Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <asm/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (1*HZ)
111
112 const char gfar_driver_version[] = "1.3";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static struct sk_buff *gfar_new_skb(struct net_device *dev,
120 dma_addr_t *bufaddr);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
145 int amount_pull, struct napi_struct *napi);
146 static void gfar_halt_nodisable(struct gfar_private *priv);
147 static void gfar_clear_exact_match(struct net_device *dev);
148 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
149 const u8 *addr);
150 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
151
152 MODULE_AUTHOR("Freescale Semiconductor, Inc");
153 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
154 MODULE_LICENSE("GPL");
155
156 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
157 dma_addr_t buf)
158 {
159 u32 lstatus;
160
161 bdp->bufPtr = cpu_to_be32(buf);
162
163 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
164 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
165 lstatus |= BD_LFLAG(RXBD_WRAP);
166
167 gfar_wmb();
168
169 bdp->lstatus = cpu_to_be32(lstatus);
170 }
171
172 static int gfar_init_bds(struct net_device *ndev)
173 {
174 struct gfar_private *priv = netdev_priv(ndev);
175 struct gfar __iomem *regs = priv->gfargrp[0].regs;
176 struct gfar_priv_tx_q *tx_queue = NULL;
177 struct gfar_priv_rx_q *rx_queue = NULL;
178 struct txbd8 *txbdp;
179 struct rxbd8 *rxbdp;
180 u32 __iomem *rfbptr;
181 int i, j;
182 dma_addr_t bufaddr;
183
184 for (i = 0; i < priv->num_tx_queues; i++) {
185 tx_queue = priv->tx_queue[i];
186 /* Initialize some variables in our dev structure */
187 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
188 tx_queue->dirty_tx = tx_queue->tx_bd_base;
189 tx_queue->cur_tx = tx_queue->tx_bd_base;
190 tx_queue->skb_curtx = 0;
191 tx_queue->skb_dirtytx = 0;
192
193 /* Initialize Transmit Descriptor Ring */
194 txbdp = tx_queue->tx_bd_base;
195 for (j = 0; j < tx_queue->tx_ring_size; j++) {
196 txbdp->lstatus = 0;
197 txbdp->bufPtr = 0;
198 txbdp++;
199 }
200
201 /* Set the last descriptor in the ring to indicate wrap */
202 txbdp--;
203 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
204 TXBD_WRAP);
205 }
206
207 rfbptr = &regs->rfbptr0;
208 for (i = 0; i < priv->num_rx_queues; i++) {
209 rx_queue = priv->rx_queue[i];
210 rx_queue->cur_rx = rx_queue->rx_bd_base;
211 rx_queue->skb_currx = 0;
212 rxbdp = rx_queue->rx_bd_base;
213
214 for (j = 0; j < rx_queue->rx_ring_size; j++) {
215 struct sk_buff *skb = rx_queue->rx_skbuff[j];
216
217 if (skb) {
218 bufaddr = be32_to_cpu(rxbdp->bufPtr);
219 } else {
220 skb = gfar_new_skb(ndev, &bufaddr);
221 if (!skb) {
222 netdev_err(ndev, "Can't allocate RX buffers\n");
223 return -ENOMEM;
224 }
225 rx_queue->rx_skbuff[j] = skb;
226 }
227
228 gfar_init_rxbdp(rx_queue, rxbdp, bufaddr);
229 rxbdp++;
230 }
231
232 rx_queue->rfbptr = rfbptr;
233 rfbptr += 2;
234 }
235
236 return 0;
237 }
238
239 static int gfar_alloc_skb_resources(struct net_device *ndev)
240 {
241 void *vaddr;
242 dma_addr_t addr;
243 int i, j, k;
244 struct gfar_private *priv = netdev_priv(ndev);
245 struct device *dev = priv->dev;
246 struct gfar_priv_tx_q *tx_queue = NULL;
247 struct gfar_priv_rx_q *rx_queue = NULL;
248
249 priv->total_tx_ring_size = 0;
250 for (i = 0; i < priv->num_tx_queues; i++)
251 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
252
253 priv->total_rx_ring_size = 0;
254 for (i = 0; i < priv->num_rx_queues; i++)
255 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
256
257 /* Allocate memory for the buffer descriptors */
258 vaddr = dma_alloc_coherent(dev,
259 (priv->total_tx_ring_size *
260 sizeof(struct txbd8)) +
261 (priv->total_rx_ring_size *
262 sizeof(struct rxbd8)),
263 &addr, GFP_KERNEL);
264 if (!vaddr)
265 return -ENOMEM;
266
267 for (i = 0; i < priv->num_tx_queues; i++) {
268 tx_queue = priv->tx_queue[i];
269 tx_queue->tx_bd_base = vaddr;
270 tx_queue->tx_bd_dma_base = addr;
271 tx_queue->dev = ndev;
272 /* enet DMA only understands physical addresses */
273 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
274 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
275 }
276
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i = 0; i < priv->num_rx_queues; i++) {
279 rx_queue = priv->rx_queue[i];
280 rx_queue->rx_bd_base = vaddr;
281 rx_queue->rx_bd_dma_base = addr;
282 rx_queue->dev = ndev;
283 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
284 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
285 }
286
287 /* Setup the skbuff rings */
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 tx_queue = priv->tx_queue[i];
290 tx_queue->tx_skbuff =
291 kmalloc_array(tx_queue->tx_ring_size,
292 sizeof(*tx_queue->tx_skbuff),
293 GFP_KERNEL);
294 if (!tx_queue->tx_skbuff)
295 goto cleanup;
296
297 for (k = 0; k < tx_queue->tx_ring_size; k++)
298 tx_queue->tx_skbuff[k] = NULL;
299 }
300
301 for (i = 0; i < priv->num_rx_queues; i++) {
302 rx_queue = priv->rx_queue[i];
303 rx_queue->rx_skbuff =
304 kmalloc_array(rx_queue->rx_ring_size,
305 sizeof(*rx_queue->rx_skbuff),
306 GFP_KERNEL);
307 if (!rx_queue->rx_skbuff)
308 goto cleanup;
309
310 for (j = 0; j < rx_queue->rx_ring_size; j++)
311 rx_queue->rx_skbuff[j] = NULL;
312 }
313
314 if (gfar_init_bds(ndev))
315 goto cleanup;
316
317 return 0;
318
319 cleanup:
320 free_skb_resources(priv);
321 return -ENOMEM;
322 }
323
324 static void gfar_init_tx_rx_base(struct gfar_private *priv)
325 {
326 struct gfar __iomem *regs = priv->gfargrp[0].regs;
327 u32 __iomem *baddr;
328 int i;
329
330 baddr = &regs->tbase0;
331 for (i = 0; i < priv->num_tx_queues; i++) {
332 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
333 baddr += 2;
334 }
335
336 baddr = &regs->rbase0;
337 for (i = 0; i < priv->num_rx_queues; i++) {
338 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
339 baddr += 2;
340 }
341 }
342
343 static void gfar_init_rqprm(struct gfar_private *priv)
344 {
345 struct gfar __iomem *regs = priv->gfargrp[0].regs;
346 u32 __iomem *baddr;
347 int i;
348
349 baddr = &regs->rqprm0;
350 for (i = 0; i < priv->num_rx_queues; i++) {
351 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
352 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
353 baddr++;
354 }
355 }
356
357 static void gfar_rx_buff_size_config(struct gfar_private *priv)
358 {
359 int frame_size = priv->ndev->mtu + ETH_HLEN + ETH_FCS_LEN;
360
361 /* set this when rx hw offload (TOE) functions are being used */
362 priv->uses_rxfcb = 0;
363
364 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
365 priv->uses_rxfcb = 1;
366
367 if (priv->hwts_rx_en)
368 priv->uses_rxfcb = 1;
369
370 if (priv->uses_rxfcb)
371 frame_size += GMAC_FCB_LEN;
372
373 frame_size += priv->padding;
374
375 frame_size = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
376 INCREMENTAL_BUFFER_SIZE;
377
378 priv->rx_buffer_size = frame_size;
379 }
380
381 static void gfar_mac_rx_config(struct gfar_private *priv)
382 {
383 struct gfar __iomem *regs = priv->gfargrp[0].regs;
384 u32 rctrl = 0;
385
386 if (priv->rx_filer_enable) {
387 rctrl |= RCTRL_FILREN;
388 /* Program the RIR0 reg with the required distribution */
389 if (priv->poll_mode == GFAR_SQ_POLLING)
390 gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
391 else /* GFAR_MQ_POLLING */
392 gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
393 }
394
395 /* Restore PROMISC mode */
396 if (priv->ndev->flags & IFF_PROMISC)
397 rctrl |= RCTRL_PROM;
398
399 if (priv->ndev->features & NETIF_F_RXCSUM)
400 rctrl |= RCTRL_CHECKSUMMING;
401
402 if (priv->extended_hash)
403 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
404
405 if (priv->padding) {
406 rctrl &= ~RCTRL_PAL_MASK;
407 rctrl |= RCTRL_PADDING(priv->padding);
408 }
409
410 /* Enable HW time stamping if requested from user space */
411 if (priv->hwts_rx_en)
412 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
413
414 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
415 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
416
417 /* Clear the LFC bit */
418 gfar_write(&regs->rctrl, rctrl);
419 /* Init flow control threshold values */
420 gfar_init_rqprm(priv);
421 gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
422 rctrl |= RCTRL_LFC;
423
424 /* Init rctrl based on our settings */
425 gfar_write(&regs->rctrl, rctrl);
426 }
427
428 static void gfar_mac_tx_config(struct gfar_private *priv)
429 {
430 struct gfar __iomem *regs = priv->gfargrp[0].regs;
431 u32 tctrl = 0;
432
433 if (priv->ndev->features & NETIF_F_IP_CSUM)
434 tctrl |= TCTRL_INIT_CSUM;
435
436 if (priv->prio_sched_en)
437 tctrl |= TCTRL_TXSCHED_PRIO;
438 else {
439 tctrl |= TCTRL_TXSCHED_WRRS;
440 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
441 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
442 }
443
444 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
445 tctrl |= TCTRL_VLINS;
446
447 gfar_write(&regs->tctrl, tctrl);
448 }
449
450 static void gfar_configure_coalescing(struct gfar_private *priv,
451 unsigned long tx_mask, unsigned long rx_mask)
452 {
453 struct gfar __iomem *regs = priv->gfargrp[0].regs;
454 u32 __iomem *baddr;
455
456 if (priv->mode == MQ_MG_MODE) {
457 int i = 0;
458
459 baddr = &regs->txic0;
460 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
461 gfar_write(baddr + i, 0);
462 if (likely(priv->tx_queue[i]->txcoalescing))
463 gfar_write(baddr + i, priv->tx_queue[i]->txic);
464 }
465
466 baddr = &regs->rxic0;
467 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
468 gfar_write(baddr + i, 0);
469 if (likely(priv->rx_queue[i]->rxcoalescing))
470 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
471 }
472 } else {
473 /* Backward compatible case -- even if we enable
474 * multiple queues, there's only single reg to program
475 */
476 gfar_write(&regs->txic, 0);
477 if (likely(priv->tx_queue[0]->txcoalescing))
478 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
479
480 gfar_write(&regs->rxic, 0);
481 if (unlikely(priv->rx_queue[0]->rxcoalescing))
482 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
483 }
484 }
485
486 void gfar_configure_coalescing_all(struct gfar_private *priv)
487 {
488 gfar_configure_coalescing(priv, 0xFF, 0xFF);
489 }
490
491 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
492 {
493 struct gfar_private *priv = netdev_priv(dev);
494 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
495 unsigned long tx_packets = 0, tx_bytes = 0;
496 int i;
497
498 for (i = 0; i < priv->num_rx_queues; i++) {
499 rx_packets += priv->rx_queue[i]->stats.rx_packets;
500 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
501 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
502 }
503
504 dev->stats.rx_packets = rx_packets;
505 dev->stats.rx_bytes = rx_bytes;
506 dev->stats.rx_dropped = rx_dropped;
507
508 for (i = 0; i < priv->num_tx_queues; i++) {
509 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
510 tx_packets += priv->tx_queue[i]->stats.tx_packets;
511 }
512
513 dev->stats.tx_bytes = tx_bytes;
514 dev->stats.tx_packets = tx_packets;
515
516 return &dev->stats;
517 }
518
519 static const struct net_device_ops gfar_netdev_ops = {
520 .ndo_open = gfar_enet_open,
521 .ndo_start_xmit = gfar_start_xmit,
522 .ndo_stop = gfar_close,
523 .ndo_change_mtu = gfar_change_mtu,
524 .ndo_set_features = gfar_set_features,
525 .ndo_set_rx_mode = gfar_set_multi,
526 .ndo_tx_timeout = gfar_timeout,
527 .ndo_do_ioctl = gfar_ioctl,
528 .ndo_get_stats = gfar_get_stats,
529 .ndo_set_mac_address = eth_mac_addr,
530 .ndo_validate_addr = eth_validate_addr,
531 #ifdef CONFIG_NET_POLL_CONTROLLER
532 .ndo_poll_controller = gfar_netpoll,
533 #endif
534 };
535
536 static void gfar_ints_disable(struct gfar_private *priv)
537 {
538 int i;
539 for (i = 0; i < priv->num_grps; i++) {
540 struct gfar __iomem *regs = priv->gfargrp[i].regs;
541 /* Clear IEVENT */
542 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
543
544 /* Initialize IMASK */
545 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
546 }
547 }
548
549 static void gfar_ints_enable(struct gfar_private *priv)
550 {
551 int i;
552 for (i = 0; i < priv->num_grps; i++) {
553 struct gfar __iomem *regs = priv->gfargrp[i].regs;
554 /* Unmask the interrupts we look for */
555 gfar_write(&regs->imask, IMASK_DEFAULT);
556 }
557 }
558
559 static void lock_tx_qs(struct gfar_private *priv)
560 {
561 int i;
562
563 for (i = 0; i < priv->num_tx_queues; i++)
564 spin_lock(&priv->tx_queue[i]->txlock);
565 }
566
567 static void unlock_tx_qs(struct gfar_private *priv)
