Merge tag 'powerpc-4.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / drivers / net / ethernet / hisilicon / hns / hns_enet.c
1 /*
2 * Copyright (c) 2014-2015 Hisilicon Limited.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 */
9
10 #include <linux/clk.h>
11 #include <linux/cpumask.h>
12 #include <linux/etherdevice.h>
13 #include <linux/if_vlan.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ip.h>
17 #include <linux/ipv6.h>
18 #include <linux/module.h>
19 #include <linux/phy.h>
20 #include <linux/platform_device.h>
21 #include <linux/skbuff.h>
22
23 #include "hnae.h"
24 #include "hns_enet.h"
25
26 #define NIC_MAX_Q_PER_VF 16
27 #define HNS_NIC_TX_TIMEOUT (5 * HZ)
28
29 #define SERVICE_TIMER_HZ (1 * HZ)
30
31 #define NIC_TX_CLEAN_MAX_NUM 256
32 #define NIC_RX_CLEAN_MAX_NUM 64
33
34 #define RCB_IRQ_NOT_INITED 0
35 #define RCB_IRQ_INITED 1
36 #define HNS_BUFFER_SIZE_2048 2048
37
38 #define BD_MAX_SEND_SIZE 8191
39 #define SKB_TMP_LEN(SKB) \
40 (((SKB)->transport_header - (SKB)->mac_header) + tcp_hdrlen(SKB))
41
42 static void fill_v2_desc(struct hnae_ring *ring, void *priv,
43 int size, dma_addr_t dma, int frag_end,
44 int buf_num, enum hns_desc_type type, int mtu)
45 {
46 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
47 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
48 struct iphdr *iphdr;
49 struct ipv6hdr *ipv6hdr;
50 struct sk_buff *skb;
51 __be16 protocol;
52 u8 bn_pid = 0;
53 u8 rrcfv = 0;
54 u8 ip_offset = 0;
55 u8 tvsvsn = 0;
56 u16 mss = 0;
57 u8 l4_len = 0;
58 u16 paylen = 0;
59
60 desc_cb->priv = priv;
61 desc_cb->length = size;
62 desc_cb->dma = dma;
63 desc_cb->type = type;
64
65 desc->addr = cpu_to_le64(dma);
66 desc->tx.send_size = cpu_to_le16((u16)size);
67
68 /* config bd buffer end */
69 hnae_set_bit(rrcfv, HNSV2_TXD_VLD_B, 1);
70 hnae_set_field(bn_pid, HNSV2_TXD_BUFNUM_M, 0, buf_num - 1);
71
72 /* fill port_id in the tx bd for sending management pkts */
73 hnae_set_field(bn_pid, HNSV2_TXD_PORTID_M,
74 HNSV2_TXD_PORTID_S, ring->q->handle->dport_id);
75
76 if (type == DESC_TYPE_SKB) {
77 skb = (struct sk_buff *)priv;
78
79 if (skb->ip_summed == CHECKSUM_PARTIAL) {
80 skb_reset_mac_len(skb);
81 protocol = skb->protocol;
82 ip_offset = ETH_HLEN;
83
84 if (protocol == htons(ETH_P_8021Q)) {
85 ip_offset += VLAN_HLEN;
86 protocol = vlan_get_protocol(skb);
87 skb->protocol = protocol;
88 }
89
90 if (skb->protocol == htons(ETH_P_IP)) {
91 iphdr = ip_hdr(skb);
92 hnae_set_bit(rrcfv, HNSV2_TXD_L3CS_B, 1);
93 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
94
95 /* check for tcp/udp header */
96 if (iphdr->protocol == IPPROTO_TCP &&
97 skb_is_gso(skb)) {
98 hnae_set_bit(tvsvsn,
99 HNSV2_TXD_TSE_B, 1);
100 l4_len = tcp_hdrlen(skb);
101 mss = skb_shinfo(skb)->gso_size;
102 paylen = skb->len - SKB_TMP_LEN(skb);
103 }
104 } else if (skb->protocol == htons(ETH_P_IPV6)) {
105 hnae_set_bit(tvsvsn, HNSV2_TXD_IPV6_B, 1);
106 ipv6hdr = ipv6_hdr(skb);
107 hnae_set_bit(rrcfv, HNSV2_TXD_L4CS_B, 1);
108
109 /* check for tcp/udp header */
110 if (ipv6hdr->nexthdr == IPPROTO_TCP &&
111 skb_is_gso(skb) && skb_is_gso_v6(skb)) {
112 hnae_set_bit(tvsvsn,
113 HNSV2_TXD_TSE_B, 1);
114 l4_len = tcp_hdrlen(skb);
115 mss = skb_shinfo(skb)->gso_size;
116 paylen = skb->len - SKB_TMP_LEN(skb);
117 }
118 }
119 desc->tx.ip_offset = ip_offset;
120 desc->tx.tse_vlan_snap_v6_sctp_nth = tvsvsn;
121 desc->tx.mss = cpu_to_le16(mss);
122 desc->tx.l4_len = l4_len;
123 desc->tx.paylen = cpu_to_le16(paylen);
124 }
125 }
126
127 hnae_set_bit(rrcfv, HNSV2_TXD_FE_B, frag_end);
128
129 desc->tx.bn_pid = bn_pid;
130 desc->tx.ra_ri_cs_fe_vld = rrcfv;
131
132 ring_ptr_move_fw(ring, next_to_use);
133 }
134
135 static void fill_desc(struct hnae_ring *ring, void *priv,
136 int size, dma_addr_t dma, int frag_end,
137 int buf_num, enum hns_desc_type type, int mtu)
138 {
139 struct hnae_desc *desc = &ring->desc[ring->next_to_use];
140 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
141 struct sk_buff *skb;
142 __be16 protocol;
143 u32 ip_offset;
144 u32 asid_bufnum_pid = 0;
145 u32 flag_ipoffset = 0;
146
147 desc_cb->priv = priv;
148 desc_cb->length = size;
149 desc_cb->dma = dma;
150 desc_cb->type = type;
151
152 desc->addr = cpu_to_le64(dma);
153 desc->tx.send_size = cpu_to_le16((u16)size);
154
155 /*config bd buffer end */
156 flag_ipoffset |= 1 << HNS_TXD_VLD_B;
157
158 asid_bufnum_pid |= buf_num << HNS_TXD_BUFNUM_S;
159
160 if (type == DESC_TYPE_SKB) {
161 skb = (struct sk_buff *)priv;
162
163 if (skb->ip_summed == CHECKSUM_PARTIAL) {
164 protocol = skb->protocol;
165 ip_offset = ETH_HLEN;
166
167 /*if it is a SW VLAN check the next protocol*/
168 if (protocol == htons(ETH_P_8021Q)) {
169 ip_offset += VLAN_HLEN;
170 protocol = vlan_get_protocol(skb);
171 skb->protocol = protocol;
172 }
173
174 if (skb->protocol == htons(ETH_P_IP)) {
175 flag_ipoffset |= 1 << HNS_TXD_L3CS_B;
176 /* check for tcp/udp header */
177 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
178
179 } else if (skb->protocol == htons(ETH_P_IPV6)) {
180 /* ipv6 has not l3 cs, check for L4 header */
181 flag_ipoffset |= 1 << HNS_TXD_L4CS_B;
182 }
183
184 flag_ipoffset |= ip_offset << HNS_TXD_IPOFFSET_S;
185 }
186 }
187
188 flag_ipoffset |= frag_end << HNS_TXD_FE_B;
189
190 desc->tx.asid_bufnum_pid = cpu_to_le16(asid_bufnum_pid);
191 desc->tx.flag_ipoffset = cpu_to_le32(flag_ipoffset);
192
193 ring_ptr_move_fw(ring, next_to_use);
194 }
195
196 static void unfill_desc(struct hnae_ring *ring)
197 {
198 ring_ptr_move_bw(ring, next_to_use);
199 }
200
201 static int hns_nic_maybe_stop_tx(
202 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
203 {
204 struct sk_buff *skb = *out_skb;
205 struct sk_buff *new_skb = NULL;
206 int buf_num;
207
208 /* no. of segments (plus a header) */
209 buf_num = skb_shinfo(skb)->nr_frags + 1;
210
211 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
212 if (ring_space(ring) < 1)
213 return -EBUSY;
214
215 new_skb = skb_copy(skb, GFP_ATOMIC);
216 if (!new_skb)
217 return -ENOMEM;
218
219 dev_kfree_skb_any(skb);
220 *out_skb = new_skb;
221 buf_num = 1;
222 } else if (buf_num > ring_space(ring)) {
223 return -EBUSY;
224 }
225
226 *bnum = buf_num;
227 return 0;
228 }
229
230 static int hns_nic_maybe_stop_tso(
231 struct sk_buff **out_skb, int *bnum, struct hnae_ring *ring)
232 {
233 int i;
234 int size;
235 int buf_num;
236 int frag_num;
237 struct sk_buff *skb = *out_skb;
238 struct sk_buff *new_skb = NULL;
239 struct skb_frag_struct *frag;
240
241 size = skb_headlen(skb);
242 buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
243
244 frag_num = skb_shinfo(skb)->nr_frags;
245 for (i = 0; i < frag_num; i++) {
246 frag = &skb_shinfo(skb)->frags[i];
247 size = skb_frag_size(frag);
248 buf_num += (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
249 }
250
251 if (unlikely(buf_num > ring->max_desc_num_per_pkt)) {
252 buf_num = (skb->len + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
253 if (ring_space(ring) < buf_num)
254 return -EBUSY;
255 /* manual split the send packet */
256 new_skb = skb_copy(skb, GFP_ATOMIC);
257 if (!new_skb)
258 return -ENOMEM;
259 dev_kfree_skb_any(skb);
260 *out_skb = new_skb;
261
262 } else if (ring_space(ring) < buf_num) {
263 return -EBUSY;
264 }
265
266 *bnum = buf_num;
267 return 0;
268 }
269
270 static void fill_tso_desc(struct hnae_ring *ring, void *priv,
271 int size, dma_addr_t dma, int frag_end,
272 int buf_num, enum hns_desc_type type, int mtu)
273 {
274 int frag_buf_num;
275 int sizeoflast;
276 int k;
277
278 frag_buf_num = (size + BD_MAX_SEND_SIZE - 1) / BD_MAX_SEND_SIZE;
279 sizeoflast = size % BD_MAX_SEND_SIZE;
280 sizeoflast = sizeoflast ? sizeoflast : BD_MAX_SEND_SIZE;
281
282 /* when the frag size is bigger than hardware, split this frag */
283 for (k = 0; k < frag_buf_num; k++)
284 fill_v2_desc(ring, priv,
285 (k == frag_buf_num - 1) ?
