Merge tag 'ofs-pull-tag-1' of git://git.kernel.org/pub/scm/linux/kernel/git/hubcap...
[deliverable/linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 int size, dma_addr_t dma, int frag_end,
44 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 struct iphdr *iphdr;
49 struct ipv6hdr *ipv6hdr;
50 struct sk_buff *skb;
51 __be16 protocol;
52 u8 bn_pid = 0;
53 u8 rrcfv = 0;
54 u8 ip_offset = 0;
55 u8 tvsvsn = 0;
56 u16 mss = 0;
57 u8 l4_len = 0;
58 u16 paylen = 0;
59
60 desc_cb->priv = priv;
61 desc_cb->length = size;
62 desc_cb->dma = dma;
63 desc_cb->type = type;
64
65 desc->addr = cpu_to_le64(dma);
66 desc->tx.send_size = cpu_to_le16((u16)size);
67
68 /* config bd buffer end */
69 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71
72 /* fill port_id in the tx bd for sending management pkts */
73 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75
76 if (type == DESC_TYPE_SKB) {
77 skb = (struct sk_buff *)priv;
78
79 if (skb->ip_summed == CHECKSUM_PARTIAL) {
80 skb_reset_mac_len(skb);
81 protocol = skb->protocol;
82 ip_offset = ETH_HLEN;
83
84 if (protocol == htons(ETH_P_8021Q)) {
85 ip_offset += VLAN_HLEN;
86 protocol = vlan_get_protocol(skb);
87 skb->protocol = protocol;
88 }
89
90 if (skb->protocol == htons(ETH_P_IP)) {
91 iphdr = ip_hdr(skb);
92 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94
95 /* check for tcp/udp header */
96 if (iphdr->protocol == IPPROTO_TCP &&
97 skb_is_gso(skb)) {
98 hnae_set_bit(tvsvsn,
99 HNSV2_TXD_TSE_B, 1);
100 l4_len = tcp_hdrlen(skb);
101 mss = skb_shinfo(skb)->gso_size;
102 paylen = skb->len - SKB_TMP_LEN(skb);
103 }
104 } else if (skb->protocol == htons(ETH_P_IPV6)) {
105 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106 ipv6hdr = ipv6_hdr(skb);
107 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108
109 /* check for tcp/udp header */
110 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112 hnae_set_bit(tvsvsn,
113 HNSV2_TXD_TSE_B, 1);
114 l4_len = tcp_hdrlen(skb);
115 mss = skb_shinfo(skb)->gso_size;
116 paylen = skb->len - SKB_TMP_LEN(skb);
117 }
118 }
119 desc->tx.ip_offset = ip_offset;
120 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121 desc->tx.mss = cpu_to_le16(mss);
122 desc->tx.l4_len = l4_len;
123 desc->tx.paylen = cpu_to_le16(paylen);
124 }
125 }
126
127 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128
129 desc->tx.bn_pid = bn_pid;
130 desc->tx.ra_ri_cs_fe_vld = rrcfv;
131
132 ring_ptr_move_fw(ring, next_to_use);
133 }
134
135 static void fill_desc(struct hnae_ring *ring, void *priv,
136 int size, dma_addr_t dma, int frag_end,
137 int buf_num, enum hns_desc_type type, int mtu)
138 {
139 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
140 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
141 struct sk_buff *skb;
142 __be16 protocol;
143 u32 ip_offset;
144 u32 asid_bufnum_pid = 0;
145 u32 flag_ipoffset = 0;
146
147 desc_cb->priv = priv;
148 desc_cb->length = size;
149 desc_cb->dma = dma;
150 desc_cb->type = type;
151
152 desc->addr = cpu_to_le64(dma);
153 desc->tx.send_size = cpu_to_le16((u16)size);
154
155 /*config bd buffer end */
156 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
157
158 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
159
160 if (type == DESC_TYPE_SKB) {
161 skb = (struct sk_buff *)priv;
162
163 if (skb->ip_summed == CHECKSUM_PARTIAL) {
164 protocol = skb->protocol;
165 ip_offset = ETH_HLEN;
166
167 /*if it is a SW VLAN check the next protocol*/
168 if (protocol == htons(ETH_P_8021Q)) {
169 ip_offset += VLAN_HLEN;
170 protocol = vlan_get_protocol(skb);
171 skb->protocol = protocol;
172 }
173
174 if (skb->protocol == htons(ETH_P_IP)) {
175 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
176 /* check for tcp/udp header */
177 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
178
179 } else if (skb->protocol == htons(ETH_P_IPV6)) {
180 /* ipv6 has not l3 cs, check for L4 header */
181 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
182 }
183
184 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
185 }
186 }
187
188 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
189
190 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
191 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
192
193 ring_ptr_move_fw(ring, next_to_use);
194 }
195
196 static void unfill_desc(struct hnae_ring *ring)
197 {
198 ring_ptr_move_bw(ring, next_to_use);
199 }
200
201 static int hns_nic_maybe_stop_tx(
202 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
203 {
204 struct sk_buff *skb = *out_skb;
205 struct sk_buff *new_skb = NULL;
206 int buf_num;
207
208 /* no. of segments (plus a header) */
209 buf_num = skb_shinfo(skb)->nr_frags + 1;
210
211 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
212 if (ring_space(ring) < 1)
213 return -EBUSY;
214
215 new_skb = skb_copy(skb, GFP_ATOMIC);
216 if (!new_skb)
217 return -ENOMEM;
218
219 dev_kfree_skb_any(skb);
220 *out_skb = new_skb;
221 buf_num = 1;
222 } else if (buf_num > ring_space(ring)) {
223 return -EBUSY;
224 }
225
226 *bnum = buf_num;
227 return 0;
228 }
229
230 static int hns_nic_maybe_stop_tso(
231 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
232 {
233 int i;
234 int size;
235 int buf_num;
236 int frag_num;
237 struct sk_buff *skb = *out_skb;
238 struct sk_buff *new_skb = NULL;
239 struct skb_frag_struct *frag;
240
241 size = skb_headlen(skb);
242 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
243
244 frag_num = skb_shinfo(skb)->nr_frags;
245 for (i = 0; i < frag_num; i++) {
246 frag = &skb_shinfo(skb)->frags[i];
247 size = skb_frag_size(frag);
248 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
249 }
250
251 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
252 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253 if (ring_space(ring) < buf_num)
254 return -EBUSY;
255 /* manual split the send packet */
256 new_skb = skb_copy(skb, GFP_ATOMIC);
257 if (!new_skb)
258 return -ENOMEM;
259 dev_kfree_skb_any(skb);
260 *out_skb = new_skb;
261
262 } else if (ring_space(ring) < buf_num) {
263 return -EBUSY;
264 }
265
266 *bnum = buf_num;
267 return 0;
268 }
269
270 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
271 int size, dma_addr_t dma, int frag_end,
272 int buf_num, enum hns_desc_type type, int mtu)
273 {
274 int frag_buf_num;
275 int sizeoflast;
276 int k;
277
278 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
279 sizeoflast = size % BD_MAX_SEND_SIZE;
280 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
281
282 /* when the frag size is bigger than hardware, split this frag */
283 for (k = 0; k < frag_buf_num; k++)
284 fill_v2_desc(ring, priv,
285 (k == frag_buf_num - 1) ?
286 sizeoflast : BD_MAX_SEND_SIZE,
287 dma + BD_MAX_SEND_SIZE * k,
288 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
289 buf_num,
290 (type == DESC_TYPE_SKB && !k) ?
