Merge branch 'samsung/pinctrl' into next/drivers
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103 #include "fsl_pq_mdio.h"
104
105 #define TX_TIMEOUT (1*HZ)
106
107 const char gfar_driver_version[] = "1.3";
108
109 static int gfar_enet_open(struct net_device *dev);
110 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
111 static void gfar_reset_task(struct work_struct *work);
112 static void gfar_timeout(struct net_device *dev);
113 static int gfar_close(struct net_device *dev);
114 struct sk_buff *gfar_new_skb(struct net_device *dev);
115 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
116 struct sk_buff *skb);
117 static int gfar_set_mac_address(struct net_device *dev);
118 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
119 static irqreturn_t gfar_error(int irq, void *dev_id);
120 static irqreturn_t gfar_transmit(int irq, void *dev_id);
121 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
122 static void adjust_link(struct net_device *dev);
123 static void init_registers(struct net_device *dev);
124 static int init_phy(struct net_device *dev);
125 static int gfar_probe(struct platform_device *ofdev);
126 static int gfar_remove(struct platform_device *ofdev);
127 static void free_skb_resources(struct gfar_private *priv);
128 static void gfar_set_multi(struct net_device *dev);
129 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
130 static void gfar_configure_serdes(struct net_device *dev);
131 static int gfar_poll(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144 const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 dma_addr_t buf)
153 {
154 u32 lstatus;
155
156 bdp->bufPtr = buf;
157
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162 eieio();
163
164 bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 struct gfar_private *priv = netdev_priv(ndev);
170 struct gfar_priv_tx_q *tx_queue = NULL;
171 struct gfar_priv_rx_q *rx_queue = NULL;
172 struct txbd8 *txbdp;
173 struct rxbd8 *rxbdp;
174 int i, j;
175
176 for (i = 0; i < priv->num_tx_queues; i++) {
177 tx_queue = priv->tx_queue[i];
178 /* Initialize some variables in our dev structure */
179 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 tx_queue->cur_tx = tx_queue->tx_bd_base;
182 tx_queue->skb_curtx = 0;
183 tx_queue->skb_dirtytx = 0;
184
185 /* Initialize Transmit Descriptor Ring */
186 txbdp = tx_queue->tx_bd_base;
187 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 txbdp->lstatus = 0;
189 txbdp->bufPtr = 0;
190 txbdp++;
191 }
192
193 /* Set the last descriptor in the ring to indicate wrap */
194 txbdp--;
195 txbdp->status |= TXBD_WRAP;
196 }
197
198 for (i = 0; i < priv->num_rx_queues; i++) {
199 rx_queue = priv->rx_queue[i];
200 rx_queue->cur_rx = rx_queue->rx_bd_base;
201 rx_queue->skb_currx = 0;
202 rxbdp = rx_queue->rx_bd_base;
203
204 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207 if (skb) {
208 gfar_init_rxbdp(rx_queue, rxbdp,
209 rxbdp->bufPtr);
210 } else {
211 skb = gfar_new_skb(ndev);
212 if (!skb) {
213 netdev_err(ndev, "Can't allocate RX buffers\n");
214 goto err_rxalloc_fail;
215 }
216 rx_queue->rx_skbuff[j] = skb;
217
218 gfar_new_rxbdp(rx_queue, rxbdp, skb);
219 }
220
221 rxbdp++;
222 }
223
224 }
225
226 return 0;
227
228 err_rxalloc_fail:
229 free_skb_resources(priv);
230 return -ENOMEM;
231 }
232
233 static int gfar_alloc_skb_resources(struct net_device *ndev)
234 {
235 void *vaddr;
236 dma_addr_t addr;
237 int i, j, k;
238 struct gfar_private *priv = netdev_priv(ndev);
239 struct device *dev = &priv->ofdev->dev;
240 struct gfar_priv_tx_q *tx_queue = NULL;
241 struct gfar_priv_rx_q *rx_queue = NULL;
242
243 priv->total_tx_ring_size = 0;
244 for (i = 0; i < priv->num_tx_queues; i++)
245 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
246
247 priv->total_rx_ring_size = 0;
248 for (i = 0; i < priv->num_rx_queues; i++)
249 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
250
251 /* Allocate memory for the buffer descriptors */
252 vaddr = dma_alloc_coherent(dev,
253 sizeof(struct txbd8) * priv->total_tx_ring_size +
254 sizeof(struct rxbd8) * priv->total_rx_ring_size,
255 &addr, GFP_KERNEL);
256 if (!vaddr) {
257 netif_err(priv, ifup, ndev,
258 "Could not allocate buffer descriptors!\n");
259 return -ENOMEM;
260 }
261
262 for (i = 0; i < priv->num_tx_queues; i++) {
263 tx_queue = priv->tx_queue[i];
264 tx_queue->tx_bd_base = vaddr;
265 tx_queue->tx_bd_dma_base = addr;
266 tx_queue->dev = ndev;
267 /* enet DMA only understands physical addresses */
268 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
269 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
270 }
271
272 /* Start the rx descriptor ring where the tx ring leaves off */
273 for (i = 0; i < priv->num_rx_queues; i++) {
274 rx_queue = priv->rx_queue[i];
275 rx_queue->rx_bd_base = vaddr;
276 rx_queue->rx_bd_dma_base = addr;
277 rx_queue->dev = ndev;
278 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
279 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
280 }
281
282 /* Setup the skbuff rings */
283 for (i = 0; i < priv->num_tx_queues; i++) {
284 tx_queue = priv->tx_queue[i];
285 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
286 tx_queue->tx_ring_size,
287 GFP_KERNEL);
288 if (!tx_queue->tx_skbuff) {
289 netif_err(priv, ifup, ndev,
290 "Could not allocate tx_skbuff\n");
291 goto cleanup;
292 }
293
294 for (k = 0; k < tx_queue->tx_ring_size; k++)
295 tx_queue->tx_skbuff[k] = NULL;
296 }
297
298 for (i = 0; i < priv->num_rx_queues; i++) {
299 rx_queue = priv->rx_queue[i];
300 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
301 rx_queue->rx_ring_size,
302 GFP_KERNEL);
303
304 if (!rx_queue->rx_skbuff) {
305 netif_err(priv, ifup, ndev,
306 "Could not allocate rx_skbuff\n");
307 goto cleanup;
308 }
309
310 for (j = 0; j < rx_queue->rx_ring_size; j++)
311 rx_queue->rx_skbuff[j] = NULL;
312 }
313
314 if (gfar_init_bds(ndev))
315 goto cleanup;
316
317 return 0;
318
319 cleanup:
320 free_skb_resources(priv);
321 return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 u32 __iomem *baddr;
328 int i;
329
330 baddr = &regs->tbase0;
331 for (i = 0; i < priv->num_tx_queues; i++) {
332 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 baddr += 2;
334 }
335
336 baddr = &regs->rbase0;
337 for (i = 0; i < priv->num_rx_queues; i++) {
338 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 baddr += 2;
340 }
341 }
342
343 static void gfar_init_mac(struct net_device *ndev)
344 {
345 struct gfar_private *priv = netdev_priv(ndev);
346 struct gfar __iomem *regs = priv->gfargrp[0].regs;
347 u32 rctrl = 0;
348 u32 tctrl = 0;
349 u32 attrs = 0;
350
351 /* write the tx/rx base registers */
352 gfar_init_tx_rx_base(priv);
353
354 /* Configure the coalescing support */
355 gfar_configure_coalescing(priv, 0xFF, 0xFF);
356
357 if (priv->rx_filer_enable) {
358 rctrl |= RCTRL_FILREN;
359 /* Program the RIR0 reg with the required distribution */
360 gfar_write(&regs->rir0, DEFAULT_RIR0);
361 }
362
363 if (ndev->features & NETIF_F_RXCSUM)
364 rctrl |= RCTRL_CHECKSUMMING;
365
366 if (priv->extended_hash) {
367 rctrl |= RCTRL_EXTHASH;
368
369 gfar_clear_exact_match(ndev);
370 rctrl |= RCTRL_EMEN;
371 }
372
373 if (priv->padding) {
374 rctrl &= ~RCTRL_PAL_MASK;
375 rctrl |= RCTRL_PADDING(priv->padding);
376 }
377
378 /* Insert receive time stamps into padding alignment bytes */
379 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
380 rctrl &= ~RCTRL_PAL_MASK;
381 rctrl |= RCTRL_PADDING(8);
382 priv->padding = 8;
383 }
384
385 /* Enable HW time stamping if requested from user space */
386 if (priv->hwts_rx_en)
387 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
388
389 if (ndev->features & NETIF_F_HW_VLAN_RX)
390 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
391
392 /* Init rctrl based on our settings */
393 gfar_write(&regs->rctrl, rctrl);
394
395 if (ndev->features & NETIF_F_IP_CSUM)
396 tctrl |= TCTRL_INIT_CSUM;
397
398 tctrl |= TCTRL_TXSCHED_PRIO;
399
400 gfar_write(&regs->tctrl, tctrl);
401
402 /* Set the extraction length and index */
403 attrs = ATTRELI_EL(priv->rx_stash_size) |
404 ATTRELI_EI(priv->rx_stash_index);
405
406 gfar_write(&regs->attreli, attrs);
407
408 /* Start with defaults, and add stashing or locking
409 * depending on the approprate variables
410 */
411 attrs = ATTR_INIT_SETTINGS;
412
413 if (priv->bd_stash_en)
414 attrs |= ATTR_BDSTASH;
415
416 if (priv->rx_stash_size != 0)
417 attrs |= ATTR_BUFSTASH;
418
419 gfar_write(&regs->attr, attrs);
420
421 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428 struct gfar_private *priv = netdev_priv(dev);
429 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430 unsigned long tx_packets = 0, tx_bytes = 0;
431 int i;
432
433 for (i = 0; i < priv->num_rx_queues; i++) {
434 rx_packets += priv->rx_queue[i]->stats.rx_packets;
435 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
436 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437 }
438
439 dev->stats.rx_packets = rx_packets;
440 dev->stats.rx_bytes = rx_bytes;
441 dev->stats.rx_dropped = rx_dropped;
442
443 for (i = 0; i < priv->num_tx_queues; i++) {
444 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445 tx_packets += priv->tx_queue[i]->stats.tx_packets;
446 }
447
448 dev->stats.tx_bytes = tx_bytes;
449 dev->stats.tx_packets = tx_packets;
450
451 return &dev->stats;
452 }
453
454 static const struct net_device_ops gfar_netdev_ops = {
455 .ndo_open = gfar_enet_open,
456 .ndo_start_xmit = gfar_start_xmit,
457 .ndo_stop = gfar_close,
458 .ndo_change_mtu = gfar_change_mtu,
459 .ndo_set_features = gfar_set_features,
460 .ndo_set_rx_mode = gfar_set_multi,
461 .ndo_tx_timeout = gfar_timeout,
462 .ndo_do_ioctl = gfar_ioctl,
463 .ndo_get_stats = gfar_get_stats,
464 .ndo_set_mac_address = eth_mac_addr,
465 .ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467 .ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473 int i;
474
475 for (i = 0; i < priv->num_rx_queues; i++)
476 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481 int i;
482
483 for (i = 0; i < priv->num_tx_queues; i++)
484 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489 int i;
490
491 for (i = 0; i < priv->num_rx_queues; i++)
492 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497 int i;
498
499 for (i = 0; i < priv->num_tx_queues; i++)
500 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505 return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506 (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512 return gfar_is_vlan_on(priv) ||
513 (priv->ndev->features & NETIF_F_RXCSUM) ||
514 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519 int i;
520
521 for (i = 0; i < priv->num_tx_queues; i++)
522 kfree(priv->tx_queue[i]);
523 }
524
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527 int i;
528
529 for (i = 0; i < priv->num_rx_queues; i++)
530 kfree(priv->rx_queue[i]);
531 }
532
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535 int i;
536
537 for (i = 0; i < MAXGROUPS; i++)
538 if (priv->gfargrp[i].regs)
539 iounmap(priv->gfargrp[i].regs);
540 }
541
542 static void disable_napi(struct gfar_private *priv)
543 {
544 int i;
545
546 for (i = 0; i < priv->num_grps; i++)
547 napi_disable(&priv->gfargrp[i].napi);
548 }
549
550 static void enable_napi(struct gfar_private *priv)
551 {
552 int i;
553
554 for (i = 0; i < priv->num_grps; i++)
555 napi_enable(&priv->gfargrp[i].napi);
556 }
557
558 static int gfar_parse_group(struct device_node *np,
559 struct gfar_private *priv, const char *model)
560 {
561 u32 *queue_mask;
562
563 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
564 if (!priv->gfargrp[priv->num_grps].regs)
565 return -ENOMEM;
566
567 priv->gfargrp[priv->num_grps].interruptTransmit =
568 irq_of_parse_and_map(np, 0);
569
570 /* If we aren't the FEC we have multiple interrupts */
571 if (model && strcasecmp(model, "FEC")) {
572 priv->gfargrp[priv->num_grps].interruptReceive =
573 irq_of_parse_and_map(np, 1);
574 priv->gfargrp[priv->num_grps].interruptError =
575 irq_of_parse_and_map(np,2);
576 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
577 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
578 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
579 return -EINVAL;
580 }
581
582 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
583 priv->gfargrp[priv->num_grps].priv = priv;
584 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
585 if (priv->mode == MQ_MG_MODE) {
586 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
587 priv->gfargrp[priv->num_grps].rx_bit_map = queue_mask ?
