gianfar: Add flow control support
[deliverable/linux.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115 struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 static int gfar_poll_sq(struct napi_struct *napi, int budget);
132 #ifdef CONFIG_NET_POLL_CONTROLLER
133 static void gfar_netpoll(struct net_device *dev);
134 #endif
135 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
136 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
137 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
138 int amount_pull, struct napi_struct *napi);
139 void gfar_halt(struct net_device *dev);
140 static void gfar_halt_nodisable(struct net_device *dev);
141 void gfar_start(struct net_device *dev);
142 static void gfar_clear_exact_match(struct net_device *dev);
143 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
144 const u8 *addr);
145 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
146
147 MODULE_AUTHOR("Freescale Semiconductor, Inc");
148 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
149 MODULE_LICENSE("GPL");
150
151 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
152 dma_addr_t buf)
153 {
154 u32 lstatus;
155
156 bdp->bufPtr = buf;
157
158 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
159 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
160 lstatus |= BD_LFLAG(RXBD_WRAP);
161
162 eieio();
163
164 bdp->lstatus = lstatus;
165 }
166
167 static int gfar_init_bds(struct net_device *ndev)
168 {
169 struct gfar_private *priv = netdev_priv(ndev);
170 struct gfar_priv_tx_q *tx_queue = NULL;
171 struct gfar_priv_rx_q *rx_queue = NULL;
172 struct txbd8 *txbdp;
173 struct rxbd8 *rxbdp;
174 int i, j;
175
176 for (i = 0; i < priv->num_tx_queues; i++) {
177 tx_queue = priv->tx_queue[i];
178 /* Initialize some variables in our dev structure */
179 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
180 tx_queue->dirty_tx = tx_queue->tx_bd_base;
181 tx_queue->cur_tx = tx_queue->tx_bd_base;
182 tx_queue->skb_curtx = 0;
183 tx_queue->skb_dirtytx = 0;
184
185 /* Initialize Transmit Descriptor Ring */
186 txbdp = tx_queue->tx_bd_base;
187 for (j = 0; j < tx_queue->tx_ring_size; j++) {
188 txbdp->lstatus = 0;
189 txbdp->bufPtr = 0;
190 txbdp++;
191 }
192
193 /* Set the last descriptor in the ring to indicate wrap */
194 txbdp--;
195 txbdp->status |= TXBD_WRAP;
196 }
197
198 for (i = 0; i < priv->num_rx_queues; i++) {
199 rx_queue = priv->rx_queue[i];
200 rx_queue->cur_rx = rx_queue->rx_bd_base;
201 rx_queue->skb_currx = 0;
202 rxbdp = rx_queue->rx_bd_base;
203
204 for (j = 0; j < rx_queue->rx_ring_size; j++) {
205 struct sk_buff *skb = rx_queue->rx_skbuff[j];
206
207 if (skb) {
208 gfar_init_rxbdp(rx_queue, rxbdp,
209 rxbdp->bufPtr);
210 } else {
211 skb = gfar_new_skb(ndev);
212 if (!skb) {
213 netdev_err(ndev, "Can't allocate RX buffers\n");
214 return -ENOMEM;
215 }
216 rx_queue->rx_skbuff[j] = skb;
217
218 gfar_new_rxbdp(rx_queue, rxbdp, skb);
219 }
220
221 rxbdp++;
222 }
223
224 }
225
226 return 0;
227 }
228
229 static int gfar_alloc_skb_resources(struct net_device *ndev)
230 {
231 void *vaddr;
232 dma_addr_t addr;
233 int i, j, k;
234 struct gfar_private *priv = netdev_priv(ndev);
235 struct device *dev = priv->dev;
236 struct gfar_priv_tx_q *tx_queue = NULL;
237 struct gfar_priv_rx_q *rx_queue = NULL;
238
239 priv->total_tx_ring_size = 0;
240 for (i = 0; i < priv->num_tx_queues; i++)
241 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
242
243 priv->total_rx_ring_size = 0;
244 for (i = 0; i < priv->num_rx_queues; i++)
245 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
246
247 /* Allocate memory for the buffer descriptors */
248 vaddr = dma_alloc_coherent(dev,
249 (priv->total_tx_ring_size *
250 sizeof(struct txbd8)) +
251 (priv->total_rx_ring_size *
252 sizeof(struct rxbd8)),
253 &addr, GFP_KERNEL);
254 if (!vaddr)
255 return -ENOMEM;
256
257 for (i = 0; i < priv->num_tx_queues; i++) {
258 tx_queue = priv->tx_queue[i];
259 tx_queue->tx_bd_base = vaddr;
260 tx_queue->tx_bd_dma_base = addr;
261 tx_queue->dev = ndev;
262 /* enet DMA only understands physical addresses */
263 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265 }
266
267 /* Start the rx descriptor ring where the tx ring leaves off */
268 for (i = 0; i < priv->num_rx_queues; i++) {
269 rx_queue = priv->rx_queue[i];
270 rx_queue->rx_bd_base = vaddr;
271 rx_queue->rx_bd_dma_base = addr;
272 rx_queue->dev = ndev;
273 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275 }
276
277 /* Setup the skbuff rings */
278 for (i = 0; i < priv->num_tx_queues; i++) {
279 tx_queue = priv->tx_queue[i];
280 tx_queue->tx_skbuff =
281 kmalloc_array(tx_queue->tx_ring_size,
282 sizeof(*tx_queue->tx_skbuff),
283 GFP_KERNEL);
284 if (!tx_queue->tx_skbuff)
285 goto cleanup;
286
287 for (k = 0; k < tx_queue->tx_ring_size; k++)
288 tx_queue->tx_skbuff[k] = NULL;
289 }
290
291 for (i = 0; i < priv->num_rx_queues; i++) {
292 rx_queue = priv->rx_queue[i];
293 rx_queue->rx_skbuff =
294 kmalloc_array(rx_queue->rx_ring_size,
295 sizeof(*rx_queue->rx_skbuff),
296 GFP_KERNEL);
297 if (!rx_queue->rx_skbuff)
298 goto cleanup;
299
300 for (j = 0; j < rx_queue->rx_ring_size; j++)
301 rx_queue->rx_skbuff[j] = NULL;
302 }
303
304 if (gfar_init_bds(ndev))
305 goto cleanup;
306
307 return 0;
308
309 cleanup:
310 free_skb_resources(priv);
311 return -ENOMEM;
312 }
313
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316 struct gfar __iomem *regs = priv->gfargrp[0].regs;
317 u32 __iomem *baddr;
318 int i;
319
320 baddr = &regs->tbase0;
321 for (i = 0; i < priv->num_tx_queues; i++) {
322 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323 baddr += 2;
324 }
325
326 baddr = &regs->rbase0;
327 for (i = 0; i < priv->num_rx_queues; i++) {
328 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329 baddr += 2;
330 }
331 }
332
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335 struct gfar_private *priv = netdev_priv(ndev);
336 struct gfar __iomem *regs = priv->gfargrp[0].regs;
337 u32 rctrl = 0;
338 u32 tctrl = 0;
339 u32 attrs = 0;
340
341 /* write the tx/rx base registers */
342 gfar_init_tx_rx_base(priv);
343
344 /* Configure the coalescing support */
345 gfar_configure_coalescing_all(priv);
346
347 /* set this when rx hw offload (TOE) functions are being used */
348 priv->uses_rxfcb = 0;
349
350 if (priv->rx_filer_enable) {
351 rctrl |= RCTRL_FILREN;
352 /* Program the RIR0 reg with the required distribution */
353 gfar_write(&regs->rir0, DEFAULT_RIR0);
354 }
355
356 /* Restore PROMISC mode */
357 if (ndev->flags & IFF_PROMISC)
358 rctrl |= RCTRL_PROM;
359
360 if (ndev->features & NETIF_F_RXCSUM) {
361 rctrl |= RCTRL_CHECKSUMMING;
362 priv->uses_rxfcb = 1;
363 }
364
365 if (priv->extended_hash) {
366 rctrl |= RCTRL_EXTHASH;
367
368 gfar_clear_exact_match(ndev);
369 rctrl |= RCTRL_EMEN;
370 }
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Insert receive time stamps into padding alignment bytes */
378 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
379 rctrl &= ~RCTRL_PAL_MASK;
380 rctrl |= RCTRL_PADDING(8);
381 priv->padding = 8;
382 }
383
384 /* Enable HW time stamping if requested from user space */
385 if (priv->hwts_rx_en) {
386 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
387 priv->uses_rxfcb = 1;
388 }
389
390 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX) {
391 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
392 priv->uses_rxfcb = 1;
393 }
394
395 /* Init rctrl based on our settings */
396 gfar_write(&regs->rctrl, rctrl);
397
398 if (ndev->features & NETIF_F_IP_CSUM)
399 tctrl |= TCTRL_INIT_CSUM;
400
401 if (priv->prio_sched_en)
402 tctrl |= TCTRL_TXSCHED_PRIO;
403 else {
404 tctrl |= TCTRL_TXSCHED_WRRS;
405 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
406 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
407 }
408
409 gfar_write(&regs->tctrl, tctrl);
410
411 /* Set the extraction length and index */
412 attrs = ATTRELI_EL(priv->rx_stash_size) |
413 ATTRELI_EI(priv->rx_stash_index);
414
415 gfar_write(&regs->attreli, attrs);
416
417 /* Start with defaults, and add stashing or locking
418 * depending on the approprate variables
419 */
420 attrs = ATTR_INIT_SETTINGS;
421
422 if (priv->bd_stash_en)
423 attrs |= ATTR_BDSTASH;
424
425 if (priv->rx_stash_size != 0)
426 attrs |= ATTR_BUFSTASH;
427
428 gfar_write(&regs->attr, attrs);
429
430 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
431 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
432 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
433 }
434
435 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
436 {
437 struct gfar_private *priv = netdev_priv(dev);
438 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
439 unsigned long tx_packets = 0, tx_bytes = 0;
440 int i;
441
442 for (i = 0; i < priv->num_rx_queues; i++) {
443 rx_packets += priv->rx_queue[i]->stats.rx_packets;
444 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
445 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446 }
447
448 dev->stats.rx_packets = rx_packets;
449 dev->stats.rx_bytes = rx_bytes;
450 dev->stats.rx_dropped = rx_dropped;
451
452 for (i = 0; i < priv->num_tx_queues; i++) {
453 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
454 tx_packets += priv->tx_queue[i]->stats.tx_packets;
455 }
456
457 dev->stats.tx_bytes = tx_bytes;
458 dev->stats.tx_packets = tx_packets;
459
460 return &dev->stats;
461 }
462
463 static const struct net_device_ops gfar_netdev_ops = {
464 .ndo_open = gfar_enet_open,
465 .ndo_start_xmit = gfar_start_xmit,
466 .ndo_stop = gfar_close,
467 .ndo_change_mtu = gfar_change_mtu,
468 .ndo_set_features = gfar_set_features,
469 .ndo_set_rx_mode = gfar_set_multi,
470 .ndo_tx_timeout = gfar_timeout,
471 .ndo_do_ioctl = gfar_ioctl,
472 .ndo_get_stats = gfar_get_stats,
473 .ndo_set_mac_address = eth_mac_addr,
474 .ndo_validate_addr = eth_validate_addr,
475 #ifdef CONFIG_NET_POLL_CONTROLLER
476 .ndo_poll_controller = gfar_netpoll,
477 #endif
478 };
479
480 void lock_rx_qs(struct gfar_private *priv)
481 {
482 int i;
483
484 for (i = 0; i < priv->num_rx_queues; i++)
485 spin_lock(&priv->rx_queue[i]->rxlock);
486 }
487
488 void lock_tx_qs(struct gfar_private *priv)
489 {
490 int i;
491
492 for (i = 0; i < priv->num_tx_queues; i++)
493 spin_lock(&priv->tx_queue[i]->txlock);
494 }
495
496 void unlock_rx_qs(struct gfar_private *priv)
497 {
498 int i;
499
500 for (i = 0; i < priv->num_rx_queues; i++)
501 spin_unlock(&priv->rx_queue[i]->rxlock);
502 }
503
504 void unlock_tx_qs(struct gfar_private *priv)
505 {
506 int i;
507
508 for (i = 0; i < priv->num_tx_queues; i++)
509 spin_unlock(&priv->tx_queue[i]->txlock);
510 }
511
512 static void free_tx_pointers(struct gfar_private *priv)
513 {
514 int i;
515
516 for (i = 0; i < priv->num_tx_queues; i++)
517 kfree(priv->tx_queue[i]);
518 }
519
520 static void free_rx_pointers(struct gfar_private *priv)
521 {
522 int i;
523
524 for (i = 0; i < priv->num_rx_queues; i++)
525 kfree(priv->rx_queue[i]);
526 }
527
528 static void unmap_group_regs(struct gfar_private *priv)
529 {
530 int i;
531
532 for (i = 0; i < MAXGROUPS; i++)
533 if (priv->gfargrp[i].regs)
534 iounmap(priv->gfargrp[i].regs);
535 }
536
537 static void free_gfar_dev(struct gfar_private *priv)
538 {
539 int i, j;
540
541 for (i = 0; i < priv->num_grps; i++)
542 for (j = 0; j < GFAR_NUM_IRQS; j++) {
543 kfree(priv->gfargrp[i].irqinfo[j]);
544 priv->gfargrp[i].irqinfo[j] = NULL;
545 }
546
547 free_netdev(priv->ndev);
548 }
549
550 static void disable_napi(struct gfar_private *priv)
551 {
552 int i;
553
554 for (i = 0; i < priv->num_grps; i++)
555 napi_disable(&priv->gfargrp[i].napi);
556 }
557
558 static void enable_napi(struct gfar_private *priv)
559 {
560 int i;
561
562 for (i = 0; i < priv->num_grps; i++)
563 napi_enable(&priv->gfargrp[i].napi);
564 }
565
566 static int gfar_parse_group(struct device_node *np,
567 struct gfar_private *priv, const char *model)
568 {
569 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
570 u32 *queue_mask;
571 int i;
572
573 for (i = 0; i < GFAR_NUM_IRQS; i++) {
574 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
575 GFP_KERNEL);
576 if (!grp->irqinfo[i])
577 return -ENOMEM;
578 }
579
580 grp->regs = of_iomap(np, 0);
581 if (!grp->regs)
582 return -ENOMEM;
583
584 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
585
586 /* If we aren't the FEC we have multiple interrupts */
587 if (model && strcasecmp(model, "FEC")) {
588 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
589 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
590 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
591 gfar_irq(grp, RX)->irq == NO_IRQ ||
592 gfar_irq(grp, ER)->irq == NO_IRQ)
593 return -EINVAL;
594 }
595
596 grp->priv = priv;
597 spin_lock_init(&grp->grplock);
598 if (priv->mode == MQ_MG_MODE) {
599 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
600 grp->rx_bit_map = queue_mask ?