568 {
569 int i;
570
571 for (i = 0; i < priv->num_tx_queues; i++)
572 spin_unlock(&priv->tx_queue[i]->txlock);
573 }
574
575 static int gfar_alloc_tx_queues(struct gfar_private *priv)
576 {
577 int i;
578
579 for (i = 0; i < priv->num_tx_queues; i++) {
580 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
581 GFP_KERNEL);
582 if (!priv->tx_queue[i])
583 return -ENOMEM;
584
585 priv->tx_queue[i]->tx_skbuff = NULL;
586 priv->tx_queue[i]->qindex = i;
587 priv->tx_queue[i]->dev = priv->ndev;
588 spin_lock_init(&(priv->tx_queue[i]->txlock));
589 }
590 return 0;
591 }
592
593 static int gfar_alloc_rx_queues(struct gfar_private *priv)
594 {
595 int i;
596
597 for (i = 0; i < priv->num_rx_queues; i++) {
598 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
599 GFP_KERNEL);
600 if (!priv->rx_queue[i])
601 return -ENOMEM;
602
603 priv->rx_queue[i]->rx_skbuff = NULL;
604 priv->rx_queue[i]->qindex = i;
605 priv->rx_queue[i]->dev = priv->ndev;
606 }
607 return 0;
608 }
609
610 static void gfar_free_tx_queues(struct gfar_private *priv)
611 {
612 int i;
613
614 for (i = 0; i < priv->num_tx_queues; i++)
615 kfree(priv->tx_queue[i]);
616 }
617
618 static void gfar_free_rx_queues(struct gfar_private *priv)
619 {
620 int i;
621
622 for (i = 0; i < priv->num_rx_queues; i++)
623 kfree(priv->rx_queue[i]);
624 }
625
626 static void unmap_group_regs(struct gfar_private *priv)
627 {
628 int i;
629
630 for (i = 0; i < MAXGROUPS; i++)
631 if (priv->gfargrp[i].regs)
632 iounmap(priv->gfargrp[i].regs);
633 }
634
635 static void free_gfar_dev(struct gfar_private *priv)
636 {
637 int i, j;
638
639 for (i = 0; i < priv->num_grps; i++)
640 for (j = 0; j < GFAR_NUM_IRQS; j++) {
641 kfree(priv->gfargrp[i].irqinfo[j]);
642 priv->gfargrp[i].irqinfo[j] = NULL;
643 }
644
645 free_netdev(priv->ndev);
646 }
647
648 static void disable_napi(struct gfar_private *priv)
649 {
650 int i;
651
652 for (i = 0; i < priv->num_grps; i++) {
653 napi_disable(&priv->gfargrp[i].napi_rx);
654 napi_disable(&priv->gfargrp[i].napi_tx);
655 }
656 }
657
658 static void enable_napi(struct gfar_private *priv)
659 {
660 int i;
661
662 for (i = 0; i < priv->num_grps; i++) {
663 napi_enable(&priv->gfargrp[i].napi_rx);
664 napi_enable(&priv->gfargrp[i].napi_tx);
665 }
666 }
667
668 static int gfar_parse_group(struct device_node *np,
669 struct gfar_private *priv, const char *model)
670 {
671 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
672 int i;
673
674 for (i = 0; i < GFAR_NUM_IRQS; i++) {
675 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
676 GFP_KERNEL);
677 if (!grp->irqinfo[i])
678 return -ENOMEM;
679 }
680
681 grp->regs = of_iomap(np, 0);
682 if (!grp->regs)
683 return -ENOMEM;
684
685 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
686
687 /* If we aren't the FEC we have multiple interrupts */
688 if (model && strcasecmp(model, "FEC")) {
689 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
690 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
691 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
692 gfar_irq(grp, RX)->irq == NO_IRQ ||
693 gfar_irq(grp, ER)->irq == NO_IRQ)
694 return -EINVAL;
695 }
696
697 grp->priv = priv;
698 spin_lock_init(&grp->grplock);
699 if (priv->mode == MQ_MG_MODE) {
700 u32 rxq_mask, txq_mask;
701 int ret;
702
703 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
704 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
705
706 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
707 if (!ret) {
708 grp->rx_bit_map = rxq_mask ?
709 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
710 }
711
712 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
713 if (!ret) {
714 grp->tx_bit_map = txq_mask ?
715 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
716 }
717
718 if (priv->poll_mode == GFAR_SQ_POLLING) {
719 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
720 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
721 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
722 }
723 } else {
724 grp->rx_bit_map = 0xFF;
725 grp->tx_bit_map = 0xFF;
726 }
727
728 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
729 * right to left, so we need to revert the 8 bits to get the q index
730 */
731 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
732 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
733
734 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
735 * also assign queues to groups
736 */
737 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
738 if (!grp->rx_queue)
739 grp->rx_queue = priv->rx_queue[i];
740 grp->num_rx_queues++;
741 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
742 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
743 priv->rx_queue[i]->grp = grp;
744 }
745
746 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
747 if (!grp->tx_queue)
748 grp->tx_queue = priv->tx_queue[i];
749 grp->num_tx_queues++;
750 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
751 priv->tqueue |= (TQUEUE_EN0 >> i);
752 priv->tx_queue[i]->grp = grp;
753 }
754
755 priv->num_grps++;
756
757 return 0;
758 }
759
760 static int gfar_of_group_count(struct device_node *np)
761 {
762 struct device_node *child;
763 int num = 0;
764
765 for_each_available_child_of_node(np, child)
766 if (!of_node_cmp(child->name, "queue-group"))
767 num++;
768
769 return num;
770 }
771
772 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
773 {
774 const char *model;
775 const char *ctype;
776 const void *mac_addr;
777 int err = 0, i;
778 struct net_device *dev = NULL;
779 struct gfar_private *priv = NULL;
780 struct device_node *np = ofdev->dev.of_node;
781 struct device_node *child = NULL;
782 struct property *stash;
783 u32 stash_len = 0;
784 u32 stash_idx = 0;
785 unsigned int num_tx_qs, num_rx_qs;
786 unsigned short mode, poll_mode;
787
788 if (!np)
789 return -ENODEV;
790
791 if (of_device_is_compatible(np, "fsl,etsec2")) {
792 mode = MQ_MG_MODE;
793 poll_mode = GFAR_SQ_POLLING;
794 } else {
795 mode = SQ_SG_MODE;
796 poll_mode = GFAR_SQ_POLLING;
797 }
798
799 if (mode == SQ_SG_MODE) {
800 num_tx_qs = 1;
801 num_rx_qs = 1;
802 } else { /* MQ_MG_MODE */
803 /* get the actual number of supported groups */
804 unsigned int num_grps = gfar_of_group_count(np);
805
806 if (num_grps == 0 || num_grps > MAXGROUPS) {
807 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
808 num_grps);
809 pr_err("Cannot do alloc_etherdev, aborting\n");
810 return -EINVAL;
811 }
812
813 if (poll_mode == GFAR_SQ_POLLING) {
814 num_tx_qs = num_grps; /* one txq per int group */
815 num_rx_qs = num_grps; /* one rxq per int group */
816 } else { /* GFAR_MQ_POLLING */
817 u32 tx_queues, rx_queues;
818 int ret;
819
820 /* parse the num of HW tx and rx queues */
821 ret = of_property_read_u32(np, "fsl,num_tx_queues",
822 &tx_queues);
823 num_tx_qs = ret ? 1 : tx_queues;
824
825 ret = of_property_read_u32(np, "fsl,num_rx_queues",
826 &rx_queues);
827 num_rx_qs = ret ? 1 : rx_queues;
828 }
829 }
830
831 if (num_tx_qs > MAX_TX_QS) {
832 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
833 num_tx_qs, MAX_TX_QS);
834 pr_err("Cannot do alloc_etherdev, aborting\n");
835 return -EINVAL;
836 }
837
838 if (num_rx_qs > MAX_RX_QS) {
839 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
840 num_rx_qs, MAX_RX_QS);
841 pr_err("Cannot do alloc_etherdev, aborting\n");
842 return -EINVAL;
843 }
844
845 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
846 dev = *pdev;
847 if (NULL == dev)
848 return -ENOMEM;
849
850 priv = netdev_priv(dev);
851 priv->ndev = dev;
852
853 priv->mode = mode;
854 priv->poll_mode = poll_mode;
855
856 priv->num_tx_queues = num_tx_qs;
857 netif_set_real_num_rx_queues(dev, num_rx_qs);
858 priv->num_rx_queues = num_rx_qs;
859
860 err = gfar_alloc_tx_queues(priv);
861 if (err)
862 goto tx_alloc_failed;
863
864 err = gfar_alloc_rx_queues(priv);
865 if (err)
866 goto rx_alloc_failed;
867
868 err = of_property_read_string(np, "model", &model);
869 if (err) {
870 pr_err("Device model property missing, aborting\n");
871 goto rx_alloc_failed;
872 }
873
874 /* Init Rx queue filer rule set linked list */
875 INIT_LIST_HEAD(&priv->rx_list.list);
876 priv->rx_list.count = 0;
877 mutex_init(&priv->rx_queue_access);
878
879 for (i = 0; i < MAXGROUPS; i++)
880 priv->gfargrp[i].regs = NULL;
881
882 /* Parse and initialize group specific information */
883 if (priv->mode == MQ_MG_MODE) {
884 for_each_available_child_of_node(np, child) {
885 if (of_node_cmp(child->name, "queue-group"))
886 continue;
887
888 err = gfar_parse_group(child, priv, model);
889 if (err)
890 goto err_grp_init;
891 }
892 } else { /* SQ_SG_MODE */
893 err = gfar_parse_group(np, priv, model);
894 if (err)
895 goto err_grp_init;
896 }
897
898 stash = of_find_property(np, "bd-stash", NULL);
899
900 if (stash) {
901 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
902 priv->bd_stash_en = 1;
903 }
904
905 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
906
907 if (err == 0)
908 priv->rx_stash_size = stash_len;
909
910 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
911
912 if (err == 0)
913 priv->rx_stash_index = stash_idx;
914
915 if (stash_len || stash_idx)
916 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
917
918 mac_addr = of_get_mac_address(np);
919
920 if (mac_addr)
921 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
922
923 if (model && !strcasecmp(model, "TSEC"))
924 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
925 FSL_GIANFAR_DEV_HAS_COALESCE |
926 FSL_GIANFAR_DEV_HAS_RMON |
927 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
928
929 if (model && !strcasecmp(model, "eTSEC"))
930 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
931 FSL_GIANFAR_DEV_HAS_COALESCE |
932 FSL_GIANFAR_DEV_HAS_RMON |
933 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
934 FSL_GIANFAR_DEV_HAS_CSUM |
935 FSL_GIANFAR_DEV_HAS_VLAN |
936 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
937 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
938 FSL_GIANFAR_DEV_HAS_TIMER;
939
940 err = of_property_read_string(np, "phy-connection-type", &ctype);
941
942 /* We only care about rgmii-id. The rest are autodetected */
943 if (err == 0 && !strcmp(ctype, "rgmii-id"))
944 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
945 else
946 priv->interface = PHY_INTERFACE_MODE_MII;
947
948 if (of_find_property(np, "fsl,magic-packet", NULL))
949 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
950
951 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
952
953 /* In the case of a fixed PHY, the DT node associated
954 * to the PHY is the Ethernet MAC DT node.
955 */
956 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
957 err = of_phy_register_fixed_link(np);
958 if (err)
959 goto err_grp_init;
960
961 priv->phy_node = of_node_get(np);
962 }
963
964 /* Find the TBI PHY. If it's not there, we don't support SGMII */
965 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
966
967 return 0;
968
969 err_grp_init:
970 unmap_group_regs(priv);
971 rx_alloc_failed:
972 gfar_free_rx_queues(priv);
973 tx_alloc_failed:
974 gfar_free_tx_queues(priv);
975 free_gfar_dev(priv);
976 return err;
977 }
978
979 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
980 {
981 struct hwtstamp_config config;
982 struct gfar_private *priv = netdev_priv(netdev);
983
984 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
985 return -EFAULT;
986
987 /* reserved for future extensions */
988 if (config.flags)
989 return -EINVAL;
990
991 switch (config.tx_type) {
992 case HWTSTAMP_TX_OFF:
993 priv->hwts_tx_en = 0;
994 break;
995 case HWTSTAMP_TX_ON:
996 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
997 return -ERANGE;
998 priv->hwts_tx_en = 1;
999 break;
1000 default:
1001 return -ERANGE;
1002 }
1003
1004 switch (config.rx_filter) {
1005 case HWTSTAMP_FILTER_NONE:
1006 if (priv->hwts_rx_en) {
1007 priv->hwts_rx_en = 0;
1008 reset_gfar(netdev);
1009 }
1010 break;
1011 default:
1012 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
1013 return -ERANGE;
1014 if (!priv->hwts_rx_en) {
1015 priv->hwts_rx_en = 1;
1016 reset_gfar(netdev);
1017 }
1018 config.rx_filter = HWTSTAMP_FILTER_ALL;
1019 break;
1020 }
1021
1022 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1023 -EFAULT : 0;
1024 }
1025
1026 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
1027 {
1028 struct hwtstamp_config config;
1029 struct gfar_private *priv = netdev_priv(netdev);
1030
1031 config.flags = 0;
1032 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
1033 config.rx_filter = (priv->hwts_rx_en ?