588 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
589 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
590 priv->gfargrp[priv->num_grps].tx_bit_map = queue_mask ?
591 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
592 } else {
593 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
594 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
595 }
596 priv->num_grps++;
597
598 return 0;
599 }
600
601 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
602 {
603 const char *model;
604 const char *ctype;
605 const void *mac_addr;
606 int err = 0, i;
607 struct net_device *dev = NULL;
608 struct gfar_private *priv = NULL;
609 struct device_node *np = ofdev->dev.of_node;
610 struct device_node *child = NULL;
611 const u32 *stash;
612 const u32 *stash_len;
613 const u32 *stash_idx;
614 unsigned int num_tx_qs, num_rx_qs;
615 u32 *tx_queues, *rx_queues;
616
617 if (!np || !of_device_is_available(np))
618 return -ENODEV;
619
620 /* parse the num of tx and rx queues */
621 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
622 num_tx_qs = tx_queues ? *tx_queues : 1;
623
624 if (num_tx_qs > MAX_TX_QS) {
625 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
626 num_tx_qs, MAX_TX_QS);
627 pr_err("Cannot do alloc_etherdev, aborting\n");
628 return -EINVAL;
629 }
630
631 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
632 num_rx_qs = rx_queues ? *rx_queues : 1;
633
634 if (num_rx_qs > MAX_RX_QS) {
635 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
636 num_rx_qs, MAX_RX_QS);
637 pr_err("Cannot do alloc_etherdev, aborting\n");
638 return -EINVAL;
639 }
640
641 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
642 dev = *pdev;
643 if (NULL == dev)
644 return -ENOMEM;
645
646 priv = netdev_priv(dev);
647 priv->node = ofdev->dev.of_node;
648 priv->ndev = dev;
649
650 priv->num_tx_queues = num_tx_qs;
651 netif_set_real_num_rx_queues(dev, num_rx_qs);
652 priv->num_rx_queues = num_rx_qs;
653 priv->num_grps = 0x0;
654
655 /* Init Rx queue filer rule set linked list */
656 INIT_LIST_HEAD(&priv->rx_list.list);
657 priv->rx_list.count = 0;
658 mutex_init(&priv->rx_queue_access);
659
660 model = of_get_property(np, "model", NULL);
661
662 for (i = 0; i < MAXGROUPS; i++)
663 priv->gfargrp[i].regs = NULL;
664
665 /* Parse and initialize group specific information */
666 if (of_device_is_compatible(np, "fsl,etsec2")) {
667 priv->mode = MQ_MG_MODE;
668 for_each_child_of_node(np, child) {
669 err = gfar_parse_group(child, priv, model);
670 if (err)
671 goto err_grp_init;
672 }
673 } else {
674 priv->mode = SQ_SG_MODE;
675 err = gfar_parse_group(np, priv, model);
676 if (err)
677 goto err_grp_init;
678 }
679
680 for (i = 0; i < priv->num_tx_queues; i++)
681 priv->tx_queue[i] = NULL;
682 for (i = 0; i < priv->num_rx_queues; i++)
683 priv->rx_queue[i] = NULL;
684
685 for (i = 0; i < priv->num_tx_queues; i++) {
686 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
687 GFP_KERNEL);
688 if (!priv->tx_queue[i]) {
689 err = -ENOMEM;
690 goto tx_alloc_failed;
691 }
692 priv->tx_queue[i]->tx_skbuff = NULL;
693 priv->tx_queue[i]->qindex = i;
694 priv->tx_queue[i]->dev = dev;
695 spin_lock_init(&(priv->tx_queue[i]->txlock));
696 }
697
698 for (i = 0; i < priv->num_rx_queues; i++) {
699 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
700 GFP_KERNEL);
701 if (!priv->rx_queue[i]) {
702 err = -ENOMEM;
703 goto rx_alloc_failed;
704 }
705 priv->rx_queue[i]->rx_skbuff = NULL;
706 priv->rx_queue[i]->qindex = i;
707 priv->rx_queue[i]->dev = dev;
708 spin_lock_init(&(priv->rx_queue[i]->rxlock));
709 }
710
711
712 stash = of_get_property(np, "bd-stash", NULL);
713
714 if (stash) {
715 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
716 priv->bd_stash_en = 1;
717 }
718
719 stash_len = of_get_property(np, "rx-stash-len", NULL);
720
721 if (stash_len)
722 priv->rx_stash_size = *stash_len;
723
724 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
725
726 if (stash_idx)
727 priv->rx_stash_index = *stash_idx;
728
729 if (stash_len || stash_idx)
730 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
731
732 mac_addr = of_get_mac_address(np);
733
734 if (mac_addr)
735 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
736
737 if (model && !strcasecmp(model, "TSEC"))
738 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
739 FSL_GIANFAR_DEV_HAS_COALESCE |
740 FSL_GIANFAR_DEV_HAS_RMON |
741 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
742
743 if (model && !strcasecmp(model, "eTSEC"))
744 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
745 FSL_GIANFAR_DEV_HAS_COALESCE |
746 FSL_GIANFAR_DEV_HAS_RMON |
747 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
748 FSL_GIANFAR_DEV_HAS_PADDING |
749 FSL_GIANFAR_DEV_HAS_CSUM |
750 FSL_GIANFAR_DEV_HAS_VLAN |
751 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
752 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
753 FSL_GIANFAR_DEV_HAS_TIMER;
754
755 ctype = of_get_property(np, "phy-connection-type", NULL);
756
757 /* We only care about rgmii-id. The rest are autodetected */
758 if (ctype && !strcmp(ctype, "rgmii-id"))
759 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
760 else
761 priv->interface = PHY_INTERFACE_MODE_MII;
762
763 if (of_get_property(np, "fsl,magic-packet", NULL))
764 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
765
766 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
767
768 /* Find the TBI PHY. If it's not there, we don't support SGMII */
769 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
770
771 return 0;
772
773 rx_alloc_failed:
774 free_rx_pointers(priv);
775 tx_alloc_failed:
776 free_tx_pointers(priv);
777 err_grp_init:
778 unmap_group_regs(priv);
779 free_netdev(dev);
780 return err;
781 }
782
783 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
784 struct ifreq *ifr, int cmd)
785 {
786 struct hwtstamp_config config;
787 struct gfar_private *priv = netdev_priv(netdev);
788
789 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
790 return -EFAULT;
791
792 /* reserved for future extensions */
793 if (config.flags)
794 return -EINVAL;
795
796 switch (config.tx_type) {
797 case HWTSTAMP_TX_OFF:
798 priv->hwts_tx_en = 0;
799 break;
800 case HWTSTAMP_TX_ON:
801 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
802 return -ERANGE;
803 priv->hwts_tx_en = 1;
804 break;
805 default:
806 return -ERANGE;
807 }
808
809 switch (config.rx_filter) {
810 case HWTSTAMP_FILTER_NONE:
811 if (priv->hwts_rx_en) {
812 stop_gfar(netdev);
813 priv->hwts_rx_en = 0;
814 startup_gfar(netdev);
815 }
816 break;
817 default:
818 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
819 return -ERANGE;
820 if (!priv->hwts_rx_en) {
821 stop_gfar(netdev);
822 priv->hwts_rx_en = 1;
823 startup_gfar(netdev);
824 }
825 config.rx_filter = HWTSTAMP_FILTER_ALL;
826 break;
827 }
828
829 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
830 -EFAULT : 0;
831 }
832
833 /* Ioctl MII Interface */
834 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
835 {
836 struct gfar_private *priv = netdev_priv(dev);
837
838 if (!netif_running(dev))
839 return -EINVAL;
840
841 if (cmd == SIOCSHWTSTAMP)
842 return gfar_hwtstamp_ioctl(dev, rq, cmd);
843
844 if (!priv->phydev)
845 return -ENODEV;
846
847 return phy_mii_ioctl(priv->phydev, rq, cmd);
848 }
849
850 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
851 {
852 unsigned int new_bit_map = 0x0;
853 int mask = 0x1 << (max_qs - 1), i;
854
855 for (i = 0; i < max_qs; i++) {
856 if (bit_map & mask)
857 new_bit_map = new_bit_map + (1 << i);
858 mask = mask >> 0x1;
859 }
860 return new_bit_map;
861 }
862
863 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
864 u32 class)
865 {
866 u32 rqfpr = FPR_FILER_MASK;
867 u32 rqfcr = 0x0;
868
869 rqfar--;
870 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
871 priv->ftp_rqfpr[rqfar] = rqfpr;
872 priv->ftp_rqfcr[rqfar] = rqfcr;
873 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
874
875 rqfar--;
876 rqfcr = RQFCR_CMP_NOMATCH;
877 priv->ftp_rqfpr[rqfar] = rqfpr;
878 priv->ftp_rqfcr[rqfar] = rqfcr;
879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
880
881 rqfar--;
882 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
883 rqfpr = class;
884 priv->ftp_rqfcr[rqfar] = rqfcr;
885 priv->ftp_rqfpr[rqfar] = rqfpr;
886 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
887
888 rqfar--;
889 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
890 rqfpr = class;
891 priv->ftp_rqfcr[rqfar] = rqfcr;
892 priv->ftp_rqfpr[rqfar] = rqfpr;
893 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
894
895 return rqfar;
896 }
897
898 static void gfar_init_filer_table(struct gfar_private *priv)
899 {
900 int i = 0x0;
901 u32 rqfar = MAX_FILER_IDX;
902 u32 rqfcr = 0x0;
903 u32 rqfpr = FPR_FILER_MASK;
904
905 /* Default rule */
906 rqfcr = RQFCR_CMP_MATCH;
907 priv->ftp_rqfcr[rqfar] = rqfcr;
908 priv->ftp_rqfpr[rqfar] = rqfpr;
909 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
910
911 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
912 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
917
918 /* cur_filer_idx indicated the first non-masked rule */
919 priv->cur_filer_idx = rqfar;
920
921 /* Rest are masked rules */
922 rqfcr = RQFCR_CMP_NOMATCH;
923 for (i = 0; i < rqfar; i++) {
924 priv->ftp_rqfcr[i] = rqfcr;
925 priv->ftp_rqfpr[i] = rqfpr;
926 gfar_write_filer(priv, i, rqfcr, rqfpr);
927 }
928 }
929
930 static void gfar_detect_errata(struct gfar_private *priv)
931 {
932 struct device *dev = &priv->ofdev->dev;
933 unsigned int pvr = mfspr(SPRN_PVR);
934 unsigned int svr = mfspr(SPRN_SVR);
935 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
936 unsigned int rev = svr & 0xffff;
937
938 /* MPC8313 Rev 2.0 and higher; All MPC837x */
939 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
940 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
941 priv->errata |= GFAR_ERRATA_74;
942
943 /* MPC8313 and MPC837x all rev */
944 if ((pvr == 0x80850010 && mod == 0x80b0) ||
945 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946 priv->errata |= GFAR_ERRATA_76;
947
948 /* MPC8313 and MPC837x all rev */
949 if ((pvr == 0x80850010 && mod == 0x80b0) ||
950 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951 priv->errata |= GFAR_ERRATA_A002;
952
953 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
954 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
955 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
956 priv->errata |= GFAR_ERRATA_12;
957
958 if (priv->errata)
959 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
960 priv->errata);
961 }
962
963 /* Set up the ethernet device structure, private data,
964 * and anything else we need before we start
965 */
966 static int gfar_probe(struct platform_device *ofdev)
967 {
968 u32 tempval;
969 struct net_device *dev = NULL;
970 struct gfar_private *priv = NULL;
971 struct gfar __iomem *regs = NULL;
972 int err = 0, i, grp_idx = 0;
973 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
974 u32 isrg = 0;
975 u32 __iomem *baddr;
976
977 err = gfar_of_init(ofdev, &dev);
978
979 if (err)
980 return err;
981
982 priv = netdev_priv(dev);
983 priv->ndev = dev;
984 priv->ofdev = ofdev;
985 priv->node = ofdev->dev.of_node;
986 SET_NETDEV_DEV(dev, &ofdev->dev);
987
988 spin_lock_init(&priv->bflock);
989 INIT_WORK(&priv->reset_task, gfar_reset_task);
990
991 dev_set_drvdata(&ofdev->dev, priv);
992 regs = priv->gfargrp[0].regs;
993
994 gfar_detect_errata(priv);
995
996 /* Stop the DMA engine now, in case it was running before
997 * (The firmware could have used it, and left it running).
