e1000: fix whitespace issues and multi-line comments
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_hw.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 */
28
29 /* e1000_hw.c
30 * Shared functions for accessing and configuring the MAC
31 */
32
33 #include "e1000.h"
34
35 static s32 e1000_check_downshift(struct e1000_hw *hw);
36 static s32 e1000_check_polarity(struct e1000_hw *hw,
37 e1000_rev_polarity *polarity);
38 static void e1000_clear_hw_cntrs(struct e1000_hw *hw);
39 static void e1000_clear_vfta(struct e1000_hw *hw);
40 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw,
41 bool link_up);
42 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw);
43 static s32 e1000_detect_gig_phy(struct e1000_hw *hw);
44 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw);
45 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
46 u16 *max_length);
47 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw);
48 static s32 e1000_id_led_init(struct e1000_hw *hw);
49 static void e1000_init_rx_addrs(struct e1000_hw *hw);
50 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
51 struct e1000_phy_info *phy_info);
52 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
53 struct e1000_phy_info *phy_info);
54 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active);
55 static s32 e1000_wait_autoneg(struct e1000_hw *hw);
56 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value);
57 static s32 e1000_set_phy_type(struct e1000_hw *hw);
58 static void e1000_phy_init_script(struct e1000_hw *hw);
59 static s32 e1000_setup_copper_link(struct e1000_hw *hw);
60 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
61 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw);
62 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw);
63 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw);
64 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
65 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl);
66 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count);
67 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw);
68 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw);
69 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset,
70 u16 words, u16 *data);
71 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
72 u16 words, u16 *data);
73 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw);
74 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd);
75 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd);
76 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count);
77 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
78 u16 phy_data);
79 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
80 u16 *phy_data);
81 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count);
82 static s32 e1000_acquire_eeprom(struct e1000_hw *hw);
83 static void e1000_release_eeprom(struct e1000_hw *hw);
84 static void e1000_standby_eeprom(struct e1000_hw *hw);
85 static s32 e1000_set_vco_speed(struct e1000_hw *hw);
86 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw);
87 static s32 e1000_set_phy_mode(struct e1000_hw *hw);
88 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
89 u16 *data);
90 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
91 u16 *data);
92
93 /* IGP cable length table */
94 static const
95 u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = {
96 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
97 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25,
98 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40,
99 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60,
100 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90,
101 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100,
102 100,
103 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110,
104 110, 110,
105 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120,
106 120, 120
107 };
108
109 static DEFINE_SPINLOCK(e1000_eeprom_lock);
110 static DEFINE_SPINLOCK(e1000_phy_lock);
111
112 /**
113 * e1000_set_phy_type - Set the phy type member in the hw struct.
114 * @hw: Struct containing variables accessed by shared code
115 */
116 static s32 e1000_set_phy_type(struct e1000_hw *hw)
117 {
118 e_dbg("e1000_set_phy_type");
119
120 if (hw->mac_type == e1000_undefined)
121 return -E1000_ERR_PHY_TYPE;
122
123 switch (hw->phy_id) {
124 case M88E1000_E_PHY_ID:
125 case M88E1000_I_PHY_ID:
126 case M88E1011_I_PHY_ID:
127 case M88E1111_I_PHY_ID:
128 case M88E1118_E_PHY_ID:
129 hw->phy_type = e1000_phy_m88;
130 break;
131 case IGP01E1000_I_PHY_ID:
132 if (hw->mac_type == e1000_82541 ||
133 hw->mac_type == e1000_82541_rev_2 ||
134 hw->mac_type == e1000_82547 ||
135 hw->mac_type == e1000_82547_rev_2)
136 hw->phy_type = e1000_phy_igp;
137 break;
138 case RTL8211B_PHY_ID:
139 hw->phy_type = e1000_phy_8211;
140 break;
141 case RTL8201N_PHY_ID:
142 hw->phy_type = e1000_phy_8201;
143 break;
144 default:
145 /* Should never have loaded on this device */
146 hw->phy_type = e1000_phy_undefined;
147 return -E1000_ERR_PHY_TYPE;
148 }
149
150 return E1000_SUCCESS;
151 }
152
153 /**
154 * e1000_phy_init_script - IGP phy init script - initializes the GbE PHY
155 * @hw: Struct containing variables accessed by shared code
156 */
157 static void e1000_phy_init_script(struct e1000_hw *hw)
158 {
159 u32 ret_val;
160 u16 phy_saved_data;
161
162 e_dbg("e1000_phy_init_script");
163
164 if (hw->phy_init_script) {
165 msleep(20);
166
167 /* Save off the current value of register 0x2F5B to be restored
168 * at the end of this routine.
169 */
170 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
171
172 /* Disabled the PHY transmitter */
173 e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
174 msleep(20);
175
176 e1000_write_phy_reg(hw, 0x0000, 0x0140);
177 msleep(5);
178
179 switch (hw->mac_type) {
180 case e1000_82541:
181 case e1000_82547:
182 e1000_write_phy_reg(hw, 0x1F95, 0x0001);
183 e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
184 e1000_write_phy_reg(hw, 0x1F79, 0x0018);
185 e1000_write_phy_reg(hw, 0x1F30, 0x1600);
186 e1000_write_phy_reg(hw, 0x1F31, 0x0014);
187 e1000_write_phy_reg(hw, 0x1F32, 0x161C);
188 e1000_write_phy_reg(hw, 0x1F94, 0x0003);
189 e1000_write_phy_reg(hw, 0x1F96, 0x003F);
190 e1000_write_phy_reg(hw, 0x2010, 0x0008);
191 break;
192
193 case e1000_82541_rev_2:
194 case e1000_82547_rev_2:
195 e1000_write_phy_reg(hw, 0x1F73, 0x0099);
196 break;
197 default:
198 break;
199 }
200
201 e1000_write_phy_reg(hw, 0x0000, 0x3300);
202 msleep(20);
203
204 /* Now enable the transmitter */
205 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
206
207 if (hw->mac_type == e1000_82547) {
208 u16 fused, fine, coarse;
209
210 /* Move to analog registers page */
211 e1000_read_phy_reg(hw,
212 IGP01E1000_ANALOG_SPARE_FUSE_STATUS,
213 &fused);
214
215 if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
216 e1000_read_phy_reg(hw,
217 IGP01E1000_ANALOG_FUSE_STATUS,
218 &fused);
219
220 fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
221 coarse =
222 fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
223
224 if (coarse >
225 IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
226 coarse -=
227 IGP01E1000_ANALOG_FUSE_COARSE_10;
228 fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
229 } else if (coarse ==
230 IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
231 fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
232
233 fused =
234 (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
235 (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
236 (coarse &
237 IGP01E1000_ANALOG_FUSE_COARSE_MASK);
238
239 e1000_write_phy_reg(hw,
240 IGP01E1000_ANALOG_FUSE_CONTROL,
241 fused);
242 e1000_write_phy_reg(hw,
243 IGP01E1000_ANALOG_FUSE_BYPASS,
244 IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
245 }
246 }
247 }
248 }
249
250 /**
251 * e1000_set_mac_type - Set the mac type member in the hw struct.
252 * @hw: Struct containing variables accessed by shared code
253 */
254 s32 e1000_set_mac_type(struct e1000_hw *hw)
255 {
256 e_dbg("e1000_set_mac_type");
257
258 switch (hw->device_id) {
259 case E1000_DEV_ID_82542:
260 switch (hw->revision_id) {
261 case E1000_82542_2_0_REV_ID:
262 hw->mac_type = e1000_82542_rev2_0;
263 break;
264 case E1000_82542_2_1_REV_ID:
265 hw->mac_type = e1000_82542_rev2_1;
266 break;
267 default:
268 /* Invalid 82542 revision ID */
269 return -E1000_ERR_MAC_TYPE;
270 }
271 break;
272 case E1000_DEV_ID_82543GC_FIBER:
273 case E1000_DEV_ID_82543GC_COPPER:
274 hw->mac_type = e1000_82543;
275 break;
276 case E1000_DEV_ID_82544EI_COPPER:
277 case E1000_DEV_ID_82544EI_FIBER:
278 case E1000_DEV_ID_82544GC_COPPER:
279 case E1000_DEV_ID_82544GC_LOM:
280 hw->mac_type = e1000_82544;
281 break;
282 case E1000_DEV_ID_82540EM:
283 case E1000_DEV_ID_82540EM_LOM:
284 case E1000_DEV_ID_82540EP:
285 case E1000_DEV_ID_82540EP_LOM:
286 case E1000_DEV_ID_82540EP_LP:
287 hw->mac_type = e1000_82540;
288 break;
289 case E1000_DEV_ID_82545EM_COPPER:
290 case E1000_DEV_ID_82545EM_FIBER:
291 hw->mac_type = e1000_82545;
292 break;
293 case E1000_DEV_ID_82545GM_COPPER:
294 case E1000_DEV_ID_82545GM_FIBER:
295 case E1000_DEV_ID_82545GM_SERDES:
296 hw->mac_type = e1000_82545_rev_3;
297 break;
298 case E1000_DEV_ID_82546EB_COPPER:
299 case E1000_DEV_ID_82546EB_FIBER:
300 case E1000_DEV_ID_82546EB_QUAD_COPPER:
301 hw->mac_type = e1000_82546;
302 break;
303 case E1000_DEV_ID_82546GB_COPPER:
304 case E1000_DEV_ID_82546GB_FIBER:
305 case E1000_DEV_ID_82546GB_SERDES:
306 case E1000_DEV_ID_82546GB_PCIE:
307 case E1000_DEV_ID_82546GB_QUAD_COPPER:
308 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
309 hw->mac_type = e1000_82546_rev_3;
310 break;
311 case E1000_DEV_ID_82541EI:
312 case E1000_DEV_ID_82541EI_MOBILE:
313 case E1000_DEV_ID_82541ER_LOM:
314 hw->mac_type = e1000_82541;
315 break;
316 case E1000_DEV_ID_82541ER:
317 case E1000_DEV_ID_82541GI:
318 case E1000_DEV_ID_82541GI_LF:
319 case E1000_DEV_ID_82541GI_MOBILE:
320 hw->mac_type = e1000_82541_rev_2;
321 break;
322 case E1000_DEV_ID_82547EI:
323 case E1000_DEV_ID_82547EI_MOBILE:
324 hw->mac_type = e1000_82547;
325 break;
326 case E1000_DEV_ID_82547GI:
327 hw->mac_type = e1000_82547_rev_2;
328 break;
329 case E1000_DEV_ID_INTEL_CE4100_GBE:
330 hw->mac_type = e1000_ce4100;
331 break;
332 default:
333 /* Should never have loaded on this device */
334 return -E1000_ERR_MAC_TYPE;
335 }
336
337 switch (hw->mac_type) {
338 case e1000_82541:
339 case e1000_82547:
340 case e1000_82541_rev_2:
341 case e1000_82547_rev_2:
342 hw->asf_firmware_present = true;
343 break;
344 default:
345 break;
346 }
347
348 /* The 82543 chip does not count tx_carrier_errors properly in
349 * FD mode
350 */
351 if (hw->mac_type == e1000_82543)
352 hw->bad_tx_carr_stats_fd = true;
353
354 if (hw->mac_type > e1000_82544)
355 hw->has_smbus = true;
356
357 return E1000_SUCCESS;
358 }
359
360 /**
361 * e1000_set_media_type - Set media type and TBI compatibility.
362 * @hw: Struct containing variables accessed by shared code
363 */
364 void e1000_set_media_type(struct e1000_hw *hw)
365 {
366 u32 status;
367
368 e_dbg("e1000_set_media_type");
369
370 if (hw->mac_type != e1000_82543) {
371 /* tbi_compatibility is only valid on 82543 */
372 hw->tbi_compatibility_en = false;
373 }
374
375 switch (hw->device_id) {
376 case E1000_DEV_ID_82545GM_SERDES:
377 case E1000_DEV_ID_82546GB_SERDES:
378 hw->media_type = e1000_media_type_internal_serdes;
379 break;
380 default:
381 switch (hw->mac_type) {
382 case e1000_82542_rev2_0:
383 case e1000_82542_rev2_1:
384 hw->media_type = e1000_media_type_fiber;
385 break;
386 case e1000_ce4100:
387 hw->media_type = e1000_media_type_copper;
388 break;
389 default:
390 status = er32(STATUS);
391 if (status & E1000_STATUS_TBIMODE) {
392 hw->media_type = e1000_media_type_fiber;
393 /* tbi_compatibility not valid on fiber */
394 hw->tbi_compatibility_en = false;
395 } else {
396 hw->media_type = e1000_media_type_copper;
397 }
398 break;
399 }
400 }
401 }
402
403 /**
404 * e1000_reset_hw - reset the hardware completely
405 * @hw: Struct containing variables accessed by shared code
406 *
407 * Reset the transmit and receive units; mask and clear all interrupts.
408 */
409 s32 e1000_reset_hw(struct e1000_hw *hw)
410 {
411 u32 ctrl;
412 u32 ctrl_ext;
413 u32 icr;
414 u32 manc;
415 u32 led_ctrl;
416 s32 ret_val;
417
418 e_dbg("e1000_reset_hw");
419
420 /* For 82542 (rev 2.0), disable MWI before issuing a device reset */
421 if (hw->mac_type == e1000_82542_rev2_0) {
422 e_dbg("Disabling MWI on 82542 rev 2.0\n");
423 e1000_pci_clear_mwi(hw);
424 }
425
426 /* Clear interrupt mask to stop board from generating interrupts */
427 e_dbg("Masking off all interrupts\n");
428 ew32(IMC, 0xffffffff);
429
430 /* Disable the Transmit and Receive units. Then delay to allow
431 * any pending transactions to complete before we hit the MAC with
432 * the global reset.
433 */
434 ew32(RCTL, 0);
435 ew32(TCTL, E1000_TCTL_PSP);
436 E1000_WRITE_FLUSH();
437
438 /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
439 hw->tbi_compatibility_on = false;
440
441 /* Delay to allow any outstanding PCI transactions to complete before
442 * resetting the device
443 */
444 msleep(10);
445
446 ctrl = er32(CTRL);
447
448 /* Must reset the PHY before resetting the MAC */
449 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
450 ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST));
451 E1000_WRITE_FLUSH();
452 msleep(5);
453 }
454
455 /* Issue a global reset to the MAC. This will reset the chip's
456 * transmit, receive, DMA, and link units. It will not effect
457 * the current PCI configuration. The global reset bit is self-
458 * clearing, and should clear within a microsecond.
459 */
460 e_dbg("Issuing a global reset to MAC\n");
461
462 switch (hw->mac_type) {
463 case e1000_82544:
464 case e1000_82540:
465 case e1000_82545:
466 case e1000_82546:
467 case e1000_82541:
468 case e1000_82541_rev_2:
469 /* These controllers can't ack the 64-bit write when issuing the
470 * reset, so use IO-mapping as a workaround to issue the reset
471 */
472 E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
473 break;
474 case e1000_82545_rev_3:
475 case e1000_82546_rev_3:
476 /* Reset is performed on a shadow of the control register */
477 ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST));
478 break;
479 case e1000_ce4100:
480 default:
481 ew32(CTRL, (ctrl | E1000_CTRL_RST));
482 break;
483 }
484
485 /* After MAC reset, force reload of EEPROM to restore power-on settings
486 * to device. Later controllers reload the EEPROM automatically, so
487 * just wait for reload to complete.
488 */
489 switch (hw->mac_type) {
490 case e1000_82542_rev2_0:
491 case e1000_82542_rev2_1:
492 case e1000_82543:
493 case e1000_82544:
494 /* Wait for reset to complete */
495 udelay(10);
496 ctrl_ext = er32(CTRL_EXT);
497 ctrl_ext |= E1000_CTRL_EXT_EE_RST;
498 ew32(CTRL_EXT, ctrl_ext);
499 E1000_WRITE_FLUSH();
500 /* Wait for EEPROM reload */
501 msleep(2);
502 break;
503 case e1000_82541:
504 case e1000_82541_rev_2:
505 case e1000_82547:
506 case e1000_82547_rev_2:
507 /* Wait for EEPROM reload */
508 msleep(20);
509 break;
510 default:
511 /* Auto read done will delay 5ms or poll based on mac type */
512 ret_val = e1000_get_auto_rd_done(hw);
513 if (ret_val)
514 return ret_val;
515 break;
516 }
517
518 /* Disable HW ARPs on ASF enabled adapters */
519 if (hw->mac_type >= e1000_82540) {
520 manc = er32(MANC);
521 manc &= ~(E1000_MANC_ARP_EN);
522 ew32(MANC, manc);
523 }
524
525 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
526 e1000_phy_init_script(hw);
527
528 /* Configure activity LED after PHY reset */
529 led_ctrl = er32(LEDCTL);
530 led_ctrl &= IGP_ACTIVITY_LED_MASK;
531 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
532 ew32(LEDCTL, led_ctrl);
533 }
534
535 /* Clear interrupt mask to stop board from generating interrupts */
536 e_dbg("Masking off all interrupts\n");
537 ew32(IMC, 0xffffffff);
538
539 /* Clear any pending interrupt events. */
540 icr = er32(ICR);
541
542 /* If MWI was previously enabled, reenable it. */
543 if (hw->mac_type == e1000_82542_rev2_0) {
544 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
545 e1000_pci_set_mwi(hw);
546 }
547
548 return E1000_SUCCESS;
549 }
550
551 /**
552 * e1000_init_hw - Performs basic configuration of the adapter.
553 * @hw: Struct containing variables accessed by shared code
554 *
555 * Assumes that the controller has previously been reset and is in a
556 * post-reset uninitialized state. Initializes the receive address registers,
557 * multicast table, and VLAN filter table. Calls routines to setup link
558 * configuration and flow control settings. Clears all on-chip counters. Leaves
559 * the transmit and receive units disabled and uninitialized.
560 */
561 s32 e1000_init_hw(struct e1000_hw *hw)
562 {
563 u32 ctrl;
564 u32 i;
565 s32 ret_val;
566 u32 mta_size;
567 u32 ctrl_ext;
568
569 e_dbg("e1000_init_hw");
570
571 /* Initialize Identification LED */
572 ret_val = e1000_id_led_init(hw);
573 if (ret_val) {
574 e_dbg("Error Initializing Identification LED\n");
575 return ret_val;
576 }
577
578 /* Set the media type and TBI compatibility */
579 e1000_set_media_type(hw);
580
581 /* Disabling VLAN filtering. */
582 e_dbg("Initializing the IEEE VLAN\n");
583 if (hw->mac_type < e1000_82545_rev_3)
584 ew32(VET, 0);
585 e1000_clear_vfta(hw);
586
587 /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
588 if (hw->mac_type == e1000_82542_rev2_0) {
589 e_dbg("Disabling MWI on 82542 rev 2.0\n");
590 e1000_pci_clear_mwi(hw);
591 ew32(RCTL, E1000_RCTL_RST);
592 E1000_WRITE_FLUSH();
593 msleep(5);
594 }
595
596 /* Setup the receive address. This involves initializing all of the
597 * Receive Address Registers (RARs 0 - 15).
598 */
599 e1000_init_rx_addrs(hw);
600
601 /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
602 if (hw->mac_type == e1000_82542_rev2_0) {
603 ew32(RCTL, 0);
604 E1000_WRITE_FLUSH();
605 msleep(1);
606 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
607 e1000_pci_set_mwi(hw);
608 }
609
610 /* Zero out the Multicast HASH table */
611 e_dbg("Zeroing the MTA\n");
612 mta_size = E1000_MC_TBL_SIZE;
613 for (i = 0; i < mta_size; i++) {
614 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
615 /* use write flush to prevent Memory Write Block (MWB) from
616 * occurring when accessing our register space
617 */
618 E1000_WRITE_FLUSH();
619 }
620
621 /* Set the PCI priority bit correctly in the CTRL register. This
622 * determines if the adapter gives priority to receives, or if it
623 * gives equal priority to transmits and receives. Valid only on
624 * 82542 and 82543 silicon.
625 */
626 if (hw->dma_fairness && hw->mac_type <= e1000_82543) {
627 ctrl = er32(CTRL);
628 ew32(CTRL, ctrl | E1000_CTRL_PRIOR);
629 }
630
631 switch (hw->mac_type) {
632 case e1000_82545_rev_3:
633 case e1000_82546_rev_3:
634 break;
635 default:
636 /* Workaround for PCI-X problem when BIOS sets MMRBC
637 * incorrectly.
638 */
639 if (hw->bus_type == e1000_bus_type_pcix
640 && e1000_pcix_get_mmrbc(hw) > 2048)
641 e1000_pcix_set_mmrbc(hw, 2048);
642 break;
643 }
644
645 /* Call a subroutine to configure the link and setup flow control. */
646 ret_val = e1000_setup_link(hw);
647
648 /* Set the transmit descriptor write-back policy */
649 if (hw->mac_type > e1000_82544) {
650 ctrl = er32(TXDCTL);
651 ctrl =
652 (ctrl & ~E1000_TXDCTL_WTHRESH) |
653 E1000_TXDCTL_FULL_TX_DESC_WB;
654 ew32(TXDCTL, ctrl);
655 }
656
657 /* Clear all of the statistics registers (clear on read). It is
658 * important that we do this after we have tried to establish link
659 * because the symbol error count will increment wildly if there
660 * is no link.
661 */
662 e1000_clear_hw_cntrs(hw);
663
664 if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER ||
665 hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) {
666 ctrl_ext = er32(CTRL_EXT);
667 /* Relaxed ordering must be disabled to avoid a parity
668 * error crash in a PCI slot.
669 */
670 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
671 ew32(CTRL_EXT, ctrl_ext);
672 }
673
674 return ret_val;
675 }
676
677 /**
678 * e1000_adjust_serdes_amplitude - Adjust SERDES output amplitude based on EEPROM setting.
679 * @hw: Struct containing variables accessed by shared code.
680 */
681 static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
682 {
683 u16 eeprom_data;
684 s32 ret_val;
685
686 e_dbg("e1000_adjust_serdes_amplitude");
687
688 if (hw->media_type != e1000_media_type_internal_serdes)
689 return E1000_SUCCESS;
690
691 switch (hw->mac_type) {
692 case e1000_82545_rev_3:
693 case e1000_82546_rev_3:
694 break;
695 default:
696 return E1000_SUCCESS;
697 }
698
699 ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
700 &eeprom_data);
701 if (ret_val) {
702 return ret_val;
703 }
704
705 if (eeprom_data != EEPROM_RESERVED_WORD) {
706 /* Adjust SERDES output amplitude only. */
707 eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
708 ret_val =
709 e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data);
710 if (ret_val)
711 return ret_val;
712 }
713
714 return E1000_SUCCESS;
715 }
716
717 /**
718 * e1000_setup_link - Configures flow control and link settings.
719 * @hw: Struct containing variables accessed by shared code
720 *
721 * Determines which flow control settings to use. Calls the appropriate media-
722 * specific link configuration function. Configures the flow control settings.
723 * Assuming the adapter has a valid link partner, a valid link should be
724 * established. Assumes the hardware has previously been reset and the
725 * transmitter and receiver are not enabled.
726 */
727 s32 e1000_setup_link(struct e1000_hw *hw)
728 {
729 u32 ctrl_ext;
730 s32 ret_val;
731 u16 eeprom_data;
732
733 e_dbg("e1000_setup_link");
734
735 /* Read and store word 0x0F of the EEPROM. This word contains bits
736 * that determine the hardware's default PAUSE (flow control) mode,
737 * a bit that determines whether the HW defaults to enabling or
738 * disabling auto-negotiation, and the direction of the
739 * SW defined pins. If there is no SW over-ride of the flow
740 * control setting, then the variable hw->fc will
741 * be initialized based on a value in the EEPROM.
