Merge branch 'topic/docs-next' into v4l_for_linus
[deliverable/linux.git] / drivers / net / ethernet / freescale / fec_main.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
11 *
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
14 *
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
17 *
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
20 *
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/ptrace.h>
29 #include <linux/errno.h>
30 #include <linux/ioport.h>
31 #include <linux/slab.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/netdevice.h>
35 #include <linux/etherdevice.h>
36 #include <linux/skbuff.h>
37 #include <linux/in.h>
38 #include <linux/ip.h>
39 #include <net/ip.h>
40 #include <net/tso.h>
41 #include <linux/tcp.h>
42 #include <linux/udp.h>
43 #include <linux/icmp.h>
44 #include <linux/spinlock.h>
45 #include <linux/workqueue.h>
46 #include <linux/bitops.h>
47 #include <linux/io.h>
48 #include <linux/irq.h>
49 #include <linux/clk.h>
50 #include <linux/platform_device.h>
51 #include <linux/mdio.h>
52 #include <linux/phy.h>
53 #include <linux/fec.h>
54 #include <linux/of.h>
55 #include <linux/of_device.h>
56 #include <linux/of_gpio.h>
57 #include <linux/of_mdio.h>
58 #include <linux/of_net.h>
59 #include <linux/regulator/consumer.h>
60 #include <linux/if_vlan.h>
61 #include <linux/pinctrl/consumer.h>
62 #include <linux/prefetch.h>
63
64 #include <asm/cacheflush.h>
65
66 #include "fec.h"
67
68 static void set_multicast_list(struct net_device *ndev);
69 static void fec_enet_itr_coal_init(struct net_device *ndev);
70
71 #define DRIVER_NAME "fec"
72
73 #define FEC_ENET_GET_QUQUE(_x) ((_x == 0) ? 1 : ((_x == 1) ? 2 : 0))
74
75 /* Pause frame feild and FIFO threshold */
76 #define FEC_ENET_FCE (1 << 5)
77 #define FEC_ENET_RSEM_V 0x84
78 #define FEC_ENET_RSFL_V 16
79 #define FEC_ENET_RAEM_V 0x8
80 #define FEC_ENET_RAFL_V 0x8
81 #define FEC_ENET_OPD_V 0xFFF0
82 #define FEC_MDIO_PM_TIMEOUT 100 /* ms */
83
84 static struct platform_device_id fec_devtype[] = {
85 {
86 /* keep it for coldfire */
87 .name = DRIVER_NAME,
88 .driver_data = 0,
89 }, {
90 .name = "imx25-fec",
91 .driver_data = FEC_QUIRK_USE_GASKET | FEC_QUIRK_HAS_RACC,
92 }, {
93 .name = "imx27-fec",
94 .driver_data = FEC_QUIRK_HAS_RACC,
95 }, {
96 .name = "imx28-fec",
97 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME |
98 FEC_QUIRK_SINGLE_MDIO | FEC_QUIRK_HAS_RACC,
99 }, {
100 .name = "imx6q-fec",
101 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
102 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
103 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_ERR006358 |
104 FEC_QUIRK_HAS_RACC,
105 }, {
106 .name = "mvf600-fec",
107 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_RACC,
108 }, {
109 .name = "imx6sx-fec",
110 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT |
111 FEC_QUIRK_HAS_BUFDESC_EX | FEC_QUIRK_HAS_CSUM |
112 FEC_QUIRK_HAS_VLAN | FEC_QUIRK_HAS_AVB |
113 FEC_QUIRK_ERR007885 | FEC_QUIRK_BUG_CAPTURE |
114 FEC_QUIRK_HAS_RACC,
115 }, {
116 /* sentinel */
117 }
118 };
119 MODULE_DEVICE_TABLE(platform, fec_devtype);
120
121 enum imx_fec_type {
122 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
123 IMX27_FEC, /* runs on i.mx27/35/51 */
124 IMX28_FEC,
125 IMX6Q_FEC,
126 MVF600_FEC,
127 IMX6SX_FEC,
128 };
129
130 static const struct of_device_id fec_dt_ids[] = {
131 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
132 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
133 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
134 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
135 { .compatible = "fsl,mvf600-fec", .data = &fec_devtype[MVF600_FEC], },
136 { .compatible = "fsl,imx6sx-fec", .data = &fec_devtype[IMX6SX_FEC], },
137 { /* sentinel */ }
138 };
139 MODULE_DEVICE_TABLE(of, fec_dt_ids);
140
141 static unsigned char macaddr[ETH_ALEN];
142 module_param_array(macaddr, byte, NULL, 0);
143 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
144
145 #if defined(CONFIG_M5272)
146 /*
147 * Some hardware gets it MAC address out of local flash memory.
148 * if this is non-zero then assume it is the address to get MAC from.
149 */
150 #if defined(CONFIG_NETtel)
151 #define FEC_FLASHMAC 0xf0006006
152 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
153 #define FEC_FLASHMAC 0xf0006000
154 #elif defined(CONFIG_CANCam)
155 #define FEC_FLASHMAC 0xf0020000
156 #elif defined (CONFIG_M5272C3)
157 #define FEC_FLASHMAC (0xffe04000 + 4)
158 #elif defined(CONFIG_MOD5272)
159 #define FEC_FLASHMAC 0xffc0406b
160 #else
161 #define FEC_FLASHMAC 0
162 #endif
163 #endif /* CONFIG_M5272 */
164
165 /* The FEC stores dest/src/type/vlan, data, and checksum for receive packets.
166 */
167 #define PKT_MAXBUF_SIZE 1522
168 #define PKT_MINBUF_SIZE 64
169 #define PKT_MAXBLR_SIZE 1536
170
171 /* FEC receive acceleration */
172 #define FEC_RACC_IPDIS (1 << 1)
173 #define FEC_RACC_PRODIS (1 << 2)
174 #define FEC_RACC_OPTIONS (FEC_RACC_IPDIS | FEC_RACC_PRODIS)
175
176 /*
177 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
178 * size bits. Other FEC hardware does not, so we need to take that into
179 * account when setting it.
180 */
181 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
182 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
183 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
184 #else
185 #define OPT_FRAME_SIZE 0
186 #endif
187
188 /* FEC MII MMFR bits definition */
189 #define FEC_MMFR_ST (1 << 30)
190 #define FEC_MMFR_OP_READ (2 << 28)
191 #define FEC_MMFR_OP_WRITE (1 << 28)
192 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
193 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
194 #define FEC_MMFR_TA (2 << 16)
195 #define FEC_MMFR_DATA(v) (v & 0xffff)
196 /* FEC ECR bits definition */
197 #define FEC_ECR_MAGICEN (1 << 2)
198 #define FEC_ECR_SLEEP (1 << 3)
199
200 #define FEC_MII_TIMEOUT 30000 /* us */
201
202 /* Transmitter timeout */
203 #define TX_TIMEOUT (2 * HZ)
204
205 #define FEC_PAUSE_FLAG_AUTONEG 0x1
206 #define FEC_PAUSE_FLAG_ENABLE 0x2
207 #define FEC_WOL_HAS_MAGIC_PACKET (0x1 << 0)
208 #define FEC_WOL_FLAG_ENABLE (0x1 << 1)
209 #define FEC_WOL_FLAG_SLEEP_ON (0x1 << 2)
210
211 #define COPYBREAK_DEFAULT 256
212
213 #define TSO_HEADER_SIZE 128
214 /* Max number of allowed TCP segments for software TSO */
215 #define FEC_MAX_TSO_SEGS 100
216 #define FEC_MAX_SKB_DESCS (FEC_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
217
218 #define IS_TSO_HEADER(txq, addr) \
219 ((addr >= txq->tso_hdrs_dma) && \
220 (addr < txq->tso_hdrs_dma + txq->bd.ring_size * TSO_HEADER_SIZE))
221
222 static int mii_cnt;
223
224 static struct bufdesc *fec_enet_get_nextdesc(struct bufdesc *bdp,
225 struct bufdesc_prop *bd)
226 {
227 return (bdp >= bd->last) ? bd->base
228 : (struct bufdesc *)(((unsigned)bdp) + bd->dsize);
229 }
230
231 static struct bufdesc *fec_enet_get_prevdesc(struct bufdesc *bdp,
232 struct bufdesc_prop *bd)
233 {
234 return (bdp <= bd->base) ? bd->last
235 : (struct bufdesc *)(((unsigned)bdp) - bd->dsize);
236 }
237
238 static int fec_enet_get_bd_index(struct bufdesc *bdp,
239 struct bufdesc_prop *bd)
240 {
241 return ((const char *)bdp - (const char *)bd->base) >> bd->dsize_log2;
242 }
243
244 static int fec_enet_get_free_txdesc_num(struct fec_enet_priv_tx_q *txq)
245 {
246 int entries;
247
248 entries = (((const char *)txq->dirty_tx -
249 (const char *)txq->bd.cur) >> txq->bd.dsize_log2) - 1;
250
251 return entries >= 0 ? entries : entries + txq->bd.ring_size;
252 }
253
254 static void swap_buffer(void *bufaddr, int len)
255 {
256 int i;
257 unsigned int *buf = bufaddr;
258
259 for (i = 0; i < len; i += 4, buf++)
260 swab32s(buf);
261 }
262
263 static void swap_buffer2(void *dst_buf, void *src_buf, int len)
264 {
265 int i;
266 unsigned int *src = src_buf;
267 unsigned int *dst = dst_buf;
268
269 for (i = 0; i < len; i += 4, src++, dst++)
270 *dst = swab32p(src);
271 }
272
273 static void fec_dump(struct net_device *ndev)
274 {
275 struct fec_enet_private *fep = netdev_priv(ndev);
276 struct bufdesc *bdp;
277 struct fec_enet_priv_tx_q *txq;
278 int index = 0;
279
280 netdev_info(ndev, "TX ring dump\n");
281 pr_info("Nr SC addr len SKB\n");
282
283 txq = fep->tx_queue[0];
284 bdp = txq->bd.base;
285
286 do {
287 pr_info("%3u %c%c 0x%04x 0x%08x %4u %p\n",
288 index,
289 bdp == txq->bd.cur ? 'S' : ' ',
290 bdp == txq->dirty_tx ? 'H' : ' ',
291 fec16_to_cpu(bdp->cbd_sc),
292 fec32_to_cpu(bdp->cbd_bufaddr),
293 fec16_to_cpu(bdp->cbd_datlen),
294 txq->tx_skbuff[index]);
295 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
296 index++;
297 } while (bdp != txq->bd.base);
298 }
299
300 static inline bool is_ipv4_pkt(struct sk_buff *skb)
301 {
302 return skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->version == 4;
303 }
304
305 static int
306 fec_enet_clear_csum(struct sk_buff *skb, struct net_device *ndev)
307 {
308 /* Only run for packets requiring a checksum. */
309 if (skb->ip_summed != CHECKSUM_PARTIAL)
310 return 0;
311
312 if (unlikely(skb_cow_head(skb, 0)))
313 return -1;
314
315 if (is_ipv4_pkt(skb))
316 ip_hdr(skb)->check = 0;
317 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) = 0;
318
319 return 0;
320 }
321
322 static struct bufdesc *
323 fec_enet_txq_submit_frag_skb(struct fec_enet_priv_tx_q *txq,
324 struct sk_buff *skb,
325 struct net_device *ndev)
326 {
327 struct fec_enet_private *fep = netdev_priv(ndev);
328 struct bufdesc *bdp = txq->bd.cur;
329 struct bufdesc_ex *ebdp;
330 int nr_frags = skb_shinfo(skb)->nr_frags;
331 int frag, frag_len;
332 unsigned short status;
333 unsigned int estatus = 0;
334 skb_frag_t *this_frag;
335 unsigned int index;
336 void *bufaddr;
337 dma_addr_t addr;
338 int i;
339
340 for (frag = 0; frag < nr_frags; frag++) {
341 this_frag = &skb_shinfo(skb)->frags[frag];
342 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
343 ebdp = (struct bufdesc_ex *)bdp;
344
345 status = fec16_to_cpu(bdp->cbd_sc);
346 status &= ~BD_ENET_TX_STATS;
347 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
348 frag_len = skb_shinfo(skb)->frags[frag].size;
349
350 /* Handle the last BD specially */
351 if (frag == nr_frags - 1) {
352 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
353 if (fep->bufdesc_ex) {
354 estatus |= BD_ENET_TX_INT;
355 if (unlikely(skb_shinfo(skb)->tx_flags &
356 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
357 estatus |= BD_ENET_TX_TS;
358 }
359 }
360
361 if (fep->bufdesc_ex) {
362 if (fep->quirks & FEC_QUIRK_HAS_AVB)
363 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
364 if (skb->ip_summed == CHECKSUM_PARTIAL)
365 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
366 ebdp->cbd_bdu = 0;
367 ebdp->cbd_esc = cpu_to_fec32(estatus);
368 }
369
370 bufaddr = page_address(this_frag->page.p) + this_frag->page_offset;
371
372 index = fec_enet_get_bd_index(bdp, &txq->bd);
373 if (((unsigned long) bufaddr) & fep->tx_align ||
374 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
375 memcpy(txq->tx_bounce[index], bufaddr, frag_len);
376 bufaddr = txq->tx_bounce[index];
377
378 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
379 swap_buffer(bufaddr, frag_len);
380 }
381
382 addr = dma_map_single(&fep->pdev->dev, bufaddr, frag_len,
383 DMA_TO_DEVICE);
384 if (dma_mapping_error(&fep->pdev->dev, addr)) {
385 if (net_ratelimit())
386 netdev_err(ndev, "Tx DMA memory map failed\n");
387 goto dma_mapping_error;
388 }
389
390 bdp->cbd_bufaddr = cpu_to_fec32(addr);
391 bdp->cbd_datlen = cpu_to_fec16(frag_len);
392 /* Make sure the updates to rest of the descriptor are
393 * performed before transferring ownership.
394 */
395 wmb();
396 bdp->cbd_sc = cpu_to_fec16(status);
397 }
398
399 return bdp;
400 dma_mapping_error:
401 bdp = txq->bd.cur;
402 for (i = 0; i < frag; i++) {
403 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
404 dma_unmap_single(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr),
405 fec16_to_cpu(bdp->cbd_datlen), DMA_TO_DEVICE);
406 }
407 return ERR_PTR(-ENOMEM);
408 }
409
410 static int fec_enet_txq_submit_skb(struct fec_enet_priv_tx_q *txq,
411 struct sk_buff *skb, struct net_device *ndev)
412 {
413 struct fec_enet_private *fep = netdev_priv(ndev);
414 int nr_frags = skb_shinfo(skb)->nr_frags;
415 struct bufdesc *bdp, *last_bdp;
416 void *bufaddr;
417 dma_addr_t addr;
418 unsigned short status;
419 unsigned short buflen;
420 unsigned int estatus = 0;
421 unsigned int index;
422 int entries_free;
423
424 entries_free = fec_enet_get_free_txdesc_num(txq);
425 if (entries_free < MAX_SKB_FRAGS + 1) {
426 dev_kfree_skb_any(skb);
427 if (net_ratelimit())
428 netdev_err(ndev, "NOT enough BD for SG!\n");
429 return NETDEV_TX_OK;
430 }
431
432 /* Protocol checksum off-load for TCP and UDP. */
433 if (fec_enet_clear_csum(skb, ndev)) {
434 dev_kfree_skb_any(skb);
435 return NETDEV_TX_OK;
436 }
437
438 /* Fill in a Tx ring entry */
439 bdp = txq->bd.cur;
440 last_bdp = bdp;
441 status = fec16_to_cpu(bdp->cbd_sc);
442 status &= ~BD_ENET_TX_STATS;
443
444 /* Set buffer length and buffer pointer */
445 bufaddr = skb->data;
446 buflen = skb_headlen(skb);
447
448 index = fec_enet_get_bd_index(bdp, &txq->bd);
449 if (((unsigned long) bufaddr) & fep->tx_align ||
450 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
451 memcpy(txq->tx_bounce[index], skb->data, buflen);
452 bufaddr = txq->tx_bounce[index];
453
454 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
455 swap_buffer(bufaddr, buflen);
456 }
457
458 /* Push the data cache so the CPM does not get stale memory data. */
459 addr = dma_map_single(&fep->pdev->dev, bufaddr, buflen, DMA_TO_DEVICE);
460 if (dma_mapping_error(&fep->pdev->dev, addr)) {
461 dev_kfree_skb_any(skb);
462 if (net_ratelimit())
463 netdev_err(ndev, "Tx DMA memory map failed\n");
464 return NETDEV_TX_OK;
465 }
466
467 if (nr_frags) {
468 last_bdp = fec_enet_txq_submit_frag_skb(txq, skb, ndev);
469 if (IS_ERR(last_bdp)) {
470 dma_unmap_single(&fep->pdev->dev, addr,
471 buflen, DMA_TO_DEVICE);
472 dev_kfree_skb_any(skb);
473 return NETDEV_TX_OK;
474 }
475 } else {
476 status |= (BD_ENET_TX_INTR | BD_ENET_TX_LAST);
477 if (fep->bufdesc_ex) {
478 estatus = BD_ENET_TX_INT;
479 if (unlikely(skb_shinfo(skb)->tx_flags &
480 SKBTX_HW_TSTAMP && fep->hwts_tx_en))
481 estatus |= BD_ENET_TX_TS;
482 }
483 }
484 bdp->cbd_bufaddr = cpu_to_fec32(addr);
485 bdp->cbd_datlen = cpu_to_fec16(buflen);
486
487 if (fep->bufdesc_ex) {
488
489 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
490
491 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
492 fep->hwts_tx_en))
493 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
494
495 if (fep->quirks & FEC_QUIRK_HAS_AVB)
496 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
497
498 if (skb->ip_summed == CHECKSUM_PARTIAL)
499 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
500
501 ebdp->cbd_bdu = 0;
502 ebdp->cbd_esc = cpu_to_fec32(estatus);
503 }
504
505 index = fec_enet_get_bd_index(last_bdp, &txq->bd);
506 /* Save skb pointer */
507 txq->tx_skbuff[index] = skb;
508
509 /* Make sure the updates to rest of the descriptor are performed before
510 * transferring ownership.