601 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
602 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
603 grp->tx_bit_map = queue_mask ?
604 *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
605 } else {
606 grp->rx_bit_map = 0xFF;
607 grp->tx_bit_map = 0xFF;
608 }
609 priv->num_grps++;
610
611 return 0;
612 }
613
614 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
615 {
616 const char *model;
617 const char *ctype;
618 const void *mac_addr;
619 int err = 0, i;
620 struct net_device *dev = NULL;
621 struct gfar_private *priv = NULL;
622 struct device_node *np = ofdev->dev.of_node;
623 struct device_node *child = NULL;
624 const u32 *stash;
625 const u32 *stash_len;
626 const u32 *stash_idx;
627 unsigned int num_tx_qs, num_rx_qs;
628 u32 *tx_queues, *rx_queues;
629
630 if (!np || !of_device_is_available(np))
631 return -ENODEV;
632
633 /* parse the num of tx and rx queues */
634 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
635 num_tx_qs = tx_queues ? *tx_queues : 1;
636
637 if (num_tx_qs > MAX_TX_QS) {
638 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
639 num_tx_qs, MAX_TX_QS);
640 pr_err("Cannot do alloc_etherdev, aborting\n");
641 return -EINVAL;
642 }
643
644 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
645 num_rx_qs = rx_queues ? *rx_queues : 1;
646
647 if (num_rx_qs > MAX_RX_QS) {
648 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
649 num_rx_qs, MAX_RX_QS);
650 pr_err("Cannot do alloc_etherdev, aborting\n");
651 return -EINVAL;
652 }
653
654 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
655 dev = *pdev;
656 if (NULL == dev)
657 return -ENOMEM;
658
659 priv = netdev_priv(dev);
660 priv->ndev = dev;
661
662 priv->num_tx_queues = num_tx_qs;
663 netif_set_real_num_rx_queues(dev, num_rx_qs);
664 priv->num_rx_queues = num_rx_qs;
665 priv->num_grps = 0x0;
666
667 /* Init Rx queue filer rule set linked list */
668 INIT_LIST_HEAD(&priv->rx_list.list);
669 priv->rx_list.count = 0;
670 mutex_init(&priv->rx_queue_access);
671
672 model = of_get_property(np, "model", NULL);
673
674 for (i = 0; i < MAXGROUPS; i++)
675 priv->gfargrp[i].regs = NULL;
676
677 /* Parse and initialize group specific information */
678 if (of_device_is_compatible(np, "fsl,etsec2")) {
679 priv->mode = MQ_MG_MODE;
680 for_each_child_of_node(np, child) {
681 err = gfar_parse_group(child, priv, model);
682 if (err)
683 goto err_grp_init;
684 }
685 } else {
686 priv->mode = SQ_SG_MODE;
687 err = gfar_parse_group(np, priv, model);
688 if (err)
689 goto err_grp_init;
690 }
691
692 for (i = 0; i < priv->num_tx_queues; i++)
693 priv->tx_queue[i] = NULL;
694 for (i = 0; i < priv->num_rx_queues; i++)
695 priv->rx_queue[i] = NULL;
696
697 for (i = 0; i < priv->num_tx_queues; i++) {
698 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
699 GFP_KERNEL);
700 if (!priv->tx_queue[i]) {
701 err = -ENOMEM;
702 goto tx_alloc_failed;
703 }
704 priv->tx_queue[i]->tx_skbuff = NULL;
705 priv->tx_queue[i]->qindex = i;
706 priv->tx_queue[i]->dev = dev;
707 spin_lock_init(&(priv->tx_queue[i]->txlock));
708 }
709
710 for (i = 0; i < priv->num_rx_queues; i++) {
711 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
712 GFP_KERNEL);
713 if (!priv->rx_queue[i]) {
714 err = -ENOMEM;
715 goto rx_alloc_failed;
716 }
717 priv->rx_queue[i]->rx_skbuff = NULL;
718 priv->rx_queue[i]->qindex = i;
719 priv->rx_queue[i]->dev = dev;
720 spin_lock_init(&(priv->rx_queue[i]->rxlock));
721 }
722
723
724 stash = of_get_property(np, "bd-stash", NULL);
725
726 if (stash) {
727 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
728 priv->bd_stash_en = 1;
729 }
730
731 stash_len = of_get_property(np, "rx-stash-len", NULL);
732
733 if (stash_len)
734 priv->rx_stash_size = *stash_len;
735
736 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
737
738 if (stash_idx)
739 priv->rx_stash_index = *stash_idx;
740
741 if (stash_len || stash_idx)
742 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
743
744 mac_addr = of_get_mac_address(np);
745
746 if (mac_addr)
747 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
748
749 if (model && !strcasecmp(model, "TSEC"))
750 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
751 FSL_GIANFAR_DEV_HAS_COALESCE |
752 FSL_GIANFAR_DEV_HAS_RMON |
753 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
754
755 if (model && !strcasecmp(model, "eTSEC"))
756 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757 FSL_GIANFAR_DEV_HAS_COALESCE |
758 FSL_GIANFAR_DEV_HAS_RMON |
759 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
760 FSL_GIANFAR_DEV_HAS_PADDING |
761 FSL_GIANFAR_DEV_HAS_CSUM |
762 FSL_GIANFAR_DEV_HAS_VLAN |
763 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
764 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
765 FSL_GIANFAR_DEV_HAS_TIMER;
766
767 ctype = of_get_property(np, "phy-connection-type", NULL);
768
769 /* We only care about rgmii-id. The rest are autodetected */
770 if (ctype && !strcmp(ctype, "rgmii-id"))
771 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
772 else
773 priv->interface = PHY_INTERFACE_MODE_MII;
774
775 if (of_get_property(np, "fsl,magic-packet", NULL))
776 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
777
778 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
779
780 /* Find the TBI PHY. If it's not there, we don't support SGMII */
781 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
782
783 return 0;
784
785 rx_alloc_failed:
786 free_rx_pointers(priv);
787 tx_alloc_failed:
788 free_tx_pointers(priv);
789 err_grp_init:
790 unmap_group_regs(priv);
791 free_gfar_dev(priv);
792 return err;
793 }
794
795 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
796 struct ifreq *ifr, int cmd)
797 {
798 struct hwtstamp_config config;
799 struct gfar_private *priv = netdev_priv(netdev);
800
801 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
802 return -EFAULT;
803
804 /* reserved for future extensions */
805 if (config.flags)
806 return -EINVAL;
807
808 switch (config.tx_type) {
809 case HWTSTAMP_TX_OFF:
810 priv->hwts_tx_en = 0;
811 break;
812 case HWTSTAMP_TX_ON:
813 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
814 return -ERANGE;
815 priv->hwts_tx_en = 1;
816 break;
817 default:
818 return -ERANGE;
819 }
820
821 switch (config.rx_filter) {
822 case HWTSTAMP_FILTER_NONE:
823 if (priv->hwts_rx_en) {
824 stop_gfar(netdev);
825 priv->hwts_rx_en = 0;
826 startup_gfar(netdev);
827 }
828 break;
829 default:
830 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
831 return -ERANGE;
832 if (!priv->hwts_rx_en) {
833 stop_gfar(netdev);
834 priv->hwts_rx_en = 1;
835 startup_gfar(netdev);
836 }
837 config.rx_filter = HWTSTAMP_FILTER_ALL;
838 break;
839 }
840
841 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
842 -EFAULT : 0;
843 }
844
845 /* Ioctl MII Interface */
846 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
847 {
848 struct gfar_private *priv = netdev_priv(dev);
849
850 if (!netif_running(dev))
851 return -EINVAL;
852
853 if (cmd == SIOCSHWTSTAMP)
854 return gfar_hwtstamp_ioctl(dev, rq, cmd);
855
856 if (!priv->phydev)
857 return -ENODEV;
858
859 return phy_mii_ioctl(priv->phydev, rq, cmd);
860 }
861
862 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
863 {
864 unsigned int new_bit_map = 0x0;
865 int mask = 0x1 << (max_qs - 1), i;
866
867 for (i = 0; i < max_qs; i++) {
868 if (bit_map & mask)
869 new_bit_map = new_bit_map + (1 << i);
870 mask = mask >> 0x1;
871 }
872 return new_bit_map;
873 }
874
875 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
876 u32 class)
877 {
878 u32 rqfpr = FPR_FILER_MASK;
879 u32 rqfcr = 0x0;
880
881 rqfar--;
882 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
883 priv->ftp_rqfpr[rqfar] = rqfpr;
884 priv->ftp_rqfcr[rqfar] = rqfcr;
885 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
886
887 rqfar--;
888 rqfcr = RQFCR_CMP_NOMATCH;
889 priv->ftp_rqfpr[rqfar] = rqfpr;
890 priv->ftp_rqfcr[rqfar] = rqfcr;
891 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893 rqfar--;
894 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
895 rqfpr = class;
896 priv->ftp_rqfcr[rqfar] = rqfcr;
897 priv->ftp_rqfpr[rqfar] = rqfpr;
898 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
899
900 rqfar--;
901 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
902 rqfpr = class;
903 priv->ftp_rqfcr[rqfar] = rqfcr;
904 priv->ftp_rqfpr[rqfar] = rqfpr;
905 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
906
907 return rqfar;
908 }
909
910 static void gfar_init_filer_table(struct gfar_private *priv)
911 {
912 int i = 0x0;
913 u32 rqfar = MAX_FILER_IDX;
914 u32 rqfcr = 0x0;
915 u32 rqfpr = FPR_FILER_MASK;
916
917 /* Default rule */
918 rqfcr = RQFCR_CMP_MATCH;
919 priv->ftp_rqfcr[rqfar] = rqfcr;
920 priv->ftp_rqfpr[rqfar] = rqfpr;
921 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
922
923 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
924 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
925 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
926 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
927 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
928 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
929
930 /* cur_filer_idx indicated the first non-masked rule */
931 priv->cur_filer_idx = rqfar;
932
933 /* Rest are masked rules */
934 rqfcr = RQFCR_CMP_NOMATCH;
935 for (i = 0; i < rqfar; i++) {
936 priv->ftp_rqfcr[i] = rqfcr;
937 priv->ftp_rqfpr[i] = rqfpr;
938 gfar_write_filer(priv, i, rqfcr, rqfpr);
939 }
940 }
941
942 static void gfar_detect_errata(struct gfar_private *priv)
943 {
944 struct device *dev = &priv->ofdev->dev;
945 unsigned int pvr = mfspr(SPRN_PVR);
946 unsigned int svr = mfspr(SPRN_SVR);
947 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
948 unsigned int rev = svr & 0xffff;
949
950 /* MPC8313 Rev 2.0 and higher; All MPC837x */
951 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
952 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
953 priv->errata |= GFAR_ERRATA_74;
954
955 /* MPC8313 and MPC837x all rev */
956 if ((pvr == 0x80850010 && mod == 0x80b0) ||
957 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
958 priv->errata |= GFAR_ERRATA_76;
959
960 /* MPC8313 and MPC837x all rev */
961 if ((pvr == 0x80850010 && mod == 0x80b0) ||
962 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
963 priv->errata |= GFAR_ERRATA_A002;
964
965 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
966 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
967 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
968 priv->errata |= GFAR_ERRATA_12;
969
970 if (priv->errata)
971 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
972 priv->errata);
973 }
974
975 /* Set up the ethernet device structure, private data,
976 * and anything else we need before we start
977 */
978 static int gfar_probe(struct platform_device *ofdev)
979 {
980 u32 tempval;
981 struct net_device *dev = NULL;
982 struct gfar_private *priv = NULL;
983 struct gfar __iomem *regs = NULL;
984 int err = 0, i, grp_idx = 0;
985 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
986 u32 isrg = 0;
987 u32 __iomem *baddr;
988
989 err = gfar_of_init(ofdev, &dev);
990
991 if (err)
992 return err;
993
994 priv = netdev_priv(dev);
995 priv->ndev = dev;
996 priv->ofdev = ofdev;
997 priv->dev = &ofdev->dev;
998 SET_NETDEV_DEV(dev, &ofdev->dev);
999
1000 spin_lock_init(&priv->bflock);
1001 INIT_WORK(&priv->reset_task, gfar_reset_task);
1002
1003 platform_set_drvdata(ofdev, priv);
1004 regs = priv->gfargrp[0].regs;
1005
1006 gfar_detect_errata(priv);
1007
1008 /* Stop the DMA engine now, in case it was running before
1009 * (The firmware could have used it, and left it running).