1034 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
1035
1036 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1037 -EFAULT : 0;
1038 }
1039
1040 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1041 {
1042 struct gfar_private *priv = netdev_priv(dev);
1043
1044 if (!netif_running(dev))
1045 return -EINVAL;
1046
1047 if (cmd == SIOCSHWTSTAMP)
1048 return gfar_hwtstamp_set(dev, rq);
1049 if (cmd == SIOCGHWTSTAMP)
1050 return gfar_hwtstamp_get(dev, rq);
1051
1052 if (!priv->phydev)
1053 return -ENODEV;
1054
1055 return phy_mii_ioctl(priv->phydev, rq, cmd);
1056 }
1057
1058 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1059 u32 class)
1060 {
1061 u32 rqfpr = FPR_FILER_MASK;
1062 u32 rqfcr = 0x0;
1063
1064 rqfar--;
1065 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1066 priv->ftp_rqfpr[rqfar] = rqfpr;
1067 priv->ftp_rqfcr[rqfar] = rqfcr;
1068 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1069
1070 rqfar--;
1071 rqfcr = RQFCR_CMP_NOMATCH;
1072 priv->ftp_rqfpr[rqfar] = rqfpr;
1073 priv->ftp_rqfcr[rqfar] = rqfcr;
1074 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1075
1076 rqfar--;
1077 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1078 rqfpr = class;
1079 priv->ftp_rqfcr[rqfar] = rqfcr;
1080 priv->ftp_rqfpr[rqfar] = rqfpr;
1081 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1082
1083 rqfar--;
1084 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1085 rqfpr = class;
1086 priv->ftp_rqfcr[rqfar] = rqfcr;
1087 priv->ftp_rqfpr[rqfar] = rqfpr;
1088 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1089
1090 return rqfar;
1091 }
1092
1093 static void gfar_init_filer_table(struct gfar_private *priv)
1094 {
1095 int i = 0x0;
1096 u32 rqfar = MAX_FILER_IDX;
1097 u32 rqfcr = 0x0;
1098 u32 rqfpr = FPR_FILER_MASK;
1099
1100 /* Default rule */
1101 rqfcr = RQFCR_CMP_MATCH;
1102 priv->ftp_rqfcr[rqfar] = rqfcr;
1103 priv->ftp_rqfpr[rqfar] = rqfpr;
1104 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1105
1106 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1107 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1108 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1109 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1110 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1111 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1112
1113 /* cur_filer_idx indicated the first non-masked rule */
1114 priv->cur_filer_idx = rqfar;
1115
1116 /* Rest are masked rules */
1117 rqfcr = RQFCR_CMP_NOMATCH;
1118 for (i = 0; i < rqfar; i++) {
1119 priv->ftp_rqfcr[i] = rqfcr;
1120 priv->ftp_rqfpr[i] = rqfpr;
1121 gfar_write_filer(priv, i, rqfcr, rqfpr);
1122 }
1123 }
1124
1125 #ifdef CONFIG_PPC
1126 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1127 {
1128 unsigned int pvr = mfspr(SPRN_PVR);
1129 unsigned int svr = mfspr(SPRN_SVR);
1130 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1131 unsigned int rev = svr & 0xffff;
1132
1133 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1134 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1135 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1136 priv->errata |= GFAR_ERRATA_74;
1137
1138 /* MPC8313 and MPC837x all rev */
1139 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1140 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1141 priv->errata |= GFAR_ERRATA_76;
1142
1143 /* MPC8313 Rev < 2.0 */
1144 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1145 priv->errata |= GFAR_ERRATA_12;
1146 }
1147
1148 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1149 {
1150 unsigned int svr = mfspr(SPRN_SVR);
1151
1152 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1153 priv->errata |= GFAR_ERRATA_12;
1154 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1155 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)))
1156 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1157 }
1158 #endif
1159
1160 static void gfar_detect_errata(struct gfar_private *priv)
1161 {
1162 struct device *dev = &priv->ofdev->dev;
1163
1164 /* no plans to fix */
1165 priv->errata |= GFAR_ERRATA_A002;
1166
1167 #ifdef CONFIG_PPC
1168 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1169 __gfar_detect_errata_85xx(priv);
1170 else /* non-mpc85xx parts, i.e. e300 core based */
1171 __gfar_detect_errata_83xx(priv);
1172 #endif
1173
1174 if (priv->errata)
1175 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1176 priv->errata);
1177 }
1178
1179 void gfar_mac_reset(struct gfar_private *priv)
1180 {
1181 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1182 u32 tempval;
1183
1184 /* Reset MAC layer */
1185 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1186
1187 /* We need to delay at least 3 TX clocks */
1188 udelay(3);
1189
1190 /* the soft reset bit is not self-resetting, so we need to
1191 * clear it before resuming normal operation
1192 */
1193 gfar_write(&regs->maccfg1, 0);
1194
1195 udelay(3);
1196
1197 /* Compute rx_buff_size based on config flags */
1198 gfar_rx_buff_size_config(priv);
1199
1200 /* Initialize the max receive frame/buffer lengths */
1201 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
1202 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1203
1204 /* Initialize the Minimum Frame Length Register */
1205 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1206
1207 /* Initialize MACCFG2. */
1208 tempval = MACCFG2_INIT_SETTINGS;
1209
1210 /* If the mtu is larger than the max size for standard
1211 * ethernet frames (ie, a jumbo frame), then set maccfg2
1212 * to allow huge frames, and to check the length
1213 */
1214 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
1215 gfar_has_errata(priv, GFAR_ERRATA_74))
1216 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1217
1218 gfar_write(&regs->maccfg2, tempval);
1219
1220 /* Clear mac addr hash registers */
1221 gfar_write(&regs->igaddr0, 0);
1222 gfar_write(&regs->igaddr1, 0);
1223 gfar_write(&regs->igaddr2, 0);
1224 gfar_write(&regs->igaddr3, 0);
1225 gfar_write(&regs->igaddr4, 0);
1226 gfar_write(&regs->igaddr5, 0);
1227 gfar_write(&regs->igaddr6, 0);
1228 gfar_write(&regs->igaddr7, 0);
1229
1230 gfar_write(&regs->gaddr0, 0);
1231 gfar_write(&regs->gaddr1, 0);
1232 gfar_write(&regs->gaddr2, 0);
1233 gfar_write(&regs->gaddr3, 0);
1234 gfar_write(&regs->gaddr4, 0);
1235 gfar_write(&regs->gaddr5, 0);
1236 gfar_write(&regs->gaddr6, 0);
1237 gfar_write(&regs->gaddr7, 0);
1238
1239 if (priv->extended_hash)
1240 gfar_clear_exact_match(priv->ndev);
1241
1242 gfar_mac_rx_config(priv);
1243
1244 gfar_mac_tx_config(priv);
1245
1246 gfar_set_mac_address(priv->ndev);
1247
1248 gfar_set_multi(priv->ndev);
1249
1250 /* clear ievent and imask before configuring coalescing */
1251 gfar_ints_disable(priv);
1252
1253 /* Configure the coalescing support */
1254 gfar_configure_coalescing_all(priv);
1255 }
1256
1257 static void gfar_hw_init(struct gfar_private *priv)
1258 {
1259 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1260 u32 attrs;
1261
1262 /* Stop the DMA engine now, in case it was running before
1263 * (The firmware could have used it, and left it running).
1264 */
1265 gfar_halt(priv);
1266
1267 gfar_mac_reset(priv);
1268
1269 /* Zero out the rmon mib registers if it has them */
1270 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1271 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1272
1273 /* Mask off the CAM interrupts */
1274 gfar_write(&regs->rmon.cam1, 0xffffffff);
1275 gfar_write(&regs->rmon.cam2, 0xffffffff);
1276 }
1277
1278 /* Initialize ECNTRL */
1279 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1280
1281 /* Set the extraction length and index */
1282 attrs = ATTRELI_EL(priv->rx_stash_size) |
1283 ATTRELI_EI(priv->rx_stash_index);
1284
1285 gfar_write(&regs->attreli, attrs);
1286
1287 /* Start with defaults, and add stashing
1288 * depending on driver parameters
1289 */
1290 attrs = ATTR_INIT_SETTINGS;
1291
1292 if (priv->bd_stash_en)
1293 attrs |= ATTR_BDSTASH;
1294
1295 if (priv->rx_stash_size != 0)
1296 attrs |= ATTR_BUFSTASH;
1297
1298 gfar_write(&regs->attr, attrs);
1299
1300 /* FIFO configs */
1301 gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1302 gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1303 gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1304
1305 /* Program the interrupt steering regs, only for MG devices */
1306 if (priv->num_grps > 1)
1307 gfar_write_isrg(priv);
1308 }
1309
1310 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1311 {
1312 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1313
1314 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1315 priv->extended_hash = 1;
1316 priv->hash_width = 9;
1317
1318 priv->hash_regs[0] = &regs->igaddr0;
1319 priv->hash_regs[1] = &regs->igaddr1;
1320 priv->hash_regs[2] = &regs->igaddr2;
1321 priv->hash_regs[3] = &regs->igaddr3;
1322 priv->hash_regs[4] = &regs->igaddr4;
1323 priv->hash_regs[5] = &regs->igaddr5;
1324 priv->hash_regs[6] = &regs->igaddr6;
1325 priv->hash_regs[7] = &regs->igaddr7;
1326 priv->hash_regs[8] = &regs->gaddr0;
1327 priv->hash_regs[9] = &regs->gaddr1;
1328 priv->hash_regs[10] = &regs->gaddr2;
1329 priv->hash_regs[11] = &regs->gaddr3;
1330 priv->hash_regs[12] = &regs->gaddr4;
1331 priv->hash_regs[13] = &regs->gaddr5;
1332 priv->hash_regs[14] = &regs->gaddr6;
1333 priv->hash_regs[15] = &regs->gaddr7;
1334
1335 } else {
1336 priv->extended_hash = 0;
1337 priv->hash_width = 8;
1338
1339 priv->hash_regs[0] = &regs->gaddr0;
1340 priv->hash_regs[1] = &regs->gaddr1;
1341 priv->hash_regs[2] = &regs->gaddr2;
1342 priv->hash_regs[3] = &regs->gaddr3;
1343 priv->hash_regs[4] = &regs->gaddr4;
1344 priv->hash_regs[5] = &regs->gaddr5;
1345 priv->hash_regs[6] = &regs->gaddr6;
1346 priv->hash_regs[7] = &regs->gaddr7;
1347 }
1348 }
1349
1350 /* Set up the ethernet device structure, private data,
1351 * and anything else we need before we start
1352 */
1353 static int gfar_probe(struct platform_device *ofdev)
1354 {
1355 struct net_device *dev = NULL;
1356 struct gfar_private *priv = NULL;
1357 int err = 0, i;
1358
1359 err = gfar_of_init(ofdev, &dev);
1360
1361 if (err)
1362 return err;
1363
1364 priv = netdev_priv(dev);
1365 priv->ndev = dev;
1366 priv->ofdev = ofdev;
1367 priv->dev = &ofdev->dev;
1368 SET_NETDEV_DEV(dev, &ofdev->dev);
1369
1370 spin_lock_init(&priv->bflock);
1371 INIT_WORK(&priv->reset_task, gfar_reset_task);
1372
1373 platform_set_drvdata(ofdev, priv);
1374
1375 gfar_detect_errata(priv);
1376
1377 /* Set the dev->base_addr to the gfar reg region */
1378 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1379
1380 /* Fill in the dev structure */
1381 dev->watchdog_timeo = TX_TIMEOUT;
1382 dev->mtu = 1500;
1383 dev->netdev_ops = &gfar_netdev_ops;
1384 dev->ethtool_ops = &gfar_ethtool_ops;
1385
1386 /* Register for napi ...We are registering NAPI for each grp */
1387 for (i = 0; i < priv->num_grps; i++) {
1388 if (priv->poll_mode == GFAR_SQ_POLLING) {
1389 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1390 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1391 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1392 gfar_poll_tx_sq, 2);
1393 } else {
1394 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1395 gfar_poll_rx, GFAR_DEV_WEIGHT);
1396 netif_napi_add(dev, &priv->gfargrp[i].napi_tx,
1397 gfar_poll_tx, 2);
1398 }
1399 }
1400
1401 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1402 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1403 NETIF_F_RXCSUM;
1404 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1405 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1406 }
1407
1408 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1409 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1410 NETIF_F_HW_VLAN_CTAG_RX;
1411 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1412 }
1413
1414 gfar_init_addr_hash_table(priv);
1415
1416 /* Insert receive time stamps into padding alignment bytes */
1417 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1418 priv->padding = 8;
1419
1420 if (dev->features & NETIF_F_IP_CSUM ||
1421 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1422 dev->needed_headroom = GMAC_FCB_LEN;
1423
1424 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1425
1426 /* Initializing some of the rx/tx queue level parameters */
1427 for (i = 0; i < priv->num_tx_queues; i++) {
1428 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1429 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1430 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1431 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1432 }
1433
1434 for (i = 0; i < priv->num_rx_queues; i++) {
1435 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1436 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1437 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1438 }
1439
1440 /* always enable rx filer */
1441 priv->rx_filer_enable = 1;
1442 /* Enable most messages by default */
1443 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1444 /* use pritority h/w tx queue scheduling for single queue devices */
1445 if (priv->num_tx_queues == 1)
1446 priv->prio_sched_en = 1;
1447
1448 set_bit(GFAR_DOWN, &priv->state);
1449
1450 gfar_hw_init(priv);
1451
1452 /* Carrier starts down, phylib will bring it up */
1453 netif_carrier_off(dev);
1454
1455 err = register_netdev(dev);
1456
1457 if (err) {
1458 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1459 goto register_fail;
1460 }
1461
1462 device_init_wakeup(&dev->dev,
1463 priv->device_flags &
1464 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1465
1466 /* fill out IRQ number and name fields */
1467 for (i = 0; i < priv->num_grps; i++) {
1468 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1469 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1470 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1471 dev->name, "_g", '0' + i, "_tx");
1472 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1473 dev->name, "_g", '0' + i, "_rx");
1474 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1475 dev->name, "_g", '0' + i, "_er");
1476 } else
1477 strcpy(gfar_irq(grp, TX)->name, dev->name);
1478 }
1479
1480 /* Initialize the filer table */
1481 gfar_init_filer_table(priv);
1482
1483 /* Print out the device info */
1484 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1485
1486 /* Even more device info helps when determining which kernel
1487 * provided which set of benchmarks.
