get receive timestamp from the skb */
1477 if (fep->hwts_rx_en && fep->bufdesc_ex)
1478 fec_enet_hwtstamp(fep, ebdp->ts,
1479 skb_hwtstamps(skb));
1480
1481 if (fep->bufdesc_ex &&
1482 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1483 if (!(ebdp->cbd_esc & FLAG_RX_CSUM_ERROR)) {
1484 /* don't check it */
1485 skb->ip_summed = CHECKSUM_UNNECESSARY;
1486 } else {
1487 skb_checksum_none_assert(skb);
1488 }
1489 }
1490
1491 /* Handle received VLAN packets */
1492 if (vlan_packet_rcvd)
1493 __vlan_hwaccel_put_tag(skb,
1494 htons(ETH_P_8021Q),
1495 vlan_tag);
1496
1497 napi_gro_receive(&fep->napi, skb);
1498
1499 if (is_copybreak) {
1500 dma_sync_single_for_device(&fep->pdev->dev, bdp->cbd_bufaddr,
1501 FEC_ENET_RX_FRSIZE - fep->rx_align,
1502 DMA_FROM_DEVICE);
1503 } else {
1504 rxq->rx_skbuff[index] = skb_new;
1505 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1506 }
1507
1508 rx_processing_done:
1509 /* Clear the status flags for this buffer */
1510 status &= ~BD_ENET_RX_STATS;
1511
1512 /* Mark the buffer empty */
1513 status |= BD_ENET_RX_EMPTY;
1514 bdp->cbd_sc = status;
1515
1516 if (fep->bufdesc_ex) {
1517 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1518
1519 ebdp->cbd_esc = BD_ENET_RX_INT;
1520 ebdp->cbd_prot = 0;
1521 ebdp->cbd_bdu = 0;
1522 }
1523
1524 /* Update BD pointer to next entry */
1525 bdp = fec_enet_get_nextdesc(bdp, fep, queue_id);
1526
1527 /* Doing this here will keep the FEC running while we process
1528 * incoming frames. On a heavily loaded network, we should be
1529 * able to keep up at the expense of system resources.
1530 */
1531 writel(0, fep->hwp + FEC_R_DES_ACTIVE(queue_id));
1532 }
1533 rxq->cur_rx = bdp;
1534 return pkt_received;
1535 }
1536
1537 static int
1538 fec_enet_rx(struct net_device *ndev, int budget)
1539 {
1540 int pkt_received = 0;
1541 u16 queue_id;
1542 struct fec_enet_private *fep = netdev_priv(ndev);
1543
1544 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1545 clear_bit(queue_id, &fep->work_rx);
1546 pkt_received += fec_enet_rx_queue(ndev,
1547 budget - pkt_received, queue_id);
1548 }
1549 return pkt_received;
1550 }
1551
1552 static bool
1553 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1554 {
1555 if (int_events == 0)
1556 return false;
1557
1558 if (int_events & FEC_ENET_RXF)
1559 fep->work_rx |= (1 << 2);
1560 if (int_events & FEC_ENET_RXF_1)
1561 fep->work_rx |= (1 << 0);
1562 if (int_events & FEC_ENET_RXF_2)
1563 fep->work_rx |= (1 << 1);
1564
1565 if (int_events & FEC_ENET_TXF)
1566 fep->work_tx |= (1 << 2);
1567 if (int_events & FEC_ENET_TXF_1)
1568 fep->work_tx |= (1 << 0);
1569 if (int_events & FEC_ENET_TXF_2)
1570 fep->work_tx |= (1 << 1);
1571
1572 return true;
1573 }
1574
1575 static irqreturn_t
1576 fec_enet_interrupt(int irq, void *dev_id)
1577 {
1578 struct net_device *ndev = dev_id;
1579 struct fec_enet_private *fep = netdev_priv(ndev);
1580 uint int_events;
1581 irqreturn_t ret = IRQ_NONE;
1582
1583 int_events = readl(fep->hwp + FEC_IEVENT);
1584 writel(int_events, fep->hwp + FEC_IEVENT);
1585 fec_enet_collect_events(fep, int_events);
1586
1587 if ((fep->work_tx || fep->work_rx) && fep->link) {
1588 ret = IRQ_HANDLED;
1589
1590 if (napi_schedule_prep(&fep->napi)) {
1591 /* Disable the NAPI interrupts */
1592 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1593 __napi_schedule(&fep->napi);
1594 }
1595 }
1596
1597 if (int_events & FEC_ENET_MII) {
1598 ret = IRQ_HANDLED;
1599 complete(&fep->mdio_done);
1600 }
1601
1602 if (fep->ptp_clock)
1603 fec_ptp_check_pps_event(fep);
1604
1605 return ret;
1606 }
1607
1608 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1609 {
1610 struct net_device *ndev = napi->dev;
1611 struct fec_enet_private *fep = netdev_priv(ndev);
1612 int pkts;
1613
1614 pkts = fec_enet_rx(ndev, budget);
1615
1616 fec_enet_tx(ndev);
1617
1618 if (pkts < budget) {
1619 napi_complete(napi);
1620 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1621 }
1622 return pkts;
1623 }
1624
1625 /* ------------------------------------------------------------------------- */
1626 static void fec_get_mac(struct net_device *ndev)
1627 {
1628 struct fec_enet_private *fep = netdev_priv(ndev);
1629 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1630 unsigned char *iap, tmpaddr[ETH_ALEN];
1631
1632 /*
1633 * try to get mac address in following order:
1634 *
1635 * 1) module parameter via kernel command line in form
1636 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1637 */
1638 iap = macaddr;
1639
1640 /*
1641 * 2) from device tree data
1642 */
1643 if (!is_valid_ether_addr(iap)) {
1644 struct device_node *np = fep->pdev->dev.of_node;
1645 if (np) {
1646 const char *mac = of_get_mac_address(np);
1647 if (mac)
1648 iap = (unsigned char *) mac;
1649 }
1650 }
1651
1652 /*
1653 * 3) from flash or fuse (via platform data)
1654 */
1655 if (!is_valid_ether_addr(iap)) {
1656 #ifdef CONFIG_M5272
1657 if (FEC_FLASHMAC)
1658 iap = (unsigned char *)FEC_FLASHMAC;
1659 #else
1660 if (pdata)
1661 iap = (unsigned char *)&pdata->mac;
1662 #endif
1663 }
1664
1665 /*
1666 * 4) FEC mac registers set by bootloader
1667 */
1668 if (!is_valid_ether_addr(iap)) {
1669 *((__be32 *) &tmpaddr[0]) =
1670 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1671 *((__be16 *) &tmpaddr[4]) =
1672 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1673 iap = &tmpaddr[0];
1674 }
1675
1676 /*
1677 * 5) random mac address
1678 */
1679 if (!is_valid_ether_addr(iap)) {
1680 /* Report it and use a random ethernet address instead */
1681 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1682 eth_hw_addr_random(ndev);
1683 netdev_info(ndev, "Using random MAC address: %pM\n",
1684 ndev->dev_addr);
1685 return;
1686 }
1687
1688 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1689
1690 /* Adjust MAC if using macaddr */
1691 if (iap == macaddr)
1692 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1693 }
1694
1695 /* ------------------------------------------------------------------------- */
1696
1697 /*
1698 * Phy section
1699 */
1700 static void fec_enet_adjust_link(struct net_device *ndev)
1701 {
1702 struct fec_enet_private *fep = netdev_priv(ndev);
1703 struct phy_device *phy_dev = fep->phy_dev;
1704 int status_change = 0;
1705
1706 /* Prevent a state halted on mii error */
1707 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1708 phy_dev->state = PHY_RESUMING;
1709 return;
1710 }
1711
1712 /*
1713 * If the netdev is down, or is going down, we're not interested
1714 * in link state events, so just mark our idea of the link as down
1715 * and ignore the event.
