Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / net / ethernet / freescale / fsl_pq_mdio.c
1 /*
2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3 * Provides Bus interface for MIIM regs
4 *
5 * Author: Andy Fleming <afleming@freescale.com>
6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
7 *
8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
9 *
10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/module.h>
25 #include <linux/mii.h>
26 #include <linux/of_address.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_device.h>
29
30 #include <asm/io.h>
31 #if IS_ENABLED(CONFIG_UCC_GETH)
32 #include <asm/ucc.h> /* for ucc_set_qe_mux_mii_mng() */
33 #endif
34
35 #include "gianfar.h"
36
37 #define MIIMIND_BUSY 0x00000001
38 #define MIIMIND_NOTVALID 0x00000004
39 #define MIIMCFG_INIT_VALUE 0x00000007
40 #define MIIMCFG_RESET 0x80000000
41
42 #define MII_READ_COMMAND 0x00000001
43
44 struct fsl_pq_mii {
45 u32 miimcfg; /* MII management configuration reg */
46 u32 miimcom; /* MII management command reg */
47 u32 miimadd; /* MII management address reg */
48 u32 miimcon; /* MII management control reg */
49 u32 miimstat; /* MII management status reg */
50 u32 miimind; /* MII management indication reg */
51 };
52
53 struct fsl_pq_mdio {
54 u8 res1[16];
55 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
56 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
57 u8 res2[4];
58 u32 emapm; /* MDIO Event mapping register (for etsec2)*/
59 u8 res3[1280];
60 struct fsl_pq_mii mii;
61 u8 res4[28];
62 u32 utbipar; /* TBI phy address reg (only on UCC) */
63 u8 res5[2728];
64 } __packed;
65
66 /* Number of microseconds to wait for an MII register to respond */
67 #define MII_TIMEOUT 1000
68
69 struct fsl_pq_mdio_priv {
70 void __iomem *map;
71 struct fsl_pq_mii __iomem *regs;
72 int irqs[PHY_MAX_ADDR];
73 };
74
75 /*
76 * Per-device-type data. Each type of device tree node that we support gets
77 * one of these.
78 *
79 * @mii_offset: the offset of the MII registers within the memory map of the
80 * node. Some nodes define only the MII registers, and some define the whole
81 * MAC (which includes the MII registers).
82 *
83 * @get_tbipa: determines the address of the TBIPA register
84 *
85 * @ucc_configure: a special function for extra QE configuration
86 */
87 struct fsl_pq_mdio_data {
88 unsigned int mii_offset; /* offset of the MII registers */
89 uint32_t __iomem * (*get_tbipa)(void __iomem *p);
90 void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
91 };
92
93 /*
94 * Write value to the PHY at mii_id at register regnum, on the bus attached
95 * to the local interface, which may be different from the generic mdio bus
96 * (tied to a single interface), waiting until the write is done before
97 * returning. This is helpful in programming interfaces like the TBI which
98 * control interfaces like onchip SERDES and are always tied to the local
99 * mdio pins, which may not be the same as system mdio bus, used for
100 * controlling the external PHYs, for example.
101 */
102 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
103 u16 value)
104 {
105 struct fsl_pq_mdio_priv *priv = bus->priv;
106 struct fsl_pq_mii __iomem *regs = priv->regs;
107 unsigned int timeout;
108
109 /* Set the PHY address and the register address we want to write */
110 iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
111
112 /* Write out the value we want */
113 iowrite32be(value, &regs->miimcon);
114
115 /* Wait for the transaction to finish */
116 timeout = MII_TIMEOUT;
117 while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
118 cpu_relax();
119 timeout--;
120 }
121
122 return timeout ? 0 : -ETIMEDOUT;
123 }
124
125 /*
126 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
127 * Clears miimcom first.
128 *
129 * All PHY operation done on the bus attached to the local interface, which
130 * may be different from the generic mdio bus. This is helpful in programming
131 * interfaces like the TBI which, in turn, control interfaces like on-chip
132 * SERDES and are always tied to the local mdio pins, which may not be the
133 * same as system mdio bus, used for controlling the external PHYs, for eg.