1488 */
1489 netdev_info(dev, "Running with NAPI enabled\n");
1490 for (i = 0; i < priv->num_rx_queues; i++)
1491 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1492 i, priv->rx_queue[i]->rx_ring_size);
1493 for (i = 0; i < priv->num_tx_queues; i++)
1494 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1495 i, priv->tx_queue[i]->tx_ring_size);
1496
1497 return 0;
1498
1499 register_fail:
1500 unmap_group_regs(priv);
1501 gfar_free_rx_queues(priv);
1502 gfar_free_tx_queues(priv);
1503 of_node_put(priv->phy_node);
1504 of_node_put(priv->tbi_node);
1505 free_gfar_dev(priv);
1506 return err;
1507 }
1508
1509 static int gfar_remove(struct platform_device *ofdev)
1510 {
1511 struct gfar_private *priv = platform_get_drvdata(ofdev);
1512
1513 of_node_put(priv->phy_node);
1514 of_node_put(priv->tbi_node);
1515
1516 unregister_netdev(priv->ndev);
1517 unmap_group_regs(priv);
1518 gfar_free_rx_queues(priv);
1519 gfar_free_tx_queues(priv);
1520 free_gfar_dev(priv);
1521
1522 return 0;
1523 }
1524
1525 #ifdef CONFIG_PM
1526
1527 static int gfar_suspend(struct device *dev)
1528 {
1529 struct gfar_private *priv = dev_get_drvdata(dev);
1530 struct net_device *ndev = priv->ndev;
1531 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1532 unsigned long flags;
1533 u32 tempval;
1534
1535 int magic_packet = priv->wol_en &&
1536 (priv->device_flags &
1537 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1538
1539 netif_device_detach(ndev);
1540
1541 if (netif_running(ndev)) {
1542
1543 local_irq_save(flags);
1544 lock_tx_qs(priv);
1545
1546 gfar_halt_nodisable(priv);
1547
1548 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1549 tempval = gfar_read(&regs->maccfg1);
1550
1551 tempval &= ~MACCFG1_TX_EN;
1552
1553 if (!magic_packet)
1554 tempval &= ~MACCFG1_RX_EN;
1555
1556 gfar_write(&regs->maccfg1, tempval);
1557
1558 unlock_tx_qs(priv);
1559 local_irq_restore(flags);
1560
1561 disable_napi(priv);
1562
1563 if (magic_packet) {
1564 /* Enable interrupt on Magic Packet */
1565 gfar_write(&regs->imask, IMASK_MAG);
1566
1567 /* Enable Magic Packet mode */
1568 tempval = gfar_read(&regs->maccfg2);
1569 tempval |= MACCFG2_MPEN;
1570 gfar_write(&regs->maccfg2, tempval);
1571 } else {
1572 phy_stop(priv->phydev);
1573 }
1574 }
1575
1576 return 0;
1577 }
1578
1579 static int gfar_resume(struct device *dev)
1580 {
1581 struct gfar_private *priv = dev_get_drvdata(dev);
1582 struct net_device *ndev = priv->ndev;
1583 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1584 unsigned long flags;
1585 u32 tempval;
1586 int magic_packet = priv->wol_en &&
1587 (priv->device_flags &
1588 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1589
1590 if (!netif_running(ndev)) {
1591 netif_device_attach(ndev);
1592 return 0;
1593 }
1594
1595 if (!magic_packet && priv->phydev)
1596 phy_start(priv->phydev);
1597
1598 /* Disable Magic Packet mode, in case something
1599 * else woke us up.
1600 */
1601 local_irq_save(flags);
1602 lock_tx_qs(priv);
1603
1604 tempval = gfar_read(&regs->maccfg2);
1605 tempval &= ~MACCFG2_MPEN;
1606 gfar_write(&regs->maccfg2, tempval);
1607
1608 gfar_start(priv);
1609
1610 unlock_tx_qs(priv);
1611 local_irq_restore(flags);
1612
1613 netif_device_attach(ndev);
1614
1615 enable_napi(priv);
1616
1617 return 0;
1618 }
1619
1620 static int gfar_restore(struct device *dev)
1621 {
1622 struct gfar_private *priv = dev_get_drvdata(dev);
1623 struct net_device *ndev = priv->ndev;
1624
1625 if (!netif_running(ndev)) {
1626 netif_device_attach(ndev);
1627
1628 return 0;
1629 }
1630
1631 if (gfar_init_bds(ndev)) {
1632 free_skb_resources(priv);
1633 return -ENOMEM;
1634 }
1635
1636 gfar_mac_reset(priv);
1637
1638 gfar_init_tx_rx_base(priv);
1639
1640 gfar_start(priv);
1641
1642 priv->oldlink = 0;
1643 priv->oldspeed = 0;
1644 priv->oldduplex = -1;
1645
1646 if (priv->phydev)
1647 phy_start(priv->phydev);
1648
1649 netif_device_attach(ndev);
1650 enable_napi(priv);
1651
1652 return 0;
1653 }
1654
1655 static struct dev_pm_ops gfar_pm_ops = {
1656 .suspend = gfar_suspend,
1657 .resume = gfar_resume,
1658 .freeze = gfar_suspend,
1659 .thaw = gfar_resume,
1660 .restore = gfar_restore,
1661 };
1662
1663 #define GFAR_PM_OPS (&gfar_pm_ops)
1664
1665 #else
1666
1667 #define GFAR_PM_OPS NULL
1668
1669 #endif
1670
1671 /* Reads the controller's registers to determine what interface
1672 * connects it to the PHY.
1673 */
1674 static phy_interface_t gfar_get_interface(struct net_device *dev)
1675 {
1676 struct gfar_private *priv = netdev_priv(dev);
1677 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1678 u32 ecntrl;
1679
1680 ecntrl = gfar_read(&regs->ecntrl);
1681
1682 if (ecntrl & ECNTRL_SGMII_MODE)
1683 return PHY_INTERFACE_MODE_SGMII;
1684
1685 if (ecntrl & ECNTRL_TBI_MODE) {
1686 if (ecntrl & ECNTRL_REDUCED_MODE)
1687 return PHY_INTERFACE_MODE_RTBI;
1688 else
1689 return PHY_INTERFACE_MODE_TBI;
1690 }
1691
1692 if (ecntrl & ECNTRL_REDUCED_MODE) {
1693 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1694 return PHY_INTERFACE_MODE_RMII;
1695 }
1696 else {
1697 phy_interface_t interface = priv->interface;
1698
1699 /* This isn't autodetected right now, so it must
1700 * be set by the device tree or platform code.
1701 */
1702 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1703 return PHY_INTERFACE_MODE_RGMII_ID;
1704
1705 return PHY_INTERFACE_MODE_RGMII;
1706 }
1707 }
1708
1709 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1710 return PHY_INTERFACE_MODE_GMII;
1711
1712 return PHY_INTERFACE_MODE_MII;
1713 }
1714
1715
1716 /* Initializes driver's PHY state, and attaches to the PHY.
1717 * Returns 0 on success.
1718 */
1719 static int init_phy(struct net_device *dev)
1720 {
1721 struct gfar_private *priv = netdev_priv(dev);
1722 uint gigabit_support =
1723 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1724 GFAR_SUPPORTED_GBIT : 0;
1725 phy_interface_t interface;
1726
1727 priv->oldlink = 0;
1728 priv->oldspeed = 0;
1729 priv->oldduplex = -1;
1730
1731 interface = gfar_get_interface(dev);
1732
1733 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1734 interface);
1735 if (!priv->phydev) {
1736 dev_err(&dev->dev, "could not attach to PHY\n");
1737 return -ENODEV;
1738 }
1739
1740 if (interface == PHY_INTERFACE_MODE_SGMII)
1741 gfar_configure_serdes(dev);
1742
1743 /* Remove any features not supported by the controller */
1744 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1745 priv->phydev->advertising = priv->phydev->supported;
1746
1747 /* Add support for flow control, but don't advertise it by default */
1748 priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1749
1750 return 0;
1751 }
1752
1753 /* Initialize TBI PHY interface for communicating with the
1754 * SERDES lynx PHY on the chip. We communicate with this PHY
1755 * through the MDIO bus on each controller, treating it as a
1756 * "normal" PHY at the address found in the TBIPA register. We assume
1757 * that the TBIPA register is valid. Either the MDIO bus code will set
1758 * it to a value that doesn't conflict with other PHYs on the bus, or the
1759 * value doesn't matter, as there are no other PHYs on the bus.
1760 */
1761 static void gfar_configure_serdes(struct net_device *dev)
1762 {
1763 struct gfar_private *priv = netdev_priv(dev);
1764 struct phy_device *tbiphy;
1765
1766 if (!priv->tbi_node) {
1767 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1768 "device tree specify a tbi-handle\n");
1769 return;
1770 }
1771
1772 tbiphy = of_phy_find_device(priv->tbi_node);
1773 if (!tbiphy) {
1774 dev_err(&dev->dev, "error: Could not get TBI device\n");
1775 return;
1776 }
1777
1778 /* If the link is already up, we must already be ok, and don't need to
1779 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1780 * everything for us? Resetting it takes the link down and requires
1781 * several seconds for it to come back.
1782 */
1783 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1784 return;
1785
1786 /* Single clk mode, mii mode off(for serdes communication) */
1787 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1788
1789 phy_write(tbiphy, MII_ADVERTISE,
1790 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1791 ADVERTISE_1000XPSE_ASYM);
1792
1793 phy_write(tbiphy, MII_BMCR,
1794 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1795 BMCR_SPEED1000);
1796 }
1797
1798 static int __gfar_is_rx_idle(struct gfar_private *priv)
1799 {
1800 u32 res;
1801
1802 /* Normaly TSEC should not hang on GRS commands, so we should
1803 * actually wait for IEVENT_GRSC flag.
1804 */
1805 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1806 return 0;
1807
1808 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1809 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1810 * and the Rx can be safely reset.
1811 */
1812 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1813 res &= 0x7f807f80;
1814 if ((res & 0xffff) == (res >> 16))
1815 return 1;
1816
1817 return 0;
1818 }
1819
1820 /* Halt the receive and transmit queues */
1821 static void gfar_halt_nodisable(struct gfar_private *priv)
1822 {
1823 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1824 u32 tempval;
1825 unsigned int timeout;
1826 int stopped;
1827
1828 gfar_ints_disable(priv);
1829
1830 if (gfar_is_dma_stopped(priv))
1831 return;
1832
1833 /* Stop the DMA, and wait for it to stop */
1834 tempval = gfar_read(&regs->dmactrl);
1835 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1836 gfar_write(&regs->dmactrl, tempval);
1837
1838 retry:
1839 timeout = 1000;
1840 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1841 cpu_relax();
1842 timeout--;
1843 }
1844
1845 if (!timeout)
1846 stopped = gfar_is_dma_stopped(priv);
1847
1848 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1849 !__gfar_is_rx_idle(priv))
1850 goto retry;
1851 }
1852
1853 /* Halt the receive and transmit queues */
1854 void gfar_halt(struct gfar_private *priv)
1855 {
1856 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1857 u32 tempval;
1858
1859 /* Dissable the Rx/Tx hw queues */
1860 gfar_write(&regs->rqueue, 0);
1861 gfar_write(&regs->tqueue, 0);
1862
1863 mdelay(10);
1864
1865 gfar_halt_nodisable(priv);
1866
1867 /* Disable Rx/Tx DMA */
1868 tempval = gfar_read(&regs->maccfg1);
1869 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1870 gfar_write(&regs->maccfg1, tempval);
1871 }
1872
1873 void stop_gfar(struct net_device *dev)
1874 {
1875 struct gfar_private *priv = netdev_priv(dev);
1876
1877 netif_tx_stop_all_queues(dev);
1878
1879 smp_mb__before_atomic();
1880 set_bit(GFAR_DOWN, &priv->state);
1881 smp_mb__after_atomic();
1882
1883 disable_napi(priv);
1884
1885 /* disable ints and gracefully shut down Rx/Tx DMA */
1886 gfar_halt(priv);
1887
1888 phy_stop(priv->phydev);
1889
1890 free_skb_resources(priv);
1891 }
1892
1893 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1894 {
1895 struct txbd8 *txbdp;
1896 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1897 int i, j;
1898
1899 txbdp = tx_queue->tx_bd_base;
1900
1901 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1902 if (!tx_queue->tx_skbuff[i])
1903 continue;
1904
1905 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1906 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1907 txbdp->lstatus = 0;
1908 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1909 j++) {
1910 txbdp++;
1911 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1912 be16_to_cpu(txbdp->length),
1913 DMA_TO_DEVICE);
1914 }
1915 txbdp++;
1916 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1917 tx_queue->tx_skbuff[i] = NULL;
1918 }
1919 kfree(tx_queue->tx_skbuff);
1920 tx_queue->tx_skbuff = NULL;
1921 }
1922
1923 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1924 {
1925 struct rxbd8 *rxbdp;
1926 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1927 int i;
1928
1929 rxbdp = rx_queue->rx_bd_base;
1930
1931 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1932 if (rx_queue->rx_skbuff[i]) {
1933 dma_unmap_single(priv->dev, be32_to_cpu(rxbdp->bufPtr),
1934 priv->rx_buffer_size,
1935 DMA_FROM_DEVICE);
1936 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1937 rx_queue->rx_skbuff[i] = NULL;
1938 }
1939 rxbdp->lstatus = 0;
1940 rxbdp->bufPtr = 0;
1941 rxbdp++;
1942 }
1943 kfree(rx_queue->rx_skbuff);
1944 rx_queue->rx_skbuff = NULL;
1945 }
1946
1947 /* If there are any tx skbs or rx skbs still around, free them.