1010 */
1011 gfar_halt(dev);
1012
1013 /* Reset MAC layer */
1014 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1015
1016 /* We need to delay at least 3 TX clocks */
1017 udelay(2);
1018
1019 tempval = 0;
1020 if (!priv->pause_aneg_en && priv->tx_pause_en)
1021 tempval |= MACCFG1_TX_FLOW;
1022 if (!priv->pause_aneg_en && priv->rx_pause_en)
1023 tempval |= MACCFG1_RX_FLOW;
1024 /* the soft reset bit is not self-resetting, so we need to
1025 * clear it before resuming normal operation
1026 */
1027 gfar_write(&regs->maccfg1, tempval);
1028
1029 /* Initialize MACCFG2. */
1030 tempval = MACCFG2_INIT_SETTINGS;
1031 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1032 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1033 gfar_write(&regs->maccfg2, tempval);
1034
1035 /* Initialize ECNTRL */
1036 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1037
1038 /* Set the dev->base_addr to the gfar reg region */
1039 dev->base_addr = (unsigned long) regs;
1040
1041 /* Fill in the dev structure */
1042 dev->watchdog_timeo = TX_TIMEOUT;
1043 dev->mtu = 1500;
1044 dev->netdev_ops = &gfar_netdev_ops;
1045 dev->ethtool_ops = &gfar_ethtool_ops;
1046
1047 /* Register for napi ...We are registering NAPI for each grp */
1048 if (priv->mode == SQ_SG_MODE)
1049 netif_napi_add(dev, &priv->gfargrp[0].napi, gfar_poll_sq,
1050 GFAR_DEV_WEIGHT);
1051 else
1052 for (i = 0; i < priv->num_grps; i++)
1053 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1054 GFAR_DEV_WEIGHT);
1055
1056 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1057 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1058 NETIF_F_RXCSUM;
1059 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1060 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1061 }
1062
1063 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1064 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1065 NETIF_F_HW_VLAN_CTAG_RX;
1066 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1067 }
1068
1069 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1070 priv->extended_hash = 1;
1071 priv->hash_width = 9;
1072
1073 priv->hash_regs[0] = &regs->igaddr0;
1074 priv->hash_regs[1] = &regs->igaddr1;
1075 priv->hash_regs[2] = &regs->igaddr2;
1076 priv->hash_regs[3] = &regs->igaddr3;
1077 priv->hash_regs[4] = &regs->igaddr4;
1078 priv->hash_regs[5] = &regs->igaddr5;
1079 priv->hash_regs[6] = &regs->igaddr6;
1080 priv->hash_regs[7] = &regs->igaddr7;
1081 priv->hash_regs[8] = &regs->gaddr0;
1082 priv->hash_regs[9] = &regs->gaddr1;
1083 priv->hash_regs[10] = &regs->gaddr2;
1084 priv->hash_regs[11] = &regs->gaddr3;
1085 priv->hash_regs[12] = &regs->gaddr4;
1086 priv->hash_regs[13] = &regs->gaddr5;
1087 priv->hash_regs[14] = &regs->gaddr6;
1088 priv->hash_regs[15] = &regs->gaddr7;
1089
1090 } else {
1091 priv->extended_hash = 0;
1092 priv->hash_width = 8;
1093
1094 priv->hash_regs[0] = &regs->gaddr0;
1095 priv->hash_regs[1] = &regs->gaddr1;
1096 priv->hash_regs[2] = &regs->gaddr2;
1097 priv->hash_regs[3] = &regs->gaddr3;
1098 priv->hash_regs[4] = &regs->gaddr4;
1099 priv->hash_regs[5] = &regs->gaddr5;
1100 priv->hash_regs[6] = &regs->gaddr6;
1101 priv->hash_regs[7] = &regs->gaddr7;
1102 }
1103
1104 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1105 priv->padding = DEFAULT_PADDING;
1106 else
1107 priv->padding = 0;
1108
1109 if (dev->features & NETIF_F_IP_CSUM ||
1110 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1111 dev->needed_headroom = GMAC_FCB_LEN;
1112
1113 /* Program the isrg regs only if number of grps > 1 */
1114 if (priv->num_grps > 1) {
1115 baddr = &regs->isrg0;
1116 for (i = 0; i < priv->num_grps; i++) {
1117 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1118 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1119 gfar_write(baddr, isrg);
1120 baddr++;
1121 isrg = 0x0;
1122 }
1123 }
1124
1125 /* Need to reverse the bit maps as bit_map's MSB is q0
1126 * but, for_each_set_bit parses from right to left, which
1127 * basically reverses the queue numbers
1128 */
1129 for (i = 0; i< priv->num_grps; i++) {
1130 priv->gfargrp[i].tx_bit_map =
1131 reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1132 priv->gfargrp[i].rx_bit_map =
1133 reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1134 }
1135
1136 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1137 * also assign queues to groups
1138 */
1139 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1140 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1141
1142 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1143 priv->num_rx_queues) {
1144 priv->gfargrp[grp_idx].num_rx_queues++;
1145 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1146 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1147 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1148 }
1149 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1150
1151 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1152 priv->num_tx_queues) {
1153 priv->gfargrp[grp_idx].num_tx_queues++;
1154 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1155 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1156 tqueue = tqueue | (TQUEUE_EN0 >> i);
1157 }
1158 priv->gfargrp[grp_idx].rstat = rstat;
1159 priv->gfargrp[grp_idx].tstat = tstat;
1160 rstat = tstat =0;
1161 }
1162
1163 gfar_write(&regs->rqueue, rqueue);
1164 gfar_write(&regs->tqueue, tqueue);
1165
1166 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1167
1168 /* Initializing some of the rx/tx queue level parameters */
1169 for (i = 0; i < priv->num_tx_queues; i++) {
1170 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1171 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1172 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1173 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1174 }
1175
1176 for (i = 0; i < priv->num_rx_queues; i++) {
1177 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1178 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1179 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1180 }
1181
1182 /* always enable rx filer */
1183 priv->rx_filer_enable = 1;
1184 /* Enable most messages by default */
1185 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1186 /* use pritority h/w tx queue scheduling for single queue devices */
1187 if (priv->num_tx_queues == 1)
1188 priv->prio_sched_en = 1;
1189
1190 /* Carrier starts down, phylib will bring it up */
1191 netif_carrier_off(dev);
1192
1193 err = register_netdev(dev);
1194
1195 if (err) {
1196 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1197 goto register_fail;
1198 }
1199
1200 device_init_wakeup(&dev->dev,
1201 priv->device_flags &
1202 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1203
1204 /* fill out IRQ number and name fields */
1205 for (i = 0; i < priv->num_grps; i++) {
1206 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1207 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1208 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1209 dev->name, "_g", '0' + i, "_tx");
1210 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1211 dev->name, "_g", '0' + i, "_rx");
1212 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1213 dev->name, "_g", '0' + i, "_er");
1214 } else
1215 strcpy(gfar_irq(grp, TX)->name, dev->name);
1216 }
1217
1218 /* Initialize the filer table */
1219 gfar_init_filer_table(priv);
1220
1221 /* Create all the sysfs files */
1222 gfar_init_sysfs(dev);
1223
1224 /* Print out the device info */
1225 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1226
1227 /* Even more device info helps when determining which kernel
1228 * provided which set of benchmarks.
1229 */
1230 netdev_info(dev, "Running with NAPI enabled\n");
1231 for (i = 0; i < priv->num_rx_queues; i++)
1232 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1233 i, priv->rx_queue[i]->rx_ring_size);
1234 for (i = 0; i < priv->num_tx_queues; i++)
1235 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1236 i, priv->tx_queue[i]->tx_ring_size);
1237
1238 return 0;
1239
1240 register_fail:
1241 unmap_group_regs(priv);
1242 free_tx_pointers(priv);
1243 free_rx_pointers(priv);
1244 if (priv->phy_node)
1245 of_node_put(priv->phy_node);
1246 if (priv->tbi_node)
1247 of_node_put(priv->tbi_node);
1248 free_gfar_dev(priv);
1249 return err;
1250 }
1251
1252 static int gfar_remove(struct platform_device *ofdev)
1253 {
1254 struct gfar_private *priv = platform_get_drvdata(ofdev);
1255
1256 if (priv->phy_node)
1257 of_node_put(priv->phy_node);
1258 if (priv->tbi_node)
1259 of_node_put(priv->tbi_node);
1260
1261 unregister_netdev(priv->ndev);
1262 unmap_group_regs(priv);
1263 free_gfar_dev(priv);
1264
1265 return 0;
1266 }
1267
1268 #ifdef CONFIG_PM
1269
1270 static int gfar_suspend(struct device *dev)
1271 {
1272 struct gfar_private *priv = dev_get_drvdata(dev);
1273 struct net_device *ndev = priv->ndev;
1274 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275 unsigned long flags;
1276 u32 tempval;
1277
1278 int magic_packet = priv->wol_en &&
1279 (priv->device_flags &
1280 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1281
1282 netif_device_detach(ndev);
1283
1284 if (netif_running(ndev)) {
1285
1286 local_irq_save(flags);
1287 lock_tx_qs(priv);
1288 lock_rx_qs(priv);
1289
1290 gfar_halt_nodisable(ndev);
1291
1292 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1293 tempval = gfar_read(&regs->maccfg1);
1294
1295 tempval &= ~MACCFG1_TX_EN;
1296
1297 if (!magic_packet)
1298 tempval &= ~MACCFG1_RX_EN;
1299
1300 gfar_write(&regs->maccfg1, tempval);
1301
1302 unlock_rx_qs(priv);
1303 unlock_tx_qs(priv);
1304 local_irq_restore(flags);
1305
1306 disable_napi(priv);
1307
1308 if (magic_packet) {
1309 /* Enable interrupt on Magic Packet */
1310 gfar_write(&regs->imask, IMASK_MAG);
1311
1312 /* Enable Magic Packet mode */
1313 tempval = gfar_read(&regs->maccfg2);
1314 tempval |= MACCFG2_MPEN;
1315 gfar_write(&regs->maccfg2, tempval);
1316 } else {
1317 phy_stop(priv->phydev);
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
1324 static int gfar_resume(struct device *dev)
1325 {
1326 struct gfar_private *priv = dev_get_drvdata(dev);
1327 struct net_device *ndev = priv->ndev;
1328 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1329 unsigned long flags;
1330 u32 tempval;
1331 int magic_packet = priv->wol_en &&
1332 (priv->device_flags &
1333 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1334
1335 if (!netif_running(ndev)) {
1336 netif_device_attach(ndev);
1337 return 0;
1338 }
1339
1340 if (!magic_packet && priv->phydev)
1341 phy_start(priv->phydev);
1342
1343 /* Disable Magic Packet mode, in case something
1344 * else woke us up.
1345 */
1346 local_irq_save(flags);
1347 lock_tx_qs(priv);
1348 lock_rx_qs(priv);
1349
1350 tempval = gfar_read(&regs->maccfg2);
1351 tempval &= ~MACCFG2_MPEN;
1352 gfar_write(&regs->maccfg2, tempval);
1353
1354 gfar_start(ndev);
1355
1356 unlock_rx_qs(priv);
1357 unlock_tx_qs(priv);
1358 local_irq_restore(flags);
1359
1360 netif_device_attach(ndev);
1361
1362 enable_napi(priv);
1363
1364 return 0;
1365 }
1366
1367 static int gfar_restore(struct device *dev)
1368 {
1369 struct gfar_private *priv = dev_get_drvdata(dev);
1370 struct net_device *ndev = priv->ndev;
1371
1372 if (!netif_running(ndev)) {
1373 netif_device_attach(ndev);
1374
1375 return 0;
1376 }
1377
1378 if (gfar_init_bds(ndev)) {
1379 free_skb_resources(priv);
1380 return -ENOMEM;
1381 }
1382
1383 init_registers(ndev);
1384 gfar_set_mac_address(ndev);
1385 gfar_init_mac(ndev);
1386 gfar_start(ndev);
1387
1388 priv->oldlink = 0;
1389 priv->oldspeed = 0;
1390 priv->oldduplex = -1;
1391
1392 if (priv->phydev)
1393 phy_start(priv->phydev);
1394
1395 netif_device_attach(ndev);
1396 enable_napi(priv);
1397
1398 return 0;
1399 }
1400
1401 static struct dev_pm_ops gfar_pm_ops = {
1402 .suspend = gfar_suspend,
1403 .resume = gfar_resume,
1404 .freeze = gfar_suspend,
1405 .thaw = gfar_resume,
1406 .restore = gfar_restore,
1407 };
1408
1409 #define GFAR_PM_OPS (&gfar_pm_ops)
1410
1411 #else
1412
1413 #define GFAR_PM_OPS NULL
1414
1415 #endif
1416
1417 /* Reads the controller's registers to determine what interface
1418 * connects it to the PHY.