291 DESC_TYPE_SKB : DESC_TYPE_PAGE,
292 mtu);
293 }
294
295 int hns_nic_net_xmit_hw(struct net_device *ndev,
296 struct sk_buff *skb,
297 struct hns_nic_ring_data *ring_data)
298 {
299 struct hns_nic_priv *priv = netdev_priv(ndev);
300 struct device *dev = priv->dev;
301 struct hnae_ring *ring = ring_data->ring;
302 struct netdev_queue *dev_queue;
303 struct skb_frag_struct *frag;
304 int buf_num;
305 int seg_num;
306 dma_addr_t dma;
307 int size, next_to_use;
308 int i;
309
310 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
311 case -EBUSY:
312 ring->stats.tx_busy++;
313 goto out_net_tx_busy;
314 case -ENOMEM:
315 ring->stats.sw_err_cnt++;
316 netdev_err(ndev, "no memory to xmit!\n");
317 goto out_err_tx_ok;
318 default:
319 break;
320 }
321
322 /* no. of segments (plus a header) */
323 seg_num = skb_shinfo(skb)->nr_frags + 1;
324 next_to_use = ring->next_to_use;
325
326 /* fill the first part */
327 size = skb_headlen(skb);
328 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
329 if (dma_mapping_error(dev, dma)) {
330 netdev_err(ndev, "TX head DMA map failed\n");
331 ring->stats.sw_err_cnt++;
332 goto out_err_tx_ok;
333 }
334 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
335 buf_num, DESC_TYPE_SKB, ndev->mtu);
336
337 /* fill the fragments */
338 for (i = 1; i < seg_num; i++) {
339 frag = &skb_shinfo(skb)->frags[i - 1];
340 size = skb_frag_size(frag);
341 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
342 if (dma_mapping_error(dev, dma)) {
343 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
344 ring->stats.sw_err_cnt++;
345 goto out_map_frag_fail;
346 }
347 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
348 seg_num - 1 == i ? 1 : 0, buf_num,
349 DESC_TYPE_PAGE, ndev->mtu);
350 }
351
352 /*complete translate all packets*/
353 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
354 netdev_tx_sent_queue(dev_queue, skb->len);
355
356 wmb(); /* commit all data before submit */
357 assert(skb->queue_mapping < priv->ae_handle->q_num);
358 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
359 ring->stats.tx_pkts++;
360 ring->stats.tx_bytes += skb->len;
361
362 return NETDEV_TX_OK;
363
364 out_map_frag_fail:
365
366 while (ring->next_to_use != next_to_use) {
367 unfill_desc(ring);
368 if (ring->next_to_use != next_to_use)
369 dma_unmap_page(dev,
370 ring->desc_cb[ring->next_to_use].dma,
371 ring->desc_cb[ring->next_to_use].length,
372 DMA_TO_DEVICE);
373 else
374 dma_unmap_single(dev,
375 ring->desc_cb[next_to_use].dma,
376 ring->desc_cb[next_to_use].length,
377 DMA_TO_DEVICE);
378 }
379
380 out_err_tx_ok:
381
382 dev_kfree_skb_any(skb);
383 return NETDEV_TX_OK;
384
385 out_net_tx_busy:
386
387 netif_stop_subqueue(ndev, skb->queue_mapping);
388
389 /* Herbert's original patch had:
390 * smp_mb__after_netif_stop_queue();
391 * but since that doesn't exist yet, just open code it.
392 */
393 smp_mb();
394 return NETDEV_TX_BUSY;
395 }
396
397 /**
398 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
399 * @data: pointer to the start of the headers
400 * @max: total length of section to find headers in
401 *
402 * This function is meant to determine the length of headers that will
403 * be recognized by hardware for LRO, GRO, and RSC offloads. The main
404 * motivation of doing this is to only perform one pull for IPv4 TCP
405 * packets so that we can do basic things like calculating the gso_size
406 * based on the average data per packet.
407 **/
408 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
409 unsigned int max_size)
410 {
411 unsigned char *network;
412 u8 hlen;
413
414 /* this should never happen, but better safe than sorry */
415 if (max_size < ETH_HLEN)
416 return max_size;
417
418 /* initialize network frame pointer */
419 network = data;
420
421 /* set first protocol and move network header forward */
422 network += ETH_HLEN;
423
424 /* handle any vlan tag if present */
425 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
426 == HNS_RX_FLAG_VLAN_PRESENT) {
427 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
428 return max_size;
429
430 network += VLAN_HLEN;
431 }
432
433 /* handle L3 protocols */
434 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
435 == HNS_RX_FLAG_L3ID_IPV4) {
436 if ((typeof(max_size))(network - data) >
437 (max_size - sizeof(struct iphdr)))
438 return max_size;
439
440 /* access ihl as a u8 to avoid unaligned access on ia64 */
441 hlen = (network[0] & 0x0F) << 2;
442
443 /* verify hlen meets minimum size requirements */
444 if (hlen < sizeof(struct iphdr))
445 return network - data;
446
447 /* record next protocol if header is present */
448 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
449 == HNS_RX_FLAG_L3ID_IPV6) {
450 if ((typeof(max_size))(network - data) >
451 (max_size - sizeof(struct ipv6hdr)))
452 return max_size;
453
454 /* record next protocol */
455 hlen = sizeof(struct ipv6hdr);
456 } else {
457 return network - data;
458 }
459
460 /* relocate pointer to start of L4 header */
461 network += hlen;
462
463 /* finally sort out TCP/UDP */
464 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
465 == HNS_RX_FLAG_L4ID_TCP) {
466 if ((typeof(max_size))(network - data) >
467 (max_size - sizeof(struct tcphdr)))
468 return max_size;
469
470 /* access doff as a u8 to avoid unaligned access on ia64 */
471 hlen = (network[12] & 0xF0) >> 2;
472
473 /* verify hlen meets minimum size requirements */
474 if (hlen < sizeof(struct tcphdr))
475 return network - data;
476
477 network += hlen;
478 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
479 == HNS_RX_FLAG_L4ID_UDP) {
480 if ((typeof(max_size))(network - data) >
481 (max_size - sizeof(struct udphdr)))
482 return max_size;
483
484 network += sizeof(struct udphdr);
485 }
486
487 /* If everything has gone correctly network should be the
488 * data section of the packet and will be the end of the header.
489 * If not then it probably represents the end of the last recognized
490 * header.