1948 * Then free tx_skbuff and rx_skbuff
1949 */
1950 static void free_skb_resources(struct gfar_private *priv)
1951 {
1952 struct gfar_priv_tx_q *tx_queue = NULL;
1953 struct gfar_priv_rx_q *rx_queue = NULL;
1954 int i;
1955
1956 /* Go through all the buffer descriptors and free their data buffers */
1957 for (i = 0; i < priv->num_tx_queues; i++) {
1958 struct netdev_queue *txq;
1959
1960 tx_queue = priv->tx_queue[i];
1961 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1962 if (tx_queue->tx_skbuff)
1963 free_skb_tx_queue(tx_queue);
1964 netdev_tx_reset_queue(txq);
1965 }
1966
1967 for (i = 0; i < priv->num_rx_queues; i++) {
1968 rx_queue = priv->rx_queue[i];
1969 if (rx_queue->rx_skbuff)
1970 free_skb_rx_queue(rx_queue);
1971 }
1972
1973 dma_free_coherent(priv->dev,
1974 sizeof(struct txbd8) * priv->total_tx_ring_size +
1975 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1976 priv->tx_queue[0]->tx_bd_base,
1977 priv->tx_queue[0]->tx_bd_dma_base);
1978 }
1979
1980 void gfar_start(struct gfar_private *priv)
1981 {
1982 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1983 u32 tempval;
1984 int i = 0;
1985
1986 /* Enable Rx/Tx hw queues */
1987 gfar_write(&regs->rqueue, priv->rqueue);
1988 gfar_write(&regs->tqueue, priv->tqueue);
1989
1990 /* Initialize DMACTRL to have WWR and WOP */
1991 tempval = gfar_read(&regs->dmactrl);
1992 tempval |= DMACTRL_INIT_SETTINGS;
1993 gfar_write(&regs->dmactrl, tempval);
1994
1995 /* Make sure we aren't stopped */
1996 tempval = gfar_read(&regs->dmactrl);
1997 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1998 gfar_write(&regs->dmactrl, tempval);
1999
2000 for (i = 0; i < priv->num_grps; i++) {
2001 regs = priv->gfargrp[i].regs;
2002 /* Clear THLT/RHLT, so that the DMA starts polling now */
2003 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2004 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2005 }
2006
2007 /* Enable Rx/Tx DMA */
2008 tempval = gfar_read(&regs->maccfg1);
2009 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2010 gfar_write(&regs->maccfg1, tempval);
2011
2012 gfar_ints_enable(priv);
2013
2014 priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2015 }
2016
2017 static void free_grp_irqs(struct gfar_priv_grp *grp)
2018 {
2019 free_irq(gfar_irq(grp, TX)->irq, grp);
2020 free_irq(gfar_irq(grp, RX)->irq, grp);
2021 free_irq(gfar_irq(grp, ER)->irq, grp);
2022 }
2023
2024 static int register_grp_irqs(struct gfar_priv_grp *grp)
2025 {
2026 struct gfar_private *priv = grp->priv;
2027 struct net_device *dev = priv->ndev;
2028 int err;
2029
2030 /* If the device has multiple interrupts, register for
2031 * them. Otherwise, only register for the one
2032 */
2033 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2034 /* Install our interrupt handlers for Error,
2035 * Transmit, and Receive
2036 */
2037 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2038 gfar_irq(grp, ER)->name, grp);
2039 if (err < 0) {
2040 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2041 gfar_irq(grp, ER)->irq);
2042
2043 goto err_irq_fail;
2044 }
2045 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2046 gfar_irq(grp, TX)->name, grp);
2047 if (err < 0) {
2048 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2049 gfar_irq(grp, TX)->irq);
2050 goto tx_irq_fail;
2051 }
2052 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2053 gfar_irq(grp, RX)->name, grp);
2054 if (err < 0) {
2055 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2056 gfar_irq(grp, RX)->irq);
2057 goto rx_irq_fail;
2058 }
2059 } else {
2060 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2061 gfar_irq(grp, TX)->name, grp);
2062 if (err < 0) {
2063 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2064 gfar_irq(grp, TX)->irq);
2065 goto err_irq_fail;
2066 }
2067 }
2068
2069 return 0;
2070
2071 rx_irq_fail:
2072 free_irq(gfar_irq(grp, TX)->irq, grp);
2073 tx_irq_fail:
2074 free_irq(gfar_irq(grp, ER)->irq, grp);
2075 err_irq_fail:
2076 return err;
2077
2078 }
2079
2080 static void gfar_free_irq(struct gfar_private *priv)
2081 {
2082 int i;
2083
2084 /* Free the IRQs */
2085 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2086 for (i = 0; i < priv->num_grps; i++)
2087 free_grp_irqs(&priv->gfargrp[i]);
2088 } else {
2089 for (i = 0; i < priv->num_grps; i++)
2090 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2091 &priv->gfargrp[i]);
2092 }
2093 }
2094
2095 static int gfar_request_irq(struct gfar_private *priv)
2096 {
2097 int err, i, j;
2098
2099 for (i = 0; i < priv->num_grps; i++) {
2100 err = register_grp_irqs(&priv->gfargrp[i]);
2101 if (err) {
2102 for (j = 0; j < i; j++)
2103 free_grp_irqs(&priv->gfargrp[j]);
2104 return err;
2105 }
2106 }
2107
2108 return 0;
2109 }
2110
2111 /* Bring the controller up and running */
2112 int startup_gfar(struct net_device *ndev)
2113 {
2114 struct gfar_private *priv = netdev_priv(ndev);
2115 int err;
2116
2117 gfar_mac_reset(priv);
2118
2119 err = gfar_alloc_skb_resources(ndev);
2120 if (err)
2121 return err;
2122
2123 gfar_init_tx_rx_base(priv);
2124
2125 smp_mb__before_atomic();
2126 clear_bit(GFAR_DOWN, &priv->state);
2127 smp_mb__after_atomic();
2128
2129 /* Start Rx/Tx DMA and enable the interrupts */
2130 gfar_start(priv);
2131
2132 phy_start(priv->phydev);
2133
2134 enable_napi(priv);
2135
2136 netif_tx_wake_all_queues(ndev);
2137
2138 return 0;
2139 }
2140
2141 /* Called when something needs to use the ethernet device
2142 * Returns 0 for success.
2143 */
2144 static int gfar_enet_open(struct net_device *dev)
2145 {
2146 struct gfar_private *priv = netdev_priv(dev);
2147 int err;
2148
2149 err = init_phy(dev);
2150 if (err)
2151 return err;
2152
2153 err = gfar_request_irq(priv);
2154 if (err)
2155 return err;
2156
2157 err = startup_gfar(dev);
2158 if (err)
2159 return err;
2160
2161 device_set_wakeup_enable(&dev->dev, priv->wol_en);
2162
2163 return err;
2164 }
2165
2166 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2167 {
2168 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2169
2170 memset(fcb, 0, GMAC_FCB_LEN);
2171
2172 return fcb;
2173 }
2174
2175 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2176 int fcb_length)
2177 {
2178 /* If we're here, it's a IP packet with a TCP or UDP
2179 * payload. We set it to checksum, using a pseudo-header
2180 * we provide
2181 */
2182 u8 flags = TXFCB_DEFAULT;
2183
2184 /* Tell the controller what the protocol is
2185 * And provide the already calculated phcs
2186 */
2187 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2188 flags |= TXFCB_UDP;
2189 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2190 } else
2191 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2192
2193 /* l3os is the distance between the start of the
2194 * frame (skb->data) and the start of the IP hdr.
2195 * l4os is the distance between the start of the
2196 * l3 hdr and the l4 hdr
2197 */
2198 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2199 fcb->l4os = skb_network_header_len(skb);
2200
2201 fcb->flags = flags;
2202 }
2203
2204 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2205 {
2206 fcb->flags |= TXFCB_VLN;
2207 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2208 }
2209
2210 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2211 struct txbd8 *base, int ring_size)
2212 {
2213 struct txbd8 *new_bd = bdp + stride;
2214
2215 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2216 }
2217
2218 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2219 int ring_size)
2220 {
2221 return skip_txbd(bdp, 1, base, ring_size);
2222 }
2223
2224 /* eTSEC12: csum generation not supported for some fcb offsets */
2225 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2226 unsigned long fcb_addr)
2227 {
2228 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2229 (fcb_addr % 0x20) > 0x18);
2230 }
2231
2232 /* eTSEC76: csum generation for frames larger than 2500 may
2233 * cause excess delays before start of transmission
2234 */
2235 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2236 unsigned int len)
2237 {
2238 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2239 (len > 2500));
2240 }
2241
2242 /* This is called by the kernel when a frame is ready for transmission.
2243 * It is pointed to by the dev->hard_start_xmit function pointer
2244 */
2245 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2246 {
2247 struct gfar_private *priv = netdev_priv(dev);
2248 struct gfar_priv_tx_q *tx_queue = NULL;
2249 struct netdev_queue *txq;
2250 struct gfar __iomem *regs = NULL;
2251 struct txfcb *fcb = NULL;
2252 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2253 u32 lstatus;
2254 int i, rq = 0;
2255 int do_tstamp, do_csum, do_vlan;
2256 u32 bufaddr;
2257 unsigned long flags;
2258 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2259
2260 rq = skb->queue_mapping;
2261 tx_queue = priv->tx_queue[rq];
2262 txq = netdev_get_tx_queue(dev, rq);
2263 base = tx_queue->tx_bd_base;
2264 regs = tx_queue->grp->regs;
2265
2266 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2267 do_vlan = skb_vlan_tag_present(skb);
2268 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2269 priv->hwts_tx_en;
2270
2271 if (do_csum || do_vlan)
2272 fcb_len = GMAC_FCB_LEN;
2273
2274 /* check if time stamp should be generated */
2275 if (unlikely(do_tstamp))
2276 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2277
2278 /* make space for additional header when fcb is needed */
2279 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2280 struct sk_buff *skb_new;
2281
2282 skb_new = skb_realloc_headroom(skb, fcb_len);
2283 if (!skb_new) {
2284 dev->stats.tx_errors++;
2285 dev_kfree_skb_any(skb);
2286 return NETDEV_TX_OK;
2287 }
2288
2289 if (skb->sk)
2290 skb_set_owner_w(skb_new, skb->sk);
2291 dev_consume_skb_any(skb);
2292 skb = skb_new;
2293 }
2294
2295 /* total number of fragments in the SKB */
2296 nr_frags = skb_shinfo(skb)->nr_frags;
2297
2298 /* calculate the required number of TxBDs for this skb */
2299 if (unlikely(do_tstamp))
2300 nr_txbds = nr_frags + 2;
2301 else
2302 nr_txbds = nr_frags + 1;
2303
2304 /* check if there is space to queue this packet */
2305 if (nr_txbds > tx_queue->num_txbdfree) {
2306 /* no space, stop the queue */
2307 netif_tx_stop_queue(txq);
2308 dev->stats.tx_fifo_errors++;
2309 return NETDEV_TX_BUSY;
2310 }
2311
2312 /* Update transmit stats */
2313 bytes_sent = skb->len;
2314 tx_queue->stats.tx_bytes += bytes_sent;
2315 /* keep Tx bytes on wire for BQL accounting */
2316 GFAR_CB(skb)->bytes_sent = bytes_sent;
2317 tx_queue->stats.tx_packets++;
2318
2319 txbdp = txbdp_start = tx_queue->cur_tx;
2320 lstatus = be32_to_cpu(txbdp->lstatus);
2321
2322 /* Time stamp insertion requires one additional TxBD */
2323 if (unlikely(do_tstamp))
2324 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2325 tx_queue->tx_ring_size);
2326
2327 if (nr_frags == 0) {
2328 if (unlikely(do_tstamp)) {
2329 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2330
2331 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2332 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2333 } else {
2334 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2335 }
2336 } else {
2337 /* Place the fragment addresses and lengths into the TxBDs */
2338 for (i = 0; i < nr_frags; i++) {
2339 unsigned int frag_len;
2340 /* Point at the next BD, wrapping as needed */
2341 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2342
2343 frag_len = skb_shinfo(skb)->frags[i].size;
2344
2345 lstatus = be32_to_cpu(txbdp->lstatus) | frag_len |
2346 BD_LFLAG(TXBD_READY);
2347
2348 /* Handle the last BD specially */
2349 if (i == nr_frags - 1)
2350 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2351
2352 bufaddr = skb_frag_dma_map(priv->dev,
2353 &skb_shinfo(skb)->frags[i],
2354 0,
2355 frag_len,
2356 DMA_TO_DEVICE);
2357 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2358 goto dma_map_err;
2359
2360 /* set the TxBD length and buffer pointer */
2361 txbdp->bufPtr = cpu_to_be32(bufaddr);
2362 txbdp->lstatus = cpu_to_be32(lstatus);
2363 }
2364
2365 lstatus = be32_to_cpu(txbdp_start->lstatus);
2366 }
2367
2368 /* Add TxPAL between FCB and frame if required */
2369 if (unlikely(do_tstamp)) {
2370 skb_push(skb, GMAC_TXPAL_LEN);
2371 memset(skb->data, 0, GMAC_TXPAL_LEN);
2372 }
2373
2374 /* Add TxFCB if required */
2375 if (fcb_len) {
2376 fcb = gfar_add_fcb(skb);
2377 lstatus |= BD_LFLAG(TXBD_TOE);
2378 }
2379
2380 /* Set up checksumming */
2381 if (do_csum) {
2382 gfar_tx_checksum(skb, fcb, fcb_len);
2383
2384 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2385 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2386 __skb_pull(skb, GMAC_FCB_LEN);
2387 skb_checksum_help(skb);
2388 if (do_vlan || do_tstamp) {
2389 /* put back a new fcb for vlan/tstamp TOE */
2390 fcb = gfar_add_fcb(skb);
2391 } else {
2392 /* Tx TOE not used */
2393 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2394 fcb = NULL;
2395 }
2396 }
2397 }
2398
2399 if (do_vlan)
2400 gfar_tx_vlan(skb, fcb);
2401
2402 /* Setup tx hardware time stamping if requested */
2403 if (unlikely(do_tstamp)) {
2404 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2405 fcb->ptp = 1;
2406 }
2407
2408 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2409 DMA_TO_DEVICE);
2410 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2411 goto dma_map_err;
2412
2413 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2414
2415 /* If time stamping is requested one additional TxBD must be set up. The
2416 * first TxBD points to the FCB and must have a data length of
2417 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2418 * the full frame length.