1716 */
1717 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1718 fep->link = 0;
1719 } else if (phy_dev->link) {
1720 if (!fep->link) {
1721 fep->link = phy_dev->link;
1722 status_change = 1;
1723 }
1724
1725 if (fep->full_duplex != phy_dev->duplex) {
1726 fep->full_duplex = phy_dev->duplex;
1727 status_change = 1;
1728 }
1729
1730 if (phy_dev->speed != fep->speed) {
1731 fep->speed = phy_dev->speed;
1732 status_change = 1;
1733 }
1734
1735 /* if any of the above changed restart the FEC */
1736 if (status_change) {
1737 napi_disable(&fep->napi);
1738 netif_tx_lock_bh(ndev);
1739 fec_restart(ndev);
1740 netif_wake_queue(ndev);
1741 netif_tx_unlock_bh(ndev);
1742 napi_enable(&fep->napi);
1743 }
1744 } else {
1745 if (fep->link) {
1746 napi_disable(&fep->napi);
1747 netif_tx_lock_bh(ndev);
1748 fec_stop(ndev);
1749 netif_tx_unlock_bh(ndev);
1750 napi_enable(&fep->napi);
1751 fep->link = phy_dev->link;
1752 status_change = 1;
1753 }
1754 }
1755
1756 if (status_change)
1757 phy_print_status(phy_dev);
1758 }
1759
1760 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1761 {
1762 struct fec_enet_private *fep = bus->priv;
1763 unsigned long time_left;
1764
1765 fep->mii_timeout = 0;
1766 init_completion(&fep->mdio_done);
1767
1768 /* start a read op */
1769 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1770 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1771 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1772
1773 /* wait for end of transfer */
1774 time_left = wait_for_completion_timeout(&fep->mdio_done,
1775 usecs_to_jiffies(FEC_MII_TIMEOUT));
1776 if (time_left == 0) {
1777 fep->mii_timeout = 1;
1778 netdev_err(fep->netdev, "MDIO read timeout\n");
1779 return -ETIMEDOUT;
1780 }
1781
1782 /* return value */
1783 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1784 }
1785
1786 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1787 u16 value)
1788 {
1789 struct fec_enet_private *fep = bus->priv;
1790 unsigned long time_left;
1791
1792 fep->mii_timeout = 0;
1793 init_completion(&fep->mdio_done);
1794
1795 /* start a write op */
1796 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1797 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1798 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1799 fep->hwp + FEC_MII_DATA);
1800
1801 /* wait for end of transfer */
1802 time_left = wait_for_completion_timeout(&fep->mdio_done,
1803 usecs_to_jiffies(FEC_MII_TIMEOUT));
1804 if (time_left == 0) {
1805 fep->mii_timeout = 1;
1806 netdev_err(fep->netdev, "MDIO write timeout\n");
1807 return -ETIMEDOUT;
1808 }
1809
1810 return 0;
1811 }
1812
1813 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1814 {
1815 struct fec_enet_private *fep = netdev_priv(ndev);
1816 int ret;
1817
1818 if (enable) {
1819 ret = clk_prepare_enable(fep->clk_ahb);
1820 if (ret)
1821 return ret;
1822 ret = clk_prepare_enable(fep->clk_ipg);
1823 if (ret)
1824 goto failed_clk_ipg;
1825 if (fep->clk_enet_out) {
1826 ret = clk_prepare_enable(fep->clk_enet_out);
1827 if (ret)
1828 goto failed_clk_enet_out;
1829 }
1830 if (fep->clk_ptp) {
1831 mutex_lock(&fep->ptp_clk_mutex);
1832 ret = clk_prepare_enable(fep->clk_ptp);
1833 if (ret) {
1834 mutex_unlock(&fep->ptp_clk_mutex);
1835 goto failed_clk_ptp;
1836 } else {
1837 fep->ptp_clk_on = true;
1838 }
1839 mutex_unlock(&fep->ptp_clk_mutex);
1840 }
1841 if (fep->clk_ref) {
1842 ret = clk_prepare_enable(fep->clk_ref);
1843 if (ret)
1844 goto failed_clk_ref;
1845 }
1846 } else {
1847 clk_disable_unprepare(fep->clk_ahb);
1848 clk_disable_unprepare(fep->clk_ipg);
1849 if (fep->clk_enet_out)
1850 clk_disable_unprepare(fep->clk_enet_out);
1851 if (fep->clk_ptp) {
1852 mutex_lock(&fep->ptp_clk_mutex);
1853 clk_disable_unprepare(fep->clk_ptp);
1854 fep->ptp_clk_on = false;
1855 mutex_unlock(&fep->ptp_clk_mutex);
1856 }
1857 if (fep->clk_ref)
1858 clk_disable_unprepare(fep->clk_ref);
1859 }
1860
1861 return 0;
1862
1863 failed_clk_ref:
1864 if (fep->clk_ref)
1865 clk_disable_unprepare(fep->clk_ref);
1866 failed_clk_ptp:
1867 if (fep->clk_enet_out)
1868 clk_disable_unprepare(fep->clk_enet_out);
1869 failed_clk_enet_out:
1870 clk_disable_unprepare(fep->clk_ipg);
1871 failed_clk_ipg:
1872 clk_disable_unprepare(fep->clk_ahb);
1873
1874 return ret;
1875 }
1876
1877 static int fec_enet_mii_probe(struct net_device *ndev)
1878 {
1879 struct fec_enet_private *fep = netdev_priv(ndev);
1880 struct phy_device *phy_dev = NULL;
1881 char mdio_bus_id[MII_BUS_ID_SIZE];
1882 char phy_name[MII_BUS_ID_SIZE + 3];
1883 int phy_id;
1884 int dev_id = fep->dev_id;
1885
1886 fep->phy_dev = NULL;
1887
1888 if (fep->phy_node) {
1889 phy_dev = of_phy_connect(ndev, fep->phy_node,
1890 &fec_enet_adjust_link, 0,
1891 fep->phy_interface);
1892 if (!phy_dev)
1893 return -ENODEV;
1894 } else {
1895 /* check for attached phy */
1896 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1897 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
1898 continue;
1899 if (fep->mii_bus->phy_map[phy_id] == NULL)
1900 continue;
1901 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
1902 continue;
1903 if (dev_id--)
1904 continue;
1905 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1906 break;
1907 }
1908
1909 if (phy_id >= PHY_MAX_ADDR) {
1910 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1911 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1912 phy_id = 0;
1913 }
1914
1915 snprintf(phy_name, sizeof(phy_name),
1916 PHY_ID_FMT, mdio_bus_id, phy_id);
1917 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1918 fep->phy_interface);
1919 }
1920
1921 if (IS_ERR(phy_dev)) {
1922 netdev_err(ndev, "could not attach to PHY\n");
1923 return PTR_ERR(phy_dev);
1924 }
1925
1926 /* mask with MAC supported features */
1927 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1928 phy_dev->supported &= PHY_GBIT_FEATURES;
1929 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1930 #if !defined(CONFIG_M5272)
1931 phy_dev->supported |= SUPPORTED_Pause;
1932 #endif
1933 }
1934 else
1935 phy_dev->supported &= PHY_BASIC_FEATURES;
1936
1937 phy_dev->advertising = phy_dev->supported;
1938
1939 fep->phy_dev = phy_dev;
1940 fep->link = 0;
1941 fep->full_duplex = 0;
1942
1943 netdev_info(ndev, "Freescale FEC PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
1944 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1945 fep->phy_dev->irq);
1946
1947 return 0;
1948 }
1949
1950 static int fec_enet_mii_init(struct platform_device *pdev)
1951 {
1952 static struct mii_bus *fec0_mii_bus;
1953 struct net_device *ndev = platform_get_drvdata(pdev);
1954 struct fec_enet_private *fep = netdev_priv(ndev);
1955 struct device_node *node;
1956 int err = -ENXIO, i;
1957 u32 mii_speed, holdtime;
1958
1959 /*
1960 * The i.MX28 dual fec interfaces are not equal.
1961 * Here are the differences:
1962 *
1963 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1964 * - fec0 acts as the 1588 time master while fec1 is slave
1965 * - external phys can only be configured by fec0
1966 *
1967 * That is to say fec1 can not work independently. It only works
1968 * when fec0 is working. The reason behind this design is that the
1969 * second interface is added primarily for Switch mode.
1970 *
1971 * Because of the last point above, both phys are attached on fec0
1972 * mdio interface in board design, and need to be configured by
1973 * fec0 mii_bus.
1974 */
1975 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1976 /* fec1 uses fec0 mii_bus */
1977 if (mii_cnt && fec0_mii_bus) {
1978 fep->mii_bus = fec0_mii_bus;
1979 mii_cnt++;
1980 return 0;
1981 }
1982 return -ENOENT;
1983 }
1984
1985 fep->mii_timeout = 0;
1986
1987 /*
1988 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1989 *
1990 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1991 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1992 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1993 * document.