998 */
999 gfar_halt(dev);
1000
1001 /* Reset MAC layer */
1002 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1003
1004 /* We need to delay at least 3 TX clocks */
1005 udelay(2);
1006
1007 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1008 gfar_write(&regs->maccfg1, tempval);
1009
1010 /* Initialize MACCFG2. */
1011 tempval = MACCFG2_INIT_SETTINGS;
1012 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1013 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1014 gfar_write(&regs->maccfg2, tempval);
1015
1016 /* Initialize ECNTRL */
1017 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1018
1019 /* Set the dev->base_addr to the gfar reg region */
1020 dev->base_addr = (unsigned long) regs;
1021
1022 SET_NETDEV_DEV(dev, &ofdev->dev);
1023
1024 /* Fill in the dev structure */
1025 dev->watchdog_timeo = TX_TIMEOUT;
1026 dev->mtu = 1500;
1027 dev->netdev_ops = &gfar_netdev_ops;
1028 dev->ethtool_ops = &gfar_ethtool_ops;
1029
1030 /* Register for napi ...We are registering NAPI for each grp */
1031 for (i = 0; i < priv->num_grps; i++)
1032 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1033 GFAR_DEV_WEIGHT);
1034
1035 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1036 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1037 NETIF_F_RXCSUM;
1038 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1039 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040 }
1041
1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1043 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1044 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045 }
1046
1047 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1048 priv->extended_hash = 1;
1049 priv->hash_width = 9;
1050
1051 priv->hash_regs[0] = &regs->igaddr0;
1052 priv->hash_regs[1] = &regs->igaddr1;
1053 priv->hash_regs[2] = &regs->igaddr2;
1054 priv->hash_regs[3] = &regs->igaddr3;
1055 priv->hash_regs[4] = &regs->igaddr4;
1056 priv->hash_regs[5] = &regs->igaddr5;
1057 priv->hash_regs[6] = &regs->igaddr6;
1058 priv->hash_regs[7] = &regs->igaddr7;
1059 priv->hash_regs[8] = &regs->gaddr0;
1060 priv->hash_regs[9] = &regs->gaddr1;
1061 priv->hash_regs[10] = &regs->gaddr2;
1062 priv->hash_regs[11] = &regs->gaddr3;
1063 priv->hash_regs[12] = &regs->gaddr4;
1064 priv->hash_regs[13] = &regs->gaddr5;
1065 priv->hash_regs[14] = &regs->gaddr6;
1066 priv->hash_regs[15] = &regs->gaddr7;
1067
1068 } else {
1069 priv->extended_hash = 0;
1070 priv->hash_width = 8;
1071
1072 priv->hash_regs[0] = &regs->gaddr0;
1073 priv->hash_regs[1] = &regs->gaddr1;
1074 priv->hash_regs[2] = &regs->gaddr2;
1075 priv->hash_regs[3] = &regs->gaddr3;
1076 priv->hash_regs[4] = &regs->gaddr4;
1077 priv->hash_regs[5] = &regs->gaddr5;
1078 priv->hash_regs[6] = &regs->gaddr6;
1079 priv->hash_regs[7] = &regs->gaddr7;
1080 }
1081
1082 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1083 priv->padding = DEFAULT_PADDING;
1084 else
1085 priv->padding = 0;
1086
1087 if (dev->features & NETIF_F_IP_CSUM ||
1088 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1089 dev->needed_headroom = GMAC_FCB_LEN;
1090
1091 /* Program the isrg regs only if number of grps > 1 */
1092 if (priv->num_grps > 1) {
1093 baddr = &regs->isrg0;
1094 for (i = 0; i < priv->num_grps; i++) {
1095 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1096 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1097 gfar_write(baddr, isrg);
1098 baddr++;
1099 isrg = 0x0;
1100 }
1101 }
1102
1103 /* Need to reverse the bit maps as bit_map's MSB is q0
1104 * but, for_each_set_bit parses from right to left, which
1105 * basically reverses the queue numbers
1106 */
1107 for (i = 0; i< priv->num_grps; i++) {
1108 priv->gfargrp[i].tx_bit_map =
1109 reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1110 priv->gfargrp[i].rx_bit_map =
1111 reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1112 }
1113
1114 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1115 * also assign queues to groups
1116 */
1117 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1118 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1119
1120 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1121 priv->num_rx_queues) {
1122 priv->gfargrp[grp_idx].num_rx_queues++;
1123 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1124 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1125 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1126 }
1127 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1128
1129 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1130 priv->num_tx_queues) {
1131 priv->gfargrp[grp_idx].num_tx_queues++;
1132 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1133 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1134 tqueue = tqueue | (TQUEUE_EN0 >> i);
1135 }
1136 priv->gfargrp[grp_idx].rstat = rstat;
1137 priv->gfargrp[grp_idx].tstat = tstat;
1138 rstat = tstat =0;
1139 }
1140
1141 gfar_write(&regs->rqueue, rqueue);
1142 gfar_write(&regs->tqueue, tqueue);
1143
1144 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1145
1146 /* Initializing some of the rx/tx queue level parameters */
1147 for (i = 0; i < priv->num_tx_queues; i++) {
1148 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1149 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1150 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1151 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1152 }
1153
1154 for (i = 0; i < priv->num_rx_queues; i++) {
1155 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1156 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1157 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1158 }
1159
1160 /* always enable rx filer */
1161 priv->rx_filer_enable = 1;
1162 /* Enable most messages by default */
1163 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1164
1165 /* Carrier starts down, phylib will bring it up */
1166 netif_carrier_off(dev);
1167
1168 err = register_netdev(dev);
1169
1170 if (err) {
1171 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1172 goto register_fail;
1173 }
1174
1175 device_init_wakeup(&dev->dev,
1176 priv->device_flags &
1177 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1178
1179 /* fill out IRQ number and name fields */
1180 for (i = 0; i < priv->num_grps; i++) {
1181 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1182 sprintf(priv->gfargrp[i].int_name_tx, "%s%s%c%s",
1183 dev->name, "_g", '0' + i, "_tx");
1184 sprintf(priv->gfargrp[i].int_name_rx, "%s%s%c%s",
1185 dev->name, "_g", '0' + i, "_rx");
1186 sprintf(priv->gfargrp[i].int_name_er, "%s%s%c%s",
1187 dev->name, "_g", '0' + i, "_er");
1188 } else
1189 strcpy(priv->gfargrp[i].int_name_tx, dev->name);
1190 }
1191
1192 /* Initialize the filer table */
1193 gfar_init_filer_table(priv);
1194
1195 /* Create all the sysfs files */
1196 gfar_init_sysfs(dev);
1197
1198 /* Print out the device info */
1199 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1200
1201 /* Even more device info helps when determining which kernel
1202 * provided which set of benchmarks.
1203 */
1204 netdev_info(dev, "Running with NAPI enabled\n");
1205 for (i = 0; i < priv->num_rx_queues; i++)
1206 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1207 i, priv->rx_queue[i]->rx_ring_size);
1208 for (i = 0; i < priv->num_tx_queues; i++)
1209 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1210 i, priv->tx_queue[i]->tx_ring_size);
1211
1212 return 0;
1213
1214 register_fail:
1215 unmap_group_regs(priv);
1216 free_tx_pointers(priv);
1217 free_rx_pointers(priv);
1218 if (priv->phy_node)
1219 of_node_put(priv->phy_node);
1220 if (priv->tbi_node)
1221 of_node_put(priv->tbi_node);
1222 free_netdev(dev);
1223 return err;
1224 }
1225
1226 static int gfar_remove(struct platform_device *ofdev)
1227 {
1228 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1229
1230 if (priv->phy_node)
1231 of_node_put(priv->phy_node);
1232 if (priv->tbi_node)
1233 of_node_put(priv->tbi_node);
1234
1235 dev_set_drvdata(&ofdev->dev, NULL);
1236
1237 unregister_netdev(priv->ndev);
1238 unmap_group_regs(priv);
1239 free_netdev(priv->ndev);
1240
1241 return 0;
1242 }
1243
1244 #ifdef CONFIG_PM
1245
1246 static int gfar_suspend(struct device *dev)
1247 {
1248 struct gfar_private *priv = dev_get_drvdata(dev);
1249 struct net_device *ndev = priv->ndev;
1250 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1251 unsigned long flags;
1252 u32 tempval;
1253
1254 int magic_packet = priv->wol_en &&
1255 (priv->device_flags &
1256 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1257
1258 netif_device_detach(ndev);
1259
1260 if (netif_running(ndev)) {
1261
1262 local_irq_save(flags);
1263 lock_tx_qs(priv);
1264 lock_rx_qs(priv);
1265
1266 gfar_halt_nodisable(ndev);
1267
1268 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1269 tempval = gfar_read(&regs->maccfg1);
1270
1271 tempval &= ~MACCFG1_TX_EN;
1272
1273 if (!magic_packet)
1274 tempval &= ~MACCFG1_RX_EN;
1275
1276 gfar_write(&regs->maccfg1, tempval);
1277
1278 unlock_rx_qs(priv);
1279 unlock_tx_qs(priv);
1280 local_irq_restore(flags);
1281
1282 disable_napi(priv);
1283
1284 if (magic_packet) {
1285 /* Enable interrupt on Magic Packet */
1286 gfar_write(&regs->imask, IMASK_MAG);
1287
1288 /* Enable Magic Packet mode */
1289 tempval = gfar_read(&regs->maccfg2);
1290 tempval |= MACCFG2_MPEN;
1291 gfar_write(&regs->maccfg2, tempval);
1292 } else {
1293 phy_stop(priv->phydev);
1294 }
1295 }
1296
1297 return 0;
1298 }
1299
1300 static int gfar_resume(struct device *dev)
1301 {
1302 struct gfar_private *priv = dev_get_drvdata(dev);
1303 struct net_device *ndev = priv->ndev;
1304 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1305 unsigned long flags;
1306 u32 tempval;
1307 int magic_packet = priv->wol_en &&
1308 (priv->device_flags &
1309 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1310
1311 if (!netif_running(ndev)) {
1312 netif_device_attach(ndev);
1313 return 0;
1314 }
1315
1316 if (!magic_packet && priv->phydev)
1317 phy_start(priv->phydev);
1318
1319 /* Disable Magic Packet mode, in case something
1320 * else woke us up.
1321 */
1322 local_irq_save(flags);
1323 lock_tx_qs(priv);
1324 lock_rx_qs(priv);
1325
1326 tempval = gfar_read(&regs->maccfg2);
1327 tempval &= ~MACCFG2_MPEN;
1328 gfar_write(&regs->maccfg2, tempval);
1329
1330 gfar_start(ndev);
1331
1332 unlock_rx_qs(priv);
1333 unlock_tx_qs(priv);
1334 local_irq_restore(flags);
1335
1336 netif_device_attach(ndev);
1337
1338 enable_napi(priv);
1339
1340 return 0;
1341 }
1342
1343 static int gfar_restore(struct device *dev)
1344 {
1345 struct gfar_private *priv = dev_get_drvdata(dev);
1346 struct net_device *ndev = priv->ndev;
1347
1348 if (!netif_running(ndev))
1349 return 0;
1350
1351 gfar_init_bds(ndev);
1352 init_registers(ndev);
1353 gfar_set_mac_address(ndev);
1354 gfar_init_mac(ndev);
1355 gfar_start(ndev);
1356
1357 priv->oldlink = 0;
1358 priv->oldspeed = 0;
1359 priv->oldduplex = -1;
1360
1361 if (priv->phydev)
1362 phy_start(priv->phydev);
1363
1364 netif_device_attach(ndev);
1365 enable_napi(priv);
1366
1367 return 0;
1368 }
1369
1370 static struct dev_pm_ops gfar_pm_ops = {
1371 .suspend = gfar_suspend,
1372 .resume = gfar_resume,
1373 .freeze = gfar_suspend,
1374 .thaw = gfar_resume,
1375 .restore = gfar_restore,
1376 };
1377
1378 #define GFAR_PM_OPS (&gfar_pm_ops)
1379
1380 #else
1381
1382 #define GFAR_PM_OPS NULL
1383
1384 #endif
1385
1386 /* Reads the controller's registers to determine what interface
1387 * connects it to the PHY.
