1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
146 * 2009/06/01 - Andreas Mohr <andi at lisas dot de>
147 * - add clean lowlevel I/O emulation for cards with MII-lacking PHYs
150 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
152 #include <linux/hardirq.h>
153 #include <linux/interrupt.h>
154 #include <linux/module.h>
155 #include <linux/moduleparam.h>
156 #include <linux/kernel.h>
157 #include <linux/types.h>
158 #include <linux/sched.h>
159 #include <linux/slab.h>
160 #include <linux/delay.h>
161 #include <linux/init.h>
162 #include <linux/pci.h>
163 #include <linux/dma-mapping.h>
164 #include <linux/dmapool.h>
165 #include <linux/netdevice.h>
166 #include <linux/etherdevice.h>
167 #include <linux/mii.h>
168 #include <linux/if_vlan.h>
169 #include <linux/skbuff.h>
170 #include <linux/ethtool.h>
171 #include <linux/string.h>
172 #include <linux/firmware.h>
173 #include <linux/rtnetlink.h>
174 #include <asm/unaligned.h>
177 #define DRV_NAME "e100"
178 #define DRV_EXT "-NAPI"
179 #define DRV_VERSION "3.5.24-k2"DRV_EXT
180 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
181 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
183 #define E100_WATCHDOG_PERIOD (2 * HZ)
184 #define E100_NAPI_WEIGHT 16
186 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
187 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
188 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
190 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
191 MODULE_AUTHOR(DRV_COPYRIGHT
);
192 MODULE_LICENSE("GPL");
193 MODULE_VERSION(DRV_VERSION
);
194 MODULE_FIRMWARE(FIRMWARE_D101M
);
195 MODULE_FIRMWARE(FIRMWARE_D101S
);
196 MODULE_FIRMWARE(FIRMWARE_D102E
);
198 static int debug
= 3;
199 static int eeprom_bad_csum_allow
= 0;
200 static int use_io
= 0;
201 module_param(debug
, int, 0);
202 module_param(eeprom_bad_csum_allow
, int, 0);
203 module_param(use_io
, int, 0);
204 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
205 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
206 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
208 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
209 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
210 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
211 static const struct pci_device_id e100_id_table
[] = {
212 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
213 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
214 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
216 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
217 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
218 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
219 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
222 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
223 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
224 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
225 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
230 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
231 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
232 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
233 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
234 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
239 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
240 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
241 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
242 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
244 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
245 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
246 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
247 INTEL_8255X_ETHERNET_DEVICE(0x10fe, 7),
248 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
249 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
250 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
251 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
252 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
253 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
256 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
259 mac_82557_D100_A
= 0,
260 mac_82557_D100_B
= 1,
261 mac_82557_D100_C
= 2,
262 mac_82558_D101_A4
= 4,
263 mac_82558_D101_B0
= 5,
267 mac_82550_D102_C
= 13,
275 phy_100a
= 0x000003E0,
276 phy_100c
= 0x035002A8,
277 phy_82555_tx
= 0x015002A8,
278 phy_nsc_tx
= 0x5C002000,
279 phy_82562_et
= 0x033002A8,
280 phy_82562_em
= 0x032002A8,
281 phy_82562_ek
= 0x031002A8,
282 phy_82562_eh
= 0x017002A8,
283 phy_82552_v
= 0xd061004d,
284 phy_unknown
= 0xFFFFFFFF,
287 /* CSR (Control/Status Registers) */
313 RU_UNINITIALIZED
= -1,
317 stat_ack_not_ours
= 0x00,
318 stat_ack_sw_gen
= 0x04,
320 stat_ack_cu_idle
= 0x20,
321 stat_ack_frame_rx
= 0x40,
322 stat_ack_cu_cmd_done
= 0x80,
323 stat_ack_not_present
= 0xFF,
324 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
325 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
329 irq_mask_none
= 0x00,
337 ruc_load_base
= 0x06,
340 cuc_dump_addr
= 0x40,
341 cuc_dump_stats
= 0x50,
342 cuc_load_base
= 0x60,
343 cuc_dump_reset
= 0x70,
347 cuc_dump_complete
= 0x0000A005,
348 cuc_dump_reset_complete
= 0x0000A007,
352 software_reset
= 0x0000,
354 selective_reset
= 0x0002,
357 enum eeprom_ctrl_lo
{
365 mdi_write
= 0x04000000,
366 mdi_read
= 0x08000000,
367 mdi_ready
= 0x10000000,
377 enum eeprom_offsets
{
378 eeprom_cnfg_mdix
= 0x03,
379 eeprom_phy_iface
= 0x06,
381 eeprom_config_asf
= 0x0D,
382 eeprom_smbus_addr
= 0x90,
385 enum eeprom_cnfg_mdix
{
386 eeprom_mdix_enabled
= 0x0080,
389 enum eeprom_phy_iface
{
402 eeprom_id_wol
= 0x0020,
405 enum eeprom_config_asf
{
411 cb_complete
= 0x8000,
416 * cb_command - Command Block flags
417 * @cb_tx_nc: 0: controler does CRC (normal), 1: CRC from skb memory
445 struct rx
*next
, *prev
;
450 #if defined(__BIG_ENDIAN_BITFIELD)
456 /*0*/ u8
X(byte_count
:6, pad0
:2);
457 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
458 /*2*/ u8 adaptive_ifs
;
459 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
460 term_write_cache_line
:1), pad3
:4);
461 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
462 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
463 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
464 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
465 rx_save_overruns
: 1), rx_save_bad_frames
: 1);
466 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
467 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
469 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
470 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
471 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
472 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
474 /*11*/ u8
X(linear_priority
:3, pad11
:5);
475 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
476 /*13*/ u8 ip_addr_lo
;
477 /*14*/ u8 ip_addr_hi
;
478 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
479 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
480 pad15_2
:1), crs_or_cdt
:1);
481 /*16*/ u8 fc_delay_lo
;
482 /*17*/ u8 fc_delay_hi
;
483 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
484 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
485 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
486 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
487 full_duplex_force
:1), full_duplex_pin
:1);
488 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
489 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
490 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
494 #define E100_MAX_MULTICAST_ADDRS 64
497 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
500 /* Important: keep total struct u32-aligned */
501 #define UCODE_SIZE 134
508 __le32 ucode
[UCODE_SIZE
];
509 struct config config
;
522 __le32 dump_buffer_addr
;
524 struct cb
*next
, *prev
;
530 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
534 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
535 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
536 tx_multiple_collisions
, tx_total_collisions
;
537 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
538 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
539 rx_short_frame_errors
;
540 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
541 __le16 xmt_tco_frames
, rcv_tco_frames
;
561 struct param_range rfds
;
562 struct param_range cbs
;
566 /* Begin: frequently used values: keep adjacent for cache effect */
567 u32 msg_enable ____cacheline_aligned
;
568 struct net_device
*netdev
;
569 struct pci_dev
*pdev
;
570 u16 (*mdio_ctrl
)(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
);
572 struct rx
*rxs ____cacheline_aligned
;
573 struct rx
*rx_to_use
;
574 struct rx
*rx_to_clean
;
575 struct rfd blank_rfd
;
576 enum ru_state ru_running
;
578 spinlock_t cb_lock ____cacheline_aligned
;
580 struct csr __iomem
*csr
;
581 enum scb_cmd_lo cuc_cmd
;
582 unsigned int cbs_avail
;
583 struct napi_struct napi
;
585 struct cb
*cb_to_use
;
586 struct cb
*cb_to_send
;
587 struct cb
*cb_to_clean
;
589 /* End: frequently used values: keep adjacent for cache effect */
593 promiscuous
= (1 << 1),
594 multicast_all
= (1 << 2),
595 wol_magic
= (1 << 3),
596 ich_10h_workaround
= (1 << 4),
597 } flags ____cacheline_aligned
;
601 struct params params
;
602 struct timer_list watchdog
;
603 struct mii_if_info mii
;
604 struct work_struct tx_timeout_task
;
605 enum loopback loopback
;
610 struct pci_pool
*cbs_pool
;
611 dma_addr_t cbs_dma_addr
;
617 u32 tx_single_collisions
;
618 u32 tx_multiple_collisions
;
623 u32 rx_fc_unsupported
;
625 u32 rx_short_frame_errors
;
626 u32 rx_over_length_errors
;
630 spinlock_t mdio_lock
;
631 const struct firmware
*fw
;
634 static inline void e100_write_flush(struct nic
*nic
)
636 /* Flush previous PCI writes through intermediate bridges
637 * by doing a benign read */
638 (void)ioread8(&nic
->csr
->scb
.status
);
641 static void e100_enable_irq(struct nic
*nic
)
645 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
646 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
647 e100_write_flush(nic
);
648 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
651 static void e100_disable_irq(struct nic
*nic
)
655 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
656 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