491 */
492 if ((typeof(max_size))(network - data) < max_size)
493 return network - data;
494 else
495 return max_size;
496 }
497
498 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
499 struct hnae_ring *ring, int pull_len,
500 struct hnae_desc_cb *desc_cb)
501 {
502 struct hnae_desc *desc;
503 int truesize, size;
504 int last_offset;
505 bool twobufs;
506
507 twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
508
509 desc = &ring->desc[ring->next_to_clean];
510 size = le16_to_cpu(desc->rx.size);
511
512 if (twobufs) {
513 truesize = hnae_buf_size(ring);
514 } else {
515 truesize = ALIGN(size, L1_CACHE_BYTES);
516 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
517 }
518
519 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
520 size - pull_len, truesize - pull_len);
521
522 /* avoid re-using remote pages,flag default unreuse */
523 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
524 return;
525
526 if (twobufs) {
527 /* if we are only owner of page we can reuse it */
528 if (likely(page_count(desc_cb->priv) == 1)) {
529 /* flip page offset to other buffer */
530 desc_cb->page_offset ^= truesize;
531
532 desc_cb->reuse_flag = 1;
533 /* bump ref count on page before it is given*/
534 get_page(desc_cb->priv);
535 }
536 return;
537 }
538
539 /* move offset up to the next cache line */
540 desc_cb->page_offset += truesize;
541
542 if (desc_cb->page_offset <= last_offset) {
543 desc_cb->reuse_flag = 1;
544 /* bump ref count on page before it is given*/
545 get_page(desc_cb->priv);
546 }
547 }
548
549 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
550 {
551 *out_bnum = hnae_get_field(bnum_flag,
552 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
553 }
554
555 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
556 {
557 *out_bnum = hnae_get_field(bnum_flag,
558 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
559 }
560
561 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
562 struct sk_buff **out_skb, int *out_bnum)
563 {
564 struct hnae_ring *ring = ring_data->ring;
565 struct net_device *ndev = ring_data->napi.dev;
566 struct hns_nic_priv *priv = netdev_priv(ndev);
567 struct sk_buff *skb;
568 struct hnae_desc *desc;
569 struct hnae_desc_cb *desc_cb;
570 struct ethhdr *eh;
571 unsigned char *va;
572 int bnum, length, i;
573 int pull_len;
574 u32 bnum_flag;
575
576 desc = &ring->desc[ring->next_to_clean];
577 desc_cb = &ring->desc_cb[ring->next_to_clean];
578
579 prefetch(desc);
580
581 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582
583 /* prefetch first cache line of first page */
584 prefetch(va);
585 #if L1_CACHE_BYTES < 128
586 prefetch(va + L1_CACHE_BYTES);
587 #endif
588
589 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
590 HNS_RX_HEAD_SIZE);
591 if (unlikely(!skb)) {
592 netdev_err(ndev, "alloc rx skb fail\n");
593 ring->stats.sw_err_cnt++;
594 return -ENOMEM;
595 }
596
597 prefetchw(skb->data);
598 length = le16_to_cpu(desc->rx.pkt_len);
599 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
600 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
601 *out_bnum = bnum;
602
603 if (length <= HNS_RX_HEAD_SIZE) {
604 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
605
606 /* we can reuse buffer as-is, just make sure it is local */
607 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
608 desc_cb->reuse_flag = 1;
609 else /* this page cannot be reused so discard it */
610 put_page(desc_cb->priv);
611
612 ring_ptr_move_fw(ring, next_to_clean);
613
614 if (unlikely(bnum != 1)) { /* check err*/
615 *out_bnum = 1;
616 goto out_bnum_err;
617 }
618 } else {
619 ring->stats.seg_pkt_cnt++;
620
621 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
622 memcpy(__skb_put(skb, pull_len), va,
623 ALIGN(pull_len, sizeof(long)));
624
625 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
626 ring_ptr_move_fw(ring, next_to_clean);
627
628 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
629 *out_bnum = 1;
630 goto out_bnum_err;
631 }
632 for (i = 1; i < bnum; i++) {
633 desc = &ring->desc[ring->next_to_clean];
634 desc_cb = &ring->desc_cb[ring->next_to_clean];
635
636 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
637 ring_ptr_move_fw(ring, next_to_clean);
638 }
639 }
640
641 /* check except process, free skb and jump the desc */
642 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
643 out_bnum_err:
644 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
645 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
646 bnum, ring->max_desc_num_per_pkt,
647 length, (int)MAX_SKB_FRAGS,
648 ((u64 *)desc)[0], ((u64 *)desc)[1]);
649 ring->stats.err_bd_num++;
650 dev_kfree_skb_any(skb);
651 return -EDOM;
652 }
653
654 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
655
656 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
657 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
658 ((u64 *)desc)[0], ((u64 *)desc)[1]);
659 ring->stats.non_vld_descs++;
660 dev_kfree_skb_any(skb);
661 return -EINVAL;
662 }
663
664 if (unlikely((!desc->rx.pkt_len) ||
665 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
666 ring->stats.err_pkt_len++;
667 dev_kfree_skb_any(skb);
668 return -EFAULT;
669 }
670
671 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
672 ring->stats.l2_err++;
673 dev_kfree_skb_any(skb);
674 return -EFAULT;
675 }
676
677 /* filter out multicast pkt with the same src mac as this port */
678 eh = eth_hdr(skb);
679 if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
680 ether_addr_equal(ndev->dev_addr, eh->h_source))) {
681 dev_kfree_skb_any(skb);
682 return -EFAULT;
683 }
684
685 ring->stats.rx_pkts++;
686 ring->stats.rx_bytes += skb->len;
687
688 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
689 hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
690 ring->stats.l3l4_csum_err++;
691 return 0;
692 }
693
694 skb->ip_summed = CHECKSUM_UNNECESSARY;
695
696 return 0;
697 }
698
699 static void
700 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
701 {
702 int i, ret;
703 struct hnae_desc_cb res_cbs;
704 struct hnae_desc_cb *desc_cb;
705 struct hnae_ring *ring = ring_data->ring;
706 struct net_device *ndev = ring_data->napi.dev;
707
708 for (i = 0; i < cleand_count; i++) {
709 desc_cb = &ring->desc_cb[ring->next_to_use];
710 if (desc_cb->reuse_flag) {
711 ring->stats.reuse_pg_cnt++;
712 hnae_reuse_buffer(ring, ring->next_to_use);
713 } else {
714 ret = hnae_reserve_buffer_map(ring, &res_cbs);
715 if (ret) {
716 ring->stats.sw_err_cnt++;
717 netdev_err(ndev, "hnae reserve buffer map failed.\n");
718 break;
719 }
720 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
721 }
722
723 ring_ptr_move_fw(ring, next_to_use);
724 }
725
726 wmb(); /* make all data has been write before submit */
727 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
728 }
729
730 /* return error number for error or number of desc left to take
731 */
732 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
733 struct sk_buff *skb)
734 {
735 struct net_device *ndev = ring_data->napi.dev;
736
737 skb->protocol = eth_type_trans(skb, ndev);
738 (void)napi_gro_receive(&ring_data->napi, skb);
739 ndev->last_rx = jiffies;
740 }
741
742 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
743 int budget, void *v)
744 {
745 struct hnae_ring *ring = ring_data->ring;
746 struct sk_buff *skb;
747 int num, bnum, ex_num;