742 */
743 if (hw->fc == E1000_FC_DEFAULT) {
744 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
745 1, &eeprom_data);
746 if (ret_val) {
747 e_dbg("EEPROM Read Error\n");
748 return -E1000_ERR_EEPROM;
749 }
750 if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
751 hw->fc = E1000_FC_NONE;
752 else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
753 EEPROM_WORD0F_ASM_DIR)
754 hw->fc = E1000_FC_TX_PAUSE;
755 else
756 hw->fc = E1000_FC_FULL;
757 }
758
759 /* We want to save off the original Flow Control configuration just
760 * in case we get disconnected and then reconnected into a different
761 * hub or switch with different Flow Control capabilities.
762 */
763 if (hw->mac_type == e1000_82542_rev2_0)
764 hw->fc &= (~E1000_FC_TX_PAUSE);
765
766 if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
767 hw->fc &= (~E1000_FC_RX_PAUSE);
768
769 hw->original_fc = hw->fc;
770
771 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc);
772
773 /* Take the 4 bits from EEPROM word 0x0F that determine the initial
774 * polarity value for the SW controlled pins, and setup the
775 * Extended Device Control reg with that info.
776 * This is needed because one of the SW controlled pins is used for
777 * signal detection. So this should be done before e1000_setup_pcs_link()
778 * or e1000_phy_setup() is called.
779 */
780 if (hw->mac_type == e1000_82543) {
781 ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG,
782 1, &eeprom_data);
783 if (ret_val) {
784 e_dbg("EEPROM Read Error\n");
785 return -E1000_ERR_EEPROM;
786 }
787 ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
788 SWDPIO__EXT_SHIFT);
789 ew32(CTRL_EXT, ctrl_ext);
790 }
791
792 /* Call the necessary subroutine to configure the link. */
793 ret_val = (hw->media_type == e1000_media_type_copper) ?
794 e1000_setup_copper_link(hw) : e1000_setup_fiber_serdes_link(hw);
795
796 /* Initialize the flow control address, type, and PAUSE timer
797 * registers to their default values. This is done even if flow
798 * control is disabled, because it does not hurt anything to
799 * initialize these registers.
800 */
801 e_dbg("Initializing the Flow Control address, type and timer regs\n");
802
803 ew32(FCT, FLOW_CONTROL_TYPE);
804 ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH);
805 ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW);
806
807 ew32(FCTTV, hw->fc_pause_time);
808
809 /* Set the flow control receive threshold registers. Normally,
810 * these registers will be set to a default threshold that may be
811 * adjusted later by the driver's runtime code. However, if the
812 * ability to transmit pause frames in not enabled, then these
813 * registers will be set to 0.
814 */
815 if (!(hw->fc & E1000_FC_TX_PAUSE)) {
816 ew32(FCRTL, 0);
817 ew32(FCRTH, 0);
818 } else {
819 /* We need to set up the Receive Threshold high and low water
820 * marks as well as (optionally) enabling the transmission of
821 * XON frames.
822 */
823 if (hw->fc_send_xon) {
824 ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
825 ew32(FCRTH, hw->fc_high_water);
826 } else {
827 ew32(FCRTL, hw->fc_low_water);
828 ew32(FCRTH, hw->fc_high_water);
829 }
830 }
831 return ret_val;
832 }
833
834 /**
835 * e1000_setup_fiber_serdes_link - prepare fiber or serdes link
836 * @hw: Struct containing variables accessed by shared code
837 *
838 * Manipulates Physical Coding Sublayer functions in order to configure
839 * link. Assumes the hardware has been previously reset and the transmitter
840 * and receiver are not enabled.
841 */
842 static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
843 {
844 u32 ctrl;
845 u32 status;
846 u32 txcw = 0;
847 u32 i;
848 u32 signal = 0;
849 s32 ret_val;
850
851 e_dbg("e1000_setup_fiber_serdes_link");
852
853 /* On adapters with a MAC newer than 82544, SWDP 1 will be
854 * set when the optics detect a signal. On older adapters, it will be
855 * cleared when there is a signal. This applies to fiber media only.
856 * If we're on serdes media, adjust the output amplitude to value
857 * set in the EEPROM.
858 */
859 ctrl = er32(CTRL);
860 if (hw->media_type == e1000_media_type_fiber)
861 signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
862
863 ret_val = e1000_adjust_serdes_amplitude(hw);
864 if (ret_val)
865 return ret_val;
866
867 /* Take the link out of reset */
868 ctrl &= ~(E1000_CTRL_LRST);
869
870 /* Adjust VCO speed to improve BER performance */
871 ret_val = e1000_set_vco_speed(hw);
872 if (ret_val)
873 return ret_val;
874
875 e1000_config_collision_dist(hw);
876
877 /* Check for a software override of the flow control settings, and setup
878 * the device accordingly. If auto-negotiation is enabled, then
879 * software will have to set the "PAUSE" bits to the correct value in
880 * the Tranmsit Config Word Register (TXCW) and re-start
881 * auto-negotiation. However, if auto-negotiation is disabled, then
882 * software will have to manually configure the two flow control enable
883 * bits in the CTRL register.
884 *
885 * The possible values of the "fc" parameter are:
886 * 0: Flow control is completely disabled
887 * 1: Rx flow control is enabled (we can receive pause frames, but
888 * not send pause frames).
889 * 2: Tx flow control is enabled (we can send pause frames but we do
890 * not support receiving pause frames).
891 * 3: Both Rx and TX flow control (symmetric) are enabled.
892 */
893 switch (hw->fc) {
894 case E1000_FC_NONE:
895 /* Flow ctrl is completely disabled by a software over-ride */
896 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
897 break;
898 case E1000_FC_RX_PAUSE:
899 /* Rx Flow control is enabled and Tx Flow control is disabled by
900 * a software over-ride. Since there really isn't a way to
901 * advertise that we are capable of Rx Pause ONLY, we will
902 * advertise that we support both symmetric and asymmetric Rx
903 * PAUSE. Later, we will disable the adapter's ability to send
904 * PAUSE frames.
905 */
906 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
907 break;
908 case E1000_FC_TX_PAUSE:
909 /* Tx Flow control is enabled, and Rx Flow control is disabled,
910 * by a software over-ride.
911 */
912 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
913 break;
914 case E1000_FC_FULL:
915 /* Flow control (both Rx and Tx) is enabled by a software
916 * over-ride.
917 */
918 txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
919 break;
920 default:
921 e_dbg("Flow control param set incorrectly\n");
922 return -E1000_ERR_CONFIG;
923 break;
924 }
925
926 /* Since auto-negotiation is enabled, take the link out of reset (the
927 * link will be in reset, because we previously reset the chip). This
928 * will restart auto-negotiation. If auto-negotiation is successful
929 * then the link-up status bit will be set and the flow control enable
930 * bits (RFCE and TFCE) will be set according to their negotiated value.
931 */
932 e_dbg("Auto-negotiation enabled\n");
933
934 ew32(TXCW, txcw);
935 ew32(CTRL, ctrl);
936 E1000_WRITE_FLUSH();
937
938 hw->txcw = txcw;
939 msleep(1);
940
941 /* If we have a signal (the cable is plugged in) then poll for a
942 * "Link-Up" indication in the Device Status Register. Time-out if a
943 * link isn't seen in 500 milliseconds seconds (Auto-negotiation should
944 * complete in less than 500 milliseconds even if the other end is doing
945 * it in SW). For internal serdes, we just assume a signal is present,
946 * then poll.
947 */
948 if (hw->media_type == e1000_media_type_internal_serdes ||
949 (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) {
950 e_dbg("Looking for Link\n");
951 for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
952 msleep(10);
953 status = er32(STATUS);
954 if (status & E1000_STATUS_LU)
955 break;
956 }
957 if (i == (LINK_UP_TIMEOUT / 10)) {
958 e_dbg("Never got a valid link from auto-neg!!!\n");
959 hw->autoneg_failed = 1;
960 /* AutoNeg failed to achieve a link, so we'll call
961 * e1000_check_for_link. This routine will force the
962 * link up if we detect a signal. This will allow us to
963 * communicate with non-autonegotiating link partners.
964 */
965 ret_val = e1000_check_for_link(hw);
966 if (ret_val) {
967 e_dbg("Error while checking for link\n");
968 return ret_val;
969 }
970 hw->autoneg_failed = 0;
971 } else {
972 hw->autoneg_failed = 0;
973 e_dbg("Valid Link Found\n");
974 }
975 } else {
976 e_dbg("No Signal Detected\n");
977 }
978 return E1000_SUCCESS;
979 }
980
981 /**
982 * e1000_copper_link_rtl_setup - Copper link setup for e1000_phy_rtl series.
983 * @hw: Struct containing variables accessed by shared code
984 *
985 * Commits changes to PHY configuration by calling e1000_phy_reset().
986 */
987 static s32 e1000_copper_link_rtl_setup(struct e1000_hw *hw)
988 {
989 s32 ret_val;
990
991 /* SW reset the PHY so all changes take effect */
992 ret_val = e1000_phy_reset(hw);
993 if (ret_val) {
994 e_dbg("Error Resetting the PHY\n");
995 return ret_val;
996 }
997
998 return E1000_SUCCESS;
999 }
1000
1001 static s32 gbe_dhg_phy_setup(struct e1000_hw *hw)
1002 {
1003 s32 ret_val;
1004 u32 ctrl_aux;
1005
1006 switch (hw->phy_type) {
1007 case e1000_phy_8211:
1008 ret_val = e1000_copper_link_rtl_setup(hw);
1009 if (ret_val) {
1010 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1011 return ret_val;
1012 }
1013 break;
1014 case e1000_phy_8201:
1015 /* Set RMII mode */
1016 ctrl_aux = er32(CTL_AUX);
1017 ctrl_aux |= E1000_CTL_AUX_RMII;
1018 ew32(CTL_AUX, ctrl_aux);
1019 E1000_WRITE_FLUSH();
1020
1021 /* Disable the J/K bits required for receive */
1022 ctrl_aux = er32(CTL_AUX);
1023 ctrl_aux |= 0x4;
1024 ctrl_aux &= ~0x2;
1025 ew32(CTL_AUX, ctrl_aux);
1026 E1000_WRITE_FLUSH();
1027 ret_val = e1000_copper_link_rtl_setup(hw);
1028
1029 if (ret_val) {
1030 e_dbg("e1000_copper_link_rtl_setup failed!\n");
1031 return ret_val;
1032 }
1033 break;
1034 default:
1035 e_dbg("Error Resetting the PHY\n");
1036 return E1000_ERR_PHY_TYPE;
1037 }
1038
1039 return E1000_SUCCESS;
1040 }
1041
1042 /**
1043 * e1000_copper_link_preconfig - early configuration for copper
1044 * @hw: Struct containing variables accessed by shared code
1045 *
1046 * Make sure we have a valid PHY and change PHY mode before link setup.
1047 */
1048 static s32 e1000_copper_link_preconfig(struct e1000_hw *hw)
1049 {
1050 u32 ctrl;
1051 s32 ret_val;
1052 u16 phy_data;
1053
1054 e_dbg("e1000_copper_link_preconfig");
1055
1056 ctrl = er32(CTRL);
1057 /* With 82543, we need to force speed and duplex on the MAC equal to
1058 * what the PHY speed and duplex configuration is. In addition, we need
1059 * to perform a hardware reset on the PHY to take it out of reset.
1060 */
1061 if (hw->mac_type > e1000_82543) {
1062 ctrl |= E1000_CTRL_SLU;
1063 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1064 ew32(CTRL, ctrl);
1065 } else {
1066 ctrl |=
1067 (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
1068 ew32(CTRL, ctrl);
1069 ret_val = e1000_phy_hw_reset(hw);
1070 if (ret_val)
1071 return ret_val;
1072 }
1073
1074 /* Make sure we have a valid PHY */
1075 ret_val = e1000_detect_gig_phy(hw);
1076 if (ret_val) {
1077 e_dbg("Error, did not detect valid phy.\n");
1078 return ret_val;
1079 }
1080 e_dbg("Phy ID = %x\n", hw->phy_id);
1081
1082 /* Set PHY to class A mode (if necessary) */
1083 ret_val = e1000_set_phy_mode(hw);
1084 if (ret_val)
1085 return ret_val;
1086
1087 if ((hw->mac_type == e1000_82545_rev_3) ||
1088 (hw->mac_type == e1000_82546_rev_3)) {
1089 ret_val =
1090 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1091 phy_data |= 0x00000008;
1092 ret_val =
1093 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1094 }
1095
1096 if (hw->mac_type <= e1000_82543 ||
1097 hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
1098 hw->mac_type == e1000_82541_rev_2
1099 || hw->mac_type == e1000_82547_rev_2)
1100 hw->phy_reset_disable = false;
1101
1102 return E1000_SUCCESS;
1103 }
1104
1105 /**
1106 * e1000_copper_link_igp_setup - Copper link setup for e1000_phy_igp series.
1107 * @hw: Struct containing variables accessed by shared code
1108 */
1109 static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw)
1110 {
1111 u32 led_ctrl;
1112 s32 ret_val;
1113 u16 phy_data;
1114
1115 e_dbg("e1000_copper_link_igp_setup");
1116
1117 if (hw->phy_reset_disable)
1118 return E1000_SUCCESS;
1119
1120 ret_val = e1000_phy_reset(hw);
1121 if (ret_val) {
1122 e_dbg("Error Resetting the PHY\n");
1123 return ret_val;
1124 }
1125
1126 /* Wait 15ms for MAC to configure PHY from eeprom settings */
1127 msleep(15);
1128 /* Configure activity LED after PHY reset */
1129 led_ctrl = er32(LEDCTL);
1130 led_ctrl &= IGP_ACTIVITY_LED_MASK;
1131 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
1132 ew32(LEDCTL, led_ctrl);
1133
1134 /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */
1135 if (hw->phy_type == e1000_phy_igp) {
1136 /* disable lplu d3 during driver init */
1137 ret_val = e1000_set_d3_lplu_state(hw, false);
1138 if (ret_val) {
1139 e_dbg("Error Disabling LPLU D3\n");
1140 return ret_val;
1141 }
1142 }
1143
1144 /* Configure mdi-mdix settings */
1145 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1146 if (ret_val)
1147 return ret_val;
1148
1149 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
1150 hw->dsp_config_state = e1000_dsp_config_disabled;
1151 /* Force MDI for earlier revs of the IGP PHY */
1152 phy_data &=
1153 ~(IGP01E1000_PSCR_AUTO_MDIX |
1154 IGP01E1000_PSCR_FORCE_MDI_MDIX);
1155 hw->mdix = 1;
1156
1157 } else {
1158 hw->dsp_config_state = e1000_dsp_config_enabled;
1159 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1160
1161 switch (hw->mdix) {
1162 case 1:
1163 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1164 break;
1165 case 2:
1166 phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
1167 break;
1168 case 0:
1169 default:
1170 phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
1171 break;
1172 }
1173 }
1174 ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1175 if (ret_val)
1176 return ret_val;
1177
1178 /* set auto-master slave resolution settings */
1179 if (hw->autoneg) {
1180 e1000_ms_type phy_ms_setting = hw->master_slave;
1181
1182 if (hw->ffe_config_state == e1000_ffe_config_active)
1183 hw->ffe_config_state = e1000_ffe_config_enabled;
1184
1185 if (hw->dsp_config_state == e1000_dsp_config_activated)
1186 hw->dsp_config_state = e1000_dsp_config_enabled;
1187
1188 /* when autonegotiation advertisement is only 1000Mbps then we
1189 * should disable SmartSpeed and enable Auto MasterSlave
1190 * resolution as hardware default.
1191 */
1192 if (hw->autoneg_advertised == ADVERTISE_1000_FULL) {
1193 /* Disable SmartSpeed */
1194 ret_val =
1195 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1196 &phy_data);
1197 if (ret_val)
1198 return ret_val;
1199 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1200 ret_val =
1201 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1202 phy_data);
1203 if (ret_val)
1204 return ret_val;
1205 /* Set auto Master/Slave resolution process */
1206 ret_val =
1207 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1208 if (ret_val)
1209 return ret_val;
1210 phy_data &= ~CR_1000T_MS_ENABLE;
1211 ret_val =
1212 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1213 if (ret_val)
1214 return ret_val;
1215 }
1216
1217 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data);
1218 if (ret_val)
1219 return ret_val;
1220
1221 /* load defaults for future use */
1222 hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
1223 ((phy_data & CR_1000T_MS_VALUE) ?
1224 e1000_ms_force_master :
1225 e1000_ms_force_slave) : e1000_ms_auto;
1226
1227 switch (phy_ms_setting) {
1228 case e1000_ms_force_master:
1229 phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
1230 break;
1231 case e1000_ms_force_slave:
1232 phy_data |= CR_1000T_MS_ENABLE;
1233 phy_data &= ~(CR_1000T_MS_VALUE);
1234 break;
1235 case e1000_ms_auto:
1236 phy_data &= ~CR_1000T_MS_ENABLE;
1237 default:
1238 break;
1239 }
1240 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data);
1241 if (ret_val)
1242 return ret_val;
1243 }
1244
1245 return E1000_SUCCESS;
1246 }
1247
1248 /**
1249 * e1000_copper_link_mgp_setup - Copper link setup for e1000_phy_m88 series.
1250 * @hw: Struct containing variables accessed by shared code
1251 */
1252 static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw)
1253 {
1254 s32 ret_val;
1255 u16 phy_data;
1256
1257 e_dbg("e1000_copper_link_mgp_setup");
1258
1259 if (hw->phy_reset_disable)
1260 return E1000_SUCCESS;
1261
1262 /* Enable CRS on TX. This must be set for half-duplex operation. */
1263 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1264 if (ret_val)
1265 return ret_val;
1266
1267 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1268
1269 /* Options:
1270 * MDI/MDI-X = 0 (default)
1271 * 0 - Auto for all speeds
1272 * 1 - MDI mode
1273 * 2 - MDI-X mode
1274 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
1275 */
1276 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1277
1278 switch (hw->mdix) {
1279 case 1:
1280 phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
1281 break;
1282 case 2:
1283 phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
1284 break;
1285 case 3:
1286 phy_data |= M88E1000_PSCR_AUTO_X_1000T;
1287 break;
1288 case 0:
1289 default:
1290 phy_data |= M88E1000_PSCR_AUTO_X_MODE;
1291 break;
1292 }
1293
1294 /* Options:
1295 * disable_polarity_correction = 0 (default)
1296 * Automatic Correction for Reversed Cable Polarity
1297 * 0 - Disabled
1298 * 1 - Enabled
1299 */
1300 phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
1301 if (hw->disable_polarity_correction == 1)
1302 phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
1303 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1304 if (ret_val)
1305 return ret_val;
1306
1307 if (hw->phy_revision < M88E1011_I_REV_4) {
1308 /* Force TX_CLK in the Extended PHY Specific Control Register
1309 * to 25MHz clock.
1310 */
1311 ret_val =
1312 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1313 &phy_data);
1314 if (ret_val)
1315 return ret_val;
1316
1317 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1318
1319 if ((hw->phy_revision == E1000_REVISION_2) &&
1320 (hw->phy_id == M88E1111_I_PHY_ID)) {
1321 /* Vidalia Phy, set the downshift counter to 5x */
1322 phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK);
1323 phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
1324 ret_val = e1000_write_phy_reg(hw,
1325 M88E1000_EXT_PHY_SPEC_CTRL,
1326 phy_data);
1327 if (ret_val)
1328 return ret_val;
1329 } else {
1330 /* Configure Master and Slave downshift values */
1331 phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
1332 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
1333 phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
1334 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
1335 ret_val = e1000_write_phy_reg(hw,
1336 M88E1000_EXT_PHY_SPEC_CTRL,
1337 phy_data);
1338 if (ret_val)
1339 return ret_val;
1340 }
1341 }
1342
1343 /* SW Reset the PHY so all changes take effect */
1344 ret_val = e1000_phy_reset(hw);
1345 if (ret_val) {
1346 e_dbg("Error Resetting the PHY\n");
1347 return ret_val;
1348 }
1349
1350 return E1000_SUCCESS;
1351 }
1352
1353 /**
1354 * e1000_copper_link_autoneg - setup auto-neg
1355 * @hw: Struct containing variables accessed by shared code
1356 *
1357 * Setup auto-negotiation and flow control advertisements,
1358 * and then perform auto-negotiation.
1359 */
1360 static s32 e1000_copper_link_autoneg(struct e1000_hw *hw)
1361 {
1362 s32 ret_val;
1363 u16 phy_data;
1364
1365 e_dbg("e1000_copper_link_autoneg");
1366
1367 /* Perform some bounds checking on the hw->autoneg_advertised
1368 * parameter. If this variable is zero, then set it to the default.
1369 */
1370 hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
1371
1372 /* If autoneg_advertised is zero, we assume it was not defaulted
1373 * by the calling code so we set to advertise full capability.
1374 */
1375 if (hw->autoneg_advertised == 0)
1376 hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
1377
1378 /* IFE/RTL8201N PHY only supports 10/100 */
1379 if (hw->phy_type == e1000_phy_8201)
1380 hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL;
1381
1382 e_dbg("Reconfiguring auto-neg advertisement params\n");
1383 ret_val = e1000_phy_setup_autoneg(hw);
1384 if (ret_val) {
1385 e_dbg("Error Setting up Auto-Negotiation\n");
1386 return ret_val;
1387 }
1388 e_dbg("Restarting Auto-Neg\n");
1389
1390 /* Restart auto-negotiation by setting the Auto Neg Enable bit and
1391 * the Auto Neg Restart bit in the PHY control register.
1392 */
1393 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1394 if (ret_val)
1395 return ret_val;
1396
1397 phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
1398 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
1399 if (ret_val)
1400 return ret_val;
1401
1402 /* Does the user want to wait for Auto-Neg to complete here, or
1403 * check at a later time (for example, callback routine).
1404 */
1405 if (hw->wait_autoneg_complete) {
1406 ret_val = e1000_wait_autoneg(hw);
1407 if (ret_val) {
1408 e_dbg
1409 ("Error while waiting for autoneg to complete\n");
1410 return ret_val;
1411 }
1412 }
1413
1414 hw->get_link_status = true;
1415
1416 return E1000_SUCCESS;
1417 }
1418
1419 /**
1420 * e1000_copper_link_postconfig - post link setup
1421 * @hw: Struct containing variables accessed by shared code
1422 *
1423 * Config the MAC and the PHY after link is up.
1424 * 1) Set up the MAC to the current PHY speed/duplex
1425 * if we are on 82543. If we
1426 * are on newer silicon, we only need to configure
1427 * collision distance in the Transmit Control Register.
1428 * 2) Set up flow control on the MAC to that established with
1429 * the link partner.
1430 * 3) Config DSP to improve Gigabit link quality for some PHY revisions.