657 e100_write_flush(nic
);
658 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
661 static void e100_hw_reset(struct nic
*nic
)
663 /* Put CU and RU into idle with a selective reset to get
664 * device off of PCI bus */
665 iowrite32(selective_reset
, &nic
->csr
->port
);
666 e100_write_flush(nic
); udelay(20);
668 /* Now fully reset device */
669 iowrite32(software_reset
, &nic
->csr
->port
);
670 e100_write_flush(nic
); udelay(20);
672 /* Mask off our interrupt line - it's unmasked after reset */
673 e100_disable_irq(nic
);
676 static int e100_self_test(struct nic
*nic
)
678 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
680 /* Passing the self-test is a pretty good indication
681 * that the device can DMA to/from host memory */
683 nic
->mem
->selftest
.signature
= 0;
684 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
686 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
687 e100_write_flush(nic
);
688 /* Wait 10 msec for self-test to complete */
691 /* Interrupts are enabled after self-test */
692 e100_disable_irq(nic
);
694 /* Check results of self-test */
695 if (nic
->mem
->selftest
.result
!= 0) {
696 netif_err(nic
, hw
, nic
->netdev
,
697 "Self-test failed: result=0x%08X\n",
698 nic
->mem
->selftest
.result
);
701 if (nic
->mem
->selftest
.signature
== 0) {
702 netif_err(nic
, hw
, nic
->netdev
, "Self-test failed: timed out\n");
709 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
711 u32 cmd_addr_data
[3];
715 /* Three cmds: write/erase enable, write data, write/erase disable */
716 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
717 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
719 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
721 /* Bit-bang cmds to write word to eeprom */
722 for (j
= 0; j
< 3; j
++) {
725 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
726 e100_write_flush(nic
); udelay(4);
728 for (i
= 31; i
>= 0; i
--) {
729 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
731 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
732 e100_write_flush(nic
); udelay(4);
734 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
735 e100_write_flush(nic
); udelay(4);
737 /* Wait 10 msec for cmd to complete */
741 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
742 e100_write_flush(nic
); udelay(4);
746 /* General technique stolen from the eepro100 driver - very clever */
747 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
754 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
757 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
758 e100_write_flush(nic
); udelay(4);
760 /* Bit-bang to read word from eeprom */
761 for (i
= 31; i
>= 0; i
--) {
762 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
763 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
764 e100_write_flush(nic
); udelay(4);
766 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
767 e100_write_flush(nic
); udelay(4);
769 /* Eeprom drives a dummy zero to EEDO after receiving
770 * complete address. Use this to adjust addr_len. */
771 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
772 if (!(ctrl
& eedo
) && i
> 16) {
773 *addr_len
-= (i
- 16);
777 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
781 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
782 e100_write_flush(nic
); udelay(4);
784 return cpu_to_le16(data
);
787 /* Load entire EEPROM image into driver cache and validate checksum */
788 static int e100_eeprom_load(struct nic
*nic
)
790 u16 addr
, addr_len
= 8, checksum
= 0;
792 /* Try reading with an 8-bit addr len to discover actual addr len */
793 e100_eeprom_read(nic
, &addr_len
, 0);
794 nic
->eeprom_wc
= 1 << addr_len
;
796 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
797 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
798 if (addr
< nic
->eeprom_wc
- 1)
799 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
802 /* The checksum, stored in the last word, is calculated such that
803 * the sum of words should be 0xBABA */
804 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
805 netif_err(nic
, probe
, nic
->netdev
, "EEPROM corrupted\n");
806 if (!eeprom_bad_csum_allow
)
813 /* Save (portion of) driver EEPROM cache to device and update checksum */
814 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
816 u16 addr
, addr_len
= 8, checksum
= 0;
818 /* Try reading with an 8-bit addr len to discover actual addr len */
819 e100_eeprom_read(nic
, &addr_len
, 0);
820 nic
->eeprom_wc
= 1 << addr_len
;
822 if (start
+ count
>= nic
->eeprom_wc
)
825 for (addr
= start
; addr
< start
+ count
; addr
++)
826 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
828 /* The checksum, stored in the last word, is calculated such that
829 * the sum of words should be 0xBABA */
830 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
831 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
832 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
833 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
834 nic
->eeprom
[nic
->eeprom_wc
- 1]);
839 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
840 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
841 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
847 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
849 /* Previous command is accepted when SCB clears */
850 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
851 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
854 if (unlikely(i
> E100_WAIT_SCB_FAST
))
857 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
862 if (unlikely(cmd
!= cuc_resume
))
863 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
864 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
867 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
872 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
873 int (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
879 spin_lock_irqsave(&nic
->cb_lock
, flags
);
881 if (unlikely(!nic
->cbs_avail
)) {
887 nic
->cb_to_use
= cb
->next
;
891 err
= cb_prepare(nic
, cb
, skb
);
895 if (unlikely(!nic
->cbs_avail
))
899 /* Order is important otherwise we'll be in a race with h/w:
900 * set S-bit in current first, then clear S-bit in previous. */
901 cb
->command
|= cpu_to_le16(cb_s
);
903 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
905 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
906 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
907 nic
->cb_to_send
->dma_addr
))) {
908 /* Ok, here's where things get sticky. It's
909 * possible that we can't schedule the command
910 * because the controller is too busy, so
911 * let's just queue the command and try again
912 * when another command is scheduled. */
913 if (err
== -ENOSPC
) {
915 schedule_work(&nic
->tx_timeout_task
);
919 nic
->cuc_cmd
= cuc_resume
;
920 nic
->cb_to_send
= nic
->cb_to_send
->next
;
925 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
930 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
932 struct nic
*nic
= netdev_priv(netdev
);
933 return nic
->mdio_ctrl(nic
, addr
, mdi_read
, reg
, 0);
936 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
938 struct nic
*nic
= netdev_priv(netdev
);
940 nic
->mdio_ctrl(nic
, addr
, mdi_write
, reg
, data
);
943 /* the standard mdio_ctrl() function for usual MII-compliant hardware */
944 static u16
mdio_ctrl_hw(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
952 * Stratus87247: we shouldn't be writing the MDI control
953 * register until the Ready bit shows True. Also, since
954 * manipulation of the MDI control registers is a multi-step
955 * procedure it should be done under lock.
957 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
958 for (i
= 100; i
; --i
) {
959 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
964 netdev_err(nic
->netdev
, "e100.mdio_ctrl won't go Ready\n");
965 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
966 return 0; /* No way to indicate timeout error */
968 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
970 for (i
= 0; i
< 100; i
++) {
972 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
975 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
976 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
977 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
978 dir
== mdi_read
? "READ" : "WRITE",
979 addr
, reg
, data
, data_out
);
980 return (u16
)data_out
;
983 /* slightly tweaked mdio_ctrl() function for phy_82552_v specifics */
984 static u16
mdio_ctrl_phy_82552_v(struct nic
*nic
,
990 if ((reg
== MII_BMCR
) && (dir
== mdi_write
)) {
991 if (data
& (BMCR_ANRESTART
| BMCR_ANENABLE
)) {
992 u16 advert
= mdio_read(nic
->netdev
, nic
->mii
.phy_id
,
996 * Workaround Si issue where sometimes the part will not
997 * autoneg to 100Mbps even when advertised.
999 if (advert
& ADVERTISE_100FULL
)
1000 data
|= BMCR_SPEED100
| BMCR_FULLDPLX
;
1001 else if (advert
& ADVERTISE_100HALF
)
1002 data
|= BMCR_SPEED100
;
1005 return mdio_ctrl_hw(nic
, addr
, dir
, reg
, data
);
1008 /* Fully software-emulated mdio_ctrl() function for cards without
1009 * MII-compliant PHYs.
1010 * For now, this is mainly geared towards 80c24 support; in case of further
1011 * requirements for other types (i82503, ...?) either extend this mechanism
1012 * or split it, whichever is cleaner.
1014 static u16
mdio_ctrl_phy_mii_emulated(struct nic
*nic
,
1020 /* might need to allocate a netdev_priv'ed register array eventually
1021 * to be able to record state changes, but for now
1022 * some fully hardcoded register handling ought to be ok I guess. */
1024 if (dir
== mdi_read
) {
1027 /* Auto-negotiation, right? */
1028 return BMCR_ANENABLE
|
1031 return BMSR_LSTATUS
/* for mii_link_ok() */ |
1035 /* 80c24 is a "combo card" PHY, right? */
1036 return ADVERTISE_10HALF
|
1039 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1040 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1041 dir
== mdi_read
? "READ" : "WRITE",
1048 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1049 "%s:addr=%d, reg=%d, data=0x%04X: unimplemented emulation!\n",
1050 dir
== mdi_read
? "READ" : "WRITE",
1056 static inline int e100_phy_supports_mii(struct nic
*nic
)
1058 /* for now, just check it by comparing whether we
1059 are using MII software emulation.