1994 */
1995 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1996 if (fep->quirks & FEC_QUIRK_ENET_MAC)
1997 mii_speed--;
1998 if (mii_speed > 63) {
1999 dev_err(&pdev->dev,
2000 "fec clock (%lu) to fast to get right mii speed\n",
2001 clk_get_rate(fep->clk_ipg));
2002 err = -EINVAL;
2003 goto err_out;
2004 }
2005
2006 /*
2007 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
2008 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2009 * versions are RAZ there, so just ignore the difference and write the
2010 * register always.
2011 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2012 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2013 * output.
2014 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2015 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2016 * holdtime cannot result in a value greater than 3.
2017 */
2018 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2019
2020 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2021
2022 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2023
2024 fep->mii_bus = mdiobus_alloc();
2025 if (fep->mii_bus == NULL) {
2026 err = -ENOMEM;
2027 goto err_out;
2028 }
2029
2030 fep->mii_bus->name = "fec_enet_mii_bus";
2031 fep->mii_bus->read = fec_enet_mdio_read;
2032 fep->mii_bus->write = fec_enet_mdio_write;
2033 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2034 pdev->name, fep->dev_id + 1);
2035 fep->mii_bus->priv = fep;
2036 fep->mii_bus->parent = &pdev->dev;
2037
2038 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
2039 if (!fep->mii_bus->irq) {
2040 err = -ENOMEM;
2041 goto err_out_free_mdiobus;
2042 }
2043
2044 for (i = 0; i < PHY_MAX_ADDR; i++)
2045 fep->mii_bus->irq[i] = PHY_POLL;
2046
2047 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2048 if (node) {
2049 err = of_mdiobus_register(fep->mii_bus, node);
2050 of_node_put(node);
2051 } else {
2052 err = mdiobus_register(fep->mii_bus);
2053 }
2054
2055 if (err)
2056 goto err_out_free_mdio_irq;
2057
2058 mii_cnt++;
2059
2060 /* save fec0 mii_bus */
2061 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2062 fec0_mii_bus = fep->mii_bus;
2063
2064 return 0;
2065
2066 err_out_free_mdio_irq:
2067 kfree(fep->mii_bus->irq);
2068 err_out_free_mdiobus:
2069 mdiobus_free(fep->mii_bus);
2070 err_out:
2071 return err;
2072 }
2073
2074 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2075 {
2076 if (--mii_cnt == 0) {
2077 mdiobus_unregister(fep->mii_bus);
2078 kfree(fep->mii_bus->irq);
2079 mdiobus_free(fep->mii_bus);
2080 }
2081 }
2082
2083 static int fec_enet_get_settings(struct net_device *ndev,
2084 struct ethtool_cmd *cmd)
2085 {
2086 struct fec_enet_private *fep = netdev_priv(ndev);
2087 struct phy_device *phydev = fep->phy_dev;
2088
2089 if (!phydev)
2090 return -ENODEV;
2091
2092 return phy_ethtool_gset(phydev, cmd);
2093 }
2094
2095 static int fec_enet_set_settings(struct net_device *ndev,
2096 struct ethtool_cmd *cmd)
2097 {
2098 struct fec_enet_private *fep = netdev_priv(ndev);
2099 struct phy_device *phydev = fep->phy_dev;
2100
2101 if (!phydev)
2102 return -ENODEV;
2103
2104 return phy_ethtool_sset(phydev, cmd);
2105 }
2106
2107 static void fec_enet_get_drvinfo(struct net_device *ndev,
2108 struct ethtool_drvinfo *info)
2109 {
2110 struct fec_enet_private *fep = netdev_priv(ndev);
2111
2112 strlcpy(info->driver, fep->pdev->dev.driver->name,
2113 sizeof(info->driver));
2114 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2115 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2116 }
2117
2118 static int fec_enet_get_ts_info(struct net_device *ndev,
2119 struct ethtool_ts_info *info)
2120 {
2121 struct fec_enet_private *fep = netdev_priv(ndev);
2122
2123 if (fep->bufdesc_ex) {
2124
2125 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2126 SOF_TIMESTAMPING_RX_SOFTWARE |
2127 SOF_TIMESTAMPING_SOFTWARE |
2128 SOF_TIMESTAMPING_TX_HARDWARE |
2129 SOF_TIMESTAMPING_RX_HARDWARE |
2130 SOF_TIMESTAMPING_RAW_HARDWARE;
2131 if (fep->ptp_clock)
2132 info->phc_index = ptp_clock_index(fep->ptp_clock);
2133 else
2134 info->phc_index = -1;
2135
2136 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2137 (1 << HWTSTAMP_TX_ON);
2138
2139 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2140 (1 << HWTSTAMP_FILTER_ALL);
2141 return 0;
2142 } else {
2143 return ethtool_op_get_ts_info(ndev, info);
2144 }
2145 }
2146
2147 #if !defined(CONFIG_M5272)
2148
2149 static void fec_enet_get_pauseparam(struct net_device *ndev,
2150 struct ethtool_pauseparam *pause)
2151 {
2152 struct fec_enet_private *fep = netdev_priv(ndev);
2153
2154 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2155 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2156 pause->rx_pause = pause->tx_pause;
2157 }
2158
2159 static int fec_enet_set_pauseparam(struct net_device *ndev,
2160 struct ethtool_pauseparam *pause)
2161 {
2162 struct fec_enet_private *fep = netdev_priv(ndev);
2163
2164 if (!fep->phy_dev)
2165 return -ENODEV;
2166
2167 if (pause->tx_pause != pause->rx_pause) {
2168 netdev_info(ndev,
2169 "hardware only support enable/disable both tx and rx");
2170 return -EINVAL;
2171 }
2172
2173 fep->pause_flag = 0;
2174
2175 /* tx pause must be same as rx pause */
2176 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2177 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2178
2179 if (pause->rx_pause || pause->autoneg) {
2180 fep->phy_dev->supported |= ADVERTISED_Pause;
2181 fep->phy_dev->advertising |= ADVERTISED_Pause;
2182 } else {
2183 fep->phy_dev->supported &= ~ADVERTISED_Pause;
2184 fep->phy_dev->advertising &= ~ADVERTISED_Pause;
2185 }
2186
2187 if (pause->autoneg) {
2188 if (netif_running(ndev))
2189 fec_stop(ndev);
2190 phy_start_aneg(fep->phy_dev);
2191 }
2192 if (netif_running(ndev)) {
2193 napi_disable(&fep->napi);
2194 netif_tx_lock_bh(ndev);
2195 fec_restart(ndev);
2196 netif_wake_queue(ndev);
2197 netif_tx_unlock_bh(ndev);
2198 napi_enable(&fep->napi);
2199 }
2200
2201 return 0;
2202 }
2203
2204 static const struct fec_stat {
2205 char name[ETH_GSTRING_LEN];
2206 u16 offset;
2207 } fec_stats[] = {
2208 /* RMON TX */
2209 { "tx_dropped", RMON_T_DROP },
2210 { "tx_packets", RMON_T_PACKETS },
2211 { "tx_broadcast", RMON_T_BC_PKT },
2212 { "tx_multicast", RMON_T_MC_PKT },
2213 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2214 { "tx_undersize", RMON_T_UNDERSIZE },
2215 { "tx_oversize", RMON_T_OVERSIZE },
2216 { "tx_fragment", RMON_T_FRAG },
2217 { "tx_jabber", RMON_T_JAB },
2218 { "tx_collision", RMON_T_COL },
2219 { "tx_64byte", RMON_T_P64 },
2220 { "tx_65to127byte", RMON_T_P65TO127 },
2221 { "tx_128to255byte", RMON_T_P128TO255 },
2222 { "tx_256to511byte", RMON_T_P256TO511 },
2223 { "tx_512to1023byte", RMON_T_P512TO1023 },
2224 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2225 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2226 { "tx_octets", RMON_T_OCTETS },
2227
2228 /* IEEE TX */
2229 { "IEEE_tx_drop", IEEE_T_DROP },
2230 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2231 { "IEEE_tx_1col", IEEE_T_1COL },
2232 { "IEEE_tx_mcol", IEEE_T_MCOL },
2233 { "IEEE_tx_def", IEEE_T_DEF },
2234 { "IEEE_tx_lcol", IEEE_T_LCOL },
2235 { "IEEE_tx_excol", IEEE_T_EXCOL },
2236 { "IEEE_tx_macerr", IEEE_T_MACERR },
2237 { "IEEE_tx_cserr", IEEE_T_CSERR },
2238 { "IEEE_tx_sqe", IEEE_T_SQE },
2239 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2240 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2241
2242 /* RMON RX */