1388 */
1389 static phy_interface_t gfar_get_interface(struct net_device *dev)
1390 {
1391 struct gfar_private *priv = netdev_priv(dev);
1392 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1393 u32 ecntrl;
1394
1395 ecntrl = gfar_read(&regs->ecntrl);
1396
1397 if (ecntrl & ECNTRL_SGMII_MODE)
1398 return PHY_INTERFACE_MODE_SGMII;
1399
1400 if (ecntrl & ECNTRL_TBI_MODE) {
1401 if (ecntrl & ECNTRL_REDUCED_MODE)
1402 return PHY_INTERFACE_MODE_RTBI;
1403 else
1404 return PHY_INTERFACE_MODE_TBI;
1405 }
1406
1407 if (ecntrl & ECNTRL_REDUCED_MODE) {
1408 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1409 return PHY_INTERFACE_MODE_RMII;
1410 }
1411 else {
1412 phy_interface_t interface = priv->interface;
1413
1414 /* This isn't autodetected right now, so it must
1415 * be set by the device tree or platform code.
1416 */
1417 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1418 return PHY_INTERFACE_MODE_RGMII_ID;
1419
1420 return PHY_INTERFACE_MODE_RGMII;
1421 }
1422 }
1423
1424 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1425 return PHY_INTERFACE_MODE_GMII;
1426
1427 return PHY_INTERFACE_MODE_MII;
1428 }
1429
1430
1431 /* Initializes driver's PHY state, and attaches to the PHY.
1432 * Returns 0 on success.
1433 */
1434 static int init_phy(struct net_device *dev)
1435 {
1436 struct gfar_private *priv = netdev_priv(dev);
1437 uint gigabit_support =
1438 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1439 SUPPORTED_1000baseT_Full : 0;
1440 phy_interface_t interface;
1441
1442 priv->oldlink = 0;
1443 priv->oldspeed = 0;
1444 priv->oldduplex = -1;
1445
1446 interface = gfar_get_interface(dev);
1447
1448 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1449 interface);
1450 if (!priv->phydev)
1451 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1452 interface);
1453 if (!priv->phydev) {
1454 dev_err(&dev->dev, "could not attach to PHY\n");
1455 return -ENODEV;
1456 }
1457
1458 if (interface == PHY_INTERFACE_MODE_SGMII)
1459 gfar_configure_serdes(dev);
1460
1461 /* Remove any features not supported by the controller */
1462 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1463 priv->phydev->advertising = priv->phydev->supported;
1464
1465 return 0;
1466 }
1467
1468 /* Initialize TBI PHY interface for communicating with the
1469 * SERDES lynx PHY on the chip. We communicate with this PHY
1470 * through the MDIO bus on each controller, treating it as a
1471 * "normal" PHY at the address found in the TBIPA register. We assume
1472 * that the TBIPA register is valid. Either the MDIO bus code will set
1473 * it to a value that doesn't conflict with other PHYs on the bus, or the
1474 * value doesn't matter, as there are no other PHYs on the bus.
1475 */
1476 static void gfar_configure_serdes(struct net_device *dev)
1477 {
1478 struct gfar_private *priv = netdev_priv(dev);
1479 struct phy_device *tbiphy;
1480
1481 if (!priv->tbi_node) {
1482 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1483 "device tree specify a tbi-handle\n");
1484 return;
1485 }
1486
1487 tbiphy = of_phy_find_device(priv->tbi_node);
1488 if (!tbiphy) {
1489 dev_err(&dev->dev, "error: Could not get TBI device\n");
1490 return;
1491 }
1492
1493 /* If the link is already up, we must already be ok, and don't need to
1494 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1495 * everything for us? Resetting it takes the link down and requires
1496 * several seconds for it to come back.
1497 */
1498 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1499 return;
1500
1501 /* Single clk mode, mii mode off(for serdes communication) */
1502 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1503
1504 phy_write(tbiphy, MII_ADVERTISE,
1505 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1506 ADVERTISE_1000XPSE_ASYM);
1507
1508 phy_write(tbiphy, MII_BMCR,
1509 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1510 BMCR_SPEED1000);
1511 }
1512
1513 static void init_registers(struct net_device *dev)
1514 {
1515 struct gfar_private *priv = netdev_priv(dev);
1516 struct gfar __iomem *regs = NULL;
1517 int i;
1518
1519 for (i = 0; i < priv->num_grps; i++) {
1520 regs = priv->gfargrp[i].regs;
1521 /* Clear IEVENT */
1522 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1523
1524 /* Initialize IMASK */
1525 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1526 }
1527
1528 regs = priv->gfargrp[0].regs;
1529 /* Init hash registers to zero */
1530 gfar_write(&regs->igaddr0, 0);
1531 gfar_write(&regs->igaddr1, 0);
1532 gfar_write(&regs->igaddr2, 0);
1533 gfar_write(&regs->igaddr3, 0);
1534 gfar_write(&regs->igaddr4, 0);
1535 gfar_write(&regs->igaddr5, 0);
1536 gfar_write(&regs->igaddr6, 0);
1537 gfar_write(&regs->igaddr7, 0);
1538
1539 gfar_write(&regs->gaddr0, 0);
1540 gfar_write(&regs->gaddr1, 0);
1541 gfar_write(&regs->gaddr2, 0);
1542 gfar_write(&regs->gaddr3, 0);
1543 gfar_write(&regs->gaddr4, 0);
1544 gfar_write(&regs->gaddr5, 0);
1545 gfar_write(&regs->gaddr6, 0);
1546 gfar_write(&regs->gaddr7, 0);
1547
1548 /* Zero out the rmon mib registers if it has them */
1549 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1550 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1551
1552 /* Mask off the CAM interrupts */
1553 gfar_write(&regs->rmon.cam1, 0xffffffff);
1554 gfar_write(&regs->rmon.cam2, 0xffffffff);
1555 }
1556
1557 /* Initialize the max receive buffer length */
1558 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1559
1560 /* Initialize the Minimum Frame Length Register */
1561 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1562 }
1563
1564 static int __gfar_is_rx_idle(struct gfar_private *priv)
1565 {
1566 u32 res;
1567
1568 /* Normaly TSEC should not hang on GRS commands, so we should
1569 * actually wait for IEVENT_GRSC flag.
1570 */
1571 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1572 return 0;
1573
1574 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1575 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1576 * and the Rx can be safely reset.
1577 */
1578 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1579 res &= 0x7f807f80;
1580 if ((res & 0xffff) == (res >> 16))
1581 return 1;
1582
1583 return 0;
1584 }
1585
1586 /* Halt the receive and transmit queues */
1587 static void gfar_halt_nodisable(struct net_device *dev)
1588 {
1589 struct gfar_private *priv = netdev_priv(dev);
1590 struct gfar __iomem *regs = NULL;
1591 u32 tempval;
1592 int i;
1593
1594 for (i = 0; i < priv->num_grps; i++) {
1595 regs = priv->gfargrp[i].regs;
1596 /* Mask all interrupts */
1597 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1598
1599 /* Clear all interrupts */
1600 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1601 }
1602
1603 regs = priv->gfargrp[0].regs;
1604 /* Stop the DMA, and wait for it to stop */
1605 tempval = gfar_read(&regs->dmactrl);
1606 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1607 (DMACTRL_GRS | DMACTRL_GTS)) {
1608 int ret;
1609
1610 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1611 gfar_write(&regs->dmactrl, tempval);
1612
1613 do {
1614 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1615 (IEVENT_GRSC | IEVENT_GTSC)) ==
1616 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1617 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1618 ret = __gfar_is_rx_idle(priv);
1619 } while (!ret);
1620 }
1621 }
1622
1623 /* Halt the receive and transmit queues */
1624 void gfar_halt(struct net_device *dev)
1625 {
1626 struct gfar_private *priv = netdev_priv(dev);
1627 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1628 u32 tempval;
1629
1630 gfar_halt_nodisable(dev);
1631
1632 /* Disable Rx and Tx */
1633 tempval = gfar_read(&regs->maccfg1);
1634 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1635 gfar_write(&regs->maccfg1, tempval);
1636 }
1637
1638 static void free_grp_irqs(struct gfar_priv_grp *grp)
1639 {
1640 free_irq(grp->interruptError, grp);
1641 free_irq(grp->interruptTransmit, grp);
1642 free_irq(grp->interruptReceive, grp);
1643 }
1644
1645 void stop_gfar(struct net_device *dev)
1646 {
1647 struct gfar_private *priv = netdev_priv(dev);
1648 unsigned long flags;
1649 int i;
1650
1651 phy_stop(priv->phydev);
1652
1653
1654 /* Lock it down */
1655 local_irq_save(flags);
1656 lock_tx_qs(priv);
1657 lock_rx_qs(priv);
1658
1659 gfar_halt(dev);
1660
1661 unlock_rx_qs(priv);
1662 unlock_tx_qs(priv);
1663 local_irq_restore(flags);
1664
1665 /* Free the IRQs */
1666 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1667 for (i = 0; i < priv->num_grps; i++)
1668 free_grp_irqs(&priv->gfargrp[i]);
1669 } else {
1670 for (i = 0; i < priv->num_grps; i++)
1671 free_irq(priv->gfargrp[i].interruptTransmit,
1672 &priv->gfargrp[i]);
1673 }
1674
1675 free_skb_resources(priv);
1676 }
1677
1678 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1679 {
1680 struct txbd8 *txbdp;
1681 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1682 int i, j;
1683
1684 txbdp = tx_queue->tx_bd_base;
1685
1686 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1687 if (!tx_queue->tx_skbuff[i])
1688 continue;
1689
1690 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1691 txbdp->length, DMA_TO_DEVICE);
1692 txbdp->lstatus = 0;
1693 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1694 j++) {
1695 txbdp++;
1696 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1697 txbdp->length, DMA_TO_DEVICE);
1698 }
1699 txbdp++;
1700 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1701 tx_queue->tx_skbuff[i] = NULL;
1702 }
1703 kfree(tx_queue->tx_skbuff);
1704 }
1705
1706 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1707 {
1708 struct rxbd8 *rxbdp;
1709 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1710 int i;
1711
1712 rxbdp = rx_queue->rx_bd_base;
1713
1714 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1715 if (rx_queue->rx_skbuff[i]) {
1716 dma_unmap_single(&priv->ofdev->dev,
1717 rxbdp->bufPtr, priv->rx_buffer_size,
1718 DMA_FROM_DEVICE);
1719 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1720 rx_queue->rx_skbuff[i] = NULL;
1721 }
1722 rxbdp->lstatus = 0;
1723 rxbdp->bufPtr = 0;
1724 rxbdp++;
1725 }
1726 kfree(rx_queue->rx_skbuff);
1727 }
1728
1729 /* If there are any tx skbs or rx skbs still around, free them.