748 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
749 int recv_pkts, recv_bds, clean_count, err;
750
751 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
752 rmb(); /* make sure num taken effect before the other data is touched */
753
754 recv_pkts = 0, recv_bds = 0, clean_count = 0;
755 recv:
756 while (recv_pkts < budget && recv_bds < num) {
757 /* reuse or realloc buffers*/
758 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
759 hns_nic_alloc_rx_buffers(ring_data, clean_count);
760 clean_count = 0;
761 }
762
763 /* poll one pkg*/
764 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
765 if (unlikely(!skb)) /* this fault cannot be repaired */
766 break;
767
768 recv_bds += bnum;
769 clean_count += bnum;
770 if (unlikely(err)) { /* do jump the err */
771 recv_pkts++;
772 continue;
773 }
774
775 /* do update ip stack process*/
776 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
777 ring_data, skb);
778 recv_pkts++;
779 }
780
781 /* make all data has been write before submit */
782 if (recv_pkts < budget) {
783 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
784
785 if (ex_num > clean_count) {
786 num += ex_num - clean_count;
787 rmb(); /*complete read rx ring bd number*/
788 goto recv;
789 }
790 }
791
792 /* make all data has been write before submit */
793 if (clean_count > 0)
794 hns_nic_alloc_rx_buffers(ring_data, clean_count);
795
796 return recv_pkts;
797 }
798
799 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
800 {
801 struct hnae_ring *ring = ring_data->ring;
802 int num = 0;
803
804 /* for hardware bug fixed */
805 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
806
807 if (num > 0) {
808 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
809 ring_data->ring, 1);
810
811 napi_schedule(&ring_data->napi);
812 }
813 }
814
815 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
816 int *bytes, int *pkts)
817 {
818 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
819
820 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
821 (*bytes) += desc_cb->length;
822 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
823 hnae_free_buffer_detach(ring, ring->next_to_clean);
824
825 ring_ptr_move_fw(ring, next_to_clean);
826 }
827
828 static int is_valid_clean_head(struct hnae_ring *ring, int h)
829 {
830 int u = ring->next_to_use;
831 int c = ring->next_to_clean;
832
833 if (unlikely(h > ring->desc_num))
834 return 0;
835
836 assert(u > 0 && u < ring->desc_num);
837 assert(c > 0 && c < ring->desc_num);
838 assert(u != c && h != c); /* must be checked before call this func */
839
840 return u > c ? (h > c && h <= u) : (h > c || h <= u);
841 }
842
843 /* netif_tx_lock will turn down the performance, set only when necessary */
844 #ifdef CONFIG_NET_POLL_CONTROLLER
845 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
846 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
847 #else
848 #define NETIF_TX_LOCK(ndev)
849 #define NETIF_TX_UNLOCK(ndev)
850 #endif
851 /* reclaim all desc in one budget
852 * return error or number of desc left
853 */
854 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
855 int budget, void *v)
856 {
857 struct hnae_ring *ring = ring_data->ring;
858 struct net_device *ndev = ring_data->napi.dev;
859 struct netdev_queue *dev_queue;
860 struct hns_nic_priv *priv = netdev_priv(ndev);
861 int head;
862 int bytes, pkts;
863
864 NETIF_TX_LOCK(ndev);
865
866 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
867 rmb(); /* make sure head is ready before touch any data */
868
869 if (is_ring_empty(ring) || head == ring->next_to_clean) {
870 NETIF_TX_UNLOCK(ndev);
871 return 0; /* no data to poll */
872 }
873
874 if (!is_valid_clean_head(ring, head)) {
875 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
876 ring->next_to_use, ring->next_to_clean);
877 ring->stats.io_err_cnt++;
878 NETIF_TX_UNLOCK(ndev);
879 return -EIO;
880 }
881
882 bytes = 0;
883 pkts = 0;
884 while (head != ring->next_to_clean) {
885 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
886 /* issue prefetch for next Tx descriptor */
887 prefetch(&ring->desc_cb[ring->next_to_clean]);
888 }
889
890 NETIF_TX_UNLOCK(ndev);
891
892 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
893 netdev_tx_completed_queue(dev_queue, pkts, bytes);
894
895 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
896 netif_carrier_on(ndev);
897
898 if (unlikely(pkts && netif_carrier_ok(ndev) &&
899 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
900 /* Make sure that anybody stopping the queue after this
901 * sees the new next_to_clean.
902 */
903 smp_mb();
904 if (netif_tx_queue_stopped(dev_queue) &&
905 !test_bit(NIC_STATE_DOWN, &priv->state)) {
906 netif_tx_wake_queue(dev_queue);
907 ring->stats.restart_queue++;
908 }
909 }
910 return 0;
911 }
912
913 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
914 {
915 struct hnae_ring *ring = ring_data->ring;
916 int head = ring->next_to_clean;
917
918 /* for hardware bug fixed */
919 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
920
921 if (head != ring->next_to_clean) {
922 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
923 ring_data->ring, 1);
924
925 napi_schedule(&ring_data->napi);
926 }
927 }
928
929 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
930 {
931 struct hnae_ring *ring = ring_data->ring;
932 struct net_device *ndev = ring_data->napi.dev;
933 struct netdev_queue *dev_queue;
934 int head;
935 int bytes, pkts;
936
937 NETIF_TX_LOCK(ndev);
938
939 head = ring->next_to_use; /* ntu :soft setted ring position*/
940 bytes = 0;
941 pkts = 0;
942 while (head != ring->next_to_clean)
943 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
944
945 NETIF_TX_UNLOCK(ndev);
946
947 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
948 netdev_tx_reset_queue(dev_queue);
949 }
950
951 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
952 {
953 struct hns_nic_ring_data *ring_data =
954 container_of(napi, struct hns_nic_ring_data, napi);
955 int clean_complete = ring_data->poll_one(
956 ring_data, budget, ring_data->ex_process);
957
958 if (clean_complete >= 0 && clean_complete < budget) {
959 napi_complete(napi);
960 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
961 ring_data->ring, 0);
962
963 ring_data->fini_process(ring_data);
964 return 0;
965 }
966
967 return clean_complete;
968 }
969
970 static irqreturn_t hns_irq_handle(int irq, void *dev)
971 {
972 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
973
974 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
975 ring_data->ring, 1);
976 napi_schedule(&ring_data->napi);
977
978 return IRQ_HANDLED;
979 }
980
981 /**
982 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
983 *@ndev: net device
984 */
985 static void hns_nic_adjust_link(struct net_device *ndev)
986 {
987 struct hns_nic_priv *priv = netdev_priv(ndev);
988 struct hnae_handle *h = priv->ae_handle;
989
990 h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
991 }
992
993 /**
994 *hns_nic_init_phy - init phy
995 *@ndev: net device
996 *@h: ae handle
997 * Return 0 on success, negative on failure
998 */
999 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
1000 {
1001 struct hns_nic_priv *priv = netdev_priv(ndev);
1002 struct phy_device *phy_dev = NULL;
1003
1004 if (!h->phy_node)
1005 return 0;
1006