1431 */
1432 static s32 e1000_copper_link_postconfig(struct e1000_hw *hw)
1433 {
1434 s32 ret_val;
1435 e_dbg("e1000_copper_link_postconfig");
1436
1437 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100)) {
1438 e1000_config_collision_dist(hw);
1439 } else {
1440 ret_val = e1000_config_mac_to_phy(hw);
1441 if (ret_val) {
1442 e_dbg("Error configuring MAC to PHY settings\n");
1443 return ret_val;
1444 }
1445 }
1446 ret_val = e1000_config_fc_after_link_up(hw);
1447 if (ret_val) {
1448 e_dbg("Error Configuring Flow Control\n");
1449 return ret_val;
1450 }
1451
1452 /* Config DSP to improve Giga link quality */
1453 if (hw->phy_type == e1000_phy_igp) {
1454 ret_val = e1000_config_dsp_after_link_change(hw, true);
1455 if (ret_val) {
1456 e_dbg("Error Configuring DSP after link up\n");
1457 return ret_val;
1458 }
1459 }
1460
1461 return E1000_SUCCESS;
1462 }
1463
1464 /**
1465 * e1000_setup_copper_link - phy/speed/duplex setting
1466 * @hw: Struct containing variables accessed by shared code
1467 *
1468 * Detects which PHY is present and sets up the speed and duplex
1469 */
1470 static s32 e1000_setup_copper_link(struct e1000_hw *hw)
1471 {
1472 s32 ret_val;
1473 u16 i;
1474 u16 phy_data;
1475
1476 e_dbg("e1000_setup_copper_link");
1477
1478 /* Check if it is a valid PHY and set PHY mode if necessary. */
1479 ret_val = e1000_copper_link_preconfig(hw);
1480 if (ret_val)
1481 return ret_val;
1482
1483 if (hw->phy_type == e1000_phy_igp) {
1484 ret_val = e1000_copper_link_igp_setup(hw);
1485 if (ret_val)
1486 return ret_val;
1487 } else if (hw->phy_type == e1000_phy_m88) {
1488 ret_val = e1000_copper_link_mgp_setup(hw);
1489 if (ret_val)
1490 return ret_val;
1491 } else {
1492 ret_val = gbe_dhg_phy_setup(hw);
1493 if (ret_val) {
1494 e_dbg("gbe_dhg_phy_setup failed!\n");
1495 return ret_val;
1496 }
1497 }
1498
1499 if (hw->autoneg) {
1500 /* Setup autoneg and flow control advertisement
1501 * and perform autonegotiation
1502 */
1503 ret_val = e1000_copper_link_autoneg(hw);
1504 if (ret_val)
1505 return ret_val;
1506 } else {
1507 /* PHY will be set to 10H, 10F, 100H,or 100F
1508 * depending on value from forced_speed_duplex.
1509 */
1510 e_dbg("Forcing speed and duplex\n");
1511 ret_val = e1000_phy_force_speed_duplex(hw);
1512 if (ret_val) {
1513 e_dbg("Error Forcing Speed and Duplex\n");
1514 return ret_val;
1515 }
1516 }
1517
1518 /* Check link status. Wait up to 100 microseconds for link to become
1519 * valid.
1520 */
1521 for (i = 0; i < 10; i++) {
1522 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1523 if (ret_val)
1524 return ret_val;
1525 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
1526 if (ret_val)
1527 return ret_val;
1528
1529 if (phy_data & MII_SR_LINK_STATUS) {
1530 /* Config the MAC and PHY after link is up */
1531 ret_val = e1000_copper_link_postconfig(hw);
1532 if (ret_val)
1533 return ret_val;
1534
1535 e_dbg("Valid link established!!!\n");
1536 return E1000_SUCCESS;
1537 }
1538 udelay(10);
1539 }
1540
1541 e_dbg("Unable to establish link!!!\n");
1542 return E1000_SUCCESS;
1543 }
1544
1545 /**
1546 * e1000_phy_setup_autoneg - phy settings
1547 * @hw: Struct containing variables accessed by shared code
1548 *
1549 * Configures PHY autoneg and flow control advertisement settings
1550 */
1551 s32 e1000_phy_setup_autoneg(struct e1000_hw *hw)
1552 {
1553 s32 ret_val;
1554 u16 mii_autoneg_adv_reg;
1555 u16 mii_1000t_ctrl_reg;
1556
1557 e_dbg("e1000_phy_setup_autoneg");
1558
1559 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
1560 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
1561 if (ret_val)
1562 return ret_val;
1563
1564 /* Read the MII 1000Base-T Control Register (Address 9). */
1565 ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg);
1566 if (ret_val)
1567 return ret_val;
1568 else if (hw->phy_type == e1000_phy_8201)
1569 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1570
1571 /* Need to parse both autoneg_advertised and fc and set up
1572 * the appropriate PHY registers. First we will parse for
1573 * autoneg_advertised software override. Since we can advertise
1574 * a plethora of combinations, we need to check each bit
1575 * individually.
1576 */
1577
1578 /* First we clear all the 10/100 mb speed bits in the Auto-Neg
1579 * Advertisement Register (Address 4) and the 1000 mb speed bits in
1580 * the 1000Base-T Control Register (Address 9).
1581 */
1582 mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
1583 mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
1584
1585 e_dbg("autoneg_advertised %x\n", hw->autoneg_advertised);
1586
1587 /* Do we want to advertise 10 Mb Half Duplex? */
1588 if (hw->autoneg_advertised & ADVERTISE_10_HALF) {
1589 e_dbg("Advertise 10mb Half duplex\n");
1590 mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
1591 }
1592
1593 /* Do we want to advertise 10 Mb Full Duplex? */
1594 if (hw->autoneg_advertised & ADVERTISE_10_FULL) {
1595 e_dbg("Advertise 10mb Full duplex\n");
1596 mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
1597 }
1598
1599 /* Do we want to advertise 100 Mb Half Duplex? */
1600 if (hw->autoneg_advertised & ADVERTISE_100_HALF) {
1601 e_dbg("Advertise 100mb Half duplex\n");
1602 mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
1603 }
1604
1605 /* Do we want to advertise 100 Mb Full Duplex? */
1606 if (hw->autoneg_advertised & ADVERTISE_100_FULL) {
1607 e_dbg("Advertise 100mb Full duplex\n");
1608 mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1609 }
1610
1611 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1612 if (hw->autoneg_advertised & ADVERTISE_1000_HALF) {
1613 e_dbg
1614 ("Advertise 1000mb Half duplex requested, request denied!\n");
1615 }
1616
1617 /* Do we want to advertise 1000 Mb Full Duplex? */
1618 if (hw->autoneg_advertised & ADVERTISE_1000_FULL) {
1619 e_dbg("Advertise 1000mb Full duplex\n");
1620 mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1621 }
1622
1623 /* Check for a software override of the flow control settings, and
1624 * setup the PHY advertisement registers accordingly. If
1625 * auto-negotiation is enabled, then software will have to set the
1626 * "PAUSE" bits to the correct value in the Auto-Negotiation
1627 * Advertisement Register (PHY_AUTONEG_ADV) and re-start
1628 * auto-negotiation.
1629 *
1630 * The possible values of the "fc" parameter are:
1631 * 0: Flow control is completely disabled
1632 * 1: Rx flow control is enabled (we can receive pause frames
1633 * but not send pause frames).
1634 * 2: Tx flow control is enabled (we can send pause frames
1635 * but we do not support receiving pause frames).
1636 * 3: Both Rx and TX flow control (symmetric) are enabled.
1637 * other: No software override. The flow control configuration
1638 * in the EEPROM is used.
1639 */
1640 switch (hw->fc) {
1641 case E1000_FC_NONE: /* 0 */
1642 /* Flow control (RX & TX) is completely disabled by a
1643 * software over-ride.
1644 */
1645 mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1646 break;
1647 case E1000_FC_RX_PAUSE: /* 1 */
1648 /* RX Flow control is enabled, and TX Flow control is
1649 * disabled, by a software over-ride.
1650 */
1651 /* Since there really isn't a way to advertise that we are
1652 * capable of RX Pause ONLY, we will advertise that we
1653 * support both symmetric and asymmetric RX PAUSE. Later
1654 * (in e1000_config_fc_after_link_up) we will disable the
1655 * hw's ability to send PAUSE frames.
1656 */
1657 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1658 break;
1659 case E1000_FC_TX_PAUSE: /* 2 */
1660 /* TX Flow control is enabled, and RX Flow control is
1661 * disabled, by a software over-ride.
1662 */
1663 mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1664 mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1665 break;
1666 case E1000_FC_FULL: /* 3 */
1667 /* Flow control (both RX and TX) is enabled by a software
1668 * over-ride.
1669 */
1670 mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1671 break;
1672 default:
1673 e_dbg("Flow control param set incorrectly\n");
1674 return -E1000_ERR_CONFIG;
1675 }
1676
1677 ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1678 if (ret_val)
1679 return ret_val;
1680
1681 e_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1682
1683 if (hw->phy_type == e1000_phy_8201) {
1684 mii_1000t_ctrl_reg = 0;
1685 } else {
1686 ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1687 mii_1000t_ctrl_reg);
1688 if (ret_val)
1689 return ret_val;
1690 }
1691
1692 return E1000_SUCCESS;
1693 }
1694
1695 /**
1696 * e1000_phy_force_speed_duplex - force link settings
1697 * @hw: Struct containing variables accessed by shared code
1698 *
1699 * Force PHY speed and duplex settings to hw->forced_speed_duplex
1700 */
1701 static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw)
1702 {
1703 u32 ctrl;
1704 s32 ret_val;
1705 u16 mii_ctrl_reg;
1706 u16 mii_status_reg;
1707 u16 phy_data;
1708 u16 i;
1709
1710 e_dbg("e1000_phy_force_speed_duplex");
1711
1712 /* Turn off Flow control if we are forcing speed and duplex. */
1713 hw->fc = E1000_FC_NONE;
1714
1715 e_dbg("hw->fc = %d\n", hw->fc);
1716
1717 /* Read the Device Control Register. */
1718 ctrl = er32(CTRL);
1719
1720 /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */
1721 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1722 ctrl &= ~(DEVICE_SPEED_MASK);
1723
1724 /* Clear the Auto Speed Detect Enable bit. */
1725 ctrl &= ~E1000_CTRL_ASDE;
1726
1727 /* Read the MII Control Register. */
1728 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg);
1729 if (ret_val)
1730 return ret_val;
1731
1732 /* We need to disable autoneg in order to force link and duplex. */
1733
1734 mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN;
1735
1736 /* Are we forcing Full or Half Duplex? */
1737 if (hw->forced_speed_duplex == e1000_100_full ||
1738 hw->forced_speed_duplex == e1000_10_full) {
1739 /* We want to force full duplex so we SET the full duplex bits
1740 * in the Device and MII Control Registers.
1741 */
1742 ctrl |= E1000_CTRL_FD;
1743 mii_ctrl_reg |= MII_CR_FULL_DUPLEX;
1744 e_dbg("Full Duplex\n");
1745 } else {
1746 /* We want to force half duplex so we CLEAR the full duplex bits
1747 * in the Device and MII Control Registers.
1748 */
1749 ctrl &= ~E1000_CTRL_FD;
1750 mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX;
1751 e_dbg("Half Duplex\n");
1752 }
1753
1754 /* Are we forcing 100Mbps??? */
1755 if (hw->forced_speed_duplex == e1000_100_full ||
1756 hw->forced_speed_duplex == e1000_100_half) {
1757 /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */
1758 ctrl |= E1000_CTRL_SPD_100;
1759 mii_ctrl_reg |= MII_CR_SPEED_100;
1760 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1761 e_dbg("Forcing 100mb ");
1762 } else {
1763 /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */
1764 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1765 mii_ctrl_reg |= MII_CR_SPEED_10;
1766 mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1767 e_dbg("Forcing 10mb ");
1768 }
1769
1770 e1000_config_collision_dist(hw);
1771
1772 /* Write the configured values back to the Device Control Reg. */
1773 ew32(CTRL, ctrl);
1774
1775 if (hw->phy_type == e1000_phy_m88) {
1776 ret_val =
1777 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1778 if (ret_val)
1779 return ret_val;
1780
1781 /* Clear Auto-Crossover to force MDI manually. M88E1000 requires
1782 * MDI forced whenever speed are duplex are forced.
1783 */
1784 phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1785 ret_val =
1786 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1787 if (ret_val)
1788 return ret_val;
1789
1790 e_dbg("M88E1000 PSCR: %x\n", phy_data);
1791
1792 /* Need to reset the PHY or these changes will be ignored */
1793 mii_ctrl_reg |= MII_CR_RESET;
1794
1795 /* Disable MDI-X support for 10/100 */
1796 } else {
1797 /* Clear Auto-Crossover to force MDI manually. IGP requires MDI
1798 * forced whenever speed or duplex are forced.
1799 */
1800 ret_val =
1801 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1802 if (ret_val)
1803 return ret_val;
1804
1805 phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1806 phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1807
1808 ret_val =
1809 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1810 if (ret_val)
1811 return ret_val;
1812 }
1813
1814 /* Write back the modified PHY MII control register. */
1815 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg);
1816 if (ret_val)
1817 return ret_val;
1818
1819 udelay(1);
1820
1821 /* The wait_autoneg_complete flag may be a little misleading here.
1822 * Since we are forcing speed and duplex, Auto-Neg is not enabled.
1823 * But we do want to delay for a period while forcing only so we
1824 * don't generate false No Link messages. So we will wait here
1825 * only if the user has set wait_autoneg_complete to 1, which is
1826 * the default.
1827 */
1828 if (hw->wait_autoneg_complete) {
1829 /* We will wait for autoneg to complete. */
1830 e_dbg("Waiting for forced speed/duplex link.\n");
1831 mii_status_reg = 0;
1832
1833 /* Wait for autoneg to complete or 4.5 seconds to expire */
1834 for (i = PHY_FORCE_TIME; i > 0; i--) {
1835 /* Read the MII Status Register and wait for Auto-Neg
1836 * Complete bit to be set.
1837 */
1838 ret_val =
1839 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1840 if (ret_val)
1841 return ret_val;
1842
1843 ret_val =
1844 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1845 if (ret_val)
1846 return ret_val;
1847
1848 if (mii_status_reg & MII_SR_LINK_STATUS)
1849 break;
1850 msleep(100);
1851 }
1852 if ((i == 0) && (hw->phy_type == e1000_phy_m88)) {
1853 /* We didn't get link. Reset the DSP and wait again
1854 * for link.
1855 */
1856 ret_val = e1000_phy_reset_dsp(hw);
1857 if (ret_val) {
1858 e_dbg("Error Resetting PHY DSP\n");
1859 return ret_val;
1860 }
1861 }
1862 /* This loop will early-out if the link condition has been
1863 * met
1864 */
1865 for (i = PHY_FORCE_TIME; i > 0; i--) {
1866 if (mii_status_reg & MII_SR_LINK_STATUS)
1867 break;
1868 msleep(100);
1869 /* Read the MII Status Register and wait for Auto-Neg
1870 * Complete bit to be set.
1871 */
1872 ret_val =
1873 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1874 if (ret_val)
1875 return ret_val;
1876
1877 ret_val =
1878 e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
1879 if (ret_val)
1880 return ret_val;
1881 }
1882 }
1883
1884 if (hw->phy_type == e1000_phy_m88) {
1885 /* Because we reset the PHY above, we need to re-force TX_CLK in
1886 * the Extended PHY Specific Control Register to 25MHz clock.
1887 * This value defaults back to a 2.5MHz clock when the PHY is
1888 * reset.
1889 */
1890 ret_val =
1891 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1892 &phy_data);
1893 if (ret_val)
1894 return ret_val;
1895
1896 phy_data |= M88E1000_EPSCR_TX_CLK_25;
1897 ret_val =
1898 e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
1899 phy_data);
1900 if (ret_val)
1901 return ret_val;
1902
1903 /* In addition, because of the s/w reset above, we need to
1904 * enable CRS on Tx. This must be set for both full and half
1905 * duplex operation.
1906 */
1907 ret_val =
1908 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1909 if (ret_val)
1910 return ret_val;
1911
1912 phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1913 ret_val =
1914 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1915 if (ret_val)
1916 return ret_val;
1917
1918 if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543)
1919 && (!hw->autoneg)
1920 && (hw->forced_speed_duplex == e1000_10_full
1921 || hw->forced_speed_duplex == e1000_10_half)) {
1922 ret_val = e1000_polarity_reversal_workaround(hw);
1923 if (ret_val)
1924 return ret_val;
1925 }
1926 }
1927 return E1000_SUCCESS;
1928 }
1929
1930 /**
1931 * e1000_config_collision_dist - set collision distance register
1932 * @hw: Struct containing variables accessed by shared code
1933 *
1934 * Sets the collision distance in the Transmit Control register.
1935 * Link should have been established previously. Reads the speed and duplex
1936 * information from the Device Status register.
1937 */
1938 void e1000_config_collision_dist(struct e1000_hw *hw)
1939 {
1940 u32 tctl, coll_dist;
1941
1942 e_dbg("e1000_config_collision_dist");
1943
1944 if (hw->mac_type < e1000_82543)
1945 coll_dist = E1000_COLLISION_DISTANCE_82542;
1946 else
1947 coll_dist = E1000_COLLISION_DISTANCE;
1948
1949 tctl = er32(TCTL);
1950
1951 tctl &= ~E1000_TCTL_COLD;
1952 tctl |= coll_dist << E1000_COLD_SHIFT;
1953
1954 ew32(TCTL, tctl);
1955 E1000_WRITE_FLUSH();
1956 }
1957
1958 /**
1959 * e1000_config_mac_to_phy - sync phy and mac settings
1960 * @hw: Struct containing variables accessed by shared code
1961 * @mii_reg: data to write to the MII control register
1962 *
1963 * Sets MAC speed and duplex settings to reflect the those in the PHY
1964 * The contents of the PHY register containing the needed information need to
1965 * be passed in.
1966 */
1967 static s32 e1000_config_mac_to_phy(struct e1000_hw *hw)
1968 {
1969 u32 ctrl;
1970 s32 ret_val;
1971 u16 phy_data;
1972
1973 e_dbg("e1000_config_mac_to_phy");
1974
1975 /* 82544 or newer MAC, Auto Speed Detection takes care of
1976 * MAC speed/duplex configuration.
1977 */
1978 if ((hw->mac_type >= e1000_82544) && (hw->mac_type != e1000_ce4100))
1979 return E1000_SUCCESS;
1980
1981 /* Read the Device Control Register and set the bits to Force Speed
1982 * and Duplex.
1983 */
1984 ctrl = er32(CTRL);
1985 ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1986 ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
1987
1988 switch (hw->phy_type) {
1989 case e1000_phy_8201:
1990 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
1991 if (ret_val)
1992 return ret_val;
1993
1994 if (phy_data & RTL_PHY_CTRL_FD)
1995 ctrl |= E1000_CTRL_FD;
1996 else
1997 ctrl &= ~E1000_CTRL_FD;
1998
1999 if (phy_data & RTL_PHY_CTRL_SPD_100)
2000 ctrl |= E1000_CTRL_SPD_100;
2001 else
2002 ctrl |= E1000_CTRL_SPD_10;
2003
2004 e1000_config_collision_dist(hw);
2005 break;
2006 default:
2007 /* Set up duplex in the Device Control and Transmit Control
2008 * registers depending on negotiated values.
2009 */
2010 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
2011 &phy_data);
2012 if (ret_val)
2013 return ret_val;
2014
2015 if (phy_data & M88E1000_PSSR_DPLX)
2016 ctrl |= E1000_CTRL_FD;
2017 else
2018 ctrl &= ~E1000_CTRL_FD;
2019
2020 e1000_config_collision_dist(hw);
2021
2022 /* Set up speed in the Device Control register depending on
2023 * negotiated values.
2024 */
2025 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
2026 ctrl |= E1000_CTRL_SPD_1000;
2027 else if ((phy_data & M88E1000_PSSR_SPEED) ==
2028 M88E1000_PSSR_100MBS)
2029 ctrl |= E1000_CTRL_SPD_100;
2030 }
2031
2032 /* Write the configured values back to the Device Control Reg. */
2033 ew32(CTRL, ctrl);
2034 return E1000_SUCCESS;
2035 }
2036
2037 /**
2038 * e1000_force_mac_fc - force flow control settings
2039 * @hw: Struct containing variables accessed by shared code
2040 *
2041 * Forces the MAC's flow control settings.
2042 * Sets the TFCE and RFCE bits in the device control register to reflect
2043 * the adapter settings. TFCE and RFCE need to be explicitly set by
2044 * software when a Copper PHY is used because autonegotiation is managed
2045 * by the PHY rather than the MAC. Software must also configure these
2046 * bits when link is forced on a fiber connection.
2047 */
2048 s32 e1000_force_mac_fc(struct e1000_hw *hw)
2049 {
2050 u32 ctrl;
2051
2052 e_dbg("e1000_force_mac_fc");
2053
2054 /* Get the current configuration of the Device Control Register */
2055 ctrl = er32(CTRL);
2056
2057 /* Because we didn't get link via the internal auto-negotiation
2058 * mechanism (we either forced link or we got link via PHY
2059 * auto-neg), we have to manually enable/disable transmit an
2060 * receive flow control.
2061 *
2062 * The "Case" statement below enables/disable flow control
2063 * according to the "hw->fc" parameter.
2064 *
2065 * The possible values of the "fc" parameter are:
2066 * 0: Flow control is completely disabled
2067 * 1: Rx flow control is enabled (we can receive pause
2068 * frames but not send pause frames).
2069 * 2: Tx flow control is enabled (we can send pause frames
2070 * frames but we do not receive pause frames).
2071 * 3: Both Rx and TX flow control (symmetric) is enabled.
2072 * other: No other values should be possible at this point.
2073 */
2074
2075 switch (hw->fc) {
2076 case E1000_FC_NONE:
2077 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
2078 break;
2079 case E1000_FC_RX_PAUSE:
2080 ctrl &= (~E1000_CTRL_TFCE);
2081 ctrl |= E1000_CTRL_RFCE;
2082 break;
2083 case E1000_FC_TX_PAUSE:
2084 ctrl &= (~E1000_CTRL_RFCE);
2085 ctrl |= E1000_CTRL_TFCE;
2086 break;
2087 case E1000_FC_FULL:
2088 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
2089 break;
2090 default:
2091 e_dbg("Flow control param set incorrectly\n");
2092 return -E1000_ERR_CONFIG;
2093 }
2094
2095 /* Disable TX Flow Control for 82542 (rev 2.0) */
2096 if (hw->mac_type == e1000_82542_rev2_0)
2097 ctrl &= (~E1000_CTRL_TFCE);
2098
2099 ew32(CTRL, ctrl);
2100 return E1000_SUCCESS;
2101 }
2102
2103 /**
2104 * e1000_config_fc_after_link_up - configure flow control after autoneg
2105 * @hw: Struct containing variables accessed by shared code
2106 *
2107 * Configures flow control settings after link is established
2108 * Should be called immediately after a valid link has been established.
2109 * Forces MAC flow control settings if link was forced. When in MII/GMII mode
2110 * and autonegotiation is enabled, the MAC flow control settings will be set
2111 * based on the flow control negotiated by the PHY. In TBI mode, the TFCE
2112 * and RFCE bits will be automatically set to the negotiated flow control mode.
2113 */
2114 static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw)
2115 {
2116 s32 ret_val;
2117 u16 mii_status_reg;
2118 u16 mii_nway_adv_reg;
2119 u16 mii_nway_lp_ability_reg;
2120 u16 speed;
2121 u16 duplex;
2122
2123 e_dbg("e1000_config_fc_after_link_up");
2124
2125 /* Check for the case where we have fiber media and auto-neg failed
2126 * so we had to force link. In this case, we need to force the
2127 * configuration of the MAC to match the "fc" parameter.
2128 */
2129 if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed))
2130 || ((hw->media_type == e1000_media_type_internal_serdes)
2131 && (hw->autoneg_failed))
2132 || ((hw->media_type == e1000_media_type_copper)
2133 && (!hw->autoneg))) {
2134 ret_val = e1000_force_mac_fc(hw);
2135 if (ret_val) {
2136 e_dbg("Error forcing flow control settings\n");
2137 return ret_val;
2138 }
2139 }
2140
2141 /* Check for the case where we have copper media and auto-neg is
2142 * enabled. In this case, we need to check and see if Auto-Neg
2143 * has completed, and if so, how the PHY and link partner has
2144 * flow control configured.
2145 */
2146 if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) {
2147 /* Read the MII Status Register and check to see if AutoNeg
2148 * has completed. We read this twice because this reg has
2149 * some "sticky" (latched) bits.
2150 */
2151 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2152 if (ret_val)
2153 return ret_val;
2154 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
2155 if (ret_val)
2156 return ret_val;
2157
2158 if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
2159 /* The AutoNeg process has completed, so we now need to
2160 * read both the Auto Negotiation Advertisement Register
2161 * (Address 4) and the Auto_Negotiation Base Page
2162 * Ability Register (Address 5) to determine how flow
2163 * control was negotiated.