1730 * Then free tx_skbuff and rx_skbuff
1731 */
1732 static void free_skb_resources(struct gfar_private *priv)
1733 {
1734 struct gfar_priv_tx_q *tx_queue = NULL;
1735 struct gfar_priv_rx_q *rx_queue = NULL;
1736 int i;
1737
1738 /* Go through all the buffer descriptors and free their data buffers */
1739 for (i = 0; i < priv->num_tx_queues; i++) {
1740 struct netdev_queue *txq;
1741
1742 tx_queue = priv->tx_queue[i];
1743 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1744 if (tx_queue->tx_skbuff)
1745 free_skb_tx_queue(tx_queue);
1746 netdev_tx_reset_queue(txq);
1747 }
1748
1749 for (i = 0; i < priv->num_rx_queues; i++) {
1750 rx_queue = priv->rx_queue[i];
1751 if (rx_queue->rx_skbuff)
1752 free_skb_rx_queue(rx_queue);
1753 }
1754
1755 dma_free_coherent(&priv->ofdev->dev,
1756 sizeof(struct txbd8) * priv->total_tx_ring_size +
1757 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1758 priv->tx_queue[0]->tx_bd_base,
1759 priv->tx_queue[0]->tx_bd_dma_base);
1760 skb_queue_purge(&priv->rx_recycle);
1761 }
1762
1763 void gfar_start(struct net_device *dev)
1764 {
1765 struct gfar_private *priv = netdev_priv(dev);
1766 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1767 u32 tempval;
1768 int i = 0;
1769
1770 /* Enable Rx and Tx in MACCFG1 */
1771 tempval = gfar_read(&regs->maccfg1);
1772 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1773 gfar_write(&regs->maccfg1, tempval);
1774
1775 /* Initialize DMACTRL to have WWR and WOP */
1776 tempval = gfar_read(&regs->dmactrl);
1777 tempval |= DMACTRL_INIT_SETTINGS;
1778 gfar_write(&regs->dmactrl, tempval);
1779
1780 /* Make sure we aren't stopped */
1781 tempval = gfar_read(&regs->dmactrl);
1782 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1783 gfar_write(&regs->dmactrl, tempval);
1784
1785 for (i = 0; i < priv->num_grps; i++) {
1786 regs = priv->gfargrp[i].regs;
1787 /* Clear THLT/RHLT, so that the DMA starts polling now */
1788 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1789 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1790 /* Unmask the interrupts we look for */
1791 gfar_write(&regs->imask, IMASK_DEFAULT);
1792 }
1793
1794 dev->trans_start = jiffies; /* prevent tx timeout */
1795 }
1796
1797 void gfar_configure_coalescing(struct gfar_private *priv,
1798 unsigned long tx_mask, unsigned long rx_mask)
1799 {
1800 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1801 u32 __iomem *baddr;
1802 int i = 0;
1803
1804 /* Backward compatible case ---- even if we enable
1805 * multiple queues, there's only single reg to program
1806 */
1807 gfar_write(&regs->txic, 0);
1808 if (likely(priv->tx_queue[0]->txcoalescing))
1809 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1810
1811 gfar_write(&regs->rxic, 0);
1812 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1813 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1814
1815 if (priv->mode == MQ_MG_MODE) {
1816 baddr = &regs->txic0;
1817 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1818 gfar_write(baddr + i, 0);
1819 if (likely(priv->tx_queue[i]->txcoalescing))
1820 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1821 }
1822
1823 baddr = &regs->rxic0;
1824 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1825 gfar_write(baddr + i, 0);
1826 if (likely(priv->rx_queue[i]->rxcoalescing))
1827 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1828 }
1829 }
1830 }
1831
1832 static int register_grp_irqs(struct gfar_priv_grp *grp)
1833 {
1834 struct gfar_private *priv = grp->priv;
1835 struct net_device *dev = priv->ndev;
1836 int err;
1837
1838 /* If the device has multiple interrupts, register for
1839 * them. Otherwise, only register for the one
1840 */
1841 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1842 /* Install our interrupt handlers for Error,
1843 * Transmit, and Receive
1844 */
1845 if ((err = request_irq(grp->interruptError, gfar_error,
1846 0, grp->int_name_er, grp)) < 0) {
1847 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1848 grp->interruptError);
1849
1850 goto err_irq_fail;
1851 }
1852
1853 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1854 0, grp->int_name_tx, grp)) < 0) {
1855 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1856 grp->interruptTransmit);
1857 goto tx_irq_fail;
1858 }
1859
1860 if ((err = request_irq(grp->interruptReceive, gfar_receive,
1861 0, grp->int_name_rx, grp)) < 0) {
1862 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1863 grp->interruptReceive);
1864 goto rx_irq_fail;
1865 }
1866 } else {
1867 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt,
1868 0, grp->int_name_tx, grp)) < 0) {
1869 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1870 grp->interruptTransmit);
1871 goto err_irq_fail;
1872 }
1873 }
1874
1875 return 0;
1876
1877 rx_irq_fail:
1878 free_irq(grp->interruptTransmit, grp);
1879 tx_irq_fail:
1880 free_irq(grp->interruptError, grp);
1881 err_irq_fail:
1882 return err;
1883
1884 }
1885
1886 /* Bring the controller up and running */
1887 int startup_gfar(struct net_device *ndev)
1888 {
1889 struct gfar_private *priv = netdev_priv(ndev);
1890 struct gfar __iomem *regs = NULL;
1891 int err, i, j;
1892
1893 for (i = 0; i < priv->num_grps; i++) {
1894 regs= priv->gfargrp[i].regs;
1895 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1896 }
1897
1898 regs= priv->gfargrp[0].regs;
1899 err = gfar_alloc_skb_resources(ndev);
1900 if (err)
1901 return err;
1902
1903 gfar_init_mac(ndev);
1904
1905 for (i = 0; i < priv->num_grps; i++) {
1906 err = register_grp_irqs(&priv->gfargrp[i]);
1907 if (err) {
1908 for (j = 0; j < i; j++)
1909 free_grp_irqs(&priv->gfargrp[j]);
1910 goto irq_fail;
1911 }
1912 }
1913
1914 /* Start the controller */
1915 gfar_start(ndev);
1916
1917 phy_start(priv->phydev);
1918
1919 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1920
1921 return 0;
1922
1923 irq_fail:
1924 free_skb_resources(priv);
1925 return err;
1926 }
1927
1928 /* Called when something needs to use the ethernet device
1929 * Returns 0 for success.
1930 */
1931 static int gfar_enet_open(struct net_device *dev)
1932 {
1933 struct gfar_private *priv = netdev_priv(dev);
1934 int err;
1935
1936 enable_napi(priv);
1937
1938 skb_queue_head_init(&priv->rx_recycle);
1939
1940 /* Initialize a bunch of registers */
1941 init_registers(dev);
1942
1943 gfar_set_mac_address(dev);
1944
1945 err = init_phy(dev);
1946
1947 if (err) {
1948 disable_napi(priv);
1949 return err;
1950 }
1951
1952 err = startup_gfar(dev);
1953 if (err) {
1954 disable_napi(priv);
1955 return err;
1956 }
1957
1958 netif_tx_start_all_queues(dev);
1959
1960 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1961
1962 return err;
1963 }
1964
1965 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1966 {
1967 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1968
1969 memset(fcb, 0, GMAC_FCB_LEN);
1970
1971 return fcb;
1972 }
1973
1974 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1975 int fcb_length)
1976 {
1977 /* If we're here, it's a IP packet with a TCP or UDP
1978 * payload. We set it to checksum, using a pseudo-header
1979 * we provide
1980 */
1981 u8 flags = TXFCB_DEFAULT;
1982
1983 /* Tell the controller what the protocol is
1984 * And provide the already calculated phcs
1985 */
1986 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1987 flags |= TXFCB_UDP;
1988 fcb->phcs = udp_hdr(skb)->check;
1989 } else
1990 fcb->phcs = tcp_hdr(skb)->check;
1991
1992 /* l3os is the distance between the start of the
1993 * frame (skb->data) and the start of the IP hdr.
1994 * l4os is the distance between the start of the
1995 * l3 hdr and the l4 hdr
1996 */
1997 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
1998 fcb->l4os = skb_network_header_len(skb);
1999
2000 fcb->flags = flags;
2001 }
2002
2003 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2004 {
2005 fcb->flags |= TXFCB_VLN;
2006 fcb->vlctl = vlan_tx_tag_get(skb);
2007 }
2008
2009 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2010 struct txbd8 *base, int ring_size)
2011 {
2012 struct txbd8 *new_bd = bdp + stride;
2013
2014 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2015 }
2016
2017 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2018 int ring_size)
2019 {
2020 return skip_txbd(bdp, 1, base, ring_size);
2021 }
2022
2023 /* This is called by the kernel when a frame is ready for transmission.
2024 * It is pointed to by the dev->hard_start_xmit function pointer
2025 */
2026 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2027 {
2028 struct gfar_private *priv = netdev_priv(dev);
2029 struct gfar_priv_tx_q *tx_queue = NULL;
2030 struct netdev_queue *txq;
2031 struct gfar __iomem *regs = NULL;
2032 struct txfcb *fcb = NULL;
2033 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2034 u32 lstatus;
2035 int i, rq = 0, do_tstamp = 0;
2036 u32 bufaddr;
2037 unsigned long flags;
2038 unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2039
2040 /* TOE=1 frames larger than 2500 bytes may see excess delays
2041 * before start of transmission.
2042 */
2043 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2044 skb->ip_summed == CHECKSUM_PARTIAL &&
2045 skb->len > 2500)) {
2046 int ret;
2047
2048 ret = skb_checksum_help(skb);
2049 if (ret)
2050 return ret;
2051 }
2052
2053 rq = skb->queue_mapping;
2054 tx_queue = priv->tx_queue[rq];
2055 txq = netdev_get_tx_queue(dev, rq);
2056 base = tx_queue->tx_bd_base;
2057 regs = tx_queue->grp->regs;
2058
2059 /* check if time stamp should be generated */
2060 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2061 priv->hwts_tx_en)) {
2062 do_tstamp = 1;
2063 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2064 }
2065
2066 /* make space for additional header when fcb is needed */
2067 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2068 vlan_tx_tag_present(skb) ||
2069 unlikely(do_tstamp)) &&
2070 (skb_headroom(skb) < fcb_length)) {
2071 struct sk_buff *skb_new;
2072
2073 skb_new = skb_realloc_headroom(skb, fcb_length);
2074 if (!skb_new) {
2075 dev->stats.tx_errors++;
2076 kfree_skb(skb);
2077 return NETDEV_TX_OK;
2078 }
2079
2080 if (skb->sk)
2081 skb_set_owner_w(skb_new, skb->sk);
2082 consume_skb(skb);
2083 skb = skb_new;
2084 }
2085
2086 /* total number of fragments in the SKB */
2087 nr_frags = skb_shinfo(skb)->nr_frags;
2088
2089 /* calculate the required number of TxBDs for this skb */
2090 if (unlikely(do_tstamp))
2091 nr_txbds = nr_frags + 2;
2092 else
2093 nr_txbds = nr_frags + 1;
2094
2095 /* check if there is space to queue this packet */
2096 if (nr_txbds > tx_queue->num_txbdfree) {
2097 /* no space, stop the queue */
2098 netif_tx_stop_queue(txq);
2099 dev->stats.tx_fifo_errors++;
2100 return NETDEV_TX_BUSY;
2101 }
2102
2103 /* Update transmit stats */
2104 tx_queue->stats.tx_bytes += skb->len;
2105 tx_queue->stats.tx_packets++;
2106
2107 txbdp = txbdp_start = tx_queue->cur_tx;
2108 lstatus = txbdp->lstatus;
2109
2110 /* Time stamp insertion requires one additional TxBD */
2111 if (unlikely(do_tstamp))
2112 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2113 tx_queue->tx_ring_size);
2114
2115 if (nr_frags == 0) {
2116 if (unlikely(do_tstamp))
2117 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2118 TXBD_INTERRUPT);
2119 else
2120 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2121 } else {
2122 /* Place the fragment addresses and lengths into the TxBDs */
2123 for (i = 0; i < nr_frags; i++) {
2124 /* Point at the next BD, wrapping as needed */
2125 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2126
2127 length = skb_shinfo(skb)->frags[i].size;
2128
2129 lstatus = txbdp->lstatus | length |
2130 BD_LFLAG(TXBD_READY);
2131
2132 /* Handle the last BD specially */
2133 if (i == nr_frags - 1)
2134 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2135
2136 bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2137 &skb_shinfo(skb)->frags[i],
2138 0,
2139 length,
2140 DMA_TO_DEVICE);
2141
2142 /* set the TxBD length and buffer pointer */
2143 txbdp->bufPtr = bufaddr;
2144 txbdp->lstatus = lstatus;
2145 }
2146
2147 lstatus = txbdp_start->lstatus;
2148 }
2149
2150 /* Add TxPAL between FCB and frame if required */
2151 if (unlikely(do_tstamp)) {
2152 skb_push(skb, GMAC_TXPAL_LEN);
2153 memset(skb->data, 0, GMAC_TXPAL_LEN);
2154 }
2155
2156 /* Set up checksumming */
2157 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2158 fcb = gfar_add_fcb(skb);
2159 /* as specified by errata */
2160 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2161 ((unsigned long)fcb % 0x20) > 0x18)) {
2162 __skb_pull(skb, GMAC_FCB_LEN);
2163 skb_checksum_help(skb);
2164 } else {
2165 lstatus |= BD_LFLAG(TXBD_TOE);
2166 gfar_tx_checksum(skb, fcb, fcb_length);
2167 }
2168 }
2169
2170 if (vlan_tx_tag_present(skb)) {
2171 if (unlikely(NULL == fcb)) {
2172 fcb = gfar_add_fcb(skb);
2173 lstatus |= BD_LFLAG(TXBD_TOE);
2174 }
2175
2176 gfar_tx_vlan(skb, fcb);
2177 }
2178
2179 /* Setup tx hardware time stamping if requested */
2180 if (unlikely(do_tstamp)) {
2181 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2182 if (fcb == NULL)
2183 fcb = gfar_add_fcb(skb);
2184 fcb->ptp = 1;
2185 lstatus |= BD_LFLAG(TXBD_TOE);
2186 }
2187
2188 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2189 skb_headlen(skb), DMA_TO_DEVICE);
2190
2191 /* If time stamping is requested one additional TxBD must be set up. The
2192 * first TxBD points to the FCB and must have a data length of
2193 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2194 * the full frame length.