2243 { "rx_packets", RMON_R_PACKETS },
2244 { "rx_broadcast", RMON_R_BC_PKT },
2245 { "rx_multicast", RMON_R_MC_PKT },
2246 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2247 { "rx_undersize", RMON_R_UNDERSIZE },
2248 { "rx_oversize", RMON_R_OVERSIZE },
2249 { "rx_fragment", RMON_R_FRAG },
2250 { "rx_jabber", RMON_R_JAB },
2251 { "rx_64byte", RMON_R_P64 },
2252 { "rx_65to127byte", RMON_R_P65TO127 },
2253 { "rx_128to255byte", RMON_R_P128TO255 },
2254 { "rx_256to511byte", RMON_R_P256TO511 },
2255 { "rx_512to1023byte", RMON_R_P512TO1023 },
2256 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2257 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2258 { "rx_octets", RMON_R_OCTETS },
2259
2260 /* IEEE RX */
2261 { "IEEE_rx_drop", IEEE_R_DROP },
2262 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2263 { "IEEE_rx_crc", IEEE_R_CRC },
2264 { "IEEE_rx_align", IEEE_R_ALIGN },
2265 { "IEEE_rx_macerr", IEEE_R_MACERR },
2266 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2267 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2268 };
2269
2270 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2271 struct ethtool_stats *stats, u64 *data)
2272 {
2273 struct fec_enet_private *fep = netdev_priv(dev);
2274 int i;
2275
2276 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2277 data[i] = readl(fep->hwp + fec_stats[i].offset);
2278 }
2279
2280 static void fec_enet_get_strings(struct net_device *netdev,
2281 u32 stringset, u8 *data)
2282 {
2283 int i;
2284 switch (stringset) {
2285 case ETH_SS_STATS:
2286 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2287 memcpy(data + i * ETH_GSTRING_LEN,
2288 fec_stats[i].name, ETH_GSTRING_LEN);
2289 break;
2290 }
2291 }
2292
2293 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2294 {
2295 switch (sset) {
2296 case ETH_SS_STATS:
2297 return ARRAY_SIZE(fec_stats);
2298 default:
2299 return -EOPNOTSUPP;
2300 }
2301 }
2302 #endif /* !defined(CONFIG_M5272) */
2303
2304 static int fec_enet_nway_reset(struct net_device *dev)
2305 {
2306 struct fec_enet_private *fep = netdev_priv(dev);
2307 struct phy_device *phydev = fep->phy_dev;
2308
2309 if (!phydev)
2310 return -ENODEV;
2311
2312 return genphy_restart_aneg(phydev);
2313 }
2314
2315 /* ITR clock source is enet system clock (clk_ahb).
2316 * TCTT unit is cycle_ns * 64 cycle
2317 * So, the ICTT value = X us / (cycle_ns * 64)
2318 */
2319 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2320 {
2321 struct fec_enet_private *fep = netdev_priv(ndev);
2322
2323 return us * (fep->itr_clk_rate / 64000) / 1000;
2324 }
2325
2326 /* Set threshold for interrupt coalescing */
2327 static void fec_enet_itr_coal_set(struct net_device *ndev)
2328 {
2329 struct fec_enet_private *fep = netdev_priv(ndev);
2330 int rx_itr, tx_itr;
2331
2332 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2333 return;
2334
2335 /* Must be greater than zero to avoid unpredictable behavior */
2336 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2337 !fep->tx_time_itr || !fep->tx_pkts_itr)
2338 return;
2339
2340 /* Select enet system clock as Interrupt Coalescing
2341 * timer Clock Source
2342 */
2343 rx_itr = FEC_ITR_CLK_SEL;
2344 tx_itr = FEC_ITR_CLK_SEL;
2345
2346 /* set ICFT and ICTT */
2347 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2348 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2349 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2350 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2351
2352 rx_itr |= FEC_ITR_EN;
2353 tx_itr |= FEC_ITR_EN;
2354
2355 writel(tx_itr, fep->hwp + FEC_TXIC0);
2356 writel(rx_itr, fep->hwp + FEC_RXIC0);
2357 writel(tx_itr, fep->hwp + FEC_TXIC1);
2358 writel(rx_itr, fep->hwp + FEC_RXIC1);
2359 writel(tx_itr, fep->hwp + FEC_TXIC2);
2360 writel(rx_itr, fep->hwp + FEC_RXIC2);
2361 }
2362
2363 static int
2364 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2365 {
2366 struct fec_enet_private *fep = netdev_priv(ndev);
2367
2368 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2369 return -EOPNOTSUPP;
2370
2371 ec->rx_coalesce_usecs = fep->rx_time_itr;
2372 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2373
2374 ec->tx_coalesce_usecs = fep->tx_time_itr;
2375 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2376
2377 return 0;
2378 }
2379
2380 static int
2381 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2382 {
2383 struct fec_enet_private *fep = netdev_priv(ndev);
2384 unsigned int cycle;
2385
2386 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2387 return -EOPNOTSUPP;
2388
2389 if (ec->rx_max_coalesced_frames > 255) {
2390 pr_err("Rx coalesced frames exceed hardware limiation");
2391 return -EINVAL;
2392 }
2393
2394 if (ec->tx_max_coalesced_frames > 255) {
2395 pr_err("Tx coalesced frame exceed hardware limiation");
2396 return -EINVAL;
2397 }
2398
2399 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2400 if (cycle > 0xFFFF) {
2401 pr_err("Rx coalesed usec exceeed hardware limiation");
2402 return -EINVAL;
2403 }
2404
2405 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2406 if (cycle > 0xFFFF) {
2407 pr_err("Rx coalesed usec exceeed hardware limiation");
2408 return -EINVAL;
2409 }
2410
2411 fep->rx_time_itr = ec->rx_coalesce_usecs;
2412 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2413
2414 fep->tx_time_itr = ec->tx_coalesce_usecs;
2415 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2416
2417 fec_enet_itr_coal_set(ndev);
2418
2419 return 0;
2420 }
2421
2422 static void fec_enet_itr_coal_init(struct net_device *ndev)
2423 {
2424 struct ethtool_coalesce ec;
2425
2426 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2427 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2428
2429 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2430 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2431
2432 fec_enet_set_coalesce(ndev, &ec);
2433 }
2434
2435 static int fec_enet_get_tunable(struct net_device *netdev,
2436 const struct ethtool_tunable *tuna,
2437 void *data)
2438 {
2439 struct fec_enet_private *fep = netdev_priv(netdev);
2440 int ret = 0;
2441
2442 switch (tuna->id) {
2443 case ETHTOOL_RX_COPYBREAK:
2444 *(u32 *)data = fep->rx_copybreak;
2445 break;
2446 default:
2447 ret = -EINVAL;
2448 break;
2449 }
2450
2451 return ret;
2452 }
2453
2454 static int fec_enet_set_tunable(struct net_device *netdev,
2455 const struct ethtool_tunable *tuna,
2456 const void *data)
2457 {
2458 struct fec_enet_private *fep = netdev_priv(netdev);
2459 int ret = 0;
2460
2461 switch (tuna->id) {
2462 case ETHTOOL_RX_COPYBREAK:
2463 fep->rx_copybreak = *(u32 *)data;
2464 break;
2465 default:
2466 ret = -EINVAL;
2467 break;
2468 }
2469
2470 return ret;
2471 }
2472
2473 static void
2474 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2475 {
2476 struct fec_enet_private *fep = netdev_priv(ndev);
2477
2478 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2479 wol->supported = WAKE_MAGIC;
2480 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2481 } else {
2482 wol->supported = wol->wolopts = 0;
2483 }
2484 }
2485
2486 static int
2487 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2488 {
2489 struct fec_enet_private *fep = netdev_priv(ndev);
2490
2491 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2492 return -EINVAL;
2493
2494 if (wol->wolopts & ~WAKE_MAGIC)
2495 return -EINVAL;
2496
2497 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2498 if (device_may_wakeup(&ndev->dev)) {