286 sizeoflast : BD_MAX_SEND_SIZE,
287 dma + BD_MAX_SEND_SIZE * k,
288 frag_end && (k == frag_buf_num - 1) ? 1 : 0,
289 buf_num,
290 (type == DESC_TYPE_SKB && !k) ?
291 DESC_TYPE_SKB : DESC_TYPE_PAGE,
292 mtu);
293 }
294
295 int hns_nic_net_xmit_hw(struct net_device *ndev,
296 struct sk_buff *skb,
297 struct hns_nic_ring_data *ring_data)
298 {
299 struct hns_nic_priv *priv = netdev_priv(ndev);
300 struct device *dev = priv->dev;
301 struct hnae_ring *ring = ring_data->ring;
302 struct netdev_queue *dev_queue;
303 struct skb_frag_struct *frag;
304 int buf_num;
305 int seg_num;
306 dma_addr_t dma;
307 int size, next_to_use;
308 int i;
309
310 switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
311 case -EBUSY:
312 ring->stats.tx_busy++;
313 goto out_net_tx_busy;
314 case -ENOMEM:
315 ring->stats.sw_err_cnt++;
316 netdev_err(ndev, "no memory to xmit!\n");
317 goto out_err_tx_ok;
318 default:
319 break;
320 }
321
322 /* no. of segments (plus a header) */
323 seg_num = skb_shinfo(skb)->nr_frags + 1;
324 next_to_use = ring->next_to_use;
325
326 /* fill the first part */
327 size = skb_headlen(skb);
328 dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
329 if (dma_mapping_error(dev, dma)) {
330 netdev_err(ndev, "TX head DMA map failed\n");
331 ring->stats.sw_err_cnt++;
332 goto out_err_tx_ok;
333 }
334 priv->ops.fill_desc(ring, skb, size, dma, seg_num == 1 ? 1 : 0,
335 buf_num, DESC_TYPE_SKB, ndev->mtu);
336
337 /* fill the fragments */
338 for (i = 1; i < seg_num; i++) {
339 frag = &skb_shinfo(skb)->frags[i - 1];
340 size = skb_frag_size(frag);
341 dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
342 if (dma_mapping_error(dev, dma)) {
343 netdev_err(ndev, "TX frag(%d) DMA map failed\n", i);
344 ring->stats.sw_err_cnt++;
345 goto out_map_frag_fail;
346 }
347 priv->ops.fill_desc(ring, skb_frag_page(frag), size, dma,
348 seg_num - 1 == i ? 1 : 0, buf_num,
349 DESC_TYPE_PAGE, ndev->mtu);
350 }
351
352 /*complete translate all packets*/
353 dev_queue = netdev_get_tx_queue(ndev, skb->queue_mapping);
354 netdev_tx_sent_queue(dev_queue, skb->len);
355
356 wmb(); /* commit all data before submit */
357 assert(skb->queue_mapping < priv->ae_handle->q_num);
358 hnae_queue_xmit(priv->ae_handle->qs[skb->queue_mapping], buf_num);
359 ring->stats.tx_pkts++;
360 ring->stats.tx_bytes += skb->len;
361
362 return NETDEV_TX_OK;
363
364 out_map_frag_fail:
365
366 while (ring->next_to_use != next_to_use) {
367 unfill_desc(ring);
368 if (ring->next_to_use != next_to_use)
369 dma_unmap_page(dev,
370 ring->desc_cb[ring->next_to_use].dma,
371 ring->desc_cb[ring->next_to_use].length,
372 DMA_TO_DEVICE);
373 else
374 dma_unmap_single(dev,
375 ring->desc_cb[next_to_use].dma,
376 ring->desc_cb[next_to_use].length,
377 DMA_TO_DEVICE);
378 }
379
380 out_err_tx_ok:
381
382 dev_kfree_skb_any(skb);
383 return NETDEV_TX_OK;
384
385 out_net_tx_busy:
386
387 netif_stop_subqueue(ndev, skb->queue_mapping);
388
389 /* Herbert's original patch had:
390 * smp_mb__after_netif_stop_queue();
391 * but since that doesn't exist yet, just open code it.
392 */
393 smp_mb();
394 return NETDEV_TX_BUSY;
395 }
396
397 /**
398 * hns_nic_get_headlen - determine size of header for RSC/LRO/GRO/FCOE
399 * @data: pointer to the start of the headers
400 * @max: total length of section to find headers in
401 *
402 * This function is meant to determine the length of headers that will
403 * be recognized by hardware for LRO, GRO, and RSC offloads. The main
404 * motivation of doing this is to only perform one pull for IPv4 TCP
405 * packets so that we can do basic things like calculating the gso_size
406 * based on the average data per packet.
407 **/
408 static unsigned int hns_nic_get_headlen(unsigned char *data, u32 flag,
409 unsigned int max_size)
410 {
411 unsigned char *network;
412 u8 hlen;
413
414 /* this should never happen, but better safe than sorry */
415 if (max_size < ETH_HLEN)
416 return max_size;
417
418 /* initialize network frame pointer */
419 network = data;
420
421 /* set first protocol and move network header forward */
422 network += ETH_HLEN;
423
424 /* handle any vlan tag if present */
425 if (hnae_get_field(flag, HNS_RXD_VLAN_M, HNS_RXD_VLAN_S)
426 == HNS_RX_FLAG_VLAN_PRESENT) {
427 if ((typeof(max_size))(network - data) > (max_size - VLAN_HLEN))
428 return max_size;
429
430 network += VLAN_HLEN;
431 }
432
433 /* handle L3 protocols */
434 if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
435 == HNS_RX_FLAG_L3ID_IPV4) {
436 if ((typeof(max_size))(network - data) >
437 (max_size - sizeof(struct iphdr)))
438 return max_size;
439
440 /* access ihl as a u8 to avoid unaligned access on ia64 */
441 hlen = (network[0] & 0x0F) << 2;
442
443 /* verify hlen meets minimum size requirements */
444 if (hlen < sizeof(struct iphdr))
445 return network - data;
446
447 /* record next protocol if header is present */
448 } else if (hnae_get_field(flag, HNS_RXD_L3ID_M, HNS_RXD_L3ID_S)
449 == HNS_RX_FLAG_L3ID_IPV6) {
450 if ((typeof(max_size))(network - data) >
451 (max_size - sizeof(struct ipv6hdr)))
452 return max_size;
453
454 /* record next protocol */
455 hlen = sizeof(struct ipv6hdr);
456 } else {
457 return network - data;
458 }
459
460 /* relocate pointer to start of L4 header */
461 network += hlen;
462
463 /* finally sort out TCP/UDP */
464 if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
465 == HNS_RX_FLAG_L4ID_TCP) {
466 if ((typeof(max_size))(network - data) >
467 (max_size - sizeof(struct tcphdr)))
468 return max_size;
469
470 /* access doff as a u8 to avoid unaligned access on ia64 */
471 hlen = (network[12] & 0xF0) >> 2;
472
473 /* verify hlen meets minimum size requirements */
474 if (hlen < sizeof(struct tcphdr))
475 return network - data;
476
477 network += hlen;
478 } else if (hnae_get_field(flag, HNS_RXD_L4ID_M, HNS_RXD_L4ID_S)
479 == HNS_RX_FLAG_L4ID_UDP) {
480 if ((typeof(max_size))(network - data) >
481 (max_size - sizeof(struct udphdr)))
482 return max_size;
483
484 network += sizeof(struct udphdr);
485 }
486
487 /* If everything has gone correctly network should be the
488 * data section of the packet and will be the end of the header.
489 * If not then it probably represents the end of the last recognized
490 * header.