1061 return (nic
->mdio_ctrl
!= mdio_ctrl_phy_mii_emulated
);
1064 static void e100_get_defaults(struct nic
*nic
)
1066 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
1067 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
1069 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
1070 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
1071 if (nic
->mac
== mac_unknown
)
1072 nic
->mac
= mac_82557_D100_A
;
1074 nic
->params
.rfds
= rfds
;
1075 nic
->params
.cbs
= cbs
;
1077 /* Quadwords to DMA into FIFO before starting frame transmit */
1078 nic
->tx_threshold
= 0xE0;
1080 /* no interrupt for every tx completion, delay = 256us if not 557 */
1081 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
1082 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
1084 /* Template for a freshly allocated RFD */
1085 nic
->blank_rfd
.command
= 0;
1086 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
1087 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
+ ETH_FCS_LEN
);
1090 nic
->mii
.phy_id_mask
= 0x1F;
1091 nic
->mii
.reg_num_mask
= 0x1F;
1092 nic
->mii
.dev
= nic
->netdev
;
1093 nic
->mii
.mdio_read
= mdio_read
;
1094 nic
->mii
.mdio_write
= mdio_write
;
1097 static int e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1099 struct config
*config
= &cb
->u
.config
;
1100 u8
*c
= (u8
*)config
;
1101 struct net_device
*netdev
= nic
->netdev
;
1103 cb
->command
= cpu_to_le16(cb_config
);
1105 memset(config
, 0, sizeof(struct config
));
1107 config
->byte_count
= 0x16; /* bytes in this struct */
1108 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
1109 config
->direct_rx_dma
= 0x1; /* reserved */
1110 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
1111 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
1112 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
1113 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
1114 if (e100_phy_supports_mii(nic
))
1115 config
->mii_mode
= 1; /* 1=MII mode, 0=i82503 mode */
1116 config
->pad10
= 0x6;
1117 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1118 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1119 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1120 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1121 config
->pad15_1
= 0x1;
1122 config
->pad15_2
= 0x1;
1123 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1124 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1125 config
->tx_padding
= 0x1; /* 1=pad short frames */
1126 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1127 config
->pad18
= 0x1;
1128 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1129 config
->pad20_1
= 0x1F;
1130 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1131 config
->pad21_1
= 0x5;
1133 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1134 config
->loopback
= nic
->loopback
;
1136 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1137 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1139 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1140 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1141 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1142 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1145 if (unlikely(netdev
->features
& NETIF_F_RXFCS
))
1146 config
->rx_crc_transfer
= 0x1; /* 1=save, 0=discard */
1148 if (nic
->flags
& multicast_all
)
1149 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1151 /* disable WoL when up */
1152 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1153 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1155 if (nic
->mac
>= mac_82558_D101_A4
) {
1156 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1157 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1158 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1159 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1160 if (nic
->mac
>= mac_82559_D101M
) {
1161 config
->tno_intr
= 0x1; /* TCO stats enable */
1162 /* Enable TCO in extended config */
1163 if (nic
->mac
>= mac_82551_10
) {
1164 config
->byte_count
= 0x20; /* extended bytes */
1165 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1168 config
->standard_stat_counter
= 0x0;
1172 if (netdev
->features
& NETIF_F_RXALL
) {
1173 config
->rx_save_overruns
= 0x1; /* 1=save, 0=discard */
1174 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1175 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1178 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[00-07]=%8ph\n",
1180 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[08-15]=%8ph\n",
1182 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
, "[16-23]=%8ph\n",
1187 /*************************************************************************
1188 * CPUSaver parameters
1190 * All CPUSaver parameters are 16-bit literals that are part of a
1191 * "move immediate value" instruction. By changing the value of
1192 * the literal in the instruction before the code is loaded, the
1193 * driver can change the algorithm.
1195 * INTDELAY - This loads the dead-man timer with its initial value.
1196 * When this timer expires the interrupt is asserted, and the
1197 * timer is reset each time a new packet is received. (see
1198 * BUNDLEMAX below to set the limit on number of chained packets)
1199 * The current default is 0x600 or 1536. Experiments show that
1200 * the value should probably stay within the 0x200 - 0x1000.
1203 * This sets the maximum number of frames that will be bundled. In
1204 * some situations, such as the TCP windowing algorithm, it may be
1205 * better to limit the growth of the bundle size than let it go as
1206 * high as it can, because that could cause too much added latency.
1207 * The default is six, because this is the number of packets in the
1208 * default TCP window size. A value of 1 would make CPUSaver indicate
1209 * an interrupt for every frame received. If you do not want to put
1210 * a limit on the bundle size, set this value to xFFFF.
1213 * This contains a bit-mask describing the minimum size frame that
1214 * will be bundled. The default masks the lower 7 bits, which means
1215 * that any frame less than 128 bytes in length will not be bundled,
1216 * but will instead immediately generate an interrupt. This does
1217 * not affect the current bundle in any way. Any frame that is 128
1218 * bytes or large will be bundled normally. This feature is meant
1219 * to provide immediate indication of ACK frames in a TCP environment.
1220 * Customers were seeing poor performance when a machine with CPUSaver
1221 * enabled was sending but not receiving. The delay introduced when
1222 * the ACKs were received was enough to reduce total throughput, because
1223 * the sender would sit idle until the ACK was finally seen.
1225 * The current default is 0xFF80, which masks out the lower 7 bits.
1226 * This means that any frame which is x7F (127) bytes or smaller
1227 * will cause an immediate interrupt. Because this value must be a
1228 * bit mask, there are only a few valid values that can be used. To
1229 * turn this feature off, the driver can write the value xFFFF to the
1230 * lower word of this instruction (in the same way that the other
1231 * parameters are used). Likewise, a value of 0xF800 (2047) would
1232 * cause an interrupt to be generated for every frame, because all
1233 * standard Ethernet frames are <= 2047 bytes in length.
1234 *************************************************************************/
1236 /* if you wish to disable the ucode functionality, while maintaining the
1237 * workarounds it provides, set the following defines to:
1242 #define BUNDLESMALL 1
1243 #define BUNDLEMAX (u16)6
1244 #define INTDELAY (u16)1536 /* 0x600 */
1246 /* Initialize firmware */
1247 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1249 const char *fw_name
;
1250 const struct firmware
*fw
= nic
->fw
;
1251 u8 timer
, bundle
, min_size
;
1253 bool required
= false;
1255 /* do not load u-code for ICH devices */
1256 if (nic
->flags
& ich
)
1259 /* Search for ucode match against h/w revision
1261 * Based on comments in the source code for the FreeBSD fxp
1262 * driver, the FIRMWARE_D102E ucode includes both CPUSaver and
1264 * "fixes for bugs in the B-step hardware (specifically, bugs
1265 * with Inline Receive)."
1267 * So we must fail if it cannot be loaded.
1269 * The other microcode files are only required for the optional
1270 * CPUSaver feature. Nice to have, but no reason to fail.
1272 if (nic
->mac
== mac_82559_D101M
) {
1273 fw_name
= FIRMWARE_D101M
;
1274 } else if (nic
->mac
== mac_82559_D101S
) {
1275 fw_name
= FIRMWARE_D101S
;
1276 } else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
) {
1277 fw_name
= FIRMWARE_D102E
;
1279 } else { /* No ucode on other devices */
1283 /* If the firmware has not previously been loaded, request a pointer
1284 * to it. If it was previously loaded, we are reinitializing the
1285 * adapter, possibly in a resume from hibernate, in which case
1286 * request_firmware() cannot be used.
1289 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1293 netif_err(nic
, probe
, nic
->netdev
,
1294 "Failed to load firmware \"%s\": %d\n",
1296 return ERR_PTR(err
);
1298 netif_info(nic
, probe
, nic
->netdev
,
1299 "CPUSaver disabled. Needs \"%s\": %d\n",
1305 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1306 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1307 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1308 netif_err(nic
, probe
, nic
->netdev
,
1309 "Firmware \"%s\" has wrong size %zu\n",
1311 release_firmware(fw
);
1312 return ERR_PTR(-EINVAL
);
1315 /* Read timer, bundle and min_size from end of firmware blob */
1316 timer
= fw
->data
[UCODE_SIZE
* 4];
1317 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1318 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1320 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1321 min_size
>= UCODE_SIZE
) {
1322 netif_err(nic
, probe
, nic
->netdev
,
1323 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1324 fw_name
, timer
, bundle
, min_size
);
1325 release_firmware(fw
);
1326 return ERR_PTR(-EINVAL
);
1329 /* OK, firmware is validated and ready to use. Save a pointer
1330 * to it in the nic */
1335 static int e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1336 struct sk_buff
*skb
)
1338 const struct firmware
*fw
= (void *)skb
;
1339 u8 timer
, bundle
, min_size
;
1341 /* It's not a real skb; we just abused the fact that e100_exec_cb
1342 will pass it through to here... */
1345 /* firmware is stored as little endian already */
1346 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1348 /* Read timer, bundle and min_size from end of firmware blob */
1349 timer
= fw
->data
[UCODE_SIZE
* 4];
1350 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1351 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1353 /* Insert user-tunable settings in cb->u.ucode */
1354 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1355 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1356 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1357 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1358 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1359 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1361 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1365 static inline int e100_load_ucode_wait(struct nic
*nic
)
1367 const struct firmware
*fw
;
1368 int err
= 0, counter
= 50;
1369 struct cb
*cb
= nic
->cb_to_clean
;
1371 fw
= e100_request_firmware(nic
);
1372 /* If it's NULL, then no ucode is required */
1373 if (!fw
|| IS_ERR(fw
))
1376 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1377 netif_err(nic
, probe
, nic
->netdev
,
1378 "ucode cmd failed with error %d\n", err
);
1380 /* must restart cuc */
1381 nic
->cuc_cmd
= cuc_start
;
1383 /* wait for completion */
1384 e100_write_flush(nic
);
1387 /* wait for possibly (ouch) 500ms */
1388 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1390 if (!--counter
) break;
1393 /* ack any interrupts, something could have been set */
1394 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1396 /* if the command failed, or is not OK, notify and return */
1397 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1398 netif_err(nic
, probe
, nic
->netdev
, "ucode load failed\n");
1405 static int e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1406 struct sk_buff
*skb
)
1408 cb
->command
= cpu_to_le16(cb_iaaddr
);
1409 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1413 static int e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1415 cb
->command
= cpu_to_le16(cb_dump
);
1416 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1417 offsetof(struct mem
, dump_buf
));
1421 static int e100_phy_check_without_mii(struct nic
*nic
)
1426 phy_type
= (nic
->eeprom
[eeprom_phy_iface
] >> 8) & 0x0f;
1429 case NoSuchPhy
: /* Non-MII PHY; UNTESTED! */
1430 case I82503
: /* Non-MII PHY; UNTESTED! */
1431 case S80C24
: /* Non-MII PHY; tested and working */
1432 /* paragraph from the FreeBSD driver, "FXP_PHY_80C24":
1433 * The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
1434 * doesn't have a programming interface of any sort. The
1435 * media is sensed automatically based on how the link partner
1436 * is configured. This is, in essence, manual configuration.
1438 netif_info(nic
, probe
, nic
->netdev
,
1439 "found MII-less i82503 or 80c24 or other PHY\n");
1441 nic
->mdio_ctrl
= mdio_ctrl_phy_mii_emulated
;
1442 nic
->mii
.phy_id
= 0; /* is this ok for an MII-less PHY? */
1444 /* these might be needed for certain MII-less cards...