134 */
135 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
136 {
137 struct fsl_pq_mdio_priv *priv = bus->priv;
138 struct fsl_pq_mii __iomem *regs = priv->regs;
139 unsigned int timeout;
140 u16 value;
141
142 /* Set the PHY address and the register address we want to read */
143 iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
144
145 /* Clear miimcom, and then initiate a read */
146 iowrite32be(0, &regs->miimcom);
147 iowrite32be(MII_READ_COMMAND, &regs->miimcom);
148
149 /* Wait for the transaction to finish, normally less than 100us */
150 timeout = MII_TIMEOUT;
151 while ((ioread32be(&regs->miimind) &
152 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
153 cpu_relax();
154 timeout--;
155 }
156
157 if (!timeout)
158 return -ETIMEDOUT;
159
160 /* Grab the value of the register from miimstat */
161 value = ioread32be(&regs->miimstat);
162
163 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
164 return value;
165 }
166
167 /* Reset the MIIM registers, and wait for the bus to free */
168 static int fsl_pq_mdio_reset(struct mii_bus *bus)
169 {
170 struct fsl_pq_mdio_priv *priv = bus->priv;
171 struct fsl_pq_mii __iomem *regs = priv->regs;
172 unsigned int timeout;
173
174 mutex_lock(&bus->mdio_lock);
175
176 /* Reset the management interface */
177 iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
178
179 /* Setup the MII Mgmt clock speed */
180 iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
181
182 /* Wait until the bus is free */
183 timeout = MII_TIMEOUT;
184 while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
185 cpu_relax();
186 timeout--;
187 }
188
189 mutex_unlock(&bus->mdio_lock);
190
191 if (!timeout) {
192 dev_err(&bus->dev, "timeout waiting for MII bus\n");
193 return -EBUSY;
194 }
195
196 return 0;
197 }
198
199 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
200 /*
201 * This is mildly evil, but so is our hardware for doing this.
202 * Also, we have to cast back to struct gfar because of
203 * definition weirdness done in gianfar.h.
204 */
205 static uint32_t __iomem *get_gfar_tbipa(void __iomem *p)
206 {
207 struct gfar __iomem *enet_regs = p;
208
209 return &enet_regs->tbipa;
210 }
211
212 /*
213 * Return the TBIPAR address for an eTSEC2 node
214 */
215 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
216 {
217 return p;
218 }
219 #endif
220
221 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
222 /*
223 * Return the TBIPAR address for a QE MDIO node
224 */
225 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
226 {
227 struct fsl_pq_mdio __iomem *mdio = p;
228
229 return &mdio->utbipar;
230 }
231
232 /*
233 * Find the UCC node that controls the given MDIO node
234 *
235 * For some reason, the QE MDIO nodes are not children of the UCC devices
236 * that control them. Therefore, we need to scan all UCC nodes looking for
237 * the one that encompases the given MDIO node. We do this by comparing
238 * physical addresses. The 'start' and 'end' addresses of the MDIO node are
239 * passed, and the correct UCC node will cover the entire address range.
240 *
241 * This assumes that there is only one QE MDIO node in the entire device tree.
242 */
243 static void ucc_configure(phys_addr_t start, phys_addr_t end)
244 {
245 static bool found_mii_master;
246 struct device_node *np = NULL;
247
248 if (found_mii_master)
249 return;
250
251 for_each_compatible_node(np, NULL, "ucc_geth") {
252 struct resource res;
253 const uint32_t *iprop;
254 uint32_t id;
255 int ret;
256
257 ret = of_address_to_resource(np, 0, &res);
258 if (ret < 0) {
259 pr_debug("fsl-pq-mdio: no address range in node %s\n",
260 np->full_name);
261 continue;
262 }
263
264 /* if our mdio regs fall within this UCC regs range */
265 if ((start < res.start) || (end > res.end))
266 continue;
267
268 iprop = of_get_property(np, "cell-index", NULL);
269 if (!iprop) {
270 iprop = of_get_property(np, "device-id", NULL);
271 if (!iprop) {
272 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
273 np->full_name);
274 continue;
275 }
276 }
277
278 id = be32_to_cpup(iprop);
279
280 /*
281 * cell-index and device-id for QE nodes are
282 * numbered from 1, not 0.