511 */
512 wmb();
513
514 /* Send it on its way. Tell FEC it's ready, interrupt when done,
515 * it's the last BD of the frame, and to put the CRC on the end.
516 */
517 status |= (BD_ENET_TX_READY | BD_ENET_TX_TC);
518 bdp->cbd_sc = cpu_to_fec16(status);
519
520 /* If this was the last BD in the ring, start at the beginning again. */
521 bdp = fec_enet_get_nextdesc(last_bdp, &txq->bd);
522
523 skb_tx_timestamp(skb);
524
525 /* Make sure the update to bdp and tx_skbuff are performed before
526 * txq->bd.cur.
527 */
528 wmb();
529 txq->bd.cur = bdp;
530
531 /* Trigger transmission start */
532 writel(0, txq->bd.reg_desc_active);
533
534 return 0;
535 }
536
537 static int
538 fec_enet_txq_put_data_tso(struct fec_enet_priv_tx_q *txq, struct sk_buff *skb,
539 struct net_device *ndev,
540 struct bufdesc *bdp, int index, char *data,
541 int size, bool last_tcp, bool is_last)
542 {
543 struct fec_enet_private *fep = netdev_priv(ndev);
544 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
545 unsigned short status;
546 unsigned int estatus = 0;
547 dma_addr_t addr;
548
549 status = fec16_to_cpu(bdp->cbd_sc);
550 status &= ~BD_ENET_TX_STATS;
551
552 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
553
554 if (((unsigned long) data) & fep->tx_align ||
555 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
556 memcpy(txq->tx_bounce[index], data, size);
557 data = txq->tx_bounce[index];
558
559 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
560 swap_buffer(data, size);
561 }
562
563 addr = dma_map_single(&fep->pdev->dev, data, size, DMA_TO_DEVICE);
564 if (dma_mapping_error(&fep->pdev->dev, addr)) {
565 dev_kfree_skb_any(skb);
566 if (net_ratelimit())
567 netdev_err(ndev, "Tx DMA memory map failed\n");
568 return NETDEV_TX_BUSY;
569 }
570
571 bdp->cbd_datlen = cpu_to_fec16(size);
572 bdp->cbd_bufaddr = cpu_to_fec32(addr);
573
574 if (fep->bufdesc_ex) {
575 if (fep->quirks & FEC_QUIRK_HAS_AVB)
576 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
577 if (skb->ip_summed == CHECKSUM_PARTIAL)
578 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
579 ebdp->cbd_bdu = 0;
580 ebdp->cbd_esc = cpu_to_fec32(estatus);
581 }
582
583 /* Handle the last BD specially */
584 if (last_tcp)
585 status |= (BD_ENET_TX_LAST | BD_ENET_TX_TC);
586 if (is_last) {
587 status |= BD_ENET_TX_INTR;
588 if (fep->bufdesc_ex)
589 ebdp->cbd_esc |= cpu_to_fec32(BD_ENET_TX_INT);
590 }
591
592 bdp->cbd_sc = cpu_to_fec16(status);
593
594 return 0;
595 }
596
597 static int
598 fec_enet_txq_put_hdr_tso(struct fec_enet_priv_tx_q *txq,
599 struct sk_buff *skb, struct net_device *ndev,
600 struct bufdesc *bdp, int index)
601 {
602 struct fec_enet_private *fep = netdev_priv(ndev);
603 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
604 struct bufdesc_ex *ebdp = container_of(bdp, struct bufdesc_ex, desc);
605 void *bufaddr;
606 unsigned long dmabuf;
607 unsigned short status;
608 unsigned int estatus = 0;
609
610 status = fec16_to_cpu(bdp->cbd_sc);
611 status &= ~BD_ENET_TX_STATS;
612 status |= (BD_ENET_TX_TC | BD_ENET_TX_READY);
613
614 bufaddr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
615 dmabuf = txq->tso_hdrs_dma + index * TSO_HEADER_SIZE;
616 if (((unsigned long)bufaddr) & fep->tx_align ||
617 fep->quirks & FEC_QUIRK_SWAP_FRAME) {
618 memcpy(txq->tx_bounce[index], skb->data, hdr_len);
619 bufaddr = txq->tx_bounce[index];
620
621 if (fep->quirks & FEC_QUIRK_SWAP_FRAME)
622 swap_buffer(bufaddr, hdr_len);
623
624 dmabuf = dma_map_single(&fep->pdev->dev, bufaddr,
625 hdr_len, DMA_TO_DEVICE);
626 if (dma_mapping_error(&fep->pdev->dev, dmabuf)) {
627 dev_kfree_skb_any(skb);
628 if (net_ratelimit())
629 netdev_err(ndev, "Tx DMA memory map failed\n");
630 return NETDEV_TX_BUSY;
631 }
632 }
633
634 bdp->cbd_bufaddr = cpu_to_fec32(dmabuf);
635 bdp->cbd_datlen = cpu_to_fec16(hdr_len);
636
637 if (fep->bufdesc_ex) {
638 if (fep->quirks & FEC_QUIRK_HAS_AVB)
639 estatus |= FEC_TX_BD_FTYPE(txq->bd.qid);
640 if (skb->ip_summed == CHECKSUM_PARTIAL)
641 estatus |= BD_ENET_TX_PINS | BD_ENET_TX_IINS;
642 ebdp->cbd_bdu = 0;
643 ebdp->cbd_esc = cpu_to_fec32(estatus);
644 }
645
646 bdp->cbd_sc = cpu_to_fec16(status);
647
648 return 0;
649 }
650
651 static int fec_enet_txq_submit_tso(struct fec_enet_priv_tx_q *txq,
652 struct sk_buff *skb,
653 struct net_device *ndev)
654 {
655 struct fec_enet_private *fep = netdev_priv(ndev);
656 int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
657 int total_len, data_left;
658 struct bufdesc *bdp = txq->bd.cur;
659 struct tso_t tso;
660 unsigned int index = 0;
661 int ret;
662
663 if (tso_count_descs(skb) >= fec_enet_get_free_txdesc_num(txq)) {
664 dev_kfree_skb_any(skb);
665 if (net_ratelimit())
666 netdev_err(ndev, "NOT enough BD for TSO!\n");
667 return NETDEV_TX_OK;
668 }
669
670 /* Protocol checksum off-load for TCP and UDP. */
671 if (fec_enet_clear_csum(skb, ndev)) {
672 dev_kfree_skb_any(skb);
673 return NETDEV_TX_OK;
674 }
675
676 /* Initialize the TSO handler, and prepare the first payload */
677 tso_start(skb, &tso);
678
679 total_len = skb->len - hdr_len;
680 while (total_len > 0) {
681 char *hdr;
682
683 index = fec_enet_get_bd_index(bdp, &txq->bd);
684 data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
685 total_len -= data_left;
686
687 /* prepare packet headers: MAC + IP + TCP */
688 hdr = txq->tso_hdrs + index * TSO_HEADER_SIZE;
689 tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
690 ret = fec_enet_txq_put_hdr_tso(txq, skb, ndev, bdp, index);
691 if (ret)
692 goto err_release;
693
694 while (data_left > 0) {
695 int size;
696
697 size = min_t(int, tso.size, data_left);
698 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
699 index = fec_enet_get_bd_index(bdp, &txq->bd);
700 ret = fec_enet_txq_put_data_tso(txq, skb, ndev,
701 bdp, index,
702 tso.data, size,
703 size == data_left,
704 total_len == 0);
705 if (ret)
706 goto err_release;
707
708 data_left -= size;
709 tso_build_data(skb, &tso, size);
710 }
711
712 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
713 }
714
715 /* Save skb pointer */
716 txq->tx_skbuff[index] = skb;
717
718 skb_tx_timestamp(skb);
719 txq->bd.cur = bdp;
720
721 /* Trigger transmission start */
722 if (!(fep->quirks & FEC_QUIRK_ERR007885) ||
723 !readl(txq->bd.reg_desc_active) ||
724 !readl(txq->bd.reg_desc_active) ||
725 !readl(txq->bd.reg_desc_active) ||
726 !readl(txq->bd.reg_desc_active))
727 writel(0, txq->bd.reg_desc_active);
728
729 return 0;
730
731 err_release:
732 /* TODO: Release all used data descriptors for TSO */
733 return ret;
734 }
735
736 static netdev_tx_t
737 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
738 {
739 struct fec_enet_private *fep = netdev_priv(ndev);
740 int entries_free;
741 unsigned short queue;
742 struct fec_enet_priv_tx_q *txq;
743 struct netdev_queue *nq;
744 int ret;
745
746 queue = skb_get_queue_mapping(skb);
747 txq = fep->tx_queue[queue];
748 nq = netdev_get_tx_queue(ndev, queue);
749
750 if (skb_is_gso(skb))
751 ret = fec_enet_txq_submit_tso(txq, skb, ndev);
752 else
753 ret = fec_enet_txq_submit_skb(txq, skb, ndev);
754 if (ret)
755 return ret;
756
757 entries_free = fec_enet_get_free_txdesc_num(txq);
758 if (entries_free <= txq->tx_stop_threshold)
759 netif_tx_stop_queue(nq);
760
761 return NETDEV_TX_OK;
762 }
763
764 /* Init RX & TX buffer descriptors
765 */
766 static void fec_enet_bd_init(struct net_device *dev)
767 {
768 struct fec_enet_private *fep = netdev_priv(dev);
769 struct fec_enet_priv_tx_q *txq;
770 struct fec_enet_priv_rx_q *rxq;
771 struct bufdesc *bdp;
772 unsigned int i;
773 unsigned int q;
774
775 for (q = 0; q < fep->num_rx_queues; q++) {
776 /* Initialize the receive buffer descriptors. */
777 rxq = fep->rx_queue[q];
778 bdp = rxq->bd.base;
779
780 for (i = 0; i < rxq->bd.ring_size; i++) {
781
782 /* Initialize the BD for every fragment in the page. */
783 if (bdp->cbd_bufaddr)
784 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
785 else
786 bdp->cbd_sc = cpu_to_fec16(0);
787 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
788 }
789
790 /* Set the last buffer to wrap */
791 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
792 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
793
794 rxq->bd.cur = rxq->bd.base;
795 }
796
797 for (q = 0; q < fep->num_tx_queues; q++) {
798 /* ...and the same for transmit */
799 txq = fep->tx_queue[q];
800 bdp = txq->bd.base;
801 txq->bd.cur = bdp;
802
803 for (i = 0; i < txq->bd.ring_size; i++) {
804 /* Initialize the BD for every fragment in the page. */
805 bdp->cbd_sc = cpu_to_fec16(0);
806 if (txq->tx_skbuff[i]) {
807 dev_kfree_skb_any(txq->tx_skbuff[i]);
808 txq->tx_skbuff[i] = NULL;
809 }
810 bdp->cbd_bufaddr = cpu_to_fec32(0);
811 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
812 }
813
814 /* Set the last buffer to wrap */
815 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
816 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
817 txq->dirty_tx = bdp;
818 }
819 }
820
821 static void fec_enet_active_rxring(struct net_device *ndev)
822 {
823 struct fec_enet_private *fep = netdev_priv(ndev);
824 int i;
825
826 for (i = 0; i < fep->num_rx_queues; i++)
827 writel(0, fep->rx_queue[i]->bd.reg_desc_active);
828 }
829
830 static void fec_enet_enable_ring(struct net_device *ndev)
831 {
832 struct fec_enet_private *fep = netdev_priv(ndev);
833 struct fec_enet_priv_tx_q *txq;
834 struct fec_enet_priv_rx_q *rxq;
835 int i;
836
837 for (i = 0; i < fep->num_rx_queues; i++) {
838 rxq = fep->rx_queue[i];
839 writel(rxq->bd.dma, fep->hwp + FEC_R_DES_START(i));
840 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE(i));
841
842 /* enable DMA1/2 */
843 if (i)
844 writel(RCMR_MATCHEN | RCMR_CMP(i),
845 fep->hwp + FEC_RCMR(i));
846 }
847
848 for (i = 0; i < fep->num_tx_queues; i++) {
849 txq = fep->tx_queue[i];
850 writel(txq->bd.dma, fep->hwp + FEC_X_DES_START(i));
851
852 /* enable DMA1/2 */
853 if (i)
854 writel(DMA_CLASS_EN | IDLE_SLOPE(i),
855 fep->hwp + FEC_DMA_CFG(i));
856 }
857 }
858
859 static void fec_enet_reset_skb(struct net_device *ndev)
860 {
861 struct fec_enet_private *fep = netdev_priv(ndev);
862 struct fec_enet_priv_tx_q *txq;
863 int i, j;
864
865 for (i = 0; i < fep->num_tx_queues; i++) {
866 txq = fep->tx_queue[i];
867
868 for (j = 0; j < txq->bd.ring_size; j++) {
869 if (txq->tx_skbuff[j]) {
870 dev_kfree_skb_any(txq->tx_skbuff[j]);
871 txq->tx_skbuff[j] = NULL;
872 }
873 }
874 }
875 }
876
877 /*
878 * This function is called to start or restart the FEC during a link
879 * change, transmit timeout, or to reconfigure the FEC. The network
880 * packet processing for this device must be stopped before this call.
881 */
882 static void
883 fec_restart(struct net_device *ndev)
884 {
885 struct fec_enet_private *fep = netdev_priv(ndev);
886 u32 val;
887 u32 temp_mac[2];
888 u32 rcntl = OPT_FRAME_SIZE | 0x04;
889 u32 ecntl = 0x2; /* ETHEREN */
890
891 /* Whack a reset. We should wait for this.
892 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
893 * instead of reset MAC itself.
894 */
895 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
896 writel(0, fep->hwp + FEC_ECNTRL);
897 } else {
898 writel(1, fep->hwp + FEC_ECNTRL);
899 udelay(10);
900 }
901
902 /*
903 * enet-mac reset will reset mac address registers too,
904 * so need to reconfigure it.
905 */
906 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
907 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
908 writel((__force u32)cpu_to_be32(temp_mac[0]),
909 fep->hwp + FEC_ADDR_LOW);
910 writel((__force u32)cpu_to_be32(temp_mac[1]),
911 fep->hwp + FEC_ADDR_HIGH);
912 }
913
914 /* Clear any outstanding interrupt. */
915 writel(0xffffffff, fep->hwp + FEC_IEVENT);
916
917 fec_enet_bd_init(ndev);
918
919 fec_enet_enable_ring(ndev);
920
921 /* Reset tx SKB buffers. */
922 fec_enet_reset_skb(ndev);
923
924 /* Enable MII mode */
925 if (fep->full_duplex == DUPLEX_FULL) {
926 /* FD enable */
927 writel(0x04, fep->hwp + FEC_X_CNTRL);
928 } else {
929 /* No Rcv on Xmit */
930 rcntl |= 0x02;
931 writel(0x0, fep->hwp + FEC_X_CNTRL);
932 }
933
934 /* Set MII speed */
935 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
936
937 #if !defined(CONFIG_M5272)
938 if (fep->quirks & FEC_QUIRK_HAS_RACC) {
939 /* set RX checksum */
940 val = readl(fep->hwp + FEC_RACC);
941 if (fep->csum_flags & FLAG_RX_CSUM_ENABLED)
942 val |= FEC_RACC_OPTIONS;
943 else
944 val &= ~FEC_RACC_OPTIONS;
945 writel(val, fep->hwp + FEC_RACC);
946 writel(PKT_MAXBUF_SIZE, fep->hwp + FEC_FTRL);
947 }
948 #endif
949
950 /*
951 * The phy interface and speed need to get configured
952 * differently on enet-mac.