1419 */
1420 static phy_interface_t gfar_get_interface(struct net_device *dev)
1421 {
1422 struct gfar_private *priv = netdev_priv(dev);
1423 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1424 u32 ecntrl;
1425
1426 ecntrl = gfar_read(&regs->ecntrl);
1427
1428 if (ecntrl & ECNTRL_SGMII_MODE)
1429 return PHY_INTERFACE_MODE_SGMII;
1430
1431 if (ecntrl & ECNTRL_TBI_MODE) {
1432 if (ecntrl & ECNTRL_REDUCED_MODE)
1433 return PHY_INTERFACE_MODE_RTBI;
1434 else
1435 return PHY_INTERFACE_MODE_TBI;
1436 }
1437
1438 if (ecntrl & ECNTRL_REDUCED_MODE) {
1439 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1440 return PHY_INTERFACE_MODE_RMII;
1441 }
1442 else {
1443 phy_interface_t interface = priv->interface;
1444
1445 /* This isn't autodetected right now, so it must
1446 * be set by the device tree or platform code.
1447 */
1448 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1449 return PHY_INTERFACE_MODE_RGMII_ID;
1450
1451 return PHY_INTERFACE_MODE_RGMII;
1452 }
1453 }
1454
1455 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1456 return PHY_INTERFACE_MODE_GMII;
1457
1458 return PHY_INTERFACE_MODE_MII;
1459 }
1460
1461
1462 /* Initializes driver's PHY state, and attaches to the PHY.
1463 * Returns 0 on success.
1464 */
1465 static int init_phy(struct net_device *dev)
1466 {
1467 struct gfar_private *priv = netdev_priv(dev);
1468 uint gigabit_support =
1469 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1470 GFAR_SUPPORTED_GBIT : 0;
1471 phy_interface_t interface;
1472
1473 priv->oldlink = 0;
1474 priv->oldspeed = 0;
1475 priv->oldduplex = -1;
1476
1477 interface = gfar_get_interface(dev);
1478
1479 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1480 interface);
1481 if (!priv->phydev)
1482 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1483 interface);
1484 if (!priv->phydev) {
1485 dev_err(&dev->dev, "could not attach to PHY\n");
1486 return -ENODEV;
1487 }
1488
1489 if (interface == PHY_INTERFACE_MODE_SGMII)
1490 gfar_configure_serdes(dev);
1491
1492 /* Remove any features not supported by the controller */
1493 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1494 priv->phydev->advertising = priv->phydev->supported;
1495
1496 return 0;
1497 }
1498
1499 /* Initialize TBI PHY interface for communicating with the
1500 * SERDES lynx PHY on the chip. We communicate with this PHY
1501 * through the MDIO bus on each controller, treating it as a
1502 * "normal" PHY at the address found in the TBIPA register. We assume
1503 * that the TBIPA register is valid. Either the MDIO bus code will set
1504 * it to a value that doesn't conflict with other PHYs on the bus, or the
1505 * value doesn't matter, as there are no other PHYs on the bus.
1506 */
1507 static void gfar_configure_serdes(struct net_device *dev)
1508 {
1509 struct gfar_private *priv = netdev_priv(dev);
1510 struct phy_device *tbiphy;
1511
1512 if (!priv->tbi_node) {
1513 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1514 "device tree specify a tbi-handle\n");
1515 return;
1516 }
1517
1518 tbiphy = of_phy_find_device(priv->tbi_node);
1519 if (!tbiphy) {
1520 dev_err(&dev->dev, "error: Could not get TBI device\n");
1521 return;
1522 }
1523
1524 /* If the link is already up, we must already be ok, and don't need to
1525 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1526 * everything for us? Resetting it takes the link down and requires
1527 * several seconds for it to come back.
1528 */
1529 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1530 return;
1531
1532 /* Single clk mode, mii mode off(for serdes communication) */
1533 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1534
1535 phy_write(tbiphy, MII_ADVERTISE,
1536 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1537 ADVERTISE_1000XPSE_ASYM);
1538
1539 phy_write(tbiphy, MII_BMCR,
1540 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1541 BMCR_SPEED1000);
1542 }
1543
1544 static void init_registers(struct net_device *dev)
1545 {
1546 struct gfar_private *priv = netdev_priv(dev);
1547 struct gfar __iomem *regs = NULL;
1548 int i;
1549
1550 for (i = 0; i < priv->num_grps; i++) {
1551 regs = priv->gfargrp[i].regs;
1552 /* Clear IEVENT */
1553 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1554
1555 /* Initialize IMASK */
1556 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1557 }
1558
1559 regs = priv->gfargrp[0].regs;
1560 /* Init hash registers to zero */
1561 gfar_write(&regs->igaddr0, 0);
1562 gfar_write(&regs->igaddr1, 0);
1563 gfar_write(&regs->igaddr2, 0);
1564 gfar_write(&regs->igaddr3, 0);
1565 gfar_write(&regs->igaddr4, 0);
1566 gfar_write(&regs->igaddr5, 0);
1567 gfar_write(&regs->igaddr6, 0);
1568 gfar_write(&regs->igaddr7, 0);
1569
1570 gfar_write(&regs->gaddr0, 0);
1571 gfar_write(&regs->gaddr1, 0);
1572 gfar_write(&regs->gaddr2, 0);
1573 gfar_write(&regs->gaddr3, 0);
1574 gfar_write(&regs->gaddr4, 0);
1575 gfar_write(&regs->gaddr5, 0);
1576 gfar_write(&regs->gaddr6, 0);
1577 gfar_write(&regs->gaddr7, 0);
1578
1579 /* Zero out the rmon mib registers if it has them */
1580 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1581 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1582
1583 /* Mask off the CAM interrupts */
1584 gfar_write(&regs->rmon.cam1, 0xffffffff);
1585 gfar_write(&regs->rmon.cam2, 0xffffffff);
1586 }
1587
1588 /* Initialize the max receive buffer length */
1589 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1590
1591 /* Initialize the Minimum Frame Length Register */
1592 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1593 }
1594
1595 static int __gfar_is_rx_idle(struct gfar_private *priv)
1596 {
1597 u32 res;
1598
1599 /* Normaly TSEC should not hang on GRS commands, so we should
1600 * actually wait for IEVENT_GRSC flag.
1601 */
1602 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1603 return 0;
1604
1605 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1606 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1607 * and the Rx can be safely reset.
1608 */
1609 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1610 res &= 0x7f807f80;
1611 if ((res & 0xffff) == (res >> 16))
1612 return 1;
1613
1614 return 0;
1615 }
1616
1617 /* Halt the receive and transmit queues */
1618 static void gfar_halt_nodisable(struct net_device *dev)
1619 {
1620 struct gfar_private *priv = netdev_priv(dev);
1621 struct gfar __iomem *regs = NULL;
1622 u32 tempval;
1623 int i;
1624
1625 for (i = 0; i < priv->num_grps; i++) {
1626 regs = priv->gfargrp[i].regs;
1627 /* Mask all interrupts */
1628 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1629
1630 /* Clear all interrupts */
1631 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1632 }
1633
1634 regs = priv->gfargrp[0].regs;
1635 /* Stop the DMA, and wait for it to stop */
1636 tempval = gfar_read(&regs->dmactrl);
1637 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1638 (DMACTRL_GRS | DMACTRL_GTS)) {
1639 int ret;
1640
1641 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1642 gfar_write(&regs->dmactrl, tempval);
1643
1644 do {
1645 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1646 (IEVENT_GRSC | IEVENT_GTSC)) ==
1647 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1648 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1649 ret = __gfar_is_rx_idle(priv);
1650 } while (!ret);
1651 }
1652 }
1653
1654 /* Halt the receive and transmit queues */
1655 void gfar_halt(struct net_device *dev)
1656 {
1657 struct gfar_private *priv = netdev_priv(dev);
1658 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1659 u32 tempval;
1660
1661 gfar_halt_nodisable(dev);
1662
1663 /* Disable Rx and Tx */
1664 tempval = gfar_read(&regs->maccfg1);
1665 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1666 gfar_write(&regs->maccfg1, tempval);
1667 }
1668
1669 static void free_grp_irqs(struct gfar_priv_grp *grp)
1670 {
1671 free_irq(gfar_irq(grp, TX)->irq, grp);
1672 free_irq(gfar_irq(grp, RX)->irq, grp);
1673 free_irq(gfar_irq(grp, ER)->irq, grp);
1674 }
1675
1676 void stop_gfar(struct net_device *dev)
1677 {
1678 struct gfar_private *priv = netdev_priv(dev);
1679 unsigned long flags;
1680 int i;
1681
1682 phy_stop(priv->phydev);
1683
1684
1685 /* Lock it down */
1686 local_irq_save(flags);
1687 lock_tx_qs(priv);
1688 lock_rx_qs(priv);
1689
1690 gfar_halt(dev);
1691
1692 unlock_rx_qs(priv);
1693 unlock_tx_qs(priv);
1694 local_irq_restore(flags);
1695
1696 /* Free the IRQs */
1697 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1698 for (i = 0; i < priv->num_grps; i++)
1699 free_grp_irqs(&priv->gfargrp[i]);
1700 } else {
1701 for (i = 0; i < priv->num_grps; i++)
1702 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1703 &priv->gfargrp[i]);
1704 }
1705
1706 free_skb_resources(priv);
1707 }
1708
1709 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1710 {
1711 struct txbd8 *txbdp;
1712 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1713 int i, j;
1714
1715 txbdp = tx_queue->tx_bd_base;
1716
1717 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1718 if (!tx_queue->tx_skbuff[i])
1719 continue;
1720
1721 dma_unmap_single(priv->dev, txbdp->bufPtr,
1722 txbdp->length, DMA_TO_DEVICE);
1723 txbdp->lstatus = 0;
1724 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1725 j++) {
1726 txbdp++;
1727 dma_unmap_page(priv->dev, txbdp->bufPtr,
1728 txbdp->length, DMA_TO_DEVICE);
1729 }
1730 txbdp++;
1731 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1732 tx_queue->tx_skbuff[i] = NULL;
1733 }
1734 kfree(tx_queue->tx_skbuff);
1735 tx_queue->tx_skbuff = NULL;
1736 }
1737
1738 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1739 {
1740 struct rxbd8 *rxbdp;
1741 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1742 int i;
1743
1744 rxbdp = rx_queue->rx_bd_base;
1745
1746 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1747 if (rx_queue->rx_skbuff[i]) {
1748 dma_unmap_single(priv->dev, rxbdp->bufPtr,
1749 priv->rx_buffer_size,
1750 DMA_FROM_DEVICE);
1751 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1752 rx_queue->rx_skbuff[i] = NULL;
1753 }
1754 rxbdp->lstatus = 0;
1755 rxbdp->bufPtr = 0;
1756 rxbdp++;
1757 }
1758 kfree(rx_queue->rx_skbuff);
1759 rx_queue->rx_skbuff = NULL;
1760 }
1761
1762 /* If there are any tx skbs or rx skbs still around, free them.