1445 * nic->flags |= ich;
1446 * nic->flags |= ich_10h_workaround; */
1457 #define NCONFIG_AUTO_SWITCH 0x0080
1458 #define MII_NSC_CONG MII_RESV1
1459 #define NSC_CONG_ENABLE 0x0100
1460 #define NSC_CONG_TXREADY 0x0400
1461 #define ADVERTISE_FC_SUPPORTED 0x0400
1462 static int e100_phy_init(struct nic
*nic
)
1464 struct net_device
*netdev
= nic
->netdev
;
1466 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1468 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1469 for (addr
= 0; addr
< 32; addr
++) {
1470 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1471 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1472 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1473 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1474 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1478 /* uhoh, no PHY detected: check whether we seem to be some
1479 * weird, rare variant which is *known* to not have any MII.
1480 * But do this AFTER MII checking only, since this does
1481 * lookup of EEPROM values which may easily be unreliable. */
1482 if (e100_phy_check_without_mii(nic
))
1483 return 0; /* simply return and hope for the best */
1485 /* for unknown cases log a fatal error */
1486 netif_err(nic
, hw
, nic
->netdev
,
1487 "Failed to locate any known PHY, aborting\n");
1491 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1492 "phy_addr = %d\n", nic
->mii
.phy_id
);
1495 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1496 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1497 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1498 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1499 "phy ID = 0x%08X\n", nic
->phy
);
1501 /* Select the phy and isolate the rest */
1502 for (addr
= 0; addr
< 32; addr
++) {
1503 if (addr
!= nic
->mii
.phy_id
) {
1504 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1505 } else if (nic
->phy
!= phy_82552_v
) {
1506 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1507 mdio_write(netdev
, addr
, MII_BMCR
,
1508 bmcr
& ~BMCR_ISOLATE
);
1512 * Workaround for 82552:
1513 * Clear the ISOLATE bit on selected phy_id last (mirrored on all
1514 * other phy_id's) using bmcr value from addr discovery loop above.
1516 if (nic
->phy
== phy_82552_v
)
1517 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
,
1518 bmcr
& ~BMCR_ISOLATE
);
1520 /* Handle National tx phys */
1521 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1522 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1523 /* Disable congestion control */
1524 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1525 cong
|= NSC_CONG_TXREADY
;
1526 cong
&= ~NSC_CONG_ENABLE
;
1527 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1530 if (nic
->phy
== phy_82552_v
) {
1531 u16 advert
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
);
1533 /* assign special tweaked mdio_ctrl() function */
1534 nic
->mdio_ctrl
= mdio_ctrl_phy_82552_v
;
1536 /* Workaround Si not advertising flow-control during autoneg */
1537 advert
|= ADVERTISE_PAUSE_CAP
| ADVERTISE_PAUSE_ASYM
;
1538 mdio_write(netdev
, nic
->mii
.phy_id
, MII_ADVERTISE
, advert
);
1540 /* Reset for the above changes to take effect */
1541 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1543 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, bmcr
);
1544 } else if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1545 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1546 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1547 /* enable/disable MDI/MDI-X auto-switching. */
1548 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1549 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1555 static int e100_hw_init(struct nic
*nic
)
1561 netif_err(nic
, hw
, nic
->netdev
, "e100_hw_init\n");
1562 if (!in_interrupt() && (err
= e100_self_test(nic
)))
1565 if ((err
= e100_phy_init(nic
)))
1567 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1569 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1571 if ((err
= e100_load_ucode_wait(nic
)))
1573 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1575 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1577 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1578 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1580 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1583 e100_disable_irq(nic
);
1588 static int e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1590 struct net_device
*netdev
= nic
->netdev
;
1591 struct netdev_hw_addr
*ha
;
1592 u16 i
, count
= min(netdev_mc_count(netdev
), E100_MAX_MULTICAST_ADDRS
);
1594 cb
->command
= cpu_to_le16(cb_multi
);
1595 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1597 netdev_for_each_mc_addr(ha
, netdev
) {
1600 memcpy(&cb
->u
.multi
.addr
[i
++ * ETH_ALEN
], &ha
->addr
,
1606 static void e100_set_multicast_list(struct net_device
*netdev
)
1608 struct nic
*nic
= netdev_priv(netdev
);
1610 netif_printk(nic
, hw
, KERN_DEBUG
, nic
->netdev
,
1611 "mc_count=%d, flags=0x%04X\n",
1612 netdev_mc_count(netdev
), netdev
->flags
);
1614 if (netdev
->flags
& IFF_PROMISC
)
1615 nic
->flags
|= promiscuous
;
1617 nic
->flags
&= ~promiscuous
;
1619 if (netdev
->flags
& IFF_ALLMULTI
||
1620 netdev_mc_count(netdev
) > E100_MAX_MULTICAST_ADDRS
)
1621 nic
->flags
|= multicast_all
;
1623 nic
->flags
&= ~multicast_all
;
1625 e100_exec_cb(nic
, NULL
, e100_configure
);
1626 e100_exec_cb(nic
, NULL
, e100_multi
);
1629 static void e100_update_stats(struct nic
*nic
)
1631 struct net_device
*dev
= nic
->netdev
;
1632 struct net_device_stats
*ns
= &dev
->stats
;
1633 struct stats
*s
= &nic
->mem
->stats
;
1634 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1635 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1638 /* Device's stats reporting may take several microseconds to
1639 * complete, so we're always waiting for results of the
1640 * previous command. */
1642 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1644 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1645 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1646 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1647 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1648 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1649 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1650 ns
->collisions
+= nic
->tx_collisions
;
1651 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1652 le32_to_cpu(s
->tx_lost_crs
);
1653 nic
->rx_short_frame_errors
+=
1654 le32_to_cpu(s
->rx_short_frame_errors
);
1655 ns
->rx_length_errors
= nic
->rx_short_frame_errors
+
1656 nic
->rx_over_length_errors
;
1657 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1658 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1659 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1660 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1661 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1662 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1663 le32_to_cpu(s
->rx_alignment_errors
) +
1664 le32_to_cpu(s
->rx_short_frame_errors
) +
1665 le32_to_cpu(s
->rx_cdt_errors
);
1666 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1667 nic
->tx_single_collisions
+=
1668 le32_to_cpu(s
->tx_single_collisions
);
1669 nic
->tx_multiple_collisions
+=
1670 le32_to_cpu(s
->tx_multiple_collisions
);
1671 if (nic
->mac
>= mac_82558_D101_A4
) {
1672 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1673 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1674 nic
->rx_fc_unsupported
+=
1675 le32_to_cpu(s
->fc_rcv_unsupported
);
1676 if (nic
->mac
>= mac_82559_D101M
) {
1677 nic
->tx_tco_frames
+=
1678 le16_to_cpu(s
->xmt_tco_frames
);
1679 nic
->rx_tco_frames
+=
1680 le16_to_cpu(s
->rcv_tco_frames
);
1686 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1687 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1688 "exec cuc_dump_reset failed\n");
1691 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1693 /* Adjust inter-frame-spacing (IFS) between two transmits if
1694 * we're getting collisions on a half-duplex connection. */
1696 if (duplex
== DUPLEX_HALF
) {
1697 u32 prev
= nic
->adaptive_ifs
;
1698 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1700 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1701 (nic
->tx_frames
> min_frames
)) {
1702 if (nic
->adaptive_ifs
< 60)
1703 nic
->adaptive_ifs
+= 5;
1704 } else if (nic
->tx_frames
< min_frames
) {
1705 if (nic
->adaptive_ifs
>= 5)
1706 nic
->adaptive_ifs
-= 5;
1708 if (nic
->adaptive_ifs
!= prev
)
1709 e100_exec_cb(nic
, NULL
, e100_configure
);
1713 static void e100_watchdog(unsigned long data
)
1715 struct nic
*nic
= (struct nic
*)data
;
1716 struct ethtool_cmd cmd
= { .cmd
= ETHTOOL_GSET
};
1719 netif_printk(nic
, timer
, KERN_DEBUG
, nic
->netdev
,
1720 "right now = %ld\n", jiffies
);
1722 /* mii library handles link maintenance tasks */
1724 mii_ethtool_gset(&nic
->mii
, &cmd
);
1725 speed
= ethtool_cmd_speed(&cmd
);
1727 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1728 netdev_info(nic
->netdev
, "NIC Link is Up %u Mbps %s Duplex\n",
1729 speed
== SPEED_100
? 100 : 10,
1730 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1731 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1732 netdev_info(nic
->netdev
, "NIC Link is Down\n");
1735 mii_check_link(&nic
->mii
);
1737 /* Software generated interrupt to recover from (rare) Rx
1738 * allocation failure.
1739 * Unfortunately have to use a spinlock to not re-enable interrupts
1740 * accidentally, due to hardware that shares a register between the
1741 * interrupt mask bit and the SW Interrupt generation bit */
1742 spin_lock_irq(&nic
->cmd_lock
);
1743 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1744 e100_write_flush(nic
);
1745 spin_unlock_irq(&nic
->cmd_lock
);
1747 e100_update_stats(nic
);
1748 e100_adjust_adaptive_ifs(nic
, speed
, cmd
.duplex
);
1750 if (nic
->mac
<= mac_82557_D100_C
)
1751 /* Issue a multicast command to workaround a 557 lock up */
1752 e100_set_multicast_list(nic
->netdev
);
1754 if (nic
->flags
& ich
&& speed
== SPEED_10
&& cmd
.duplex
== DUPLEX_HALF
)
1755 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1756 nic
->flags
|= ich_10h_workaround
;
1758 nic
->flags
&= ~ich_10h_workaround
;
1760 mod_timer(&nic
->watchdog
,
1761 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1764 static int e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1765 struct sk_buff
*skb
)
1767 dma_addr_t dma_addr
;
1768 cb
->command
= nic
->tx_command
;
1770 dma_addr
= pci_map_single(nic
->pdev
,
1771 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
);
1772 /* If we can't map the skb, have the upper layer try later */
1773 if (pci_dma_mapping_error(nic
->pdev
, dma_addr
))
1777 * Use the last 4 bytes of the SKB payload packet as the CRC, used for
1778 * testing, ie sending frames with bad CRC.