953 */
954 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
955 /* Enable flow control and length check */
956 rcntl |= 0x40000000 | 0x00000020;
957
958 /* RGMII, RMII or MII */
959 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII ||
960 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_ID ||
961 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_RXID ||
962 fep->phy_interface == PHY_INTERFACE_MODE_RGMII_TXID)
963 rcntl |= (1 << 6);
964 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
965 rcntl |= (1 << 8);
966 else
967 rcntl &= ~(1 << 8);
968
969 /* 1G, 100M or 10M */
970 if (ndev->phydev) {
971 if (ndev->phydev->speed == SPEED_1000)
972 ecntl |= (1 << 5);
973 else if (ndev->phydev->speed == SPEED_100)
974 rcntl &= ~(1 << 9);
975 else
976 rcntl |= (1 << 9);
977 }
978 } else {
979 #ifdef FEC_MIIGSK_ENR
980 if (fep->quirks & FEC_QUIRK_USE_GASKET) {
981 u32 cfgr;
982 /* disable the gasket and wait */
983 writel(0, fep->hwp + FEC_MIIGSK_ENR);
984 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
985 udelay(1);
986
987 /*
988 * configure the gasket:
989 * RMII, 50 MHz, no loopback, no echo
990 * MII, 25 MHz, no loopback, no echo
991 */
992 cfgr = (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
993 ? BM_MIIGSK_CFGR_RMII : BM_MIIGSK_CFGR_MII;
994 if (ndev->phydev && ndev->phydev->speed == SPEED_10)
995 cfgr |= BM_MIIGSK_CFGR_FRCONT_10M;
996 writel(cfgr, fep->hwp + FEC_MIIGSK_CFGR);
997
998 /* re-enable the gasket */
999 writel(2, fep->hwp + FEC_MIIGSK_ENR);
1000 }
1001 #endif
1002 }
1003
1004 #if !defined(CONFIG_M5272)
1005 /* enable pause frame*/
1006 if ((fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) ||
1007 ((fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) &&
1008 ndev->phydev && ndev->phydev->pause)) {
1009 rcntl |= FEC_ENET_FCE;
1010
1011 /* set FIFO threshold parameter to reduce overrun */
1012 writel(FEC_ENET_RSEM_V, fep->hwp + FEC_R_FIFO_RSEM);
1013 writel(FEC_ENET_RSFL_V, fep->hwp + FEC_R_FIFO_RSFL);
1014 writel(FEC_ENET_RAEM_V, fep->hwp + FEC_R_FIFO_RAEM);
1015 writel(FEC_ENET_RAFL_V, fep->hwp + FEC_R_FIFO_RAFL);
1016
1017 /* OPD */
1018 writel(FEC_ENET_OPD_V, fep->hwp + FEC_OPD);
1019 } else {
1020 rcntl &= ~FEC_ENET_FCE;
1021 }
1022 #endif /* !defined(CONFIG_M5272) */
1023
1024 writel(rcntl, fep->hwp + FEC_R_CNTRL);
1025
1026 /* Setup multicast filter. */
1027 set_multicast_list(ndev);
1028 #ifndef CONFIG_M5272
1029 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
1030 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
1031 #endif
1032
1033 if (fep->quirks & FEC_QUIRK_ENET_MAC) {
1034 /* enable ENET endian swap */
1035 ecntl |= (1 << 8);
1036 /* enable ENET store and forward mode */
1037 writel(1 << 8, fep->hwp + FEC_X_WMRK);
1038 }
1039
1040 if (fep->bufdesc_ex)
1041 ecntl |= (1 << 4);
1042
1043 #ifndef CONFIG_M5272
1044 /* Enable the MIB statistic event counters */
1045 writel(0 << 31, fep->hwp + FEC_MIB_CTRLSTAT);
1046 #endif
1047
1048 /* And last, enable the transmit and receive processing */
1049 writel(ecntl, fep->hwp + FEC_ECNTRL);
1050 fec_enet_active_rxring(ndev);
1051
1052 if (fep->bufdesc_ex)
1053 fec_ptp_start_cyclecounter(ndev);
1054
1055 /* Enable interrupts we wish to service */
1056 if (fep->link)
1057 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1058 else
1059 writel(FEC_ENET_MII, fep->hwp + FEC_IMASK);
1060
1061 /* Init the interrupt coalescing */
1062 fec_enet_itr_coal_init(ndev);
1063
1064 }
1065
1066 static void
1067 fec_stop(struct net_device *ndev)
1068 {
1069 struct fec_enet_private *fep = netdev_priv(ndev);
1070 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
1071 u32 rmii_mode = readl(fep->hwp + FEC_R_CNTRL) & (1 << 8);
1072 u32 val;
1073
1074 /* We cannot expect a graceful transmit stop without link !!! */
1075 if (fep->link) {
1076 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
1077 udelay(10);
1078 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
1079 netdev_err(ndev, "Graceful transmit stop did not complete!\n");
1080 }
1081
1082 /* Whack a reset. We should wait for this.
1083 * For i.MX6SX SOC, enet use AXI bus, we use disable MAC
1084 * instead of reset MAC itself.
1085 */
1086 if (!(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1087 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
1088 writel(0, fep->hwp + FEC_ECNTRL);
1089 } else {
1090 writel(1, fep->hwp + FEC_ECNTRL);
1091 udelay(10);
1092 }
1093 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1094 } else {
1095 writel(FEC_DEFAULT_IMASK | FEC_ENET_WAKEUP, fep->hwp + FEC_IMASK);
1096 val = readl(fep->hwp + FEC_ECNTRL);
1097 val |= (FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
1098 writel(val, fep->hwp + FEC_ECNTRL);
1099
1100 if (pdata && pdata->sleep_mode_enable)
1101 pdata->sleep_mode_enable(true);
1102 }
1103 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1104
1105 /* We have to keep ENET enabled to have MII interrupt stay working */
1106 if (fep->quirks & FEC_QUIRK_ENET_MAC &&
1107 !(fep->wol_flag & FEC_WOL_FLAG_SLEEP_ON)) {
1108 writel(2, fep->hwp + FEC_ECNTRL);
1109 writel(rmii_mode, fep->hwp + FEC_R_CNTRL);
1110 }
1111 }
1112
1113
1114 static void
1115 fec_timeout(struct net_device *ndev)
1116 {
1117 struct fec_enet_private *fep = netdev_priv(ndev);
1118
1119 fec_dump(ndev);
1120
1121 ndev->stats.tx_errors++;
1122
1123 schedule_work(&fep->tx_timeout_work);
1124 }
1125
1126 static void fec_enet_timeout_work(struct work_struct *work)
1127 {
1128 struct fec_enet_private *fep =
1129 container_of(work, struct fec_enet_private, tx_timeout_work);
1130 struct net_device *ndev = fep->netdev;
1131
1132 rtnl_lock();
1133 if (netif_device_present(ndev) || netif_running(ndev)) {
1134 napi_disable(&fep->napi);
1135 netif_tx_lock_bh(ndev);
1136 fec_restart(ndev);
1137 netif_wake_queue(ndev);
1138 netif_tx_unlock_bh(ndev);
1139 napi_enable(&fep->napi);
1140 }
1141 rtnl_unlock();
1142 }
1143
1144 static void
1145 fec_enet_hwtstamp(struct fec_enet_private *fep, unsigned ts,
1146 struct skb_shared_hwtstamps *hwtstamps)
1147 {
1148 unsigned long flags;
1149 u64 ns;
1150
1151 spin_lock_irqsave(&fep->tmreg_lock, flags);
1152 ns = timecounter_cyc2time(&fep->tc, ts);
1153 spin_unlock_irqrestore(&fep->tmreg_lock, flags);
1154
1155 memset(hwtstamps, 0, sizeof(*hwtstamps));
1156 hwtstamps->hwtstamp = ns_to_ktime(ns);
1157 }
1158
1159 static void
1160 fec_enet_tx_queue(struct net_device *ndev, u16 queue_id)
1161 {
1162 struct fec_enet_private *fep;
1163 struct bufdesc *bdp;
1164 unsigned short status;
1165 struct sk_buff *skb;
1166 struct fec_enet_priv_tx_q *txq;
1167 struct netdev_queue *nq;
1168 int index = 0;
1169 int entries_free;
1170
1171 fep = netdev_priv(ndev);
1172
1173 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1174
1175 txq = fep->tx_queue[queue_id];
1176 /* get next bdp of dirty_tx */
1177 nq = netdev_get_tx_queue(ndev, queue_id);
1178 bdp = txq->dirty_tx;
1179
1180 /* get next bdp of dirty_tx */
1181 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1182
1183 while (bdp != READ_ONCE(txq->bd.cur)) {
1184 /* Order the load of bd.cur and cbd_sc */
1185 rmb();
1186 status = fec16_to_cpu(READ_ONCE(bdp->cbd_sc));
1187 if (status & BD_ENET_TX_READY)
1188 break;
1189
1190 index = fec_enet_get_bd_index(bdp, &txq->bd);
1191
1192 skb = txq->tx_skbuff[index];
1193 txq->tx_skbuff[index] = NULL;
1194 if (!IS_TSO_HEADER(txq, fec32_to_cpu(bdp->cbd_bufaddr)))
1195 dma_unmap_single(&fep->pdev->dev,
1196 fec32_to_cpu(bdp->cbd_bufaddr),
1197 fec16_to_cpu(bdp->cbd_datlen),
1198 DMA_TO_DEVICE);
1199 bdp->cbd_bufaddr = cpu_to_fec32(0);
1200 if (!skb)
1201 goto skb_done;
1202
1203 /* Check for errors. */
1204 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
1205 BD_ENET_TX_RL | BD_ENET_TX_UN |
1206 BD_ENET_TX_CSL)) {
1207 ndev->stats.tx_errors++;
1208 if (status & BD_ENET_TX_HB) /* No heartbeat */
1209 ndev->stats.tx_heartbeat_errors++;
1210 if (status & BD_ENET_TX_LC) /* Late collision */
1211 ndev->stats.tx_window_errors++;
1212 if (status & BD_ENET_TX_RL) /* Retrans limit */
1213 ndev->stats.tx_aborted_errors++;
1214 if (status & BD_ENET_TX_UN) /* Underrun */
1215 ndev->stats.tx_fifo_errors++;
1216 if (status & BD_ENET_TX_CSL) /* Carrier lost */
1217 ndev->stats.tx_carrier_errors++;
1218 } else {
1219 ndev->stats.tx_packets++;
1220 ndev->stats.tx_bytes += skb->len;
1221 }
1222
1223 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS) &&
1224 fep->bufdesc_ex) {
1225 struct skb_shared_hwtstamps shhwtstamps;
1226 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1227
1228 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts), &shhwtstamps);
1229 skb_tstamp_tx(skb, &shhwtstamps);
1230 }
1231
1232 /* Deferred means some collisions occurred during transmit,
1233 * but we eventually sent the packet OK.
1234 */
1235 if (status & BD_ENET_TX_DEF)
1236 ndev->stats.collisions++;
1237
1238 /* Free the sk buffer associated with this last transmit */
1239 dev_kfree_skb_any(skb);
1240 skb_done:
1241 /* Make sure the update to bdp and tx_skbuff are performed
1242 * before dirty_tx
1243 */
1244 wmb();
1245 txq->dirty_tx = bdp;
1246
1247 /* Update pointer to next buffer descriptor to be transmitted */
1248 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
1249
1250 /* Since we have freed up a buffer, the ring is no longer full
1251 */
1252 if (netif_queue_stopped(ndev)) {
1253 entries_free = fec_enet_get_free_txdesc_num(txq);
1254 if (entries_free >= txq->tx_wake_threshold)
1255 netif_tx_wake_queue(nq);
1256 }
1257 }
1258
1259 /* ERR006538: Keep the transmitter going */
1260 if (bdp != txq->bd.cur &&
1261 readl(txq->bd.reg_desc_active) == 0)
1262 writel(0, txq->bd.reg_desc_active);
1263 }
1264
1265 static void
1266 fec_enet_tx(struct net_device *ndev)
1267 {
1268 struct fec_enet_private *fep = netdev_priv(ndev);
1269 u16 queue_id;
1270 /* First process class A queue, then Class B and Best Effort queue */
1271 for_each_set_bit(queue_id, &fep->work_tx, FEC_ENET_MAX_TX_QS) {
1272 clear_bit(queue_id, &fep->work_tx);
1273 fec_enet_tx_queue(ndev, queue_id);
1274 }
1275 return;
1276 }
1277
1278 static int
1279 fec_enet_new_rxbdp(struct net_device *ndev, struct bufdesc *bdp, struct sk_buff *skb)
1280 {
1281 struct fec_enet_private *fep = netdev_priv(ndev);
1282 int off;
1283
1284 off = ((unsigned long)skb->data) & fep->rx_align;
1285 if (off)
1286 skb_reserve(skb, fep->rx_align + 1 - off);
1287
1288 bdp->cbd_bufaddr = cpu_to_fec32(dma_map_single(&fep->pdev->dev, skb->data, FEC_ENET_RX_FRSIZE - fep->rx_align, DMA_FROM_DEVICE));
1289 if (dma_mapping_error(&fep->pdev->dev, fec32_to_cpu(bdp->cbd_bufaddr))) {
1290 if (net_ratelimit())
1291 netdev_err(ndev, "Rx DMA memory map failed\n");
1292 return -ENOMEM;
1293 }
1294
1295 return 0;
1296 }
1297
1298 static bool fec_enet_copybreak(struct net_device *ndev, struct sk_buff **skb,
1299 struct bufdesc *bdp, u32 length, bool swap)
1300 {
1301 struct fec_enet_private *fep = netdev_priv(ndev);
1302 struct sk_buff *new_skb;
1303
1304 if (length > fep->rx_copybreak)
1305 return false;
1306
1307 new_skb = netdev_alloc_skb(ndev, length);
1308 if (!new_skb)
1309 return false;
1310
1311 dma_sync_single_for_cpu(&fep->pdev->dev,
1312 fec32_to_cpu(bdp->cbd_bufaddr),
1313 FEC_ENET_RX_FRSIZE - fep->rx_align,
1314 DMA_FROM_DEVICE);
1315 if (!swap)
1316 memcpy(new_skb->data, (*skb)->data, length);
1317 else
1318 swap_buffer2(new_skb->data, (*skb)->data, length);
1319 *skb = new_skb;
1320
1321 return true;
1322 }
1323
1324 /* During a receive, the bd_rx.cur points to the current incoming buffer.
1325 * When we update through the ring, if the next incoming buffer has
1326 * not been given to the system, we just set the empty indicator,
1327 * effectively tossing the packet.
1328 */
1329 static int
1330 fec_enet_rx_queue(struct net_device *ndev, int budget, u16 queue_id)
1331 {
1332 struct fec_enet_private *fep = netdev_priv(ndev);
1333 struct fec_enet_priv_rx_q *rxq;
1334 struct bufdesc *bdp;
1335 unsigned short status;
1336 struct sk_buff *skb_new = NULL;
1337 struct sk_buff *skb;
1338 ushort pkt_len;
1339 __u8 *data;
1340 int pkt_received = 0;
1341 struct bufdesc_ex *ebdp = NULL;
1342 bool vlan_packet_rcvd = false;
1343 u16 vlan_tag;
1344 int index = 0;
1345 bool is_copybreak;
1346 bool need_swap = fep->quirks & FEC_QUIRK_SWAP_FRAME;
1347
1348 #ifdef CONFIG_M532x
1349 flush_cache_all();
1350 #endif
1351 queue_id = FEC_ENET_GET_QUQUE(queue_id);
1352 rxq = fep->rx_queue[queue_id];
1353
1354 /* First, grab all of the stats for the incoming packet.
1355 * These get messed up if we get called due to a busy condition.
1356 */
1357 bdp = rxq->bd.cur;
1358
1359 while (!((status = fec16_to_cpu(bdp->cbd_sc)) & BD_ENET_RX_EMPTY)) {
1360
1361 if (pkt_received >= budget)
1362 break;
1363 pkt_received++;
1364
1365 writel(FEC_ENET_RXF, fep->hwp + FEC_IEVENT);
1366
1367 /* Check for errors. */
1368 status ^= BD_ENET_RX_LAST;
1369 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
1370 BD_ENET_RX_CR | BD_ENET_RX_OV | BD_ENET_RX_LAST |
1371 BD_ENET_RX_CL)) {
1372 ndev->stats.rx_errors++;
1373 if (status & BD_ENET_RX_OV) {
1374 /* FIFO overrun */
1375 ndev->stats.rx_fifo_errors++;
1376 goto rx_processing_done;
1377 }
1378 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH
1379 | BD_ENET_RX_LAST)) {
1380 /* Frame too long or too short. */
1381 ndev->stats.rx_length_errors++;
1382 if (status & BD_ENET_RX_LAST)
1383 netdev_err(ndev, "rcv is not +last\n");
1384 }
1385 if (status & BD_ENET_RX_CR) /* CRC Error */
1386 ndev->stats.rx_crc_errors++;
1387 /* Report late collisions as a frame error. */
1388 if (status & (BD_ENET_RX_NO | BD_ENET_RX_CL))
1389 ndev->stats.rx_frame_errors++;
1390 goto rx_processing_done;
1391 }
1392
1393 /* Process the incoming frame. */
1394 ndev->stats.rx_packets++;
1395 pkt_len = fec16_to_cpu(bdp->cbd_datlen);
1396 ndev->stats.rx_bytes += pkt_len;
1397
1398 index = fec_enet_get_bd_index(bdp, &rxq->bd);
1399 skb = rxq->rx_skbuff[index];
1400
1401 /* The packet length includes FCS, but we don't want to
1402 * include that when passing upstream as it messes up
1403 * bridging applications.
