QE: Move QE from arch/powerpc to drivers/soc
[deliverable/linux.git] / drivers / net / ethernet / freescale / fsl_pq_mdio.c
1 /*
2 * Freescale PowerQUICC Ethernet Driver -- MIIM bus implementation
3 * Provides Bus interface for MIIM regs
4 *
5 * Author: Andy Fleming <afleming@freescale.com>
6 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
7 *
8 * Copyright 2002-2004, 2008-2009 Freescale Semiconductor, Inc.
9 *
10 * Based on gianfar_mii.c and ucc_geth_mii.c (Li Yang, Kim Phillips)
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the
14 * Free Software Foundation; either version 2 of the License, or (at your
15 * option) any later version.
16 *
17 */
18
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/delay.h>
24 #include <linux/module.h>
25 #include <linux/mii.h>
26 #include <linux/of_address.h>
27 #include <linux/of_mdio.h>
28 #include <linux/of_device.h>
29
30 #include <asm/io.h>
31 #if IS_ENABLED(CONFIG_UCC_GETH)
32 #include <soc/fsl/qe/ucc.h>
33 #endif
34
35 #include "gianfar.h"
36
37 #define MIIMIND_BUSY 0x00000001
38 #define MIIMIND_NOTVALID 0x00000004
39 #define MIIMCFG_INIT_VALUE 0x00000007
40 #define MIIMCFG_RESET 0x80000000
41
42 #define MII_READ_COMMAND 0x00000001
43
44 struct fsl_pq_mii {
45 u32 miimcfg; /* MII management configuration reg */
46 u32 miimcom; /* MII management command reg */
47 u32 miimadd; /* MII management address reg */
48 u32 miimcon; /* MII management control reg */
49 u32 miimstat; /* MII management status reg */
50 u32 miimind; /* MII management indication reg */
51 };
52
53 struct fsl_pq_mdio {
54 u8 res1[16];
55 u32 ieventm; /* MDIO Interrupt event register (for etsec2)*/
56 u32 imaskm; /* MDIO Interrupt mask register (for etsec2)*/
57 u8 res2[4];
58 u32 emapm; /* MDIO Event mapping register (for etsec2)*/
59 u8 res3[1280];
60 struct fsl_pq_mii mii;
61 u8 res4[28];
62 u32 utbipar; /* TBI phy address reg (only on UCC) */
63 u8 res5[2728];
64 } __packed;
65
66 /* Number of microseconds to wait for an MII register to respond */
67 #define MII_TIMEOUT 1000
68
69 struct fsl_pq_mdio_priv {
70 void __iomem *map;
71 struct fsl_pq_mii __iomem *regs;
72 int irqs[PHY_MAX_ADDR];
73 };
74
75 /*
76 * Per-device-type data. Each type of device tree node that we support gets
77 * one of these.
78 *
79 * @mii_offset: the offset of the MII registers within the memory map of the
80 * node. Some nodes define only the MII registers, and some define the whole
81 * MAC (which includes the MII registers).
82 *
83 * @get_tbipa: determines the address of the TBIPA register
84 *
85 * @ucc_configure: a special function for extra QE configuration
86 */
87 struct fsl_pq_mdio_data {
88 unsigned int mii_offset; /* offset of the MII registers */
89 uint32_t __iomem * (*get_tbipa)(void __iomem *p);
90 void (*ucc_configure)(phys_addr_t start, phys_addr_t end);
91 };
92
93 /*
94 * Write value to the PHY at mii_id at register regnum, on the bus attached
95 * to the local interface, which may be different from the generic mdio bus
96 * (tied to a single interface), waiting until the write is done before
97 * returning. This is helpful in programming interfaces like the TBI which
98 * control interfaces like onchip SERDES and are always tied to the local
99 * mdio pins, which may not be the same as system mdio bus, used for
100 * controlling the external PHYs, for example.
101 */
102 static int fsl_pq_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
103 u16 value)
104 {
105 struct fsl_pq_mdio_priv *priv = bus->priv;
106 struct fsl_pq_mii __iomem *regs = priv->regs;
107 unsigned int timeout;
108
109 /* Set the PHY address and the register address we want to write */
110 iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
111
112 /* Write out the value we want */
113 iowrite32be(value, &regs->miimcon);
114
115 /* Wait for the transaction to finish */
116 timeout = MII_TIMEOUT;
117 while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
118 cpu_relax();
119 timeout--;
120 }
121
122 return timeout ? 0 : -ETIMEDOUT;
123 }
124
125 /*
126 * Read the bus for PHY at addr mii_id, register regnum, and return the value.