2419 */
2420 if (unlikely(do_tstamp)) {
2421 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2422
2423 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2424 bufaddr += fcb_len;
2425 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2426 (skb_headlen(skb) - fcb_len);
2427
2428 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2429 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2430 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2431 } else {
2432 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2433 }
2434
2435 netdev_tx_sent_queue(txq, bytes_sent);
2436
2437 /* We can work in parallel with gfar_clean_tx_ring(), except
2438 * when modifying num_txbdfree. Note that we didn't grab the lock
2439 * when we were reading the num_txbdfree and checking for available
2440 * space, that's because outside of this function it can only grow,
2441 * and once we've got needed space, it cannot suddenly disappear.
2442 *
2443 * The lock also protects us from gfar_error(), which can modify
2444 * regs->tstat and thus retrigger the transfers, which is why we
2445 * also must grab the lock before setting ready bit for the first
2446 * to be transmitted BD.
2447 */
2448 spin_lock_irqsave(&tx_queue->txlock, flags);
2449
2450 gfar_wmb();
2451
2452 txbdp_start->lstatus = cpu_to_be32(lstatus);
2453
2454 gfar_wmb(); /* force lstatus write before tx_skbuff */
2455
2456 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2457
2458 /* Update the current skb pointer to the next entry we will use
2459 * (wrapping if necessary)
2460 */
2461 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2462 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2463
2464 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2465
2466 /* reduce TxBD free count */
2467 tx_queue->num_txbdfree -= (nr_txbds);
2468
2469 /* If the next BD still needs to be cleaned up, then the bds
2470 * are full. We need to tell the kernel to stop sending us stuff.
2471 */
2472 if (!tx_queue->num_txbdfree) {
2473 netif_tx_stop_queue(txq);
2474
2475 dev->stats.tx_fifo_errors++;
2476 }
2477
2478 /* Tell the DMA to go go go */
2479 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2480
2481 /* Unlock priv */
2482 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2483
2484 return NETDEV_TX_OK;
2485
2486 dma_map_err:
2487 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2488 if (do_tstamp)
2489 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2490 for (i = 0; i < nr_frags; i++) {
2491 lstatus = be32_to_cpu(txbdp->lstatus);
2492 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2493 break;
2494
2495 lstatus &= ~BD_LFLAG(TXBD_READY);
2496 txbdp->lstatus = cpu_to_be32(lstatus);
2497 bufaddr = be32_to_cpu(txbdp->bufPtr);
2498 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2499 DMA_TO_DEVICE);
2500 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2501 }
2502 gfar_wmb();
2503 dev_kfree_skb_any(skb);
2504 return NETDEV_TX_OK;
2505 }
2506
2507 /* Stops the kernel queue, and halts the controller */
2508 static int gfar_close(struct net_device *dev)
2509 {
2510 struct gfar_private *priv = netdev_priv(dev);
2511
2512 cancel_work_sync(&priv->reset_task);
2513 stop_gfar(dev);
2514
2515 /* Disconnect from the PHY */
2516 phy_disconnect(priv->phydev);
2517 priv->phydev = NULL;
2518
2519 gfar_free_irq(priv);
2520
2521 return 0;
2522 }
2523
2524 /* Changes the mac address if the controller is not running. */
2525 static int gfar_set_mac_address(struct net_device *dev)
2526 {
2527 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2528
2529 return 0;
2530 }
2531
2532 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2533 {
2534 struct gfar_private *priv = netdev_priv(dev);
2535 int frame_size = new_mtu + ETH_HLEN;
2536
2537 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2538 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2539 return -EINVAL;
2540 }
2541
2542 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2543 cpu_relax();
2544
2545 if (dev->flags & IFF_UP)
2546 stop_gfar(dev);
2547
2548 dev->mtu = new_mtu;
2549
2550 if (dev->flags & IFF_UP)
2551 startup_gfar(dev);
2552
2553 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2554
2555 return 0;
2556 }
2557
2558 void reset_gfar(struct net_device *ndev)
2559 {
2560 struct gfar_private *priv = netdev_priv(ndev);
2561
2562 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2563 cpu_relax();
2564
2565 stop_gfar(ndev);
2566 startup_gfar(ndev);
2567
2568 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2569 }
2570
2571 /* gfar_reset_task gets scheduled when a packet has not been
2572 * transmitted after a set amount of time.
2573 * For now, assume that clearing out all the structures, and
2574 * starting over will fix the problem.
2575 */
2576 static void gfar_reset_task(struct work_struct *work)
2577 {
2578 struct gfar_private *priv = container_of(work, struct gfar_private,
2579 reset_task);
2580 reset_gfar(priv->ndev);
2581 }
2582
2583 static void gfar_timeout(struct net_device *dev)
2584 {
2585 struct gfar_private *priv = netdev_priv(dev);
2586
2587 dev->stats.tx_errors++;
2588 schedule_work(&priv->reset_task);
2589 }
2590
2591 static void gfar_align_skb(struct sk_buff *skb)
2592 {
2593 /* We need the data buffer to be aligned properly. We will reserve
2594 * as many bytes as needed to align the data properly
2595 */
2596 skb_reserve(skb, RXBUF_ALIGNMENT -
2597 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2598 }
2599
2600 /* Interrupt Handler for Transmit complete */
2601 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2602 {
2603 struct net_device *dev = tx_queue->dev;
2604 struct netdev_queue *txq;
2605 struct gfar_private *priv = netdev_priv(dev);
2606 struct txbd8 *bdp, *next = NULL;
2607 struct txbd8 *lbdp = NULL;
2608 struct txbd8 *base = tx_queue->tx_bd_base;
2609 struct sk_buff *skb;
2610 int skb_dirtytx;
2611 int tx_ring_size = tx_queue->tx_ring_size;
2612 int frags = 0, nr_txbds = 0;
2613 int i;
2614 int howmany = 0;
2615 int tqi = tx_queue->qindex;
2616 unsigned int bytes_sent = 0;
2617 u32 lstatus;
2618 size_t buflen;
2619
2620 txq = netdev_get_tx_queue(dev, tqi);
2621 bdp = tx_queue->dirty_tx;
2622 skb_dirtytx = tx_queue->skb_dirtytx;
2623
2624 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2625 unsigned long flags;
2626
2627 frags = skb_shinfo(skb)->nr_frags;
2628
2629 /* When time stamping, one additional TxBD must be freed.
2630 * Also, we need to dma_unmap_single() the TxPAL.
2631 */
2632 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2633 nr_txbds = frags + 2;
2634 else
2635 nr_txbds = frags + 1;
2636
2637 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2638
2639 lstatus = be32_to_cpu(lbdp->lstatus);
2640
2641 /* Only clean completed frames */
2642 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2643 (lstatus & BD_LENGTH_MASK))
2644 break;
2645
2646 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2647 next = next_txbd(bdp, base, tx_ring_size);
2648 buflen = be16_to_cpu(next->length) +
2649 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2650 } else
2651 buflen = be16_to_cpu(bdp->length);
2652
2653 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2654 buflen, DMA_TO_DEVICE);
2655
2656 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2657 struct skb_shared_hwtstamps shhwtstamps;
2658 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2659
2660 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2661 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2662 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2663 skb_tstamp_tx(skb, &shhwtstamps);
2664 gfar_clear_txbd_status(bdp);
2665 bdp = next;
2666 }
2667
2668 gfar_clear_txbd_status(bdp);
2669 bdp = next_txbd(bdp, base, tx_ring_size);
2670
2671 for (i = 0; i < frags; i++) {
2672 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2673 be16_to_cpu(bdp->length),
2674 DMA_TO_DEVICE);
2675 gfar_clear_txbd_status(bdp);
2676 bdp = next_txbd(bdp, base, tx_ring_size);
2677 }
2678
2679 bytes_sent += GFAR_CB(skb)->bytes_sent;
2680
2681 dev_kfree_skb_any(skb);
2682
2683 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2684
2685 skb_dirtytx = (skb_dirtytx + 1) &
2686 TX_RING_MOD_MASK(tx_ring_size);
2687
2688 howmany++;
2689 spin_lock_irqsave(&tx_queue->txlock, flags);
2690 tx_queue->num_txbdfree += nr_txbds;
2691 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2692 }
2693
2694 /* If we freed a buffer, we can restart transmission, if necessary */
2695 if (tx_queue->num_txbdfree &&
2696 netif_tx_queue_stopped(txq) &&
2697 !(test_bit(GFAR_DOWN, &priv->state)))
2698 netif_wake_subqueue(priv->ndev, tqi);
2699
2700 /* Update dirty indicators */
2701 tx_queue->skb_dirtytx = skb_dirtytx;
2702 tx_queue->dirty_tx = bdp;
2703
2704 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2705 }
2706
2707 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2708 {
2709 struct gfar_private *priv = netdev_priv(dev);
2710 struct sk_buff *skb;
2711
2712 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2713 if (!skb)
2714 return NULL;
2715
2716 gfar_align_skb(skb);
2717
2718 return skb;
2719 }
2720
2721 static struct sk_buff *gfar_new_skb(struct net_device *dev, dma_addr_t *bufaddr)
2722 {
2723 struct gfar_private *priv = netdev_priv(dev);
2724 struct sk_buff *skb;
2725 dma_addr_t addr;
2726
2727 skb = gfar_alloc_skb(dev);
2728 if (!skb)
2729 return NULL;
2730
2731 addr = dma_map_single(priv->dev, skb->data,
2732 priv->rx_buffer_size, DMA_FROM_DEVICE);
2733 if (unlikely(dma_mapping_error(priv->dev, addr))) {
2734 dev_kfree_skb_any(skb);
2735 return NULL;
2736 }
2737
2738 *bufaddr = addr;
2739 return skb;
2740 }
2741
2742 static inline void count_errors(unsigned short status, struct net_device *dev)
2743 {
2744 struct gfar_private *priv = netdev_priv(dev);
2745 struct net_device_stats *stats = &dev->stats;
2746 struct gfar_extra_stats *estats = &priv->extra_stats;
2747
2748 /* If the packet was truncated, none of the other errors matter */
2749 if (status & RXBD_TRUNCATED) {
2750 stats->rx_length_errors++;
2751
2752 atomic64_inc(&estats->rx_trunc);
2753
2754 return;
2755 }
2756 /* Count the errors, if there were any */
2757 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2758 stats->rx_length_errors++;
2759
2760 if (status & RXBD_LARGE)
2761 atomic64_inc(&estats->rx_large);
2762 else
2763 atomic64_inc(&estats->rx_short);
2764 }
2765 if (status & RXBD_NONOCTET) {
2766 stats->rx_frame_errors++;
2767 atomic64_inc(&estats->rx_nonoctet);
2768 }
2769 if (status & RXBD_CRCERR) {
2770 atomic64_inc(&estats->rx_crcerr);
2771 stats->rx_crc_errors++;
2772 }
2773 if (status & RXBD_OVERRUN) {
2774 atomic64_inc(&estats->rx_overrun);
2775 stats->rx_crc_errors++;
2776 }
2777 }
2778
2779 irqreturn_t gfar_receive(int irq, void *grp_id)
2780 {
2781 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2782 unsigned long flags;
2783 u32 imask;
2784
2785 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2786 spin_lock_irqsave(&grp->grplock, flags);
2787 imask = gfar_read(&grp->regs->imask);
2788 imask &= IMASK_RX_DISABLED;
2789 gfar_write(&grp->regs->imask, imask);
2790 spin_unlock_irqrestore(&grp->grplock, flags);
2791 __napi_schedule(&grp->napi_rx);
2792 } else {
2793 /* Clear IEVENT, so interrupts aren't called again
2794 * because of the packets that have already arrived.
2795 */
2796 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2797 }
2798
2799 return IRQ_HANDLED;
2800 }
2801
2802 /* Interrupt Handler for Transmit complete */
2803 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2804 {
2805 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2806 unsigned long flags;
2807 u32 imask;
2808
2809 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2810 spin_lock_irqsave(&grp->grplock, flags);
2811 imask = gfar_read(&grp->regs->imask);
2812 imask &= IMASK_TX_DISABLED;
2813 gfar_write(&grp->regs->imask, imask);
2814 spin_unlock_irqrestore(&grp->grplock, flags);
2815 __napi_schedule(&grp->napi_tx);
2816 } else {
2817 /* Clear IEVENT, so interrupts aren't called again
2818 * because of the packets that have already arrived.