491 */
492 if ((typeof(max_size))(network - data) < max_size)
493 return network - data;
494 else
495 return max_size;
496 }
497
498 static void hns_nic_reuse_page(struct sk_buff *skb, int i,
499 struct hnae_ring *ring, int pull_len,
500 struct hnae_desc_cb *desc_cb)
501 {
502 struct hnae_desc *desc;
503 int truesize, size;
504 int last_offset;
505 bool twobufs;
506
507 twobufs = ((PAGE_SIZE < 8192) && hnae_buf_size(ring) == HNS_BUFFER_SIZE_2048);
508
509 desc = &ring->desc[ring->next_to_clean];
510 size = le16_to_cpu(desc->rx.size);
511
512 if (twobufs) {
513 truesize = hnae_buf_size(ring);
514 } else {
515 truesize = ALIGN(size, L1_CACHE_BYTES);
516 last_offset = hnae_page_size(ring) - hnae_buf_size(ring);
517 }
518
519 skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
520 size - pull_len, truesize - pull_len);
521
522 /* avoid re-using remote pages,flag default unreuse */
523 if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
524 return;
525
526 if (twobufs) {
527 /* if we are only owner of page we can reuse it */
528 if (likely(page_count(desc_cb->priv) == 1)) {
529 /* flip page offset to other buffer */
530 desc_cb->page_offset ^= truesize;
531
532 desc_cb->reuse_flag = 1;
533 /* bump ref count on page before it is given*/
534 get_page(desc_cb->priv);
535 }
536 return;
537 }
538
539 /* move offset up to the next cache line */
540 desc_cb->page_offset += truesize;
541
542 if (desc_cb->page_offset <= last_offset) {
543 desc_cb->reuse_flag = 1;
544 /* bump ref count on page before it is given*/
545 get_page(desc_cb->priv);
546 }
547 }
548
549 static void get_v2rx_desc_bnum(u32 bnum_flag, int *out_bnum)
550 {
551 *out_bnum = hnae_get_field(bnum_flag,
552 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S) + 1;
553 }
554
555 static void get_rx_desc_bnum(u32 bnum_flag, int *out_bnum)
556 {
557 *out_bnum = hnae_get_field(bnum_flag,
558 HNS_RXD_BUFNUM_M, HNS_RXD_BUFNUM_S);
559 }
560
561 static int hns_nic_poll_rx_skb(struct hns_nic_ring_data *ring_data,
562 struct sk_buff **out_skb, int *out_bnum)
563 {
564 struct hnae_ring *ring = ring_data->ring;
565 struct net_device *ndev = ring_data->napi.dev;
566 struct hns_nic_priv *priv = netdev_priv(ndev);
567 struct sk_buff *skb;
568 struct hnae_desc *desc;
569 struct hnae_desc_cb *desc_cb;
570 struct ethhdr *eh;
571 unsigned char *va;
572 int bnum, length, i;
573 int pull_len;
574 u32 bnum_flag;
575
576 desc = &ring->desc[ring->next_to_clean];
577 desc_cb = &ring->desc_cb[ring->next_to_clean];
578
579 prefetch(desc);
580
581 va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
582
583 /* prefetch first cache line of first page */
584 prefetch(va);
585 #if L1_CACHE_BYTES < 128
586 prefetch(va + L1_CACHE_BYTES);
587 #endif
588
589 skb = *out_skb = napi_alloc_skb(&ring_data->napi,
590 HNS_RX_HEAD_SIZE);
591 if (unlikely(!skb)) {
592 netdev_err(ndev, "alloc rx skb fail\n");
593 ring->stats.sw_err_cnt++;
594 return -ENOMEM;
595 }
596
597 prefetchw(skb->data);
598 length = le16_to_cpu(desc->rx.pkt_len);
599 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
600 priv->ops.get_rxd_bnum(bnum_flag, &bnum);
601 *out_bnum = bnum;
602
603 if (length <= HNS_RX_HEAD_SIZE) {
604 memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
605
606 /* we can reuse buffer as-is, just make sure it is local */
607 if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
608 desc_cb->reuse_flag = 1;
609 else /* this page cannot be reused so discard it */
610 put_page(desc_cb->priv);
611
612 ring_ptr_move_fw(ring, next_to_clean);
613
614 if (unlikely(bnum != 1)) { /* check err*/
615 *out_bnum = 1;
616 goto out_bnum_err;
617 }
618 } else {
619 ring->stats.seg_pkt_cnt++;
620
621 pull_len = hns_nic_get_headlen(va, bnum_flag, HNS_RX_HEAD_SIZE);
622 memcpy(__skb_put(skb, pull_len), va,
623 ALIGN(pull_len, sizeof(long)));
624
625 hns_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
626 ring_ptr_move_fw(ring, next_to_clean);
627
628 if (unlikely(bnum >= (int)MAX_SKB_FRAGS)) { /* check err*/
629 *out_bnum = 1;
630 goto out_bnum_err;
631 }
632 for (i = 1; i < bnum; i++) {
633 desc = &ring->desc[ring->next_to_clean];
634 desc_cb = &ring->desc_cb[ring->next_to_clean];
635
636 hns_nic_reuse_page(skb, i, ring, 0, desc_cb);
637 ring_ptr_move_fw(ring, next_to_clean);
638 }
639 }
640
641 /* check except process, free skb and jump the desc */
642 if (unlikely((!bnum) || (bnum > ring->max_desc_num_per_pkt))) {
643 out_bnum_err:
644 *out_bnum = *out_bnum ? *out_bnum : 1; /* ntc moved,cannot 0*/
645 netdev_err(ndev, "invalid bnum(%d,%d,%d,%d),%016llx,%016llx\n",
646 bnum, ring->max_desc_num_per_pkt,
647 length, (int)MAX_SKB_FRAGS,
648 ((u64 *)desc)[0], ((u64 *)desc)[1]);
649 ring->stats.err_bd_num++;
650 dev_kfree_skb_any(skb);
651 return -EDOM;
652 }
653
654 bnum_flag = le32_to_cpu(desc->rx.ipoff_bnum_pid_flag);
655
656 if (unlikely(!hnae_get_bit(bnum_flag, HNS_RXD_VLD_B))) {
657 netdev_err(ndev, "no valid bd,%016llx,%016llx\n",
658 ((u64 *)desc)[0], ((u64 *)desc)[1]);
659 ring->stats.non_vld_descs++;
660 dev_kfree_skb_any(skb);
661 return -EINVAL;
662 }
663
664 if (unlikely((!desc->rx.pkt_len) ||
665 hnae_get_bit(bnum_flag, HNS_RXD_DROP_B))) {
666 ring->stats.err_pkt_len++;
667 dev_kfree_skb_any(skb);
668 return -EFAULT;
669 }
670
671 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L2E_B))) {
672 ring->stats.l2_err++;
673 dev_kfree_skb_any(skb);
674 return -EFAULT;
675 }
676
677 /* filter out multicast pkt with the same src mac as this port */
678 eh = eth_hdr(skb);
679 if (unlikely(is_multicast_ether_addr(eh->h_dest) &&
680 ether_addr_equal(ndev->dev_addr, eh->h_source))) {
681 dev_kfree_skb_any(skb);
682 return -EFAULT;
683 }
684
685 ring->stats.rx_pkts++;
686 ring->stats.rx_bytes += skb->len;
687
688 if (unlikely(hnae_get_bit(bnum_flag, HNS_RXD_L3E_B) ||
689 hnae_get_bit(bnum_flag, HNS_RXD_L4E_B))) {
690 ring->stats.l3l4_csum_err++;
691 return 0;
692 }
693
694 skb->ip_summed = CHECKSUM_UNNECESSARY;
695
696 return 0;
697 }
698
699 static void
700 hns_nic_alloc_rx_buffers(struct hns_nic_ring_data *ring_data, int cleand_count)
701 {
702 int i, ret;
703 struct hnae_desc_cb res_cbs;
704 struct hnae_desc_cb *desc_cb;
705 struct hnae_ring *ring = ring_data->ring;
706 struct net_device *ndev = ring_data->napi.dev;
707
708 for (i = 0; i < cleand_count; i++) {
709 desc_cb = &ring->desc_cb[ring->next_to_use];
710 if (desc_cb->reuse_flag) {
711 ring->stats.reuse_pg_cnt++;
712 hnae_reuse_buffer(ring, ring->next_to_use);
713 } else {
714 ret = hnae_reserve_buffer_map(ring, &res_cbs);
715 if (ret) {
716 ring->stats.sw_err_cnt++;
717 netdev_err(ndev, "hnae reserve buffer map failed.\n");
718 break;
719 }
720 hnae_replace_buffer(ring, ring->next_to_use, &res_cbs);
721 }
722
723 ring_ptr_move_fw(ring, next_to_use);
724 }
725
726 wmb(); /* make all data has been write before submit */
727 writel_relaxed(i, ring->io_base + RCB_REG_HEAD);
728 }
729
730 /* return error number for error or number of desc left to take
731 */
732 static void hns_nic_rx_up_pro(struct hns_nic_ring_data *ring_data,
733 struct sk_buff *skb)
734 {
735 struct net_device *ndev = ring_data->napi.dev;
736
737 skb->protocol = eth_type_trans(skb, ndev);
738 (void)napi_gro_receive(&ring_data->napi, skb);
739 ndev->last_rx = jiffies;
740 }
741
742 static int hns_nic_rx_poll_one(struct hns_nic_ring_data *ring_data,
743 int budget, void *v)
744 {
745 struct hnae_ring *ring = ring_data->ring;
746 struct sk_buff *skb;