2499 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2500 if (fep->irq[0] > 0)
2501 enable_irq_wake(fep->irq[0]);
2502 } else {
2503 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2504 if (fep->irq[0] > 0)
2505 disable_irq_wake(fep->irq[0]);
2506 }
2507
2508 return 0;
2509 }
2510
2511 static const struct ethtool_ops fec_enet_ethtool_ops = {
2512 .get_settings = fec_enet_get_settings,
2513 .set_settings = fec_enet_set_settings,
2514 .get_drvinfo = fec_enet_get_drvinfo,
2515 .nway_reset = fec_enet_nway_reset,
2516 .get_link = ethtool_op_get_link,
2517 .get_coalesce = fec_enet_get_coalesce,
2518 .set_coalesce = fec_enet_set_coalesce,
2519 #ifndef CONFIG_M5272
2520 .get_pauseparam = fec_enet_get_pauseparam,
2521 .set_pauseparam = fec_enet_set_pauseparam,
2522 .get_strings = fec_enet_get_strings,
2523 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2524 .get_sset_count = fec_enet_get_sset_count,
2525 #endif
2526 .get_ts_info = fec_enet_get_ts_info,
2527 .get_tunable = fec_enet_get_tunable,
2528 .set_tunable = fec_enet_set_tunable,
2529 .get_wol = fec_enet_get_wol,
2530 .set_wol = fec_enet_set_wol,
2531 };
2532
2533 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2534 {
2535 struct fec_enet_private *fep = netdev_priv(ndev);
2536 struct phy_device *phydev = fep->phy_dev;
2537
2538 if (!netif_running(ndev))
2539 return -EINVAL;
2540
2541 if (!phydev)
2542 return -ENODEV;
2543
2544 if (fep->bufdesc_ex) {
2545 if (cmd == SIOCSHWTSTAMP)
2546 return fec_ptp_set(ndev, rq);
2547 if (cmd == SIOCGHWTSTAMP)
2548 return fec_ptp_get(ndev, rq);
2549 }
2550
2551 return phy_mii_ioctl(phydev, rq, cmd);
2552 }
2553
2554 static void fec_enet_free_buffers(struct net_device *ndev)
2555 {
2556 struct fec_enet_private *fep = netdev_priv(ndev);
2557 unsigned int i;
2558 struct sk_buff *skb;
2559 struct bufdesc *bdp;
2560 struct fec_enet_priv_tx_q *txq;
2561 struct fec_enet_priv_rx_q *rxq;
2562 unsigned int q;
2563
2564 for (q = 0; q < fep->num_rx_queues; q++) {
2565 rxq = fep->rx_queue[q];
2566 bdp = rxq->rx_bd_base;
2567 for (i = 0; i < rxq->rx_ring_size; i++) {
2568 skb = rxq->rx_skbuff[i];
2569 rxq->rx_skbuff[i] = NULL;
2570 if (skb) {
2571 dma_unmap_single(&fep->pdev->dev,
2572 bdp->cbd_bufaddr,
2573 FEC_ENET_RX_FRSIZE - fep->rx_align,
2574 DMA_FROM_DEVICE);
2575 dev_kfree_skb(skb);
2576 }
2577 bdp = fec_enet_get_nextdesc(bdp, fep, q);
2578 }
2579 }
2580
2581 for (q = 0; q < fep->num_tx_queues; q++) {
2582 txq = fep->tx_queue[q];
2583 bdp = txq->tx_bd_base;
2584 for (i = 0; i < txq->tx_ring_size; i++) {
2585 kfree(txq->tx_bounce[i]);
2586 txq->tx_bounce[i] = NULL;
2587 skb = txq->tx_skbuff[i];
2588 txq->tx_skbuff[i] = NULL;
2589 dev_kfree_skb(skb);
2590 }
2591 }
2592 }
2593
2594 static void fec_enet_free_queue(struct net_device *ndev)
2595 {
2596 struct fec_enet_private *fep = netdev_priv(ndev);
2597 int i;
2598 struct fec_enet_priv_tx_q *txq;
2599
2600 for (i = 0; i < fep->num_tx_queues; i++)
2601 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2602 txq = fep->tx_queue[i];
2603 dma_free_coherent(NULL,
2604 txq->tx_ring_size * TSO_HEADER_SIZE,
2605 txq->tso_hdrs,
2606 txq->tso_hdrs_dma);
2607 }
2608
2609 for (i = 0; i < fep->num_rx_queues; i++)
2610 kfree(fep->rx_queue[i]);
2611 for (i = 0; i < fep->num_tx_queues; i++)
2612 kfree(fep->tx_queue[i]);
2613 }
2614
2615 static int fec_enet_alloc_queue(struct net_device *ndev)
2616 {
2617 struct fec_enet_private *fep = netdev_priv(ndev);
2618 int i;
2619 int ret = 0;
2620 struct fec_enet_priv_tx_q *txq;
2621
2622 for (i = 0; i < fep->num_tx_queues; i++) {
2623 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2624 if (!txq) {
2625 ret = -ENOMEM;
2626 goto alloc_failed;
2627 }
2628
2629 fep->tx_queue[i] = txq;
2630 txq->tx_ring_size = TX_RING_SIZE;
2631 fep->total_tx_ring_size += fep->tx_queue[i]->tx_ring_size;
2632
2633 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2634 txq->tx_wake_threshold =
2635 (txq->tx_ring_size - txq->tx_stop_threshold) / 2;
2636
2637 txq->tso_hdrs = dma_alloc_coherent(NULL,
2638 txq->tx_ring_size * TSO_HEADER_SIZE,
2639 &txq->tso_hdrs_dma,
2640 GFP_KERNEL);
2641 if (!txq->tso_hdrs) {
2642 ret = -ENOMEM;
2643 goto alloc_failed;
2644 }
2645 }
2646
2647 for (i = 0; i < fep->num_rx_queues; i++) {
2648 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2649 GFP_KERNEL);
2650 if (!fep->rx_queue[i]) {
2651 ret = -ENOMEM;
2652 goto alloc_failed;
2653 }
2654
2655 fep->rx_queue[i]->rx_ring_size = RX_RING_SIZE;
2656 fep->total_rx_ring_size += fep->rx_queue[i]->rx_ring_size;
2657 }
2658 return ret;
2659
2660 alloc_failed:
2661 fec_enet_free_queue(ndev);
2662 return ret;
2663 }
2664
2665 static int
2666 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2667 {
2668 struct fec_enet_private *fep = netdev_priv(ndev);
2669 unsigned int i;
2670 struct sk_buff *skb;
2671 struct bufdesc *bdp;
2672 struct fec_enet_priv_rx_q *rxq;
2673
2674 rxq = fep->rx_queue[queue];
2675 bdp = rxq->rx_bd_base;
2676 for (i = 0; i < rxq->rx_ring_size; i++) {
2677 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2678 if (!skb)
2679 goto err_alloc;
2680
2681 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2682 dev_kfree_skb(skb);
2683 goto err_alloc;
2684 }
2685
2686 rxq->rx_skbuff[i] = skb;
2687 bdp->cbd_sc = BD_ENET_RX_EMPTY;
2688
2689 if (fep->bufdesc_ex) {
2690 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2691 ebdp->cbd_esc = BD_ENET_RX_INT;
2692 }
2693
2694 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2695 }
2696
2697 /* Set the last buffer to wrap. */
2698 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2699 bdp->cbd_sc |= BD_SC_WRAP;
2700 return 0;
2701
2702 err_alloc:
2703 fec_enet_free_buffers(ndev);
2704 return -ENOMEM;
2705 }
2706
2707 static int
2708 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2709 {
2710 struct fec_enet_private *fep = netdev_priv(ndev);
2711 unsigned int i;
2712 struct bufdesc *bdp;
2713 struct fec_enet_priv_tx_q *txq;
2714
2715 txq = fep->tx_queue[queue];
2716 bdp = txq->tx_bd_base;
2717 for (i = 0; i < txq->tx_ring_size; i++) {
2718 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2719 if (!txq->tx_bounce[i])
2720 goto err_alloc;
2721
2722 bdp->cbd_sc = 0;
2723 bdp->cbd_bufaddr = 0;
2724
2725 if (fep->bufdesc_ex) {
2726 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2727 ebdp->cbd_esc = BD_ENET_TX_INT;
2728 }
2729
2730 bdp = fec_enet_get_nextdesc(bdp, fep, queue);
2731 }
2732
2733 /* Set the last buffer to wrap. */
2734 bdp = fec_enet_get_prevdesc(bdp, fep, queue);
2735 bdp->cbd_sc |= BD_SC_WRAP;
2736
2737 return 0;
2738
2739 err_alloc:
2740 fec_enet_free_buffers(ndev);
2741 return -ENOMEM;
2742 }
2743
2744 static int fec_enet_alloc_buffers(struct net_device *ndev)
2745 {
2746 struct fec_enet_private *fep = netdev_priv(ndev);
2747 unsigned int i;
2748
2749 for (i = 0; i < fep->num_rx_queues; i++)
2750 if (fec_enet_alloc_rxq_buffers(ndev, i))
2751 return -ENOMEM;
2752
2753 for (i = 0; i < fep->num_tx_queues; i++)
2754 if (fec_enet_alloc_txq_buffers(ndev, i))
2755 return -ENOMEM;
2756 return 0;
2757 }
2758
2759 static int
2760 fec_enet_open(struct net_device *ndev)
2761 {
2762 struct fec_enet_private *fep = netdev_priv(ndev);
2763 int ret;
2764
2765 pinctrl_pm_select_default_state(&fep->pdev->dev);
2766 ret = fec_enet_clk_enable(ndev, true);
2767 if (ret)
2768 return ret;
2769
2770 /* I should reset the ring buffers here, but I don't yet know
2771 * a simple way to do that.