1763 * Then free tx_skbuff and rx_skbuff
1764 */
1765 static void free_skb_resources(struct gfar_private *priv)
1766 {
1767 struct gfar_priv_tx_q *tx_queue = NULL;
1768 struct gfar_priv_rx_q *rx_queue = NULL;
1769 int i;
1770
1771 /* Go through all the buffer descriptors and free their data buffers */
1772 for (i = 0; i < priv->num_tx_queues; i++) {
1773 struct netdev_queue *txq;
1774
1775 tx_queue = priv->tx_queue[i];
1776 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1777 if (tx_queue->tx_skbuff)
1778 free_skb_tx_queue(tx_queue);
1779 netdev_tx_reset_queue(txq);
1780 }
1781
1782 for (i = 0; i < priv->num_rx_queues; i++) {
1783 rx_queue = priv->rx_queue[i];
1784 if (rx_queue->rx_skbuff)
1785 free_skb_rx_queue(rx_queue);
1786 }
1787
1788 dma_free_coherent(priv->dev,
1789 sizeof(struct txbd8) * priv->total_tx_ring_size +
1790 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1791 priv->tx_queue[0]->tx_bd_base,
1792 priv->tx_queue[0]->tx_bd_dma_base);
1793 }
1794
1795 void gfar_start(struct net_device *dev)
1796 {
1797 struct gfar_private *priv = netdev_priv(dev);
1798 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1799 u32 tempval;
1800 int i = 0;
1801
1802 /* Enable Rx and Tx in MACCFG1 */
1803 tempval = gfar_read(&regs->maccfg1);
1804 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1805 gfar_write(&regs->maccfg1, tempval);
1806
1807 /* Initialize DMACTRL to have WWR and WOP */
1808 tempval = gfar_read(&regs->dmactrl);
1809 tempval |= DMACTRL_INIT_SETTINGS;
1810 gfar_write(&regs->dmactrl, tempval);
1811
1812 /* Make sure we aren't stopped */
1813 tempval = gfar_read(&regs->dmactrl);
1814 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1815 gfar_write(&regs->dmactrl, tempval);
1816
1817 for (i = 0; i < priv->num_grps; i++) {
1818 regs = priv->gfargrp[i].regs;
1819 /* Clear THLT/RHLT, so that the DMA starts polling now */
1820 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1821 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1822 /* Unmask the interrupts we look for */
1823 gfar_write(&regs->imask, IMASK_DEFAULT);
1824 }
1825
1826 dev->trans_start = jiffies; /* prevent tx timeout */
1827 }
1828
1829 static void gfar_configure_coalescing(struct gfar_private *priv,
1830 unsigned long tx_mask, unsigned long rx_mask)
1831 {
1832 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1833 u32 __iomem *baddr;
1834
1835 if (priv->mode == MQ_MG_MODE) {
1836 int i = 0;
1837
1838 baddr = &regs->txic0;
1839 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1840 gfar_write(baddr + i, 0);
1841 if (likely(priv->tx_queue[i]->txcoalescing))
1842 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1843 }
1844
1845 baddr = &regs->rxic0;
1846 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1847 gfar_write(baddr + i, 0);
1848 if (likely(priv->rx_queue[i]->rxcoalescing))
1849 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1850 }
1851 } else {
1852 /* Backward compatible case -- even if we enable
1853 * multiple queues, there's only single reg to program
1854 */
1855 gfar_write(&regs->txic, 0);
1856 if (likely(priv->tx_queue[0]->txcoalescing))
1857 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1858
1859 gfar_write(&regs->rxic, 0);
1860 if (unlikely(priv->rx_queue[0]->rxcoalescing))
1861 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1862 }
1863 }
1864
1865 void gfar_configure_coalescing_all(struct gfar_private *priv)
1866 {
1867 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1868 }
1869
1870 static int register_grp_irqs(struct gfar_priv_grp *grp)
1871 {
1872 struct gfar_private *priv = grp->priv;
1873 struct net_device *dev = priv->ndev;
1874 int err;
1875
1876 /* If the device has multiple interrupts, register for
1877 * them. Otherwise, only register for the one
1878 */
1879 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1880 /* Install our interrupt handlers for Error,
1881 * Transmit, and Receive
1882 */
1883 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1884 gfar_irq(grp, ER)->name, grp);
1885 if (err < 0) {
1886 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1887 gfar_irq(grp, ER)->irq);
1888
1889 goto err_irq_fail;
1890 }
1891 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1892 gfar_irq(grp, TX)->name, grp);
1893 if (err < 0) {
1894 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1895 gfar_irq(grp, TX)->irq);
1896 goto tx_irq_fail;
1897 }
1898 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1899 gfar_irq(grp, RX)->name, grp);
1900 if (err < 0) {
1901 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1902 gfar_irq(grp, RX)->irq);
1903 goto rx_irq_fail;
1904 }
1905 } else {
1906 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1907 gfar_irq(grp, TX)->name, grp);
1908 if (err < 0) {
1909 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1910 gfar_irq(grp, TX)->irq);
1911 goto err_irq_fail;
1912 }
1913 }
1914
1915 return 0;
1916
1917 rx_irq_fail:
1918 free_irq(gfar_irq(grp, TX)->irq, grp);
1919 tx_irq_fail:
1920 free_irq(gfar_irq(grp, ER)->irq, grp);
1921 err_irq_fail:
1922 return err;
1923
1924 }
1925
1926 /* Bring the controller up and running */
1927 int startup_gfar(struct net_device *ndev)
1928 {
1929 struct gfar_private *priv = netdev_priv(ndev);
1930 struct gfar __iomem *regs = NULL;
1931 int err, i, j;
1932
1933 for (i = 0; i < priv->num_grps; i++) {
1934 regs= priv->gfargrp[i].regs;
1935 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1936 }
1937
1938 regs= priv->gfargrp[0].regs;
1939 err = gfar_alloc_skb_resources(ndev);
1940 if (err)
1941 return err;
1942
1943 gfar_init_mac(ndev);
1944
1945 for (i = 0; i < priv->num_grps; i++) {
1946 err = register_grp_irqs(&priv->gfargrp[i]);
1947 if (err) {
1948 for (j = 0; j < i; j++)
1949 free_grp_irqs(&priv->gfargrp[j]);
1950 goto irq_fail;
1951 }
1952 }
1953
1954 /* Start the controller */
1955 gfar_start(ndev);
1956
1957 phy_start(priv->phydev);
1958
1959 gfar_configure_coalescing_all(priv);
1960
1961 return 0;
1962
1963 irq_fail:
1964 free_skb_resources(priv);
1965 return err;
1966 }
1967
1968 /* Called when something needs to use the ethernet device
1969 * Returns 0 for success.
1970 */
1971 static int gfar_enet_open(struct net_device *dev)
1972 {
1973 struct gfar_private *priv = netdev_priv(dev);
1974 int err;
1975
1976 enable_napi(priv);
1977
1978 /* Initialize a bunch of registers */
1979 init_registers(dev);
1980
1981 gfar_set_mac_address(dev);
1982
1983 err = init_phy(dev);
1984
1985 if (err) {
1986 disable_napi(priv);
1987 return err;
1988 }
1989
1990 err = startup_gfar(dev);
1991 if (err) {
1992 disable_napi(priv);
1993 return err;
1994 }
1995
1996 netif_tx_start_all_queues(dev);
1997
1998 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1999
2000 return err;
2001 }
2002
2003 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2004 {
2005 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2006
2007 memset(fcb, 0, GMAC_FCB_LEN);
2008
2009 return fcb;
2010 }
2011
2012 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2013 int fcb_length)
2014 {
2015 /* If we're here, it's a IP packet with a TCP or UDP
2016 * payload. We set it to checksum, using a pseudo-header
2017 * we provide
2018 */
2019 u8 flags = TXFCB_DEFAULT;
2020
2021 /* Tell the controller what the protocol is
2022 * And provide the already calculated phcs
2023 */
2024 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2025 flags |= TXFCB_UDP;
2026 fcb->phcs = udp_hdr(skb)->check;
2027 } else
2028 fcb->phcs = tcp_hdr(skb)->check;
2029
2030 /* l3os is the distance between the start of the
2031 * frame (skb->data) and the start of the IP hdr.
2032 * l4os is the distance between the start of the
2033 * l3 hdr and the l4 hdr
2034 */
2035 fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2036 fcb->l4os = skb_network_header_len(skb);
2037
2038 fcb->flags = flags;
2039 }
2040
2041 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2042 {
2043 fcb->flags |= TXFCB_VLN;
2044 fcb->vlctl = vlan_tx_tag_get(skb);
2045 }
2046
2047 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2048 struct txbd8 *base, int ring_size)
2049 {
2050 struct txbd8 *new_bd = bdp + stride;
2051
2052 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2053 }
2054
2055 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2056 int ring_size)
2057 {
2058 return skip_txbd(bdp, 1, base, ring_size);
2059 }
2060
2061 /* eTSEC12: csum generation not supported for some fcb offsets */
2062 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2063 unsigned long fcb_addr)
2064 {
2065 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2066 (fcb_addr % 0x20) > 0x18);
2067 }
2068
2069 /* eTSEC76: csum generation for frames larger than 2500 may
2070 * cause excess delays before start of transmission
2071 */
2072 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2073 unsigned int len)
2074 {
2075 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2076 (len > 2500));
2077 }
2078
2079 /* This is called by the kernel when a frame is ready for transmission.
2080 * It is pointed to by the dev->hard_start_xmit function pointer
2081 */
2082 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2083 {
2084 struct gfar_private *priv = netdev_priv(dev);
2085 struct gfar_priv_tx_q *tx_queue = NULL;
2086 struct netdev_queue *txq;
2087 struct gfar __iomem *regs = NULL;
2088 struct txfcb *fcb = NULL;
2089 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2090 u32 lstatus;
2091 int i, rq = 0;
2092 int do_tstamp, do_csum, do_vlan;
2093 u32 bufaddr;
2094 unsigned long flags;
2095 unsigned int nr_frags, nr_txbds, length, fcb_len = 0;
2096
2097 rq = skb->queue_mapping;
2098 tx_queue = priv->tx_queue[rq];
2099 txq = netdev_get_tx_queue(dev, rq);
2100 base = tx_queue->tx_bd_base;
2101 regs = tx_queue->grp->regs;
2102
2103 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2104 do_vlan = vlan_tx_tag_present(skb);
2105 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2106 priv->hwts_tx_en;
2107
2108 if (do_csum || do_vlan)
2109 fcb_len = GMAC_FCB_LEN;
2110
2111 /* check if time stamp should be generated */
2112 if (unlikely(do_tstamp))
2113 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2114
2115 /* make space for additional header when fcb is needed */
2116 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2117 struct sk_buff *skb_new;
2118
2119 skb_new = skb_realloc_headroom(skb, fcb_len);
2120 if (!skb_new) {
2121 dev->stats.tx_errors++;
2122 kfree_skb(skb);
2123 return NETDEV_TX_OK;
2124 }
2125
2126 if (skb->sk)
2127 skb_set_owner_w(skb_new, skb->sk);
2128 consume_skb(skb);
2129 skb = skb_new;
2130 }
2131
2132 /* total number of fragments in the SKB */
2133 nr_frags = skb_shinfo(skb)->nr_frags;
2134
2135 /* calculate the required number of TxBDs for this skb */
2136 if (unlikely(do_tstamp))
2137 nr_txbds = nr_frags + 2;
2138 else
2139 nr_txbds = nr_frags + 1;
2140
2141 /* check if there is space to queue this packet */
2142 if (nr_txbds > tx_queue->num_txbdfree) {
2143 /* no space, stop the queue */
2144 netif_tx_stop_queue(txq);
2145 dev->stats.tx_fifo_errors++;
2146 return NETDEV_TX_BUSY;
2147 }
2148
2149 /* Update transmit stats */
2150 tx_queue->stats.tx_bytes += skb->len;
2151 tx_queue->stats.tx_packets++;
2152
2153 txbdp = txbdp_start = tx_queue->cur_tx;
2154 lstatus = txbdp->lstatus;
2155
2156 /* Time stamp insertion requires one additional TxBD */
2157 if (unlikely(do_tstamp))
2158 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2159 tx_queue->tx_ring_size);
2160
2161 if (nr_frags == 0) {
2162 if (unlikely(do_tstamp))
2163 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2164 TXBD_INTERRUPT);
2165 else
2166 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2167 } else {
2168 /* Place the fragment addresses and lengths into the TxBDs */
2169 for (i = 0; i < nr_frags; i++) {
2170 /* Point at the next BD, wrapping as needed */
2171 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2172
2173 length = skb_shinfo(skb)->frags[i].size;
2174
2175 lstatus = txbdp->lstatus | length |
2176 BD_LFLAG(TXBD_READY);
2177
2178 /* Handle the last BD specially */
2179 if (i == nr_frags - 1)
2180 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2181
2182 bufaddr = skb_frag_dma_map(priv->dev,
2183 &skb_shinfo(skb)->frags[i],
2184 0,
2185 length,
2186 DMA_TO_DEVICE);
2187
2188 /* set the TxBD length and buffer pointer */
2189 txbdp->bufPtr = bufaddr;
2190 txbdp->lstatus = lstatus;
2191 }
2192
2193 lstatus = txbdp_start->lstatus;
2194 }
2195
2196 /* Add TxPAL between FCB and frame if required */
2197 if (unlikely(do_tstamp)) {
2198 skb_push(skb, GMAC_TXPAL_LEN);
2199 memset(skb->data, 0, GMAC_TXPAL_LEN);
2200 }
2201
2202 /* Add TxFCB if required */
2203 if (fcb_len) {
2204 fcb = gfar_add_fcb(skb);
2205 lstatus |= BD_LFLAG(TXBD_TOE);
2206 }
2207
2208 /* Set up checksumming */
2209 if (do_csum) {
2210 gfar_tx_checksum(skb, fcb, fcb_len);
2211
2212 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2213 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2214 __skb_pull(skb, GMAC_FCB_LEN);
2215 skb_checksum_help(skb);
2216 if (do_vlan || do_tstamp) {
2217 /* put back a new fcb for vlan/tstamp TOE */
2218 fcb = gfar_add_fcb(skb);
2219 } else {
2220 /* Tx TOE not used */
2221 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2222 fcb = NULL;
2223 }
2224 }
2225 }
2226
2227 if (do_vlan)
2228 gfar_tx_vlan(skb, fcb);
2229
2230 /* Setup tx hardware time stamping if requested */
2231 if (unlikely(do_tstamp)) {
2232 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2233 fcb->ptp = 1;
2234 }
2235
2236 txbdp_start->bufPtr = dma_map_single(priv->dev, skb->data,
2237 skb_headlen(skb), DMA_TO_DEVICE);
2238
2239 /* If time stamping is requested one additional TxBD must be set up. The
2240 * first TxBD points to the FCB and must have a data length of
2241 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2242 * the full frame length.