1404 */
1405 is_copybreak = fec_enet_copybreak(ndev, &skb, bdp, pkt_len - 4,
1406 need_swap);
1407 if (!is_copybreak) {
1408 skb_new = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
1409 if (unlikely(!skb_new)) {
1410 ndev->stats.rx_dropped++;
1411 goto rx_processing_done;
1412 }
1413 dma_unmap_single(&fep->pdev->dev,
1414 fec32_to_cpu(bdp->cbd_bufaddr),
1415 FEC_ENET_RX_FRSIZE - fep->rx_align,
1416 DMA_FROM_DEVICE);
1417 }
1418
1419 prefetch(skb->data - NET_IP_ALIGN);
1420 skb_put(skb, pkt_len - 4);
1421 data = skb->data;
1422 if (!is_copybreak && need_swap)
1423 swap_buffer(data, pkt_len);
1424
1425 /* Extract the enhanced buffer descriptor */
1426 ebdp = NULL;
1427 if (fep->bufdesc_ex)
1428 ebdp = (struct bufdesc_ex *)bdp;
1429
1430 /* If this is a VLAN packet remove the VLAN Tag */
1431 vlan_packet_rcvd = false;
1432 if ((ndev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1433 fep->bufdesc_ex &&
1434 (ebdp->cbd_esc & cpu_to_fec32(BD_ENET_RX_VLAN))) {
1435 /* Push and remove the vlan tag */
1436 struct vlan_hdr *vlan_header =
1437 (struct vlan_hdr *) (data + ETH_HLEN);
1438 vlan_tag = ntohs(vlan_header->h_vlan_TCI);
1439
1440 vlan_packet_rcvd = true;
1441
1442 memmove(skb->data + VLAN_HLEN, data, ETH_ALEN * 2);
1443 skb_pull(skb, VLAN_HLEN);
1444 }
1445
1446 skb->protocol = eth_type_trans(skb, ndev);
1447
1448 /* Get receive timestamp from the skb */
1449 if (fep->hwts_rx_en && fep->bufdesc_ex)
1450 fec_enet_hwtstamp(fep, fec32_to_cpu(ebdp->ts),
1451 skb_hwtstamps(skb));
1452
1453 if (fep->bufdesc_ex &&
1454 (fep->csum_flags & FLAG_RX_CSUM_ENABLED)) {
1455 if (!(ebdp->cbd_esc & cpu_to_fec32(FLAG_RX_CSUM_ERROR))) {
1456 /* don't check it */
1457 skb->ip_summed = CHECKSUM_UNNECESSARY;
1458 } else {
1459 skb_checksum_none_assert(skb);
1460 }
1461 }
1462
1463 /* Handle received VLAN packets */
1464 if (vlan_packet_rcvd)
1465 __vlan_hwaccel_put_tag(skb,
1466 htons(ETH_P_8021Q),
1467 vlan_tag);
1468
1469 napi_gro_receive(&fep->napi, skb);
1470
1471 if (is_copybreak) {
1472 dma_sync_single_for_device(&fep->pdev->dev,
1473 fec32_to_cpu(bdp->cbd_bufaddr),
1474 FEC_ENET_RX_FRSIZE - fep->rx_align,
1475 DMA_FROM_DEVICE);
1476 } else {
1477 rxq->rx_skbuff[index] = skb_new;
1478 fec_enet_new_rxbdp(ndev, bdp, skb_new);
1479 }
1480
1481 rx_processing_done:
1482 /* Clear the status flags for this buffer */
1483 status &= ~BD_ENET_RX_STATS;
1484
1485 /* Mark the buffer empty */
1486 status |= BD_ENET_RX_EMPTY;
1487
1488 if (fep->bufdesc_ex) {
1489 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
1490
1491 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
1492 ebdp->cbd_prot = 0;
1493 ebdp->cbd_bdu = 0;
1494 }
1495 /* Make sure the updates to rest of the descriptor are
1496 * performed before transferring ownership.
1497 */
1498 wmb();
1499 bdp->cbd_sc = cpu_to_fec16(status);
1500
1501 /* Update BD pointer to next entry */
1502 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
1503
1504 /* Doing this here will keep the FEC running while we process
1505 * incoming frames. On a heavily loaded network, we should be
1506 * able to keep up at the expense of system resources.
1507 */
1508 writel(0, rxq->bd.reg_desc_active);
1509 }
1510 rxq->bd.cur = bdp;
1511 return pkt_received;
1512 }
1513
1514 static int
1515 fec_enet_rx(struct net_device *ndev, int budget)
1516 {
1517 int pkt_received = 0;
1518 u16 queue_id;
1519 struct fec_enet_private *fep = netdev_priv(ndev);
1520
1521 for_each_set_bit(queue_id, &fep->work_rx, FEC_ENET_MAX_RX_QS) {
1522 int ret;
1523
1524 ret = fec_enet_rx_queue(ndev,
1525 budget - pkt_received, queue_id);
1526
1527 if (ret < budget - pkt_received)
1528 clear_bit(queue_id, &fep->work_rx);
1529
1530 pkt_received += ret;
1531 }
1532 return pkt_received;
1533 }
1534
1535 static bool
1536 fec_enet_collect_events(struct fec_enet_private *fep, uint int_events)
1537 {
1538 if (int_events == 0)
1539 return false;
1540
1541 if (int_events & FEC_ENET_RXF)
1542 fep->work_rx |= (1 << 2);
1543 if (int_events & FEC_ENET_RXF_1)
1544 fep->work_rx |= (1 << 0);
1545 if (int_events & FEC_ENET_RXF_2)
1546 fep->work_rx |= (1 << 1);
1547
1548 if (int_events & FEC_ENET_TXF)
1549 fep->work_tx |= (1 << 2);
1550 if (int_events & FEC_ENET_TXF_1)
1551 fep->work_tx |= (1 << 0);
1552 if (int_events & FEC_ENET_TXF_2)
1553 fep->work_tx |= (1 << 1);
1554
1555 return true;
1556 }
1557
1558 static irqreturn_t
1559 fec_enet_interrupt(int irq, void *dev_id)
1560 {
1561 struct net_device *ndev = dev_id;
1562 struct fec_enet_private *fep = netdev_priv(ndev);
1563 uint int_events;
1564 irqreturn_t ret = IRQ_NONE;
1565
1566 int_events = readl(fep->hwp + FEC_IEVENT);
1567 writel(int_events, fep->hwp + FEC_IEVENT);
1568 fec_enet_collect_events(fep, int_events);
1569
1570 if ((fep->work_tx || fep->work_rx) && fep->link) {
1571 ret = IRQ_HANDLED;
1572
1573 if (napi_schedule_prep(&fep->napi)) {
1574 /* Disable the NAPI interrupts */
1575 writel(FEC_NAPI_IMASK, fep->hwp + FEC_IMASK);
1576 __napi_schedule(&fep->napi);
1577 }
1578 }
1579
1580 if (int_events & FEC_ENET_MII) {
1581 ret = IRQ_HANDLED;
1582 complete(&fep->mdio_done);
1583 }
1584
1585 if (fep->ptp_clock)
1586 fec_ptp_check_pps_event(fep);
1587
1588 return ret;
1589 }
1590
1591 static int fec_enet_rx_napi(struct napi_struct *napi, int budget)
1592 {
1593 struct net_device *ndev = napi->dev;
1594 struct fec_enet_private *fep = netdev_priv(ndev);
1595 int pkts;
1596
1597 pkts = fec_enet_rx(ndev, budget);
1598
1599 fec_enet_tx(ndev);
1600
1601 if (pkts < budget) {
1602 napi_complete(napi);
1603 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
1604 }
1605 return pkts;
1606 }
1607
1608 /* ------------------------------------------------------------------------- */
1609 static void fec_get_mac(struct net_device *ndev)
1610 {
1611 struct fec_enet_private *fep = netdev_priv(ndev);
1612 struct fec_platform_data *pdata = dev_get_platdata(&fep->pdev->dev);
1613 unsigned char *iap, tmpaddr[ETH_ALEN];
1614
1615 /*
1616 * try to get mac address in following order:
1617 *
1618 * 1) module parameter via kernel command line in form
1619 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
1620 */
1621 iap = macaddr;
1622
1623 /*
1624 * 2) from device tree data
1625 */
1626 if (!is_valid_ether_addr(iap)) {
1627 struct device_node *np = fep->pdev->dev.of_node;
1628 if (np) {
1629 const char *mac = of_get_mac_address(np);
1630 if (mac)
1631 iap = (unsigned char *) mac;
1632 }
1633 }
1634
1635 /*
1636 * 3) from flash or fuse (via platform data)
1637 */
1638 if (!is_valid_ether_addr(iap)) {
1639 #ifdef CONFIG_M5272
1640 if (FEC_FLASHMAC)
1641 iap = (unsigned char *)FEC_FLASHMAC;
1642 #else
1643 if (pdata)
1644 iap = (unsigned char *)&pdata->mac;
1645 #endif
1646 }
1647
1648 /*
1649 * 4) FEC mac registers set by bootloader
1650 */
1651 if (!is_valid_ether_addr(iap)) {
1652 *((__be32 *) &tmpaddr[0]) =
1653 cpu_to_be32(readl(fep->hwp + FEC_ADDR_LOW));
1654 *((__be16 *) &tmpaddr[4]) =
1655 cpu_to_be16(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
1656 iap = &tmpaddr[0];
1657 }
1658
1659 /*
1660 * 5) random mac address
1661 */
1662 if (!is_valid_ether_addr(iap)) {
1663 /* Report it and use a random ethernet address instead */
1664 netdev_err(ndev, "Invalid MAC address: %pM\n", iap);
1665 eth_hw_addr_random(ndev);
1666 netdev_info(ndev, "Using random MAC address: %pM\n",
1667 ndev->dev_addr);
1668 return;
1669 }
1670
1671 memcpy(ndev->dev_addr, iap, ETH_ALEN);
1672
1673 /* Adjust MAC if using macaddr */
1674 if (iap == macaddr)
1675 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->dev_id;
1676 }
1677
1678 /* ------------------------------------------------------------------------- */
1679
1680 /*
1681 * Phy section
1682 */
1683 static void fec_enet_adjust_link(struct net_device *ndev)
1684 {
1685 struct fec_enet_private *fep = netdev_priv(ndev);
1686 struct phy_device *phy_dev = ndev->phydev;
1687 int status_change = 0;
1688
1689 /* Prevent a state halted on mii error */
1690 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
1691 phy_dev->state = PHY_RESUMING;
1692 return;
1693 }
1694
1695 /*
1696 * If the netdev is down, or is going down, we're not interested
1697 * in link state events, so just mark our idea of the link as down
1698 * and ignore the event.
1699 */
1700 if (!netif_running(ndev) || !netif_device_present(ndev)) {
1701 fep->link = 0;
1702 } else if (phy_dev->link) {
1703 if (!fep->link) {
1704 fep->link = phy_dev->link;
1705 status_change = 1;
1706 }
1707
1708 if (fep->full_duplex != phy_dev->duplex) {
1709 fep->full_duplex = phy_dev->duplex;
1710 status_change = 1;
1711 }
1712
1713 if (phy_dev->speed != fep->speed) {
1714 fep->speed = phy_dev->speed;
1715 status_change = 1;
1716 }
1717
1718 /* if any of the above changed restart the FEC */
1719 if (status_change) {
1720 napi_disable(&fep->napi);
1721 netif_tx_lock_bh(ndev);
1722 fec_restart(ndev);
1723 netif_wake_queue(ndev);
1724 netif_tx_unlock_bh(ndev);
1725 napi_enable(&fep->napi);
1726 }
1727 } else {
1728 if (fep->link) {
1729 napi_disable(&fep->napi);
1730 netif_tx_lock_bh(ndev);
1731 fec_stop(ndev);
1732 netif_tx_unlock_bh(ndev);
1733 napi_enable(&fep->napi);
1734 fep->link = phy_dev->link;
1735 status_change = 1;
1736 }
1737 }
1738
1739 if (status_change)
1740 phy_print_status(phy_dev);
1741 }
1742
1743 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
1744 {
1745 struct fec_enet_private *fep = bus->priv;
1746 struct device *dev = &fep->pdev->dev;
1747 unsigned long time_left;
1748 int ret = 0;
1749
1750 ret = pm_runtime_get_sync(dev);
1751 if (ret < 0)
1752 return ret;
1753
1754 fep->mii_timeout = 0;
1755 reinit_completion(&fep->mdio_done);
1756
1757 /* start a read op */
1758 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
1759 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1760 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
1761
1762 /* wait for end of transfer */
1763 time_left = wait_for_completion_timeout(&fep->mdio_done,
1764 usecs_to_jiffies(FEC_MII_TIMEOUT));
1765 if (time_left == 0) {
1766 fep->mii_timeout = 1;
1767 netdev_err(fep->netdev, "MDIO read timeout\n");
1768 ret = -ETIMEDOUT;
1769 goto out;
1770 }
1771
1772 ret = FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
1773
1774 out:
1775 pm_runtime_mark_last_busy(dev);
1776 pm_runtime_put_autosuspend(dev);
1777
1778 return ret;
1779 }
1780
1781 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
1782 u16 value)
1783 {
1784 struct fec_enet_private *fep = bus->priv;
1785 struct device *dev = &fep->pdev->dev;
1786 unsigned long time_left;
1787 int ret;
1788
1789 ret = pm_runtime_get_sync(dev);
1790 if (ret < 0)
1791 return ret;
1792 else
1793 ret = 0;
1794
1795 fep->mii_timeout = 0;
1796 reinit_completion(&fep->mdio_done);
1797
1798 /* start a write op */
1799 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
1800 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
1801 FEC_MMFR_TA | FEC_MMFR_DATA(value),
1802 fep->hwp + FEC_MII_DATA);
1803
1804 /* wait for end of transfer */
1805 time_left = wait_for_completion_timeout(&fep->mdio_done,
1806 usecs_to_jiffies(FEC_MII_TIMEOUT));
1807 if (time_left == 0) {
1808 fep->mii_timeout = 1;
1809 netdev_err(fep->netdev, "MDIO write timeout\n");
1810 ret = -ETIMEDOUT;
1811 }
1812
1813 pm_runtime_mark_last_busy(dev);
1814 pm_runtime_put_autosuspend(dev);
1815
1816 return ret;
1817 }
1818
1819 static int fec_enet_clk_enable(struct net_device *ndev, bool enable)
1820 {
1821 struct fec_enet_private *fep = netdev_priv(ndev);
1822 int ret;
1823
1824 if (enable) {
1825 ret = clk_prepare_enable(fep->clk_ahb);
1826 if (ret)
1827 return ret;
1828 if (fep->clk_enet_out) {
1829 ret = clk_prepare_enable(fep->clk_enet_out);
1830 if (ret)
1831 goto failed_clk_enet_out;
1832 }
1833 if (fep->clk_ptp) {
1834 mutex_lock(&fep->ptp_clk_mutex);
1835 ret = clk_prepare_enable(fep->clk_ptp);
1836 if (ret) {
1837 mutex_unlock(&fep->ptp_clk_mutex);
1838 goto failed_clk_ptp;
1839 } else {
1840 fep->ptp_clk_on = true;
1841 }
1842 mutex_unlock(&fep->ptp_clk_mutex);
1843 }
1844 if (fep->clk_ref) {
1845 ret = clk_prepare_enable(fep->clk_ref);
1846 if (ret)
1847 goto failed_clk_ref;
1848 }
1849 } else {
1850 clk_disable_unprepare(fep->clk_ahb);
1851 if (fep->clk_enet_out)
1852 clk_disable_unprepare(fep->clk_enet_out);
1853 if (fep->clk_ptp) {
1854 mutex_lock(&fep->ptp_clk_mutex);
1855 clk_disable_unprepare(fep->clk_ptp);
1856 fep->ptp_clk_on = false;
1857 mutex_unlock(&fep->ptp_clk_mutex);
1858 }
1859 if (fep->clk_ref)
1860 clk_disable_unprepare(fep->clk_ref);
1861 }
1862
1863 return 0;
1864
1865 failed_clk_ref:
1866 if (fep->clk_ref)
1867 clk_disable_unprepare(fep->clk_ref);
1868 failed_clk_ptp:
1869 if (fep->clk_enet_out)
1870 clk_disable_unprepare(fep->clk_enet_out);
1871 failed_clk_enet_out:
1872 clk_disable_unprepare(fep->clk_ahb);
1873
1874 return ret;
1875 }
1876
1877 static int fec_enet_mii_probe(struct net_device *ndev)
1878 {
1879 struct fec_enet_private *fep = netdev_priv(ndev);
1880 struct phy_device *phy_dev = NULL;
1881 char mdio_bus_id[MII_BUS_ID_SIZE];
1882 char phy_name[MII_BUS_ID_SIZE + 3];
1883 int phy_id;
1884 int dev_id = fep->dev_id;
1885
1886 if (fep->phy_node) {
1887 phy_dev = of_phy_connect(ndev, fep->phy_node,
1888 &fec_enet_adjust_link, 0,
1889 fep->phy_interface);
1890 if (!phy_dev)
1891 return -ENODEV;
1892 } else {
1893 /* check for attached phy */
1894 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
1895 if (!mdiobus_is_registered_device(fep->mii_bus, phy_id))
1896 continue;
1897 if (dev_id--)
1898 continue;
1899 strlcpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
1900 break;
1901 }
1902
1903 if (phy_id >= PHY_MAX_ADDR) {
1904 netdev_info(ndev, "no PHY, assuming direct connection to switch\n");
1905 strlcpy(mdio_bus_id, "fixed-0", MII_BUS_ID_SIZE);
1906 phy_id = 0;
1907 }
1908
1909 snprintf(phy_name, sizeof(phy_name),
1910 PHY_ID_FMT, mdio_bus_id, phy_id);
1911 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link,
1912 fep->phy_interface);
1913 }
1914
1915 if (IS_ERR(phy_dev)) {
1916 netdev_err(ndev, "could not attach to PHY\n");
1917 return PTR_ERR(phy_dev);
1918 }
1919
1920 /* mask with MAC supported features */
1921 if (fep->quirks & FEC_QUIRK_HAS_GBIT) {
1922 phy_dev->supported &= PHY_GBIT_FEATURES;
1923 phy_dev->supported &= ~SUPPORTED_1000baseT_Half;
1924 #if !defined(CONFIG_M5272)
1925 phy_dev->supported |= SUPPORTED_Pause;
1926 #endif
1927 }
1928 else
1929 phy_dev->supported &= PHY_BASIC_FEATURES;
1930
1931 phy_dev->advertising = phy_dev->supported;
1932
1933 fep->link = 0;
1934 fep->full_duplex = 0;
1935
1936 phy_attached_info(phy_dev);
1937
1938 return 0;
1939 }
1940
1941 static int fec_enet_mii_init(struct platform_device *pdev)
1942 {
1943 static struct mii_bus *fec0_mii_bus;
1944 struct net_device *ndev = platform_get_drvdata(pdev);
1945 struct fec_enet_private *fep = netdev_priv(ndev);
1946 struct device_node *node;
1947 int err = -ENXIO;
1948 u32 mii_speed, holdtime;
1949
1950 /*
1951 * The i.MX28 dual fec interfaces are not equal.