127 * Clears miimcom first.
128 *
129 * All PHY operation done on the bus attached to the local interface, which
130 * may be different from the generic mdio bus. This is helpful in programming
131 * interfaces like the TBI which, in turn, control interfaces like on-chip
132 * SERDES and are always tied to the local mdio pins, which may not be the
133 * same as system mdio bus, used for controlling the external PHYs, for eg.
134 */
135 static int fsl_pq_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
136 {
137 struct fsl_pq_mdio_priv *priv = bus->priv;
138 struct fsl_pq_mii __iomem *regs = priv->regs;
139 unsigned int timeout;
140 u16 value;
141
142 /* Set the PHY address and the register address we want to read */
143 iowrite32be((mii_id << 8) | regnum, &regs->miimadd);
144
145 /* Clear miimcom, and then initiate a read */
146 iowrite32be(0, &regs->miimcom);
147 iowrite32be(MII_READ_COMMAND, &regs->miimcom);
148
149 /* Wait for the transaction to finish, normally less than 100us */
150 timeout = MII_TIMEOUT;
151 while ((ioread32be(&regs->miimind) &
152 (MIIMIND_NOTVALID | MIIMIND_BUSY)) && timeout) {
153 cpu_relax();
154 timeout--;
155 }
156
157 if (!timeout)
158 return -ETIMEDOUT;
159
160 /* Grab the value of the register from miimstat */
161 value = ioread32be(&regs->miimstat);
162
163 dev_dbg(&bus->dev, "read %04x from address %x/%x\n", value, mii_id, regnum);
164 return value;
165 }
166
167 /* Reset the MIIM registers, and wait for the bus to free */
168 static int fsl_pq_mdio_reset(struct mii_bus *bus)
169 {
170 struct fsl_pq_mdio_priv *priv = bus->priv;
171 struct fsl_pq_mii __iomem *regs = priv->regs;
172 unsigned int timeout;
173
174 mutex_lock(&bus->mdio_lock);
175
176 /* Reset the management interface */
177 iowrite32be(MIIMCFG_RESET, &regs->miimcfg);
178
179 /* Setup the MII Mgmt clock speed */
180 iowrite32be(MIIMCFG_INIT_VALUE, &regs->miimcfg);
181
182 /* Wait until the bus is free */
183 timeout = MII_TIMEOUT;
184 while ((ioread32be(&regs->miimind) & MIIMIND_BUSY) && timeout) {
185 cpu_relax();
186 timeout--;
187 }
188
189 mutex_unlock(&bus->mdio_lock);
190
191 if (!timeout) {
192 dev_err(&bus->dev, "timeout waiting for MII bus\n");
193 return -EBUSY;
194 }
195
196 return 0;
197 }
198
199 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
200 /*
201 * Return the TBIPA address, starting from the address
202 * of the mapped GFAR MDIO registers (struct gfar)
203 * This is mildly evil, but so is our hardware for doing this.
204 * Also, we have to cast back to struct gfar because of
205 * definition weirdness done in gianfar.h.
206 */
207 static uint32_t __iomem *get_gfar_tbipa_from_mdio(void __iomem *p)
208 {
209 struct gfar __iomem *enet_regs = p;
210
211 return &enet_regs->tbipa;
212 }
213
214 /*
215 * Return the TBIPA address, starting from the address
216 * of the mapped GFAR MII registers (gfar_mii_regs[] within struct gfar)
217 */
218 static uint32_t __iomem *get_gfar_tbipa_from_mii(void __iomem *p)
219 {
220 return get_gfar_tbipa_from_mdio(container_of(p, struct gfar, gfar_mii_regs));
221 }
222
223 /*
224 * Return the TBIPAR address for an eTSEC2 node
225 */
226 static uint32_t __iomem *get_etsec_tbipa(void __iomem *p)
227 {
228 return p;
229 }
230 #endif
231
232 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
233 /*
234 * Return the TBIPAR address for a QE MDIO node, starting from the address
235 * of the mapped MII registers (struct fsl_pq_mii)
236 */
237 static uint32_t __iomem *get_ucc_tbipa(void __iomem *p)
238 {
239 struct fsl_pq_mdio __iomem *mdio = container_of(p, struct fsl_pq_mdio, mii);
240
241 return &mdio->utbipar;
242 }
243
244 /*
245 * Find the UCC node that controls the given MDIO node
246 *
247 * For some reason, the QE MDIO nodes are not children of the UCC devices
248 * that control them. Therefore, we need to scan all UCC nodes looking for
249 * the one that encompases the given MDIO node. We do this by comparing
250 * physical addresses. The 'start' and 'end' addresses of the MDIO node are
251 * passed, and the correct UCC node will cover the entire address range.