2243 */
2244 if (unlikely(do_tstamp)) {
2245 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_len;
2246 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2247 (skb_headlen(skb) - fcb_len);
2248 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2249 } else {
2250 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2251 }
2252
2253 netdev_tx_sent_queue(txq, skb->len);
2254
2255 /* We can work in parallel with gfar_clean_tx_ring(), except
2256 * when modifying num_txbdfree. Note that we didn't grab the lock
2257 * when we were reading the num_txbdfree and checking for available
2258 * space, that's because outside of this function it can only grow,
2259 * and once we've got needed space, it cannot suddenly disappear.
2260 *
2261 * The lock also protects us from gfar_error(), which can modify
2262 * regs->tstat and thus retrigger the transfers, which is why we
2263 * also must grab the lock before setting ready bit for the first
2264 * to be transmitted BD.
2265 */
2266 spin_lock_irqsave(&tx_queue->txlock, flags);
2267
2268 /* The powerpc-specific eieio() is used, as wmb() has too strong
2269 * semantics (it requires synchronization between cacheable and
2270 * uncacheable mappings, which eieio doesn't provide and which we
2271 * don't need), thus requiring a more expensive sync instruction. At
2272 * some point, the set of architecture-independent barrier functions
2273 * should be expanded to include weaker barriers.
2274 */
2275 eieio();
2276
2277 txbdp_start->lstatus = lstatus;
2278
2279 eieio(); /* force lstatus write before tx_skbuff */
2280
2281 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2282
2283 /* Update the current skb pointer to the next entry we will use
2284 * (wrapping if necessary)
2285 */
2286 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2287 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2288
2289 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2290
2291 /* reduce TxBD free count */
2292 tx_queue->num_txbdfree -= (nr_txbds);
2293
2294 /* If the next BD still needs to be cleaned up, then the bds
2295 * are full. We need to tell the kernel to stop sending us stuff.
2296 */
2297 if (!tx_queue->num_txbdfree) {
2298 netif_tx_stop_queue(txq);
2299
2300 dev->stats.tx_fifo_errors++;
2301 }
2302
2303 /* Tell the DMA to go go go */
2304 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2305
2306 /* Unlock priv */
2307 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2308
2309 return NETDEV_TX_OK;
2310 }
2311
2312 /* Stops the kernel queue, and halts the controller */
2313 static int gfar_close(struct net_device *dev)
2314 {
2315 struct gfar_private *priv = netdev_priv(dev);
2316
2317 disable_napi(priv);
2318
2319 cancel_work_sync(&priv->reset_task);
2320 stop_gfar(dev);
2321
2322 /* Disconnect from the PHY */
2323 phy_disconnect(priv->phydev);
2324 priv->phydev = NULL;
2325
2326 netif_tx_stop_all_queues(dev);
2327
2328 return 0;
2329 }
2330
2331 /* Changes the mac address if the controller is not running. */
2332 static int gfar_set_mac_address(struct net_device *dev)
2333 {
2334 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2335
2336 return 0;
2337 }
2338
2339 /* Check if rx parser should be activated */
2340 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2341 {
2342 struct gfar __iomem *regs;
2343 u32 tempval;
2344
2345 regs = priv->gfargrp[0].regs;
2346
2347 tempval = gfar_read(&regs->rctrl);
2348 /* If parse is no longer required, then disable parser */
2349 if (tempval & RCTRL_REQ_PARSER) {
2350 tempval |= RCTRL_PRSDEP_INIT;
2351 priv->uses_rxfcb = 1;
2352 } else {
2353 tempval &= ~RCTRL_PRSDEP_INIT;
2354 priv->uses_rxfcb = 0;
2355 }
2356 gfar_write(&regs->rctrl, tempval);
2357 }
2358
2359 /* Enables and disables VLAN insertion/extraction */
2360 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2361 {
2362 struct gfar_private *priv = netdev_priv(dev);
2363 struct gfar __iomem *regs = NULL;
2364 unsigned long flags;
2365 u32 tempval;
2366
2367 regs = priv->gfargrp[0].regs;
2368 local_irq_save(flags);
2369 lock_rx_qs(priv);
2370
2371 if (features & NETIF_F_HW_VLAN_CTAG_TX) {
2372 /* Enable VLAN tag insertion */
2373 tempval = gfar_read(&regs->tctrl);
2374 tempval |= TCTRL_VLINS;
2375 gfar_write(&regs->tctrl, tempval);
2376 } else {
2377 /* Disable VLAN tag insertion */
2378 tempval = gfar_read(&regs->tctrl);
2379 tempval &= ~TCTRL_VLINS;
2380 gfar_write(&regs->tctrl, tempval);
2381 }
2382
2383 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
2384 /* Enable VLAN tag extraction */
2385 tempval = gfar_read(&regs->rctrl);
2386 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2387 gfar_write(&regs->rctrl, tempval);
2388 priv->uses_rxfcb = 1;
2389 } else {
2390 /* Disable VLAN tag extraction */
2391 tempval = gfar_read(&regs->rctrl);
2392 tempval &= ~RCTRL_VLEX;
2393 gfar_write(&regs->rctrl, tempval);
2394
2395 gfar_check_rx_parser_mode(priv);
2396 }
2397
2398 gfar_change_mtu(dev, dev->mtu);
2399
2400 unlock_rx_qs(priv);
2401 local_irq_restore(flags);
2402 }
2403
2404 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2405 {
2406 int tempsize, tempval;
2407 struct gfar_private *priv = netdev_priv(dev);
2408 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2409 int oldsize = priv->rx_buffer_size;
2410 int frame_size = new_mtu + ETH_HLEN;
2411
2412 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2413 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2414 return -EINVAL;
2415 }
2416
2417 if (priv->uses_rxfcb)
2418 frame_size += GMAC_FCB_LEN;
2419
2420 frame_size += priv->padding;
2421
2422 tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2423 INCREMENTAL_BUFFER_SIZE;
2424
2425 /* Only stop and start the controller if it isn't already
2426 * stopped, and we changed something
2427 */
2428 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2429 stop_gfar(dev);
2430
2431 priv->rx_buffer_size = tempsize;
2432
2433 dev->mtu = new_mtu;
2434
2435 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2436 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2437
2438 /* If the mtu is larger than the max size for standard
2439 * ethernet frames (ie, a jumbo frame), then set maccfg2
2440 * to allow huge frames, and to check the length
2441 */
2442 tempval = gfar_read(&regs->maccfg2);
2443
2444 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2445 gfar_has_errata(priv, GFAR_ERRATA_74))
2446 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2447 else
2448 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2449
2450 gfar_write(&regs->maccfg2, tempval);
2451
2452 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2453 startup_gfar(dev);
2454
2455 return 0;
2456 }
2457
2458 /* gfar_reset_task gets scheduled when a packet has not been
2459 * transmitted after a set amount of time.
2460 * For now, assume that clearing out all the structures, and
2461 * starting over will fix the problem.
2462 */
2463 static void gfar_reset_task(struct work_struct *work)
2464 {
2465 struct gfar_private *priv = container_of(work, struct gfar_private,
2466 reset_task);
2467 struct net_device *dev = priv->ndev;
2468
2469 if (dev->flags & IFF_UP) {
2470 netif_tx_stop_all_queues(dev);
2471 stop_gfar(dev);
2472 startup_gfar(dev);
2473 netif_tx_start_all_queues(dev);
2474 }
2475
2476 netif_tx_schedule_all(dev);
2477 }
2478
2479 static void gfar_timeout(struct net_device *dev)
2480 {
2481 struct gfar_private *priv = netdev_priv(dev);
2482
2483 dev->stats.tx_errors++;
2484 schedule_work(&priv->reset_task);
2485 }
2486
2487 static void gfar_align_skb(struct sk_buff *skb)
2488 {
2489 /* We need the data buffer to be aligned properly. We will reserve
2490 * as many bytes as needed to align the data properly
2491 */
2492 skb_reserve(skb, RXBUF_ALIGNMENT -
2493 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2494 }
2495
2496 /* Interrupt Handler for Transmit complete */
2497 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2498 {
2499 struct net_device *dev = tx_queue->dev;
2500 struct netdev_queue *txq;
2501 struct gfar_private *priv = netdev_priv(dev);
2502 struct txbd8 *bdp, *next = NULL;
2503 struct txbd8 *lbdp = NULL;
2504 struct txbd8 *base = tx_queue->tx_bd_base;
2505 struct sk_buff *skb;
2506 int skb_dirtytx;
2507 int tx_ring_size = tx_queue->tx_ring_size;
2508 int frags = 0, nr_txbds = 0;
2509 int i;
2510 int howmany = 0;
2511 int tqi = tx_queue->qindex;
2512 unsigned int bytes_sent = 0;
2513 u32 lstatus;
2514 size_t buflen;
2515
2516 txq = netdev_get_tx_queue(dev, tqi);
2517 bdp = tx_queue->dirty_tx;
2518 skb_dirtytx = tx_queue->skb_dirtytx;
2519
2520 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2521 unsigned long flags;
2522
2523 frags = skb_shinfo(skb)->nr_frags;
2524
2525 /* When time stamping, one additional TxBD must be freed.
2526 * Also, we need to dma_unmap_single() the TxPAL.
2527 */
2528 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2529 nr_txbds = frags + 2;
2530 else
2531 nr_txbds = frags + 1;
2532
2533 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2534
2535 lstatus = lbdp->lstatus;
2536
2537 /* Only clean completed frames */
2538 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2539 (lstatus & BD_LENGTH_MASK))
2540 break;
2541
2542 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2543 next = next_txbd(bdp, base, tx_ring_size);
2544 buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2545 } else
2546 buflen = bdp->length;
2547
2548 dma_unmap_single(priv->dev, bdp->bufPtr,
2549 buflen, DMA_TO_DEVICE);
2550
2551 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2552 struct skb_shared_hwtstamps shhwtstamps;
2553 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2554
2555 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2556 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2557 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2558 skb_tstamp_tx(skb, &shhwtstamps);
2559 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2560 bdp = next;
2561 }
2562
2563 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2564 bdp = next_txbd(bdp, base, tx_ring_size);
2565
2566 for (i = 0; i < frags; i++) {
2567 dma_unmap_page(priv->dev, bdp->bufPtr,
2568 bdp->length, DMA_TO_DEVICE);
2569 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2570 bdp = next_txbd(bdp, base, tx_ring_size);
2571 }
2572
2573 bytes_sent += skb->len;
2574
2575 dev_kfree_skb_any(skb);
2576
2577 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2578
2579 skb_dirtytx = (skb_dirtytx + 1) &
2580 TX_RING_MOD_MASK(tx_ring_size);
2581
2582 howmany++;
2583 spin_lock_irqsave(&tx_queue->txlock, flags);
2584 tx_queue->num_txbdfree += nr_txbds;
2585 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2586 }
2587
2588 /* If we freed a buffer, we can restart transmission, if necessary */
2589 if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2590 netif_wake_subqueue(dev, tqi);
2591
2592 /* Update dirty indicators */
2593 tx_queue->skb_dirtytx = skb_dirtytx;
2594 tx_queue->dirty_tx = bdp;
2595
2596 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2597 }
2598
2599 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2600 {
2601 unsigned long flags;
2602
2603 spin_lock_irqsave(&gfargrp->grplock, flags);
2604 if (napi_schedule_prep(&gfargrp->napi)) {
2605 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2606 __napi_schedule(&gfargrp->napi);
2607 } else {
2608 /* Clear IEVENT, so interrupts aren't called again
2609 * because of the packets that have already arrived.