2195 */
2196 if (unlikely(do_tstamp)) {
2197 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2198 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2199 (skb_headlen(skb) - fcb_length);
2200 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2201 } else {
2202 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2203 }
2204
2205 netdev_tx_sent_queue(txq, skb->len);
2206
2207 /* We can work in parallel with gfar_clean_tx_ring(), except
2208 * when modifying num_txbdfree. Note that we didn't grab the lock
2209 * when we were reading the num_txbdfree and checking for available
2210 * space, that's because outside of this function it can only grow,
2211 * and once we've got needed space, it cannot suddenly disappear.
2212 *
2213 * The lock also protects us from gfar_error(), which can modify
2214 * regs->tstat and thus retrigger the transfers, which is why we
2215 * also must grab the lock before setting ready bit for the first
2216 * to be transmitted BD.
2217 */
2218 spin_lock_irqsave(&tx_queue->txlock, flags);
2219
2220 /* The powerpc-specific eieio() is used, as wmb() has too strong
2221 * semantics (it requires synchronization between cacheable and
2222 * uncacheable mappings, which eieio doesn't provide and which we
2223 * don't need), thus requiring a more expensive sync instruction. At
2224 * some point, the set of architecture-independent barrier functions
2225 * should be expanded to include weaker barriers.
2226 */
2227 eieio();
2228
2229 txbdp_start->lstatus = lstatus;
2230
2231 eieio(); /* force lstatus write before tx_skbuff */
2232
2233 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2234
2235 /* Update the current skb pointer to the next entry we will use
2236 * (wrapping if necessary)
2237 */
2238 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2239 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2240
2241 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2242
2243 /* reduce TxBD free count */
2244 tx_queue->num_txbdfree -= (nr_txbds);
2245
2246 /* If the next BD still needs to be cleaned up, then the bds
2247 * are full. We need to tell the kernel to stop sending us stuff.
2248 */
2249 if (!tx_queue->num_txbdfree) {
2250 netif_tx_stop_queue(txq);
2251
2252 dev->stats.tx_fifo_errors++;
2253 }
2254
2255 /* Tell the DMA to go go go */
2256 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2257
2258 /* Unlock priv */
2259 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2260
2261 return NETDEV_TX_OK;
2262 }
2263
2264 /* Stops the kernel queue, and halts the controller */
2265 static int gfar_close(struct net_device *dev)
2266 {
2267 struct gfar_private *priv = netdev_priv(dev);
2268
2269 disable_napi(priv);
2270
2271 cancel_work_sync(&priv->reset_task);
2272 stop_gfar(dev);
2273
2274 /* Disconnect from the PHY */
2275 phy_disconnect(priv->phydev);
2276 priv->phydev = NULL;
2277
2278 netif_tx_stop_all_queues(dev);
2279
2280 return 0;
2281 }
2282
2283 /* Changes the mac address if the controller is not running. */
2284 static int gfar_set_mac_address(struct net_device *dev)
2285 {
2286 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2287
2288 return 0;
2289 }
2290
2291 /* Check if rx parser should be activated */
2292 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2293 {
2294 struct gfar __iomem *regs;
2295 u32 tempval;
2296
2297 regs = priv->gfargrp[0].regs;
2298
2299 tempval = gfar_read(&regs->rctrl);
2300 /* If parse is no longer required, then disable parser */
2301 if (tempval & RCTRL_REQ_PARSER)
2302 tempval |= RCTRL_PRSDEP_INIT;
2303 else
2304 tempval &= ~RCTRL_PRSDEP_INIT;
2305 gfar_write(&regs->rctrl, tempval);
2306 }
2307
2308 /* Enables and disables VLAN insertion/extraction */
2309 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2310 {
2311 struct gfar_private *priv = netdev_priv(dev);
2312 struct gfar __iomem *regs = NULL;
2313 unsigned long flags;
2314 u32 tempval;
2315
2316 regs = priv->gfargrp[0].regs;
2317 local_irq_save(flags);
2318 lock_rx_qs(priv);
2319
2320 if (features & NETIF_F_HW_VLAN_TX) {
2321 /* Enable VLAN tag insertion */
2322 tempval = gfar_read(&regs->tctrl);
2323 tempval |= TCTRL_VLINS;
2324 gfar_write(&regs->tctrl, tempval);
2325 } else {
2326 /* Disable VLAN tag insertion */
2327 tempval = gfar_read(&regs->tctrl);
2328 tempval &= ~TCTRL_VLINS;
2329 gfar_write(&regs->tctrl, tempval);
2330 }
2331
2332 if (features & NETIF_F_HW_VLAN_RX) {
2333 /* Enable VLAN tag extraction */
2334 tempval = gfar_read(&regs->rctrl);
2335 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2336 gfar_write(&regs->rctrl, tempval);
2337 } else {
2338 /* Disable VLAN tag extraction */
2339 tempval = gfar_read(&regs->rctrl);
2340 tempval &= ~RCTRL_VLEX;
2341 gfar_write(&regs->rctrl, tempval);
2342
2343 gfar_check_rx_parser_mode(priv);
2344 }
2345
2346 gfar_change_mtu(dev, dev->mtu);
2347
2348 unlock_rx_qs(priv);
2349 local_irq_restore(flags);
2350 }
2351
2352 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2353 {
2354 int tempsize, tempval;
2355 struct gfar_private *priv = netdev_priv(dev);
2356 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2357 int oldsize = priv->rx_buffer_size;
2358 int frame_size = new_mtu + ETH_HLEN;
2359
2360 if (gfar_is_vlan_on(priv))
2361 frame_size += VLAN_HLEN;
2362
2363 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2364 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2365 return -EINVAL;
2366 }
2367
2368 if (gfar_uses_fcb(priv))
2369 frame_size += GMAC_FCB_LEN;
2370
2371 frame_size += priv->padding;
2372
2373 tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2374 INCREMENTAL_BUFFER_SIZE;
2375
2376 /* Only stop and start the controller if it isn't already
2377 * stopped, and we changed something
2378 */
2379 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2380 stop_gfar(dev);
2381
2382 priv->rx_buffer_size = tempsize;
2383
2384 dev->mtu = new_mtu;
2385
2386 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2387 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2388
2389 /* If the mtu is larger than the max size for standard
2390 * ethernet frames (ie, a jumbo frame), then set maccfg2
2391 * to allow huge frames, and to check the length
2392 */
2393 tempval = gfar_read(&regs->maccfg2);
2394
2395 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2396 gfar_has_errata(priv, GFAR_ERRATA_74))
2397 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2398 else
2399 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2400
2401 gfar_write(&regs->maccfg2, tempval);
2402
2403 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2404 startup_gfar(dev);
2405
2406 return 0;
2407 }
2408
2409 /* gfar_reset_task gets scheduled when a packet has not been
2410 * transmitted after a set amount of time.
2411 * For now, assume that clearing out all the structures, and
2412 * starting over will fix the problem.
2413 */
2414 static void gfar_reset_task(struct work_struct *work)
2415 {
2416 struct gfar_private *priv = container_of(work, struct gfar_private,
2417 reset_task);
2418 struct net_device *dev = priv->ndev;
2419
2420 if (dev->flags & IFF_UP) {
2421 netif_tx_stop_all_queues(dev);
2422 stop_gfar(dev);
2423 startup_gfar(dev);
2424 netif_tx_start_all_queues(dev);
2425 }
2426
2427 netif_tx_schedule_all(dev);
2428 }
2429
2430 static void gfar_timeout(struct net_device *dev)
2431 {
2432 struct gfar_private *priv = netdev_priv(dev);
2433
2434 dev->stats.tx_errors++;
2435 schedule_work(&priv->reset_task);
2436 }
2437
2438 static void gfar_align_skb(struct sk_buff *skb)
2439 {
2440 /* We need the data buffer to be aligned properly. We will reserve
2441 * as many bytes as needed to align the data properly
2442 */
2443 skb_reserve(skb, RXBUF_ALIGNMENT -
2444 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2445 }
2446
2447 /* Interrupt Handler for Transmit complete */
2448 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2449 {
2450 struct net_device *dev = tx_queue->dev;
2451 struct netdev_queue *txq;
2452 struct gfar_private *priv = netdev_priv(dev);
2453 struct gfar_priv_rx_q *rx_queue = NULL;
2454 struct txbd8 *bdp, *next = NULL;
2455 struct txbd8 *lbdp = NULL;
2456 struct txbd8 *base = tx_queue->tx_bd_base;
2457 struct sk_buff *skb;
2458 int skb_dirtytx;
2459 int tx_ring_size = tx_queue->tx_ring_size;
2460 int frags = 0, nr_txbds = 0;
2461 int i;
2462 int howmany = 0;
2463 int tqi = tx_queue->qindex;
2464 unsigned int bytes_sent = 0;
2465 u32 lstatus;
2466 size_t buflen;
2467
2468 rx_queue = priv->rx_queue[tqi];
2469 txq = netdev_get_tx_queue(dev, tqi);
2470 bdp = tx_queue->dirty_tx;
2471 skb_dirtytx = tx_queue->skb_dirtytx;
2472
2473 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2474 unsigned long flags;
2475
2476 frags = skb_shinfo(skb)->nr_frags;
2477
2478 /* When time stamping, one additional TxBD must be freed.
2479 * Also, we need to dma_unmap_single() the TxPAL.
2480 */
2481 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2482 nr_txbds = frags + 2;
2483 else
2484 nr_txbds = frags + 1;
2485
2486 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2487
2488 lstatus = lbdp->lstatus;
2489
2490 /* Only clean completed frames */
2491 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2492 (lstatus & BD_LENGTH_MASK))
2493 break;
2494
2495 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2496 next = next_txbd(bdp, base, tx_ring_size);
2497 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2498 } else
2499 buflen = bdp->length;
2500
2501 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2502 buflen, DMA_TO_DEVICE);
2503
2504 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2505 struct skb_shared_hwtstamps shhwtstamps;
2506 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2507
2508 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2509 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2510 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2511 skb_tstamp_tx(skb, &shhwtstamps);
2512 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2513 bdp = next;
2514 }
2515
2516 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2517 bdp = next_txbd(bdp, base, tx_ring_size);
2518
2519 for (i = 0; i < frags; i++) {
2520 dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2521 bdp->length, DMA_TO_DEVICE);
2522 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2523 bdp = next_txbd(bdp, base, tx_ring_size);
2524 }
2525
2526 bytes_sent += skb->len;
2527
2528 /* If there's room in the queue (limit it to rx_buffer_size)
2529 * we add this skb back into the pool, if it's the right size
2530 */
2531 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2532 skb_recycle_check(skb, priv->rx_buffer_size +
2533 RXBUF_ALIGNMENT)) {
2534 gfar_align_skb(skb);
2535 skb_queue_head(&priv->rx_recycle, skb);
2536 } else
2537 dev_kfree_skb_any(skb);
2538
2539 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2540
2541 skb_dirtytx = (skb_dirtytx + 1) &
2542 TX_RING_MOD_MASK(tx_ring_size);
2543
2544 howmany++;
2545 spin_lock_irqsave(&tx_queue->txlock, flags);
2546 tx_queue->num_txbdfree += nr_txbds;
2547 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2548 }
2549
2550 /* If we freed a buffer, we can restart transmission, if necessary */
2551 if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2552 netif_wake_subqueue(dev, tqi);
2553
2554 /* Update dirty indicators */
2555 tx_queue->skb_dirtytx = skb_dirtytx;
2556 tx_queue->dirty_tx = bdp;
2557
2558 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2559
2560 return howmany;
2561 }
2562
2563 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2564 {
2565 unsigned long flags;
2566
2567 spin_lock_irqsave(&gfargrp->grplock, flags);
2568 if (napi_schedule_prep(&gfargrp->napi)) {
2569 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2570 __napi_schedule(&gfargrp->napi);
2571 } else {
2572 /* Clear IEVENT, so interrupts aren't called again
2573 * because of the packets that have already arrived.