1007 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1008 phy_dev = of_phy_connect(ndev, h->phy_node,
1009 hns_nic_adjust_link, 0, h->phy_if);
1010 else
1011 phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1012
1013 if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1014 return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1015
1016 phy_dev->supported &= h->if_support;
1017 phy_dev->advertising = phy_dev->supported;
1018
1019 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1020 phy_dev->autoneg = false;
1021
1022 priv->phy = phy_dev;
1023
1024 return 0;
1025 }
1026
1027 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1028 {
1029 struct hns_nic_priv *priv = netdev_priv(netdev);
1030 struct hnae_handle *h = priv->ae_handle;
1031
1032 napi_enable(&priv->ring_data[idx].napi);
1033
1034 enable_irq(priv->ring_data[idx].ring->irq);
1035 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1036
1037 return 0;
1038 }
1039
1040 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1041 {
1042 struct hns_nic_priv *priv = netdev_priv(ndev);
1043 struct hnae_handle *h = priv->ae_handle;
1044 struct sockaddr *mac_addr = p;
1045 int ret;
1046
1047 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1048 return -EADDRNOTAVAIL;
1049
1050 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1051 if (ret) {
1052 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1053 return ret;
1054 }
1055
1056 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1057
1058 return 0;
1059 }
1060
1061 void hns_nic_update_stats(struct net_device *netdev)
1062 {
1063 struct hns_nic_priv *priv = netdev_priv(netdev);
1064 struct hnae_handle *h = priv->ae_handle;
1065
1066 h->dev->ops->update_stats(h, &netdev->stats);
1067 }
1068
1069 /* set mac addr if it is configed. or leave it to the AE driver */
1070 static void hns_init_mac_addr(struct net_device *ndev)
1071 {
1072 struct hns_nic_priv *priv = netdev_priv(ndev);
1073 struct device_node *node = priv->dev->of_node;
1074 const void *mac_addr_temp;
1075
1076 mac_addr_temp = of_get_mac_address(node);
1077 if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1078 memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1079 } else {
1080 eth_hw_addr_random(ndev);
1081 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1082 ndev->dev_addr);
1083 }
1084 }
1085
1086 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1087 {
1088 struct hns_nic_priv *priv = netdev_priv(netdev);
1089 struct hnae_handle *h = priv->ae_handle;
1090
1091 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1092 disable_irq(priv->ring_data[idx].ring->irq);
1093
1094 napi_disable(&priv->ring_data[idx].napi);
1095 }
1096
1097 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1098 {
1099 struct hnae_handle *h = priv->ae_handle;
1100 struct hns_nic_ring_data *rd;
1101 int i;
1102 int cpu;
1103 cpumask_t mask;
1104
1105 /*diffrent irq banlance for 16core and 32core*/
1106 if (h->q_num == num_possible_cpus()) {
1107 for (i = 0; i < h->q_num * 2; i++) {
1108 rd = &priv->ring_data[i];
1109 if (cpu_online(rd->queue_index)) {
1110 cpumask_clear(&mask);
1111 cpu = rd->queue_index;
1112 cpumask_set_cpu(cpu, &mask);
1113 (void)irq_set_affinity_hint(rd->ring->irq,
1114 &mask);
1115 }
1116 }
1117 } else {
1118 for (i = 0; i < h->q_num; i++) {
1119 rd = &priv->ring_data[i];
1120 if (cpu_online(rd->queue_index * 2)) {
1121 cpumask_clear(&mask);
1122 cpu = rd->queue_index * 2;
1123 cpumask_set_cpu(cpu, &mask);
1124 (void)irq_set_affinity_hint(rd->ring->irq,
1125 &mask);
1126 }
1127 }
1128
1129 for (i = h->q_num; i < h->q_num * 2; i++) {
1130 rd = &priv->ring_data[i];
1131 if (cpu_online(rd->queue_index * 2 + 1)) {
1132 cpumask_clear(&mask);
1133 cpu = rd->queue_index * 2 + 1;
1134 cpumask_set_cpu(cpu, &mask);
1135 (void)irq_set_affinity_hint(rd->ring->irq,
1136 &mask);
1137 }
1138 }
1139 }
1140 }
1141
1142 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1143 {
1144 struct hnae_handle *h = priv->ae_handle;
1145 struct hns_nic_ring_data *rd;
1146 int i;
1147 int ret;
1148
1149 for (i = 0; i < h->q_num * 2; i++) {
1150 rd = &priv->ring_data[i];
1151
1152 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1153 break;
1154
1155 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1156 "%s-%s%d", priv->netdev->name,
1157 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1158
1159 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1160
1161 ret = request_irq(rd->ring->irq,
1162 hns_irq_handle, 0, rd->ring->ring_name, rd);
1163 if (ret) {
1164 netdev_err(priv->netdev, "request irq(%d) fail\n",
1165 rd->ring->irq);
1166 return ret;
1167 }
1168 disable_irq(rd->ring->irq);
1169 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1170 }
1171
1172 /*set cpu affinity*/
1173 hns_set_irq_affinity(priv);
1174
1175 return 0;
1176 }
1177
1178 static int hns_nic_net_up(struct net_device *ndev)
1179 {
1180 struct hns_nic_priv *priv = netdev_priv(ndev);
1181 struct hnae_handle *h = priv->ae_handle;
1182 int i, j, k;
1183 int ret;
1184
1185 ret = hns_nic_init_irq(priv);
1186 if (ret != 0) {
1187 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1188 return ret;
1189 }
1190
1191 for (i = 0; i < h->q_num * 2; i++) {
1192 ret = hns_nic_ring_open(ndev, i);
1193 if (ret)
1194 goto out_has_some_queues;
1195 }
1196
1197 for (k = 0; k < h->q_num; k++)
1198 h->dev->ops->toggle_queue_status(h->qs[k], 1);
1199
1200 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1201 if (ret)
1202 goto out_set_mac_addr_err;
1203
1204 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1205 if (ret)
1206 goto out_start_err;
1207
1208 if (priv->phy)
1209 phy_start(priv->phy);
1210
1211 clear_bit(NIC_STATE_DOWN, &priv->state);
1212 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1213
1214 return 0;
1215
1216 out_start_err:
1217 netif_stop_queue(ndev);
1218 out_set_mac_addr_err:
1219 for (k = 0; k < h->q_num; k++)
1220 h->dev->ops->toggle_queue_status(h->qs[k], 0);
1221 out_has_some_queues:
1222 for (j = i - 1; j >= 0; j--)
1223 hns_nic_ring_close(ndev, j);
1224
1225 set_bit(NIC_STATE_DOWN, &priv->state);
1226
1227 return ret;
1228 }
1229
1230 static void hns_nic_net_down(struct net_device *ndev)
1231 {
1232 int i;
1233 struct hnae_ae_ops *ops;
1234 struct hns_nic_priv *priv = netdev_priv(ndev);
1235
1236 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1237 return;
1238
1239 (void)del_timer_sync(&priv->service_timer);
1240 netif_tx_stop_all_queues(ndev);
1241 netif_carrier_off(ndev);
1242 netif_tx_disable(ndev);
1243 priv->link = 0;
1244
1245 if (priv->phy)
1246 phy_stop(priv->phy);
1247
1248 ops = priv->ae_handle->dev->ops;
1249
1250 if (ops->stop)
1251 ops->stop(priv->ae_handle);
1252
1253 netif_tx_stop_all_queues(ndev);
1254
1255 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1256 hns_nic_ring_close(ndev, i);
1257 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1258
1259 /* clean tx buffers*/
1260 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1261 }
1262 }
1263
1264 void hns_nic_net_reset(struct net_device *ndev)
1265 {
1266 struct hns_nic_priv *priv = netdev_priv(ndev);
1267 struct hnae_handle *handle = priv->ae_handle;
1268
1269 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1270 usleep_range(1000, 2000);
1271
1272 (void)hnae_reinit_handle(handle);
1273
1274 clear_bit(NIC_STATE_RESETTING, &priv->state);
1275 }
1276