1952 * Here are the differences:
1953 *
1954 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1955 * - fec0 acts as the 1588 time master while fec1 is slave
1956 * - external phys can only be configured by fec0
1957 *
1958 * That is to say fec1 can not work independently. It only works
1959 * when fec0 is working. The reason behind this design is that the
1960 * second interface is added primarily for Switch mode.
1961 *
1962 * Because of the last point above, both phys are attached on fec0
1963 * mdio interface in board design, and need to be configured by
1964 * fec0 mii_bus.
1965 */
1966 if ((fep->quirks & FEC_QUIRK_SINGLE_MDIO) && fep->dev_id > 0) {
1967 /* fec1 uses fec0 mii_bus */
1968 if (mii_cnt && fec0_mii_bus) {
1969 fep->mii_bus = fec0_mii_bus;
1970 mii_cnt++;
1971 return 0;
1972 }
1973 return -ENOENT;
1974 }
1975
1976 fep->mii_timeout = 0;
1977
1978 /*
1979 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1980 *
1981 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1982 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1983 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1984 * document.
1985 */
1986 mii_speed = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 5000000);
1987 if (fep->quirks & FEC_QUIRK_ENET_MAC)
1988 mii_speed--;
1989 if (mii_speed > 63) {
1990 dev_err(&pdev->dev,
1991 "fec clock (%lu) to fast to get right mii speed\n",
1992 clk_get_rate(fep->clk_ipg));
1993 err = -EINVAL;
1994 goto err_out;
1995 }
1996
1997 /*
1998 * The i.MX28 and i.MX6 types have another filed in the MSCR (aka
1999 * MII_SPEED) register that defines the MDIO output hold time. Earlier
2000 * versions are RAZ there, so just ignore the difference and write the
2001 * register always.
2002 * The minimal hold time according to IEE802.3 (clause 22) is 10 ns.
2003 * HOLDTIME + 1 is the number of clk cycles the fec is holding the
2004 * output.
2005 * The HOLDTIME bitfield takes values between 0 and 7 (inclusive).
2006 * Given that ceil(clkrate / 5000000) <= 64, the calculation for
2007 * holdtime cannot result in a value greater than 3.
2008 */
2009 holdtime = DIV_ROUND_UP(clk_get_rate(fep->clk_ipg), 100000000) - 1;
2010
2011 fep->phy_speed = mii_speed << 1 | holdtime << 8;
2012
2013 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
2014
2015 fep->mii_bus = mdiobus_alloc();
2016 if (fep->mii_bus == NULL) {
2017 err = -ENOMEM;
2018 goto err_out;
2019 }
2020
2021 fep->mii_bus->name = "fec_enet_mii_bus";
2022 fep->mii_bus->read = fec_enet_mdio_read;
2023 fep->mii_bus->write = fec_enet_mdio_write;
2024 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
2025 pdev->name, fep->dev_id + 1);
2026 fep->mii_bus->priv = fep;
2027 fep->mii_bus->parent = &pdev->dev;
2028
2029 node = of_get_child_by_name(pdev->dev.of_node, "mdio");
2030 if (node) {
2031 err = of_mdiobus_register(fep->mii_bus, node);
2032 of_node_put(node);
2033 } else {
2034 err = mdiobus_register(fep->mii_bus);
2035 }
2036
2037 if (err)
2038 goto err_out_free_mdiobus;
2039
2040 mii_cnt++;
2041
2042 /* save fec0 mii_bus */
2043 if (fep->quirks & FEC_QUIRK_SINGLE_MDIO)
2044 fec0_mii_bus = fep->mii_bus;
2045
2046 return 0;
2047
2048 err_out_free_mdiobus:
2049 mdiobus_free(fep->mii_bus);
2050 err_out:
2051 return err;
2052 }
2053
2054 static void fec_enet_mii_remove(struct fec_enet_private *fep)
2055 {
2056 if (--mii_cnt == 0) {
2057 mdiobus_unregister(fep->mii_bus);
2058 mdiobus_free(fep->mii_bus);
2059 }
2060 }
2061
2062 static void fec_enet_get_drvinfo(struct net_device *ndev,
2063 struct ethtool_drvinfo *info)
2064 {
2065 struct fec_enet_private *fep = netdev_priv(ndev);
2066
2067 strlcpy(info->driver, fep->pdev->dev.driver->name,
2068 sizeof(info->driver));
2069 strlcpy(info->version, "Revision: 1.0", sizeof(info->version));
2070 strlcpy(info->bus_info, dev_name(&ndev->dev), sizeof(info->bus_info));
2071 }
2072
2073 static int fec_enet_get_regs_len(struct net_device *ndev)
2074 {
2075 struct fec_enet_private *fep = netdev_priv(ndev);
2076 struct resource *r;
2077 int s = 0;
2078
2079 r = platform_get_resource(fep->pdev, IORESOURCE_MEM, 0);
2080 if (r)
2081 s = resource_size(r);
2082
2083 return s;
2084 }
2085
2086 /* List of registers that can be safety be read to dump them with ethtool */
2087 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
2088 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
2089 static u32 fec_enet_register_offset[] = {
2090 FEC_IEVENT, FEC_IMASK, FEC_R_DES_ACTIVE_0, FEC_X_DES_ACTIVE_0,
2091 FEC_ECNTRL, FEC_MII_DATA, FEC_MII_SPEED, FEC_MIB_CTRLSTAT, FEC_R_CNTRL,
2092 FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH, FEC_OPD, FEC_TXIC0, FEC_TXIC1,
2093 FEC_TXIC2, FEC_RXIC0, FEC_RXIC1, FEC_RXIC2, FEC_HASH_TABLE_HIGH,
2094 FEC_HASH_TABLE_LOW, FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW,
2095 FEC_X_WMRK, FEC_R_BOUND, FEC_R_FSTART, FEC_R_DES_START_1,
2096 FEC_X_DES_START_1, FEC_R_BUFF_SIZE_1, FEC_R_DES_START_2,
2097 FEC_X_DES_START_2, FEC_R_BUFF_SIZE_2, FEC_R_DES_START_0,
2098 FEC_X_DES_START_0, FEC_R_BUFF_SIZE_0, FEC_R_FIFO_RSFL, FEC_R_FIFO_RSEM,
2099 FEC_R_FIFO_RAEM, FEC_R_FIFO_RAFL, FEC_RACC, FEC_RCMR_1, FEC_RCMR_2,
2100 FEC_DMA_CFG_1, FEC_DMA_CFG_2, FEC_R_DES_ACTIVE_1, FEC_X_DES_ACTIVE_1,
2101 FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_2, FEC_QOS_SCHEME,
2102 RMON_T_DROP, RMON_T_PACKETS, RMON_T_BC_PKT, RMON_T_MC_PKT,
2103 RMON_T_CRC_ALIGN, RMON_T_UNDERSIZE, RMON_T_OVERSIZE, RMON_T_FRAG,
2104 RMON_T_JAB, RMON_T_COL, RMON_T_P64, RMON_T_P65TO127, RMON_T_P128TO255,
2105 RMON_T_P256TO511, RMON_T_P512TO1023, RMON_T_P1024TO2047,
2106 RMON_T_P_GTE2048, RMON_T_OCTETS,
2107 IEEE_T_DROP, IEEE_T_FRAME_OK, IEEE_T_1COL, IEEE_T_MCOL, IEEE_T_DEF,
2108 IEEE_T_LCOL, IEEE_T_EXCOL, IEEE_T_MACERR, IEEE_T_CSERR, IEEE_T_SQE,
2109 IEEE_T_FDXFC, IEEE_T_OCTETS_OK,
2110 RMON_R_PACKETS, RMON_R_BC_PKT, RMON_R_MC_PKT, RMON_R_CRC_ALIGN,
2111 RMON_R_UNDERSIZE, RMON_R_OVERSIZE, RMON_R_FRAG, RMON_R_JAB,
2112 RMON_R_RESVD_O, RMON_R_P64, RMON_R_P65TO127, RMON_R_P128TO255,
2113 RMON_R_P256TO511, RMON_R_P512TO1023, RMON_R_P1024TO2047,
2114 RMON_R_P_GTE2048, RMON_R_OCTETS,
2115 IEEE_R_DROP, IEEE_R_FRAME_OK, IEEE_R_CRC, IEEE_R_ALIGN, IEEE_R_MACERR,
2116 IEEE_R_FDXFC, IEEE_R_OCTETS_OK
2117 };
2118 #else
2119 static u32 fec_enet_register_offset[] = {
2120 FEC_ECNTRL, FEC_IEVENT, FEC_IMASK, FEC_IVEC, FEC_R_DES_ACTIVE_0,
2121 FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2, FEC_X_DES_ACTIVE_0,
2122 FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2, FEC_MII_DATA, FEC_MII_SPEED,
2123 FEC_R_BOUND, FEC_R_FSTART, FEC_X_WMRK, FEC_X_FSTART, FEC_R_CNTRL,
2124 FEC_MAX_FRM_LEN, FEC_X_CNTRL, FEC_ADDR_LOW, FEC_ADDR_HIGH,
2125 FEC_GRP_HASH_TABLE_HIGH, FEC_GRP_HASH_TABLE_LOW, FEC_R_DES_START_0,
2126 FEC_R_DES_START_1, FEC_R_DES_START_2, FEC_X_DES_START_0,
2127 FEC_X_DES_START_1, FEC_X_DES_START_2, FEC_R_BUFF_SIZE_0,
2128 FEC_R_BUFF_SIZE_1, FEC_R_BUFF_SIZE_2
2129 };
2130 #endif
2131
2132 static void fec_enet_get_regs(struct net_device *ndev,
2133 struct ethtool_regs *regs, void *regbuf)
2134 {
2135 struct fec_enet_private *fep = netdev_priv(ndev);
2136 u32 __iomem *theregs = (u32 __iomem *)fep->hwp;
2137 u32 *buf = (u32 *)regbuf;
2138 u32 i, off;
2139
2140 memset(buf, 0, regs->len);
2141
2142 for (i = 0; i < ARRAY_SIZE(fec_enet_register_offset); i++) {
2143 off = fec_enet_register_offset[i] / 4;
2144 buf[off] = readl(&theregs[off]);
2145 }
2146 }
2147
2148 static int fec_enet_get_ts_info(struct net_device *ndev,
2149 struct ethtool_ts_info *info)
2150 {
2151 struct fec_enet_private *fep = netdev_priv(ndev);
2152
2153 if (fep->bufdesc_ex) {
2154
2155 info->so_timestamping = SOF_TIMESTAMPING_TX_SOFTWARE |
2156 SOF_TIMESTAMPING_RX_SOFTWARE |
2157 SOF_TIMESTAMPING_SOFTWARE |
2158 SOF_TIMESTAMPING_TX_HARDWARE |
2159 SOF_TIMESTAMPING_RX_HARDWARE |
2160 SOF_TIMESTAMPING_RAW_HARDWARE;
2161 if (fep->ptp_clock)
2162 info->phc_index = ptp_clock_index(fep->ptp_clock);
2163 else
2164 info->phc_index = -1;
2165
2166 info->tx_types = (1 << HWTSTAMP_TX_OFF) |
2167 (1 << HWTSTAMP_TX_ON);
2168
2169 info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) |
2170 (1 << HWTSTAMP_FILTER_ALL);
2171 return 0;
2172 } else {
2173 return ethtool_op_get_ts_info(ndev, info);
2174 }
2175 }
2176
2177 #if !defined(CONFIG_M5272)
2178
2179 static void fec_enet_get_pauseparam(struct net_device *ndev,
2180 struct ethtool_pauseparam *pause)
2181 {
2182 struct fec_enet_private *fep = netdev_priv(ndev);
2183
2184 pause->autoneg = (fep->pause_flag & FEC_PAUSE_FLAG_AUTONEG) != 0;
2185 pause->tx_pause = (fep->pause_flag & FEC_PAUSE_FLAG_ENABLE) != 0;
2186 pause->rx_pause = pause->tx_pause;
2187 }
2188
2189 static int fec_enet_set_pauseparam(struct net_device *ndev,
2190 struct ethtool_pauseparam *pause)
2191 {
2192 struct fec_enet_private *fep = netdev_priv(ndev);
2193
2194 if (!ndev->phydev)
2195 return -ENODEV;
2196
2197 if (pause->tx_pause != pause->rx_pause) {
2198 netdev_info(ndev,
2199 "hardware only support enable/disable both tx and rx");
2200 return -EINVAL;
2201 }
2202
2203 fep->pause_flag = 0;
2204
2205 /* tx pause must be same as rx pause */
2206 fep->pause_flag |= pause->rx_pause ? FEC_PAUSE_FLAG_ENABLE : 0;
2207 fep->pause_flag |= pause->autoneg ? FEC_PAUSE_FLAG_AUTONEG : 0;
2208
2209 if (pause->rx_pause || pause->autoneg) {
2210 ndev->phydev->supported |= ADVERTISED_Pause;
2211 ndev->phydev->advertising |= ADVERTISED_Pause;
2212 } else {
2213 ndev->phydev->supported &= ~ADVERTISED_Pause;
2214 ndev->phydev->advertising &= ~ADVERTISED_Pause;
2215 }
2216
2217 if (pause->autoneg) {
2218 if (netif_running(ndev))
2219 fec_stop(ndev);
2220 phy_start_aneg(ndev->phydev);
2221 }
2222 if (netif_running(ndev)) {
2223 napi_disable(&fep->napi);
2224 netif_tx_lock_bh(ndev);
2225 fec_restart(ndev);
2226 netif_wake_queue(ndev);
2227 netif_tx_unlock_bh(ndev);
2228 napi_enable(&fep->napi);
2229 }
2230
2231 return 0;
2232 }
2233
2234 static const struct fec_stat {
2235 char name[ETH_GSTRING_LEN];
2236 u16 offset;
2237 } fec_stats[] = {
2238 /* RMON TX */
2239 { "tx_dropped", RMON_T_DROP },
2240 { "tx_packets", RMON_T_PACKETS },
2241 { "tx_broadcast", RMON_T_BC_PKT },
2242 { "tx_multicast", RMON_T_MC_PKT },
2243 { "tx_crc_errors", RMON_T_CRC_ALIGN },
2244 { "tx_undersize", RMON_T_UNDERSIZE },
2245 { "tx_oversize", RMON_T_OVERSIZE },
2246 { "tx_fragment", RMON_T_FRAG },
2247 { "tx_jabber", RMON_T_JAB },
2248 { "tx_collision", RMON_T_COL },
2249 { "tx_64byte", RMON_T_P64 },
2250 { "tx_65to127byte", RMON_T_P65TO127 },
2251 { "tx_128to255byte", RMON_T_P128TO255 },
2252 { "tx_256to511byte", RMON_T_P256TO511 },
2253 { "tx_512to1023byte", RMON_T_P512TO1023 },
2254 { "tx_1024to2047byte", RMON_T_P1024TO2047 },
2255 { "tx_GTE2048byte", RMON_T_P_GTE2048 },
2256 { "tx_octets", RMON_T_OCTETS },
2257
2258 /* IEEE TX */
2259 { "IEEE_tx_drop", IEEE_T_DROP },
2260 { "IEEE_tx_frame_ok", IEEE_T_FRAME_OK },
2261 { "IEEE_tx_1col", IEEE_T_1COL },
2262 { "IEEE_tx_mcol", IEEE_T_MCOL },
2263 { "IEEE_tx_def", IEEE_T_DEF },
2264 { "IEEE_tx_lcol", IEEE_T_LCOL },
2265 { "IEEE_tx_excol", IEEE_T_EXCOL },
2266 { "IEEE_tx_macerr", IEEE_T_MACERR },
2267 { "IEEE_tx_cserr", IEEE_T_CSERR },
2268 { "IEEE_tx_sqe", IEEE_T_SQE },
2269 { "IEEE_tx_fdxfc", IEEE_T_FDXFC },
2270 { "IEEE_tx_octets_ok", IEEE_T_OCTETS_OK },
2271
2272 /* RMON RX */
2273 { "rx_packets", RMON_R_PACKETS },
2274 { "rx_broadcast", RMON_R_BC_PKT },
2275 { "rx_multicast", RMON_R_MC_PKT },
2276 { "rx_crc_errors", RMON_R_CRC_ALIGN },
2277 { "rx_undersize", RMON_R_UNDERSIZE },
2278 { "rx_oversize", RMON_R_OVERSIZE },
2279 { "rx_fragment", RMON_R_FRAG },
2280 { "rx_jabber", RMON_R_JAB },
2281 { "rx_64byte", RMON_R_P64 },
2282 { "rx_65to127byte", RMON_R_P65TO127 },
2283 { "rx_128to255byte", RMON_R_P128TO255 },
2284 { "rx_256to511byte", RMON_R_P256TO511 },
2285 { "rx_512to1023byte", RMON_R_P512TO1023 },
2286 { "rx_1024to2047byte", RMON_R_P1024TO2047 },
2287 { "rx_GTE2048byte", RMON_R_P_GTE2048 },
2288 { "rx_octets", RMON_R_OCTETS },
2289
2290 /* IEEE RX */
2291 { "IEEE_rx_drop", IEEE_R_DROP },
2292 { "IEEE_rx_frame_ok", IEEE_R_FRAME_OK },
2293 { "IEEE_rx_crc", IEEE_R_CRC },
2294 { "IEEE_rx_align", IEEE_R_ALIGN },
2295 { "IEEE_rx_macerr", IEEE_R_MACERR },
2296 { "IEEE_rx_fdxfc", IEEE_R_FDXFC },
2297 { "IEEE_rx_octets_ok", IEEE_R_OCTETS_OK },
2298 };
2299
2300 static void fec_enet_get_ethtool_stats(struct net_device *dev,
2301 struct ethtool_stats *stats, u64 *data)
2302 {
2303 struct fec_enet_private *fep = netdev_priv(dev);
2304 int i;
2305
2306 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2307 data[i] = readl(fep->hwp + fec_stats[i].offset);
2308 }
2309
2310 static void fec_enet_get_strings(struct net_device *netdev,
2311 u32 stringset, u8 *data)
2312 {
2313 int i;
2314 switch (stringset) {
2315 case ETH_SS_STATS:
2316 for (i = 0; i < ARRAY_SIZE(fec_stats); i++)
2317 memcpy(data + i * ETH_GSTRING_LEN,
2318 fec_stats[i].name, ETH_GSTRING_LEN);
2319 break;
2320 }
2321 }
2322
2323 static int fec_enet_get_sset_count(struct net_device *dev, int sset)
2324 {
2325 switch (sset) {
2326 case ETH_SS_STATS:
2327 return ARRAY_SIZE(fec_stats);
2328 default:
2329 return -EOPNOTSUPP;
2330 }
2331 }
2332 #endif /* !defined(CONFIG_M5272) */
2333
2334 static int fec_enet_nway_reset(struct net_device *dev)
2335 {
2336 struct phy_device *phydev = dev->phydev;
2337
2338 if (!phydev)
2339 return -ENODEV;
2340
2341 return genphy_restart_aneg(phydev);
2342 }
2343
2344 /* ITR clock source is enet system clock (clk_ahb).