252 *
253 * This assumes that there is only one QE MDIO node in the entire device tree.
254 */
255 static void ucc_configure(phys_addr_t start, phys_addr_t end)
256 {
257 static bool found_mii_master;
258 struct device_node *np = NULL;
259
260 if (found_mii_master)
261 return;
262
263 for_each_compatible_node(np, NULL, "ucc_geth") {
264 struct resource res;
265 const uint32_t *iprop;
266 uint32_t id;
267 int ret;
268
269 ret = of_address_to_resource(np, 0, &res);
270 if (ret < 0) {
271 pr_debug("fsl-pq-mdio: no address range in node %s\n",
272 np->full_name);
273 continue;
274 }
275
276 /* if our mdio regs fall within this UCC regs range */
277 if ((start < res.start) || (end > res.end))
278 continue;
279
280 iprop = of_get_property(np, "cell-index", NULL);
281 if (!iprop) {
282 iprop = of_get_property(np, "device-id", NULL);
283 if (!iprop) {
284 pr_debug("fsl-pq-mdio: no UCC ID in node %s\n",
285 np->full_name);
286 continue;
287 }
288 }
289
290 id = be32_to_cpup(iprop);
291
292 /*
293 * cell-index and device-id for QE nodes are
294 * numbered from 1, not 0.
295 */
296 if (ucc_set_qe_mux_mii_mng(id - 1) < 0) {
297 pr_debug("fsl-pq-mdio: invalid UCC ID in node %s\n",
298 np->full_name);
299 continue;
300 }
301
302 pr_debug("fsl-pq-mdio: setting node UCC%u to MII master\n", id);
303 found_mii_master = true;
304 }
305 }
306
307 #endif
308
309 static const struct of_device_id fsl_pq_mdio_match[] = {
310 #if defined(CONFIG_GIANFAR) || defined(CONFIG_GIANFAR_MODULE)
311 {
312 .compatible = "fsl,gianfar-tbi",
313 .data = &(struct fsl_pq_mdio_data) {
314 .mii_offset = 0,
315 .get_tbipa = get_gfar_tbipa_from_mii,
316 },
317 },
318 {
319 .compatible = "fsl,gianfar-mdio",
320 .data = &(struct fsl_pq_mdio_data) {
321 .mii_offset = 0,
322 .get_tbipa = get_gfar_tbipa_from_mii,
323 },
324 },
325 {
326 .type = "mdio",
327 .compatible = "gianfar",
328 .data = &(struct fsl_pq_mdio_data) {
329 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
330 .get_tbipa = get_gfar_tbipa_from_mdio,
331 },
332 },
333 {
334 .compatible = "fsl,etsec2-tbi",
335 .data = &(struct fsl_pq_mdio_data) {
336 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
337 .get_tbipa = get_etsec_tbipa,
338 },
339 },
340 {
341 .compatible = "fsl,etsec2-mdio",
342 .data = &(struct fsl_pq_mdio_data) {
343 .mii_offset = offsetof(struct fsl_pq_mdio, mii),
344 .get_tbipa = get_etsec_tbipa,
345 },
346 },
347 #endif
348 #if defined(CONFIG_UCC_GETH) || defined(CONFIG_UCC_GETH_MODULE)
349 {
350 .compatible = "fsl,ucc-mdio",
351 .data = &(struct fsl_pq_mdio_data) {
352 .mii_offset = 0,
353 .get_tbipa = get_ucc_tbipa,
354 .ucc_configure = ucc_configure,
355 },
356 },
357 {
358 /* Legacy UCC MDIO node */
359 .type = "mdio",
360 .compatible = "ucc_geth_phy",
361 .data = &(struct fsl_pq_mdio_data) {
362 .mii_offset = 0,
363 .get_tbipa = get_ucc_tbipa,
364 .ucc_configure = ucc_configure,
365 },
366 },
367 #endif
368 /* No Kconfig option for Fman support yet */
369 {
370 .compatible = "fsl,fman-mdio",
371 .data = &(struct fsl_pq_mdio_data) {
372 .mii_offset = 0,
373 /* Fman TBI operations are handled elsewhere */
374 },
375 },
376
377 {},
378 };
379 MODULE_DEVICE_TABLE(of, fsl_pq_mdio_match);
380
381 static int fsl_pq_mdio_probe(struct platform_device *pdev)
382 {
383 const struct of_device_id *id =
384 of_match_device(fsl_pq_mdio_match, &pdev->dev);
385 const struct fsl_pq_mdio_data *data = id->data;
386 struct device_node *np = pdev->dev.of_node;
387 struct resource res;