2819 */
2820 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2821 }
2822
2823 return IRQ_HANDLED;
2824 }
2825
2826 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2827 {
2828 /* If valid headers were found, and valid sums
2829 * were verified, then we tell the kernel that no
2830 * checksumming is necessary. Otherwise, it is [FIXME]
2831 */
2832 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2833 (RXFCB_CIP | RXFCB_CTU))
2834 skb->ip_summed = CHECKSUM_UNNECESSARY;
2835 else
2836 skb_checksum_none_assert(skb);
2837 }
2838
2839 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2840 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2841 int amount_pull, struct napi_struct *napi)
2842 {
2843 struct gfar_private *priv = netdev_priv(dev);
2844 struct rxfcb *fcb = NULL;
2845
2846 /* fcb is at the beginning if exists */
2847 fcb = (struct rxfcb *)skb->data;
2848
2849 /* Remove the FCB from the skb
2850 * Remove the padded bytes, if there are any
2851 */
2852 if (amount_pull) {
2853 skb_record_rx_queue(skb, fcb->rq);
2854 skb_pull(skb, amount_pull);
2855 }
2856
2857 /* Get receive timestamp from the skb */
2858 if (priv->hwts_rx_en) {
2859 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2860 u64 *ns = (u64 *) skb->data;
2861
2862 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2863 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2864 }
2865
2866 if (priv->padding)
2867 skb_pull(skb, priv->padding);
2868
2869 if (dev->features & NETIF_F_RXCSUM)
2870 gfar_rx_checksum(skb, fcb);
2871
2872 /* Tell the skb what kind of packet this is */
2873 skb->protocol = eth_type_trans(skb, dev);
2874
2875 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2876 * Even if vlan rx accel is disabled, on some chips
2877 * RXFCB_VLN is pseudo randomly set.
2878 */
2879 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2880 be16_to_cpu(fcb->flags) & RXFCB_VLN)
2881 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2882 be16_to_cpu(fcb->vlctl));
2883
2884 /* Send the packet up the stack */
2885 napi_gro_receive(napi, skb);
2886
2887 }
2888
2889 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2890 * until the budget/quota has been reached. Returns the number
2891 * of frames handled
2892 */
2893 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2894 {
2895 struct net_device *dev = rx_queue->dev;
2896 struct rxbd8 *bdp, *base;
2897 struct sk_buff *skb;
2898 int pkt_len;
2899 int amount_pull;
2900 int howmany = 0;
2901 struct gfar_private *priv = netdev_priv(dev);
2902
2903 /* Get the first full descriptor */
2904 bdp = rx_queue->cur_rx;
2905 base = rx_queue->rx_bd_base;
2906
2907 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2908
2909 while (!(be16_to_cpu(bdp->status) & RXBD_EMPTY) && rx_work_limit--) {
2910 struct sk_buff *newskb;
2911 dma_addr_t bufaddr;
2912
2913 rmb();
2914
2915 /* Add another skb for the future */
2916 newskb = gfar_new_skb(dev, &bufaddr);
2917
2918 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2919
2920 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2921 priv->rx_buffer_size, DMA_FROM_DEVICE);
2922
2923 if (unlikely(!(be16_to_cpu(bdp->status) & RXBD_ERR) &&
2924 be16_to_cpu(bdp->length) > priv->rx_buffer_size))
2925 bdp->status = cpu_to_be16(RXBD_LARGE);
2926
2927 /* We drop the frame if we failed to allocate a new buffer */
2928 if (unlikely(!newskb ||
2929 !(be16_to_cpu(bdp->status) & RXBD_LAST) ||
2930 be16_to_cpu(bdp->status) & RXBD_ERR)) {
2931 count_errors(be16_to_cpu(bdp->status), dev);
2932
2933 if (unlikely(!newskb)) {
2934 newskb = skb;
2935 bufaddr = be32_to_cpu(bdp->bufPtr);
2936 } else if (skb)
2937 dev_kfree_skb(skb);
2938 } else {
2939 /* Increment the number of packets */
2940 rx_queue->stats.rx_packets++;
2941 howmany++;
2942
2943 if (likely(skb)) {
2944 pkt_len = be16_to_cpu(bdp->length) -
2945 ETH_FCS_LEN;
2946 /* Remove the FCS from the packet length */
2947 skb_put(skb, pkt_len);
2948 rx_queue->stats.rx_bytes += pkt_len;
2949 skb_record_rx_queue(skb, rx_queue->qindex);
2950 gfar_process_frame(dev, skb, amount_pull,
2951 &rx_queue->grp->napi_rx);
2952
2953 } else {
2954 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2955 rx_queue->stats.rx_dropped++;
2956 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2957 }
2958
2959 }
2960
2961 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2962
2963 /* Setup the new bdp */
2964 gfar_init_rxbdp(rx_queue, bdp, bufaddr);
2965
2966 /* Update Last Free RxBD pointer for LFC */
2967 if (unlikely(rx_queue->rfbptr && priv->tx_actual_en))
2968 gfar_write(rx_queue->rfbptr, (u32)bdp);
2969
2970 /* Update to the next pointer */
2971 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2972
2973 /* update to point at the next skb */
2974 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2975 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2976 }
2977
2978 /* Update the current rxbd pointer to be the next one */
2979 rx_queue->cur_rx = bdp;
2980
2981 return howmany;
2982 }
2983
2984 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2985 {
2986 struct gfar_priv_grp *gfargrp =
2987 container_of(napi, struct gfar_priv_grp, napi_rx);
2988 struct gfar __iomem *regs = gfargrp->regs;
2989 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2990 int work_done = 0;
2991
2992 /* Clear IEVENT, so interrupts aren't called again
2993 * because of the packets that have already arrived
2994 */
2995 gfar_write(&regs->ievent, IEVENT_RX_MASK);
2996
2997 work_done = gfar_clean_rx_ring(rx_queue, budget);
2998
2999 if (work_done < budget) {
3000 u32 imask;
3001 napi_complete(napi);
3002 /* Clear the halt bit in RSTAT */
3003 gfar_write(&regs->rstat, gfargrp->rstat);
3004
3005 spin_lock_irq(&gfargrp->grplock);
3006 imask = gfar_read(&regs->imask);
3007 imask |= IMASK_RX_DEFAULT;
3008 gfar_write(&regs->imask, imask);
3009 spin_unlock_irq(&gfargrp->grplock);
3010 }
3011
3012 return work_done;
3013 }
3014
3015 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3016 {
3017 struct gfar_priv_grp *gfargrp =
3018 container_of(napi, struct gfar_priv_grp, napi_tx);
3019 struct gfar __iomem *regs = gfargrp->regs;
3020 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3021 u32 imask;
3022
3023 /* Clear IEVENT, so interrupts aren't called again
3024 * because of the packets that have already arrived
3025 */
3026 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3027
3028 /* run Tx cleanup to completion */
3029 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3030 gfar_clean_tx_ring(tx_queue);
3031
3032 napi_complete(napi);
3033
3034 spin_lock_irq(&gfargrp->grplock);
3035 imask = gfar_read(&regs->imask);
3036 imask |= IMASK_TX_DEFAULT;
3037 gfar_write(&regs->imask, imask);
3038 spin_unlock_irq(&gfargrp->grplock);
3039
3040 return 0;
3041 }
3042
3043 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3044 {
3045 struct gfar_priv_grp *gfargrp =
3046 container_of(napi, struct gfar_priv_grp, napi_rx);
3047 struct gfar_private *priv = gfargrp->priv;
3048 struct gfar __iomem *regs = gfargrp->regs;
3049 struct gfar_priv_rx_q *rx_queue = NULL;
3050 int work_done = 0, work_done_per_q = 0;
3051 int i, budget_per_q = 0;
3052 unsigned long rstat_rxf;
3053 int num_act_queues;
3054
3055 /* Clear IEVENT, so interrupts aren't called again
3056 * because of the packets that have already arrived
3057 */
3058 gfar_write(&regs->ievent, IEVENT_RX_MASK);
3059
3060 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3061
3062 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3063 if (num_act_queues)
3064 budget_per_q = budget/num_act_queues;
3065
3066 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3067 /* skip queue if not active */
3068 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3069 continue;
3070
3071 rx_queue = priv->rx_queue[i];
3072 work_done_per_q =
3073 gfar_clean_rx_ring(rx_queue, budget_per_q);
3074 work_done += work_done_per_q;
3075
3076 /* finished processing this queue */
3077 if (work_done_per_q < budget_per_q) {
3078 /* clear active queue hw indication */
3079 gfar_write(&regs->rstat,
3080 RSTAT_CLEAR_RXF0 >> i);
3081 num_act_queues--;
3082
3083 if (!num_act_queues)
3084 break;
3085 }
3086 }
3087
3088 if (!num_act_queues) {
3089 u32 imask;
3090 napi_complete(napi);
3091
3092 /* Clear the halt bit in RSTAT */
3093 gfar_write(&regs->rstat, gfargrp->rstat);
3094
3095 spin_lock_irq(&gfargrp->grplock);
3096 imask = gfar_read(&regs->imask);
3097 imask |= IMASK_RX_DEFAULT;
3098 gfar_write(&regs->imask, imask);
3099 spin_unlock_irq(&gfargrp->grplock);
3100 }
3101
3102 return work_done;
3103 }
3104
3105 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3106 {
3107 struct gfar_priv_grp *gfargrp =
3108 container_of(napi, struct gfar_priv_grp, napi_tx);
3109 struct gfar_private *priv = gfargrp->priv;
3110 struct gfar __iomem *regs = gfargrp->regs;
3111 struct gfar_priv_tx_q *tx_queue = NULL;
3112 int has_tx_work = 0;
3113 int i;
3114
3115 /* Clear IEVENT, so interrupts aren't called again
3116 * because of the packets that have already arrived
3117 */
3118 gfar_write(&regs->ievent, IEVENT_TX_MASK);
3119
3120 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3121 tx_queue = priv->tx_queue[i];
3122 /* run Tx cleanup to completion */
3123 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3124 gfar_clean_tx_ring(tx_queue);
3125 has_tx_work = 1;
3126 }
3127 }
3128
3129 if (!has_tx_work) {
3130 u32 imask;
3131 napi_complete(napi);
3132
3133 spin_lock_irq(&gfargrp->grplock);
3134 imask = gfar_read(&regs->imask);
3135 imask |= IMASK_TX_DEFAULT;
3136 gfar_write(&regs->imask, imask);
3137 spin_unlock_irq(&gfargrp->grplock);
3138 }
3139
3140 return 0;
3141 }
3142
3143
3144 #ifdef CONFIG_NET_POLL_CONTROLLER
3145 /* Polling 'interrupt' - used by things like netconsole to send skbs
3146 * without having to re-enable interrupts. It's not called while
3147 * the interrupt routine is executing.
3148 */
3149 static void gfar_netpoll(struct net_device *dev)
3150 {
3151 struct gfar_private *priv = netdev_priv(dev);
3152 int i;
3153
3154 /* If the device has multiple interrupts, run tx/rx */
3155 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3156 for (i = 0; i < priv->num_grps; i++) {
3157 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3158
3159 disable_irq(gfar_irq(grp, TX)->irq);
3160 disable_irq(gfar_irq(grp, RX)->irq);
3161 disable_irq(gfar_irq(grp, ER)->irq);
3162 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3163 enable_irq(gfar_irq(grp, ER)->irq);
3164 enable_irq(gfar_irq(grp, RX)->irq);
3165 enable_irq(gfar_irq(grp, TX)->irq);
3166 }
3167 } else {
3168 for (i = 0; i < priv->num_grps; i++) {
3169 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3170
3171 disable_irq(gfar_irq(grp, TX)->irq);
3172 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3173 enable_irq(gfar_irq(grp, TX)->irq);
3174 }
3175 }
3176 }
3177 #endif
3178
3179 /* The interrupt handler for devices with one interrupt */
3180 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3181 {
3182 struct gfar_priv_grp *gfargrp = grp_id;
3183
3184 /* Save ievent for future reference */
3185 u32 events = gfar_read(&gfargrp->regs->ievent);
3186
3187 /* Check for reception */
3188 if (events & IEVENT_RX_MASK)
3189 gfar_receive(irq, grp_id);
3190
3191 /* Check for transmit completion */
3192 if (events & IEVENT_TX_MASK)
3193 gfar_transmit(irq, grp_id);
3194
3195 /* Check for errors */
3196 if (events & IEVENT_ERR_MASK)
3197 gfar_error(irq, grp_id);
3198
3199 return IRQ_HANDLED;
3200 }
3201
3202 /* Called every time the controller might need to be made
3203 * aware of new link state. The PHY code conveys this
3204 * information through variables in the phydev structure, and this
3205 * function converts those variables into the appropriate
3206 * register values, and can bring down the device if needed.