2610 */
2611 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2612 }
2613 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2614
2615 }
2616
2617 /* Interrupt Handler for Transmit complete */
2618 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2619 {
2620 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2621 return IRQ_HANDLED;
2622 }
2623
2624 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2625 struct sk_buff *skb)
2626 {
2627 struct net_device *dev = rx_queue->dev;
2628 struct gfar_private *priv = netdev_priv(dev);
2629 dma_addr_t buf;
2630
2631 buf = dma_map_single(priv->dev, skb->data,
2632 priv->rx_buffer_size, DMA_FROM_DEVICE);
2633 gfar_init_rxbdp(rx_queue, bdp, buf);
2634 }
2635
2636 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2637 {
2638 struct gfar_private *priv = netdev_priv(dev);
2639 struct sk_buff *skb;
2640
2641 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2642 if (!skb)
2643 return NULL;
2644
2645 gfar_align_skb(skb);
2646
2647 return skb;
2648 }
2649
2650 struct sk_buff *gfar_new_skb(struct net_device *dev)
2651 {
2652 return gfar_alloc_skb(dev);
2653 }
2654
2655 static inline void count_errors(unsigned short status, struct net_device *dev)
2656 {
2657 struct gfar_private *priv = netdev_priv(dev);
2658 struct net_device_stats *stats = &dev->stats;
2659 struct gfar_extra_stats *estats = &priv->extra_stats;
2660
2661 /* If the packet was truncated, none of the other errors matter */
2662 if (status & RXBD_TRUNCATED) {
2663 stats->rx_length_errors++;
2664
2665 atomic64_inc(&estats->rx_trunc);
2666
2667 return;
2668 }
2669 /* Count the errors, if there were any */
2670 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2671 stats->rx_length_errors++;
2672
2673 if (status & RXBD_LARGE)
2674 atomic64_inc(&estats->rx_large);
2675 else
2676 atomic64_inc(&estats->rx_short);
2677 }
2678 if (status & RXBD_NONOCTET) {
2679 stats->rx_frame_errors++;
2680 atomic64_inc(&estats->rx_nonoctet);
2681 }
2682 if (status & RXBD_CRCERR) {
2683 atomic64_inc(&estats->rx_crcerr);
2684 stats->rx_crc_errors++;
2685 }
2686 if (status & RXBD_OVERRUN) {
2687 atomic64_inc(&estats->rx_overrun);
2688 stats->rx_crc_errors++;
2689 }
2690 }
2691
2692 irqreturn_t gfar_receive(int irq, void *grp_id)
2693 {
2694 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2695 return IRQ_HANDLED;
2696 }
2697
2698 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2699 {
2700 /* If valid headers were found, and valid sums
2701 * were verified, then we tell the kernel that no
2702 * checksumming is necessary. Otherwise, it is [FIXME]
2703 */
2704 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2705 skb->ip_summed = CHECKSUM_UNNECESSARY;
2706 else
2707 skb_checksum_none_assert(skb);
2708 }
2709
2710
2711 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2712 static void gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2713 int amount_pull, struct napi_struct *napi)
2714 {
2715 struct gfar_private *priv = netdev_priv(dev);
2716 struct rxfcb *fcb = NULL;
2717
2718 /* fcb is at the beginning if exists */
2719 fcb = (struct rxfcb *)skb->data;
2720
2721 /* Remove the FCB from the skb
2722 * Remove the padded bytes, if there are any
2723 */
2724 if (amount_pull) {
2725 skb_record_rx_queue(skb, fcb->rq);
2726 skb_pull(skb, amount_pull);
2727 }
2728
2729 /* Get receive timestamp from the skb */
2730 if (priv->hwts_rx_en) {
2731 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2732 u64 *ns = (u64 *) skb->data;
2733
2734 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2735 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2736 }
2737
2738 if (priv->padding)
2739 skb_pull(skb, priv->padding);
2740
2741 if (dev->features & NETIF_F_RXCSUM)
2742 gfar_rx_checksum(skb, fcb);
2743
2744 /* Tell the skb what kind of packet this is */
2745 skb->protocol = eth_type_trans(skb, dev);
2746
2747 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2748 * Even if vlan rx accel is disabled, on some chips
2749 * RXFCB_VLN is pseudo randomly set.
2750 */
2751 if (dev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2752 fcb->flags & RXFCB_VLN)
2753 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), fcb->vlctl);
2754
2755 /* Send the packet up the stack */
2756 napi_gro_receive(napi, skb);
2757
2758 }
2759
2760 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2761 * until the budget/quota has been reached. Returns the number
2762 * of frames handled
2763 */
2764 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2765 {
2766 struct net_device *dev = rx_queue->dev;
2767 struct rxbd8 *bdp, *base;
2768 struct sk_buff *skb;
2769 int pkt_len;
2770 int amount_pull;
2771 int howmany = 0;
2772 struct gfar_private *priv = netdev_priv(dev);
2773
2774 /* Get the first full descriptor */
2775 bdp = rx_queue->cur_rx;
2776 base = rx_queue->rx_bd_base;
2777
2778 amount_pull = priv->uses_rxfcb ? GMAC_FCB_LEN : 0;
2779
2780 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2781 struct sk_buff *newskb;
2782
2783 rmb();
2784
2785 /* Add another skb for the future */
2786 newskb = gfar_new_skb(dev);
2787
2788 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2789
2790 dma_unmap_single(priv->dev, bdp->bufPtr,
2791 priv->rx_buffer_size, DMA_FROM_DEVICE);
2792
2793 if (unlikely(!(bdp->status & RXBD_ERR) &&
2794 bdp->length > priv->rx_buffer_size))
2795 bdp->status = RXBD_LARGE;
2796
2797 /* We drop the frame if we failed to allocate a new buffer */
2798 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2799 bdp->status & RXBD_ERR)) {
2800 count_errors(bdp->status, dev);
2801
2802 if (unlikely(!newskb))
2803 newskb = skb;
2804 else if (skb)
2805 dev_kfree_skb(skb);
2806 } else {
2807 /* Increment the number of packets */
2808 rx_queue->stats.rx_packets++;
2809 howmany++;
2810
2811 if (likely(skb)) {
2812 pkt_len = bdp->length - ETH_FCS_LEN;
2813 /* Remove the FCS from the packet length */
2814 skb_put(skb, pkt_len);
2815 rx_queue->stats.rx_bytes += pkt_len;
2816 skb_record_rx_queue(skb, rx_queue->qindex);
2817 gfar_process_frame(dev, skb, amount_pull,
2818 &rx_queue->grp->napi);
2819
2820 } else {
2821 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2822 rx_queue->stats.rx_dropped++;
2823 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2824 }
2825
2826 }
2827
2828 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2829
2830 /* Setup the new bdp */
2831 gfar_new_rxbdp(rx_queue, bdp, newskb);
2832
2833 /* Update to the next pointer */
2834 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2835
2836 /* update to point at the next skb */
2837 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2838 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2839 }
2840
2841 /* Update the current rxbd pointer to be the next one */
2842 rx_queue->cur_rx = bdp;
2843
2844 return howmany;
2845 }
2846
2847 static int gfar_poll_sq(struct napi_struct *napi, int budget)
2848 {
2849 struct gfar_priv_grp *gfargrp =
2850 container_of(napi, struct gfar_priv_grp, napi);
2851 struct gfar __iomem *regs = gfargrp->regs;
2852 struct gfar_priv_tx_q *tx_queue = gfargrp->priv->tx_queue[0];
2853 struct gfar_priv_rx_q *rx_queue = gfargrp->priv->rx_queue[0];
2854 int work_done = 0;
2855
2856 /* Clear IEVENT, so interrupts aren't called again
2857 * because of the packets that have already arrived
2858 */
2859 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2860
2861 /* run Tx cleanup to completion */
2862 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2863 gfar_clean_tx_ring(tx_queue);
2864
2865 work_done = gfar_clean_rx_ring(rx_queue, budget);
2866
2867 if (work_done < budget) {
2868 napi_complete(napi);
2869 /* Clear the halt bit in RSTAT */
2870 gfar_write(&regs->rstat, gfargrp->rstat);
2871
2872 gfar_write(&regs->imask, IMASK_DEFAULT);
2873
2874 /* If we are coalescing interrupts, update the timer
2875 * Otherwise, clear it
2876 */
2877 gfar_write(&regs->txic, 0);
2878 if (likely(tx_queue->txcoalescing))
2879 gfar_write(&regs->txic, tx_queue->txic);
2880
2881 gfar_write(&regs->rxic, 0);
2882 if (unlikely(rx_queue->rxcoalescing))
2883 gfar_write(&regs->rxic, rx_queue->rxic);
2884 }
2885
2886 return work_done;
2887 }
2888
2889 static int gfar_poll(struct napi_struct *napi, int budget)
2890 {
2891 struct gfar_priv_grp *gfargrp =
2892 container_of(napi, struct gfar_priv_grp, napi);
2893 struct gfar_private *priv = gfargrp->priv;
2894 struct gfar __iomem *regs = gfargrp->regs;
2895 struct gfar_priv_tx_q *tx_queue = NULL;
2896 struct gfar_priv_rx_q *rx_queue = NULL;
2897 int work_done = 0, work_done_per_q = 0;
2898 int i, budget_per_q = 0;
2899 int has_tx_work;
2900 unsigned long rstat_rxf;
2901 int num_act_queues;
2902
2903 /* Clear IEVENT, so interrupts aren't called again
2904 * because of the packets that have already arrived
2905 */
2906 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2907
2908 rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2909
2910 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2911 if (num_act_queues)
2912 budget_per_q = budget/num_act_queues;
2913
2914 while (1) {
2915 has_tx_work = 0;
2916 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2917 tx_queue = priv->tx_queue[i];
2918 /* run Tx cleanup to completion */
2919 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2920 gfar_clean_tx_ring(tx_queue);
2921 has_tx_work = 1;
2922 }
2923 }
2924
2925 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2926 /* skip queue if not active */
2927 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2928 continue;
2929
2930 rx_queue = priv->rx_queue[i];
2931 work_done_per_q =
2932 gfar_clean_rx_ring(rx_queue, budget_per_q);
2933 work_done += work_done_per_q;
2934
2935 /* finished processing this queue */
2936 if (work_done_per_q < budget_per_q) {
2937 /* clear active queue hw indication */
2938 gfar_write(&regs->rstat,
2939 RSTAT_CLEAR_RXF0 >> i);
2940 rstat_rxf &= ~(RSTAT_CLEAR_RXF0 >> i);
2941 num_act_queues--;
2942
2943 if (!num_act_queues)
2944 break;
2945 /* recompute budget per Rx queue */
2946 budget_per_q =
2947 (budget - work_done) / num_act_queues;
2948 }
2949 }
2950
2951 if (work_done >= budget)
2952 break;
2953
2954 if (!num_act_queues && !has_tx_work) {
2955
2956 napi_complete(napi);
2957
2958 /* Clear the halt bit in RSTAT */
2959 gfar_write(&regs->rstat, gfargrp->rstat);
2960
2961 gfar_write(&regs->imask, IMASK_DEFAULT);
2962
2963 /* If we are coalescing interrupts, update the timer
2964 * Otherwise, clear it
2965 */
2966 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2967 gfargrp->tx_bit_map);
2968 break;
2969 }
2970 }
2971
2972 return work_done;
2973 }
2974
2975 #ifdef CONFIG_NET_POLL_CONTROLLER
2976 /* Polling 'interrupt' - used by things like netconsole to send skbs
2977 * without having to re-enable interrupts. It's not called while
2978 * the interrupt routine is executing.
2979 */
2980 static void gfar_netpoll(struct net_device *dev)
2981 {
2982 struct gfar_private *priv = netdev_priv(dev);
2983 int i;
2984
2985 /* If the device has multiple interrupts, run tx/rx */
2986 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2987 for (i = 0; i < priv->num_grps; i++) {
2988 struct gfar_priv_grp *grp = &priv->gfargrp[i];
2989
2990 disable_irq(gfar_irq(grp, TX)->irq);
2991 disable_irq(gfar_irq(grp, RX)->irq);
2992 disable_irq(gfar_irq(grp, ER)->irq);
2993 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2994 enable_irq(gfar_irq(grp, ER)->irq);
2995 enable_irq(gfar_irq(grp, RX)->irq);
2996 enable_irq(gfar_irq(grp, TX)->irq);
2997 }
2998 } else {
2999 for (i = 0; i < priv->num_grps; i++) {
3000 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3001
3002 disable_irq(gfar_irq(grp, TX)->irq);
3003 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3004 enable_irq(gfar_irq(grp, TX)->irq);
3005 }
3006 }
3007 }
3008 #endif
3009
3010 /* The interrupt handler for devices with one interrupt */
3011 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3012 {
3013 struct gfar_priv_grp *gfargrp = grp_id;
3014
3015 /* Save ievent for future reference */
3016 u32 events = gfar_read(&gfargrp->regs->ievent);
3017
3018 /* Check for reception */
3019 if (events & IEVENT_RX_MASK)
3020 gfar_receive(irq, grp_id);
3021
3022 /* Check for transmit completion */
3023 if (events & IEVENT_TX_MASK)
3024 gfar_transmit(irq, grp_id);
3025
3026 /* Check for errors */
3027 if (events & IEVENT_ERR_MASK)
3028 gfar_error(irq, grp_id);
3029
3030 return IRQ_HANDLED;
3031 }
3032
3033 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3034 {
3035 struct phy_device *phydev = priv->phydev;
3036 u32 val = 0;
3037
3038 if (!phydev->duplex)
3039 return val;
3040
3041 if (!priv->pause_aneg_en) {
3042 if (priv->tx_pause_en)
3043 val |= MACCFG1_TX_FLOW;
3044 if (priv->rx_pause_en)
3045 val |= MACCFG1_RX_FLOW;
3046 } else {
3047 u16 lcl_adv, rmt_adv;
3048 u8 flowctrl;
3049 /* get link partner capabilities */
3050 rmt_adv = 0;
3051 if (phydev->pause)
3052 rmt_adv = LPA_PAUSE_CAP;
3053 if (phydev->asym_pause)
3054 rmt_adv |= LPA_PAUSE_ASYM;
3055
3056 lcl_adv = mii_advertise_flowctrl(phydev->advertising);
3057
3058 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3059 if (flowctrl & FLOW_CTRL_TX)
3060 val |= MACCFG1_TX_FLOW;
3061 if (flowctrl & FLOW_CTRL_RX)
3062 val |= MACCFG1_RX_FLOW;
3063 }
3064
3065 return val;
3066 }
3067
3068 /* Called every time the controller might need to be made
3069 * aware of new link state. The PHY code conveys this
3070 * information through variables in the phydev structure, and this
3071 * function converts those variables into the appropriate
3072 * register values, and can bring down the device if needed.