1780 if (unlikely(skb
->no_fcs
))
1781 cb
->command
|= cpu_to_le16(cb_tx_nc
);
1783 cb
->command
&= ~cpu_to_le16(cb_tx_nc
);
1785 /* interrupt every 16 packets regardless of delay */
1786 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1787 cb
->command
|= cpu_to_le16(cb_i
);
1788 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1789 cb
->u
.tcb
.tcb_byte_count
= 0;
1790 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1791 cb
->u
.tcb
.tbd_count
= 1;
1792 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(dma_addr
);
1793 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1794 skb_tx_timestamp(skb
);
1798 static netdev_tx_t
e100_xmit_frame(struct sk_buff
*skb
,
1799 struct net_device
*netdev
)
1801 struct nic
*nic
= netdev_priv(netdev
);
1804 if (nic
->flags
& ich_10h_workaround
) {
1805 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1806 Issue a NOP command followed by a 1us delay before
1807 issuing the Tx command. */
1808 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1809 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1810 "exec cuc_nop failed\n");
1814 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1818 /* We queued the skb, but now we're out of space. */
1819 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1820 "No space for CB\n");
1821 netif_stop_queue(netdev
);
1824 /* This is a hard error - log it. */
1825 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
1826 "Out of Tx resources, returning skb\n");
1827 netif_stop_queue(netdev
);
1828 return NETDEV_TX_BUSY
;
1831 return NETDEV_TX_OK
;
1834 static int e100_tx_clean(struct nic
*nic
)
1836 struct net_device
*dev
= nic
->netdev
;
1840 spin_lock(&nic
->cb_lock
);
1842 /* Clean CBs marked complete */
1843 for (cb
= nic
->cb_to_clean
;
1844 cb
->status
& cpu_to_le16(cb_complete
);
1845 cb
= nic
->cb_to_clean
= cb
->next
) {
1846 rmb(); /* read skb after status */
1847 netif_printk(nic
, tx_done
, KERN_DEBUG
, nic
->netdev
,
1848 "cb[%d]->status = 0x%04X\n",
1849 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1852 if (likely(cb
->skb
!= NULL
)) {
1853 dev
->stats
.tx_packets
++;
1854 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1856 pci_unmap_single(nic
->pdev
,
1857 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1858 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1860 dev_kfree_skb_any(cb
->skb
);
1868 spin_unlock(&nic
->cb_lock
);
1870 /* Recover from running out of Tx resources in xmit_frame */
1871 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1872 netif_wake_queue(nic
->netdev
);
1877 static void e100_clean_cbs(struct nic
*nic
)
1880 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1881 struct cb
*cb
= nic
->cb_to_clean
;
1883 pci_unmap_single(nic
->pdev
,
1884 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1885 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1887 dev_kfree_skb(cb
->skb
);
1889 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1892 pci_pool_free(nic
->cbs_pool
, nic
->cbs
, nic
->cbs_dma_addr
);
1896 nic
->cuc_cmd
= cuc_start
;
1897 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1901 static int e100_alloc_cbs(struct nic
*nic
)
1904 unsigned int i
, count
= nic
->params
.cbs
.count
;
1906 nic
->cuc_cmd
= cuc_start
;
1907 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1910 nic
->cbs
= pci_pool_alloc(nic
->cbs_pool
, GFP_KERNEL
,
1911 &nic
->cbs_dma_addr
);
1914 memset(nic
->cbs
, 0, count
* sizeof(struct cb
));
1916 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1917 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1918 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1920 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1921 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1922 ((i
+1) % count
) * sizeof(struct cb
));
1925 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1926 nic
->cbs_avail
= count
;
1931 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1933 if (!nic
->rxs
) return;
1934 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1936 /* handle init time starts */
1937 if (!rx
) rx
= nic
->rxs
;
1939 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1941 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1942 nic
->ru_running
= RU_RUNNING
;
1946 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
1947 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1949 if (!(rx
->skb
= netdev_alloc_skb_ip_align(nic
->netdev
, RFD_BUF_LEN
)))
1952 /* Init, and map the RFD. */
1953 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1954 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1955 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1957 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1958 dev_kfree_skb_any(rx
->skb
);
1964 /* Link the RFD to end of RFA by linking previous RFD to
1965 * this one. We are safe to touch the previous RFD because
1966 * it is protected by the before last buffer's el bit being set */
1967 if (rx
->prev
->skb
) {
1968 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1969 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1970 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1971 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1977 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1978 unsigned int *work_done
, unsigned int work_to_do
)
1980 struct net_device
*dev
= nic
->netdev
;
1981 struct sk_buff
*skb
= rx
->skb
;
1982 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1983 u16 rfd_status
, actual_size
;
1986 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1989 /* Need to sync before taking a peek at cb_complete bit */
1990 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1991 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1992 rfd_status
= le16_to_cpu(rfd
->status
);
1994 netif_printk(nic
, rx_status
, KERN_DEBUG
, nic
->netdev
,
1995 "status=0x%04X\n", rfd_status
);
1996 rmb(); /* read size after status bit */
1998 /* If data isn't ready, nothing to indicate */
1999 if (unlikely(!(rfd_status
& cb_complete
))) {
2000 /* If the next buffer has the el bit, but we think the receiver
2001 * is still running, check to see if it really stopped while
2002 * we had interrupts off.
2003 * This allows for a fast restart without re-enabling
2005 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
2006 (RU_RUNNING
== nic
->ru_running
))
2008 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
2009 nic
->ru_running
= RU_SUSPENDED
;
2010 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
2012 PCI_DMA_FROMDEVICE
);
2016 /* Get actual data size */
2017 if (unlikely(dev
->features
& NETIF_F_RXFCS
))
2019 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
2020 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
2021 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
2024 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
2025 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2027 /* If this buffer has the el bit, but we think the receiver
2028 * is still running, check to see if it really stopped while
2029 * we had interrupts off.
2030 * This allows for a fast restart without re-enabling interrupts.
2031 * This can happen when the RU sees the size change but also sees
2032 * the el bit set. */
2033 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
2034 (RU_RUNNING
== nic
->ru_running
)) {
2036 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
2037 nic
->ru_running
= RU_SUSPENDED
;
2040 /* Pull off the RFD and put the actual data (minus eth hdr) */
2041 skb_reserve(skb
, sizeof(struct rfd
));
2042 skb_put(skb
, actual_size
);
2043 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
2045 /* If we are receiving all frames, then don't bother
2046 * checking for errors.
2048 if (unlikely(dev
->features
& NETIF_F_RXALL
)) {
2049 if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
)
2050 /* Received oversized frame, but keep it. */
2051 nic
->rx_over_length_errors
++;
2055 if (unlikely(!(rfd_status
& cb_ok
))) {
2056 /* Don't indicate if hardware indicates errors */
2057 dev_kfree_skb_any(skb
);
2058 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
+ fcs_pad
) {
2059 /* Don't indicate oversized frames */
2060 nic
->rx_over_length_errors
++;
2061 dev_kfree_skb_any(skb
);
2064 dev
->stats
.rx_packets
++;
2065 dev
->stats
.rx_bytes
+= (actual_size
- fcs_pad
);
2066 netif_receive_skb(skb
);
2076 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
2077 unsigned int work_to_do
)
2080 int restart_required
= 0, err
= 0;
2081 struct rx
*old_before_last_rx
, *new_before_last_rx
;
2082 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
2084 /* Indicate newly arrived packets */
2085 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
2086 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
2087 /* Hit quota or no more to clean */
2088 if (-EAGAIN
== err
|| -ENODATA
== err
)
2093 /* On EAGAIN, hit quota so have more work to do, restart once
2094 * cleanup is complete.
2095 * Else, are we already rnr? then pay attention!!! this ensures that
2096 * the state machine progression never allows a start with a
2097 * partially cleaned list, avoiding a race between hardware
2098 * and rx_to_clean when in NAPI mode */
2099 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
2100 restart_required
= 1;
2102 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2103 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
2105 /* Alloc new skbs to refill list */
2106 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
2107 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
2108 break; /* Better luck next time (see watchdog) */
2111 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
2112 if (new_before_last_rx
!= old_before_last_rx
) {
2113 /* Set the el-bit on the buffer that is before the last buffer.
2114 * This lets us update the next pointer on the last buffer
2115 * without worrying about hardware touching it.