2345 * TCTT unit is cycle_ns * 64 cycle
2346 * So, the ICTT value = X us / (cycle_ns * 64)
2347 */
2348 static int fec_enet_us_to_itr_clock(struct net_device *ndev, int us)
2349 {
2350 struct fec_enet_private *fep = netdev_priv(ndev);
2351
2352 return us * (fep->itr_clk_rate / 64000) / 1000;
2353 }
2354
2355 /* Set threshold for interrupt coalescing */
2356 static void fec_enet_itr_coal_set(struct net_device *ndev)
2357 {
2358 struct fec_enet_private *fep = netdev_priv(ndev);
2359 int rx_itr, tx_itr;
2360
2361 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2362 return;
2363
2364 /* Must be greater than zero to avoid unpredictable behavior */
2365 if (!fep->rx_time_itr || !fep->rx_pkts_itr ||
2366 !fep->tx_time_itr || !fep->tx_pkts_itr)
2367 return;
2368
2369 /* Select enet system clock as Interrupt Coalescing
2370 * timer Clock Source
2371 */
2372 rx_itr = FEC_ITR_CLK_SEL;
2373 tx_itr = FEC_ITR_CLK_SEL;
2374
2375 /* set ICFT and ICTT */
2376 rx_itr |= FEC_ITR_ICFT(fep->rx_pkts_itr);
2377 rx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr));
2378 tx_itr |= FEC_ITR_ICFT(fep->tx_pkts_itr);
2379 tx_itr |= FEC_ITR_ICTT(fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr));
2380
2381 rx_itr |= FEC_ITR_EN;
2382 tx_itr |= FEC_ITR_EN;
2383
2384 writel(tx_itr, fep->hwp + FEC_TXIC0);
2385 writel(rx_itr, fep->hwp + FEC_RXIC0);
2386 writel(tx_itr, fep->hwp + FEC_TXIC1);
2387 writel(rx_itr, fep->hwp + FEC_RXIC1);
2388 writel(tx_itr, fep->hwp + FEC_TXIC2);
2389 writel(rx_itr, fep->hwp + FEC_RXIC2);
2390 }
2391
2392 static int
2393 fec_enet_get_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2394 {
2395 struct fec_enet_private *fep = netdev_priv(ndev);
2396
2397 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2398 return -EOPNOTSUPP;
2399
2400 ec->rx_coalesce_usecs = fep->rx_time_itr;
2401 ec->rx_max_coalesced_frames = fep->rx_pkts_itr;
2402
2403 ec->tx_coalesce_usecs = fep->tx_time_itr;
2404 ec->tx_max_coalesced_frames = fep->tx_pkts_itr;
2405
2406 return 0;
2407 }
2408
2409 static int
2410 fec_enet_set_coalesce(struct net_device *ndev, struct ethtool_coalesce *ec)
2411 {
2412 struct fec_enet_private *fep = netdev_priv(ndev);
2413 unsigned int cycle;
2414
2415 if (!(fep->quirks & FEC_QUIRK_HAS_AVB))
2416 return -EOPNOTSUPP;
2417
2418 if (ec->rx_max_coalesced_frames > 255) {
2419 pr_err("Rx coalesced frames exceed hardware limitation\n");
2420 return -EINVAL;
2421 }
2422
2423 if (ec->tx_max_coalesced_frames > 255) {
2424 pr_err("Tx coalesced frame exceed hardware limitation\n");
2425 return -EINVAL;
2426 }
2427
2428 cycle = fec_enet_us_to_itr_clock(ndev, fep->rx_time_itr);
2429 if (cycle > 0xFFFF) {
2430 pr_err("Rx coalesced usec exceed hardware limitation\n");
2431 return -EINVAL;
2432 }
2433
2434 cycle = fec_enet_us_to_itr_clock(ndev, fep->tx_time_itr);
2435 if (cycle > 0xFFFF) {
2436 pr_err("Rx coalesced usec exceed hardware limitation\n");
2437 return -EINVAL;
2438 }
2439
2440 fep->rx_time_itr = ec->rx_coalesce_usecs;
2441 fep->rx_pkts_itr = ec->rx_max_coalesced_frames;
2442
2443 fep->tx_time_itr = ec->tx_coalesce_usecs;
2444 fep->tx_pkts_itr = ec->tx_max_coalesced_frames;
2445
2446 fec_enet_itr_coal_set(ndev);
2447
2448 return 0;
2449 }
2450
2451 static void fec_enet_itr_coal_init(struct net_device *ndev)
2452 {
2453 struct ethtool_coalesce ec;
2454
2455 ec.rx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2456 ec.rx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2457
2458 ec.tx_coalesce_usecs = FEC_ITR_ICTT_DEFAULT;
2459 ec.tx_max_coalesced_frames = FEC_ITR_ICFT_DEFAULT;
2460
2461 fec_enet_set_coalesce(ndev, &ec);
2462 }
2463
2464 static int fec_enet_get_tunable(struct net_device *netdev,
2465 const struct ethtool_tunable *tuna,
2466 void *data)
2467 {
2468 struct fec_enet_private *fep = netdev_priv(netdev);
2469 int ret = 0;
2470
2471 switch (tuna->id) {
2472 case ETHTOOL_RX_COPYBREAK:
2473 *(u32 *)data = fep->rx_copybreak;
2474 break;
2475 default:
2476 ret = -EINVAL;
2477 break;
2478 }
2479
2480 return ret;
2481 }
2482
2483 static int fec_enet_set_tunable(struct net_device *netdev,
2484 const struct ethtool_tunable *tuna,
2485 const void *data)
2486 {
2487 struct fec_enet_private *fep = netdev_priv(netdev);
2488 int ret = 0;
2489
2490 switch (tuna->id) {
2491 case ETHTOOL_RX_COPYBREAK:
2492 fep->rx_copybreak = *(u32 *)data;
2493 break;
2494 default:
2495 ret = -EINVAL;
2496 break;
2497 }
2498
2499 return ret;
2500 }
2501
2502 static void
2503 fec_enet_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2504 {
2505 struct fec_enet_private *fep = netdev_priv(ndev);
2506
2507 if (fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET) {
2508 wol->supported = WAKE_MAGIC;
2509 wol->wolopts = fep->wol_flag & FEC_WOL_FLAG_ENABLE ? WAKE_MAGIC : 0;
2510 } else {
2511 wol->supported = wol->wolopts = 0;
2512 }
2513 }
2514
2515 static int
2516 fec_enet_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
2517 {
2518 struct fec_enet_private *fep = netdev_priv(ndev);
2519
2520 if (!(fep->wol_flag & FEC_WOL_HAS_MAGIC_PACKET))
2521 return -EINVAL;
2522
2523 if (wol->wolopts & ~WAKE_MAGIC)
2524 return -EINVAL;
2525
2526 device_set_wakeup_enable(&ndev->dev, wol->wolopts & WAKE_MAGIC);
2527 if (device_may_wakeup(&ndev->dev)) {
2528 fep->wol_flag |= FEC_WOL_FLAG_ENABLE;
2529 if (fep->irq[0] > 0)
2530 enable_irq_wake(fep->irq[0]);
2531 } else {
2532 fep->wol_flag &= (~FEC_WOL_FLAG_ENABLE);
2533 if (fep->irq[0] > 0)
2534 disable_irq_wake(fep->irq[0]);
2535 }
2536
2537 return 0;
2538 }
2539
2540 static const struct ethtool_ops fec_enet_ethtool_ops = {
2541 .get_drvinfo = fec_enet_get_drvinfo,
2542 .get_regs_len = fec_enet_get_regs_len,
2543 .get_regs = fec_enet_get_regs,
2544 .nway_reset = fec_enet_nway_reset,
2545 .get_link = ethtool_op_get_link,
2546 .get_coalesce = fec_enet_get_coalesce,
2547 .set_coalesce = fec_enet_set_coalesce,
2548 #ifndef CONFIG_M5272
2549 .get_pauseparam = fec_enet_get_pauseparam,
2550 .set_pauseparam = fec_enet_set_pauseparam,
2551 .get_strings = fec_enet_get_strings,
2552 .get_ethtool_stats = fec_enet_get_ethtool_stats,
2553 .get_sset_count = fec_enet_get_sset_count,
2554 #endif
2555 .get_ts_info = fec_enet_get_ts_info,
2556 .get_tunable = fec_enet_get_tunable,
2557 .set_tunable = fec_enet_set_tunable,
2558 .get_wol = fec_enet_get_wol,
2559 .set_wol = fec_enet_set_wol,
2560 .get_link_ksettings = phy_ethtool_get_link_ksettings,
2561 .set_link_ksettings = phy_ethtool_set_link_ksettings,
2562 };
2563
2564 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
2565 {
2566 struct fec_enet_private *fep = netdev_priv(ndev);
2567 struct phy_device *phydev = ndev->phydev;
2568
2569 if (!netif_running(ndev))
2570 return -EINVAL;
2571
2572 if (!phydev)
2573 return -ENODEV;
2574
2575 if (fep->bufdesc_ex) {
2576 if (cmd == SIOCSHWTSTAMP)
2577 return fec_ptp_set(ndev, rq);
2578 if (cmd == SIOCGHWTSTAMP)
2579 return fec_ptp_get(ndev, rq);
2580 }
2581
2582 return phy_mii_ioctl(phydev, rq, cmd);
2583 }
2584
2585 static void fec_enet_free_buffers(struct net_device *ndev)
2586 {
2587 struct fec_enet_private *fep = netdev_priv(ndev);
2588 unsigned int i;
2589 struct sk_buff *skb;
2590 struct bufdesc *bdp;
2591 struct fec_enet_priv_tx_q *txq;
2592 struct fec_enet_priv_rx_q *rxq;
2593 unsigned int q;
2594
2595 for (q = 0; q < fep->num_rx_queues; q++) {
2596 rxq = fep->rx_queue[q];
2597 bdp = rxq->bd.base;
2598 for (i = 0; i < rxq->bd.ring_size; i++) {
2599 skb = rxq->rx_skbuff[i];
2600 rxq->rx_skbuff[i] = NULL;
2601 if (skb) {
2602 dma_unmap_single(&fep->pdev->dev,
2603 fec32_to_cpu(bdp->cbd_bufaddr),
2604 FEC_ENET_RX_FRSIZE - fep->rx_align,
2605 DMA_FROM_DEVICE);
2606 dev_kfree_skb(skb);
2607 }
2608 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2609 }
2610 }
2611
2612 for (q = 0; q < fep->num_tx_queues; q++) {
2613 txq = fep->tx_queue[q];
2614 bdp = txq->bd.base;
2615 for (i = 0; i < txq->bd.ring_size; i++) {
2616 kfree(txq->tx_bounce[i]);
2617 txq->tx_bounce[i] = NULL;
2618 skb = txq->tx_skbuff[i];
2619 txq->tx_skbuff[i] = NULL;
2620 dev_kfree_skb(skb);
2621 }
2622 }
2623 }
2624
2625 static void fec_enet_free_queue(struct net_device *ndev)
2626 {
2627 struct fec_enet_private *fep = netdev_priv(ndev);
2628 int i;
2629 struct fec_enet_priv_tx_q *txq;
2630
2631 for (i = 0; i < fep->num_tx_queues; i++)
2632 if (fep->tx_queue[i] && fep->tx_queue[i]->tso_hdrs) {
2633 txq = fep->tx_queue[i];
2634 dma_free_coherent(NULL,
2635 txq->bd.ring_size * TSO_HEADER_SIZE,
2636 txq->tso_hdrs,
2637 txq->tso_hdrs_dma);
2638 }
2639
2640 for (i = 0; i < fep->num_rx_queues; i++)
2641 kfree(fep->rx_queue[i]);
2642 for (i = 0; i < fep->num_tx_queues; i++)
2643 kfree(fep->tx_queue[i]);
2644 }
2645
2646 static int fec_enet_alloc_queue(struct net_device *ndev)
2647 {
2648 struct fec_enet_private *fep = netdev_priv(ndev);
2649 int i;
2650 int ret = 0;
2651 struct fec_enet_priv_tx_q *txq;
2652
2653 for (i = 0; i < fep->num_tx_queues; i++) {
2654 txq = kzalloc(sizeof(*txq), GFP_KERNEL);
2655 if (!txq) {
2656 ret = -ENOMEM;
2657 goto alloc_failed;
2658 }
2659
2660 fep->tx_queue[i] = txq;
2661 txq->bd.ring_size = TX_RING_SIZE;
2662 fep->total_tx_ring_size += fep->tx_queue[i]->bd.ring_size;
2663
2664 txq->tx_stop_threshold = FEC_MAX_SKB_DESCS;
2665 txq->tx_wake_threshold =
2666 (txq->bd.ring_size - txq->tx_stop_threshold) / 2;
2667
2668 txq->tso_hdrs = dma_alloc_coherent(NULL,
2669 txq->bd.ring_size * TSO_HEADER_SIZE,
2670 &txq->tso_hdrs_dma,
2671 GFP_KERNEL);
2672 if (!txq->tso_hdrs) {
2673 ret = -ENOMEM;
2674 goto alloc_failed;
2675 }
2676 }
2677
2678 for (i = 0; i < fep->num_rx_queues; i++) {
2679 fep->rx_queue[i] = kzalloc(sizeof(*fep->rx_queue[i]),
2680 GFP_KERNEL);
2681 if (!fep->rx_queue[i]) {
2682 ret = -ENOMEM;
2683 goto alloc_failed;
2684 }
2685
2686 fep->rx_queue[i]->bd.ring_size = RX_RING_SIZE;
2687 fep->total_rx_ring_size += fep->rx_queue[i]->bd.ring_size;
2688 }
2689 return ret;
2690
2691 alloc_failed:
2692 fec_enet_free_queue(ndev);
2693 return ret;
2694 }
2695
2696 static int
2697 fec_enet_alloc_rxq_buffers(struct net_device *ndev, unsigned int queue)
2698 {
2699 struct fec_enet_private *fep = netdev_priv(ndev);
2700 unsigned int i;
2701 struct sk_buff *skb;
2702 struct bufdesc *bdp;
2703 struct fec_enet_priv_rx_q *rxq;
2704
2705 rxq = fep->rx_queue[queue];
2706 bdp = rxq->bd.base;
2707 for (i = 0; i < rxq->bd.ring_size; i++) {
2708 skb = netdev_alloc_skb(ndev, FEC_ENET_RX_FRSIZE);
2709 if (!skb)
2710 goto err_alloc;
2711
2712 if (fec_enet_new_rxbdp(ndev, bdp, skb)) {
2713 dev_kfree_skb(skb);
2714 goto err_alloc;
2715 }
2716
2717 rxq->rx_skbuff[i] = skb;
2718 bdp->cbd_sc = cpu_to_fec16(BD_ENET_RX_EMPTY);
2719
2720 if (fep->bufdesc_ex) {
2721 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2722 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_RX_INT);
2723 }
2724
2725 bdp = fec_enet_get_nextdesc(bdp, &rxq->bd);
2726 }
2727
2728 /* Set the last buffer to wrap. */
2729 bdp = fec_enet_get_prevdesc(bdp, &rxq->bd);
2730 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2731 return 0;
2732
2733 err_alloc:
2734 fec_enet_free_buffers(ndev);
2735 return -ENOMEM;
2736 }
2737
2738 static int
2739 fec_enet_alloc_txq_buffers(struct net_device *ndev, unsigned int queue)
2740 {
2741 struct fec_enet_private *fep = netdev_priv(ndev);
2742 unsigned int i;
2743 struct bufdesc *bdp;
2744 struct fec_enet_priv_tx_q *txq;
2745
2746 txq = fep->tx_queue[queue];
2747 bdp = txq->bd.base;
2748 for (i = 0; i < txq->bd.ring_size; i++) {
2749 txq->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
2750 if (!txq->tx_bounce[i])
2751 goto err_alloc;
2752
2753 bdp->cbd_sc = cpu_to_fec16(0);
2754 bdp->cbd_bufaddr = cpu_to_fec32(0);
2755
2756 if (fep->bufdesc_ex) {
2757 struct bufdesc_ex *ebdp = (struct bufdesc_ex *)bdp;
2758 ebdp->cbd_esc = cpu_to_fec32(BD_ENET_TX_INT);
2759 }
2760
2761 bdp = fec_enet_get_nextdesc(bdp, &txq->bd);
2762 }
2763
2764 /* Set the last buffer to wrap. */
2765 bdp = fec_enet_get_prevdesc(bdp, &txq->bd);
2766 bdp->cbd_sc |= cpu_to_fec16(BD_SC_WRAP);
2767
2768 return 0;
2769
2770 err_alloc:
2771 fec_enet_free_buffers(ndev);
2772 return -ENOMEM;
2773 }
2774
2775 static int fec_enet_alloc_buffers(struct net_device *ndev)
2776 {
2777 struct fec_enet_private *fep = netdev_priv(ndev);
2778 unsigned int i;
2779
2780 for (i = 0; i < fep->num_rx_queues; i++)
2781 if (fec_enet_alloc_rxq_buffers(ndev, i))
2782 return -ENOMEM;
2783
2784 for (i = 0; i < fep->num_tx_queues; i++)
2785 if (fec_enet_alloc_txq_buffers(ndev, i))
2786 return -ENOMEM;
2787 return 0;
2788 }
2789
2790 static int
2791 fec_enet_open(struct net_device *ndev)
2792 {
2793 struct fec_enet_private *fep = netdev_priv(ndev);
2794 int ret;
2795
2796 ret = pm_runtime_get_sync(&fep->pdev->dev);
2797 if (ret < 0)
2798 return ret;
2799
2800 pinctrl_pm_select_default_state(&fep->pdev->dev);
2801 ret = fec_enet_clk_enable(ndev, true);
2802 if (ret)
2803 goto clk_enable;
2804
2805 /* I should reset the ring buffers here, but I don't yet know
2806 * a simple way to do that.