2164 */
2165 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
2166 &mii_nway_adv_reg);
2167 if (ret_val)
2168 return ret_val;
2169 ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
2170 &mii_nway_lp_ability_reg);
2171 if (ret_val)
2172 return ret_val;
2173
2174 /* Two bits in the Auto Negotiation Advertisement
2175 * Register (Address 4) and two bits in the Auto
2176 * Negotiation Base Page Ability Register (Address 5)
2177 * determine flow control for both the PHY and the link
2178 * partner. The following table, taken out of the IEEE
2179 * 802.3ab/D6.0 dated March 25, 1999, describes these
2180 * PAUSE resolution bits and how flow control is
2181 * determined based upon these settings.
2182 * NOTE: DC = Don't Care
2183 *
2184 * LOCAL DEVICE | LINK PARTNER
2185 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
2186 *-------|---------|-------|---------|------------------
2187 * 0 | 0 | DC | DC | E1000_FC_NONE
2188 * 0 | 1 | 0 | DC | E1000_FC_NONE
2189 * 0 | 1 | 1 | 0 | E1000_FC_NONE
2190 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2191 * 1 | 0 | 0 | DC | E1000_FC_NONE
2192 * 1 | DC | 1 | DC | E1000_FC_FULL
2193 * 1 | 1 | 0 | 0 | E1000_FC_NONE
2194 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2195 *
2196 */
2197 /* Are both PAUSE bits set to 1? If so, this implies
2198 * Symmetric Flow Control is enabled at both ends. The
2199 * ASM_DIR bits are irrelevant per the spec.
2200 *
2201 * For Symmetric Flow Control:
2202 *
2203 * LOCAL DEVICE | LINK PARTNER
2204 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2205 *-------|---------|-------|---------|------------------
2206 * 1 | DC | 1 | DC | E1000_FC_FULL
2207 *
2208 */
2209 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2210 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
2211 /* Now we need to check if the user selected Rx
2212 * ONLY of pause frames. In this case, we had
2213 * to advertise FULL flow control because we
2214 * could not advertise Rx ONLY. Hence, we must
2215 * now check to see if we need to turn OFF the
2216 * TRANSMISSION of PAUSE frames.
2217 */
2218 if (hw->original_fc == E1000_FC_FULL) {
2219 hw->fc = E1000_FC_FULL;
2220 e_dbg("Flow Control = FULL.\n");
2221 } else {
2222 hw->fc = E1000_FC_RX_PAUSE;
2223 e_dbg
2224 ("Flow Control = RX PAUSE frames only.\n");
2225 }
2226 }
2227 /* For receiving PAUSE frames ONLY.
2228 *
2229 * LOCAL DEVICE | LINK PARTNER
2230 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2231 *-------|---------|-------|---------|------------------
2232 * 0 | 1 | 1 | 1 | E1000_FC_TX_PAUSE
2233 *
2234 */
2235 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2236 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2237 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2238 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2239 {
2240 hw->fc = E1000_FC_TX_PAUSE;
2241 e_dbg
2242 ("Flow Control = TX PAUSE frames only.\n");
2243 }
2244 /* For transmitting PAUSE frames ONLY.
2245 *
2246 * LOCAL DEVICE | LINK PARTNER
2247 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
2248 *-------|---------|-------|---------|------------------
2249 * 1 | 1 | 0 | 1 | E1000_FC_RX_PAUSE
2250 *
2251 */
2252 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
2253 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
2254 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
2255 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR))
2256 {
2257 hw->fc = E1000_FC_RX_PAUSE;
2258 e_dbg
2259 ("Flow Control = RX PAUSE frames only.\n");
2260 }
2261 /* Per the IEEE spec, at this point flow control should
2262 * be disabled. However, we want to consider that we
2263 * could be connected to a legacy switch that doesn't
2264 * advertise desired flow control, but can be forced on
2265 * the link partner. So if we advertised no flow
2266 * control, that is what we will resolve to. If we
2267 * advertised some kind of receive capability (Rx Pause
2268 * Only or Full Flow Control) and the link partner
2269 * advertised none, we will configure ourselves to
2270 * enable Rx Flow Control only. We can do this safely
2271 * for two reasons: If the link partner really
2272 * didn't want flow control enabled, and we enable Rx,
2273 * no harm done since we won't be receiving any PAUSE
2274 * frames anyway. If the intent on the link partner was
2275 * to have flow control enabled, then by us enabling Rx
2276 * only, we can at least receive pause frames and
2277 * process them. This is a good idea because in most
2278 * cases, since we are predominantly a server NIC, more
2279 * times than not we will be asked to delay transmission
2280 * of packets than asking our link partner to pause
2281 * transmission of frames.
2282 */
2283 else if ((hw->original_fc == E1000_FC_NONE ||
2284 hw->original_fc == E1000_FC_TX_PAUSE) ||
2285 hw->fc_strict_ieee) {
2286 hw->fc = E1000_FC_NONE;
2287 e_dbg("Flow Control = NONE.\n");
2288 } else {
2289 hw->fc = E1000_FC_RX_PAUSE;
2290 e_dbg
2291 ("Flow Control = RX PAUSE frames only.\n");
2292 }
2293
2294 /* Now we need to do one last check... If we auto-
2295 * negotiated to HALF DUPLEX, flow control should not be
2296 * enabled per IEEE 802.3 spec.
2297 */
2298 ret_val =
2299 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2300 if (ret_val) {
2301 e_dbg
2302 ("Error getting link speed and duplex\n");
2303 return ret_val;
2304 }
2305
2306 if (duplex == HALF_DUPLEX)
2307 hw->fc = E1000_FC_NONE;
2308
2309 /* Now we call a subroutine to actually force the MAC
2310 * controller to use the correct flow control settings.
2311 */
2312 ret_val = e1000_force_mac_fc(hw);
2313 if (ret_val) {
2314 e_dbg
2315 ("Error forcing flow control settings\n");
2316 return ret_val;
2317 }
2318 } else {
2319 e_dbg
2320 ("Copper PHY and Auto Neg has not completed.\n");
2321 }
2322 }
2323 return E1000_SUCCESS;
2324 }
2325
2326 /**
2327 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
2328 * @hw: pointer to the HW structure
2329 *
2330 * Checks for link up on the hardware. If link is not up and we have
2331 * a signal, then we need to force link up.
2332 */
2333 static s32 e1000_check_for_serdes_link_generic(struct e1000_hw *hw)
2334 {
2335 u32 rxcw;
2336 u32 ctrl;
2337 u32 status;
2338 s32 ret_val = E1000_SUCCESS;
2339
2340 e_dbg("e1000_check_for_serdes_link_generic");
2341
2342 ctrl = er32(CTRL);
2343 status = er32(STATUS);
2344 rxcw = er32(RXCW);
2345
2346 /* If we don't have link (auto-negotiation failed or link partner
2347 * cannot auto-negotiate), and our link partner is not trying to
2348 * auto-negotiate with us (we are receiving idles or data),
2349 * we need to force link up. We also need to give auto-negotiation
2350 * time to complete.
2351 */
2352 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
2353 if ((!(status & E1000_STATUS_LU)) && (!(rxcw & E1000_RXCW_C))) {
2354 if (hw->autoneg_failed == 0) {
2355 hw->autoneg_failed = 1;
2356 goto out;
2357 }
2358 e_dbg("NOT RXing /C/, disable AutoNeg and force link.\n");
2359
2360 /* Disable auto-negotiation in the TXCW register */
2361 ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE));
2362
2363 /* Force link-up and also force full-duplex. */
2364 ctrl = er32(CTRL);
2365 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
2366 ew32(CTRL, ctrl);
2367
2368 /* Configure Flow Control after forcing link up. */
2369 ret_val = e1000_config_fc_after_link_up(hw);
2370 if (ret_val) {
2371 e_dbg("Error configuring flow control\n");
2372 goto out;
2373 }
2374 } else if ((ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) {
2375 /* If we are forcing link and we are receiving /C/ ordered
2376 * sets, re-enable auto-negotiation in the TXCW register
2377 * and disable forced link in the Device Control register
2378 * in an attempt to auto-negotiate with our link partner.
2379 */
2380 e_dbg("RXing /C/, enable AutoNeg and stop forcing link.\n");
2381 ew32(TXCW, hw->txcw);
2382 ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
2383
2384 hw->serdes_has_link = true;
2385 } else if (!(E1000_TXCW_ANE & er32(TXCW))) {
2386 /* If we force link for non-auto-negotiation switch, check
2387 * link status based on MAC synchronization for internal
2388 * serdes media type.
2389 */
2390 /* SYNCH bit and IV bit are sticky. */
2391 udelay(10);
2392 rxcw = er32(RXCW);
2393 if (rxcw & E1000_RXCW_SYNCH) {
2394 if (!(rxcw & E1000_RXCW_IV)) {
2395 hw->serdes_has_link = true;
2396 e_dbg("SERDES: Link up - forced.\n");
2397 }
2398 } else {
2399 hw->serdes_has_link = false;
2400 e_dbg("SERDES: Link down - force failed.\n");
2401 }
2402 }
2403
2404 if (E1000_TXCW_ANE & er32(TXCW)) {
2405 status = er32(STATUS);
2406 if (status & E1000_STATUS_LU) {
2407 /* SYNCH bit and IV bit are sticky, so reread rxcw. */
2408 udelay(10);
2409 rxcw = er32(RXCW);
2410 if (rxcw & E1000_RXCW_SYNCH) {
2411 if (!(rxcw & E1000_RXCW_IV)) {
2412 hw->serdes_has_link = true;
2413 e_dbg("SERDES: Link up - autoneg "
2414 "completed successfully.\n");
2415 } else {
2416 hw->serdes_has_link = false;
2417 e_dbg("SERDES: Link down - invalid"
2418 "codewords detected in autoneg.\n");
2419 }
2420 } else {
2421 hw->serdes_has_link = false;
2422 e_dbg("SERDES: Link down - no sync.\n");
2423 }
2424 } else {
2425 hw->serdes_has_link = false;
2426 e_dbg("SERDES: Link down - autoneg failed\n");
2427 }
2428 }
2429
2430 out:
2431 return ret_val;
2432 }
2433
2434 /**
2435 * e1000_check_for_link
2436 * @hw: Struct containing variables accessed by shared code
2437 *
2438 * Checks to see if the link status of the hardware has changed.
2439 * Called by any function that needs to check the link status of the adapter.
2440 */
2441 s32 e1000_check_for_link(struct e1000_hw *hw)
2442 {
2443 u32 rxcw = 0;
2444 u32 ctrl;
2445 u32 status;
2446 u32 rctl;
2447 u32 icr;
2448 u32 signal = 0;
2449 s32 ret_val;
2450 u16 phy_data;
2451
2452 e_dbg("e1000_check_for_link");
2453
2454 ctrl = er32(CTRL);
2455 status = er32(STATUS);
2456
2457 /* On adapters with a MAC newer than 82544, SW Definable pin 1 will be
2458 * set when the optics detect a signal. On older adapters, it will be
2459 * cleared when there is a signal. This applies to fiber media only.
2460 */
2461 if ((hw->media_type == e1000_media_type_fiber) ||
2462 (hw->media_type == e1000_media_type_internal_serdes)) {
2463 rxcw = er32(RXCW);
2464
2465 if (hw->media_type == e1000_media_type_fiber) {
2466 signal =
2467 (hw->mac_type >
2468 e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
2469 if (status & E1000_STATUS_LU)
2470 hw->get_link_status = false;
2471 }
2472 }
2473
2474 /* If we have a copper PHY then we only want to go out to the PHY
2475 * registers to see if Auto-Neg has completed and/or if our link
2476 * status has changed. The get_link_status flag will be set if we
2477 * receive a Link Status Change interrupt or we have Rx Sequence
2478 * Errors.
2479 */
2480 if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
2481 /* First we want to see if the MII Status Register reports
2482 * link. If so, then we want to get the current speed/duplex
2483 * of the PHY.
2484 * Read the register twice since the link bit is sticky.
2485 */
2486 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2487 if (ret_val)
2488 return ret_val;
2489 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2490 if (ret_val)
2491 return ret_val;
2492
2493 if (phy_data & MII_SR_LINK_STATUS) {
2494 hw->get_link_status = false;
2495 /* Check if there was DownShift, must be checked
2496 * immediately after link-up
2497 */
2498 e1000_check_downshift(hw);
2499
2500 /* If we are on 82544 or 82543 silicon and speed/duplex
2501 * are forced to 10H or 10F, then we will implement the
2502 * polarity reversal workaround. We disable interrupts
2503 * first, and upon returning, place the devices
2504 * interrupt state to its previous value except for the
2505 * link status change interrupt which will
2506 * happen due to the execution of this workaround.
2507 */
2508
2509 if ((hw->mac_type == e1000_82544
2510 || hw->mac_type == e1000_82543) && (!hw->autoneg)
2511 && (hw->forced_speed_duplex == e1000_10_full
2512 || hw->forced_speed_duplex == e1000_10_half)) {
2513 ew32(IMC, 0xffffffff);
2514 ret_val =
2515 e1000_polarity_reversal_workaround(hw);
2516 icr = er32(ICR);
2517 ew32(ICS, (icr & ~E1000_ICS_LSC));
2518 ew32(IMS, IMS_ENABLE_MASK);
2519 }
2520
2521 } else {
2522 /* No link detected */
2523 e1000_config_dsp_after_link_change(hw, false);
2524 return 0;
2525 }
2526
2527 /* If we are forcing speed/duplex, then we simply return since
2528 * we have already determined whether we have link or not.
2529 */
2530 if (!hw->autoneg)
2531 return -E1000_ERR_CONFIG;
2532
2533 /* optimize the dsp settings for the igp phy */
2534 e1000_config_dsp_after_link_change(hw, true);
2535
2536 /* We have a M88E1000 PHY and Auto-Neg is enabled. If we
2537 * have Si on board that is 82544 or newer, Auto
2538 * Speed Detection takes care of MAC speed/duplex
2539 * configuration. So we only need to configure Collision
2540 * Distance in the MAC. Otherwise, we need to force
2541 * speed/duplex on the MAC to the current PHY speed/duplex
2542 * settings.
2543 */
2544 if ((hw->mac_type >= e1000_82544) &&
2545 (hw->mac_type != e1000_ce4100))
2546 e1000_config_collision_dist(hw);
2547 else {
2548 ret_val = e1000_config_mac_to_phy(hw);
2549 if (ret_val) {
2550 e_dbg
2551 ("Error configuring MAC to PHY settings\n");
2552 return ret_val;
2553 }
2554 }
2555
2556 /* Configure Flow Control now that Auto-Neg has completed.
2557 * First, we need to restore the desired flow control settings
2558 * because we may have had to re-autoneg with a different link
2559 * partner.
2560 */
2561 ret_val = e1000_config_fc_after_link_up(hw);
2562 if (ret_val) {
2563 e_dbg("Error configuring flow control\n");
2564 return ret_val;
2565 }
2566
2567 /* At this point we know that we are on copper and we have
2568 * auto-negotiated link. These are conditions for checking the
2569 * link partner capability register. We use the link speed to
2570 * determine if TBI compatibility needs to be turned on or off.
2571 * If the link is not at gigabit speed, then TBI compatibility
2572 * is not needed. If we are at gigabit speed, we turn on TBI
2573 * compatibility.
2574 */
2575 if (hw->tbi_compatibility_en) {
2576 u16 speed, duplex;
2577 ret_val =
2578 e1000_get_speed_and_duplex(hw, &speed, &duplex);
2579 if (ret_val) {
2580 e_dbg
2581 ("Error getting link speed and duplex\n");
2582 return ret_val;
2583 }
2584 if (speed != SPEED_1000) {
2585 /* If link speed is not set to gigabit speed, we
2586 * do not need to enable TBI compatibility.
2587 */
2588 if (hw->tbi_compatibility_on) {
2589 /* If we previously were in the mode,
2590 * turn it off.
2591 */
2592 rctl = er32(RCTL);
2593 rctl &= ~E1000_RCTL_SBP;
2594 ew32(RCTL, rctl);
2595 hw->tbi_compatibility_on = false;
2596 }
2597 } else {
2598 /* If TBI compatibility is was previously off,
2599 * turn it on. For compatibility with a TBI link
2600 * partner, we will store bad packets. Some
2601 * frames have an additional byte on the end and
2602 * will look like CRC errors to to the hardware.
2603 */
2604 if (!hw->tbi_compatibility_on) {
2605 hw->tbi_compatibility_on = true;
2606 rctl = er32(RCTL);
2607 rctl |= E1000_RCTL_SBP;
2608 ew32(RCTL, rctl);
2609 }
2610 }
2611 }
2612 }
2613
2614 if ((hw->media_type == e1000_media_type_fiber) ||
2615 (hw->media_type == e1000_media_type_internal_serdes))
2616 e1000_check_for_serdes_link_generic(hw);
2617
2618 return E1000_SUCCESS;
2619 }
2620
2621 /**
2622 * e1000_get_speed_and_duplex
2623 * @hw: Struct containing variables accessed by shared code
2624 * @speed: Speed of the connection
2625 * @duplex: Duplex setting of the connection
2626 *
2627 * Detects the current speed and duplex settings of the hardware.
2628 */
2629 s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex)
2630 {
2631 u32 status;
2632 s32 ret_val;
2633 u16 phy_data;
2634
2635 e_dbg("e1000_get_speed_and_duplex");
2636
2637 if (hw->mac_type >= e1000_82543) {
2638 status = er32(STATUS);
2639 if (status & E1000_STATUS_SPEED_1000) {
2640 *speed = SPEED_1000;
2641 e_dbg("1000 Mbs, ");
2642 } else if (status & E1000_STATUS_SPEED_100) {
2643 *speed = SPEED_100;
2644 e_dbg("100 Mbs, ");
2645 } else {
2646 *speed = SPEED_10;
2647 e_dbg("10 Mbs, ");
2648 }
2649
2650 if (status & E1000_STATUS_FD) {
2651 *duplex = FULL_DUPLEX;
2652 e_dbg("Full Duplex\n");
2653 } else {
2654 *duplex = HALF_DUPLEX;
2655 e_dbg(" Half Duplex\n");
2656 }
2657 } else {
2658 e_dbg("1000 Mbs, Full Duplex\n");
2659 *speed = SPEED_1000;
2660 *duplex = FULL_DUPLEX;
2661 }
2662
2663 /* IGP01 PHY may advertise full duplex operation after speed downgrade
2664 * even if it is operating at half duplex. Here we set the duplex
2665 * settings to match the duplex in the link partner's capabilities.
2666 */
2667 if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) {
2668 ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data);
2669 if (ret_val)
2670 return ret_val;
2671
2672 if (!(phy_data & NWAY_ER_LP_NWAY_CAPS))
2673 *duplex = HALF_DUPLEX;
2674 else {
2675 ret_val =
2676 e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data);
2677 if (ret_val)
2678 return ret_val;
2679 if ((*speed == SPEED_100
2680 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS))
2681 || (*speed == SPEED_10
2682 && !(phy_data & NWAY_LPAR_10T_FD_CAPS)))
2683 *duplex = HALF_DUPLEX;
2684 }
2685 }
2686
2687 return E1000_SUCCESS;
2688 }
2689
2690 /**
2691 * e1000_wait_autoneg
2692 * @hw: Struct containing variables accessed by shared code
2693 *
2694 * Blocks until autoneg completes or times out (~4.5 seconds)
2695 */
2696 static s32 e1000_wait_autoneg(struct e1000_hw *hw)
2697 {
2698 s32 ret_val;
2699 u16 i;
2700 u16 phy_data;
2701
2702 e_dbg("e1000_wait_autoneg");
2703 e_dbg("Waiting for Auto-Neg to complete.\n");
2704
2705 /* We will wait for autoneg to complete or 4.5 seconds to expire. */
2706 for (i = PHY_AUTO_NEG_TIME; i > 0; i--) {
2707 /* Read the MII Status Register and wait for Auto-Neg
2708 * Complete bit to be set.
2709 */
2710 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2711 if (ret_val)
2712 return ret_val;
2713 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
2714 if (ret_val)
2715 return ret_val;
2716 if (phy_data & MII_SR_AUTONEG_COMPLETE) {
2717 return E1000_SUCCESS;
2718 }
2719 msleep(100);
2720 }
2721 return E1000_SUCCESS;
2722 }
2723
2724 /**
2725 * e1000_raise_mdi_clk - Raises the Management Data Clock
2726 * @hw: Struct containing variables accessed by shared code
2727 * @ctrl: Device control register's current value
2728 */
2729 static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2730 {
2731 /* Raise the clock input to the Management Data Clock (by setting the
2732 * MDC bit), and then delay 10 microseconds.
2733 */
2734 ew32(CTRL, (*ctrl | E1000_CTRL_MDC));
2735 E1000_WRITE_FLUSH();
2736 udelay(10);
2737 }
2738
2739 /**
2740 * e1000_lower_mdi_clk - Lowers the Management Data Clock
2741 * @hw: Struct containing variables accessed by shared code
2742 * @ctrl: Device control register's current value
2743 */
2744 static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl)
2745 {
2746 /* Lower the clock input to the Management Data Clock (by clearing the
2747 * MDC bit), and then delay 10 microseconds.
2748 */
2749 ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC));
2750 E1000_WRITE_FLUSH();
2751 udelay(10);
2752 }
2753
2754 /**
2755 * e1000_shift_out_mdi_bits - Shifts data bits out to the PHY
2756 * @hw: Struct containing variables accessed by shared code
2757 * @data: Data to send out to the PHY
2758 * @count: Number of bits to shift out
2759 *
2760 * Bits are shifted out in MSB to LSB order.
2761 */
2762 static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count)
2763 {
2764 u32 ctrl;
2765 u32 mask;
2766
2767 /* We need to shift "count" number of bits out to the PHY. So, the value
2768 * in the "data" parameter will be shifted out to the PHY one bit at a
2769 * time. In order to do this, "data" must be broken down into bits.
2770 */
2771 mask = 0x01;
2772 mask <<= (count - 1);
2773
2774 ctrl = er32(CTRL);
2775
2776 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
2777 ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
2778
2779 while (mask) {
2780 /* A "1" is shifted out to the PHY by setting the MDIO bit to
2781 * "1" and then raising and lowering the Management Data Clock.
2782 * A "0" is shifted out to the PHY by setting the MDIO bit to
2783 * "0" and then raising and lowering the clock.
2784 */
2785 if (data & mask)
2786 ctrl |= E1000_CTRL_MDIO;
2787 else
2788 ctrl &= ~E1000_CTRL_MDIO;
2789
2790 ew32(CTRL, ctrl);
2791 E1000_WRITE_FLUSH();
2792
2793 udelay(10);
2794
2795 e1000_raise_mdi_clk(hw, &ctrl);
2796 e1000_lower_mdi_clk(hw, &ctrl);
2797
2798 mask = mask >> 1;
2799 }
2800 }
2801
2802 /**
2803 * e1000_shift_in_mdi_bits - Shifts data bits in from the PHY
2804 * @hw: Struct containing variables accessed by shared code
2805 *
2806 * Bits are shifted in in MSB to LSB order.
2807 */
2808 static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw)
2809 {
2810 u32 ctrl;
2811 u16 data = 0;
2812 u8 i;
2813
2814 /* In order to read a register from the PHY, we need to shift in a total
2815 * of 18 bits from the PHY. The first two bit (turnaround) times are
2816 * used to avoid contention on the MDIO pin when a read operation is
2817 * performed. These two bits are ignored by us and thrown away. Bits are
2818 * "shifted in" by raising the input to the Management Data Clock
2819 * (setting the MDC bit), and then reading the value of the MDIO bit.
2820 */
2821 ctrl = er32(CTRL);
2822
2823 /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
2824 * input.