2772 */
2773
2774 ret = fec_enet_alloc_buffers(ndev);
2775 if (ret)
2776 goto err_enet_alloc;
2777
2778 /* Probe and connect to PHY when open the interface */
2779 ret = fec_enet_mii_probe(ndev);
2780 if (ret)
2781 goto err_enet_mii_probe;
2782
2783 fec_restart(ndev);
2784 napi_enable(&fep->napi);
2785 phy_start(fep->phy_dev);
2786 netif_tx_start_all_queues(ndev);
2787
2788 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2789 FEC_WOL_FLAG_ENABLE);
2790
2791 return 0;
2792
2793 err_enet_mii_probe:
2794 fec_enet_free_buffers(ndev);
2795 err_enet_alloc:
2796 fec_enet_clk_enable(ndev, false);
2797 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2798 return ret;
2799 }
2800
2801 static int
2802 fec_enet_close(struct net_device *ndev)
2803 {
2804 struct fec_enet_private *fep = netdev_priv(ndev);
2805
2806 phy_stop(fep->phy_dev);
2807
2808 if (netif_device_present(ndev)) {
2809 napi_disable(&fep->napi);
2810 netif_tx_disable(ndev);
2811 fec_stop(ndev);
2812 }
2813
2814 phy_disconnect(fep->phy_dev);
2815 fep->phy_dev = NULL;
2816
2817 fec_enet_clk_enable(ndev, false);
2818 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2819 fec_enet_free_buffers(ndev);
2820
2821 return 0;
2822 }
2823
2824 /* Set or clear the multicast filter for this adaptor.
2825 * Skeleton taken from sunlance driver.
2826 * The CPM Ethernet implementation allows Multicast as well as individual
2827 * MAC address filtering. Some of the drivers check to make sure it is
2828 * a group multicast address, and discard those that are not. I guess I
2829 * will do the same for now, but just remove the test if you want
2830 * individual filtering as well (do the upper net layers want or support
2831 * this kind of feature?).
2832 */
2833
2834 #define HASH_BITS 6 /* #bits in hash */
2835 #define CRC32_POLY 0xEDB88320
2836
2837 static void set_multicast_list(struct net_device *ndev)
2838 {
2839 struct fec_enet_private *fep = netdev_priv(ndev);
2840 struct netdev_hw_addr *ha;
2841 unsigned int i, bit, data, crc, tmp;
2842 unsigned char hash;
2843
2844 if (ndev->flags & IFF_PROMISC) {
2845 tmp = readl(fep->hwp + FEC_R_CNTRL);
2846 tmp |= 0x8;
2847 writel(tmp, fep->hwp + FEC_R_CNTRL);
2848 return;
2849 }
2850
2851 tmp = readl(fep->hwp + FEC_R_CNTRL);
2852 tmp &= ~0x8;
2853 writel(tmp, fep->hwp + FEC_R_CNTRL);
2854
2855 if (ndev->flags & IFF_ALLMULTI) {
2856 /* Catch all multicast addresses, so set the
2857 * filter to all 1's
2858 */
2859 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2860 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2861
2862 return;
2863 }
2864
2865 /* Clear filter and add the addresses in hash register
2866 */
2867 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2868 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2869
2870 netdev_for_each_mc_addr(ha, ndev) {
2871 /* calculate crc32 value of mac address */
2872 crc = 0xffffffff;
2873
2874 for (i = 0; i < ndev->addr_len; i++) {
2875 data = ha->addr[i];
2876 for (bit = 0; bit < 8; bit++, data >>= 1) {
2877 crc = (crc >> 1) ^
2878 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2879 }
2880 }
2881
2882 /* only upper 6 bits (HASH_BITS) are used
2883 * which point to specific bit in he hash registers
2884 */
2885 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2886
2887 if (hash > 31) {
2888 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2889 tmp |= 1 << (hash - 32);
2890 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2891 } else {
2892 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2893 tmp |= 1 << hash;
2894 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2895 }
2896 }
2897 }
2898
2899 /* Set a MAC change in hardware. */
2900 static int
2901 fec_set_mac_address(struct net_device *ndev, void *p)
2902 {
2903 struct fec_enet_private *fep = netdev_priv(ndev);
2904 struct sockaddr *addr = p;
2905
2906 if (addr) {
2907 if (!is_valid_ether_addr(addr->sa_data))
2908 return -EADDRNOTAVAIL;
2909 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2910 }
2911
2912 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2913 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2914 fep->hwp + FEC_ADDR_LOW);
2915 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2916 fep->hwp + FEC_ADDR_HIGH);
2917 return 0;
2918 }
2919
2920 #ifdef CONFIG_NET_POLL_CONTROLLER
2921 /**
2922 * fec_poll_controller - FEC Poll controller function
2923 * @dev: The FEC network adapter
2924 *
2925 * Polled functionality used by netconsole and others in non interrupt mode
2926 *
2927 */
2928 static void fec_poll_controller(struct net_device *dev)
2929 {
2930 int i;
2931 struct fec_enet_private *fep = netdev_priv(dev);
2932
2933 for (i = 0; i < FEC_IRQ_NUM; i++) {
2934 if (fep->irq[i] > 0) {
2935 disable_irq(fep->irq[i]);
2936 fec_enet_interrupt(fep->irq[i], dev);
2937 enable_irq(fep->irq[i]);
2938 }
2939 }
2940 }
2941 #endif
2942
2943 #define FEATURES_NEED_QUIESCE NETIF_F_RXCSUM
2944 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2945 netdev_features_t features)
2946 {
2947 struct fec_enet_private *fep = netdev_priv(netdev);
2948 netdev_features_t changed = features ^ netdev->features;
2949
2950 netdev->features = features;
2951
2952 /* Receive checksum has been changed */
2953 if (changed & NETIF_F_RXCSUM) {
2954 if (features & NETIF_F_RXCSUM)
2955 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
2956 else
2957 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
2958 }
2959 }
2960
2961 static int fec_set_features(struct net_device *netdev,
2962 netdev_features_t features)
2963 {
2964 struct fec_enet_private *fep = netdev_priv(netdev);
2965 netdev_features_t changed = features ^ netdev->features;
2966
2967 if (netif_running(netdev) && changed & FEATURES_NEED_QUIESCE) {
2968 napi_disable(&fep->napi);
2969 netif_tx_lock_bh(netdev);
2970 fec_stop(netdev);
2971 fec_enet_set_netdev_features(netdev, features);
2972 fec_restart(netdev);
2973 netif_tx_wake_all_queues(netdev);
2974 netif_tx_unlock_bh(netdev);
2975 napi_enable(&fep->napi);
2976 } else {
2977 fec_enet_set_netdev_features(netdev, features);
2978 }
2979
2980 return 0;
2981 }
2982
2983 static const struct net_device_ops fec_netdev_ops = {
2984 .ndo_open = fec_enet_open,
2985 .ndo_stop = fec_enet_close,
2986 .ndo_start_xmit = fec_enet_start_xmit,
2987 .ndo_set_rx_mode = set_multicast_list,
2988 .ndo_change_mtu = eth_change_mtu,
2989 .ndo_validate_addr = eth_validate_addr,
2990 .ndo_tx_timeout = fec_timeout,
2991 .ndo_set_mac_address = fec_set_mac_address,
2992 .ndo_do_ioctl = fec_enet_ioctl,
2993 #ifdef CONFIG_NET_POLL_CONTROLLER
2994 .ndo_poll_controller = fec_poll_controller,
2995 #endif
2996 .ndo_set_features = fec_set_features,
2997 };
2998
2999 /*
3000 * XXX: We need to clean up on failure exits here.