283 */
284 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
285 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
286 np->full_name);
287 continue;
288 }
289
290 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
291 found_mii_master = true;
292 }
293 }
294
295 #endif
296
297 static const struct of_device_id fsl_pq_mdio_match[] = {
298 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
299 {
300 .compatible = "fsl,gianfar-tbi",
301 .data = &(struct fsl_pq_mdio_data) {
302 .mii_offset = 0,
303 .get_tbipa = get_gfar_tbipa,
304 },
305 },
306 {
307 .compatible = "fsl,gianfar-mdio",
308 .data = &(struct fsl_pq_mdio_data) {
309 .mii_offset = 0,
310 .get_tbipa = get_gfar_tbipa,
311 },
312 },
313 {
314 .type = "mdio",
315 .compatible = "gianfar",
316 .data = &(struct fsl_pq_mdio_data) {
317 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
318 .get_tbipa = get_gfar_tbipa,
319 },
320 },
321 {
322 .compatible = "fsl,etsec2-tbi",
323 .data = &(struct fsl_pq_mdio_data) {
324 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
325 .get_tbipa = get_etsec_tbipa,
326 },
327 },
328 {
329 .compatible = "fsl,etsec2-mdio",
330 .data = &(struct fsl_pq_mdio_data) {
331 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
332 .get_tbipa = get_etsec_tbipa,
333 },
334 },
335 #endif
336 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
337 {
338 .compatible = "fsl,ucc-mdio",
339 .data = &(struct fsl_pq_mdio_data) {
340 .mii_offset = 0,
341 .get_tbipa = get_ucc_tbipa,
342 .ucc_configure = ucc_configure,
343 },
344 },
345 {
346 /* Legacy UCC MDIO node */
347 .type = "mdio",
348 .compatible = "ucc_geth_phy",
349 .data = &(struct fsl_pq_mdio_data) {
350 .mii_offset = 0,
351 .get_tbipa = get_ucc_tbipa,
352 .ucc_configure = ucc_configure,
353 },
354 },
355 #endif
356 /* No Kconfig option for Fman support yet */
357 {
358 .compatible = "fsl,fman-mdio",
359 .data = &(struct fsl_pq_mdio_data) {
360 .mii_offset = 0,
361 /* Fman TBI operations are handled elsewhere */
362 },
363 },
364
365 {},
366 };
367 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
368
369 static int fsl_pq_mdio_probe(struct platform_device *pdev)
370 {
371 const struct of_device_id *id =
372 of_match_device(fsl_pq_mdio_match, &pdev->dev);
373 const struct fsl_pq_mdio_data *data = id->data;
374 struct device_node *np = pdev->dev.of_node;
375 struct resource res;
376 struct device_node *tbi;
377 struct fsl_pq_mdio_priv *priv;
378 struct mii_bus *new_bus;
379 int err;
380
381 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
382
383 new_bus = mdiobus_alloc_size(sizeof(*priv));
384 if (!new_bus)
385 return -ENOMEM;
386
387 priv = new_bus->priv;
388 new_bus->name = "Freescale PowerQUICC MII Bus",
389 new_bus->read = &fsl_pq_mdio_read;
390 new_bus->write = &fsl_pq_mdio_write;
391 new_bus->reset = &fsl_pq_mdio_reset;
392 new_bus->irq = priv->irqs;
393
394 err = of_address_to_resource(np, 0, &res);
395 if (err < 0) {
396 dev_err(&pdev->dev, "could not obtain address information\n");
397 goto error;
398 }
399
400 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
401 (unsigned long long)res.start);
402
403 priv->map = of_iomap(np, 0);
404 if (!priv->map) {
405 err = -ENOMEM;
406 goto error;
407 }
408
409 /*
410 * Some device tree nodes represent only the MII registers, and
411 * others represent the MAC and MII registers. The 'mii_offset' field
412 * contains the offset of the MII registers inside the mapped register
413 * space.
414 */
415 if (data->mii_offset > resource_size(&res)) {
416 dev_err(&pdev->dev, "invalid register map\n");
417 err = -EINVAL;
418 goto error;
419 }
420 priv->regs = priv->map + data->mii_offset;
421
422 new_bus->parent = &pdev->dev;
423 platform_set_drvdata(pdev, new_bus);
424
425 if (data->get_tbipa) {
426 for_each_child_of_node(np, tbi) {
427 if (strcmp(tbi->type, "tbi-phy") == 0) {
428 dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
429 strrchr(tbi->full_name, '/') + 1);
430 break;
431 }
432 }
433
434 if (tbi) {
435 const u32 *prop = of_get_property(tbi, "reg", NULL);
436 uint32_t __iomem *tbipa;
437
438 if (!prop) {
439 dev_err(&pdev->dev,
440 "missing 'reg' property in node %s\n",
441 tbi->full_name);
442 err = -EBUSY;
443 goto error;
444 }
445
446 tbipa = data->get_tbipa(priv->map);
447
448 iowrite32be(be32_to_cpup(prop), tbipa);
449 }
450 }
451
452 if (data->ucc_configure)
453 data->ucc_configure(res.start, res.end);
454
455 err = of_mdiobus_register(new_bus, np);
456 if (err) {
457 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
458 new_bus->name);
459 goto error;
460 }
461
462 return 0;
463
464 error:
465 if (priv->map)
466 iounmap(priv->map);
467
468 kfree(new_bus);
469
470 return err;
471 }
472
473
474 static int fsl_pq_mdio_remove(struct platform_device *pdev)
475 {
476 struct device *device = &pdev->dev;
477 struct mii_bus *bus = dev_get_drvdata(device);
478 struct fsl_pq_mdio_priv *priv = bus->priv;
479
480 mdiobus_unregister(bus);
481
482 iounmap(priv->map);
483 mdiobus_free(bus);
484
485 return 0;
486 }
487
488 static struct platform_driver fsl_pq_mdio_driver = {
489 .driver = {
490 .name = "fsl-pq_mdio",
491 .of_match_table = fsl_pq_mdio_match,
492 },
493 .probe = fsl_pq_mdio_probe,
494 .remove = fsl_pq_mdio_remove,
495 };
496
497 module_platform_driver(fsl_pq_mdio_driver);
498
499 MODULE_LICENSE("GPL");
This page took 0.05385 seconds and 5 git commands to generate.