2825 */
2826 ctrl &= ~E1000_CTRL_MDIO_DIR;
2827 ctrl &= ~E1000_CTRL_MDIO;
2828
2829 ew32(CTRL, ctrl);
2830 E1000_WRITE_FLUSH();
2831
2832 /* Raise and Lower the clock before reading in the data. This accounts
2833 * for the turnaround bits. The first clock occurred when we clocked out
2834 * the last bit of the Register Address.
2835 */
2836 e1000_raise_mdi_clk(hw, &ctrl);
2837 e1000_lower_mdi_clk(hw, &ctrl);
2838
2839 for (data = 0, i = 0; i < 16; i++) {
2840 data = data << 1;
2841 e1000_raise_mdi_clk(hw, &ctrl);
2842 ctrl = er32(CTRL);
2843 /* Check to see if we shifted in a "1". */
2844 if (ctrl & E1000_CTRL_MDIO)
2845 data |= 1;
2846 e1000_lower_mdi_clk(hw, &ctrl);
2847 }
2848
2849 e1000_raise_mdi_clk(hw, &ctrl);
2850 e1000_lower_mdi_clk(hw, &ctrl);
2851
2852 return data;
2853 }
2854
2855
2856 /**
2857 * e1000_read_phy_reg - read a phy register
2858 * @hw: Struct containing variables accessed by shared code
2859 * @reg_addr: address of the PHY register to read
2860 *
2861 * Reads the value from a PHY register, if the value is on a specific non zero
2862 * page, sets the page first.
2863 */
2864 s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data)
2865 {
2866 u32 ret_val;
2867 unsigned long flags;
2868
2869 e_dbg("e1000_read_phy_reg");
2870
2871 spin_lock_irqsave(&e1000_phy_lock, flags);
2872
2873 if ((hw->phy_type == e1000_phy_igp) &&
2874 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
2875 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
2876 (u16) reg_addr);
2877 if (ret_val) {
2878 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2879 return ret_val;
2880 }
2881 }
2882
2883 ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
2884 phy_data);
2885 spin_unlock_irqrestore(&e1000_phy_lock, flags);
2886
2887 return ret_val;
2888 }
2889
2890 static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
2891 u16 *phy_data)
2892 {
2893 u32 i;
2894 u32 mdic = 0;
2895 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
2896
2897 e_dbg("e1000_read_phy_reg_ex");
2898
2899 if (reg_addr > MAX_PHY_REG_ADDRESS) {
2900 e_dbg("PHY Address %d is out of range\n", reg_addr);
2901 return -E1000_ERR_PARAM;
2902 }
2903
2904 if (hw->mac_type > e1000_82543) {
2905 /* Set up Op-code, Phy Address, and register address in the MDI
2906 * Control register. The MAC will take care of interfacing with
2907 * the PHY to retrieve the desired data.
2908 */
2909 if (hw->mac_type == e1000_ce4100) {
2910 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2911 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2912 (INTEL_CE_GBE_MDIC_OP_READ) |
2913 (INTEL_CE_GBE_MDIC_GO));
2914
2915 writel(mdic, E1000_MDIO_CMD);
2916
2917 /* Poll the ready bit to see if the MDI read
2918 * completed
2919 */
2920 for (i = 0; i < 64; i++) {
2921 udelay(50);
2922 mdic = readl(E1000_MDIO_CMD);
2923 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
2924 break;
2925 }
2926
2927 if (mdic & INTEL_CE_GBE_MDIC_GO) {
2928 e_dbg("MDI Read did not complete\n");
2929 return -E1000_ERR_PHY;
2930 }
2931
2932 mdic = readl(E1000_MDIO_STS);
2933 if (mdic & INTEL_CE_GBE_MDIC_READ_ERROR) {
2934 e_dbg("MDI Read Error\n");
2935 return -E1000_ERR_PHY;
2936 }
2937 *phy_data = (u16) mdic;
2938 } else {
2939 mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
2940 (phy_addr << E1000_MDIC_PHY_SHIFT) |
2941 (E1000_MDIC_OP_READ));
2942
2943 ew32(MDIC, mdic);
2944
2945 /* Poll the ready bit to see if the MDI read
2946 * completed
2947 */
2948 for (i = 0; i < 64; i++) {
2949 udelay(50);
2950 mdic = er32(MDIC);
2951 if (mdic & E1000_MDIC_READY)
2952 break;
2953 }
2954 if (!(mdic & E1000_MDIC_READY)) {
2955 e_dbg("MDI Read did not complete\n");
2956 return -E1000_ERR_PHY;
2957 }
2958 if (mdic & E1000_MDIC_ERROR) {
2959 e_dbg("MDI Error\n");
2960 return -E1000_ERR_PHY;
2961 }
2962 *phy_data = (u16) mdic;
2963 }
2964 } else {
2965 /* We must first send a preamble through the MDIO pin to signal
2966 * the beginning of an MII instruction. This is done by sending
2967 * 32 consecutive "1" bits.
2968 */
2969 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
2970
2971 /* Now combine the next few fields that are required for a read
2972 * operation. We use this method instead of calling the
2973 * e1000_shift_out_mdi_bits routine five different times. The
2974 * format of a MII read instruction consists of a shift out of
2975 * 14 bits and is defined as follows:
2976 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
2977 * followed by a shift in of 18 bits. This first two bits
2978 * shifted in are TurnAround bits used to avoid contention on
2979 * the MDIO pin when a READ operation is performed. These two
2980 * bits are thrown away followed by a shift in of 16 bits which
2981 * contains the desired data.
2982 */
2983 mdic = ((reg_addr) | (phy_addr << 5) |
2984 (PHY_OP_READ << 10) | (PHY_SOF << 12));
2985
2986 e1000_shift_out_mdi_bits(hw, mdic, 14);
2987
2988 /* Now that we've shifted out the read command to the MII, we
2989 * need to "shift in" the 16-bit value (18 total bits) of the
2990 * requested PHY register address.
2991 */
2992 *phy_data = e1000_shift_in_mdi_bits(hw);
2993 }
2994 return E1000_SUCCESS;
2995 }
2996
2997 /**
2998 * e1000_write_phy_reg - write a phy register
2999 *
3000 * @hw: Struct containing variables accessed by shared code
3001 * @reg_addr: address of the PHY register to write
3002 * @data: data to write to the PHY
3003 *
3004 * Writes a value to a PHY register
3005 */
3006 s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data)
3007 {
3008 u32 ret_val;
3009 unsigned long flags;
3010
3011 e_dbg("e1000_write_phy_reg");
3012
3013 spin_lock_irqsave(&e1000_phy_lock, flags);
3014
3015 if ((hw->phy_type == e1000_phy_igp) &&
3016 (reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
3017 ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
3018 (u16) reg_addr);
3019 if (ret_val) {
3020 spin_unlock_irqrestore(&e1000_phy_lock, flags);
3021 return ret_val;
3022 }
3023 }
3024
3025 ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr,
3026 phy_data);
3027 spin_unlock_irqrestore(&e1000_phy_lock, flags);
3028
3029 return ret_val;
3030 }
3031
3032 static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr,
3033 u16 phy_data)
3034 {
3035 u32 i;
3036 u32 mdic = 0;
3037 const u32 phy_addr = (hw->mac_type == e1000_ce4100) ? hw->phy_addr : 1;
3038
3039 e_dbg("e1000_write_phy_reg_ex");
3040
3041 if (reg_addr > MAX_PHY_REG_ADDRESS) {
3042 e_dbg("PHY Address %d is out of range\n", reg_addr);
3043 return -E1000_ERR_PARAM;
3044 }
3045
3046 if (hw->mac_type > e1000_82543) {
3047 /* Set up Op-code, Phy Address, register address, and data
3048 * intended for the PHY register in the MDI Control register.
3049 * The MAC will take care of interfacing with the PHY to send
3050 * the desired data.
3051 */
3052 if (hw->mac_type == e1000_ce4100) {
3053 mdic = (((u32) phy_data) |
3054 (reg_addr << E1000_MDIC_REG_SHIFT) |
3055 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3056 (INTEL_CE_GBE_MDIC_OP_WRITE) |
3057 (INTEL_CE_GBE_MDIC_GO));
3058
3059 writel(mdic, E1000_MDIO_CMD);
3060
3061 /* Poll the ready bit to see if the MDI read
3062 * completed
3063 */
3064 for (i = 0; i < 640; i++) {
3065 udelay(5);
3066 mdic = readl(E1000_MDIO_CMD);
3067 if (!(mdic & INTEL_CE_GBE_MDIC_GO))
3068 break;
3069 }
3070 if (mdic & INTEL_CE_GBE_MDIC_GO) {
3071 e_dbg("MDI Write did not complete\n");
3072 return -E1000_ERR_PHY;
3073 }
3074 } else {
3075 mdic = (((u32) phy_data) |
3076 (reg_addr << E1000_MDIC_REG_SHIFT) |
3077 (phy_addr << E1000_MDIC_PHY_SHIFT) |
3078 (E1000_MDIC_OP_WRITE));
3079
3080 ew32(MDIC, mdic);
3081
3082 /* Poll the ready bit to see if the MDI read
3083 * completed
3084 */
3085 for (i = 0; i < 641; i++) {
3086 udelay(5);
3087 mdic = er32(MDIC);
3088 if (mdic & E1000_MDIC_READY)
3089 break;
3090 }
3091 if (!(mdic & E1000_MDIC_READY)) {
3092 e_dbg("MDI Write did not complete\n");
3093 return -E1000_ERR_PHY;
3094 }
3095 }
3096 } else {
3097 /* We'll need to use the SW defined pins to shift the write
3098 * command out to the PHY. We first send a preamble to the PHY
3099 * to signal the beginning of the MII instruction. This is done
3100 * by sending 32 consecutive "1" bits.
3101 */
3102 e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
3103
3104 /* Now combine the remaining required fields that will indicate
3105 * a write operation. We use this method instead of calling the
3106 * e1000_shift_out_mdi_bits routine for each field in the
3107 * command. The format of a MII write instruction is as follows:
3108 * <Preamble><SOF><OpCode><PhyAddr><RegAddr><Turnaround><Data>.
3109 */
3110 mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
3111 (PHY_OP_WRITE << 12) | (PHY_SOF << 14));
3112 mdic <<= 16;
3113 mdic |= (u32) phy_data;
3114
3115 e1000_shift_out_mdi_bits(hw, mdic, 32);
3116 }
3117
3118 return E1000_SUCCESS;
3119 }
3120
3121 /**
3122 * e1000_phy_hw_reset - reset the phy, hardware style
3123 * @hw: Struct containing variables accessed by shared code
3124 *
3125 * Returns the PHY to the power-on reset state
3126 */
3127 s32 e1000_phy_hw_reset(struct e1000_hw *hw)
3128 {
3129 u32 ctrl, ctrl_ext;
3130 u32 led_ctrl;
3131
3132 e_dbg("e1000_phy_hw_reset");
3133
3134 e_dbg("Resetting Phy...\n");
3135
3136 if (hw->mac_type > e1000_82543) {
3137 /* Read the device control register and assert the
3138 * E1000_CTRL_PHY_RST bit. Then, take it out of reset.
3139 * For e1000 hardware, we delay for 10ms between the assert
3140 * and de-assert.
3141 */
3142 ctrl = er32(CTRL);
3143 ew32(CTRL, ctrl | E1000_CTRL_PHY_RST);
3144 E1000_WRITE_FLUSH();
3145
3146 msleep(10);
3147
3148 ew32(CTRL, ctrl);
3149 E1000_WRITE_FLUSH();
3150
3151 } else {
3152 /* Read the Extended Device Control Register, assert the
3153 * PHY_RESET_DIR bit to put the PHY into reset. Then, take it
3154 * out of reset.
3155 */
3156 ctrl_ext = er32(CTRL_EXT);
3157 ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
3158 ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
3159 ew32(CTRL_EXT, ctrl_ext);
3160 E1000_WRITE_FLUSH();
3161 msleep(10);
3162 ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
3163 ew32(CTRL_EXT, ctrl_ext);
3164 E1000_WRITE_FLUSH();
3165 }
3166 udelay(150);
3167
3168 if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
3169 /* Configure activity LED after PHY reset */
3170 led_ctrl = er32(LEDCTL);
3171 led_ctrl &= IGP_ACTIVITY_LED_MASK;
3172 led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE);
3173 ew32(LEDCTL, led_ctrl);
3174 }
3175
3176 /* Wait for FW to finish PHY configuration. */
3177 return e1000_get_phy_cfg_done(hw);
3178 }
3179
3180 /**
3181 * e1000_phy_reset - reset the phy to commit settings
3182 * @hw: Struct containing variables accessed by shared code
3183 *
3184 * Resets the PHY
3185 * Sets bit 15 of the MII Control register
3186 */
3187 s32 e1000_phy_reset(struct e1000_hw *hw)
3188 {
3189 s32 ret_val;
3190 u16 phy_data;
3191
3192 e_dbg("e1000_phy_reset");
3193
3194 switch (hw->phy_type) {
3195 case e1000_phy_igp:
3196 ret_val = e1000_phy_hw_reset(hw);
3197 if (ret_val)
3198 return ret_val;
3199 break;
3200 default:
3201 ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data);
3202 if (ret_val)
3203 return ret_val;
3204
3205 phy_data |= MII_CR_RESET;
3206 ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data);
3207 if (ret_val)
3208 return ret_val;
3209
3210 udelay(1);
3211 break;
3212 }
3213
3214 if (hw->phy_type == e1000_phy_igp)
3215 e1000_phy_init_script(hw);
3216
3217 return E1000_SUCCESS;
3218 }
3219
3220 /**
3221 * e1000_detect_gig_phy - check the phy type
3222 * @hw: Struct containing variables accessed by shared code
3223 *
3224 * Probes the expected PHY address for known PHY IDs
3225 */
3226 static s32 e1000_detect_gig_phy(struct e1000_hw *hw)
3227 {
3228 s32 phy_init_status, ret_val;
3229 u16 phy_id_high, phy_id_low;
3230 bool match = false;
3231
3232 e_dbg("e1000_detect_gig_phy");
3233
3234 if (hw->phy_id != 0)
3235 return E1000_SUCCESS;
3236
3237 /* Read the PHY ID Registers to identify which PHY is onboard. */
3238 ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high);
3239 if (ret_val)
3240 return ret_val;
3241
3242 hw->phy_id = (u32) (phy_id_high << 16);
3243 udelay(20);
3244 ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low);
3245 if (ret_val)
3246 return ret_val;
3247
3248 hw->phy_id |= (u32) (phy_id_low & PHY_REVISION_MASK);
3249 hw->phy_revision = (u32) phy_id_low & ~PHY_REVISION_MASK;
3250
3251 switch (hw->mac_type) {
3252 case e1000_82543:
3253 if (hw->phy_id == M88E1000_E_PHY_ID)
3254 match = true;
3255 break;
3256 case e1000_82544:
3257 if (hw->phy_id == M88E1000_I_PHY_ID)
3258 match = true;
3259 break;
3260 case e1000_82540:
3261 case e1000_82545:
3262 case e1000_82545_rev_3:
3263 case e1000_82546:
3264 case e1000_82546_rev_3:
3265 if (hw->phy_id == M88E1011_I_PHY_ID)
3266 match = true;
3267 break;
3268 case e1000_ce4100:
3269 if ((hw->phy_id == RTL8211B_PHY_ID) ||
3270 (hw->phy_id == RTL8201N_PHY_ID) ||
3271 (hw->phy_id == M88E1118_E_PHY_ID))
3272 match = true;
3273 break;
3274 case e1000_82541:
3275 case e1000_82541_rev_2:
3276 case e1000_82547:
3277 case e1000_82547_rev_2:
3278 if (hw->phy_id == IGP01E1000_I_PHY_ID)
3279 match = true;
3280 break;
3281 default:
3282 e_dbg("Invalid MAC type %d\n", hw->mac_type);
3283 return -E1000_ERR_CONFIG;
3284 }
3285 phy_init_status = e1000_set_phy_type(hw);
3286
3287 if ((match) && (phy_init_status == E1000_SUCCESS)) {
3288 e_dbg("PHY ID 0x%X detected\n", hw->phy_id);
3289 return E1000_SUCCESS;
3290 }
3291 e_dbg("Invalid PHY ID 0x%X\n", hw->phy_id);
3292 return -E1000_ERR_PHY;
3293 }
3294
3295 /**
3296 * e1000_phy_reset_dsp - reset DSP
3297 * @hw: Struct containing variables accessed by shared code
3298 *
3299 * Resets the PHY's DSP
3300 */
3301 static s32 e1000_phy_reset_dsp(struct e1000_hw *hw)
3302 {
3303 s32 ret_val;
3304 e_dbg("e1000_phy_reset_dsp");
3305
3306 do {
3307 ret_val = e1000_write_phy_reg(hw, 29, 0x001d);
3308 if (ret_val)
3309 break;
3310 ret_val = e1000_write_phy_reg(hw, 30, 0x00c1);
3311 if (ret_val)
3312 break;
3313 ret_val = e1000_write_phy_reg(hw, 30, 0x0000);
3314 if (ret_val)
3315 break;
3316 ret_val = E1000_SUCCESS;
3317 } while (0);
3318
3319 return ret_val;
3320 }
3321
3322 /**
3323 * e1000_phy_igp_get_info - get igp specific registers
3324 * @hw: Struct containing variables accessed by shared code
3325 * @phy_info: PHY information structure
3326 *
3327 * Get PHY information from various PHY registers for igp PHY only.
3328 */
3329 static s32 e1000_phy_igp_get_info(struct e1000_hw *hw,
3330 struct e1000_phy_info *phy_info)
3331 {
3332 s32 ret_val;
3333 u16 phy_data, min_length, max_length, average;
3334 e1000_rev_polarity polarity;
3335
3336 e_dbg("e1000_phy_igp_get_info");
3337
3338 /* The downshift status is checked only once, after link is established,
3339 * and it stored in the hw->speed_downgraded parameter.
3340 */
3341 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3342
3343 /* IGP01E1000 does not need to support it. */
3344 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal;
3345
3346 /* IGP01E1000 always correct polarity reversal */
3347 phy_info->polarity_correction = e1000_polarity_reversal_enabled;
3348
3349 /* Check polarity status */
3350 ret_val = e1000_check_polarity(hw, &polarity);
3351 if (ret_val)
3352 return ret_val;
3353
3354 phy_info->cable_polarity = polarity;
3355
3356 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data);
3357 if (ret_val)
3358 return ret_val;
3359
3360 phy_info->mdix_mode =
3361 (e1000_auto_x_mode) ((phy_data & IGP01E1000_PSSR_MDIX) >>
3362 IGP01E1000_PSSR_MDIX_SHIFT);
3363
3364 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
3365 IGP01E1000_PSSR_SPEED_1000MBPS) {
3366 /* Local/Remote Receiver Information are only valid @ 1000
3367 * Mbps
3368 */
3369 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3370 if (ret_val)
3371 return ret_val;
3372
3373 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3374 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3375 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3376 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3377 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3378 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3379
3380 /* Get cable length */
3381 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
3382 if (ret_val)
3383 return ret_val;
3384
3385 /* Translate to old method */
3386 average = (max_length + min_length) / 2;
3387
3388 if (average <= e1000_igp_cable_length_50)
3389 phy_info->cable_length = e1000_cable_length_50;
3390 else if (average <= e1000_igp_cable_length_80)
3391 phy_info->cable_length = e1000_cable_length_50_80;
3392 else if (average <= e1000_igp_cable_length_110)
3393 phy_info->cable_length = e1000_cable_length_80_110;
3394 else if (average <= e1000_igp_cable_length_140)
3395 phy_info->cable_length = e1000_cable_length_110_140;
3396 else
3397 phy_info->cable_length = e1000_cable_length_140;
3398 }
3399
3400 return E1000_SUCCESS;
3401 }
3402
3403 /**
3404 * e1000_phy_m88_get_info - get m88 specific registers
3405 * @hw: Struct containing variables accessed by shared code
3406 * @phy_info: PHY information structure
3407 *
3408 * Get PHY information from various PHY registers for m88 PHY only.
3409 */
3410 static s32 e1000_phy_m88_get_info(struct e1000_hw *hw,
3411 struct e1000_phy_info *phy_info)
3412 {
3413 s32 ret_val;
3414 u16 phy_data;
3415 e1000_rev_polarity polarity;
3416
3417 e_dbg("e1000_phy_m88_get_info");
3418
3419 /* The downshift status is checked only once, after link is established,
3420 * and it stored in the hw->speed_downgraded parameter.
3421 */
3422 phy_info->downshift = (e1000_downshift) hw->speed_downgraded;
3423
3424 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
3425 if (ret_val)
3426 return ret_val;
3427
3428 phy_info->extended_10bt_distance =
3429 ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >>
3430 M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ?
3431 e1000_10bt_ext_dist_enable_lower :
3432 e1000_10bt_ext_dist_enable_normal;
3433
3434 phy_info->polarity_correction =
3435 ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >>
3436 M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ?
3437 e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled;
3438
3439 /* Check polarity status */
3440 ret_val = e1000_check_polarity(hw, &polarity);
3441 if (ret_val)
3442 return ret_val;
3443 phy_info->cable_polarity = polarity;
3444
3445 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
3446 if (ret_val)
3447 return ret_val;
3448
3449 phy_info->mdix_mode =
3450 (e1000_auto_x_mode) ((phy_data & M88E1000_PSSR_MDIX) >>
3451 M88E1000_PSSR_MDIX_SHIFT);
3452
3453 if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
3454 /* Cable Length Estimation and Local/Remote Receiver Information
3455 * are only valid at 1000 Mbps.
3456 */
3457 phy_info->cable_length =
3458 (e1000_cable_length) ((phy_data &
3459 M88E1000_PSSR_CABLE_LENGTH) >>
3460 M88E1000_PSSR_CABLE_LENGTH_SHIFT);
3461
3462 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
3463 if (ret_val)
3464 return ret_val;
3465
3466 phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >>
3467 SR_1000T_LOCAL_RX_STATUS_SHIFT) ?
3468 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3469 phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >>
3470 SR_1000T_REMOTE_RX_STATUS_SHIFT) ?
3471 e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok;
3472
3473 }
3474
3475 return E1000_SUCCESS;
3476 }
3477
3478 /**
3479 * e1000_phy_get_info - request phy info
3480 * @hw: Struct containing variables accessed by shared code
3481 * @phy_info: PHY information structure
3482 *
3483 * Get PHY information from various PHY registers
3484 */
3485 s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info)
3486 {
3487 s32 ret_val;
3488 u16 phy_data;
3489
3490 e_dbg("e1000_phy_get_info");
3491
3492 phy_info->cable_length = e1000_cable_length_undefined;
3493 phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined;
3494 phy_info->cable_polarity = e1000_rev_polarity_undefined;
3495 phy_info->downshift = e1000_downshift_undefined;
3496 phy_info->polarity_correction = e1000_polarity_reversal_undefined;
3497 phy_info->mdix_mode = e1000_auto_x_mode_undefined;
3498 phy_info->local_rx = e1000_1000t_rx_status_undefined;
3499 phy_info->remote_rx = e1000_1000t_rx_status_undefined;
3500
3501 if (hw->media_type != e1000_media_type_copper) {
3502 e_dbg("PHY info is only valid for copper media\n");
3503 return -E1000_ERR_CONFIG;
3504 }
3505
3506 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3507 if (ret_val)
3508 return ret_val;
3509
3510 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data);
3511 if (ret_val)
3512 return ret_val;
3513
3514 if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) {
3515 e_dbg("PHY info is only valid if link is up\n");
3516 return -E1000_ERR_CONFIG;
3517 }
3518
3519 if (hw->phy_type == e1000_phy_igp)
3520 return e1000_phy_igp_get_info(hw, phy_info);
3521 else if ((hw->phy_type == e1000_phy_8211) ||
3522 (hw->phy_type == e1000_phy_8201))
3523 return E1000_SUCCESS;
3524 else
3525 return e1000_phy_m88_get_info(hw, phy_info);
3526 }
3527
3528 s32 e1000_validate_mdi_setting(struct e1000_hw *hw)
3529 {
3530 e_dbg("e1000_validate_mdi_settings");
3531
3532 if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) {
3533 e_dbg("Invalid MDI setting detected\n");
3534 hw->mdix = 1;
3535 return -E1000_ERR_CONFIG;
3536 }
3537 return E1000_SUCCESS;
3538 }
3539
3540 /**
3541 * e1000_init_eeprom_params - initialize sw eeprom vars
3542 * @hw: Struct containing variables accessed by shared code
3543 *
3544 * Sets up eeprom variables in the hw struct. Must be called after mac_type
3545 * is configured.