2574 */
2575 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2576 }
2577 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2578
2579 }
2580
2581 /* Interrupt Handler for Transmit complete */
2582 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2583 {
2584 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2585 return IRQ_HANDLED;
2586 }
2587
2588 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2589 struct sk_buff *skb)
2590 {
2591 struct net_device *dev = rx_queue->dev;
2592 struct gfar_private *priv = netdev_priv(dev);
2593 dma_addr_t buf;
2594
2595 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2596 priv->rx_buffer_size, DMA_FROM_DEVICE);
2597 gfar_init_rxbdp(rx_queue, bdp, buf);
2598 }
2599
2600 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2601 {
2602 struct gfar_private *priv = netdev_priv(dev);
2603 struct sk_buff *skb = NULL;
2604
2605 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2606 if (!skb)
2607 return NULL;
2608
2609 gfar_align_skb(skb);
2610
2611 return skb;
2612 }
2613
2614 struct sk_buff *gfar_new_skb(struct net_device *dev)
2615 {
2616 struct gfar_private *priv = netdev_priv(dev);
2617 struct sk_buff *skb = NULL;
2618
2619 skb = skb_dequeue(&priv->rx_recycle);
2620 if (!skb)
2621 skb = gfar_alloc_skb(dev);
2622
2623 return skb;
2624 }
2625
2626 static inline void count_errors(unsigned short status, struct net_device *dev)
2627 {
2628 struct gfar_private *priv = netdev_priv(dev);
2629 struct net_device_stats *stats = &dev->stats;
2630 struct gfar_extra_stats *estats = &priv->extra_stats;
2631
2632 /* If the packet was truncated, none of the other errors matter */
2633 if (status & RXBD_TRUNCATED) {
2634 stats->rx_length_errors++;
2635
2636 estats->rx_trunc++;
2637
2638 return;
2639 }
2640 /* Count the errors, if there were any */
2641 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2642 stats->rx_length_errors++;
2643
2644 if (status & RXBD_LARGE)
2645 estats->rx_large++;
2646 else
2647 estats->rx_short++;
2648 }
2649 if (status & RXBD_NONOCTET) {
2650 stats->rx_frame_errors++;
2651 estats->rx_nonoctet++;
2652 }
2653 if (status & RXBD_CRCERR) {
2654 estats->rx_crcerr++;
2655 stats->rx_crc_errors++;
2656 }
2657 if (status & RXBD_OVERRUN) {
2658 estats->rx_overrun++;
2659 stats->rx_crc_errors++;
2660 }
2661 }
2662
2663 irqreturn_t gfar_receive(int irq, void *grp_id)
2664 {
2665 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2666 return IRQ_HANDLED;
2667 }
2668
2669 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2670 {
2671 /* If valid headers were found, and valid sums
2672 * were verified, then we tell the kernel that no
2673 * checksumming is necessary. Otherwise, it is [FIXME]
2674 */
2675 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2676 skb->ip_summed = CHECKSUM_UNNECESSARY;
2677 else
2678 skb_checksum_none_assert(skb);
2679 }
2680
2681
2682 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2683 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2684 int amount_pull, struct napi_struct *napi)
2685 {
2686 struct gfar_private *priv = netdev_priv(dev);
2687 struct rxfcb *fcb = NULL;
2688
2689 gro_result_t ret;
2690
2691 /* fcb is at the beginning if exists */
2692 fcb = (struct rxfcb *)skb->data;
2693
2694 /* Remove the FCB from the skb
2695 * Remove the padded bytes, if there are any
2696 */
2697 if (amount_pull) {
2698 skb_record_rx_queue(skb, fcb->rq);
2699 skb_pull(skb, amount_pull);
2700 }
2701
2702 /* Get receive timestamp from the skb */
2703 if (priv->hwts_rx_en) {
2704 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2705 u64 *ns = (u64 *) skb->data;
2706
2707 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2708 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2709 }
2710
2711 if (priv->padding)
2712 skb_pull(skb, priv->padding);
2713
2714 if (dev->features & NETIF_F_RXCSUM)
2715 gfar_rx_checksum(skb, fcb);
2716
2717 /* Tell the skb what kind of packet this is */
2718 skb->protocol = eth_type_trans(skb, dev);
2719
2720 /* There's need to check for NETIF_F_HW_VLAN_RX here.
2721 * Even if vlan rx accel is disabled, on some chips
2722 * RXFCB_VLN is pseudo randomly set.
2723 */
2724 if (dev->features & NETIF_F_HW_VLAN_RX &&
2725 fcb->flags & RXFCB_VLN)
2726 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2727
2728 /* Send the packet up the stack */
2729 ret = napi_gro_receive(napi, skb);
2730
2731 if (GRO_DROP == ret)
2732 priv->extra_stats.kernel_dropped++;
2733
2734 return 0;
2735 }
2736
2737 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2738 * until the budget/quota has been reached. Returns the number
2739 * of frames handled
2740 */
2741 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2742 {
2743 struct net_device *dev = rx_queue->dev;
2744 struct rxbd8 *bdp, *base;
2745 struct sk_buff *skb;
2746 int pkt_len;
2747 int amount_pull;
2748 int howmany = 0;
2749 struct gfar_private *priv = netdev_priv(dev);
2750
2751 /* Get the first full descriptor */
2752 bdp = rx_queue->cur_rx;
2753 base = rx_queue->rx_bd_base;
2754
2755 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2756
2757 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2758 struct sk_buff *newskb;
2759
2760 rmb();
2761
2762 /* Add another skb for the future */
2763 newskb = gfar_new_skb(dev);
2764
2765 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2766
2767 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2768 priv->rx_buffer_size, DMA_FROM_DEVICE);
2769
2770 if (unlikely(!(bdp->status & RXBD_ERR) &&
2771 bdp->length > priv->rx_buffer_size))
2772 bdp->status = RXBD_LARGE;
2773
2774 /* We drop the frame if we failed to allocate a new buffer */
2775 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2776 bdp->status & RXBD_ERR)) {
2777 count_errors(bdp->status, dev);
2778
2779 if (unlikely(!newskb))
2780 newskb = skb;
2781 else if (skb)
2782 skb_queue_head(&priv->rx_recycle, skb);
2783 } else {
2784 /* Increment the number of packets */
2785 rx_queue->stats.rx_packets++;
2786 howmany++;
2787
2788 if (likely(skb)) {
2789 pkt_len = bdp->length - ETH_FCS_LEN;
2790 /* Remove the FCS from the packet length */
2791 skb_put(skb, pkt_len);
2792 rx_queue->stats.rx_bytes += pkt_len;
2793 skb_record_rx_queue(skb, rx_queue->qindex);
2794 gfar_process_frame(dev, skb, amount_pull,
2795 &rx_queue->grp->napi);
2796
2797 } else {
2798 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2799 rx_queue->stats.rx_dropped++;
2800 priv->extra_stats.rx_skbmissing++;
2801 }
2802
2803 }
2804
2805 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2806
2807 /* Setup the new bdp */
2808 gfar_new_rxbdp(rx_queue, bdp, newskb);
2809
2810 /* Update to the next pointer */
2811 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2812
2813 /* update to point at the next skb */
2814 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2815 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2816 }
2817
2818 /* Update the current rxbd pointer to be the next one */
2819 rx_queue->cur_rx = bdp;
2820
2821 return howmany;
2822 }
2823
2824 static int gfar_poll(struct napi_struct *napi, int budget)
2825 {
2826 struct gfar_priv_grp *gfargrp =
2827 container_of(napi, struct gfar_priv_grp, napi);
2828 struct gfar_private *priv = gfargrp->priv;
2829 struct gfar __iomem *regs = gfargrp->regs;
2830 struct gfar_priv_tx_q *tx_queue = NULL;
2831 struct gfar_priv_rx_q *rx_queue = NULL;
2832 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2833 int tx_cleaned = 0, i, left_over_budget = budget;
2834 unsigned long serviced_queues = 0;
2835 int num_queues = 0;
2836
2837 num_queues = gfargrp->num_rx_queues;
2838 budget_per_queue = budget/num_queues;
2839
2840 /* Clear IEVENT, so interrupts aren't called again
2841 * because of the packets that have already arrived
2842 */
2843 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2844
2845 while (num_queues && left_over_budget) {
2846 budget_per_queue = left_over_budget/num_queues;
2847 left_over_budget = 0;
2848
2849 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2850 if (test_bit(i, &serviced_queues))
2851 continue;
2852 rx_queue = priv->rx_queue[i];
2853 tx_queue = priv->tx_queue[rx_queue->qindex];
2854
2855 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2856 rx_cleaned_per_queue =
2857 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2858 rx_cleaned += rx_cleaned_per_queue;
2859 if (rx_cleaned_per_queue < budget_per_queue) {
2860 left_over_budget = left_over_budget +
2861 (budget_per_queue -
2862 rx_cleaned_per_queue);
2863 set_bit(i, &serviced_queues);
2864 num_queues--;
2865 }
2866 }
2867 }
2868
2869 if (tx_cleaned)
2870 return budget;
2871
2872 if (rx_cleaned < budget) {
2873 napi_complete(napi);
2874
2875 /* Clear the halt bit in RSTAT */
2876 gfar_write(&regs->rstat, gfargrp->rstat);
2877
2878 gfar_write(&regs->imask, IMASK_DEFAULT);
2879
2880 /* If we are coalescing interrupts, update the timer
2881 * Otherwise, clear it
2882 */
2883 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2884 gfargrp->tx_bit_map);
2885 }
2886
2887 return rx_cleaned;
2888 }
2889
2890 #ifdef CONFIG_NET_POLL_CONTROLLER
2891 /* Polling 'interrupt' - used by things like netconsole to send skbs
2892 * without having to re-enable interrupts. It's not called while
2893 * the interrupt routine is executing.
2894 */
2895 static void gfar_netpoll(struct net_device *dev)
2896 {
2897 struct gfar_private *priv = netdev_priv(dev);
2898 int i;
2899
2900 /* If the device has multiple interrupts, run tx/rx */
2901 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2902 for (i = 0; i < priv->num_grps; i++) {
2903 disable_irq(priv->gfargrp[i].interruptTransmit);
2904 disable_irq(priv->gfargrp[i].interruptReceive);
2905 disable_irq(priv->gfargrp[i].interruptError);
2906 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2907 &priv->gfargrp[i]);
2908 enable_irq(priv->gfargrp[i].interruptError);
2909 enable_irq(priv->gfargrp[i].interruptReceive);
2910 enable_irq(priv->gfargrp[i].interruptTransmit);
2911 }
2912 } else {
2913 for (i = 0; i < priv->num_grps; i++) {
2914 disable_irq(priv->gfargrp[i].interruptTransmit);
2915 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2916 &priv->gfargrp[i]);
2917 enable_irq(priv->gfargrp[i].interruptTransmit);
2918 }
2919 }
2920 }
2921 #endif
2922
2923 /* The interrupt handler for devices with one interrupt */
2924 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2925 {
2926 struct gfar_priv_grp *gfargrp = grp_id;
2927
2928 /* Save ievent for future reference */
2929 u32 events = gfar_read(&gfargrp->regs->ievent);
2930
2931 /* Check for reception */
2932 if (events & IEVENT_RX_MASK)
2933 gfar_receive(irq, grp_id);
2934
2935 /* Check for transmit completion */
2936 if (events & IEVENT_TX_MASK)
2937 gfar_transmit(irq, grp_id);
2938
2939 /* Check for errors */
2940 if (events & IEVENT_ERR_MASK)
2941 gfar_error(irq, grp_id);
2942
2943 return IRQ_HANDLED;
2944 }
2945
2946 /* Called every time the controller might need to be made
2947 * aware of new link state. The PHY code conveys this
2948 * information through variables in the phydev structure, and this
2949 * function converts those variables into the appropriate
2950 * register values, and can bring down the device if needed.