747 int num, bnum, ex_num;
748 #define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
749 int recv_pkts, recv_bds, clean_count, err;
750
751 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
752 rmb(); /* make sure num taken effect before the other data is touched */
753
754 recv_pkts = 0, recv_bds = 0, clean_count = 0;
755 recv:
756 while (recv_pkts < budget && recv_bds < num) {
757 /* reuse or realloc buffers*/
758 if (clean_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
759 hns_nic_alloc_rx_buffers(ring_data, clean_count);
760 clean_count = 0;
761 }
762
763 /* poll one pkg*/
764 err = hns_nic_poll_rx_skb(ring_data, &skb, &bnum);
765 if (unlikely(!skb)) /* this fault cannot be repaired */
766 break;
767
768 recv_bds += bnum;
769 clean_count += bnum;
770 if (unlikely(err)) { /* do jump the err */
771 recv_pkts++;
772 continue;
773 }
774
775 /* do update ip stack process*/
776 ((void (*)(struct hns_nic_ring_data *, struct sk_buff *))v)(
777 ring_data, skb);
778 recv_pkts++;
779 }
780
781 /* make all data has been write before submit */
782 if (recv_pkts < budget) {
783 ex_num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
784
785 if (ex_num > clean_count) {
786 num += ex_num - clean_count;
787 rmb(); /*complete read rx ring bd number*/
788 goto recv;
789 }
790 }
791
792 /* make all data has been write before submit */
793 if (clean_count > 0)
794 hns_nic_alloc_rx_buffers(ring_data, clean_count);
795
796 return recv_pkts;
797 }
798
799 static void hns_nic_rx_fini_pro(struct hns_nic_ring_data *ring_data)
800 {
801 struct hnae_ring *ring = ring_data->ring;
802 int num = 0;
803
804 /* for hardware bug fixed */
805 num = readl_relaxed(ring->io_base + RCB_REG_FBDNUM);
806
807 if (num > 0) {
808 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
809 ring_data->ring, 1);
810
811 napi_schedule(&ring_data->napi);
812 }
813 }
814
815 static inline void hns_nic_reclaim_one_desc(struct hnae_ring *ring,
816 int *bytes, int *pkts)
817 {
818 struct hnae_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
819
820 (*pkts) += (desc_cb->type == DESC_TYPE_SKB);
821 (*bytes) += desc_cb->length;
822 /* desc_cb will be cleaned, after hnae_free_buffer_detach*/
823 hnae_free_buffer_detach(ring, ring->next_to_clean);
824
825 ring_ptr_move_fw(ring, next_to_clean);
826 }
827
828 static int is_valid_clean_head(struct hnae_ring *ring, int h)
829 {
830 int u = ring->next_to_use;
831 int c = ring->next_to_clean;
832
833 if (unlikely(h > ring->desc_num))
834 return 0;
835
836 assert(u > 0 && u < ring->desc_num);
837 assert(c > 0 && c < ring->desc_num);
838 assert(u != c && h != c); /* must be checked before call this func */
839
840 return u > c ? (h > c && h <= u) : (h > c || h <= u);
841 }
842
843 /* netif_tx_lock will turn down the performance, set only when necessary */
844 #ifdef CONFIG_NET_POLL_CONTROLLER
845 #define NETIF_TX_LOCK(ndev) netif_tx_lock(ndev)
846 #define NETIF_TX_UNLOCK(ndev) netif_tx_unlock(ndev)
847 #else
848 #define NETIF_TX_LOCK(ndev)
849 #define NETIF_TX_UNLOCK(ndev)
850 #endif
851 /* reclaim all desc in one budget
852 * return error or number of desc left
853 */
854 static int hns_nic_tx_poll_one(struct hns_nic_ring_data *ring_data,
855 int budget, void *v)
856 {
857 struct hnae_ring *ring = ring_data->ring;
858 struct net_device *ndev = ring_data->napi.dev;
859 struct netdev_queue *dev_queue;
860 struct hns_nic_priv *priv = netdev_priv(ndev);
861 int head;
862 int bytes, pkts;
863
864 NETIF_TX_LOCK(ndev);
865
866 head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
867 rmb(); /* make sure head is ready before touch any data */
868
869 if (is_ring_empty(ring) || head == ring->next_to_clean) {
870 NETIF_TX_UNLOCK(ndev);
871 return 0; /* no data to poll */
872 }
873
874 if (!is_valid_clean_head(ring, head)) {
875 netdev_err(ndev, "wrong head (%d, %d-%d)\n", head,
876 ring->next_to_use, ring->next_to_clean);
877 ring->stats.io_err_cnt++;
878 NETIF_TX_UNLOCK(ndev);
879 return -EIO;
880 }
881
882 bytes = 0;
883 pkts = 0;
884 while (head != ring->next_to_clean) {
885 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
886 /* issue prefetch for next Tx descriptor */
887 prefetch(&ring->desc_cb[ring->next_to_clean]);
888 }
889
890 NETIF_TX_UNLOCK(ndev);
891
892 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
893 netdev_tx_completed_queue(dev_queue, pkts, bytes);
894
895 if (unlikely(priv->link && !netif_carrier_ok(ndev)))
896 netif_carrier_on(ndev);
897
898 if (unlikely(pkts && netif_carrier_ok(ndev) &&
899 (ring_space(ring) >= ring->max_desc_num_per_pkt * 2))) {
900 /* Make sure that anybody stopping the queue after this
901 * sees the new next_to_clean.
902 */
903 smp_mb();
904 if (netif_tx_queue_stopped(dev_queue) &&
905 !test_bit(NIC_STATE_DOWN, &priv->state)) {
906 netif_tx_wake_queue(dev_queue);
907 ring->stats.restart_queue++;
908 }
909 }
910 return 0;
911 }
912
913 static void hns_nic_tx_fini_pro(struct hns_nic_ring_data *ring_data)
914 {
915 struct hnae_ring *ring = ring_data->ring;
916 int head = readl_relaxed(ring->io_base + RCB_REG_HEAD);
917
918 if (head != ring->next_to_clean) {
919 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
920 ring_data->ring, 1);
921
922 napi_schedule(&ring_data->napi);
923 }
924 }
925
926 static void hns_nic_tx_clr_all_bufs(struct hns_nic_ring_data *ring_data)
927 {
928 struct hnae_ring *ring = ring_data->ring;
929 struct net_device *ndev = ring_data->napi.dev;
930 struct netdev_queue *dev_queue;
931 int head;
932 int bytes, pkts;
933
934 NETIF_TX_LOCK(ndev);
935
936 head = ring->next_to_use; /* ntu :soft setted ring position*/
937 bytes = 0;
938 pkts = 0;
939 while (head != ring->next_to_clean)
940 hns_nic_reclaim_one_desc(ring, &bytes, &pkts);
941
942 NETIF_TX_UNLOCK(ndev);
943
944 dev_queue = netdev_get_tx_queue(ndev, ring_data->queue_index);
945 netdev_tx_reset_queue(dev_queue);
946 }
947
948 static int hns_nic_common_poll(struct napi_struct *napi, int budget)
949 {
950 struct hns_nic_ring_data *ring_data =
951 container_of(napi, struct hns_nic_ring_data, napi);
952 int clean_complete = ring_data->poll_one(
953 ring_data, budget, ring_data->ex_process);
954
955 if (clean_complete >= 0 && clean_complete < budget) {
956 napi_complete(napi);
957 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
958 ring_data->ring, 0);
959 if (ring_data->fini_process)
960 ring_data->fini_process(ring_data);
961 return 0;
962 }
963
964 return clean_complete;
965 }
966
967 static irqreturn_t hns_irq_handle(int irq, void *dev)
968 {
969 struct hns_nic_ring_data *ring_data = (struct hns_nic_ring_data *)dev;
970
971 ring_data->ring->q->handle->dev->ops->toggle_ring_irq(
972 ring_data->ring, 1);
973 napi_schedule(&ring_data->napi);
974
975 return IRQ_HANDLED;
976 }
977
978 /**
979 *hns_nic_adjust_link - adjust net work mode by the phy stat or new param
980 *@ndev: net device
981 */
982 static void hns_nic_adjust_link(struct net_device *ndev)
983 {
984 struct hns_nic_priv *priv = netdev_priv(ndev);
985 struct hnae_handle *h = priv->ae_handle;
986
987 h->dev->ops->adjust_link(h, ndev->phydev->speed, ndev->phydev->duplex);
988 }
989
990 /**
991 *hns_nic_init_phy - init phy
992 *@ndev: net device
993 *@h: ae handle
994 * Return 0 on success, negative on failure
995 */
996 int hns_nic_init_phy(struct net_device *ndev, struct hnae_handle *h)
997 {
998 struct hns_nic_priv *priv = netdev_priv(ndev);
999 struct phy_device *phy_dev = NULL;
1000