3546 */
3547 s32 e1000_init_eeprom_params(struct e1000_hw *hw)
3548 {
3549 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3550 u32 eecd = er32(EECD);
3551 s32 ret_val = E1000_SUCCESS;
3552 u16 eeprom_size;
3553
3554 e_dbg("e1000_init_eeprom_params");
3555
3556 switch (hw->mac_type) {
3557 case e1000_82542_rev2_0:
3558 case e1000_82542_rev2_1:
3559 case e1000_82543:
3560 case e1000_82544:
3561 eeprom->type = e1000_eeprom_microwire;
3562 eeprom->word_size = 64;
3563 eeprom->opcode_bits = 3;
3564 eeprom->address_bits = 6;
3565 eeprom->delay_usec = 50;
3566 break;
3567 case e1000_82540:
3568 case e1000_82545:
3569 case e1000_82545_rev_3:
3570 case e1000_82546:
3571 case e1000_82546_rev_3:
3572 eeprom->type = e1000_eeprom_microwire;
3573 eeprom->opcode_bits = 3;
3574 eeprom->delay_usec = 50;
3575 if (eecd & E1000_EECD_SIZE) {
3576 eeprom->word_size = 256;
3577 eeprom->address_bits = 8;
3578 } else {
3579 eeprom->word_size = 64;
3580 eeprom->address_bits = 6;
3581 }
3582 break;
3583 case e1000_82541:
3584 case e1000_82541_rev_2:
3585 case e1000_82547:
3586 case e1000_82547_rev_2:
3587 if (eecd & E1000_EECD_TYPE) {
3588 eeprom->type = e1000_eeprom_spi;
3589 eeprom->opcode_bits = 8;
3590 eeprom->delay_usec = 1;
3591 if (eecd & E1000_EECD_ADDR_BITS) {
3592 eeprom->page_size = 32;
3593 eeprom->address_bits = 16;
3594 } else {
3595 eeprom->page_size = 8;
3596 eeprom->address_bits = 8;
3597 }
3598 } else {
3599 eeprom->type = e1000_eeprom_microwire;
3600 eeprom->opcode_bits = 3;
3601 eeprom->delay_usec = 50;
3602 if (eecd & E1000_EECD_ADDR_BITS) {
3603 eeprom->word_size = 256;
3604 eeprom->address_bits = 8;
3605 } else {
3606 eeprom->word_size = 64;
3607 eeprom->address_bits = 6;
3608 }
3609 }
3610 break;
3611 default:
3612 break;
3613 }
3614
3615 if (eeprom->type == e1000_eeprom_spi) {
3616 /* eeprom_size will be an enum [0..8] that maps to eeprom sizes
3617 * 128B to 32KB (incremented by powers of 2).
3618 */
3619 /* Set to default value for initial eeprom read. */
3620 eeprom->word_size = 64;
3621 ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size);
3622 if (ret_val)
3623 return ret_val;
3624 eeprom_size =
3625 (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT;
3626 /* 256B eeprom size was not supported in earlier hardware, so we
3627 * bump eeprom_size up one to ensure that "1" (which maps to
3628 * 256B) is never the result used in the shifting logic below.
3629 */
3630 if (eeprom_size)
3631 eeprom_size++;
3632
3633 eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT);
3634 }
3635 return ret_val;
3636 }
3637
3638 /**
3639 * e1000_raise_ee_clk - Raises the EEPROM's clock input.
3640 * @hw: Struct containing variables accessed by shared code
3641 * @eecd: EECD's current value
3642 */
3643 static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd)
3644 {
3645 /* Raise the clock input to the EEPROM (by setting the SK bit), and then
3646 * wait <delay> microseconds.
3647 */
3648 *eecd = *eecd | E1000_EECD_SK;
3649 ew32(EECD, *eecd);
3650 E1000_WRITE_FLUSH();
3651 udelay(hw->eeprom.delay_usec);
3652 }
3653
3654 /**
3655 * e1000_lower_ee_clk - Lowers the EEPROM's clock input.
3656 * @hw: Struct containing variables accessed by shared code
3657 * @eecd: EECD's current value
3658 */
3659 static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd)
3660 {
3661 /* Lower the clock input to the EEPROM (by clearing the SK bit), and
3662 * then wait 50 microseconds.
3663 */
3664 *eecd = *eecd & ~E1000_EECD_SK;
3665 ew32(EECD, *eecd);
3666 E1000_WRITE_FLUSH();
3667 udelay(hw->eeprom.delay_usec);
3668 }
3669
3670 /**
3671 * e1000_shift_out_ee_bits - Shift data bits out to the EEPROM.
3672 * @hw: Struct containing variables accessed by shared code
3673 * @data: data to send to the EEPROM
3674 * @count: number of bits to shift out
3675 */
3676 static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count)
3677 {
3678 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3679 u32 eecd;
3680 u32 mask;
3681
3682 /* We need to shift "count" bits out to the EEPROM. So, value in the
3683 * "data" parameter will be shifted out to the EEPROM one bit at a time.
3684 * In order to do this, "data" must be broken down into bits.
3685 */
3686 mask = 0x01 << (count - 1);
3687 eecd = er32(EECD);
3688 if (eeprom->type == e1000_eeprom_microwire) {
3689 eecd &= ~E1000_EECD_DO;
3690 } else if (eeprom->type == e1000_eeprom_spi) {
3691 eecd |= E1000_EECD_DO;
3692 }
3693 do {
3694 /* A "1" is shifted out to the EEPROM by setting bit "DI" to a
3695 * "1", and then raising and then lowering the clock (the SK bit
3696 * controls the clock input to the EEPROM). A "0" is shifted
3697 * out to the EEPROM by setting "DI" to "0" and then raising and
3698 * then lowering the clock.
3699 */
3700 eecd &= ~E1000_EECD_DI;
3701
3702 if (data & mask)
3703 eecd |= E1000_EECD_DI;
3704
3705 ew32(EECD, eecd);
3706 E1000_WRITE_FLUSH();
3707
3708 udelay(eeprom->delay_usec);
3709
3710 e1000_raise_ee_clk(hw, &eecd);
3711 e1000_lower_ee_clk(hw, &eecd);
3712
3713 mask = mask >> 1;
3714
3715 } while (mask);
3716
3717 /* We leave the "DI" bit set to "0" when we leave this routine. */
3718 eecd &= ~E1000_EECD_DI;
3719 ew32(EECD, eecd);
3720 }
3721
3722 /**
3723 * e1000_shift_in_ee_bits - Shift data bits in from the EEPROM
3724 * @hw: Struct containing variables accessed by shared code
3725 * @count: number of bits to shift in
3726 */
3727 static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count)
3728 {
3729 u32 eecd;
3730 u32 i;
3731 u16 data;
3732
3733 /* In order to read a register from the EEPROM, we need to shift 'count'
3734 * bits in from the EEPROM. Bits are "shifted in" by raising the clock
3735 * input to the EEPROM (setting the SK bit), and then reading the value
3736 * of the "DO" bit. During this "shifting in" process the "DI" bit
3737 * should always be clear.
3738 */
3739
3740 eecd = er32(EECD);
3741
3742 eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
3743 data = 0;
3744
3745 for (i = 0; i < count; i++) {
3746 data = data << 1;
3747 e1000_raise_ee_clk(hw, &eecd);
3748
3749 eecd = er32(EECD);
3750
3751 eecd &= ~(E1000_EECD_DI);
3752 if (eecd & E1000_EECD_DO)
3753 data |= 1;
3754
3755 e1000_lower_ee_clk(hw, &eecd);
3756 }
3757
3758 return data;
3759 }
3760
3761 /**
3762 * e1000_acquire_eeprom - Prepares EEPROM for access
3763 * @hw: Struct containing variables accessed by shared code
3764 *
3765 * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
3766 * function should be called before issuing a command to the EEPROM.
3767 */
3768 static s32 e1000_acquire_eeprom(struct e1000_hw *hw)
3769 {
3770 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3771 u32 eecd, i = 0;
3772
3773 e_dbg("e1000_acquire_eeprom");
3774
3775 eecd = er32(EECD);
3776
3777 /* Request EEPROM Access */
3778 if (hw->mac_type > e1000_82544) {
3779 eecd |= E1000_EECD_REQ;
3780 ew32(EECD, eecd);
3781 eecd = er32(EECD);
3782 while ((!(eecd & E1000_EECD_GNT)) &&
3783 (i < E1000_EEPROM_GRANT_ATTEMPTS)) {
3784 i++;
3785 udelay(5);
3786 eecd = er32(EECD);
3787 }
3788 if (!(eecd & E1000_EECD_GNT)) {
3789 eecd &= ~E1000_EECD_REQ;
3790 ew32(EECD, eecd);
3791 e_dbg("Could not acquire EEPROM grant\n");
3792 return -E1000_ERR_EEPROM;
3793 }
3794 }
3795
3796 /* Setup EEPROM for Read/Write */
3797
3798 if (eeprom->type == e1000_eeprom_microwire) {
3799 /* Clear SK and DI */
3800 eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
3801 ew32(EECD, eecd);
3802
3803 /* Set CS */
3804 eecd |= E1000_EECD_CS;
3805 ew32(EECD, eecd);
3806 } else if (eeprom->type == e1000_eeprom_spi) {
3807 /* Clear SK and CS */
3808 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3809 ew32(EECD, eecd);
3810 E1000_WRITE_FLUSH();
3811 udelay(1);
3812 }
3813
3814 return E1000_SUCCESS;
3815 }
3816
3817 /**
3818 * e1000_standby_eeprom - Returns EEPROM to a "standby" state
3819 * @hw: Struct containing variables accessed by shared code
3820 */
3821 static void e1000_standby_eeprom(struct e1000_hw *hw)
3822 {
3823 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3824 u32 eecd;
3825
3826 eecd = er32(EECD);
3827
3828 if (eeprom->type == e1000_eeprom_microwire) {
3829 eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
3830 ew32(EECD, eecd);
3831 E1000_WRITE_FLUSH();
3832 udelay(eeprom->delay_usec);
3833
3834 /* Clock high */
3835 eecd |= E1000_EECD_SK;
3836 ew32(EECD, eecd);
3837 E1000_WRITE_FLUSH();
3838 udelay(eeprom->delay_usec);
3839
3840 /* Select EEPROM */
3841 eecd |= E1000_EECD_CS;
3842 ew32(EECD, eecd);
3843 E1000_WRITE_FLUSH();
3844 udelay(eeprom->delay_usec);
3845
3846 /* Clock low */
3847 eecd &= ~E1000_EECD_SK;
3848 ew32(EECD, eecd);
3849 E1000_WRITE_FLUSH();
3850 udelay(eeprom->delay_usec);
3851 } else if (eeprom->type == e1000_eeprom_spi) {
3852 /* Toggle CS to flush commands */
3853 eecd |= E1000_EECD_CS;
3854 ew32(EECD, eecd);
3855 E1000_WRITE_FLUSH();
3856 udelay(eeprom->delay_usec);
3857 eecd &= ~E1000_EECD_CS;
3858 ew32(EECD, eecd);
3859 E1000_WRITE_FLUSH();
3860 udelay(eeprom->delay_usec);
3861 }
3862 }
3863
3864 /**
3865 * e1000_release_eeprom - drop chip select
3866 * @hw: Struct containing variables accessed by shared code
3867 *
3868 * Terminates a command by inverting the EEPROM's chip select pin
3869 */
3870 static void e1000_release_eeprom(struct e1000_hw *hw)
3871 {
3872 u32 eecd;
3873
3874 e_dbg("e1000_release_eeprom");
3875
3876 eecd = er32(EECD);
3877
3878 if (hw->eeprom.type == e1000_eeprom_spi) {
3879 eecd |= E1000_EECD_CS; /* Pull CS high */
3880 eecd &= ~E1000_EECD_SK; /* Lower SCK */
3881
3882 ew32(EECD, eecd);
3883 E1000_WRITE_FLUSH();
3884
3885 udelay(hw->eeprom.delay_usec);
3886 } else if (hw->eeprom.type == e1000_eeprom_microwire) {
3887 /* cleanup eeprom */
3888
3889 /* CS on Microwire is active-high */
3890 eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
3891
3892 ew32(EECD, eecd);
3893
3894 /* Rising edge of clock */
3895 eecd |= E1000_EECD_SK;
3896 ew32(EECD, eecd);
3897 E1000_WRITE_FLUSH();
3898 udelay(hw->eeprom.delay_usec);
3899
3900 /* Falling edge of clock */
3901 eecd &= ~E1000_EECD_SK;
3902 ew32(EECD, eecd);
3903 E1000_WRITE_FLUSH();
3904 udelay(hw->eeprom.delay_usec);
3905 }
3906
3907 /* Stop requesting EEPROM access */
3908 if (hw->mac_type > e1000_82544) {
3909 eecd &= ~E1000_EECD_REQ;
3910 ew32(EECD, eecd);
3911 }
3912 }
3913
3914 /**
3915 * e1000_spi_eeprom_ready - Reads a 16 bit word from the EEPROM.
3916 * @hw: Struct containing variables accessed by shared code
3917 */
3918 static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw)
3919 {
3920 u16 retry_count = 0;
3921 u8 spi_stat_reg;
3922
3923 e_dbg("e1000_spi_eeprom_ready");
3924
3925 /* Read "Status Register" repeatedly until the LSB is cleared. The
3926 * EEPROM will signal that the command has been completed by clearing
3927 * bit 0 of the internal status register. If it's not cleared within
3928 * 5 milliseconds, then error out.
3929 */
3930 retry_count = 0;
3931 do {
3932 e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
3933 hw->eeprom.opcode_bits);
3934 spi_stat_reg = (u8) e1000_shift_in_ee_bits(hw, 8);
3935 if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
3936 break;
3937
3938 udelay(5);
3939 retry_count += 5;
3940
3941 e1000_standby_eeprom(hw);
3942 } while (retry_count < EEPROM_MAX_RETRY_SPI);
3943
3944 /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
3945 * only 0-5mSec on 5V devices)
3946 */
3947 if (retry_count >= EEPROM_MAX_RETRY_SPI) {
3948 e_dbg("SPI EEPROM Status error\n");
3949 return -E1000_ERR_EEPROM;
3950 }
3951
3952 return E1000_SUCCESS;
3953 }
3954
3955 /**
3956 * e1000_read_eeprom - Reads a 16 bit word from the EEPROM.
3957 * @hw: Struct containing variables accessed by shared code
3958 * @offset: offset of word in the EEPROM to read
3959 * @data: word read from the EEPROM
3960 * @words: number of words to read
3961 */
3962 s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
3963 {
3964 s32 ret;
3965 spin_lock(&e1000_eeprom_lock);
3966 ret = e1000_do_read_eeprom(hw, offset, words, data);
3967 spin_unlock(&e1000_eeprom_lock);
3968 return ret;
3969 }
3970
3971 static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
3972 u16 *data)
3973 {
3974 struct e1000_eeprom_info *eeprom = &hw->eeprom;
3975 u32 i = 0;
3976
3977 e_dbg("e1000_read_eeprom");
3978
3979 if (hw->mac_type == e1000_ce4100) {
3980 GBE_CONFIG_FLASH_READ(GBE_CONFIG_BASE_VIRT, offset, words,
3981 data);
3982 return E1000_SUCCESS;
3983 }
3984
3985 /* If eeprom is not yet detected, do so now */
3986 if (eeprom->word_size == 0)
3987 e1000_init_eeprom_params(hw);
3988
3989 /* A check for invalid values: offset too large, too many words, and
3990 * not enough words.
3991 */
3992 if ((offset >= eeprom->word_size)
3993 || (words > eeprom->word_size - offset) || (words == 0)) {
3994 e_dbg("\"words\" parameter out of bounds. Words = %d,"
3995 "size = %d\n", offset, eeprom->word_size);
3996 return -E1000_ERR_EEPROM;
3997 }
3998
3999 /* EEPROM's that don't use EERD to read require us to bit-bang the SPI
4000 * directly. In this case, we need to acquire the EEPROM so that
4001 * FW or other port software does not interrupt.
4002 */
4003 /* Prepare the EEPROM for bit-bang reading */
4004 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4005 return -E1000_ERR_EEPROM;
4006
4007 /* Set up the SPI or Microwire EEPROM for bit-bang reading. We have
4008 * acquired the EEPROM at this point, so any returns should release it
4009 */
4010 if (eeprom->type == e1000_eeprom_spi) {
4011 u16 word_in;
4012 u8 read_opcode = EEPROM_READ_OPCODE_SPI;
4013
4014 if (e1000_spi_eeprom_ready(hw)) {
4015 e1000_release_eeprom(hw);
4016 return -E1000_ERR_EEPROM;
4017 }
4018
4019 e1000_standby_eeprom(hw);
4020
4021 /* Some SPI eeproms use the 8th address bit embedded in the
4022 * opcode
4023 */
4024 if ((eeprom->address_bits == 8) && (offset >= 128))
4025 read_opcode |= EEPROM_A8_OPCODE_SPI;
4026
4027 /* Send the READ command (opcode + addr) */
4028 e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
4029 e1000_shift_out_ee_bits(hw, (u16) (offset * 2),
4030 eeprom->address_bits);
4031
4032 /* Read the data. The address of the eeprom internally
4033 * increments with each byte (spi) being read, saving on the
4034 * overhead of eeprom setup and tear-down. The address counter
4035 * will roll over if reading beyond the size of the eeprom, thus
4036 * allowing the entire memory to be read starting from any
4037 * offset.
4038 */
4039 for (i = 0; i < words; i++) {
4040 word_in = e1000_shift_in_ee_bits(hw, 16);
4041 data[i] = (word_in >> 8) | (word_in << 8);
4042 }
4043 } else if (eeprom->type == e1000_eeprom_microwire) {
4044 for (i = 0; i < words; i++) {
4045 /* Send the READ command (opcode + addr) */
4046 e1000_shift_out_ee_bits(hw,
4047 EEPROM_READ_OPCODE_MICROWIRE,
4048 eeprom->opcode_bits);
4049 e1000_shift_out_ee_bits(hw, (u16) (offset + i),
4050 eeprom->address_bits);
4051
4052 /* Read the data. For microwire, each word requires the
4053 * overhead of eeprom setup and tear-down.
4054 */
4055 data[i] = e1000_shift_in_ee_bits(hw, 16);
4056 e1000_standby_eeprom(hw);
4057 }
4058 }
4059
4060 /* End this read operation */
4061 e1000_release_eeprom(hw);
4062
4063 return E1000_SUCCESS;
4064 }
4065
4066 /**
4067 * e1000_validate_eeprom_checksum - Verifies that the EEPROM has a valid checksum
4068 * @hw: Struct containing variables accessed by shared code
4069 *
4070 * Reads the first 64 16 bit words of the EEPROM and sums the values read.
4071 * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
4072 * valid.
4073 */
4074 s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw)
4075 {
4076 u16 checksum = 0;
4077 u16 i, eeprom_data;
4078
4079 e_dbg("e1000_validate_eeprom_checksum");
4080
4081 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
4082 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4083 e_dbg("EEPROM Read Error\n");
4084 return -E1000_ERR_EEPROM;
4085 }
4086 checksum += eeprom_data;
4087 }
4088
4089 #ifdef CONFIG_PARISC
4090 /* This is a signature and not a checksum on HP c8000 */
4091 if ((hw->subsystem_vendor_id == 0x103C) && (eeprom_data == 0x16d6))
4092 return E1000_SUCCESS;
4093
4094 #endif
4095 if (checksum == (u16) EEPROM_SUM)
4096 return E1000_SUCCESS;
4097 else {
4098 e_dbg("EEPROM Checksum Invalid\n");
4099 return -E1000_ERR_EEPROM;
4100 }
4101 }
4102
4103 /**
4104 * e1000_update_eeprom_checksum - Calculates/writes the EEPROM checksum
4105 * @hw: Struct containing variables accessed by shared code
4106 *
4107 * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA.
4108 * Writes the difference to word offset 63 of the EEPROM.
4109 */
4110 s32 e1000_update_eeprom_checksum(struct e1000_hw *hw)
4111 {
4112 u16 checksum = 0;
4113 u16 i, eeprom_data;
4114
4115 e_dbg("e1000_update_eeprom_checksum");
4116
4117 for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
4118 if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
4119 e_dbg("EEPROM Read Error\n");
4120 return -E1000_ERR_EEPROM;
4121 }
4122 checksum += eeprom_data;
4123 }
4124 checksum = (u16) EEPROM_SUM - checksum;
4125 if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) {
4126 e_dbg("EEPROM Write Error\n");
4127 return -E1000_ERR_EEPROM;
4128 }
4129 return E1000_SUCCESS;
4130 }
4131
4132 /**
4133 * e1000_write_eeprom - write words to the different EEPROM types.
4134 * @hw: Struct containing variables accessed by shared code
4135 * @offset: offset within the EEPROM to be written to
4136 * @words: number of words to write
4137 * @data: 16 bit word to be written to the EEPROM
4138 *
4139 * If e1000_update_eeprom_checksum is not called after this function, the
4140 * EEPROM will most likely contain an invalid checksum.
4141 */
4142 s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
4143 {
4144 s32 ret;
4145 spin_lock(&e1000_eeprom_lock);
4146 ret = e1000_do_write_eeprom(hw, offset, words, data);
4147 spin_unlock(&e1000_eeprom_lock);
4148 return ret;
4149 }
4150
4151 static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words,
4152 u16 *data)
4153 {
4154 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4155 s32 status = 0;
4156
4157 e_dbg("e1000_write_eeprom");
4158
4159 if (hw->mac_type == e1000_ce4100) {
4160 GBE_CONFIG_FLASH_WRITE(GBE_CONFIG_BASE_VIRT, offset, words,
4161 data);
4162 return E1000_SUCCESS;
4163 }
4164
4165 /* If eeprom is not yet detected, do so now */
4166 if (eeprom->word_size == 0)
4167 e1000_init_eeprom_params(hw);
4168
4169 /* A check for invalid values: offset too large, too many words, and
4170 * not enough words.
4171 */
4172 if ((offset >= eeprom->word_size)
4173 || (words > eeprom->word_size - offset) || (words == 0)) {
4174 e_dbg("\"words\" parameter out of bounds\n");
4175 return -E1000_ERR_EEPROM;
4176 }
4177
4178 /* Prepare the EEPROM for writing */
4179 if (e1000_acquire_eeprom(hw) != E1000_SUCCESS)
4180 return -E1000_ERR_EEPROM;
4181
4182 if (eeprom->type == e1000_eeprom_microwire) {
4183 status = e1000_write_eeprom_microwire(hw, offset, words, data);
4184 } else {
4185 status = e1000_write_eeprom_spi(hw, offset, words, data);
4186 msleep(10);
4187 }
4188
4189 /* Done with writing */
4190 e1000_release_eeprom(hw);
4191
4192 return status;
4193 }
4194
4195 /**
4196 * e1000_write_eeprom_spi - Writes a 16 bit word to a given offset in an SPI EEPROM.