3073 */
3074 static void adjust_link(struct net_device *dev)
3075 {
3076 struct gfar_private *priv = netdev_priv(dev);
3077 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3078 unsigned long flags;
3079 struct phy_device *phydev = priv->phydev;
3080 int new_state = 0;
3081
3082 local_irq_save(flags);
3083 lock_tx_qs(priv);
3084
3085 if (phydev->link) {
3086 u32 tempval1 = gfar_read(&regs->maccfg1);
3087 u32 tempval = gfar_read(&regs->maccfg2);
3088 u32 ecntrl = gfar_read(&regs->ecntrl);
3089
3090 /* Now we make sure that we can be in full duplex mode.
3091 * If not, we operate in half-duplex mode.
3092 */
3093 if (phydev->duplex != priv->oldduplex) {
3094 new_state = 1;
3095 if (!(phydev->duplex))
3096 tempval &= ~(MACCFG2_FULL_DUPLEX);
3097 else
3098 tempval |= MACCFG2_FULL_DUPLEX;
3099
3100 priv->oldduplex = phydev->duplex;
3101 }
3102
3103 if (phydev->speed != priv->oldspeed) {
3104 new_state = 1;
3105 switch (phydev->speed) {
3106 case 1000:
3107 tempval =
3108 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3109
3110 ecntrl &= ~(ECNTRL_R100);
3111 break;
3112 case 100:
3113 case 10:
3114 tempval =
3115 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3116
3117 /* Reduced mode distinguishes
3118 * between 10 and 100
3119 */
3120 if (phydev->speed == SPEED_100)
3121 ecntrl |= ECNTRL_R100;
3122 else
3123 ecntrl &= ~(ECNTRL_R100);
3124 break;
3125 default:
3126 netif_warn(priv, link, dev,
3127 "Ack! Speed (%d) is not 10/100/1000!\n",
3128 phydev->speed);
3129 break;
3130 }
3131
3132 priv->oldspeed = phydev->speed;
3133 }
3134
3135 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3136 tempval1 |= gfar_get_flowctrl_cfg(priv);
3137
3138 gfar_write(&regs->maccfg1, tempval1);
3139 gfar_write(&regs->maccfg2, tempval);
3140 gfar_write(&regs->ecntrl, ecntrl);
3141
3142 if (!priv->oldlink) {
3143 new_state = 1;
3144 priv->oldlink = 1;
3145 }
3146 } else if (priv->oldlink) {
3147 new_state = 1;
3148 priv->oldlink = 0;
3149 priv->oldspeed = 0;
3150 priv->oldduplex = -1;
3151 }
3152
3153 if (new_state && netif_msg_link(priv))
3154 phy_print_status(phydev);
3155 unlock_tx_qs(priv);
3156 local_irq_restore(flags);
3157 }
3158
3159 /* Update the hash table based on the current list of multicast
3160 * addresses we subscribe to. Also, change the promiscuity of
3161 * the device based on the flags (this function is called
3162 * whenever dev->flags is changed
3163 */
3164 static void gfar_set_multi(struct net_device *dev)
3165 {
3166 struct netdev_hw_addr *ha;
3167 struct gfar_private *priv = netdev_priv(dev);
3168 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3169 u32 tempval;
3170
3171 if (dev->flags & IFF_PROMISC) {
3172 /* Set RCTRL to PROM */
3173 tempval = gfar_read(&regs->rctrl);
3174 tempval |= RCTRL_PROM;
3175 gfar_write(&regs->rctrl, tempval);
3176 } else {
3177 /* Set RCTRL to not PROM */
3178 tempval = gfar_read(&regs->rctrl);
3179 tempval &= ~(RCTRL_PROM);
3180 gfar_write(&regs->rctrl, tempval);
3181 }
3182
3183 if (dev->flags & IFF_ALLMULTI) {
3184 /* Set the hash to rx all multicast frames */
3185 gfar_write(&regs->igaddr0, 0xffffffff);
3186 gfar_write(&regs->igaddr1, 0xffffffff);
3187 gfar_write(&regs->igaddr2, 0xffffffff);
3188 gfar_write(&regs->igaddr3, 0xffffffff);
3189 gfar_write(&regs->igaddr4, 0xffffffff);
3190 gfar_write(&regs->igaddr5, 0xffffffff);
3191 gfar_write(&regs->igaddr6, 0xffffffff);
3192 gfar_write(&regs->igaddr7, 0xffffffff);
3193 gfar_write(&regs->gaddr0, 0xffffffff);
3194 gfar_write(&regs->gaddr1, 0xffffffff);
3195 gfar_write(&regs->gaddr2, 0xffffffff);
3196 gfar_write(&regs->gaddr3, 0xffffffff);
3197 gfar_write(&regs->gaddr4, 0xffffffff);
3198 gfar_write(&regs->gaddr5, 0xffffffff);
3199 gfar_write(&regs->gaddr6, 0xffffffff);
3200 gfar_write(&regs->gaddr7, 0xffffffff);
3201 } else {
3202 int em_num;
3203 int idx;
3204
3205 /* zero out the hash */
3206 gfar_write(&regs->igaddr0, 0x0);
3207 gfar_write(&regs->igaddr1, 0x0);
3208 gfar_write(&regs->igaddr2, 0x0);
3209 gfar_write(&regs->igaddr3, 0x0);
3210 gfar_write(&regs->igaddr4, 0x0);
3211 gfar_write(&regs->igaddr5, 0x0);
3212 gfar_write(&regs->igaddr6, 0x0);
3213 gfar_write(&regs->igaddr7, 0x0);
3214 gfar_write(&regs->gaddr0, 0x0);
3215 gfar_write(&regs->gaddr1, 0x0);
3216 gfar_write(&regs->gaddr2, 0x0);
3217 gfar_write(&regs->gaddr3, 0x0);
3218 gfar_write(&regs->gaddr4, 0x0);
3219 gfar_write(&regs->gaddr5, 0x0);
3220 gfar_write(&regs->gaddr6, 0x0);
3221 gfar_write(&regs->gaddr7, 0x0);
3222
3223 /* If we have extended hash tables, we need to
3224 * clear the exact match registers to prepare for
3225 * setting them
3226 */
3227 if (priv->extended_hash) {
3228 em_num = GFAR_EM_NUM + 1;
3229 gfar_clear_exact_match(dev);
3230 idx = 1;
3231 } else {
3232 idx = 0;
3233 em_num = 0;
3234 }
3235
3236 if (netdev_mc_empty(dev))
3237 return;
3238
3239 /* Parse the list, and set the appropriate bits */
3240 netdev_for_each_mc_addr(ha, dev) {
3241 if (idx < em_num) {
3242 gfar_set_mac_for_addr(dev, idx, ha->addr);
3243 idx++;
3244 } else
3245 gfar_set_hash_for_addr(dev, ha->addr);
3246 }
3247 }
3248 }
3249
3250
3251 /* Clears each of the exact match registers to zero, so they
3252 * don't interfere with normal reception
3253 */
3254 static void gfar_clear_exact_match(struct net_device *dev)
3255 {
3256 int idx;
3257 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3258
3259 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3260 gfar_set_mac_for_addr(dev, idx, zero_arr);
3261 }
3262
3263 /* Set the appropriate hash bit for the given addr */
3264 /* The algorithm works like so:
3265 * 1) Take the Destination Address (ie the multicast address), and
3266 * do a CRC on it (little endian), and reverse the bits of the
3267 * result.
3268 * 2) Use the 8 most significant bits as a hash into a 256-entry
3269 * table. The table is controlled through 8 32-bit registers:
3270 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3271 * gaddr7. This means that the 3 most significant bits in the
3272 * hash index which gaddr register to use, and the 5 other bits
3273 * indicate which bit (assuming an IBM numbering scheme, which
3274 * for PowerPC (tm) is usually the case) in the register holds
3275 * the entry.
3276 */
3277 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3278 {
3279 u32 tempval;
3280 struct gfar_private *priv = netdev_priv(dev);
3281 u32 result = ether_crc(ETH_ALEN, addr);
3282 int width = priv->hash_width;
3283 u8 whichbit = (result >> (32 - width)) & 0x1f;
3284 u8 whichreg = result >> (32 - width + 5);
3285 u32 value = (1 << (31-whichbit));
3286
3287 tempval = gfar_read(priv->hash_regs[whichreg]);
3288 tempval |= value;
3289 gfar_write(priv->hash_regs[whichreg], tempval);
3290 }
3291
3292
3293 /* There are multiple MAC Address register pairs on some controllers
3294 * This function sets the numth pair to a given address
3295 */
3296 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3297 const u8 *addr)
3298 {
3299 struct gfar_private *priv = netdev_priv(dev);
3300 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3301 int idx;
3302 char tmpbuf[ETH_ALEN];
3303 u32 tempval;
3304 u32 __iomem *macptr = &regs->macstnaddr1;
3305
3306 macptr += num*2;
3307
3308 /* Now copy it into the mac registers backwards, cuz
3309 * little endian is silly
3310 */
3311 for (idx = 0; idx < ETH_ALEN; idx++)
3312 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3313
3314 gfar_write(macptr, *((u32 *) (tmpbuf)));
3315
3316 tempval = *((u32 *) (tmpbuf + 4));
3317
3318 gfar_write(macptr+1, tempval);
3319 }
3320
3321 /* GFAR error interrupt handler */
3322 static irqreturn_t gfar_error(int irq, void *grp_id)
3323 {
3324 struct gfar_priv_grp *gfargrp = grp_id;
3325 struct gfar __iomem *regs = gfargrp->regs;
3326 struct gfar_private *priv= gfargrp->priv;
3327 struct net_device *dev = priv->ndev;
3328
3329 /* Save ievent for future reference */
3330 u32 events = gfar_read(&regs->ievent);
3331
3332 /* Clear IEVENT */
3333 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3334
3335 /* Magic Packet is not an error. */
3336 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3337 (events & IEVENT_MAG))
3338 events &= ~IEVENT_MAG;
3339
3340 /* Hmm... */
3341 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3342 netdev_dbg(dev,
3343 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3344 events, gfar_read(&regs->imask));
3345
3346 /* Update the error counters */
3347 if (events & IEVENT_TXE) {
3348 dev->stats.tx_errors++;
3349
3350 if (events & IEVENT_LC)
3351 dev->stats.tx_window_errors++;
3352 if (events & IEVENT_CRL)
3353 dev->stats.tx_aborted_errors++;
3354 if (events & IEVENT_XFUN) {
3355 unsigned long flags;
3356
3357 netif_dbg(priv, tx_err, dev,
3358 "TX FIFO underrun, packet dropped\n");
3359 dev->stats.tx_dropped++;
3360 atomic64_inc(&priv->extra_stats.tx_underrun);
3361
3362 local_irq_save(flags);
3363 lock_tx_qs(priv);
3364
3365 /* Reactivate the Tx Queues */
3366 gfar_write(&regs->tstat, gfargrp->tstat);
3367
3368 unlock_tx_qs(priv);
3369 local_irq_restore(flags);
3370 }
3371 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3372 }
3373 if (events & IEVENT_BSY) {
3374 dev->stats.rx_errors++;
3375 atomic64_inc(&priv->extra_stats.rx_bsy);
3376
3377 gfar_receive(irq, grp_id);
3378
3379 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3380 gfar_read(&regs->rstat));
3381 }
3382 if (events & IEVENT_BABR) {
3383 dev->stats.rx_errors++;
3384 atomic64_inc(&priv->extra_stats.rx_babr);
3385
3386 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3387 }
3388 if (events & IEVENT_EBERR) {
3389 atomic64_inc(&priv->extra_stats.eberr);
3390 netif_dbg(priv, rx_err, dev, "bus error\n");
3391 }
3392 if (events & IEVENT_RXC)
3393 netif_dbg(priv, rx_status, dev, "control frame\n");
3394
3395 if (events & IEVENT_BABT) {
3396 atomic64_inc(&priv->extra_stats.tx_babt);
3397 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3398 }
3399 return IRQ_HANDLED;
3400 }
3401
3402 static struct of_device_id gfar_match[] =
3403 {
3404 {
3405 .type = "network",
3406 .compatible = "gianfar",
3407 },
3408 {
3409 .compatible = "fsl,etsec2",
3410 },
3411 {},
3412 };
3413 MODULE_DEVICE_TABLE(of, gfar_match);
3414
3415 /* Structure for a device driver */
3416 static struct platform_driver gfar_driver = {
3417 .driver = {
3418 .name = "fsl-gianfar",
3419 .owner = THIS_MODULE,
3420 .pm = GFAR_PM_OPS,
3421 .of_match_table = gfar_match,
3422 },
3423 .probe = gfar_probe,
3424 .remove = gfar_remove,
3425 };
3426
3427 module_platform_driver(gfar_driver);
This page took 0.106285 seconds and 5 git commands to generate.