1001 if (!h->phy_node)
1002 return 0;
1003
1004 if (h->phy_if != PHY_INTERFACE_MODE_XGMII)
1005 phy_dev = of_phy_connect(ndev, h->phy_node,
1006 hns_nic_adjust_link, 0, h->phy_if);
1007 else
1008 phy_dev = of_phy_attach(ndev, h->phy_node, 0, h->phy_if);
1009
1010 if (unlikely(!phy_dev) || IS_ERR(phy_dev))
1011 return !phy_dev ? -ENODEV : PTR_ERR(phy_dev);
1012
1013 phy_dev->supported &= h->if_support;
1014 phy_dev->advertising = phy_dev->supported;
1015
1016 if (h->phy_if == PHY_INTERFACE_MODE_XGMII)
1017 phy_dev->autoneg = false;
1018
1019 priv->phy = phy_dev;
1020
1021 return 0;
1022 }
1023
1024 static int hns_nic_ring_open(struct net_device *netdev, int idx)
1025 {
1026 struct hns_nic_priv *priv = netdev_priv(netdev);
1027 struct hnae_handle *h = priv->ae_handle;
1028
1029 napi_enable(&priv->ring_data[idx].napi);
1030
1031 enable_irq(priv->ring_data[idx].ring->irq);
1032 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 0);
1033
1034 return 0;
1035 }
1036
1037 static int hns_nic_net_set_mac_address(struct net_device *ndev, void *p)
1038 {
1039 struct hns_nic_priv *priv = netdev_priv(ndev);
1040 struct hnae_handle *h = priv->ae_handle;
1041 struct sockaddr *mac_addr = p;
1042 int ret;
1043
1044 if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
1045 return -EADDRNOTAVAIL;
1046
1047 ret = h->dev->ops->set_mac_addr(h, mac_addr->sa_data);
1048 if (ret) {
1049 netdev_err(ndev, "set_mac_address fail, ret=%d!\n", ret);
1050 return ret;
1051 }
1052
1053 memcpy(ndev->dev_addr, mac_addr->sa_data, ndev->addr_len);
1054
1055 return 0;
1056 }
1057
1058 void hns_nic_update_stats(struct net_device *netdev)
1059 {
1060 struct hns_nic_priv *priv = netdev_priv(netdev);
1061 struct hnae_handle *h = priv->ae_handle;
1062
1063 h->dev->ops->update_stats(h, &netdev->stats);
1064 }
1065
1066 /* set mac addr if it is configed. or leave it to the AE driver */
1067 static void hns_init_mac_addr(struct net_device *ndev)
1068 {
1069 struct hns_nic_priv *priv = netdev_priv(ndev);
1070 struct device_node *node = priv->dev->of_node;
1071 const void *mac_addr_temp;
1072
1073 mac_addr_temp = of_get_mac_address(node);
1074 if (mac_addr_temp && is_valid_ether_addr(mac_addr_temp)) {
1075 memcpy(ndev->dev_addr, mac_addr_temp, ndev->addr_len);
1076 } else {
1077 eth_hw_addr_random(ndev);
1078 dev_warn(priv->dev, "No valid mac, use random mac %pM",
1079 ndev->dev_addr);
1080 }
1081 }
1082
1083 static void hns_nic_ring_close(struct net_device *netdev, int idx)
1084 {
1085 struct hns_nic_priv *priv = netdev_priv(netdev);
1086 struct hnae_handle *h = priv->ae_handle;
1087
1088 h->dev->ops->toggle_ring_irq(priv->ring_data[idx].ring, 1);
1089 disable_irq(priv->ring_data[idx].ring->irq);
1090
1091 napi_disable(&priv->ring_data[idx].napi);
1092 }
1093
1094 static void hns_set_irq_affinity(struct hns_nic_priv *priv)
1095 {
1096 struct hnae_handle *h = priv->ae_handle;
1097 struct hns_nic_ring_data *rd;
1098 int i;
1099 int cpu;
1100 cpumask_t mask;
1101
1102 /*diffrent irq banlance for 16core and 32core*/
1103 if (h->q_num == num_possible_cpus()) {
1104 for (i = 0; i < h->q_num * 2; i++) {
1105 rd = &priv->ring_data[i];
1106 if (cpu_online(rd->queue_index)) {
1107 cpumask_clear(&mask);
1108 cpu = rd->queue_index;
1109 cpumask_set_cpu(cpu, &mask);
1110 (void)irq_set_affinity_hint(rd->ring->irq,
1111 &mask);
1112 }
1113 }
1114 } else {
1115 for (i = 0; i < h->q_num; i++) {
1116 rd = &priv->ring_data[i];
1117 if (cpu_online(rd->queue_index * 2)) {
1118 cpumask_clear(&mask);
1119 cpu = rd->queue_index * 2;
1120 cpumask_set_cpu(cpu, &mask);
1121 (void)irq_set_affinity_hint(rd->ring->irq,
1122 &mask);
1123 }
1124 }
1125
1126 for (i = h->q_num; i < h->q_num * 2; i++) {
1127 rd = &priv->ring_data[i];
1128 if (cpu_online(rd->queue_index * 2 + 1)) {
1129 cpumask_clear(&mask);
1130 cpu = rd->queue_index * 2 + 1;
1131 cpumask_set_cpu(cpu, &mask);
1132 (void)irq_set_affinity_hint(rd->ring->irq,
1133 &mask);
1134 }
1135 }
1136 }
1137 }
1138
1139 static int hns_nic_init_irq(struct hns_nic_priv *priv)
1140 {
1141 struct hnae_handle *h = priv->ae_handle;
1142 struct hns_nic_ring_data *rd;
1143 int i;
1144 int ret;
1145
1146 for (i = 0; i < h->q_num * 2; i++) {
1147 rd = &priv->ring_data[i];
1148
1149 if (rd->ring->irq_init_flag == RCB_IRQ_INITED)
1150 break;
1151
1152 snprintf(rd->ring->ring_name, RCB_RING_NAME_LEN,
1153 "%s-%s%d", priv->netdev->name,
1154 (i < h->q_num ? "tx" : "rx"), rd->queue_index);
1155
1156 rd->ring->ring_name[RCB_RING_NAME_LEN - 1] = '\0';
1157
1158 ret = request_irq(rd->ring->irq,
1159 hns_irq_handle, 0, rd->ring->ring_name, rd);
1160 if (ret) {
1161 netdev_err(priv->netdev, "request irq(%d) fail\n",
1162 rd->ring->irq);
1163 return ret;
1164 }
1165 disable_irq(rd->ring->irq);
1166 rd->ring->irq_init_flag = RCB_IRQ_INITED;
1167 }
1168
1169 /*set cpu affinity*/
1170 hns_set_irq_affinity(priv);
1171
1172 return 0;
1173 }
1174
1175 static int hns_nic_net_up(struct net_device *ndev)
1176 {
1177 struct hns_nic_priv *priv = netdev_priv(ndev);
1178 struct hnae_handle *h = priv->ae_handle;
1179 int i, j, k;
1180 int ret;
1181
1182 ret = hns_nic_init_irq(priv);
1183 if (ret != 0) {
1184 netdev_err(ndev, "hns init irq failed! ret=%d\n", ret);
1185 return ret;
1186 }
1187
1188 for (i = 0; i < h->q_num * 2; i++) {
1189 ret = hns_nic_ring_open(ndev, i);
1190 if (ret)
1191 goto out_has_some_queues;
1192 }
1193
1194 for (k = 0; k < h->q_num; k++)
1195 h->dev->ops->toggle_queue_status(h->qs[k], 1);
1196
1197 ret = h->dev->ops->set_mac_addr(h, ndev->dev_addr);
1198 if (ret)
1199 goto out_set_mac_addr_err;
1200
1201 ret = h->dev->ops->start ? h->dev->ops->start(h) : 0;
1202 if (ret)
1203 goto out_start_err;
1204
1205 if (priv->phy)
1206 phy_start(priv->phy);
1207
1208 clear_bit(NIC_STATE_DOWN, &priv->state);
1209 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1210
1211 return 0;
1212
1213 out_start_err:
1214 netif_stop_queue(ndev);
1215 out_set_mac_addr_err:
1216 for (k = 0; k < h->q_num; k++)
1217 h->dev->ops->toggle_queue_status(h->qs[k], 0);
1218 out_has_some_queues:
1219 for (j = i - 1; j >= 0; j--)
1220 hns_nic_ring_close(ndev, j);
1221
1222 set_bit(NIC_STATE_DOWN, &priv->state);
1223
1224 return ret;
1225 }
1226
1227 static void hns_nic_net_down(struct net_device *ndev)
1228 {
1229 int i;
1230 struct hnae_ae_ops *ops;
1231 struct hns_nic_priv *priv = netdev_priv(ndev);
1232
1233 if (test_and_set_bit(NIC_STATE_DOWN, &priv->state))
1234 return;
1235
1236 (void)del_timer_sync(&priv->service_timer);
1237 netif_tx_stop_all_queues(ndev);
1238 netif_carrier_off(ndev);
1239 netif_tx_disable(ndev);
1240 priv->link = 0;
1241
1242 if (priv->phy)
1243 phy_stop(priv->phy);
1244
1245 ops = priv->ae_handle->dev->ops;
1246
1247 if (ops->stop)
1248 ops->stop(priv->ae_handle);
1249
1250 netif_tx_stop_all_queues(ndev);
1251
1252 for (i = priv->ae_handle->q_num - 1; i >= 0; i--) {
1253 hns_nic_ring_close(ndev, i);
1254 hns_nic_ring_close(ndev, i + priv->ae_handle->q_num);
1255
1256 /* clean tx buffers*/
1257 hns_nic_tx_clr_all_bufs(priv->ring_data + i);
1258 }
1259 }
1260
1261 void hns_nic_net_reset(struct net_device *ndev)
1262 {
1263 struct hns_nic_priv *priv = netdev_priv(ndev);
1264 struct hnae_handle *handle = priv->ae_handle;
1265
1266 while (test_and_set_bit(NIC_STATE_RESETTING, &priv->state))
1267 usleep_range(1000, 2000);
1268
1269 (void)hnae_reinit_handle(handle);
1270
1271 clear_bit(NIC_STATE_RESETTING, &priv->state);
1272 }
1273