3207 */
3208 static void adjust_link(struct net_device *dev)
3209 {
3210 struct gfar_private *priv = netdev_priv(dev);
3211 struct phy_device *phydev = priv->phydev;
3212
3213 if (unlikely(phydev->link != priv->oldlink ||
3214 (phydev->link && (phydev->duplex != priv->oldduplex ||
3215 phydev->speed != priv->oldspeed))))
3216 gfar_update_link_state(priv);
3217 }
3218
3219 /* Update the hash table based on the current list of multicast
3220 * addresses we subscribe to. Also, change the promiscuity of
3221 * the device based on the flags (this function is called
3222 * whenever dev->flags is changed
3223 */
3224 static void gfar_set_multi(struct net_device *dev)
3225 {
3226 struct netdev_hw_addr *ha;
3227 struct gfar_private *priv = netdev_priv(dev);
3228 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3229 u32 tempval;
3230
3231 if (dev->flags & IFF_PROMISC) {
3232 /* Set RCTRL to PROM */
3233 tempval = gfar_read(&regs->rctrl);
3234 tempval |= RCTRL_PROM;
3235 gfar_write(&regs->rctrl, tempval);
3236 } else {
3237 /* Set RCTRL to not PROM */
3238 tempval = gfar_read(&regs->rctrl);
3239 tempval &= ~(RCTRL_PROM);
3240 gfar_write(&regs->rctrl, tempval);
3241 }
3242
3243 if (dev->flags & IFF_ALLMULTI) {
3244 /* Set the hash to rx all multicast frames */
3245 gfar_write(&regs->igaddr0, 0xffffffff);
3246 gfar_write(&regs->igaddr1, 0xffffffff);
3247 gfar_write(&regs->igaddr2, 0xffffffff);
3248 gfar_write(&regs->igaddr3, 0xffffffff);
3249 gfar_write(&regs->igaddr4, 0xffffffff);
3250 gfar_write(&regs->igaddr5, 0xffffffff);
3251 gfar_write(&regs->igaddr6, 0xffffffff);
3252 gfar_write(&regs->igaddr7, 0xffffffff);
3253 gfar_write(&regs->gaddr0, 0xffffffff);
3254 gfar_write(&regs->gaddr1, 0xffffffff);
3255 gfar_write(&regs->gaddr2, 0xffffffff);
3256 gfar_write(&regs->gaddr3, 0xffffffff);
3257 gfar_write(&regs->gaddr4, 0xffffffff);
3258 gfar_write(&regs->gaddr5, 0xffffffff);
3259 gfar_write(&regs->gaddr6, 0xffffffff);
3260 gfar_write(&regs->gaddr7, 0xffffffff);
3261 } else {
3262 int em_num;
3263 int idx;
3264
3265 /* zero out the hash */
3266 gfar_write(&regs->igaddr0, 0x0);
3267 gfar_write(&regs->igaddr1, 0x0);
3268 gfar_write(&regs->igaddr2, 0x0);
3269 gfar_write(&regs->igaddr3, 0x0);
3270 gfar_write(&regs->igaddr4, 0x0);
3271 gfar_write(&regs->igaddr5, 0x0);
3272 gfar_write(&regs->igaddr6, 0x0);
3273 gfar_write(&regs->igaddr7, 0x0);
3274 gfar_write(&regs->gaddr0, 0x0);
3275 gfar_write(&regs->gaddr1, 0x0);
3276 gfar_write(&regs->gaddr2, 0x0);
3277 gfar_write(&regs->gaddr3, 0x0);
3278 gfar_write(&regs->gaddr4, 0x0);
3279 gfar_write(&regs->gaddr5, 0x0);
3280 gfar_write(&regs->gaddr6, 0x0);
3281 gfar_write(&regs->gaddr7, 0x0);
3282
3283 /* If we have extended hash tables, we need to
3284 * clear the exact match registers to prepare for
3285 * setting them
3286 */
3287 if (priv->extended_hash) {
3288 em_num = GFAR_EM_NUM + 1;
3289 gfar_clear_exact_match(dev);
3290 idx = 1;
3291 } else {
3292 idx = 0;
3293 em_num = 0;
3294 }
3295
3296 if (netdev_mc_empty(dev))
3297 return;
3298
3299 /* Parse the list, and set the appropriate bits */
3300 netdev_for_each_mc_addr(ha, dev) {
3301 if (idx < em_num) {
3302 gfar_set_mac_for_addr(dev, idx, ha->addr);
3303 idx++;
3304 } else
3305 gfar_set_hash_for_addr(dev, ha->addr);
3306 }
3307 }
3308 }
3309
3310
3311 /* Clears each of the exact match registers to zero, so they
3312 * don't interfere with normal reception
3313 */
3314 static void gfar_clear_exact_match(struct net_device *dev)
3315 {
3316 int idx;
3317 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3318
3319 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3320 gfar_set_mac_for_addr(dev, idx, zero_arr);
3321 }
3322
3323 /* Set the appropriate hash bit for the given addr */
3324 /* The algorithm works like so:
3325 * 1) Take the Destination Address (ie the multicast address), and
3326 * do a CRC on it (little endian), and reverse the bits of the
3327 * result.
3328 * 2) Use the 8 most significant bits as a hash into a 256-entry
3329 * table. The table is controlled through 8 32-bit registers:
3330 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3331 * gaddr7. This means that the 3 most significant bits in the
3332 * hash index which gaddr register to use, and the 5 other bits
3333 * indicate which bit (assuming an IBM numbering scheme, which
3334 * for PowerPC (tm) is usually the case) in the register holds
3335 * the entry.
3336 */
3337 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3338 {
3339 u32 tempval;
3340 struct gfar_private *priv = netdev_priv(dev);
3341 u32 result = ether_crc(ETH_ALEN, addr);
3342 int width = priv->hash_width;
3343 u8 whichbit = (result >> (32 - width)) & 0x1f;
3344 u8 whichreg = result >> (32 - width + 5);
3345 u32 value = (1 << (31-whichbit));
3346
3347 tempval = gfar_read(priv->hash_regs[whichreg]);
3348 tempval |= value;
3349 gfar_write(priv->hash_regs[whichreg], tempval);
3350 }
3351
3352
3353 /* There are multiple MAC Address register pairs on some controllers
3354 * This function sets the numth pair to a given address
3355 */
3356 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3357 const u8 *addr)
3358 {
3359 struct gfar_private *priv = netdev_priv(dev);
3360 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3361 u32 tempval;
3362 u32 __iomem *macptr = &regs->macstnaddr1;
3363
3364 macptr += num*2;
3365
3366 /* For a station address of 0x12345678ABCD in transmission
3367 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3368 * MACnADDR2 is set to 0x34120000.
3369 */
3370 tempval = (addr[5] << 24) | (addr[4] << 16) |
3371 (addr[3] << 8) | addr[2];
3372
3373 gfar_write(macptr, tempval);
3374
3375 tempval = (addr[1] << 24) | (addr[0] << 16);
3376
3377 gfar_write(macptr+1, tempval);
3378 }
3379
3380 /* GFAR error interrupt handler */
3381 static irqreturn_t gfar_error(int irq, void *grp_id)
3382 {
3383 struct gfar_priv_grp *gfargrp = grp_id;
3384 struct gfar __iomem *regs = gfargrp->regs;
3385 struct gfar_private *priv= gfargrp->priv;
3386 struct net_device *dev = priv->ndev;
3387
3388 /* Save ievent for future reference */
3389 u32 events = gfar_read(&regs->ievent);
3390
3391 /* Clear IEVENT */
3392 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3393
3394 /* Magic Packet is not an error. */
3395 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3396 (events & IEVENT_MAG))
3397 events &= ~IEVENT_MAG;
3398
3399 /* Hmm... */
3400 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3401 netdev_dbg(dev,
3402 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3403 events, gfar_read(&regs->imask));
3404
3405 /* Update the error counters */
3406 if (events & IEVENT_TXE) {
3407 dev->stats.tx_errors++;
3408
3409 if (events & IEVENT_LC)
3410 dev->stats.tx_window_errors++;
3411 if (events & IEVENT_CRL)
3412 dev->stats.tx_aborted_errors++;
3413 if (events & IEVENT_XFUN) {
3414 unsigned long flags;
3415
3416 netif_dbg(priv, tx_err, dev,
3417 "TX FIFO underrun, packet dropped\n");
3418 dev->stats.tx_dropped++;
3419 atomic64_inc(&priv->extra_stats.tx_underrun);
3420
3421 local_irq_save(flags);
3422 lock_tx_qs(priv);
3423
3424 /* Reactivate the Tx Queues */
3425 gfar_write(&regs->tstat, gfargrp->tstat);
3426
3427 unlock_tx_qs(priv);
3428 local_irq_restore(flags);
3429 }
3430 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3431 }
3432 if (events & IEVENT_BSY) {
3433 dev->stats.rx_errors++;
3434 atomic64_inc(&priv->extra_stats.rx_bsy);
3435
3436 gfar_receive(irq, grp_id);
3437
3438 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3439 gfar_read(&regs->rstat));
3440 }
3441 if (events & IEVENT_BABR) {
3442 dev->stats.rx_errors++;
3443 atomic64_inc(&priv->extra_stats.rx_babr);
3444
3445 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3446 }
3447 if (events & IEVENT_EBERR) {
3448 atomic64_inc(&priv->extra_stats.eberr);
3449 netif_dbg(priv, rx_err, dev, "bus error\n");
3450 }
3451 if (events & IEVENT_RXC)
3452 netif_dbg(priv, rx_status, dev, "control frame\n");
3453
3454 if (events & IEVENT_BABT) {
3455 atomic64_inc(&priv->extra_stats.tx_babt);
3456 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3457 }
3458 return IRQ_HANDLED;
3459 }
3460
3461 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3462 {
3463 struct phy_device *phydev = priv->phydev;
3464 u32 val = 0;
3465
3466 if (!phydev->duplex)
3467 return val;
3468
3469 if (!priv->pause_aneg_en) {
3470 if (priv->tx_pause_en)
3471 val |= MACCFG1_TX_FLOW;
3472 if (priv->rx_pause_en)
3473 val |= MACCFG1_RX_FLOW;
3474 } else {
3475 u16 lcl_adv, rmt_adv;
3476 u8 flowctrl;
3477 /* get link partner capabilities */
3478 rmt_adv = 0;
3479 if (phydev->pause)
3480 rmt_adv = LPA_PAUSE_CAP;
3481 if (phydev->asym_pause)
3482 rmt_adv |= LPA_PAUSE_ASYM;
3483
3484 lcl_adv = 0;
3485 if (phydev->advertising & ADVERTISED_Pause)
3486 lcl_adv |= ADVERTISE_PAUSE_CAP;
3487 if (phydev->advertising & ADVERTISED_Asym_Pause)
3488 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3489
3490 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3491 if (flowctrl & FLOW_CTRL_TX)
3492 val |= MACCFG1_TX_FLOW;
3493 if (flowctrl & FLOW_CTRL_RX)
3494 val |= MACCFG1_RX_FLOW;
3495 }
3496
3497 return val;
3498 }
3499
3500 static noinline void gfar_update_link_state(struct gfar_private *priv)
3501 {
3502 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3503 struct phy_device *phydev = priv->phydev;
3504 struct gfar_priv_rx_q *rx_queue = NULL;
3505 int i;
3506 struct rxbd8 *bdp;
3507
3508 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3509 return;
3510
3511 if (phydev->link) {
3512 u32 tempval1 = gfar_read(&regs->maccfg1);
3513 u32 tempval = gfar_read(&regs->maccfg2);
3514 u32 ecntrl = gfar_read(&regs->ecntrl);
3515 u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3516
3517 if (phydev->duplex != priv->oldduplex) {
3518 if (!(phydev->duplex))
3519 tempval &= ~(MACCFG2_FULL_DUPLEX);
3520 else
3521 tempval |= MACCFG2_FULL_DUPLEX;
3522
3523 priv->oldduplex = phydev->duplex;
3524 }
3525
3526 if (phydev->speed != priv->oldspeed) {
3527 switch (phydev->speed) {
3528 case 1000:
3529 tempval =
3530 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3531
3532 ecntrl &= ~(ECNTRL_R100);
3533 break;
3534 case 100:
3535 case 10:
3536 tempval =
3537 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3538
3539 /* Reduced mode distinguishes
3540 * between 10 and 100
3541 */
3542 if (phydev->speed == SPEED_100)
3543 ecntrl |= ECNTRL_R100;
3544 else
3545 ecntrl &= ~(ECNTRL_R100);
3546 break;
3547 default:
3548 netif_warn(priv, link, priv->ndev,
3549 "Ack! Speed (%d) is not 10/100/1000!\n",
3550 phydev->speed);
3551 break;
3552 }
3553
3554 priv->oldspeed = phydev->speed;
3555 }
3556
3557 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3558 tempval1 |= gfar_get_flowctrl_cfg(priv);
3559
3560 /* Turn last free buffer recording on */
3561 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3562 for (i = 0; i < priv->num_rx_queues; i++) {
3563 rx_queue = priv->rx_queue[i];
3564 bdp = rx_queue->cur_rx;
3565 /* skip to previous bd */
3566 bdp = skip_bd(bdp, rx_queue->rx_ring_size - 1,
3567 rx_queue->rx_bd_base,
3568 rx_queue->rx_ring_size);
3569
3570 if (rx_queue->rfbptr)
3571 gfar_write(rx_queue->rfbptr, (u32)bdp);
3572 }
3573
3574 priv->tx_actual_en = 1;
3575 }
3576
3577 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3578 priv->tx_actual_en = 0;
3579
3580 gfar_write(&regs->maccfg1, tempval1);
3581 gfar_write(&regs->maccfg2, tempval);
3582 gfar_write(&regs->ecntrl, ecntrl);
3583
3584 if (!priv->oldlink)
3585 priv->oldlink = 1;
3586
3587 } else if (priv->oldlink) {
3588 priv->oldlink = 0;
3589 priv->oldspeed = 0;
3590 priv->oldduplex = -1;
3591 }
3592
3593 if (netif_msg_link(priv))
3594 phy_print_status(phydev);
3595 }
3596
3597 static const struct of_device_id gfar_match[] =
3598 {
3599 {
3600 .type = "network",
3601 .compatible = "gianfar",
3602 },
3603 {
3604 .compatible = "fsl,etsec2",
3605 },
3606 {},
3607 };
3608 MODULE_DEVICE_TABLE(of, gfar_match);
3609
3610 /* Structure for a device driver */
3611 static struct platform_driver gfar_driver = {
3612 .driver = {
3613 .name = "fsl-gianfar",
3614 .pm = GFAR_PM_OPS,
3615 .of_match_table = gfar_match,
3616 },
3617 .probe = gfar_probe,
3618 .remove = gfar_remove,
3619 };
3620
3621 module_platform_driver(gfar_driver);
This page took 0.111322 seconds and 5 git commands to generate.