3001 *
3002 */
3003 static int fec_enet_init(struct net_device *ndev)
3004 {
3005 struct fec_enet_private *fep = netdev_priv(ndev);
3006 struct fec_enet_priv_tx_q *txq;
3007 struct fec_enet_priv_rx_q *rxq;
3008 struct bufdesc *cbd_base;
3009 dma_addr_t bd_dma;
3010 int bd_size;
3011 unsigned int i;
3012
3013 #if defined(CONFIG_ARM)
3014 fep->rx_align = 0xf;
3015 fep->tx_align = 0xf;
3016 #else
3017 fep->rx_align = 0x3;
3018 fep->tx_align = 0x3;
3019 #endif
3020
3021 fec_enet_alloc_queue(ndev);
3022
3023 if (fep->bufdesc_ex)
3024 fep->bufdesc_size = sizeof(struct bufdesc_ex);
3025 else
3026 fep->bufdesc_size = sizeof(struct bufdesc);
3027 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) *
3028 fep->bufdesc_size;
3029
3030 /* Allocate memory for buffer descriptors. */
3031 cbd_base = dma_alloc_coherent(NULL, bd_size, &bd_dma,
3032 GFP_KERNEL);
3033 if (!cbd_base) {
3034 return -ENOMEM;
3035 }
3036
3037 memset(cbd_base, 0, bd_size);
3038
3039 /* Get the Ethernet address */
3040 fec_get_mac(ndev);
3041 /* make sure MAC we just acquired is programmed into the hw */
3042 fec_set_mac_address(ndev, NULL);
3043
3044 /* Set receive and transmit descriptor base. */
3045 for (i = 0; i < fep->num_rx_queues; i++) {
3046 rxq = fep->rx_queue[i];
3047 rxq->index = i;
3048 rxq->rx_bd_base = (struct bufdesc *)cbd_base;
3049 rxq->bd_dma = bd_dma;
3050 if (fep->bufdesc_ex) {
3051 bd_dma += sizeof(struct bufdesc_ex) * rxq->rx_ring_size;
3052 cbd_base = (struct bufdesc *)
3053 (((struct bufdesc_ex *)cbd_base) + rxq->rx_ring_size);
3054 } else {
3055 bd_dma += sizeof(struct bufdesc) * rxq->rx_ring_size;
3056 cbd_base += rxq->rx_ring_size;
3057 }
3058 }
3059
3060 for (i = 0; i < fep->num_tx_queues; i++) {
3061 txq = fep->tx_queue[i];
3062 txq->index = i;
3063 txq->tx_bd_base = (struct bufdesc *)cbd_base;
3064 txq->bd_dma = bd_dma;
3065 if (fep->bufdesc_ex) {
3066 bd_dma += sizeof(struct bufdesc_ex) * txq->tx_ring_size;
3067 cbd_base = (struct bufdesc *)
3068 (((struct bufdesc_ex *)cbd_base) + txq->tx_ring_size);
3069 } else {
3070 bd_dma += sizeof(struct bufdesc) * txq->tx_ring_size;
3071 cbd_base += txq->tx_ring_size;
3072 }
3073 }
3074
3075
3076 /* The FEC Ethernet specific entries in the device structure */
3077 ndev->watchdog_timeo = TX_TIMEOUT;
3078 ndev->netdev_ops = &fec_netdev_ops;
3079 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3080
3081 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3082 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3083
3084 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3085 /* enable hw VLAN support */
3086 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3087
3088 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3089 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3090
3091 /* enable hw accelerator */
3092 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3093 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3094 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3095 }
3096
3097 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3098 fep->tx_align = 0;
3099 fep->rx_align = 0x3f;
3100 }
3101
3102 ndev->hw_features = ndev->features;
3103
3104 fec_restart(ndev);
3105
3106 return 0;
3107 }
3108
3109 #ifdef CONFIG_OF
3110 static void fec_reset_phy(struct platform_device *pdev)
3111 {
3112 int err, phy_reset;
3113 int msec = 1;
3114 struct device_node *np = pdev->dev.of_node;
3115
3116 if (!np)
3117 return;
3118
3119 of_property_read_u32(np, "phy-reset-duration", &msec);
3120 /* A sane reset duration should not be longer than 1s */
3121 if (msec > 1000)
3122 msec = 1;
3123
3124 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3125 if (!gpio_is_valid(phy_reset))
3126 return;
3127
3128 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3129 GPIOF_OUT_INIT_LOW, "phy-reset");
3130 if (err) {
3131 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3132 return;
3133 }
3134 msleep(msec);
3135 gpio_set_value(phy_reset, 1);
3136 }
3137 #else /* CONFIG_OF */
3138 static void fec_reset_phy(struct platform_device *pdev)
3139 {
3140 /*
3141 * In case of platform probe, the reset has been done
3142 * by machine code.
3143 */
3144 }
3145 #endif /* CONFIG_OF */
3146
3147 static void
3148 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3149 {
3150 struct device_node *np = pdev->dev.of_node;
3151 int err;
3152
3153 *num_tx = *num_rx = 1;
3154
3155 if (!np || !of_device_is_available(np))
3156 return;
3157
3158 /* parse the num of tx and rx queues */
3159 err = of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3160 if (err)
3161 *num_tx = 1;
3162
3163 err = of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3164 if (err)
3165 *num_rx = 1;
3166
3167 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3168 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3169 *num_tx);
3170 *num_tx = 1;
3171 return;
3172 }
3173
3174 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3175 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3176 *num_rx);
3177 *num_rx = 1;
3178 return;
3179 }
3180
3181 }
3182
3183 static int
3184 fec_probe(struct platform_device *pdev)
3185 {
3186 struct fec_enet_private *fep;
3187 struct fec_platform_data *pdata;
3188 struct net_device *ndev;
3189 int i, irq, ret = 0;
3190 struct resource *r;
3191 const struct of_device_id *of_id;
3192 static int dev_id;
3193 struct device_node *np = pdev->dev.of_node, *phy_node;
3194 int num_tx_qs;
3195 int num_rx_qs;
3196
3197 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3198
3199 /* Init network device */
3200 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3201 num_tx_qs, num_rx_qs);
3202 if (!ndev)
3203 return -ENOMEM;
3204
3205 SET_NETDEV_DEV(ndev, &pdev->dev);
3206
3207 /* setup board info structure */
3208 fep = netdev_priv(ndev);
3209
3210 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3211 if (of_id)
3212 pdev->id_entry = of_id->data;
3213 fep->quirks = pdev->id_entry->driver_data;
3214
3215 fep->netdev = ndev;
3216 fep->num_rx_queues = num_rx_qs;
3217 fep->num_tx_queues = num_tx_qs;
3218
3219 #if !defined(CONFIG_M5272)
3220 /* default enable pause frame auto negotiation */
3221 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3222 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3223 #endif
3224
3225 /* Select default pin state */
3226 pinctrl_pm_select_default_state(&pdev->dev);
3227
3228 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3229 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3230 if (IS_ERR(fep->hwp)) {
3231 ret = PTR_ERR(fep->hwp);
3232 goto failed_ioremap;
3233 }
3234
3235 fep->pdev = pdev;
3236 fep->dev_id = dev_id++;
3237
3238 platform_set_drvdata(pdev, ndev);
3239
3240 if (of_get_property(np, "fsl,magic-packet", NULL))
3241 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3242
3243 phy_node = of_parse_phandle(np, "phy-handle", 0);
3244 if (!phy_node && of_phy_is_fixed_link(np)) {
3245 ret = of_phy_register_fixed_link(np);