388 struct device_node *tbi;
389 struct fsl_pq_mdio_priv *priv;
390 struct mii_bus *new_bus;
391 int err;
392
393 dev_dbg(&pdev->dev, "found %s compatible node\n", id->compatible);
394
395 new_bus = mdiobus_alloc_size(sizeof(*priv));
396 if (!new_bus)
397 return -ENOMEM;
398
399 priv = new_bus->priv;
400 new_bus->name = "Freescale PowerQUICC MII Bus",
401 new_bus->read = &fsl_pq_mdio_read;
402 new_bus->write = &fsl_pq_mdio_write;
403 new_bus->reset = &fsl_pq_mdio_reset;
404 new_bus->irq = priv->irqs;
405
406 err = of_address_to_resource(np, 0, &res);
407 if (err < 0) {
408 dev_err(&pdev->dev, "could not obtain address information\n");
409 goto error;
410 }
411
412 snprintf(new_bus->id, MII_BUS_ID_SIZE, "%s@%llx", np->name,
413 (unsigned long long)res.start);
414
415 priv->map = of_iomap(np, 0);
416 if (!priv->map) {
417 err = -ENOMEM;
418 goto error;
419 }
420
421 /*
422 * Some device tree nodes represent only the MII registers, and
423 * others represent the MAC and MII registers. The 'mii_offset' field
424 * contains the offset of the MII registers inside the mapped register
425 * space.
426 */
427 if (data->mii_offset > resource_size(&res)) {
428 dev_err(&pdev->dev, "invalid register map\n");
429 err = -EINVAL;
430 goto error;
431 }
432 priv->regs = priv->map + data->mii_offset;
433
434 new_bus->parent = &pdev->dev;
435 platform_set_drvdata(pdev, new_bus);
436
437 if (data->get_tbipa) {
438 for_each_child_of_node(np, tbi) {
439 if (strcmp(tbi->type, "tbi-phy") == 0) {
440 dev_dbg(&pdev->dev, "found TBI PHY node %s\n",
441 strrchr(tbi->full_name, '/') + 1);
442 break;
443 }
444 }
445
446 if (tbi) {
447 const u32 *prop = of_get_property(tbi, "reg", NULL);
448 uint32_t __iomem *tbipa;
449
450 if (!prop) {
451 dev_err(&pdev->dev,
452 "missing 'reg' property in node %s\n",
453 tbi->full_name);
454 err = -EBUSY;
455 goto error;
456 }
457
458 tbipa = data->get_tbipa(priv->map);
459
460 /*
461 * Add consistency check to make sure TBI is contained
462 * within the mapped range (not because we would get a
463 * segfault, rather to catch bugs in computing TBI
464 * address). Print error message but continue anyway.
465 */
466 if ((void *)tbipa > priv->map + resource_size(&res) - 4)
467 dev_err(&pdev->dev, "invalid register map (should be at least 0x%04x to contain TBI address)\n",
468 ((void *)tbipa - priv->map) + 4);
469
470 iowrite32be(be32_to_cpup(prop), tbipa);
471 }
472 }
473
474 if (data->ucc_configure)
475 data->ucc_configure(res.start, res.end);
476
477 err = of_mdiobus_register(new_bus, np);
478 if (err) {
479 dev_err(&pdev->dev, "cannot register %s as MDIO bus\n",
480 new_bus->name);
481 goto error;
482 }
483
484 return 0;
485
486 error:
487 if (priv->map)
488 iounmap(priv->map);
489
490 kfree(new_bus);
491
492 return err;
493 }
494
495
496 static int fsl_pq_mdio_remove(struct platform_device *pdev)
497 {
498 struct device *device = &pdev->dev;
499 struct mii_bus *bus = dev_get_drvdata(device);
500 struct fsl_pq_mdio_priv *priv = bus->priv;
501
502 mdiobus_unregister(bus);
503
504 iounmap(priv->map);
505 mdiobus_free(bus);
506
507 return 0;
508 }
509
510 static struct platform_driver fsl_pq_mdio_driver = {
511 .driver = {
512 .name = "fsl-pq_mdio",
513 .of_match_table = fsl_pq_mdio_match,
514 },
515 .probe = fsl_pq_mdio_probe,
516 .remove = fsl_pq_mdio_remove,
517 };
518
519 module_platform_driver(fsl_pq_mdio_driver);
520
521 MODULE_LICENSE("GPL");
This page took 0.053633 seconds and 5 git commands to generate.