4197 * @hw: Struct containing variables accessed by shared code
4198 * @offset: offset within the EEPROM to be written to
4199 * @words: number of words to write
4200 * @data: pointer to array of 8 bit words to be written to the EEPROM
4201 */
4202 static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words,
4203 u16 *data)
4204 {
4205 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4206 u16 widx = 0;
4207
4208 e_dbg("e1000_write_eeprom_spi");
4209
4210 while (widx < words) {
4211 u8 write_opcode = EEPROM_WRITE_OPCODE_SPI;
4212
4213 if (e1000_spi_eeprom_ready(hw))
4214 return -E1000_ERR_EEPROM;
4215
4216 e1000_standby_eeprom(hw);
4217
4218 /* Send the WRITE ENABLE command (8 bit opcode ) */
4219 e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI,
4220 eeprom->opcode_bits);
4221
4222 e1000_standby_eeprom(hw);
4223
4224 /* Some SPI eeproms use the 8th address bit embedded in the
4225 * opcode
4226 */
4227 if ((eeprom->address_bits == 8) && (offset >= 128))
4228 write_opcode |= EEPROM_A8_OPCODE_SPI;
4229
4230 /* Send the Write command (8-bit opcode + addr) */
4231 e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits);
4232
4233 e1000_shift_out_ee_bits(hw, (u16) ((offset + widx) * 2),
4234 eeprom->address_bits);
4235
4236 /* Send the data */
4237
4238 /* Loop to allow for up to whole page write (32 bytes) of
4239 * eeprom
4240 */
4241 while (widx < words) {
4242 u16 word_out = data[widx];
4243 word_out = (word_out >> 8) | (word_out << 8);
4244 e1000_shift_out_ee_bits(hw, word_out, 16);
4245 widx++;
4246
4247 /* Some larger eeprom sizes are capable of a 32-byte
4248 * PAGE WRITE operation, while the smaller eeproms are
4249 * capable of an 8-byte PAGE WRITE operation. Break the
4250 * inner loop to pass new address
4251 */
4252 if ((((offset + widx) * 2) % eeprom->page_size) == 0) {
4253 e1000_standby_eeprom(hw);
4254 break;
4255 }
4256 }
4257 }
4258
4259 return E1000_SUCCESS;
4260 }
4261
4262 /**
4263 * e1000_write_eeprom_microwire - Writes a 16 bit word to a given offset in a Microwire EEPROM.
4264 * @hw: Struct containing variables accessed by shared code
4265 * @offset: offset within the EEPROM to be written to
4266 * @words: number of words to write
4267 * @data: pointer to array of 8 bit words to be written to the EEPROM
4268 */
4269 static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset,
4270 u16 words, u16 *data)
4271 {
4272 struct e1000_eeprom_info *eeprom = &hw->eeprom;
4273 u32 eecd;
4274 u16 words_written = 0;
4275 u16 i = 0;
4276
4277 e_dbg("e1000_write_eeprom_microwire");
4278
4279 /* Send the write enable command to the EEPROM (3-bit opcode plus
4280 * 6/8-bit dummy address beginning with 11). It's less work to include
4281 * the 11 of the dummy address as part of the opcode than it is to shift
4282 * it over the correct number of bits for the address. This puts the
4283 * EEPROM into write/erase mode.
4284 */
4285 e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE,
4286 (u16) (eeprom->opcode_bits + 2));
4287
4288 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4289
4290 /* Prepare the EEPROM */
4291 e1000_standby_eeprom(hw);
4292
4293 while (words_written < words) {
4294 /* Send the Write command (3-bit opcode + addr) */
4295 e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE,
4296 eeprom->opcode_bits);
4297
4298 e1000_shift_out_ee_bits(hw, (u16) (offset + words_written),
4299 eeprom->address_bits);
4300
4301 /* Send the data */
4302 e1000_shift_out_ee_bits(hw, data[words_written], 16);
4303
4304 /* Toggle the CS line. This in effect tells the EEPROM to
4305 * execute the previous command.
4306 */
4307 e1000_standby_eeprom(hw);
4308
4309 /* Read DO repeatedly until it is high (equal to '1'). The
4310 * EEPROM will signal that the command has been completed by
4311 * raising the DO signal. If DO does not go high in 10
4312 * milliseconds, then error out.
4313 */
4314 for (i = 0; i < 200; i++) {
4315 eecd = er32(EECD);
4316 if (eecd & E1000_EECD_DO)
4317 break;
4318 udelay(50);
4319 }
4320 if (i == 200) {
4321 e_dbg("EEPROM Write did not complete\n");
4322 return -E1000_ERR_EEPROM;
4323 }
4324
4325 /* Recover from write */
4326 e1000_standby_eeprom(hw);
4327
4328 words_written++;
4329 }
4330
4331 /* Send the write disable command to the EEPROM (3-bit opcode plus
4332 * 6/8-bit dummy address beginning with 10). It's less work to include
4333 * the 10 of the dummy address as part of the opcode than it is to shift
4334 * it over the correct number of bits for the address. This takes the
4335 * EEPROM out of write/erase mode.
4336 */
4337 e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE,
4338 (u16) (eeprom->opcode_bits + 2));
4339
4340 e1000_shift_out_ee_bits(hw, 0, (u16) (eeprom->address_bits - 2));
4341
4342 return E1000_SUCCESS;
4343 }
4344
4345 /**
4346 * e1000_read_mac_addr - read the adapters MAC from eeprom
4347 * @hw: Struct containing variables accessed by shared code
4348 *
4349 * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
4350 * second function of dual function devices
4351 */
4352 s32 e1000_read_mac_addr(struct e1000_hw *hw)
4353 {
4354 u16 offset;
4355 u16 eeprom_data, i;
4356
4357 e_dbg("e1000_read_mac_addr");
4358
4359 for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
4360 offset = i >> 1;
4361 if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
4362 e_dbg("EEPROM Read Error\n");
4363 return -E1000_ERR_EEPROM;
4364 }
4365 hw->perm_mac_addr[i] = (u8) (eeprom_data & 0x00FF);
4366 hw->perm_mac_addr[i + 1] = (u8) (eeprom_data >> 8);
4367 }
4368
4369 switch (hw->mac_type) {
4370 default:
4371 break;
4372 case e1000_82546:
4373 case e1000_82546_rev_3:
4374 if (er32(STATUS) & E1000_STATUS_FUNC_1)
4375 hw->perm_mac_addr[5] ^= 0x01;
4376 break;
4377 }
4378
4379 for (i = 0; i < NODE_ADDRESS_SIZE; i++)
4380 hw->mac_addr[i] = hw->perm_mac_addr[i];
4381 return E1000_SUCCESS;
4382 }
4383
4384 /**
4385 * e1000_init_rx_addrs - Initializes receive address filters.
4386 * @hw: Struct containing variables accessed by shared code
4387 *
4388 * Places the MAC address in receive address register 0 and clears the rest
4389 * of the receive address registers. Clears the multicast table. Assumes
4390 * the receiver is in reset when the routine is called.
4391 */
4392 static void e1000_init_rx_addrs(struct e1000_hw *hw)
4393 {
4394 u32 i;
4395 u32 rar_num;
4396
4397 e_dbg("e1000_init_rx_addrs");
4398
4399 /* Setup the receive address. */
4400 e_dbg("Programming MAC Address into RAR[0]\n");
4401
4402 e1000_rar_set(hw, hw->mac_addr, 0);
4403
4404 rar_num = E1000_RAR_ENTRIES;
4405
4406 /* Zero out the other 15 receive addresses. */
4407 e_dbg("Clearing RAR[1-15]\n");
4408 for (i = 1; i < rar_num; i++) {
4409 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
4410 E1000_WRITE_FLUSH();
4411 E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
4412 E1000_WRITE_FLUSH();
4413 }
4414 }
4415
4416 /**
4417 * e1000_hash_mc_addr - Hashes an address to determine its location in the multicast table
4418 * @hw: Struct containing variables accessed by shared code
4419 * @mc_addr: the multicast address to hash
4420 */
4421 u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
4422 {
4423 u32 hash_value = 0;
4424
4425 /* The portion of the address that is used for the hash table is
4426 * determined by the mc_filter_type setting.
4427 */
4428 switch (hw->mc_filter_type) {
4429 /* [0] [1] [2] [3] [4] [5]
4430 * 01 AA 00 12 34 56
4431 * LSB MSB
4432 */
4433 case 0:
4434 /* [47:36] i.e. 0x563 for above example address */
4435 hash_value = ((mc_addr[4] >> 4) | (((u16) mc_addr[5]) << 4));
4436 break;
4437 case 1:
4438 /* [46:35] i.e. 0xAC6 for above example address */
4439 hash_value = ((mc_addr[4] >> 3) | (((u16) mc_addr[5]) << 5));
4440 break;
4441 case 2:
4442 /* [45:34] i.e. 0x5D8 for above example address */
4443 hash_value = ((mc_addr[4] >> 2) | (((u16) mc_addr[5]) << 6));
4444 break;
4445 case 3:
4446 /* [43:32] i.e. 0x634 for above example address */
4447 hash_value = ((mc_addr[4]) | (((u16) mc_addr[5]) << 8));
4448 break;
4449 }
4450
4451 hash_value &= 0xFFF;
4452 return hash_value;
4453 }
4454
4455 /**
4456 * e1000_rar_set - Puts an ethernet address into a receive address register.
4457 * @hw: Struct containing variables accessed by shared code
4458 * @addr: Address to put into receive address register
4459 * @index: Receive address register to write
4460 */
4461 void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
4462 {
4463 u32 rar_low, rar_high;
4464
4465 /* HW expects these in little endian so we reverse the byte order
4466 * from network order (big endian) to little endian
4467 */
4468 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
4469 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
4470 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
4471
4472 /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx
4473 * unit hang.
4474 *
4475 * Description:
4476 * If there are any Rx frames queued up or otherwise present in the HW
4477 * before RSS is enabled, and then we enable RSS, the HW Rx unit will
4478 * hang. To work around this issue, we have to disable receives and
4479 * flush out all Rx frames before we enable RSS. To do so, we modify we
4480 * redirect all Rx traffic to manageability and then reset the HW.
4481 * This flushes away Rx frames, and (since the redirections to
4482 * manageability persists across resets) keeps new ones from coming in
4483 * while we work. Then, we clear the Address Valid AV bit for all MAC
4484 * addresses and undo the re-direction to manageability.
4485 * Now, frames are coming in again, but the MAC won't accept them, so
4486 * far so good. We now proceed to initialize RSS (if necessary) and
4487 * configure the Rx unit. Last, we re-enable the AV bits and continue
4488 * on our merry way.
4489 */
4490 switch (hw->mac_type) {
4491 default:
4492 /* Indicate to hardware the Address is Valid. */
4493 rar_high |= E1000_RAH_AV;
4494 break;
4495 }
4496
4497 E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low);
4498 E1000_WRITE_FLUSH();
4499 E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high);
4500 E1000_WRITE_FLUSH();
4501 }
4502
4503 /**
4504 * e1000_write_vfta - Writes a value to the specified offset in the VLAN filter table.
4505 * @hw: Struct containing variables accessed by shared code
4506 * @offset: Offset in VLAN filer table to write
4507 * @value: Value to write into VLAN filter table
4508 */
4509 void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
4510 {
4511 u32 temp;
4512
4513 if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) {
4514 temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1));
4515 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4516 E1000_WRITE_FLUSH();
4517 E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp);
4518 E1000_WRITE_FLUSH();
4519 } else {
4520 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value);
4521 E1000_WRITE_FLUSH();
4522 }
4523 }
4524
4525 /**
4526 * e1000_clear_vfta - Clears the VLAN filer table
4527 * @hw: Struct containing variables accessed by shared code
4528 */
4529 static void e1000_clear_vfta(struct e1000_hw *hw)
4530 {
4531 u32 offset;
4532 u32 vfta_value = 0;
4533 u32 vfta_offset = 0;
4534 u32 vfta_bit_in_reg = 0;
4535
4536 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
4537 /* If the offset we want to clear is the same offset of the
4538 * manageability VLAN ID, then clear all bits except that of the
4539 * manageability unit
4540 */
4541 vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
4542 E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value);
4543 E1000_WRITE_FLUSH();
4544 }
4545 }
4546
4547 static s32 e1000_id_led_init(struct e1000_hw *hw)
4548 {
4549 u32 ledctl;
4550 const u32 ledctl_mask = 0x000000FF;
4551 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
4552 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
4553 u16 eeprom_data, i, temp;
4554 const u16 led_mask = 0x0F;
4555
4556 e_dbg("e1000_id_led_init");
4557
4558 if (hw->mac_type < e1000_82540) {
4559 /* Nothing to do */
4560 return E1000_SUCCESS;
4561 }
4562
4563 ledctl = er32(LEDCTL);
4564 hw->ledctl_default = ledctl;
4565 hw->ledctl_mode1 = hw->ledctl_default;
4566 hw->ledctl_mode2 = hw->ledctl_default;
4567
4568 if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) {
4569 e_dbg("EEPROM Read Error\n");
4570 return -E1000_ERR_EEPROM;
4571 }
4572
4573 if ((eeprom_data == ID_LED_RESERVED_0000) ||
4574 (eeprom_data == ID_LED_RESERVED_FFFF)) {
4575 eeprom_data = ID_LED_DEFAULT;
4576 }
4577
4578 for (i = 0; i < 4; i++) {
4579 temp = (eeprom_data >> (i << 2)) & led_mask;
4580 switch (temp) {
4581 case ID_LED_ON1_DEF2:
4582 case ID_LED_ON1_ON2:
4583 case ID_LED_ON1_OFF2:
4584 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4585 hw->ledctl_mode1 |= ledctl_on << (i << 3);
4586 break;
4587 case ID_LED_OFF1_DEF2:
4588 case ID_LED_OFF1_ON2:
4589 case ID_LED_OFF1_OFF2:
4590 hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
4591 hw->ledctl_mode1 |= ledctl_off << (i << 3);
4592 break;
4593 default:
4594 /* Do nothing */
4595 break;
4596 }
4597 switch (temp) {
4598 case ID_LED_DEF1_ON2:
4599 case ID_LED_ON1_ON2:
4600 case ID_LED_OFF1_ON2:
4601 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4602 hw->ledctl_mode2 |= ledctl_on << (i << 3);
4603 break;
4604 case ID_LED_DEF1_OFF2:
4605 case ID_LED_ON1_OFF2:
4606 case ID_LED_OFF1_OFF2:
4607 hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
4608 hw->ledctl_mode2 |= ledctl_off << (i << 3);
4609 break;
4610 default:
4611 /* Do nothing */
4612 break;
4613 }
4614 }
4615 return E1000_SUCCESS;
4616 }
4617
4618 /**
4619 * e1000_setup_led
4620 * @hw: Struct containing variables accessed by shared code
4621 *
4622 * Prepares SW controlable LED for use and saves the current state of the LED.
4623 */
4624 s32 e1000_setup_led(struct e1000_hw *hw)
4625 {
4626 u32 ledctl;
4627 s32 ret_val = E1000_SUCCESS;
4628
4629 e_dbg("e1000_setup_led");
4630
4631 switch (hw->mac_type) {
4632 case e1000_82542_rev2_0:
4633 case e1000_82542_rev2_1:
4634 case e1000_82543:
4635 case e1000_82544:
4636 /* No setup necessary */
4637 break;
4638 case e1000_82541:
4639 case e1000_82547:
4640 case e1000_82541_rev_2:
4641 case e1000_82547_rev_2:
4642 /* Turn off PHY Smart Power Down (if enabled) */
4643 ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO,
4644 &hw->phy_spd_default);
4645 if (ret_val)
4646 return ret_val;
4647 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4648 (u16) (hw->phy_spd_default &
4649 ~IGP01E1000_GMII_SPD));
4650 if (ret_val)
4651 return ret_val;
4652 /* Fall Through */
4653 default:
4654 if (hw->media_type == e1000_media_type_fiber) {
4655 ledctl = er32(LEDCTL);
4656 /* Save current LEDCTL settings */
4657 hw->ledctl_default = ledctl;
4658 /* Turn off LED0 */
4659 ledctl &= ~(E1000_LEDCTL_LED0_IVRT |
4660 E1000_LEDCTL_LED0_BLINK |
4661 E1000_LEDCTL_LED0_MODE_MASK);
4662 ledctl |= (E1000_LEDCTL_MODE_LED_OFF <<
4663 E1000_LEDCTL_LED0_MODE_SHIFT);
4664 ew32(LEDCTL, ledctl);
4665 } else if (hw->media_type == e1000_media_type_copper)
4666 ew32(LEDCTL, hw->ledctl_mode1);
4667 break;
4668 }
4669
4670 return E1000_SUCCESS;
4671 }
4672
4673 /**
4674 * e1000_cleanup_led - Restores the saved state of the SW controlable LED.
4675 * @hw: Struct containing variables accessed by shared code
4676 */
4677 s32 e1000_cleanup_led(struct e1000_hw *hw)
4678 {
4679 s32 ret_val = E1000_SUCCESS;
4680
4681 e_dbg("e1000_cleanup_led");
4682
4683 switch (hw->mac_type) {
4684 case e1000_82542_rev2_0:
4685 case e1000_82542_rev2_1:
4686 case e1000_82543:
4687 case e1000_82544:
4688 /* No cleanup necessary */
4689 break;
4690 case e1000_82541:
4691 case e1000_82547:
4692 case e1000_82541_rev_2:
4693 case e1000_82547_rev_2:
4694 /* Turn on PHY Smart Power Down (if previously enabled) */
4695 ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
4696 hw->phy_spd_default);
4697 if (ret_val)
4698 return ret_val;
4699 /* Fall Through */
4700 default:
4701 /* Restore LEDCTL settings */
4702 ew32(LEDCTL, hw->ledctl_default);
4703 break;
4704 }
4705
4706 return E1000_SUCCESS;
4707 }
4708
4709 /**
4710 * e1000_led_on - Turns on the software controllable LED
4711 * @hw: Struct containing variables accessed by shared code
4712 */
4713 s32 e1000_led_on(struct e1000_hw *hw)
4714 {
4715 u32 ctrl = er32(CTRL);
4716
4717 e_dbg("e1000_led_on");
4718
4719 switch (hw->mac_type) {
4720 case e1000_82542_rev2_0:
4721 case e1000_82542_rev2_1:
4722 case e1000_82543:
4723 /* Set SW Defineable Pin 0 to turn on the LED */
4724 ctrl |= E1000_CTRL_SWDPIN0;
4725 ctrl |= E1000_CTRL_SWDPIO0;
4726 break;
4727 case e1000_82544:
4728 if (hw->media_type == e1000_media_type_fiber) {
4729 /* Set SW Defineable Pin 0 to turn on the LED */
4730 ctrl |= E1000_CTRL_SWDPIN0;
4731 ctrl |= E1000_CTRL_SWDPIO0;
4732 } else {
4733 /* Clear SW Defineable Pin 0 to turn on the LED */
4734 ctrl &= ~E1000_CTRL_SWDPIN0;
4735 ctrl |= E1000_CTRL_SWDPIO0;
4736 }
4737 break;
4738 default:
4739 if (hw->media_type == e1000_media_type_fiber) {
4740 /* Clear SW Defineable Pin 0 to turn on the LED */
4741 ctrl &= ~E1000_CTRL_SWDPIN0;
4742 ctrl |= E1000_CTRL_SWDPIO0;
4743 } else if (hw->media_type == e1000_media_type_copper) {
4744 ew32(LEDCTL, hw->ledctl_mode2);
4745 return E1000_SUCCESS;
4746 }
4747 break;
4748 }
4749
4750 ew32(CTRL, ctrl);
4751
4752 return E1000_SUCCESS;
4753 }
4754
4755 /**
4756 * e1000_led_off - Turns off the software controllable LED
4757 * @hw: Struct containing variables accessed by shared code
4758 */
4759 s32 e1000_led_off(struct e1000_hw *hw)
4760 {
4761 u32 ctrl = er32(CTRL);
4762
4763 e_dbg("e1000_led_off");
4764
4765 switch (hw->mac_type) {
4766 case e1000_82542_rev2_0:
4767 case e1000_82542_rev2_1:
4768 case e1000_82543:
4769 /* Clear SW Defineable Pin 0 to turn off the LED */
4770 ctrl &= ~E1000_CTRL_SWDPIN0;
4771 ctrl |= E1000_CTRL_SWDPIO0;
4772 break;
4773 case e1000_82544:
4774 if (hw->media_type == e1000_media_type_fiber) {
4775 /* Clear SW Defineable Pin 0 to turn off the LED */
4776 ctrl &= ~E1000_CTRL_SWDPIN0;
4777 ctrl |= E1000_CTRL_SWDPIO0;
4778 } else {
4779 /* Set SW Defineable Pin 0 to turn off the LED */
4780 ctrl |= E1000_CTRL_SWDPIN0;
4781 ctrl |= E1000_CTRL_SWDPIO0;
4782 }
4783 break;
4784 default:
4785 if (hw->media_type == e1000_media_type_fiber) {
4786 /* Set SW Defineable Pin 0 to turn off the LED */
4787 ctrl |= E1000_CTRL_SWDPIN0;
4788 ctrl |= E1000_CTRL_SWDPIO0;
4789 } else if (hw->media_type == e1000_media_type_copper) {
4790 ew32(LEDCTL, hw->ledctl_mode1);
4791 return E1000_SUCCESS;
4792 }
4793 break;
4794 }
4795
4796 ew32(CTRL, ctrl);
4797
4798 return E1000_SUCCESS;
4799 }
4800
4801 /**
4802 * e1000_clear_hw_cntrs - Clears all hardware statistics counters.
4803 * @hw: Struct containing variables accessed by shared code
4804 */
4805 static void e1000_clear_hw_cntrs(struct e1000_hw *hw)
4806 {
4807 volatile u32 temp;
4808
4809 temp = er32(CRCERRS);
4810 temp = er32(SYMERRS);
4811 temp = er32(MPC);
4812 temp = er32(SCC);
4813 temp = er32(ECOL);
4814 temp = er32(MCC);
4815 temp = er32(LATECOL);
4816 temp = er32(COLC);
4817 temp = er32(DC);
4818 temp = er32(SEC);
4819 temp = er32(RLEC);
4820 temp = er32(XONRXC);
4821 temp = er32(XONTXC);
4822 temp = er32(XOFFRXC);
4823 temp = er32(XOFFTXC);
4824 temp = er32(FCRUC);
4825
4826 temp = er32(PRC64);
4827 temp = er32(PRC127);
4828 temp = er32(PRC255);
4829 temp = er32(PRC511);
4830 temp = er32(PRC1023);
4831 temp = er32(PRC1522);
4832
4833 temp = er32(GPRC);
4834 temp = er32(BPRC);
4835 temp = er32(MPRC);
4836 temp = er32(GPTC);
4837 temp = er32(GORCL);
4838 temp = er32(GORCH);
4839 temp = er32(GOTCL);
4840 temp = er32(GOTCH);
4841 temp = er32(RNBC);
4842 temp = er32(RUC);
4843 temp = er32(RFC);
4844 temp = er32(ROC);
4845 temp = er32(RJC);
4846 temp = er32(TORL);
4847 temp = er32(TORH);
4848 temp = er32(TOTL);
4849 temp = er32(TOTH);
4850 temp = er32(TPR);
4851 temp = er32(TPT);
4852
4853 temp = er32(PTC64);
4854 temp = er32(PTC127);
4855 temp = er32(PTC255);
4856 temp = er32(PTC511);
4857 temp = er32(PTC1023);
4858 temp = er32(PTC1522);
4859
4860 temp = er32(MPTC);
4861 temp = er32(BPTC);
4862
4863 if (hw->mac_type < e1000_82543)
4864 return;
4865
4866 temp = er32(ALGNERRC);
4867 temp = er32(RXERRC);
4868 temp = er32(TNCRS);
4869 temp = er32(CEXTERR);
4870 temp = er32(TSCTC);
4871 temp = er32(TSCTFC);
4872
4873 if (hw->mac_type <= e1000_82544)
4874 return;
4875
4876 temp = er32(MGTPRC);
4877 temp = er32(MGTPDC);
4878 temp = er32(MGTPTC);
4879 }
4880
4881 /**
4882 * e1000_reset_adaptive - Resets Adaptive IFS to its default state.