1274 void hns_nic_net_reinit(struct net_device *netdev)
1275 {
1276 struct hns_nic_priv *priv = netdev_priv(netdev);
1277
1278 priv->netdev->trans_start = jiffies;
1279 while (test_and_set_bit(NIC_STATE_REINITING, &priv->state))
1280 usleep_range(1000, 2000);
1281
1282 hns_nic_net_down(netdev);
1283 hns_nic_net_reset(netdev);
1284 (void)hns_nic_net_up(netdev);
1285 clear_bit(NIC_STATE_REINITING, &priv->state);
1286 }
1287
1288 static int hns_nic_net_open(struct net_device *ndev)
1289 {
1290 struct hns_nic_priv *priv = netdev_priv(ndev);
1291 struct hnae_handle *h = priv->ae_handle;
1292 int ret;
1293
1294 if (test_bit(NIC_STATE_TESTING, &priv->state))
1295 return -EBUSY;
1296
1297 priv->link = 0;
1298 netif_carrier_off(ndev);
1299
1300 ret = netif_set_real_num_tx_queues(ndev, h->q_num);
1301 if (ret < 0) {
1302 netdev_err(ndev, "netif_set_real_num_tx_queues fail, ret=%d!\n",
1303 ret);
1304 return ret;
1305 }
1306
1307 ret = netif_set_real_num_rx_queues(ndev, h->q_num);
1308 if (ret < 0) {
1309 netdev_err(ndev,
1310 "netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
1311 return ret;
1312 }
1313
1314 ret = hns_nic_net_up(ndev);
1315 if (ret) {
1316 netdev_err(ndev,
1317 "hns net up fail, ret=%d!\n", ret);
1318 return ret;
1319 }
1320
1321 return 0;
1322 }
1323
1324 static int hns_nic_net_stop(struct net_device *ndev)
1325 {
1326 hns_nic_net_down(ndev);
1327
1328 return 0;
1329 }
1330
1331 static void hns_tx_timeout_reset(struct hns_nic_priv *priv);
1332 static void hns_nic_net_timeout(struct net_device *ndev)
1333 {
1334 struct hns_nic_priv *priv = netdev_priv(ndev);
1335
1336 hns_tx_timeout_reset(priv);
1337 }
1338
1339 static int hns_nic_do_ioctl(struct net_device *netdev, struct ifreq *ifr,
1340 int cmd)
1341 {
1342 struct hns_nic_priv *priv = netdev_priv(netdev);
1343 struct phy_device *phy_dev = priv->phy;
1344
1345 if (!netif_running(netdev))
1346 return -EINVAL;
1347
1348 if (!phy_dev)
1349 return -ENOTSUPP;
1350
1351 return phy_mii_ioctl(phy_dev, ifr, cmd);
1352 }
1353
1354 /* use only for netconsole to poll with the device without interrupt */
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 void hns_nic_poll_controller(struct net_device *ndev)
1357 {
1358 struct hns_nic_priv *priv = netdev_priv(ndev);
1359 unsigned long flags;
1360 int i;
1361
1362 local_irq_save(flags);
1363 for (i = 0; i < priv->ae_handle->q_num * 2; i++)
1364 napi_schedule(&priv->ring_data[i].napi);
1365 local_irq_restore(flags);
1366 }
1367 #endif
1368
1369 static netdev_tx_t hns_nic_net_xmit(struct sk_buff *skb,
1370 struct net_device *ndev)
1371 {
1372 struct hns_nic_priv *priv = netdev_priv(ndev);
1373 int ret;
1374
1375 assert(skb->queue_mapping < ndev->ae_handle->q_num);
1376 ret = hns_nic_net_xmit_hw(ndev, skb,
1377 &tx_ring_data(priv, skb->queue_mapping));
1378 if (ret == NETDEV_TX_OK) {
1379 ndev->trans_start = jiffies;
1380 ndev->stats.tx_bytes += skb->len;
1381 ndev->stats.tx_packets++;
1382 }
1383 return (netdev_tx_t)ret;
1384 }
1385
1386 static int hns_nic_change_mtu(struct net_device *ndev, int new_mtu)
1387 {
1388 struct hns_nic_priv *priv = netdev_priv(ndev);
1389 struct hnae_handle *h = priv->ae_handle;
1390 int ret;
1391
1392 /* MTU < 68 is an error and causes problems on some kernels */
1393 if (new_mtu < 68)
1394 return -EINVAL;
1395
1396 if (!h->dev->ops->set_mtu)
1397 return -ENOTSUPP;
1398
1399 if (netif_running(ndev)) {
1400 (void)hns_nic_net_stop(ndev);
1401 msleep(100);
1402
1403 ret = h->dev->ops->set_mtu(h, new_mtu);
1404 if (ret)
1405 netdev_err(ndev, "set mtu fail, return value %d\n",
1406 ret);
1407
1408 if (hns_nic_net_open(ndev))
1409 netdev_err(ndev, "hns net open fail\n");
1410 } else {
1411 ret = h->dev->ops->set_mtu(h, new_mtu);
1412 }
1413
1414 if (!ret)
1415 ndev->mtu = new_mtu;
1416
1417 return ret;
1418 }
1419
1420 static int hns_nic_set_features(struct net_device *netdev,
1421 netdev_features_t features)
1422 {
1423 struct hns_nic_priv *priv = netdev_priv(netdev);
1424 struct hnae_handle *h = priv->ae_handle;
1425
1426 switch (priv->enet_ver) {
1427 case AE_VERSION_1:
1428 if (features & (NETIF_F_TSO | NETIF_F_TSO6))
1429 netdev_info(netdev, "enet v1 do not support tso!\n");
1430 break;
1431 default:
1432 if (features & (NETIF_F_TSO | NETIF_F_TSO6)) {
1433 priv->ops.fill_desc = fill_tso_desc;
1434 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1435 /* The chip only support 7*4096 */
1436 netif_set_gso_max_size(netdev, 7 * 4096);
1437 h->dev->ops->set_tso_stats(h, 1);
1438 } else {
1439 priv->ops.fill_desc = fill_v2_desc;
1440 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1441 h->dev->ops->set_tso_stats(h, 0);
1442 }
1443 break;
1444 }
1445 netdev->features = features;
1446 return 0;
1447 }
1448
1449 static netdev_features_t hns_nic_fix_features(
1450 struct net_device *netdev, netdev_features_t features)
1451 {
1452 struct hns_nic_priv *priv = netdev_priv(netdev);
1453
1454 switch (priv->enet_ver) {
1455 case AE_VERSION_1:
1456 features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
1457 NETIF_F_HW_VLAN_CTAG_FILTER);
1458 break;
1459 default:
1460 break;
1461 }
1462 return features;
1463 }
1464
1465 /**
1466 * nic_set_multicast_list - set mutl mac address
1467 * @netdev: net device
1468 * @p: mac address
1469 *
1470 * return void
1471 */
1472 void hns_set_multicast_list(struct net_device *ndev)
1473 {
1474 struct hns_nic_priv *priv = netdev_priv(ndev);
1475 struct hnae_handle *h = priv->ae_handle;
1476 struct netdev_hw_addr *ha = NULL;
1477
1478 if (!h) {
1479 netdev_err(ndev, "hnae handle is null\n");
1480 return;
1481 }
1482
1483 if (h->dev->ops->set_mc_addr) {
1484 netdev_for_each_mc_addr(ha, ndev)
1485 if (h->dev->ops->set_mc_addr(h, ha->addr))
1486 netdev_err(ndev, "set multicast fail\n");
1487 }
1488 }
1489
1490 void hns_nic_set_rx_mode(struct net_device *ndev)
1491 {
1492 struct hns_nic_priv *priv = netdev_priv(ndev);
1493 struct hnae_handle *h = priv->ae_handle;
1494
1495 if (h->dev->ops->set_promisc_mode) {
1496 if (ndev->flags & IFF_PROMISC)
1497 h->dev->ops->set_promisc_mode(h, 1);
1498 else
1499 h->dev->ops->set_promisc_mode(h, 0);
1500 }
1501
1502 hns_set_multicast_list(ndev);
1503 }
1504
1505 struct rtnl_link_stats64 *hns_nic_get_stats64(struct net_device *ndev,
1506 struct rtnl_link_stats64 *stats)
1507 {
1508 int idx = 0;
1509 u64 tx_bytes = 0;
1510 u64 rx_bytes = 0;
1511 u64 tx_pkts = 0;
1512 u64 rx_pkts = 0;
1513 struct hns_nic_priv *priv = netdev_priv(ndev);
1514 struct hnae_handle *h = priv->ae_handle;
1515
1516 for (idx = 0; idx < h->q_num; idx++) {
1517 tx_bytes += h->qs[idx]->tx_ring.stats.tx_bytes;
1518 tx_pkts += h->qs[idx]->tx_ring.stats.tx_pkts;
1519 rx_bytes += h->qs[idx]->rx_ring.stats.rx_bytes;
1520 rx_pkts += h->qs[idx]->rx_ring.stats.rx_pkts;
1521 }
1522
1523 stats->tx_bytes = tx_bytes;
1524 stats->tx_packets = tx_pkts;
1525 stats->rx_bytes = rx_bytes;
1526 stats->rx_packets = rx_pkts;
1527
1528 stats->rx_errors = ndev->stats.rx_errors;
1529 stats->multicast = ndev->stats.multicast;
1530 stats->rx_length_errors = ndev->stats.rx_length_errors;
1531 stats->rx_crc_errors = ndev->stats.rx_crc_errors;
1532 stats->rx_missed_errors = ndev->stats.rx_missed_errors;
1533
1534 stats->tx_errors = ndev->stats.tx_errors;
1535 stats->rx_dropped = ndev->stats.rx_dropped;
1536 stats->tx_dropped = ndev->stats.tx_dropped;
1537 stats->collisions = ndev->stats.collisions;
1538 stats->rx_over_errors = ndev->stats.rx_over_errors;