1277 void hns_nic_net_reinit(struct net_device *netdev)
1278 {
1279 struct hns_nic_priv *priv = netdev_priv(netdev);
1280
1281 priv->netdev->trans_start = jiffies;
1282 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1283 usleep_range(1000, 2000);
1284
1285 hns_nic_net_down(netdev);
1286 hns_nic_net_reset(netdev);
1287 (void)hns_nic_net_up(netdev);
1288 clear_bit(NIC_STATE_REINITING, &priv->state);
1289 }
1290
1291 static int hns_nic_net_open(struct net_device *ndev)
1292 {
1293 struct hns_nic_priv *priv = netdev_priv(ndev);
1294 struct hnae_handle *h = priv->ae_handle;
1295 int ret;
1296
1297 if (test_bit(NIC_STATE_TESTING, &priv->state))
1298 return -EBUSY;
1299
1300 priv->link = 0;
1301 netif_carrier_off(ndev);
1302
1303 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1304 if (ret < 0) {
1305 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1306 ret);
1307 return ret;
1308 }
1309
1310 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1311 if (ret < 0) {
1312 netdev_err(ndev,
1313 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1314 return ret;
1315 }
1316
1317 ret = hns_nic_net_up(ndev);
1318 if (ret) {
1319 netdev_err(ndev,
1320 "hns net up fail, ret=%d!\n", ret);
1321 return ret;
1322 }
1323
1324 return 0;
1325 }
1326
1327 static int hns_nic_net_stop(struct net_device *ndev)
1328 {
1329 hns_nic_net_down(ndev);
1330
1331 return 0;
1332 }
1333
1334 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1335 static void hns_nic_net_timeout(struct net_device *ndev)
1336 {
1337 struct hns_nic_priv *priv = netdev_priv(ndev);
1338
1339 hns_tx_timeout_reset(priv);
1340 }
1341
1342 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1343 int cmd)
1344 {
1345 struct hns_nic_priv *priv = netdev_priv(netdev);
1346 struct phy_device *phy_dev = priv->phy;
1347
1348 if (!netif_running(netdev))
1349 return -EINVAL;
1350
1351 if (!phy_dev)
1352 return -ENOTSUPP;
1353
1354 return phy_mii_ioctl(phy_dev, ifr, cmd);
1355 }
1356
1357 /* use only for netconsole to poll with the device without interrupt */
1358 #ifdef CONFIG_NET_POLL_CONTROLLER
1359 void hns_nic_poll_controller(struct net_device *ndev)
1360 {
1361 struct hns_nic_priv *priv = netdev_priv(ndev);
1362 unsigned long flags;
1363 int i;
1364
1365 local_irq_save(flags);
1366 for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1367 napi_schedule(&priv->ring_data[i].napi);
1368 local_irq_restore(flags);
1369 }
1370 #endif
1371
1372 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1373 struct net_device *ndev)
1374 {
1375 struct hns_nic_priv *priv = netdev_priv(ndev);
1376 int ret;
1377
1378 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1379 ret = hns_nic_net_xmit_hw(ndev, skb,
1380 &tx_ring_data(priv, skb->queue_mapping));
1381 if (ret == NETDEV_TX_OK) {
1382 ndev->trans_start = jiffies;
1383 ndev->stats.tx_bytes += skb->len;
1384 ndev->stats.tx_packets++;
1385 }
1386 return (netdev_tx_t)ret;
1387 }
1388
1389 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1390 {
1391 struct hns_nic_priv *priv = netdev_priv(ndev);
1392 struct hnae_handle *h = priv->ae_handle;
1393 int ret;
1394
1395 /* MTU < 68 is an error and causes problems on some kernels */
1396 if (new_mtu < 68)
1397 return -EINVAL;
1398
1399 if (!h->dev->ops->set_mtu)
1400 return -ENOTSUPP;
1401
1402 if (netif_running(ndev)) {
1403 (void)hns_nic_net_stop(ndev);
1404 msleep(100);
1405
1406 ret = h->dev->ops->set_mtu(h, new_mtu);
1407 if (ret)
1408 netdev_err(ndev, "set mtu fail, return value %d\n",
1409 ret);
1410
1411 if (hns_nic_net_open(ndev))
1412 netdev_err(ndev, "hns net open fail\n");
1413 } else {
1414 ret = h->dev->ops->set_mtu(h, new_mtu);
1415 }
1416
1417 if (!ret)
1418 ndev->mtu = new_mtu;
1419
1420 return ret;
1421 }
1422
1423 static int hns_nic_set_features(struct net_device *netdev,
1424 netdev_features_t features)
1425 {
1426 struct hns_nic_priv *priv = netdev_priv(netdev);
1427 struct hnae_handle *h = priv->ae_handle;
1428
1429 switch (priv->enet_ver) {
1430 case AE_VERSION_1:
1431 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1432 netdev_info(netdev, "enet v1 do not support tso!\n");
1433 break;
1434 default:
1435 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1436 priv->ops.fill_desc = fill_tso_desc;
1437 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1438 /* The chip only support 7*4096 */
1439 netif_set_gso_max_size(netdev, 7 * 4096);
1440 h->dev->ops->set_tso_stats(h, 1);
1441 } else {
1442 priv->ops.fill_desc = fill_v2_desc;
1443 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1444 h->dev->ops->set_tso_stats(h, 0);
1445 }
1446 break;
1447 }
1448 netdev->features = features;
1449 return 0;
1450 }
1451
1452 static netdev_features_t hns_nic_fix_features(
1453 struct net_device *netdev, netdev_features_t features)
1454 {
1455 struct hns_nic_priv *priv = netdev_priv(netdev);
1456
1457 switch (priv->enet_ver) {
1458 case AE_VERSION_1:
1459 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1460 NETIF_F_HW_VLAN_CTAG_FILTER);
1461 break;
1462 default:
1463 break;
1464 }
1465 return features;
1466 }
1467
1468 /**
1469 * nic_set_multicast_list - set mutl mac address
1470 * @netdev: net device
1471 * @p: mac address
1472 *
1473 * return void
1474 */
1475 void hns_set_multicast_list(struct net_device *ndev)
1476 {
1477 struct hns_nic_priv *priv = netdev_priv(ndev);
1478 struct hnae_handle *h = priv->ae_handle;
1479 struct netdev_hw_addr *ha = NULL;
1480
1481 if (!h) {
1482 netdev_err(ndev, "hnae handle is null\n");
1483 return;
1484 }
1485
1486 if (h->dev->ops->set_mc_addr) {
1487 netdev_for_each_mc_addr(ha, ndev)
1488 if (h->dev->ops->set_mc_addr(h, ha->addr))
1489 netdev_err(ndev, "set multicast fail\n");
1490 }
1491 }
1492
1493 void hns_nic_set_rx_mode(struct net_device *ndev)
1494 {
1495 struct hns_nic_priv *priv = netdev_priv(ndev);
1496 struct hnae_handle *h = priv->ae_handle;
1497
1498 if (h->dev->ops->set_promisc_mode) {
1499 if (ndev->flags & IFF_PROMISC)
1500 h->dev->ops->set_promisc_mode(h, 1);
1501 else
1502 h->dev->ops->set_promisc_mode(h, 0);
1503 }
1504
1505 hns_set_multicast_list(ndev);
1506 }
1507
1508 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1509 struct rtnl_link_stats64 *stats)
1510 {
1511 int idx = 0;
1512 u64 tx_bytes = 0;
1513 u64 rx_bytes = 0;
1514 u64 tx_pkts = 0;
1515 u64 rx_pkts = 0;
1516 struct hns_nic_priv *priv = netdev_priv(ndev);
1517 struct hnae_handle *h = priv->ae_handle;
1518
1519 for (idx = 0; idx < h->q_num; idx++) {
1520 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1521 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1522 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1523 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1524 }
1525
1526 stats->tx_bytes = tx_bytes;
1527 stats->tx_packets = tx_pkts;
1528 stats->rx_bytes = rx_bytes;
1529 stats->rx_packets = rx_pkts;
1530
1531 stats->rx_errors = ndev->stats.rx_errors;
1532 stats->multicast = ndev->stats.multicast;
1533 stats->rx_length_errors = ndev->stats.rx_length_errors;
1534 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1535 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1536
1537 stats->tx_errors = ndev->stats.tx_errors;
1538 stats->rx_dropped = ndev->stats.rx_dropped;
1539 stats->tx_dropped = ndev->stats.tx_dropped;
1540 stats->collisions = ndev->stats.collisions;
1541 stats->rx_over_errors = ndev->stats.rx_over_errors;