2116 * We set the size to 0 to prevent hardware from touching this
2118 * When the hardware hits the before last buffer with el-bit
2119 * and size of 0, it will RNR interrupt, the RUS will go into
2120 * the No Resources state. It will not complete nor write to
2122 new_before_last_rfd
=
2123 (struct rfd
*)new_before_last_rx
->skb
->data
;
2124 new_before_last_rfd
->size
= 0;
2125 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
2126 pci_dma_sync_single_for_device(nic
->pdev
,
2127 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2128 PCI_DMA_BIDIRECTIONAL
);
2130 /* Now that we have a new stopping point, we can clear the old
2131 * stopping point. We must sync twice to get the proper
2132 * ordering on the hardware side of things. */
2133 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
2134 pci_dma_sync_single_for_device(nic
->pdev
,
2135 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2136 PCI_DMA_BIDIRECTIONAL
);
2137 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
2139 pci_dma_sync_single_for_device(nic
->pdev
,
2140 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
2141 PCI_DMA_BIDIRECTIONAL
);
2144 if (restart_required
) {
2146 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
2147 e100_start_receiver(nic
, nic
->rx_to_clean
);
2153 static void e100_rx_clean_list(struct nic
*nic
)
2156 unsigned int i
, count
= nic
->params
.rfds
.count
;
2158 nic
->ru_running
= RU_UNINITIALIZED
;
2161 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2163 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
2164 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2165 dev_kfree_skb(rx
->skb
);
2172 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2175 static int e100_rx_alloc_list(struct nic
*nic
)
2178 unsigned int i
, count
= nic
->params
.rfds
.count
;
2179 struct rfd
*before_last
;
2181 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
2182 nic
->ru_running
= RU_UNINITIALIZED
;
2184 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
2187 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
2188 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
2189 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
2190 if (e100_rx_alloc_skb(nic
, rx
)) {
2191 e100_rx_clean_list(nic
);
2195 /* Set the el-bit on the buffer that is before the last buffer.
2196 * This lets us update the next pointer on the last buffer without
2197 * worrying about hardware touching it.
2198 * We set the size to 0 to prevent hardware from touching this buffer.
2199 * When the hardware hits the before last buffer with el-bit and size
2200 * of 0, it will RNR interrupt, the RU will go into the No Resources
2201 * state. It will not complete nor write to this buffer. */
2202 rx
= nic
->rxs
->prev
->prev
;
2203 before_last
= (struct rfd
*)rx
->skb
->data
;
2204 before_last
->command
|= cpu_to_le16(cb_el
);
2205 before_last
->size
= 0;
2206 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
2207 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
2209 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
2210 nic
->ru_running
= RU_SUSPENDED
;
2215 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
2217 struct net_device
*netdev
= dev_id
;
2218 struct nic
*nic
= netdev_priv(netdev
);
2219 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
2221 netif_printk(nic
, intr
, KERN_DEBUG
, nic
->netdev
,
2222 "stat_ack = 0x%02X\n", stat_ack
);
2224 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
2225 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
2228 /* Ack interrupt(s) */
2229 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
2231 /* We hit Receive No Resource (RNR); restart RU after cleaning */
2232 if (stat_ack
& stat_ack_rnr
)
2233 nic
->ru_running
= RU_SUSPENDED
;
2235 if (likely(napi_schedule_prep(&nic
->napi
))) {
2236 e100_disable_irq(nic
);
2237 __napi_schedule(&nic
->napi
);
2243 static int e100_poll(struct napi_struct
*napi
, int budget
)
2245 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
2246 unsigned int work_done
= 0;
2248 e100_rx_clean(nic
, &work_done
, budget
);
2251 /* If budget not fully consumed, exit the polling mode */
2252 if (work_done
< budget
) {
2253 napi_complete(napi
);
2254 e100_enable_irq(nic
);
2260 #ifdef CONFIG_NET_POLL_CONTROLLER
2261 static void e100_netpoll(struct net_device
*netdev
)
2263 struct nic
*nic
= netdev_priv(netdev
);
2265 e100_disable_irq(nic
);
2266 e100_intr(nic
->pdev
->irq
, netdev
);
2268 e100_enable_irq(nic
);
2272 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
2274 struct nic
*nic
= netdev_priv(netdev
);
2275 struct sockaddr
*addr
= p
;
2277 if (!is_valid_ether_addr(addr
->sa_data
))
2278 return -EADDRNOTAVAIL
;
2280 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2281 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
2286 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2288 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2290 netdev
->mtu
= new_mtu
;
2294 static int e100_asf(struct nic
*nic
)
2296 /* ASF can be enabled from eeprom */
2297 return (nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2298 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2299 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2300 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE);
2303 static int e100_up(struct nic
*nic
)
2307 if ((err
= e100_rx_alloc_list(nic
)))
2309 if ((err
= e100_alloc_cbs(nic
)))
2310 goto err_rx_clean_list
;
2311 if ((err
= e100_hw_init(nic
)))
2313 e100_set_multicast_list(nic
->netdev
);
2314 e100_start_receiver(nic
, NULL
);
2315 mod_timer(&nic
->watchdog
, jiffies
);
2316 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2317 nic
->netdev
->name
, nic
->netdev
)))
2319 netif_wake_queue(nic
->netdev
);
2320 napi_enable(&nic
->napi
);
2321 /* enable ints _after_ enabling poll, preventing a race between
2322 * disable ints+schedule */
2323 e100_enable_irq(nic
);
2327 del_timer_sync(&nic
->watchdog
);
2329 e100_clean_cbs(nic
);
2331 e100_rx_clean_list(nic
);
2335 static void e100_down(struct nic
*nic
)
2337 /* wait here for poll to complete */
2338 napi_disable(&nic
->napi
);
2339 netif_stop_queue(nic
->netdev
);
2341 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2342 del_timer_sync(&nic
->watchdog
);
2343 netif_carrier_off(nic
->netdev
);
2344 e100_clean_cbs(nic
);
2345 e100_rx_clean_list(nic
);
2348 static void e100_tx_timeout(struct net_device
*netdev
)
2350 struct nic
*nic
= netdev_priv(netdev
);
2352 /* Reset outside of interrupt context, to avoid request_irq
2353 * in interrupt context */
2354 schedule_work(&nic
->tx_timeout_task
);
2357 static void e100_tx_timeout_task(struct work_struct
*work
)
2359 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2360 struct net_device
*netdev
= nic
->netdev
;
2362 netif_printk(nic
, tx_err
, KERN_DEBUG
, nic
->netdev
,
2363 "scb.status=0x%02X\n", ioread8(&nic
->csr
->scb
.status
));
2366 if (netif_running(netdev
)) {
2367 e100_down(netdev_priv(netdev
));
2368 e100_up(netdev_priv(netdev
));
2373 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2376 struct sk_buff
*skb
;
2378 /* Use driver resources to perform internal MAC or PHY
2379 * loopback test. A single packet is prepared and transmitted
2380 * in loopback mode, and the test passes if the received
2381 * packet compares byte-for-byte to the transmitted packet. */
2383 if ((err
= e100_rx_alloc_list(nic
)))
2385 if ((err
= e100_alloc_cbs(nic
)))
2388 /* ICH PHY loopback is broken so do MAC loopback instead */
2389 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2390 loopback_mode
= lb_mac
;
2392 nic
->loopback
= loopback_mode
;
2393 if ((err
= e100_hw_init(nic
)))
2394 goto err_loopback_none
;
2396 if (loopback_mode
== lb_phy
)
2397 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2400 e100_start_receiver(nic
, NULL
);
2402 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2404 goto err_loopback_none
;
2406 skb_put(skb
, ETH_DATA_LEN
);
2407 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2408 e100_xmit_frame(skb
, nic
->netdev
);
2412 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2413 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2415 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2416 skb
->data
, ETH_DATA_LEN
))
2420 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2421 nic
->loopback
= lb_none
;
2422 e100_clean_cbs(nic
);
2425 e100_rx_clean_list(nic
);
2429 #define MII_LED_CONTROL 0x1B
2430 #define E100_82552_LED_OVERRIDE 0x19
2431 #define E100_82552_LED_ON 0x000F /* LEDTX and LED_RX both on */
2432 #define E100_82552_LED_OFF 0x000A /* LEDTX and LED_RX both off */
2434 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2436 struct nic
*nic
= netdev_priv(netdev
);
2437 return mii_ethtool_gset(&nic
->mii
, cmd
);
2440 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2442 struct nic
*nic
= netdev_priv(netdev
);
2445 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2446 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2447 e100_exec_cb(nic
, NULL
, e100_configure
);
2452 static void e100_get_drvinfo(struct net_device
*netdev
,
2453 struct ethtool_drvinfo
*info
)
2455 struct nic
*nic
= netdev_priv(netdev
);
2456 strlcpy(info
->driver
, DRV_NAME
, sizeof(info
->driver
));
2457 strlcpy(info
->version
, DRV_VERSION
, sizeof(info
->version
));
2458 strlcpy(info
->bus_info
, pci_name(nic
->pdev
),
2459 sizeof(info
->bus_info
));
2462 #define E100_PHY_REGS 0x1C
2463 static int e100_get_regs_len(struct net_device
*netdev
)
2465 struct nic
*nic
= netdev_priv(netdev
);
2466 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2469 static void e100_get_regs(struct net_device