1539 stats->rx_frame_errors = ndev->stats.rx_frame_errors;
1540 stats->rx_fifo_errors = ndev->stats.rx_fifo_errors;
1541 stats->tx_aborted_errors = ndev->stats.tx_aborted_errors;
1542 stats->tx_carrier_errors = ndev->stats.tx_carrier_errors;
1543 stats->tx_fifo_errors = ndev->stats.tx_fifo_errors;
1544 stats->tx_heartbeat_errors = ndev->stats.tx_heartbeat_errors;
1545 stats->tx_window_errors = ndev->stats.tx_window_errors;
1546 stats->rx_compressed = ndev->stats.rx_compressed;
1547 stats->tx_compressed = ndev->stats.tx_compressed;
1548
1549 return stats;
1550 }
1551
1552 static const struct net_device_ops hns_nic_netdev_ops = {
1553 .ndo_open = hns_nic_net_open,
1554 .ndo_stop = hns_nic_net_stop,
1555 .ndo_start_xmit = hns_nic_net_xmit,
1556 .ndo_tx_timeout = hns_nic_net_timeout,
1557 .ndo_set_mac_address = hns_nic_net_set_mac_address,
1558 .ndo_change_mtu = hns_nic_change_mtu,
1559 .ndo_do_ioctl = hns_nic_do_ioctl,
1560 .ndo_set_features = hns_nic_set_features,
1561 .ndo_fix_features = hns_nic_fix_features,
1562 .ndo_get_stats64 = hns_nic_get_stats64,
1563 #ifdef CONFIG_NET_POLL_CONTROLLER
1564 .ndo_poll_controller = hns_nic_poll_controller,
1565 #endif
1566 .ndo_set_rx_mode = hns_nic_set_rx_mode,
1567 };
1568
1569 static void hns_nic_update_link_status(struct net_device *netdev)
1570 {
1571 struct hns_nic_priv *priv = netdev_priv(netdev);
1572
1573 struct hnae_handle *h = priv->ae_handle;
1574 int state = 1;
1575
1576 if (priv->phy) {
1577 if (!genphy_update_link(priv->phy))
1578 state = priv->phy->link;
1579 else
1580 state = 0;
1581 }
1582 state = state && h->dev->ops->get_status(h);
1583
1584 if (state != priv->link) {
1585 if (state) {
1586 netif_carrier_on(netdev);
1587 netif_tx_wake_all_queues(netdev);
1588 netdev_info(netdev, "link up\n");
1589 } else {
1590 netif_carrier_off(netdev);
1591 netdev_info(netdev, "link down\n");
1592 }
1593 priv->link = state;
1594 }
1595 }
1596
1597 /* for dumping key regs*/
1598 static void hns_nic_dump(struct hns_nic_priv *priv)
1599 {
1600 struct hnae_handle *h = priv->ae_handle;
1601 struct hnae_ae_ops *ops = h->dev->ops;
1602 u32 *data, reg_num, i;
1603
1604 if (ops->get_regs_len && ops->get_regs) {
1605 reg_num = ops->get_regs_len(priv->ae_handle);
1606 reg_num = (reg_num + 3ul) & ~3ul;
1607 data = kcalloc(reg_num, sizeof(u32), GFP_KERNEL);
1608 if (data) {
1609 ops->get_regs(priv->ae_handle, data);
1610 for (i = 0; i < reg_num; i += 4)
1611 pr_info("0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1612 i, data[i], data[i + 1],
1613 data[i + 2], data[i + 3]);
1614 kfree(data);
1615 }
1616 }
1617
1618 for (i = 0; i < h->q_num; i++) {
1619 pr_info("tx_queue%d_next_to_clean:%d\n",
1620 i, h->qs[i]->tx_ring.next_to_clean);
1621 pr_info("tx_queue%d_next_to_use:%d\n",
1622 i, h->qs[i]->tx_ring.next_to_use);
1623 pr_info("rx_queue%d_next_to_clean:%d\n",
1624 i, h->qs[i]->rx_ring.next_to_clean);
1625 pr_info("rx_queue%d_next_to_use:%d\n",
1626 i, h->qs[i]->rx_ring.next_to_use);
1627 }
1628 }
1629
1630 /* for resetting suntask*/
1631 static void hns_nic_reset_subtask(struct hns_nic_priv *priv)
1632 {
1633 enum hnae_port_type type = priv->ae_handle->port_type;
1634
1635 if (!test_bit(NIC_STATE2_RESET_REQUESTED, &priv->state))
1636 return;
1637 clear_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1638
1639 /* If we're already down, removing or resetting, just bail */
1640 if (test_bit(NIC_STATE_DOWN, &priv->state) ||
1641 test_bit(NIC_STATE_REMOVING, &priv->state) ||
1642 test_bit(NIC_STATE_RESETTING, &priv->state))
1643 return;
1644
1645 hns_nic_dump(priv);
1646 netdev_info(priv->netdev, "try to reset %s port!\n",
1647 (type == HNAE_PORT_DEBUG ? "debug" : "service"));
1648
1649 rtnl_lock();
1650 /* put off any impending NetWatchDogTimeout */
1651 priv->netdev->trans_start = jiffies;
1652
1653 if (type == HNAE_PORT_DEBUG) {
1654 hns_nic_net_reinit(priv->netdev);
1655 } else {
1656 netif_carrier_off(priv->netdev);
1657 netif_tx_disable(priv->netdev);
1658 }
1659 rtnl_unlock();
1660 }
1661
1662 /* for doing service complete*/
1663 static void hns_nic_service_event_complete(struct hns_nic_priv *priv)
1664 {
1665 WARN_ON(!test_bit(NIC_STATE_SERVICE_SCHED, &priv->state));
1666
1667 smp_mb__before_atomic();
1668 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1669 }
1670
1671 static void hns_nic_service_task(struct work_struct *work)
1672 {
1673 struct hns_nic_priv *priv
1674 = container_of(work, struct hns_nic_priv, service_task);
1675 struct hnae_handle *h = priv->ae_handle;
1676
1677 hns_nic_update_link_status(priv->netdev);
1678 h->dev->ops->update_led_status(h);
1679 hns_nic_update_stats(priv->netdev);
1680
1681 hns_nic_reset_subtask(priv);
1682 hns_nic_service_event_complete(priv);
1683 }
1684
1685 static void hns_nic_task_schedule(struct hns_nic_priv *priv)
1686 {
1687 if (!test_bit(NIC_STATE_DOWN, &priv->state) &&
1688 !test_bit(NIC_STATE_REMOVING, &priv->state) &&
1689 !test_and_set_bit(NIC_STATE_SERVICE_SCHED, &priv->state))
1690 (void)schedule_work(&priv->service_task);
1691 }
1692
1693 static void hns_nic_service_timer(unsigned long data)
1694 {
1695 struct hns_nic_priv *priv = (struct hns_nic_priv *)data;
1696
1697 (void)mod_timer(&priv->service_timer, jiffies + SERVICE_TIMER_HZ);
1698
1699 hns_nic_task_schedule(priv);
1700 }
1701
1702 /**
1703 * hns_tx_timeout_reset - initiate reset due to Tx timeout
1704 * @priv: driver private struct
1705 **/
1706 static void hns_tx_timeout_reset(struct hns_nic_priv *priv)
1707 {
1708 /* Do the reset outside of interrupt context */
1709 if (!test_bit(NIC_STATE_DOWN, &priv->state)) {
1710 set_bit(NIC_STATE2_RESET_REQUESTED, &priv->state);
1711 netdev_warn(priv->netdev,
1712 "initiating reset due to tx timeout(%llu,0x%lx)\n",
1713 priv->tx_timeout_count, priv->state);
1714 priv->tx_timeout_count++;
1715 hns_nic_task_schedule(priv);
1716 }
1717 }
1718
1719 static int hns_nic_init_ring_data(struct hns_nic_priv *priv)
1720 {
1721 struct hnae_handle *h = priv->ae_handle;
1722 struct hns_nic_ring_data *rd;
1723 bool is_ver1 = AE_IS_VER1(priv->enet_ver);
1724 int i;
1725
1726 if (h->q_num > NIC_MAX_Q_PER_VF) {
1727 netdev_err(priv->netdev, "too much queue (%d)\n", h->q_num);
1728 return -EINVAL;
1729 }
1730
1731 priv->ring_data = kzalloc(h->q_num * sizeof(*priv->ring_data) * 2,
1732 GFP_KERNEL);
1733 if (!priv->ring_data)
1734 return -ENOMEM;
1735
1736 for (i = 0; i < h->q_num; i++) {
1737 rd = &priv->ring_data[i];
1738 rd->queue_index = i;
1739 rd->ring = &h->qs[i]->tx_ring;
1740 rd->poll_one = hns_nic_tx_poll_one;
1741 rd->fini_process = is_ver1 ? hns_nic_tx_fini_pro : NULL;
1742
1743 netif_napi_add(priv->netdev, &rd->napi,
1744 hns_nic_common_poll, NIC_TX_CLEAN_MAX_NUM);
1745 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1746 }
1747 for (i = h->q_num; i < h->q_num * 2; i++) {
1748 rd = &priv->ring_data[i];
1749 rd->queue_index = i - h->q_num;
1750 rd->ring = &h->qs[i - h->q_num]->rx_ring;
1751 rd->poll_one = hns_nic_rx_poll_one;
1752 rd->ex_process = hns_nic_rx_up_pro;
1753 rd->fini_process = is_ver1 ? hns_nic_rx_fini_pro : NULL;
1754
1755 netif_napi_add(priv->netdev, &rd->napi,
1756 hns_nic_common_poll, NIC_RX_CLEAN_MAX_NUM);
1757 rd->ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1758 }
1759
1760 return 0;
1761 }
1762
1763 static void hns_nic_uninit_ring_data(struct hns_nic_priv *priv)
1764 {
1765 struct hnae_handle *h = priv->ae_handle;
1766 int i;
1767
1768 for (i = 0; i < h->q_num * 2; i++) {