2807 */
2808
2809 ret = fec_enet_alloc_buffers(ndev);
2810 if (ret)
2811 goto err_enet_alloc;
2812
2813 /* Init MAC prior to mii bus probe */
2814 fec_restart(ndev);
2815
2816 /* Probe and connect to PHY when open the interface */
2817 ret = fec_enet_mii_probe(ndev);
2818 if (ret)
2819 goto err_enet_mii_probe;
2820
2821 napi_enable(&fep->napi);
2822 phy_start(ndev->phydev);
2823 netif_tx_start_all_queues(ndev);
2824
2825 device_set_wakeup_enable(&ndev->dev, fep->wol_flag &
2826 FEC_WOL_FLAG_ENABLE);
2827
2828 return 0;
2829
2830 err_enet_mii_probe:
2831 fec_enet_free_buffers(ndev);
2832 err_enet_alloc:
2833 fec_enet_clk_enable(ndev, false);
2834 clk_enable:
2835 pm_runtime_mark_last_busy(&fep->pdev->dev);
2836 pm_runtime_put_autosuspend(&fep->pdev->dev);
2837 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2838 return ret;
2839 }
2840
2841 static int
2842 fec_enet_close(struct net_device *ndev)
2843 {
2844 struct fec_enet_private *fep = netdev_priv(ndev);
2845
2846 phy_stop(ndev->phydev);
2847
2848 if (netif_device_present(ndev)) {
2849 napi_disable(&fep->napi);
2850 netif_tx_disable(ndev);
2851 fec_stop(ndev);
2852 }
2853
2854 phy_disconnect(ndev->phydev);
2855
2856 fec_enet_clk_enable(ndev, false);
2857 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
2858 pm_runtime_mark_last_busy(&fep->pdev->dev);
2859 pm_runtime_put_autosuspend(&fep->pdev->dev);
2860
2861 fec_enet_free_buffers(ndev);
2862
2863 return 0;
2864 }
2865
2866 /* Set or clear the multicast filter for this adaptor.
2867 * Skeleton taken from sunlance driver.
2868 * The CPM Ethernet implementation allows Multicast as well as individual
2869 * MAC address filtering. Some of the drivers check to make sure it is
2870 * a group multicast address, and discard those that are not. I guess I
2871 * will do the same for now, but just remove the test if you want
2872 * individual filtering as well (do the upper net layers want or support
2873 * this kind of feature?).
2874 */
2875
2876 #define HASH_BITS 6 /* #bits in hash */
2877 #define CRC32_POLY 0xEDB88320
2878
2879 static void set_multicast_list(struct net_device *ndev)
2880 {
2881 struct fec_enet_private *fep = netdev_priv(ndev);
2882 struct netdev_hw_addr *ha;
2883 unsigned int i, bit, data, crc, tmp;
2884 unsigned char hash;
2885
2886 if (ndev->flags & IFF_PROMISC) {
2887 tmp = readl(fep->hwp + FEC_R_CNTRL);
2888 tmp |= 0x8;
2889 writel(tmp, fep->hwp + FEC_R_CNTRL);
2890 return;
2891 }
2892
2893 tmp = readl(fep->hwp + FEC_R_CNTRL);
2894 tmp &= ~0x8;
2895 writel(tmp, fep->hwp + FEC_R_CNTRL);
2896
2897 if (ndev->flags & IFF_ALLMULTI) {
2898 /* Catch all multicast addresses, so set the
2899 * filter to all 1's
2900 */
2901 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2902 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2903
2904 return;
2905 }
2906
2907 /* Clear filter and add the addresses in hash register
2908 */
2909 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2910 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2911
2912 netdev_for_each_mc_addr(ha, ndev) {
2913 /* calculate crc32 value of mac address */
2914 crc = 0xffffffff;
2915
2916 for (i = 0; i < ndev->addr_len; i++) {
2917 data = ha->addr[i];
2918 for (bit = 0; bit < 8; bit++, data >>= 1) {
2919 crc = (crc >> 1) ^
2920 (((crc ^ data) & 1) ? CRC32_POLY : 0);
2921 }
2922 }
2923
2924 /* only upper 6 bits (HASH_BITS) are used
2925 * which point to specific bit in he hash registers
2926 */
2927 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
2928
2929 if (hash > 31) {
2930 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2931 tmp |= 1 << (hash - 32);
2932 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
2933 } else {
2934 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2935 tmp |= 1 << hash;
2936 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
2937 }
2938 }
2939 }
2940
2941 /* Set a MAC change in hardware. */
2942 static int
2943 fec_set_mac_address(struct net_device *ndev, void *p)
2944 {
2945 struct fec_enet_private *fep = netdev_priv(ndev);
2946 struct sockaddr *addr = p;
2947
2948 if (addr) {
2949 if (!is_valid_ether_addr(addr->sa_data))
2950 return -EADDRNOTAVAIL;
2951 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
2952 }
2953
2954 /* Add netif status check here to avoid system hang in below case:
2955 * ifconfig ethx down; ifconfig ethx hw ether xx:xx:xx:xx:xx:xx;
2956 * After ethx down, fec all clocks are gated off and then register
2957 * access causes system hang.
2958 */
2959 if (!netif_running(ndev))
2960 return 0;
2961
2962 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
2963 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
2964 fep->hwp + FEC_ADDR_LOW);
2965 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
2966 fep->hwp + FEC_ADDR_HIGH);
2967 return 0;
2968 }
2969
2970 #ifdef CONFIG_NET_POLL_CONTROLLER
2971 /**
2972 * fec_poll_controller - FEC Poll controller function
2973 * @dev: The FEC network adapter
2974 *
2975 * Polled functionality used by netconsole and others in non interrupt mode
2976 *
2977 */
2978 static void fec_poll_controller(struct net_device *dev)
2979 {
2980 int i;
2981 struct fec_enet_private *fep = netdev_priv(dev);
2982
2983 for (i = 0; i < FEC_IRQ_NUM; i++) {
2984 if (fep->irq[i] > 0) {
2985 disable_irq(fep->irq[i]);
2986 fec_enet_interrupt(fep->irq[i], dev);
2987 enable_irq(fep->irq[i]);
2988 }
2989 }
2990 }
2991 #endif
2992
2993 static inline void fec_enet_set_netdev_features(struct net_device *netdev,
2994 netdev_features_t features)
2995 {
2996 struct fec_enet_private *fep = netdev_priv(netdev);
2997 netdev_features_t changed = features ^ netdev->features;
2998
2999 netdev->features = features;
3000
3001 /* Receive checksum has been changed */
3002 if (changed & NETIF_F_RXCSUM) {
3003 if (features & NETIF_F_RXCSUM)
3004 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3005 else
3006 fep->csum_flags &= ~FLAG_RX_CSUM_ENABLED;
3007 }
3008 }
3009
3010 static int fec_set_features(struct net_device *netdev,
3011 netdev_features_t features)
3012 {
3013 struct fec_enet_private *fep = netdev_priv(netdev);
3014 netdev_features_t changed = features ^ netdev->features;
3015
3016 if (netif_running(netdev) && changed & NETIF_F_RXCSUM) {
3017 napi_disable(&fep->napi);
3018 netif_tx_lock_bh(netdev);
3019 fec_stop(netdev);
3020 fec_enet_set_netdev_features(netdev, features);
3021 fec_restart(netdev);
3022 netif_tx_wake_all_queues(netdev);
3023 netif_tx_unlock_bh(netdev);
3024 napi_enable(&fep->napi);
3025 } else {
3026 fec_enet_set_netdev_features(netdev, features);
3027 }
3028
3029 return 0;
3030 }
3031
3032 static const struct net_device_ops fec_netdev_ops = {
3033 .ndo_open = fec_enet_open,
3034 .ndo_stop = fec_enet_close,
3035 .ndo_start_xmit = fec_enet_start_xmit,
3036 .ndo_set_rx_mode = set_multicast_list,
3037 .ndo_change_mtu = eth_change_mtu,
3038 .ndo_validate_addr = eth_validate_addr,
3039 .ndo_tx_timeout = fec_timeout,
3040 .ndo_set_mac_address = fec_set_mac_address,
3041 .ndo_do_ioctl = fec_enet_ioctl,
3042 #ifdef CONFIG_NET_POLL_CONTROLLER
3043 .ndo_poll_controller = fec_poll_controller,
3044 #endif
3045 .ndo_set_features = fec_set_features,
3046 };
3047
3048 static const unsigned short offset_des_active_rxq[] = {
3049 FEC_R_DES_ACTIVE_0, FEC_R_DES_ACTIVE_1, FEC_R_DES_ACTIVE_2
3050 };
3051
3052 static const unsigned short offset_des_active_txq[] = {
3053 FEC_X_DES_ACTIVE_0, FEC_X_DES_ACTIVE_1, FEC_X_DES_ACTIVE_2
3054 };
3055
3056 /*
3057 * XXX: We need to clean up on failure exits here.
3058 *
3059 */
3060 static int fec_enet_init(struct net_device *ndev)
3061 {
3062 struct fec_enet_private *fep = netdev_priv(ndev);
3063 struct bufdesc *cbd_base;
3064 dma_addr_t bd_dma;
3065 int bd_size;
3066 unsigned int i;
3067 unsigned dsize = fep->bufdesc_ex ? sizeof(struct bufdesc_ex) :
3068 sizeof(struct bufdesc);
3069 unsigned dsize_log2 = __fls(dsize);
3070
3071 WARN_ON(dsize != (1 << dsize_log2));
3072 #if defined(CONFIG_ARM)
3073 fep->rx_align = 0xf;
3074 fep->tx_align = 0xf;
3075 #else
3076 fep->rx_align = 0x3;
3077 fep->tx_align = 0x3;
3078 #endif
3079
3080 fec_enet_alloc_queue(ndev);
3081
3082 bd_size = (fep->total_tx_ring_size + fep->total_rx_ring_size) * dsize;
3083
3084 /* Allocate memory for buffer descriptors. */
3085 cbd_base = dmam_alloc_coherent(&fep->pdev->dev, bd_size, &bd_dma,
3086 GFP_KERNEL);
3087 if (!cbd_base) {
3088 return -ENOMEM;
3089 }
3090
3091 memset(cbd_base, 0, bd_size);
3092
3093 /* Get the Ethernet address */
3094 fec_get_mac(ndev);
3095 /* make sure MAC we just acquired is programmed into the hw */
3096 fec_set_mac_address(ndev, NULL);
3097
3098 /* Set receive and transmit descriptor base. */
3099 for (i = 0; i < fep->num_rx_queues; i++) {
3100 struct fec_enet_priv_rx_q *rxq = fep->rx_queue[i];
3101 unsigned size = dsize * rxq->bd.ring_size;
3102
3103 rxq->bd.qid = i;
3104 rxq->bd.base = cbd_base;
3105 rxq->bd.cur = cbd_base;
3106 rxq->bd.dma = bd_dma;
3107 rxq->bd.dsize = dsize;
3108 rxq->bd.dsize_log2 = dsize_log2;
3109 rxq->bd.reg_desc_active = fep->hwp + offset_des_active_rxq[i];
3110 bd_dma += size;
3111 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3112 rxq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3113 }
3114
3115 for (i = 0; i < fep->num_tx_queues; i++) {
3116 struct fec_enet_priv_tx_q *txq = fep->tx_queue[i];
3117 unsigned size = dsize * txq->bd.ring_size;
3118
3119 txq->bd.qid = i;
3120 txq->bd.base = cbd_base;
3121 txq->bd.cur = cbd_base;
3122 txq->bd.dma = bd_dma;
3123 txq->bd.dsize = dsize;
3124 txq->bd.dsize_log2 = dsize_log2;
3125 txq->bd.reg_desc_active = fep->hwp + offset_des_active_txq[i];
3126 bd_dma += size;
3127 cbd_base = (struct bufdesc *)(((void *)cbd_base) + size);
3128 txq->bd.last = (struct bufdesc *)(((void *)cbd_base) - dsize);
3129 }
3130
3131
3132 /* The FEC Ethernet specific entries in the device structure */
3133 ndev->watchdog_timeo = TX_TIMEOUT;
3134 ndev->netdev_ops = &fec_netdev_ops;
3135 ndev->ethtool_ops = &fec_enet_ethtool_ops;
3136
3137 writel(FEC_RX_DISABLED_IMASK, fep->hwp + FEC_IMASK);
3138 netif_napi_add(ndev, &fep->napi, fec_enet_rx_napi, NAPI_POLL_WEIGHT);
3139
3140 if (fep->quirks & FEC_QUIRK_HAS_VLAN)
3141 /* enable hw VLAN support */
3142 ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3143
3144 if (fep->quirks & FEC_QUIRK_HAS_CSUM) {
3145 ndev->gso_max_segs = FEC_MAX_TSO_SEGS;
3146
3147 /* enable hw accelerator */
3148 ndev->features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM
3149 | NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_TSO);
3150 fep->csum_flags |= FLAG_RX_CSUM_ENABLED;
3151 }
3152
3153 if (fep->quirks & FEC_QUIRK_HAS_AVB) {
3154 fep->tx_align = 0;
3155 fep->rx_align = 0x3f;
3156 }
3157
3158 ndev->hw_features = ndev->features;
3159
3160 fec_restart(ndev);
3161
3162 return 0;
3163 }
3164
3165 #ifdef CONFIG_OF
3166 static void fec_reset_phy(struct platform_device *pdev)
3167 {
3168 int err, phy_reset;
3169 bool active_high = false;
3170 int msec = 1;
3171 struct device_node *np = pdev->dev.of_node;
3172
3173 if (!np)
3174 return;
3175
3176 of_property_read_u32(np, "phy-reset-duration", &msec);
3177 /* A sane reset duration should not be longer than 1s */
3178 if (msec > 1000)
3179 msec = 1;
3180
3181 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
3182 if (!gpio_is_valid(phy_reset))
3183 return;
3184
3185 active_high = of_property_read_bool(np, "phy-reset-active-high");
3186
3187 err = devm_gpio_request_one(&pdev->dev, phy_reset,
3188 active_high ? GPIOF_OUT_INIT_HIGH : GPIOF_OUT_INIT_LOW,
3189 "phy-reset");
3190 if (err) {
3191 dev_err(&pdev->dev, "failed to get phy-reset-gpios: %d\n", err);
3192 return;
3193 }
3194 msleep(msec);
3195 gpio_set_value_cansleep(phy_reset, !active_high);
3196 }
3197 #else /* CONFIG_OF */
3198 static void fec_reset_phy(struct platform_device *pdev)
3199 {
3200 /*
3201 * In case of platform probe, the reset has been done
3202 * by machine code.