1542 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1543 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1544 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1545 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1546 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1547 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1548 stats->tx_window_errors = ndev->stats.tx_window_errors;
1549 stats->rx_compressed = ndev->stats.rx_compressed;
1550 stats->tx_compressed = ndev->stats.tx_compressed;
1551
1552 return stats;
1553 }
1554
1555 static const struct net_device_ops hns_nic_netdev_ops = {
1556 .ndo_open = hns_nic_net_open,
1557 .ndo_stop = hns_nic_net_stop,
1558 .ndo_start_xmit = hns_nic_net_xmit,
1559 .ndo_tx_timeout = hns_nic_net_timeout,
1560 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1561 .ndo_change_mtu = hns_nic_change_mtu,
1562 .ndo_do_ioctl = hns_nic_do_ioctl,
1563 .ndo_set_features = hns_nic_set_features,
1564 .ndo_fix_features = hns_nic_fix_features,
1565 .ndo_get_stats64 = hns_nic_get_stats64,
1566 #ifdef CONFIG_NET_POLL_CONTROLLER
1567 .ndo_poll_controller = hns_nic_poll_controller,
1568 #endif
1569 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1570 };
1571
1572 static void hns_nic_update_link_status(struct net_device *netdev)
1573 {
1574 struct hns_nic_priv *priv = netdev_priv(netdev);
1575
1576 struct hnae_handle *h = priv->ae_handle;
1577 int state = 1;
1578
1579 if (priv->phy) {
1580 if (!genphy_update_link(priv->phy))
1581 state = priv->phy->link;
1582 else
1583 state = 0;
1584 }
1585 state = state && h->dev->ops->get_status(h);
1586
1587 if (state != priv->link) {
1588 if (state) {
1589 netif_carrier_on(netdev);
1590 netif_tx_wake_all_queues(netdev);
1591 netdev_info(netdev, "link up\n");
1592 } else {
1593 netif_carrier_off(netdev);
1594 netdev_info(netdev, "link down\n");
1595 }
1596 priv->link = state;
1597 }
1598 }
1599
1600 /* for dumping key regs*/
1601 static void hns_nic_dump(struct hns_nic_priv *priv)
1602 {
1603 struct hnae_handle *h = priv->ae_handle;
1604 struct hnae_ae_ops *ops = h->dev->ops;
1605 u32 *data, reg_num, i;
1606
1607 if (ops->get_regs_len && ops->get_regs) {
1608 reg_num = ops->get_regs_len(priv->ae_handle);
1609 reg_num = (reg_num + 3ul) & ~3ul;
1610 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1611 if (data) {
1612 ops->get_regs(priv->ae_handle, data);
1613 for (i = 0; i < reg_num; i += 4)
1614 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1615 i, data[i], data[i + 1],
1616 data[i + 2], data[i + 3]);
1617 kfree(data);
1618 }
1619 }
1620
1621 for (i = 0; i < h->q_num; i++) {
1622 pr_info("tx_queue%d_next_to_clean:%d\n",
1623 i, h->qs[i]->tx_ring.next_to_clean);
1624 pr_info("tx_queue%d_next_to_use:%d\n",
1625 i, h->qs[i]->tx_ring.next_to_use);
1626 pr_info("rx_queue%d_next_to_clean:%d\n",
1627 i, h->qs[i]->rx_ring.next_to_clean);
1628 pr_info("rx_queue%d_next_to_use:%d\n",
1629 i, h->qs[i]->rx_ring.next_to_use);
1630 }
1631 }
1632
1633 /* for resetting suntask*/
1634 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1635 {
1636 enum hnae_port_type type = priv->ae_handle->port_type;
1637
1638 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1639 return;
1640 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1641
1642 /* If we're already down, removing or resetting, just bail */
1643 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1644 test_bit(NIC_STATE_REMOVING, &priv->state) ||
1645 test_bit(NIC_STATE_RESETTING, &priv->state))
1646 return;
1647
1648 hns_nic_dump(priv);
1649 netdev_info(priv->netdev, "try to reset %s port!\n",
1650 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1651
1652 rtnl_lock();
1653 /* put off any impending NetWatchDogTimeout */
1654 priv->netdev->trans_start = jiffies;
1655
1656 if (type == HNAE_PORT_DEBUG) {
1657 hns_nic_net_reinit(priv->netdev);
1658 } else {
1659 netif_carrier_off(priv->netdev);
1660 netif_tx_disable(priv->netdev);
1661 }
1662 rtnl_unlock();
1663 }
1664
1665 /* for doing service complete*/
1666 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1667 {
1668 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1669
1670 smp_mb__before_atomic();
1671 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1672 }
1673
1674 static void hns_nic_service_task(struct work_struct *work)
1675 {
1676 struct hns_nic_priv *priv
1677 = container_of(work, struct hns_nic_priv, service_task);
1678 struct hnae_handle *h = priv->ae_handle;
1679
1680 hns_nic_update_link_status(priv->netdev);
1681 h->dev->ops->update_led_status(h);
1682 hns_nic_update_stats(priv->netdev);
1683
1684 hns_nic_reset_subtask(priv);
1685 hns_nic_service_event_complete(priv);
1686 }
1687
1688 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1689 {
1690 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1691 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1692 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1693 (void)schedule_work(&priv->service_task);
1694 }
1695
1696 static void hns_nic_service_timer(unsigned long data)
1697 {
1698 struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1699
1700 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1701
1702 hns_nic_task_schedule(priv);
1703 }
1704
1705 /**
1706 * hns_tx_timeout_reset - initiate reset due to Tx timeout
1707 * @priv: driver private struct
1708 **/
1709 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1710 {
1711 /* Do the reset outside of interrupt context */
1712 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1713 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1714 netdev_warn(priv->netdev,
1715 "initiating reset due to tx timeout(%llu,0x%lx)\n",
1716 priv->tx_timeout_count, priv->state);
1717 priv->tx_timeout_count++;
1718 hns_nic_task_schedule(priv);
1719 }
1720 }
1721
1722 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1723 {
1724 struct hnae_handle *h = priv->ae_handle;
1725 struct hns_nic_ring_data *rd;
1726 int i;
1727
1728 if (h->q_num > NIC_MAX_Q_PER_VF) {
1729 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1730 return -EINVAL;
1731 }
1732
1733 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1734 GFP_KERNEL);
1735 if (!priv->ring_data)
1736 return -ENOMEM;
1737
1738 for (i = 0; i < h->q_num; i++) {
1739 rd = &priv->ring_data[i];
1740 rd->queue_index = i;
1741 rd->ring = &h->qs[i]->tx_ring;
1742 rd->poll_one = hns_nic_tx_poll_one;
1743 rd->fini_process = hns_nic_tx_fini_pro;
1744
1745 netif_napi_add(priv->netdev, &rd->napi,
1746 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1747 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1748 }
1749 for (i = h->q_num; i < h->q_num * 2; i++) {
1750 rd = &priv->ring_data[i];
1751 rd->queue_index = i - h->q_num;
1752 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1753 rd->poll_one = hns_nic_rx_poll_one;
1754 rd->ex_process = hns_nic_rx_up_pro;
1755 rd->fini_process = hns_nic_rx_fini_pro;
1756
1757 netif_napi_add(priv->netdev, &rd->napi,
1758 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1759 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1760 }
1761
1762 return 0;
1763 }
1764
1765 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1766 {
1767 struct hnae_handle *h = priv->ae_handle;
1768 int i;
1769
1770 for (i = 0; i < h->q_num * 2; i++) {
1771 netif_napi_del(&priv->ring_data[i].napi);