1769 netif_napi_del(&priv->ring_data[i].napi);
1770 if (priv->ring_data[i].ring->irq_init_flag == RCB_IRQ_INITED) {
1771 (void)irq_set_affinity_hint(
1772 priv->ring_data[i].ring->irq,
1773 NULL);
1774 free_irq(priv->ring_data[i].ring->irq,
1775 &priv->ring_data[i]);
1776 }
1777
1778 priv->ring_data[i].ring->irq_init_flag = RCB_IRQ_NOT_INITED;
1779 }
1780 kfree(priv->ring_data);
1781 }
1782
1783 static void hns_nic_set_priv_ops(struct net_device *netdev)
1784 {
1785 struct hns_nic_priv *priv = netdev_priv(netdev);
1786 struct hnae_handle *h = priv->ae_handle;
1787
1788 if (AE_IS_VER1(priv->enet_ver)) {
1789 priv->ops.fill_desc = fill_desc;
1790 priv->ops.get_rxd_bnum = get_rx_desc_bnum;
1791 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1792 } else {
1793 priv->ops.get_rxd_bnum = get_v2rx_desc_bnum;
1794 if ((netdev->features & NETIF_F_TSO) ||
1795 (netdev->features & NETIF_F_TSO6)) {
1796 priv->ops.fill_desc = fill_tso_desc;
1797 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tso;
1798 /* This chip only support 7*4096 */
1799 netif_set_gso_max_size(netdev, 7 * 4096);
1800 h->dev->ops->set_tso_stats(h, 1);
1801 } else {
1802 priv->ops.fill_desc = fill_v2_desc;
1803 priv->ops.maybe_stop_tx = hns_nic_maybe_stop_tx;
1804 }
1805 }
1806 }
1807
1808 static int hns_nic_try_get_ae(struct net_device *ndev)
1809 {
1810 struct hns_nic_priv *priv = netdev_priv(ndev);
1811 struct hnae_handle *h;
1812 int ret;
1813
1814 h = hnae_get_handle(&priv->netdev->dev,
1815 priv->ae_node, priv->port_id, NULL);
1816 if (IS_ERR_OR_NULL(h)) {
1817 ret = -ENODEV;
1818 dev_dbg(priv->dev, "has not handle, register notifier!\n");
1819 goto out;
1820 }
1821 priv->ae_handle = h;
1822
1823 ret = hns_nic_init_phy(ndev, h);
1824 if (ret) {
1825 dev_err(priv->dev, "probe phy device fail!\n");
1826 goto out_init_phy;
1827 }
1828
1829 ret = hns_nic_init_ring_data(priv);
1830 if (ret) {
1831 ret = -ENOMEM;
1832 goto out_init_ring_data;
1833 }
1834
1835 hns_nic_set_priv_ops(ndev);
1836
1837 ret = register_netdev(ndev);
1838 if (ret) {
1839 dev_err(priv->dev, "probe register netdev fail!\n");
1840 goto out_reg_ndev_fail;
1841 }
1842 return 0;
1843
1844 out_reg_ndev_fail:
1845 hns_nic_uninit_ring_data(priv);
1846 priv->ring_data = NULL;
1847 out_init_phy:
1848 out_init_ring_data:
1849 hnae_put_handle(priv->ae_handle);
1850 priv->ae_handle = NULL;
1851 out:
1852 return ret;
1853 }
1854
1855 static int hns_nic_notifier_action(struct notifier_block *nb,
1856 unsigned long action, void *data)
1857 {
1858 struct hns_nic_priv *priv =
1859 container_of(nb, struct hns_nic_priv, notifier_block);
1860
1861 assert(action == HNAE_AE_REGISTER);
1862
1863 if (!hns_nic_try_get_ae(priv->netdev)) {
1864 hnae_unregister_notifier(&priv->notifier_block);
1865 priv->notifier_block.notifier_call = NULL;
1866 }
1867 return 0;
1868 }
1869
1870 static int hns_nic_dev_probe(struct platform_device *pdev)
1871 {
1872 struct device *dev = &pdev->dev;
1873 struct net_device *ndev;
1874 struct hns_nic_priv *priv;
1875 struct device_node *node = dev->of_node;
1876 int ret;
1877
1878 ndev = alloc_etherdev_mq(sizeof(struct hns_nic_priv), NIC_MAX_Q_PER_VF);
1879 if (!ndev)
1880 return -ENOMEM;
1881
1882 platform_set_drvdata(pdev, ndev);
1883
1884 priv = netdev_priv(ndev);
1885 priv->dev = dev;
1886 priv->netdev = ndev;
1887
1888 if (of_device_is_compatible(node, "hisilicon,hns-nic-v1"))
1889 priv->enet_ver = AE_VERSION_1;
1890 else
1891 priv->enet_ver = AE_VERSION_2;
1892
1893 priv->ae_node = (void *)of_parse_phandle(node, "ae-handle", 0);
1894 if (IS_ERR_OR_NULL(priv->ae_node)) {
1895 ret = PTR_ERR(priv->ae_node);
1896 dev_err(dev, "not find ae-handle\n");
1897 goto out_read_prop_fail;
1898 }
1899
1900 ret = of_property_read_u32(node, "port-id", &priv->port_id);
1901 if (ret)
1902 goto out_read_prop_fail;
1903
1904 hns_init_mac_addr(ndev);
1905
1906 ndev->watchdog_timeo = HNS_NIC_TX_TIMEOUT;
1907 ndev->priv_flags |= IFF_UNICAST_FLT;
1908 ndev->netdev_ops = &hns_nic_netdev_ops;
1909 hns_ethtool_set_ops(ndev);
1910
1911 ndev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1912 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1913 NETIF_F_GRO;
1914 ndev->vlan_features |=
1915 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM;
1916 ndev->vlan_features |= NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO;
1917
1918 switch (priv->enet_ver) {
1919 case AE_VERSION_2:
1920 ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
1921 ndev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
1922 NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
1923 NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6;
1924 break;
1925 default:
1926 break;
1927 }
1928
1929 SET_NETDEV_DEV(ndev, dev);
1930
1931 if (!dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)))
1932 dev_dbg(dev, "set mask to 64bit\n");
1933 else
1934 dev_err(dev, "set mask to 32bit fail!\n");
1935
1936 /* carrier off reporting is important to ethtool even BEFORE open */
1937 netif_carrier_off(ndev);
1938
1939 setup_timer(&priv->service_timer, hns_nic_service_timer,
1940 (unsigned long)priv);
1941 INIT_WORK(&priv->service_task, hns_nic_service_task);
1942
1943 set_bit(NIC_STATE_SERVICE_INITED, &priv->state);
1944 clear_bit(NIC_STATE_SERVICE_SCHED, &priv->state);
1945 set_bit(NIC_STATE_DOWN, &priv->state);
1946
1947 if (hns_nic_try_get_ae(priv->netdev)) {
1948 priv->notifier_block.notifier_call = hns_nic_notifier_action;
1949 ret = hnae_register_notifier(&priv->notifier_block);
1950 if (ret) {
1951 dev_err(dev, "register notifier fail!\n");
1952 goto out_notify_fail;
1953 }
1954 dev_dbg(dev, "has not handle, register notifier!\n");
1955 }
1956
1957 return 0;
1958
1959 out_notify_fail:
1960 (void)cancel_work_sync(&priv->service_task);
1961 out_read_prop_fail:
1962 free_netdev(ndev);
1963 return ret;
1964 }
1965
1966 static int hns_nic_dev_remove(struct platform_device *pdev)
1967 {
1968 struct net_device *ndev = platform_get_drvdata(pdev);
1969 struct hns_nic_priv *priv = netdev_priv(ndev);
1970
1971 if (ndev->reg_state != NETREG_UNINITIALIZED)
1972 unregister_netdev(ndev);
1973
1974 if (priv->ring_data)
1975 hns_nic_uninit_ring_data(priv);
1976 priv->ring_data = NULL;
1977
1978 if (priv->phy)
1979 phy_disconnect(priv->phy);
1980 priv->phy = NULL;
1981
1982 if (!IS_ERR_OR_NULL(priv->ae_handle))
1983 hnae_put_handle(priv->ae_handle);
1984 priv->ae_handle = NULL;
1985 if (priv->notifier_block.notifier_call)
1986 hnae_unregister_notifier(&priv->notifier_block);
1987 priv->notifier_block.notifier_call = NULL;
1988
1989 set_bit(NIC_STATE_REMOVING, &priv->state);
1990 (void)cancel_work_sync(&priv->service_task);
1991
1992 free_netdev(ndev);
1993 return 0;
1994 }
1995
1996 static const struct of_device_id hns_enet_of_match[] = {
1997 {.compatible = "hisilicon,hns-nic-v1",},
1998 {.compatible = "hisilicon,hns-nic-v2",},
1999 {},
2000 };
2001
2002 MODULE_DEVICE_TABLE(of, hns_enet_of_match);
2003
2004 static struct platform_driver hns_nic_dev_driver = {
2005 .driver = {
2006 .name = "hns-nic",
2007 .of_match_table = hns_enet_of_match,
2008 },
2009 .probe = hns_nic_dev_probe,
2010 .remove = hns_nic_dev_remove,
2011 };
2012
2013 module_platform_driver(hns_nic_dev_driver);
2014
2015 MODULE_DESCRIPTION("HISILICON HNS Ethernet driver");
2016 MODULE_AUTHOR("Hisilicon, Inc.");
2017 MODULE_LICENSE("GPL");
2018 MODULE_ALIAS("platform:hns-nic");
This page took 0.132199 seconds and 6 git commands to generate.