3246 if (ret < 0) {
3247 dev_err(&pdev->dev,
3248 "broken fixed-link specification\n");
3249 goto failed_phy;
3250 }
3251 phy_node = of_node_get(np);
3252 }
3253 fep->phy_node = phy_node;
3254
3255 ret = of_get_phy_mode(pdev->dev.of_node);
3256 if (ret < 0) {
3257 pdata = dev_get_platdata(&pdev->dev);
3258 if (pdata)
3259 fep->phy_interface = pdata->phy;
3260 else
3261 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3262 } else {
3263 fep->phy_interface = ret;
3264 }
3265
3266 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3267 if (IS_ERR(fep->clk_ipg)) {
3268 ret = PTR_ERR(fep->clk_ipg);
3269 goto failed_clk;
3270 }
3271
3272 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3273 if (IS_ERR(fep->clk_ahb)) {
3274 ret = PTR_ERR(fep->clk_ahb);
3275 goto failed_clk;
3276 }
3277
3278 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3279
3280 /* enet_out is optional, depends on board */
3281 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3282 if (IS_ERR(fep->clk_enet_out))
3283 fep->clk_enet_out = NULL;
3284
3285 fep->ptp_clk_on = false;
3286 mutex_init(&fep->ptp_clk_mutex);
3287
3288 /* clk_ref is optional, depends on board */
3289 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3290 if (IS_ERR(fep->clk_ref))
3291 fep->clk_ref = NULL;
3292
3293 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3294 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3295 if (IS_ERR(fep->clk_ptp)) {
3296 fep->clk_ptp = NULL;
3297 fep->bufdesc_ex = false;
3298 }
3299
3300 ret = fec_enet_clk_enable(ndev, true);
3301 if (ret)
3302 goto failed_clk;
3303
3304 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3305 if (!IS_ERR(fep->reg_phy)) {
3306 ret = regulator_enable(fep->reg_phy);
3307 if (ret) {
3308 dev_err(&pdev->dev,
3309 "Failed to enable phy regulator: %d\n", ret);
3310 goto failed_regulator;
3311 }
3312 } else {
3313 fep->reg_phy = NULL;
3314 }
3315
3316 fec_reset_phy(pdev);
3317
3318 if (fep->bufdesc_ex)
3319 fec_ptp_init(pdev);
3320
3321 ret = fec_enet_init(ndev);
3322 if (ret)
3323 goto failed_init;
3324
3325 for (i = 0; i < FEC_IRQ_NUM; i++) {
3326 irq = platform_get_irq(pdev, i);
3327 if (irq < 0) {
3328 if (i)
3329 break;
3330 ret = irq;
3331 goto failed_irq;
3332 }
3333 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3334 0, pdev->name, ndev);
3335 if (ret)
3336 goto failed_irq;
3337
3338 fep->irq[i] = irq;
3339 }
3340
3341 init_completion(&fep->mdio_done);
3342 ret = fec_enet_mii_init(pdev);
3343 if (ret)
3344 goto failed_mii_init;
3345
3346 /* Carrier starts down, phylib will bring it up */
3347 netif_carrier_off(ndev);
3348 fec_enet_clk_enable(ndev, false);
3349 pinctrl_pm_select_sleep_state(&pdev->dev);
3350
3351 ret = register_netdev(ndev);
3352 if (ret)
3353 goto failed_register;
3354
3355 device_init_wakeup(&ndev->dev, fep->wol_flag &
3356 FEC_WOL_HAS_MAGIC_PACKET);
3357
3358 if (fep->bufdesc_ex && fep->ptp_clock)
3359 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3360
3361 fep->rx_copybreak = COPYBREAK_DEFAULT;
3362 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3363 return 0;
3364
3365 failed_register:
3366 fec_enet_mii_remove(fep);
3367 failed_mii_init:
3368 failed_irq:
3369 failed_init:
3370 if (fep->reg_phy)
3371 regulator_disable(fep->reg_phy);
3372 failed_regulator:
3373 fec_enet_clk_enable(ndev, false);
3374 failed_clk:
3375 failed_phy:
3376 of_node_put(phy_node);
3377 failed_ioremap:
3378 free_netdev(ndev);
3379
3380 return ret;
3381 }
3382
3383 static int
3384 fec_drv_remove(struct platform_device *pdev)
3385 {
3386 struct net_device *ndev = platform_get_drvdata(pdev);
3387 struct fec_enet_private *fep = netdev_priv(ndev);
3388
3389 cancel_delayed_work_sync(&fep->time_keep);
3390 cancel_work_sync(&fep->tx_timeout_work);
3391 unregister_netdev(ndev);
3392 fec_enet_mii_remove(fep);
3393 if (fep->reg_phy)
3394 regulator_disable(fep->reg_phy);
3395 if (fep->ptp_clock)
3396 ptp_clock_unregister(fep->ptp_clock);
3397 of_node_put(fep->phy_node);
3398 free_netdev(ndev);
3399
3400 return 0;
3401 }
3402
3403 static int __maybe_unused fec_suspend(struct device *dev)
3404 {
3405 struct net_device *ndev = dev_get_drvdata(dev);
3406 struct fec_enet_private *fep = netdev_priv(ndev);
3407
3408 rtnl_lock();
3409 if (netif_running(ndev)) {
3410 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3411 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3412 phy_stop(fep->phy_dev);
3413 napi_disable(&fep->napi);
3414 netif_tx_lock_bh(ndev);
3415 netif_device_detach(ndev);
3416 netif_tx_unlock_bh(ndev);
3417 fec_stop(ndev);
3418 fec_enet_clk_enable(ndev, false);
3419 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3420 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3421 }
3422 rtnl_unlock();
3423
3424 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3425 regulator_disable(fep->reg_phy);
3426
3427 /* SOC supply clock to phy, when clock is disabled, phy link down
3428 * SOC control phy regulator, when regulator is disabled, phy link down
3429 */
3430 if (fep->clk_enet_out || fep->reg_phy)
3431 fep->link = 0;
3432
3433 return 0;
3434 }
3435
3436 static int __maybe_unused fec_resume(struct device *dev)
3437 {
3438 struct net_device *ndev = dev_get_drvdata(dev);
3439 struct fec_enet_private *fep = netdev_priv(ndev);
3440 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3441 int ret;
3442 int val;
3443
3444 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3445 ret = regulator_enable(fep->reg_phy);
3446 if (ret)
3447 return ret;
3448 }
3449
3450 rtnl_lock();
3451 if (netif_running(ndev)) {
3452 ret = fec_enet_clk_enable(ndev, true);
3453 if (ret) {
3454 rtnl_unlock();
3455 goto failed_clk;
3456 }
3457 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3458 if (pdata && pdata->sleep_mode_enable)
3459 pdata->sleep_mode_enable(false);
3460 val = readl(fep->hwp + FEC_ECNTRL);
3461 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3462 writel(val, fep->hwp + FEC_ECNTRL);
3463 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3464 } else {
3465 pinctrl_pm_select_default_state(&fep->pdev->dev);
3466 }
3467 fec_restart(ndev);
3468 netif_tx_lock_bh(ndev);
3469 netif_device_attach(ndev);
3470 netif_tx_unlock_bh(ndev);
3471 napi_enable(&fep->napi);
3472 phy_start(fep->phy_dev);
3473 }
3474 rtnl_unlock();
3475
3476 return 0;
3477
3478 failed_clk:
3479 if (fep->reg_phy)
3480 regulator_disable(fep->reg_phy);
3481 return ret;
3482 }
3483
3484 static SIMPLE_DEV_PM_OPS(fec_pm_ops, fec_suspend, fec_resume);
3485
3486 static struct platform_driver fec_driver = {
3487 .driver = {
3488 .name = DRIVER_NAME,
3489 .pm = &fec_pm_ops,
3490 .of_match_table = fec_dt_ids,
3491 },
3492 .id_table = fec_devtype,
3493 .probe = fec_probe,
3494 .remove = fec_drv_remove,
3495 };
3496
3497 module_platform_driver(fec_driver);
3498
3499 MODULE_ALIAS("platform:"DRIVER_NAME);
3500 MODULE_LICENSE("GPL");
This page took 0.200792 seconds and 5 git commands to generate.