3203 */
3204 }
3205 #endif /* CONFIG_OF */
3206
3207 static void
3208 fec_enet_get_queue_num(struct platform_device *pdev, int *num_tx, int *num_rx)
3209 {
3210 struct device_node *np = pdev->dev.of_node;
3211
3212 *num_tx = *num_rx = 1;
3213
3214 if (!np || !of_device_is_available(np))
3215 return;
3216
3217 /* parse the num of tx and rx queues */
3218 of_property_read_u32(np, "fsl,num-tx-queues", num_tx);
3219
3220 of_property_read_u32(np, "fsl,num-rx-queues", num_rx);
3221
3222 if (*num_tx < 1 || *num_tx > FEC_ENET_MAX_TX_QS) {
3223 dev_warn(&pdev->dev, "Invalid num_tx(=%d), fall back to 1\n",
3224 *num_tx);
3225 *num_tx = 1;
3226 return;
3227 }
3228
3229 if (*num_rx < 1 || *num_rx > FEC_ENET_MAX_RX_QS) {
3230 dev_warn(&pdev->dev, "Invalid num_rx(=%d), fall back to 1\n",
3231 *num_rx);
3232 *num_rx = 1;
3233 return;
3234 }
3235
3236 }
3237
3238 static int
3239 fec_probe(struct platform_device *pdev)
3240 {
3241 struct fec_enet_private *fep;
3242 struct fec_platform_data *pdata;
3243 struct net_device *ndev;
3244 int i, irq, ret = 0;
3245 struct resource *r;
3246 const struct of_device_id *of_id;
3247 static int dev_id;
3248 struct device_node *np = pdev->dev.of_node, *phy_node;
3249 int num_tx_qs;
3250 int num_rx_qs;
3251
3252 fec_enet_get_queue_num(pdev, &num_tx_qs, &num_rx_qs);
3253
3254 /* Init network device */
3255 ndev = alloc_etherdev_mqs(sizeof(struct fec_enet_private),
3256 num_tx_qs, num_rx_qs);
3257 if (!ndev)
3258 return -ENOMEM;
3259
3260 SET_NETDEV_DEV(ndev, &pdev->dev);
3261
3262 /* setup board info structure */
3263 fep = netdev_priv(ndev);
3264
3265 of_id = of_match_device(fec_dt_ids, &pdev->dev);
3266 if (of_id)
3267 pdev->id_entry = of_id->data;
3268 fep->quirks = pdev->id_entry->driver_data;
3269
3270 fep->netdev = ndev;
3271 fep->num_rx_queues = num_rx_qs;
3272 fep->num_tx_queues = num_tx_qs;
3273
3274 #if !defined(CONFIG_M5272)
3275 /* default enable pause frame auto negotiation */
3276 if (fep->quirks & FEC_QUIRK_HAS_GBIT)
3277 fep->pause_flag |= FEC_PAUSE_FLAG_AUTONEG;
3278 #endif
3279
3280 /* Select default pin state */
3281 pinctrl_pm_select_default_state(&pdev->dev);
3282
3283 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3284 fep->hwp = devm_ioremap_resource(&pdev->dev, r);
3285 if (IS_ERR(fep->hwp)) {
3286 ret = PTR_ERR(fep->hwp);
3287 goto failed_ioremap;
3288 }
3289
3290 fep->pdev = pdev;
3291 fep->dev_id = dev_id++;
3292
3293 platform_set_drvdata(pdev, ndev);
3294
3295 if (of_get_property(np, "fsl,magic-packet", NULL))
3296 fep->wol_flag |= FEC_WOL_HAS_MAGIC_PACKET;
3297
3298 phy_node = of_parse_phandle(np, "phy-handle", 0);
3299 if (!phy_node && of_phy_is_fixed_link(np)) {
3300 ret = of_phy_register_fixed_link(np);
3301 if (ret < 0) {
3302 dev_err(&pdev->dev,
3303 "broken fixed-link specification\n");
3304 goto failed_phy;
3305 }
3306 phy_node = of_node_get(np);
3307 }
3308 fep->phy_node = phy_node;
3309
3310 ret = of_get_phy_mode(pdev->dev.of_node);
3311 if (ret < 0) {
3312 pdata = dev_get_platdata(&pdev->dev);
3313 if (pdata)
3314 fep->phy_interface = pdata->phy;
3315 else
3316 fep->phy_interface = PHY_INTERFACE_MODE_MII;
3317 } else {
3318 fep->phy_interface = ret;
3319 }
3320
3321 fep->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
3322 if (IS_ERR(fep->clk_ipg)) {
3323 ret = PTR_ERR(fep->clk_ipg);
3324 goto failed_clk;
3325 }
3326
3327 fep->clk_ahb = devm_clk_get(&pdev->dev, "ahb");
3328 if (IS_ERR(fep->clk_ahb)) {
3329 ret = PTR_ERR(fep->clk_ahb);
3330 goto failed_clk;
3331 }
3332
3333 fep->itr_clk_rate = clk_get_rate(fep->clk_ahb);
3334
3335 /* enet_out is optional, depends on board */
3336 fep->clk_enet_out = devm_clk_get(&pdev->dev, "enet_out");
3337 if (IS_ERR(fep->clk_enet_out))
3338 fep->clk_enet_out = NULL;
3339
3340 fep->ptp_clk_on = false;
3341 mutex_init(&fep->ptp_clk_mutex);
3342
3343 /* clk_ref is optional, depends on board */
3344 fep->clk_ref = devm_clk_get(&pdev->dev, "enet_clk_ref");
3345 if (IS_ERR(fep->clk_ref))
3346 fep->clk_ref = NULL;
3347
3348 fep->bufdesc_ex = fep->quirks & FEC_QUIRK_HAS_BUFDESC_EX;
3349 fep->clk_ptp = devm_clk_get(&pdev->dev, "ptp");
3350 if (IS_ERR(fep->clk_ptp)) {
3351 fep->clk_ptp = NULL;
3352 fep->bufdesc_ex = false;
3353 }
3354
3355 ret = fec_enet_clk_enable(ndev, true);
3356 if (ret)
3357 goto failed_clk;
3358
3359 ret = clk_prepare_enable(fep->clk_ipg);
3360 if (ret)
3361 goto failed_clk_ipg;
3362
3363 fep->reg_phy = devm_regulator_get(&pdev->dev, "phy");
3364 if (!IS_ERR(fep->reg_phy)) {
3365 ret = regulator_enable(fep->reg_phy);
3366 if (ret) {
3367 dev_err(&pdev->dev,
3368 "Failed to enable phy regulator: %d\n", ret);
3369 goto failed_regulator;
3370 }
3371 } else {
3372 fep->reg_phy = NULL;
3373 }
3374
3375 pm_runtime_set_autosuspend_delay(&pdev->dev, FEC_MDIO_PM_TIMEOUT);
3376 pm_runtime_use_autosuspend(&pdev->dev);
3377 pm_runtime_get_noresume(&pdev->dev);
3378 pm_runtime_set_active(&pdev->dev);
3379 pm_runtime_enable(&pdev->dev);
3380
3381 fec_reset_phy(pdev);
3382
3383 if (fep->bufdesc_ex)
3384 fec_ptp_init(pdev);
3385
3386 ret = fec_enet_init(ndev);
3387 if (ret)
3388 goto failed_init;
3389
3390 for (i = 0; i < FEC_IRQ_NUM; i++) {
3391 irq = platform_get_irq(pdev, i);
3392 if (irq < 0) {
3393 if (i)
3394 break;
3395 ret = irq;
3396 goto failed_irq;
3397 }
3398 ret = devm_request_irq(&pdev->dev, irq, fec_enet_interrupt,
3399 0, pdev->name, ndev);
3400 if (ret)
3401 goto failed_irq;
3402
3403 fep->irq[i] = irq;
3404 }
3405
3406 init_completion(&fep->mdio_done);
3407 ret = fec_enet_mii_init(pdev);
3408 if (ret)
3409 goto failed_mii_init;
3410
3411 /* Carrier starts down, phylib will bring it up */
3412 netif_carrier_off(ndev);
3413 fec_enet_clk_enable(ndev, false);
3414 pinctrl_pm_select_sleep_state(&pdev->dev);
3415
3416 ret = register_netdev(ndev);
3417 if (ret)
3418 goto failed_register;
3419
3420 device_init_wakeup(&ndev->dev, fep->wol_flag &
3421 FEC_WOL_HAS_MAGIC_PACKET);
3422
3423 if (fep->bufdesc_ex && fep->ptp_clock)
3424 netdev_info(ndev, "registered PHC device %d\n", fep->dev_id);
3425
3426 fep->rx_copybreak = COPYBREAK_DEFAULT;
3427 INIT_WORK(&fep->tx_timeout_work, fec_enet_timeout_work);
3428
3429 pm_runtime_mark_last_busy(&pdev->dev);
3430 pm_runtime_put_autosuspend(&pdev->dev);
3431
3432 return 0;
3433
3434 failed_register:
3435 fec_enet_mii_remove(fep);
3436 failed_mii_init:
3437 failed_irq:
3438 failed_init:
3439 fec_ptp_stop(pdev);
3440 if (fep->reg_phy)
3441 regulator_disable(fep->reg_phy);
3442 failed_regulator:
3443 clk_disable_unprepare(fep->clk_ipg);
3444 failed_clk_ipg:
3445 fec_enet_clk_enable(ndev, false);
3446 failed_clk:
3447 failed_phy:
3448 of_node_put(phy_node);
3449 failed_ioremap:
3450 free_netdev(ndev);
3451
3452 return ret;
3453 }
3454
3455 static int
3456 fec_drv_remove(struct platform_device *pdev)
3457 {
3458 struct net_device *ndev = platform_get_drvdata(pdev);
3459 struct fec_enet_private *fep = netdev_priv(ndev);
3460
3461 cancel_work_sync(&fep->tx_timeout_work);
3462 fec_ptp_stop(pdev);
3463 unregister_netdev(ndev);
3464 fec_enet_mii_remove(fep);
3465 if (fep->reg_phy)
3466 regulator_disable(fep->reg_phy);
3467 of_node_put(fep->phy_node);
3468 free_netdev(ndev);
3469
3470 return 0;
3471 }
3472
3473 static int __maybe_unused fec_suspend(struct device *dev)
3474 {
3475 struct net_device *ndev = dev_get_drvdata(dev);
3476 struct fec_enet_private *fep = netdev_priv(ndev);
3477
3478 rtnl_lock();
3479 if (netif_running(ndev)) {
3480 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE)
3481 fep->wol_flag |= FEC_WOL_FLAG_SLEEP_ON;
3482 phy_stop(ndev->phydev);
3483 napi_disable(&fep->napi);
3484 netif_tx_lock_bh(ndev);
3485 netif_device_detach(ndev);
3486 netif_tx_unlock_bh(ndev);
3487 fec_stop(ndev);
3488 fec_enet_clk_enable(ndev, false);
3489 if (!(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3490 pinctrl_pm_select_sleep_state(&fep->pdev->dev);
3491 }
3492 rtnl_unlock();
3493
3494 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE))
3495 regulator_disable(fep->reg_phy);
3496
3497 /* SOC supply clock to phy, when clock is disabled, phy link down
3498 * SOC control phy regulator, when regulator is disabled, phy link down
3499 */
3500 if (fep->clk_enet_out || fep->reg_phy)
3501 fep->link = 0;
3502
3503 return 0;
3504 }
3505
3506 static int __maybe_unused fec_resume(struct device *dev)
3507 {
3508 struct net_device *ndev = dev_get_drvdata(dev);
3509 struct fec_enet_private *fep = netdev_priv(ndev);
3510 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
3511 int ret;
3512 int val;
3513
3514 if (fep->reg_phy && !(fep->wol_flag & FEC_WOL_FLAG_ENABLE)) {
3515 ret = regulator_enable(fep->reg_phy);
3516 if (ret)
3517 return ret;
3518 }
3519
3520 rtnl_lock();
3521 if (netif_running(ndev)) {
3522 ret = fec_enet_clk_enable(ndev, true);
3523 if (ret) {
3524 rtnl_unlock();
3525 goto failed_clk;
3526 }
3527 if (fep->wol_flag & FEC_WOL_FLAG_ENABLE) {
3528 if (pdata && pdata->sleep_mode_enable)
3529 pdata->sleep_mode_enable(false);
3530 val = readl(fep->hwp + FEC_ECNTRL);
3531 val &= ~(FEC_ECR_MAGICEN | FEC_ECR_SLEEP);
3532 writel(val, fep->hwp + FEC_ECNTRL);
3533 fep->wol_flag &= ~FEC_WOL_FLAG_SLEEP_ON;
3534 } else {
3535 pinctrl_pm_select_default_state(&fep->pdev->dev);
3536 }
3537 fec_restart(ndev);
3538 netif_tx_lock_bh(ndev);
3539 netif_device_attach(ndev);
3540 netif_tx_unlock_bh(ndev);
3541 napi_enable(&fep->napi);
3542 phy_start(ndev->phydev);
3543 }
3544 rtnl_unlock();
3545
3546 return 0;
3547
3548 failed_clk:
3549 if (fep->reg_phy)
3550 regulator_disable(fep->reg_phy);
3551 return ret;
3552 }
3553
3554 static int __maybe_unused fec_runtime_suspend(struct device *dev)
3555 {
3556 struct net_device *ndev = dev_get_drvdata(dev);
3557 struct fec_enet_private *fep = netdev_priv(ndev);
3558
3559 clk_disable_unprepare(fep->clk_ipg);
3560
3561 return 0;
3562 }
3563
3564 static int __maybe_unused fec_runtime_resume(struct device *dev)
3565 {
3566 struct net_device *ndev = dev_get_drvdata(dev);
3567 struct fec_enet_private *fep = netdev_priv(ndev);
3568
3569 return clk_prepare_enable(fep->clk_ipg);
3570 }
3571
3572 static const struct dev_pm_ops fec_pm_ops = {
3573 SET_SYSTEM_SLEEP_PM_OPS(fec_suspend, fec_resume)
3574 SET_RUNTIME_PM_OPS(fec_runtime_suspend, fec_runtime_resume, NULL)
3575 };
3576
3577 static struct platform_driver fec_driver = {
3578 .driver = {
3579 .name = DRIVER_NAME,
3580 .pm = &fec_pm_ops,
3581 .of_match_table = fec_dt_ids,
3582 },
3583 .id_table = fec_devtype,
3584 .probe = fec_probe,
3585 .remove = fec_drv_remove,
3586 };
3587
3588 module_platform_driver(fec_driver);
3589
3590 MODULE_ALIAS("platform:"DRIVER_NAME);
3591 MODULE_LICENSE("GPL");
This page took 0.112384 seconds and 5 git commands to generate.