*netdev
,
2470 struct ethtool_regs
*regs
, void *p
)
2472 struct nic
*nic
= netdev_priv(netdev
);
2476 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2477 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2478 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2479 ioread16(&nic
->csr
->scb
.status
);
2480 for (i
= E100_PHY_REGS
; i
>= 0; i
--)
2481 buff
[1 + E100_PHY_REGS
- i
] =
2482 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2483 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2484 e100_exec_cb(nic
, NULL
, e100_dump
);
2486 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2487 sizeof(nic
->mem
->dump_buf
));
2490 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2492 struct nic
*nic
= netdev_priv(netdev
);
2493 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2494 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2497 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2499 struct nic
*nic
= netdev_priv(netdev
);
2501 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2502 !device_can_wakeup(&nic
->pdev
->dev
))
2506 nic
->flags
|= wol_magic
;
2508 nic
->flags
&= ~wol_magic
;
2510 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2512 e100_exec_cb(nic
, NULL
, e100_configure
);
2517 static u32
e100_get_msglevel(struct net_device
*netdev
)
2519 struct nic
*nic
= netdev_priv(netdev
);
2520 return nic
->msg_enable
;
2523 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2525 struct nic
*nic
= netdev_priv(netdev
);
2526 nic
->msg_enable
= value
;
2529 static int e100_nway_reset(struct net_device
*netdev
)
2531 struct nic
*nic
= netdev_priv(netdev
);
2532 return mii_nway_restart(&nic
->mii
);
2535 static u32
e100_get_link(struct net_device
*netdev
)
2537 struct nic
*nic
= netdev_priv(netdev
);
2538 return mii_link_ok(&nic
->mii
);
2541 static int e100_get_eeprom_len(struct net_device
*netdev
)
2543 struct nic
*nic
= netdev_priv(netdev
);
2544 return nic
->eeprom_wc
<< 1;
2547 #define E100_EEPROM_MAGIC 0x1234
2548 static int e100_get_eeprom(struct net_device
*netdev
,
2549 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2551 struct nic
*nic
= netdev_priv(netdev
);
2553 eeprom
->magic
= E100_EEPROM_MAGIC
;
2554 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2559 static int e100_set_eeprom(struct net_device
*netdev
,
2560 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2562 struct nic
*nic
= netdev_priv(netdev
);
2564 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2567 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2569 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2570 (eeprom
->len
>> 1) + 1);
2573 static void e100_get_ringparam(struct net_device
*netdev
,
2574 struct ethtool_ringparam
*ring
)
2576 struct nic
*nic
= netdev_priv(netdev
);
2577 struct param_range
*rfds
= &nic
->params
.rfds
;
2578 struct param_range
*cbs
= &nic
->params
.cbs
;
2580 ring
->rx_max_pending
= rfds
->max
;
2581 ring
->tx_max_pending
= cbs
->max
;
2582 ring
->rx_pending
= rfds
->count
;
2583 ring
->tx_pending
= cbs
->count
;
2586 static int e100_set_ringparam(struct net_device
*netdev
,
2587 struct ethtool_ringparam
*ring
)
2589 struct nic
*nic
= netdev_priv(netdev
);
2590 struct param_range
*rfds
= &nic
->params
.rfds
;
2591 struct param_range
*cbs
= &nic
->params
.cbs
;
2593 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2596 if (netif_running(netdev
))
2598 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2599 rfds
->count
= min(rfds
->count
, rfds
->max
);
2600 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2601 cbs
->count
= min(cbs
->count
, cbs
->max
);
2602 netif_info(nic
, drv
, nic
->netdev
, "Ring Param settings: rx: %d, tx %d\n",
2603 rfds
->count
, cbs
->count
);
2604 if (netif_running(netdev
))
2610 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2611 "Link test (on/offline)",
2612 "Eeprom test (on/offline)",
2613 "Self test (offline)",
2614 "Mac loopback (offline)",
2615 "Phy loopback (offline)",
2617 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2619 static void e100_diag_test(struct net_device
*netdev
,
2620 struct ethtool_test
*test
, u64
*data
)
2622 struct ethtool_cmd cmd
;
2623 struct nic
*nic
= netdev_priv(netdev
);
2626 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2627 data
[0] = !mii_link_ok(&nic
->mii
);
2628 data
[1] = e100_eeprom_load(nic
);
2629 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2631 /* save speed, duplex & autoneg settings */
2632 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2634 if (netif_running(netdev
))
2636 data
[2] = e100_self_test(nic
);
2637 data
[3] = e100_loopback_test(nic
, lb_mac
);
2638 data
[4] = e100_loopback_test(nic
, lb_phy
);
2640 /* restore speed, duplex & autoneg settings */
2641 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2643 if (netif_running(netdev
))
2646 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2647 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2649 msleep_interruptible(4 * 1000);
2652 static int e100_set_phys_id(struct net_device
*netdev
,
2653 enum ethtool_phys_id_state state
)
2655 struct nic
*nic
= netdev_priv(netdev
);
2662 u16 led_reg
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OVERRIDE
:
2667 case ETHTOOL_ID_ACTIVE
:
2671 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_ON
:
2672 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2675 case ETHTOOL_ID_OFF
:
2676 leds
= (nic
->phy
== phy_82552_v
) ? E100_82552_LED_OFF
: led_off
;
2679 case ETHTOOL_ID_INACTIVE
:
2683 mdio_write(netdev
, nic
->mii
.phy_id
, led_reg
, leds
);
2687 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2688 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2689 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2690 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2691 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2692 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2693 "tx_heartbeat_errors", "tx_window_errors",
2694 /* device-specific stats */
2695 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2696 "tx_flow_control_pause", "rx_flow_control_pause",
2697 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2698 "rx_short_frame_errors", "rx_over_length_errors",
2700 #define E100_NET_STATS_LEN 21
2701 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2703 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2707 return E100_TEST_LEN
;
2709 return E100_STATS_LEN
;
2715 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2716 struct ethtool_stats
*stats
, u64
*data
)
2718 struct nic
*nic
= netdev_priv(netdev
);
2721 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2722 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2724 data
[i
++] = nic
->tx_deferred
;
2725 data
[i
++] = nic
->tx_single_collisions
;
2726 data
[i
++] = nic
->tx_multiple_collisions
;
2727 data
[i
++] = nic
->tx_fc_pause
;
2728 data
[i
++] = nic
->rx_fc_pause
;
2729 data
[i
++] = nic
->rx_fc_unsupported
;
2730 data
[i
++] = nic
->tx_tco_frames
;
2731 data
[i
++] = nic
->rx_tco_frames
;
2732 data
[i
++] = nic
->rx_short_frame_errors
;
2733 data
[i
++] = nic
->rx_over_length_errors
;
2736 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2738 switch (stringset
) {
2740 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2743 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2748 static const struct ethtool_ops e100_ethtool_ops
= {
2749 .get_settings
= e100_get_settings
,
2750 .set_settings
= e100_set_settings
,
2751 .get_drvinfo
= e100_get_drvinfo
,
2752 .get_regs_len
= e100_get_regs_len
,
2753 .get_regs
= e100_get_regs
,
2754 .get_wol
= e100_get_wol
,
2755 .set_wol
= e100_set_wol
,
2756 .get_msglevel
= e100_get_msglevel
,
2757 .set_msglevel
= e100_set_msglevel
,
2758 .nway_reset
= e100_nway_reset
,
2759 .get_link
= e100_get_link
,
2760 .get_eeprom_len
= e100_get_eeprom_len
,
2761 .get_eeprom
= e100_get_eeprom
,
2762 .set_eeprom
= e100_set_eeprom
,
2763 .get_ringparam
= e100_get_ringparam
,
2764 .set_ringparam
= e100_set_ringparam
,
2765 .self_test
= e100_diag_test
,
2766 .get_strings
= e100_get_strings
,
2767 .set_phys_id
= e100_set_phys_id
,
2768 .get_ethtool_stats
= e100_get_ethtool_stats
,
2769 .get_sset_count
= e100_get_sset_count
,
2770 .get_ts_info
= ethtool_op_get_ts_info
,
2773 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2775 struct nic
*nic
= netdev_priv(netdev
);
2777 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2780 static int e100_alloc(struct nic
*nic
)
2782 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2784 return nic
->mem
? 0 : -ENOMEM
;
2787 static void e100_free(struct nic
*nic
)
2790 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2791 nic
->mem
, nic
->dma_addr
);
2796 static int e100_open(struct net_device
*netdev
)
2798 struct nic
*nic
= netdev_priv(netdev
);
2801 netif_carrier_off(netdev
);
2802 if ((err
= e100_up(nic
)))
2803 netif_err(nic
, ifup
, nic
->netdev
, "Cannot open interface, aborting\n");
2807 static int e100_close(struct net_device
*netdev
)
2809 e100_down(netdev_priv(netdev
));
2813 static int e100_set_features(struct net_device
*netdev
,
2814 netdev_features_t features
)
2816 struct nic
*nic
= netdev_priv(netdev
);
2817 netdev_features_t changed
= features
^ netdev
->features
;
2819 if (!(changed
& (NETIF_F_RXFCS
| NETIF_F_RXALL
)))
2822 netdev
->features
= features
;
2823 e100_exec_cb(nic
, NULL
, e100_configure
);
2827 static const struct net_device_ops e100_netdev_ops
= {
2828 .ndo_open
= e100_open
,
2829 .ndo_stop
= e100_close
,
2830 .ndo_start_xmit
= e100_xmit_frame
,
2831 .ndo_validate_addr
= eth_validate_addr
,
2832 .ndo_set_rx_mode