1772 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1773 (void)irq_set_affinity_hint(
1774 priv->ring_data[i].ring->irq,
1775 NULL);
1776 free_irq(priv->ring_data[i].ring->irq,
1777 &priv->ring_data[i]);
1778 }
1779
1780 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1781 }
1782 kfree(priv->ring_data);
1783 }
1784
1785 static void hns_nic_set_priv_ops(struct net_device *netdev)
1786 {
1787 struct hns_nic_priv *priv = netdev_priv(netdev);
1788 struct hnae_handle *h = priv->ae_handle;
1789
1790 if (AE_IS_VER1(priv->enet_ver)) {
1791 priv->ops.fill_desc = fill_desc;
1792 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1793 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1794 } else {
1795 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1796 if ((netdev->features & NETIF_F_TSO) ||
1797 (netdev->features & NETIF_F_TSO6)) {
1798 priv->ops.fill_desc = fill_tso_desc;
1799 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1800 /* This chip only support 7*4096 */
1801 netif_set_gso_max_size(netdev, 7 * 4096);
1802 h->dev->ops->set_tso_stats(h, 1);
1803 } else {
1804 priv->ops.fill_desc = fill_v2_desc;
1805 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1806 }
1807 }
1808 }
1809
1810 static int hns_nic_try_get_ae(struct net_device *ndev)
1811 {
1812 struct hns_nic_priv *priv = netdev_priv(ndev);
1813 struct hnae_handle *h;
1814 int ret;
1815
1816 h = hnae_get_handle(&priv->netdev->dev,
1817 priv->ae_node, priv->port_id, NULL);
1818 if (IS_ERR_OR_NULL(h)) {
1819 ret = PTR_ERR(h);
1820 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1821 goto out;
1822 }
1823 priv->ae_handle = h;
1824
1825 ret = hns_nic_init_phy(ndev, h);
1826 if (ret) {
1827 dev_err(priv->dev, "probe phy device fail!\n");
1828 goto out_init_phy;
1829 }
1830
1831 ret = hns_nic_init_ring_data(priv);
1832 if (ret) {
1833 ret = -ENOMEM;
1834 goto out_init_ring_data;
1835 }
1836
1837 hns_nic_set_priv_ops(ndev);
1838
1839 ret = register_netdev(ndev);
1840 if (ret) {
1841 dev_err(priv->dev, "probe register netdev fail!\n");
1842 goto out_reg_ndev_fail;
1843 }
1844 return 0;
1845
1846 out_reg_ndev_fail:
1847 hns_nic_uninit_ring_data(priv);
1848 priv->ring_data = NULL;
1849 out_init_phy:
1850 out_init_ring_data:
1851 hnae_put_handle(priv->ae_handle);
1852 priv->ae_handle = NULL;
1853 out:
1854 return ret;
1855 }
1856
1857 static int hns_nic_notifier_action(struct notifier_block *nb,
1858 unsigned long action, void *data)
1859 {
1860 struct hns_nic_priv *priv =
1861 container_of(nb, struct hns_nic_priv, notifier_block);
1862
1863 assert(action == HNAE_AE_REGISTER);
1864
1865 if (!hns_nic_try_get_ae(priv->netdev)) {
1866 hnae_unregister_notifier(&priv->notifier_block);
1867 priv->notifier_block.notifier_call = NULL;
1868 }
1869 return 0;
1870 }
1871
1872 static int hns_nic_dev_probe(struct platform_device *pdev)
1873 {
1874 struct device *dev = &pdev->dev;
1875 struct net_device *ndev;
1876 struct hns_nic_priv *priv;
1877 struct device_node *node = dev->of_node;
1878 int ret;
1879
1880 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1881 if (!ndev)
1882 return -ENOMEM;
1883
1884 platform_set_drvdata(pdev, ndev);
1885
1886 priv = netdev_priv(ndev);
1887 priv->dev = dev;
1888 priv->netdev = ndev;
1889
1890 if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1891 priv->enet_ver = AE_VERSION_1;
1892 else
1893 priv->enet_ver = AE_VERSION_2;
1894
1895 priv->ae_node = (void *)of_parse_phandle(node, "ae-handle", 0);
1896 if (IS_ERR_OR_NULL(priv->ae_node)) {
1897 ret = PTR_ERR(priv->ae_node);
1898 dev_err(dev, "not find ae-handle\n");
1899 goto out_read_prop_fail;
1900 }
1901
1902 ret = of_property_read_u32(node, "port-id", &priv->port_id);
1903 if (ret)
1904 goto out_read_prop_fail;
1905
1906 hns_init_mac_addr(ndev);
1907
1908 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1909 ndev->priv_flags |= IFF_UNICAST_FLT;
1910 ndev->netdev_ops = &hns_nic_netdev_ops;
1911 hns_ethtool_set_ops(ndev);
1912
1913 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1914 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1915 NETIF_F_GRO;
1916 ndev->vlan_features |=
1917 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1918 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1919
1920 switch (priv->enet_ver) {
1921 case AE_VERSION_2:
1922 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1923 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1924 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1925 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1926 break;
1927 default:
1928 break;
1929 }
1930
1931 SET_NETDEV_DEV(ndev, dev);
1932
1933 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1934 dev_dbg(dev, "set mask to 64bit\n");
1935 else
1936 dev_err(dev, "set mask to 32bit fail!\n");
1937
1938 /* carrier off reporting is important to ethtool even BEFORE open */
1939 netif_carrier_off(ndev);
1940
1941 setup_timer(&priv->service_timer, hns_nic_service_timer,
1942 (unsigned long)priv);
1943 INIT_WORK(&priv->service_task, hns_nic_service_task);
1944
1945 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1946 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1947 set_bit(NIC_STATE_DOWN, &priv->state);
1948
1949 if (hns_nic_try_get_ae(priv->netdev)) {
1950 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1951 ret = hnae_register_notifier(&priv->notifier_block);
1952 if (ret) {
1953 dev_err(dev, "register notifier fail!\n");
1954 goto out_notify_fail;
1955 }
1956 dev_dbg(dev, "has not handle, register notifier!\n");
1957 }
1958
1959 return 0;
1960
1961 out_notify_fail:
1962 (void)cancel_work_sync(&priv->service_task);
1963 out_read_prop_fail:
1964 free_netdev(ndev);
1965 return ret;
1966 }
1967
1968 static int hns_nic_dev_remove(struct platform_device *pdev)
1969 {
1970 struct net_device *ndev = platform_get_drvdata(pdev);
1971 struct hns_nic_priv *priv = netdev_priv(ndev);
1972
1973 if (ndev->reg_state != NETREG_UNINITIALIZED)
1974 unregister_netdev(ndev);
1975
1976 if (priv->ring_data)
1977 hns_nic_uninit_ring_data(priv);
1978 priv->ring_data = NULL;
1979
1980 if (priv->phy)
1981 phy_disconnect(priv->phy);
1982 priv->phy = NULL;
1983
1984 if (!IS_ERR_OR_NULL(priv->ae_handle))
1985 hnae_put_handle(priv->ae_handle);
1986 priv->ae_handle = NULL;
1987 if (priv->notifier_block.notifier_call)
1988 hnae_unregister_notifier(&priv->notifier_block);
1989 priv->notifier_block.notifier_call = NULL;
1990
1991 set_bit(NIC_STATE_REMOVING, &priv->state);
1992 (void)cancel_work_sync(&priv->service_task);
1993
1994 free_netdev(ndev);
1995 return 0;
1996 }
1997
1998 static const struct of_device_id hns_enet_of_match[] = {
1999 {.compatible = "hisilicon,hns-nic-v1",},
2000 {.compatible = "hisilicon,hns-nic-v2",},
2001 {},
2002 };
2003
2004 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2005
2006 static struct platform_driver hns_nic_dev_driver = {
2007 .driver = {
2008 .name = "hns-nic",
2009 .of_match_table = hns_enet_of_match,
2010 },
2011 .probe = hns_nic_dev_probe,
2012 .remove = hns_nic_dev_remove,
2013 };
2014
2015 module_platform_driver(hns_nic_dev_driver);
2016
2017 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2018 MODULE_AUTHOR("Hisilicon, Inc.");
2019 MODULE_LICENSE("GPL");
2020 MODULE_ALIAS("platform:hns-nic");
This page took 0.198976 seconds and 6 git commands to generate.