2951 */
2952 static void adjust_link(struct net_device *dev)
2953 {
2954 struct gfar_private *priv = netdev_priv(dev);
2955 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2956 unsigned long flags;
2957 struct phy_device *phydev = priv->phydev;
2958 int new_state = 0;
2959
2960 local_irq_save(flags);
2961 lock_tx_qs(priv);
2962
2963 if (phydev->link) {
2964 u32 tempval = gfar_read(&regs->maccfg2);
2965 u32 ecntrl = gfar_read(&regs->ecntrl);
2966
2967 /* Now we make sure that we can be in full duplex mode.
2968 * If not, we operate in half-duplex mode.
2969 */
2970 if (phydev->duplex != priv->oldduplex) {
2971 new_state = 1;
2972 if (!(phydev->duplex))
2973 tempval &= ~(MACCFG2_FULL_DUPLEX);
2974 else
2975 tempval |= MACCFG2_FULL_DUPLEX;
2976
2977 priv->oldduplex = phydev->duplex;
2978 }
2979
2980 if (phydev->speed != priv->oldspeed) {
2981 new_state = 1;
2982 switch (phydev->speed) {
2983 case 1000:
2984 tempval =
2985 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2986
2987 ecntrl &= ~(ECNTRL_R100);
2988 break;
2989 case 100:
2990 case 10:
2991 tempval =
2992 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2993
2994 /* Reduced mode distinguishes
2995 * between 10 and 100
2996 */
2997 if (phydev->speed == SPEED_100)
2998 ecntrl |= ECNTRL_R100;
2999 else
3000 ecntrl &= ~(ECNTRL_R100);
3001 break;
3002 default:
3003 netif_warn(priv, link, dev,
3004 "Ack! Speed (%d) is not 10/100/1000!\n",
3005 phydev->speed);
3006 break;
3007 }
3008
3009 priv->oldspeed = phydev->speed;
3010 }
3011
3012 gfar_write(&regs->maccfg2, tempval);
3013 gfar_write(&regs->ecntrl, ecntrl);
3014
3015 if (!priv->oldlink) {
3016 new_state = 1;
3017 priv->oldlink = 1;
3018 }
3019 } else if (priv->oldlink) {
3020 new_state = 1;
3021 priv->oldlink = 0;
3022 priv->oldspeed = 0;
3023 priv->oldduplex = -1;
3024 }
3025
3026 if (new_state && netif_msg_link(priv))
3027 phy_print_status(phydev);
3028 unlock_tx_qs(priv);
3029 local_irq_restore(flags);
3030 }
3031
3032 /* Update the hash table based on the current list of multicast
3033 * addresses we subscribe to. Also, change the promiscuity of
3034 * the device based on the flags (this function is called
3035 * whenever dev->flags is changed
3036 */
3037 static void gfar_set_multi(struct net_device *dev)
3038 {
3039 struct netdev_hw_addr *ha;
3040 struct gfar_private *priv = netdev_priv(dev);
3041 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3042 u32 tempval;
3043
3044 if (dev->flags & IFF_PROMISC) {
3045 /* Set RCTRL to PROM */
3046 tempval = gfar_read(&regs->rctrl);
3047 tempval |= RCTRL_PROM;
3048 gfar_write(&regs->rctrl, tempval);
3049 } else {
3050 /* Set RCTRL to not PROM */
3051 tempval = gfar_read(&regs->rctrl);
3052 tempval &= ~(RCTRL_PROM);
3053 gfar_write(&regs->rctrl, tempval);
3054 }
3055
3056 if (dev->flags & IFF_ALLMULTI) {
3057 /* Set the hash to rx all multicast frames */
3058 gfar_write(&regs->igaddr0, 0xffffffff);
3059 gfar_write(&regs->igaddr1, 0xffffffff);
3060 gfar_write(&regs->igaddr2, 0xffffffff);
3061 gfar_write(&regs->igaddr3, 0xffffffff);
3062 gfar_write(&regs->igaddr4, 0xffffffff);
3063 gfar_write(&regs->igaddr5, 0xffffffff);
3064 gfar_write(&regs->igaddr6, 0xffffffff);
3065 gfar_write(&regs->igaddr7, 0xffffffff);
3066 gfar_write(&regs->gaddr0, 0xffffffff);
3067 gfar_write(&regs->gaddr1, 0xffffffff);
3068 gfar_write(&regs->gaddr2, 0xffffffff);
3069 gfar_write(&regs->gaddr3, 0xffffffff);
3070 gfar_write(&regs->gaddr4, 0xffffffff);
3071 gfar_write(&regs->gaddr5, 0xffffffff);
3072 gfar_write(&regs->gaddr6, 0xffffffff);
3073 gfar_write(&regs->gaddr7, 0xffffffff);
3074 } else {
3075 int em_num;
3076 int idx;
3077
3078 /* zero out the hash */
3079 gfar_write(&regs->igaddr0, 0x0);
3080 gfar_write(&regs->igaddr1, 0x0);
3081 gfar_write(&regs->igaddr2, 0x0);
3082 gfar_write(&regs->igaddr3, 0x0);
3083 gfar_write(&regs->igaddr4, 0x0);
3084 gfar_write(&regs->igaddr5, 0x0);
3085 gfar_write(&regs->igaddr6, 0x0);
3086 gfar_write(&regs->igaddr7, 0x0);
3087 gfar_write(&regs->gaddr0, 0x0);
3088 gfar_write(&regs->gaddr1, 0x0);
3089 gfar_write(&regs->gaddr2, 0x0);
3090 gfar_write(&regs->gaddr3, 0x0);
3091 gfar_write(&regs->gaddr4, 0x0);
3092 gfar_write(&regs->gaddr5, 0x0);
3093 gfar_write(&regs->gaddr6, 0x0);
3094 gfar_write(&regs->gaddr7, 0x0);
3095
3096 /* If we have extended hash tables, we need to
3097 * clear the exact match registers to prepare for
3098 * setting them
3099 */
3100 if (priv->extended_hash) {
3101 em_num = GFAR_EM_NUM + 1;
3102 gfar_clear_exact_match(dev);
3103 idx = 1;
3104 } else {
3105 idx = 0;
3106 em_num = 0;
3107 }
3108
3109 if (netdev_mc_empty(dev))
3110 return;
3111
3112 /* Parse the list, and set the appropriate bits */
3113 netdev_for_each_mc_addr(ha, dev) {
3114 if (idx < em_num) {
3115 gfar_set_mac_for_addr(dev, idx, ha->addr);
3116 idx++;
3117 } else
3118 gfar_set_hash_for_addr(dev, ha->addr);
3119 }
3120 }
3121 }
3122
3123
3124 /* Clears each of the exact match registers to zero, so they
3125 * don't interfere with normal reception
3126 */
3127 static void gfar_clear_exact_match(struct net_device *dev)
3128 {
3129 int idx;
3130 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3131
3132 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3133 gfar_set_mac_for_addr(dev, idx, zero_arr);
3134 }
3135
3136 /* Set the appropriate hash bit for the given addr */
3137 /* The algorithm works like so:
3138 * 1) Take the Destination Address (ie the multicast address), and
3139 * do a CRC on it (little endian), and reverse the bits of the
3140 * result.
3141 * 2) Use the 8 most significant bits as a hash into a 256-entry
3142 * table. The table is controlled through 8 32-bit registers:
3143 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3144 * gaddr7. This means that the 3 most significant bits in the
3145 * hash index which gaddr register to use, and the 5 other bits
3146 * indicate which bit (assuming an IBM numbering scheme, which
3147 * for PowerPC (tm) is usually the case) in the register holds
3148 * the entry.
3149 */
3150 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3151 {
3152 u32 tempval;
3153 struct gfar_private *priv = netdev_priv(dev);
3154 u32 result = ether_crc(ETH_ALEN, addr);
3155 int width = priv->hash_width;
3156 u8 whichbit = (result >> (32 - width)) & 0x1f;
3157 u8 whichreg = result >> (32 - width + 5);
3158 u32 value = (1 << (31-whichbit));
3159
3160 tempval = gfar_read(priv->hash_regs[whichreg]);
3161 tempval |= value;
3162 gfar_write(priv->hash_regs[whichreg], tempval);
3163 }
3164
3165
3166 /* There are multiple MAC Address register pairs on some controllers
3167 * This function sets the numth pair to a given address
3168 */
3169 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3170 const u8 *addr)
3171 {
3172 struct gfar_private *priv = netdev_priv(dev);
3173 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3174 int idx;
3175 char tmpbuf[ETH_ALEN];
3176 u32 tempval;
3177 u32 __iomem *macptr = &regs->macstnaddr1;
3178
3179 macptr += num*2;
3180
3181 /* Now copy it into the mac registers backwards, cuz
3182 * little endian is silly
3183 */
3184 for (idx = 0; idx < ETH_ALEN; idx++)
3185 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3186
3187 gfar_write(macptr, *((u32 *) (tmpbuf)));
3188
3189 tempval = *((u32 *) (tmpbuf + 4));
3190
3191 gfar_write(macptr+1, tempval);
3192 }
3193
3194 /* GFAR error interrupt handler */
3195 static irqreturn_t gfar_error(int irq, void *grp_id)
3196 {
3197 struct gfar_priv_grp *gfargrp = grp_id;
3198 struct gfar __iomem *regs = gfargrp->regs;
3199 struct gfar_private *priv= gfargrp->priv;
3200 struct net_device *dev = priv->ndev;
3201
3202 /* Save ievent for future reference */
3203 u32 events = gfar_read(&regs->ievent);
3204
3205 /* Clear IEVENT */
3206 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3207
3208 /* Magic Packet is not an error. */
3209 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3210 (events & IEVENT_MAG))
3211 events &= ~IEVENT_MAG;
3212
3213 /* Hmm... */
3214 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3215 netdev_dbg(dev,
3216 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3217 events, gfar_read(&regs->imask));
3218
3219 /* Update the error counters */
3220 if (events & IEVENT_TXE) {
3221 dev->stats.tx_errors++;
3222
3223 if (events & IEVENT_LC)
3224 dev->stats.tx_window_errors++;
3225 if (events & IEVENT_CRL)
3226 dev->stats.tx_aborted_errors++;
3227 if (events & IEVENT_XFUN) {
3228 unsigned long flags;
3229
3230 netif_dbg(priv, tx_err, dev,
3231 "TX FIFO underrun, packet dropped\n");
3232 dev->stats.tx_dropped++;
3233 priv->extra_stats.tx_underrun++;
3234
3235 local_irq_save(flags);
3236 lock_tx_qs(priv);
3237
3238 /* Reactivate the Tx Queues */
3239 gfar_write(&regs->tstat, gfargrp->tstat);
3240
3241 unlock_tx_qs(priv);
3242 local_irq_restore(flags);
3243 }
3244 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3245 }
3246 if (events & IEVENT_BSY) {
3247 dev->stats.rx_errors++;
3248 priv->extra_stats.rx_bsy++;
3249
3250 gfar_receive(irq, grp_id);
3251
3252 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3253 gfar_read(&regs->rstat));
3254 }
3255 if (events & IEVENT_BABR) {
3256 dev->stats.rx_errors++;
3257 priv->extra_stats.rx_babr++;
3258
3259 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3260 }
3261 if (events & IEVENT_EBERR) {
3262 priv->extra_stats.eberr++;
3263 netif_dbg(priv, rx_err, dev, "bus error\n");
3264 }
3265 if (events & IEVENT_RXC)
3266 netif_dbg(priv, rx_status, dev, "control frame\n");
3267
3268 if (events & IEVENT_BABT) {
3269 priv->extra_stats.tx_babt++;
3270 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3271 }
3272 return IRQ_HANDLED;
3273 }
3274
3275 static struct of_device_id gfar_match[] =
3276 {
3277 {
3278 .type = "network",
3279 .compatible = "gianfar",
3280 },
3281 {
3282 .compatible = "fsl,etsec2",
3283 },
3284 {},
3285 };
3286 MODULE_DEVICE_TABLE(of, gfar_match);
3287
3288 /* Structure for a device driver */
3289 static struct platform_driver gfar_driver = {
3290 .driver = {
3291 .name = "fsl-gianfar",
3292 .owner = THIS_MODULE,
3293 .pm = GFAR_PM_OPS,
3294 .of_match_table = gfar_match,
3295 },
3296 .probe = gfar_probe,
3297 .remove = gfar_remove,
3298 };
3299
3300 module_platform_driver(gfar_driver);
This page took 0.148244 seconds and 5 git commands to generate.