= e100_set_multicast_list
,
2833 .ndo_set_mac_address
= e100_set_mac_address
,
2834 .ndo_change_mtu
= e100_change_mtu
,
2835 .ndo_do_ioctl
= e100_do_ioctl
,
2836 .ndo_tx_timeout
= e100_tx_timeout
,
2837 #ifdef CONFIG_NET_POLL_CONTROLLER
2838 .ndo_poll_controller
= e100_netpoll
,
2840 .ndo_set_features
= e100_set_features
,
2843 static int e100_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2845 struct net_device
*netdev
;
2849 if (!(netdev
= alloc_etherdev(sizeof(struct nic
))))
2852 netdev
->hw_features
|= NETIF_F_RXFCS
;
2853 netdev
->priv_flags
|= IFF_SUPP_NOFCS
;
2854 netdev
->hw_features
|= NETIF_F_RXALL
;
2856 netdev
->netdev_ops
= &e100_netdev_ops
;
2857 netdev
->ethtool_ops
= &e100_ethtool_ops
;
2858 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2859 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2861 nic
= netdev_priv(netdev
);
2862 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2863 nic
->netdev
= netdev
;
2865 nic
->msg_enable
= (1 << debug
) - 1;
2866 nic
->mdio_ctrl
= mdio_ctrl_hw
;
2867 pci_set_drvdata(pdev
, netdev
);
2869 if ((err
= pci_enable_device(pdev
))) {
2870 netif_err(nic
, probe
, nic
->netdev
, "Cannot enable PCI device, aborting\n");
2871 goto err_out_free_dev
;
2874 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2875 netif_err(nic
, probe
, nic
->netdev
, "Cannot find proper PCI device base address, aborting\n");
2877 goto err_out_disable_pdev
;
2880 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2881 netif_err(nic
, probe
, nic
->netdev
, "Cannot obtain PCI resources, aborting\n");
2882 goto err_out_disable_pdev
;
2885 if ((err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
2886 netif_err(nic
, probe
, nic
->netdev
, "No usable DMA configuration, aborting\n");
2887 goto err_out_free_res
;
2890 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2893 netif_info(nic
, probe
, nic
->netdev
, "using i/o access mode\n");
2895 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2897 netif_err(nic
, probe
, nic
->netdev
, "Cannot map device registers, aborting\n");
2899 goto err_out_free_res
;
2902 if (ent
->driver_data
)
2907 e100_get_defaults(nic
);
2909 /* D100 MAC doesn't allow rx of vlan packets with normal MTU */
2910 if (nic
->mac
< mac_82558_D101_A4
)
2911 netdev
->features
|= NETIF_F_VLAN_CHALLENGED
;
2913 /* locks must be initialized before calling hw_reset */
2914 spin_lock_init(&nic
->cb_lock
);
2915 spin_lock_init(&nic
->cmd_lock
);
2916 spin_lock_init(&nic
->mdio_lock
);
2918 /* Reset the device before pci_set_master() in case device is in some
2919 * funky state and has an interrupt pending - hint: we don't have the
2920 * interrupt handler registered yet. */
2923 pci_set_master(pdev
);
2925 init_timer(&nic
->watchdog
);
2926 nic
->watchdog
.function
= e100_watchdog
;
2927 nic
->watchdog
.data
= (unsigned long)nic
;
2929 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2931 if ((err
= e100_alloc(nic
))) {
2932 netif_err(nic
, probe
, nic
->netdev
, "Cannot alloc driver memory, aborting\n");
2933 goto err_out_iounmap
;
2936 if ((err
= e100_eeprom_load(nic
)))
2941 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2942 if (!is_valid_ether_addr(netdev
->dev_addr
)) {
2943 if (!eeprom_bad_csum_allow
) {
2944 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, aborting\n");
2948 netif_err(nic
, probe
, nic
->netdev
, "Invalid MAC address from EEPROM, you MUST configure one.\n");
2952 /* Wol magic packet can be enabled from eeprom */
2953 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2954 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
)) {
2955 nic
->flags
|= wol_magic
;
2956 device_set_wakeup_enable(&pdev
->dev
, true);
2959 /* ack any pending wake events, disable PME */
2960 pci_pme_active(pdev
, false);
2962 strcpy(netdev
->name
, "eth%d");
2963 if ((err
= register_netdev(netdev
))) {
2964 netif_err(nic
, probe
, nic
->netdev
, "Cannot register net device, aborting\n");
2967 nic
->cbs_pool
= pci_pool_create(netdev
->name
,
2969 nic
->params
.cbs
.max
* sizeof(struct cb
),
2972 netif_info(nic
, probe
, nic
->netdev
,
2973 "addr 0x%llx, irq %d, MAC addr %pM\n",
2974 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2975 pdev
->irq
, netdev
->dev_addr
);
2982 pci_iounmap(pdev
, nic
->csr
);
2984 pci_release_regions(pdev
);
2985 err_out_disable_pdev
:
2986 pci_disable_device(pdev
);
2988 free_netdev(netdev
);
2992 static void e100_remove(struct pci_dev
*pdev
)
2994 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2997 struct nic
*nic
= netdev_priv(netdev
);
2998 unregister_netdev(netdev
);
3000 pci_iounmap(pdev
, nic
->csr
);
3001 pci_pool_destroy(nic
->cbs_pool
);
3002 free_netdev(netdev
);
3003 pci_release_regions(pdev
);
3004 pci_disable_device(pdev
);
3008 #define E100_82552_SMARTSPEED 0x14 /* SmartSpeed Ctrl register */
3009 #define E100_82552_REV_ANEG 0x0200 /* Reverse auto-negotiation */
3010 #define E100_82552_ANEG_NOW 0x0400 /* Auto-negotiate now */
3011 static void __e100_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
3013 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3014 struct nic
*nic
= netdev_priv(netdev
);
3016 if (netif_running(netdev
))
3018 netif_device_detach(netdev
);
3020 pci_save_state(pdev
);
3022 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
3023 /* enable reverse auto-negotiation */
3024 if (nic
->phy
== phy_82552_v
) {
3025 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3026 E100_82552_SMARTSPEED
);
3028 mdio_write(netdev
, nic
->mii
.phy_id
,
3029 E100_82552_SMARTSPEED
, smartspeed
|
3030 E100_82552_REV_ANEG
| E100_82552_ANEG_NOW
);
3032 *enable_wake
= true;
3034 *enable_wake
= false;
3037 pci_clear_master(pdev
);
3040 static int __e100_power_off(struct pci_dev
*pdev
, bool wake
)
3043 return pci_prepare_to_sleep(pdev
);
3045 pci_wake_from_d3(pdev
, false);
3046 pci_set_power_state(pdev
, PCI_D3hot
);
3052 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3055 __e100_shutdown(pdev
, &wake
);
3056 return __e100_power_off(pdev
, wake
);
3059 static int e100_resume(struct pci_dev
*pdev
)
3061 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3062 struct nic
*nic
= netdev_priv(netdev
);
3064 pci_set_power_state(pdev
, PCI_D0
);
3065 pci_restore_state(pdev
);
3066 /* ack any pending wake events, disable PME */
3067 pci_enable_wake(pdev
, PCI_D0
, 0);
3069 /* disable reverse auto-negotiation */
3070 if (nic
->phy
== phy_82552_v
) {
3071 u16 smartspeed
= mdio_read(netdev
, nic
->mii
.phy_id
,
3072 E100_82552_SMARTSPEED
);
3074 mdio_write(netdev
, nic
->mii
.phy_id
,
3075 E100_82552_SMARTSPEED
,
3076 smartspeed
& ~(E100_82552_REV_ANEG
));
3079 netif_device_attach(netdev
);
3080 if (netif_running(netdev
))
3085 #endif /* CONFIG_PM */
3087 static void e100_shutdown(struct pci_dev
*pdev
)
3090 __e100_shutdown(pdev
, &wake
);
3091 if (system_state
== SYSTEM_POWER_OFF
)
3092 __e100_power_off(pdev
, wake
);
3095 /* ------------------ PCI Error Recovery infrastructure -------------- */
3097 * e100_io_error_detected - called when PCI error is detected.
3098 * @pdev: Pointer to PCI device
3099 * @state: The current pci connection state
3101 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
3103 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3104 struct nic
*nic
= netdev_priv(netdev
);
3106 netif_device_detach(netdev
);
3108 if (state
== pci_channel_io_perm_failure
)
3109 return PCI_ERS_RESULT_DISCONNECT
;
3111 if (netif_running(netdev
))
3113 pci_disable_device(pdev
);
3115 /* Request a slot reset. */
3116 return PCI_ERS_RESULT_NEED_RESET
;
3120 * e100_io_slot_reset - called after the pci bus has been reset.
3121 * @pdev: Pointer to PCI device
3123 * Restart the card from scratch.
3125 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
3127 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3128 struct nic
*nic
= netdev_priv(netdev
);
3130 if (pci_enable_device(pdev
)) {
3131 pr_err("Cannot re-enable PCI device after reset\n");
3132 return PCI_ERS_RESULT_DISCONNECT
;
3134 pci_set_master(pdev
);
3136 /* Only one device per card can do a reset */
3137 if (0 != PCI_FUNC(pdev
->devfn
))
3138 return PCI_ERS_RESULT_RECOVERED
;
3142 return PCI_ERS_RESULT_RECOVERED
;
3146 * e100_io_resume - resume normal operations
3147 * @pdev: Pointer to PCI device
3149 * Resume normal operations after an error recovery
3150 * sequence has been completed.
3152 static void e100_io_resume(struct pci_dev
*pdev
)
3154 struct net_device
*netdev
= pci_get_drvdata(pdev
);
3155 struct nic
*nic
= netdev_priv(netdev
);
3157 /* ack any pending wake events, disable PME */
3158 pci_enable_wake(pdev
, PCI_D0
, 0);
3160 netif_device_attach(netdev
);
3161 if (netif_running(netdev
)) {
3163 mod_timer(&nic
->watchdog
, jiffies
);
3167 static const struct pci_error_handlers e100_err_handler
= {
3168 .error_detected
= e100_io_error_detected
,
3169 .slot_reset
= e100_io_slot_reset
,
3170 .resume
= e100_io_resume
,
3173 static struct pci_driver e100_driver
= {
3175 .id_table
= e100_id_table
,
3176 .probe
= e100_probe
,
3177 .remove
= e100_remove
,
3179 /* Power Management hooks */
3180 .suspend
= e100_suspend
,
3181 .resume
= e100_resume
,
3183 .shutdown
= e100_shutdown
,
3184 .err_handler
= &e100_err_handler
,
3187 static int __init
e100_init_module(void)
3189 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
3190 pr_info("%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
3191 pr_info("%s\n", DRV_COPYRIGHT
);
3193 return pci_register_driver(&e100_driver
);
3196 static void __exit
e100_cleanup_module(void)
3198 pci_unregister_driver(&e100_driver
);
3201 module_init(e100_init_module
);
3202 module_exit(e100_cleanup_module
);