4883 * @hw: Struct containing variables accessed by shared code
4884 *
4885 * Call this after e1000_init_hw. You may override the IFS defaults by setting
4886 * hw->ifs_params_forced to true. However, you must initialize hw->
4887 * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio
4888 * before calling this function.
4889 */
4890 void e1000_reset_adaptive(struct e1000_hw *hw)
4891 {
4892 e_dbg("e1000_reset_adaptive");
4893
4894 if (hw->adaptive_ifs) {
4895 if (!hw->ifs_params_forced) {
4896 hw->current_ifs_val = 0;
4897 hw->ifs_min_val = IFS_MIN;
4898 hw->ifs_max_val = IFS_MAX;
4899 hw->ifs_step_size = IFS_STEP;
4900 hw->ifs_ratio = IFS_RATIO;
4901 }
4902 hw->in_ifs_mode = false;
4903 ew32(AIT, 0);
4904 } else {
4905 e_dbg("Not in Adaptive IFS mode!\n");
4906 }
4907 }
4908
4909 /**
4910 * e1000_update_adaptive - update adaptive IFS
4911 * @hw: Struct containing variables accessed by shared code
4912 * @tx_packets: Number of transmits since last callback
4913 * @total_collisions: Number of collisions since last callback
4914 *
4915 * Called during the callback/watchdog routine to update IFS value based on
4916 * the ratio of transmits to collisions.
4917 */
4918 void e1000_update_adaptive(struct e1000_hw *hw)
4919 {
4920 e_dbg("e1000_update_adaptive");
4921
4922 if (hw->adaptive_ifs) {
4923 if ((hw->collision_delta *hw->ifs_ratio) > hw->tx_packet_delta) {
4924 if (hw->tx_packet_delta > MIN_NUM_XMITS) {
4925 hw->in_ifs_mode = true;
4926 if (hw->current_ifs_val < hw->ifs_max_val) {
4927 if (hw->current_ifs_val == 0)
4928 hw->current_ifs_val =
4929 hw->ifs_min_val;
4930 else
4931 hw->current_ifs_val +=
4932 hw->ifs_step_size;
4933 ew32(AIT, hw->current_ifs_val);
4934 }
4935 }
4936 } else {
4937 if (hw->in_ifs_mode
4938 && (hw->tx_packet_delta <= MIN_NUM_XMITS)) {
4939 hw->current_ifs_val = 0;
4940 hw->in_ifs_mode = false;
4941 ew32(AIT, 0);
4942 }
4943 }
4944 } else {
4945 e_dbg("Not in Adaptive IFS mode!\n");
4946 }
4947 }
4948
4949 /**
4950 * e1000_tbi_adjust_stats
4951 * @hw: Struct containing variables accessed by shared code
4952 * @frame_len: The length of the frame in question
4953 * @mac_addr: The Ethernet destination address of the frame in question
4954 *
4955 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4956 */
4957 void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats,
4958 u32 frame_len, u8 *mac_addr)
4959 {
4960 u64 carry_bit;
4961
4962 /* First adjust the frame length. */
4963 frame_len--;
4964 /* We need to adjust the statistics counters, since the hardware
4965 * counters overcount this packet as a CRC error and undercount
4966 * the packet as a good packet
4967 */
4968 /* This packet should not be counted as a CRC error. */
4969 stats->crcerrs--;
4970 /* This packet does count as a Good Packet Received. */
4971 stats->gprc++;
4972
4973 /* Adjust the Good Octets received counters */
4974 carry_bit = 0x80000000 & stats->gorcl;
4975 stats->gorcl += frame_len;
4976 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4977 * Received Count) was one before the addition,
4978 * AND it is zero after, then we lost the carry out,
4979 * need to add one to Gorch (Good Octets Received Count High).
4980 * This could be simplified if all environments supported
4981 * 64-bit integers.
4982 */
4983 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4984 stats->gorch++;
4985 /* Is this a broadcast or multicast? Check broadcast first,
4986 * since the test for a multicast frame will test positive on
4987 * a broadcast frame.
4988 */
4989 if ((mac_addr[0] == (u8) 0xff) && (mac_addr[1] == (u8) 0xff))
4990 /* Broadcast packet */
4991 stats->bprc++;
4992 else if (*mac_addr & 0x01)
4993 /* Multicast packet */
4994 stats->mprc++;
4995
4996 if (frame_len == hw->max_frame_size) {
4997 /* In this case, the hardware has overcounted the number of
4998 * oversize frames.
4999 */
5000 if (stats->roc > 0)
5001 stats->roc--;
5002 }
5003
5004 /* Adjust the bin counters when the extra byte put the frame in the
5005 * wrong bin. Remember that the frame_len was adjusted above.
5006 */
5007 if (frame_len == 64) {
5008 stats->prc64++;
5009 stats->prc127--;
5010 } else if (frame_len == 127) {
5011 stats->prc127++;
5012 stats->prc255--;
5013 } else if (frame_len == 255) {
5014 stats->prc255++;
5015 stats->prc511--;
5016 } else if (frame_len == 511) {
5017 stats->prc511++;
5018 stats->prc1023--;
5019 } else if (frame_len == 1023) {
5020 stats->prc1023++;
5021 stats->prc1522--;
5022 } else if (frame_len == 1522) {
5023 stats->prc1522++;
5024 }
5025 }
5026
5027 /**
5028 * e1000_get_bus_info
5029 * @hw: Struct containing variables accessed by shared code
5030 *
5031 * Gets the current PCI bus type, speed, and width of the hardware
5032 */
5033 void e1000_get_bus_info(struct e1000_hw *hw)
5034 {
5035 u32 status;
5036
5037 switch (hw->mac_type) {
5038 case e1000_82542_rev2_0:
5039 case e1000_82542_rev2_1:
5040 hw->bus_type = e1000_bus_type_pci;
5041 hw->bus_speed = e1000_bus_speed_unknown;
5042 hw->bus_width = e1000_bus_width_unknown;
5043 break;
5044 default:
5045 status = er32(STATUS);
5046 hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ?
5047 e1000_bus_type_pcix : e1000_bus_type_pci;
5048
5049 if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) {
5050 hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ?
5051 e1000_bus_speed_66 : e1000_bus_speed_120;
5052 } else if (hw->bus_type == e1000_bus_type_pci) {
5053 hw->bus_speed = (status & E1000_STATUS_PCI66) ?
5054 e1000_bus_speed_66 : e1000_bus_speed_33;
5055 } else {
5056 switch (status & E1000_STATUS_PCIX_SPEED) {
5057 case E1000_STATUS_PCIX_SPEED_66:
5058 hw->bus_speed = e1000_bus_speed_66;
5059 break;
5060 case E1000_STATUS_PCIX_SPEED_100:
5061 hw->bus_speed = e1000_bus_speed_100;
5062 break;
5063 case E1000_STATUS_PCIX_SPEED_133:
5064 hw->bus_speed = e1000_bus_speed_133;
5065 break;
5066 default:
5067 hw->bus_speed = e1000_bus_speed_reserved;
5068 break;
5069 }
5070 }
5071 hw->bus_width = (status & E1000_STATUS_BUS64) ?
5072 e1000_bus_width_64 : e1000_bus_width_32;
5073 break;
5074 }
5075 }
5076
5077 /**
5078 * e1000_write_reg_io
5079 * @hw: Struct containing variables accessed by shared code
5080 * @offset: offset to write to
5081 * @value: value to write
5082 *
5083 * Writes a value to one of the devices registers using port I/O (as opposed to
5084 * memory mapped I/O). Only 82544 and newer devices support port I/O.
5085 */
5086 static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value)
5087 {
5088 unsigned long io_addr = hw->io_base;
5089 unsigned long io_data = hw->io_base + 4;
5090
5091 e1000_io_write(hw, io_addr, offset);
5092 e1000_io_write(hw, io_data, value);
5093 }
5094
5095 /**
5096 * e1000_get_cable_length - Estimates the cable length.
5097 * @hw: Struct containing variables accessed by shared code
5098 * @min_length: The estimated minimum length
5099 * @max_length: The estimated maximum length
5100 *
5101 * returns: - E1000_ERR_XXX
5102 * E1000_SUCCESS
5103 *
5104 * This function always returns a ranged length (minimum & maximum).
5105 * So for M88 phy's, this function interprets the one value returned from the
5106 * register to the minimum and maximum range.
5107 * For IGP phy's, the function calculates the range by the AGC registers.
5108 */
5109 static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length,
5110 u16 *max_length)
5111 {
5112 s32 ret_val;
5113 u16 agc_value = 0;
5114 u16 i, phy_data;
5115 u16 cable_length;
5116
5117 e_dbg("e1000_get_cable_length");
5118
5119 *min_length = *max_length = 0;
5120
5121 /* Use old method for Phy older than IGP */
5122 if (hw->phy_type == e1000_phy_m88) {
5123
5124 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5125 &phy_data);
5126 if (ret_val)
5127 return ret_val;
5128 cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
5129 M88E1000_PSSR_CABLE_LENGTH_SHIFT;
5130
5131 /* Convert the enum value to ranged values */
5132 switch (cable_length) {
5133 case e1000_cable_length_50:
5134 *min_length = 0;
5135 *max_length = e1000_igp_cable_length_50;
5136 break;
5137 case e1000_cable_length_50_80:
5138 *min_length = e1000_igp_cable_length_50;
5139 *max_length = e1000_igp_cable_length_80;
5140 break;
5141 case e1000_cable_length_80_110:
5142 *min_length = e1000_igp_cable_length_80;
5143 *max_length = e1000_igp_cable_length_110;
5144 break;
5145 case e1000_cable_length_110_140:
5146 *min_length = e1000_igp_cable_length_110;
5147 *max_length = e1000_igp_cable_length_140;
5148 break;
5149 case e1000_cable_length_140:
5150 *min_length = e1000_igp_cable_length_140;
5151 *max_length = e1000_igp_cable_length_170;
5152 break;
5153 default:
5154 return -E1000_ERR_PHY;
5155 break;
5156 }
5157 } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */
5158 u16 cur_agc_value;
5159 u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE;
5160 static const u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5161 IGP01E1000_PHY_AGC_A,
5162 IGP01E1000_PHY_AGC_B,
5163 IGP01E1000_PHY_AGC_C,
5164 IGP01E1000_PHY_AGC_D
5165 };
5166 /* Read the AGC registers for all channels */
5167 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5168
5169 ret_val =
5170 e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data);
5171 if (ret_val)
5172 return ret_val;
5173
5174 cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT;
5175
5176 /* Value bound check. */
5177 if ((cur_agc_value >=
5178 IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1)
5179 || (cur_agc_value == 0))
5180 return -E1000_ERR_PHY;
5181
5182 agc_value += cur_agc_value;
5183
5184 /* Update minimal AGC value. */
5185 if (min_agc_value > cur_agc_value)
5186 min_agc_value = cur_agc_value;
5187 }
5188
5189 /* Remove the minimal AGC result for length < 50m */
5190 if (agc_value <
5191 IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) {
5192 agc_value -= min_agc_value;
5193
5194 /* Get the average length of the remaining 3 channels */
5195 agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1);
5196 } else {
5197 /* Get the average length of all the 4 channels. */
5198 agc_value /= IGP01E1000_PHY_CHANNEL_NUM;
5199 }
5200
5201 /* Set the range of the calculated length. */
5202 *min_length = ((e1000_igp_cable_length_table[agc_value] -
5203 IGP01E1000_AGC_RANGE) > 0) ?
5204 (e1000_igp_cable_length_table[agc_value] -
5205 IGP01E1000_AGC_RANGE) : 0;
5206 *max_length = e1000_igp_cable_length_table[agc_value] +
5207 IGP01E1000_AGC_RANGE;
5208 }
5209
5210 return E1000_SUCCESS;
5211 }
5212
5213 /**
5214 * e1000_check_polarity - Check the cable polarity
5215 * @hw: Struct containing variables accessed by shared code
5216 * @polarity: output parameter : 0 - Polarity is not reversed
5217 * 1 - Polarity is reversed.
5218 *
5219 * returns: - E1000_ERR_XXX
5220 * E1000_SUCCESS
5221 *
5222 * For phy's older than IGP, this function simply reads the polarity bit in the
5223 * Phy Status register. For IGP phy's, this bit is valid only if link speed is
5224 * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will
5225 * return 0. If the link speed is 1000 Mbps the polarity status is in the
5226 * IGP01E1000_PHY_PCS_INIT_REG.
5227 */
5228 static s32 e1000_check_polarity(struct e1000_hw *hw,
5229 e1000_rev_polarity *polarity)
5230 {
5231 s32 ret_val;
5232 u16 phy_data;
5233
5234 e_dbg("e1000_check_polarity");
5235
5236 if (hw->phy_type == e1000_phy_m88) {
5237 /* return the Polarity bit in the Status register. */
5238 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5239 &phy_data);
5240 if (ret_val)
5241 return ret_val;
5242 *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >>
5243 M88E1000_PSSR_REV_POLARITY_SHIFT) ?
5244 e1000_rev_polarity_reversed : e1000_rev_polarity_normal;
5245
5246 } else if (hw->phy_type == e1000_phy_igp) {
5247 /* Read the Status register to check the speed */
5248 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
5249 &phy_data);
5250 if (ret_val)
5251 return ret_val;
5252
5253 /* If speed is 1000 Mbps, must read the
5254 * IGP01E1000_PHY_PCS_INIT_REG to find the polarity status
5255 */
5256 if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
5257 IGP01E1000_PSSR_SPEED_1000MBPS) {
5258
5259 /* Read the GIG initialization PCS register (0x00B4) */
5260 ret_val =
5261 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG,
5262 &phy_data);
5263 if (ret_val)
5264 return ret_val;
5265
5266 /* Check the polarity bits */
5267 *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ?
5268 e1000_rev_polarity_reversed :
5269 e1000_rev_polarity_normal;
5270 } else {
5271 /* For 10 Mbps, read the polarity bit in the status
5272 * register. (for 100 Mbps this bit is always 0)
5273 */
5274 *polarity =
5275 (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ?
5276 e1000_rev_polarity_reversed :
5277 e1000_rev_polarity_normal;
5278 }
5279 }
5280 return E1000_SUCCESS;
5281 }
5282
5283 /**
5284 * e1000_check_downshift - Check if Downshift occurred
5285 * @hw: Struct containing variables accessed by shared code
5286 * @downshift: output parameter : 0 - No Downshift occurred.
5287 * 1 - Downshift occurred.
5288 *
5289 * returns: - E1000_ERR_XXX
5290 * E1000_SUCCESS
5291 *
5292 * For phy's older than IGP, this function reads the Downshift bit in the Phy
5293 * Specific Status register. For IGP phy's, it reads the Downgrade bit in the
5294 * Link Health register. In IGP this bit is latched high, so the driver must
5295 * read it immediately after link is established.
5296 */
5297 static s32 e1000_check_downshift(struct e1000_hw *hw)
5298 {
5299 s32 ret_val;
5300 u16 phy_data;
5301
5302 e_dbg("e1000_check_downshift");
5303
5304 if (hw->phy_type == e1000_phy_igp) {
5305 ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH,
5306 &phy_data);
5307 if (ret_val)
5308 return ret_val;
5309
5310 hw->speed_downgraded =
5311 (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0;
5312 } else if (hw->phy_type == e1000_phy_m88) {
5313 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
5314 &phy_data);
5315 if (ret_val)
5316 return ret_val;
5317
5318 hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >>
5319 M88E1000_PSSR_DOWNSHIFT_SHIFT;
5320 }
5321
5322 return E1000_SUCCESS;
5323 }
5324
5325 static const u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = {
5326 IGP01E1000_PHY_AGC_PARAM_A,
5327 IGP01E1000_PHY_AGC_PARAM_B,
5328 IGP01E1000_PHY_AGC_PARAM_C,
5329 IGP01E1000_PHY_AGC_PARAM_D
5330 };
5331
5332 static s32 e1000_1000Mb_check_cable_length(struct e1000_hw *hw)
5333 {
5334 u16 min_length, max_length;
5335 u16 phy_data, i;
5336 s32 ret_val;
5337
5338 ret_val = e1000_get_cable_length(hw, &min_length, &max_length);
5339 if (ret_val)
5340 return ret_val;
5341
5342 if (hw->dsp_config_state != e1000_dsp_config_enabled)
5343 return 0;
5344
5345 if (min_length >= e1000_igp_cable_length_50) {
5346 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5347 ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i],
5348 &phy_data);
5349 if (ret_val)
5350 return ret_val;
5351
5352 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5353
5354 ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i],
5355 phy_data);
5356 if (ret_val)
5357 return ret_val;
5358 }
5359 hw->dsp_config_state = e1000_dsp_config_activated;
5360 } else {
5361 u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20;
5362 u32 idle_errs = 0;
5363
5364 /* clear previous idle error counts */
5365 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
5366 if (ret_val)
5367 return ret_val;
5368
5369 for (i = 0; i < ffe_idle_err_timeout; i++) {
5370 udelay(1000);
5371 ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS,
5372 &phy_data);
5373 if (ret_val)
5374 return ret_val;
5375
5376 idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT);
5377 if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) {
5378 hw->ffe_config_state = e1000_ffe_config_active;
5379
5380 ret_val = e1000_write_phy_reg(hw,
5381 IGP01E1000_PHY_DSP_FFE,
5382 IGP01E1000_PHY_DSP_FFE_CM_CP);
5383 if (ret_val)
5384 return ret_val;
5385 break;
5386 }
5387
5388 if (idle_errs)
5389 ffe_idle_err_timeout =
5390 FFE_IDLE_ERR_COUNT_TIMEOUT_100;
5391 }
5392 }
5393
5394 return 0;
5395 }
5396
5397 /**
5398 * e1000_config_dsp_after_link_change
5399 * @hw: Struct containing variables accessed by shared code
5400 * @link_up: was link up at the time this was called
5401 *
5402 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5403 * E1000_SUCCESS at any other case.
5404 *
5405 * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a
5406 * gigabit link is achieved to improve link quality.
5407 */
5408
5409 static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up)
5410 {
5411 s32 ret_val;
5412 u16 phy_data, phy_saved_data, speed, duplex, i;
5413
5414 e_dbg("e1000_config_dsp_after_link_change");
5415
5416 if (hw->phy_type != e1000_phy_igp)
5417 return E1000_SUCCESS;
5418
5419 if (link_up) {
5420 ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex);
5421 if (ret_val) {
5422 e_dbg("Error getting link speed and duplex\n");
5423 return ret_val;
5424 }
5425
5426 if (speed == SPEED_1000) {
5427 ret_val = e1000_1000Mb_check_cable_length(hw);
5428 if (ret_val)
5429 return ret_val;
5430 }
5431 } else {
5432 if (hw->dsp_config_state == e1000_dsp_config_activated) {
5433 /* Save off the current value of register 0x2F5B to be
5434 * restored at the end of the routines.
5435 */
5436 ret_val =
5437 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5438
5439 if (ret_val)
5440 return ret_val;
5441
5442 /* Disable the PHY transmitter */
5443 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5444
5445 if (ret_val)
5446 return ret_val;
5447
5448 msleep(20);
5449
5450 ret_val = e1000_write_phy_reg(hw, 0x0000,
5451 IGP01E1000_IEEE_FORCE_GIGA);
5452 if (ret_val)
5453 return ret_val;
5454 for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) {
5455 ret_val =
5456 e1000_read_phy_reg(hw, dsp_reg_array[i],
5457 &phy_data);
5458 if (ret_val)
5459 return ret_val;
5460
5461 phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX;
5462 phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS;
5463
5464 ret_val =
5465 e1000_write_phy_reg(hw, dsp_reg_array[i],
5466 phy_data);
5467 if (ret_val)
5468 return ret_val;
5469 }
5470
5471 ret_val = e1000_write_phy_reg(hw, 0x0000,
5472 IGP01E1000_IEEE_RESTART_AUTONEG);
5473 if (ret_val)
5474 return ret_val;
5475
5476 msleep(20);
5477
5478 /* Now enable the transmitter */
5479 ret_val =
5480 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5481
5482 if (ret_val)
5483 return ret_val;
5484
5485 hw->dsp_config_state = e1000_dsp_config_enabled;
5486 }
5487
5488 if (hw->ffe_config_state == e1000_ffe_config_active) {
5489 /* Save off the current value of register 0x2F5B to be
5490 * restored at the end of the routines.
5491 */
5492 ret_val =
5493 e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data);
5494
5495 if (ret_val)
5496 return ret_val;
5497
5498 /* Disable the PHY transmitter */
5499 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);
5500
5501 if (ret_val)
5502 return ret_val;
5503
5504 msleep(20);
5505
5506 ret_val = e1000_write_phy_reg(hw, 0x0000,
5507 IGP01E1000_IEEE_FORCE_GIGA);
5508 if (ret_val)
5509 return ret_val;
5510 ret_val =
5511 e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE,
5512 IGP01E1000_PHY_DSP_FFE_DEFAULT);
5513 if (ret_val)
5514 return ret_val;
5515
5516 ret_val = e1000_write_phy_reg(hw, 0x0000,
5517 IGP01E1000_IEEE_RESTART_AUTONEG);
5518 if (ret_val)
5519 return ret_val;
5520
5521 msleep(20);
5522
5523 /* Now enable the transmitter */
5524 ret_val =
5525 e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data);
5526
5527 if (ret_val)
5528 return ret_val;
5529
5530 hw->ffe_config_state = e1000_ffe_config_enabled;
5531 }
5532 }
5533 return E1000_SUCCESS;
5534 }
5535
5536 /**
5537 * e1000_set_phy_mode - Set PHY to class A mode
5538 * @hw: Struct containing variables accessed by shared code
5539 *
5540 * Assumes the following operations will follow to enable the new class mode.
5541 * 1. Do a PHY soft reset
5542 * 2. Restart auto-negotiation or force link.
5543 */
5544 static s32 e1000_set_phy_mode(struct e1000_hw *hw)
5545 {
5546 s32 ret_val;
5547 u16 eeprom_data;
5548
5549 e_dbg("e1000_set_phy_mode");
5550
5551 if ((hw->mac_type == e1000_82545_rev_3) &&
5552 (hw->media_type == e1000_media_type_copper)) {
5553 ret_val =
5554 e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1,
5555 &eeprom_data);
5556 if (ret_val) {
5557 return ret_val;
5558 }
5559
5560 if ((eeprom_data != EEPROM_RESERVED_WORD) &&
5561 (eeprom_data & EEPROM_PHY_CLASS_A)) {
5562 ret_val =
5563 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT,
5564 0x000B);
5565 if (ret_val)
5566 return ret_val;
5567 ret_val =
5568 e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL,
5569 0x8104);
5570 if (ret_val)
5571 return ret_val;
5572
5573 hw->phy_reset_disable = false;
5574 }
5575 }
5576
5577 return E1000_SUCCESS;
5578 }
5579
5580 /**
5581 * e1000_set_d3_lplu_state - set d3 link power state
5582 * @hw: Struct containing variables accessed by shared code
5583 * @active: true to enable lplu false to disable lplu.
5584 *
5585 * This function sets the lplu state according to the active flag. When
5586 * activating lplu this function also disables smart speed and vise versa.
5587 * lplu will not be activated unless the device autonegotiation advertisement
5588 * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes.
5589 *
5590 * returns: - E1000_ERR_PHY if fail to read/write the PHY
5591 * E1000_SUCCESS at any other case.
5592 */
5593 static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active)
5594 {
5595 s32 ret_val;
5596 u16 phy_data;
5597 e_dbg("e1000_set_d3_lplu_state");
5598
5599 if (hw->phy_type != e1000_phy_igp)
5600 return E1000_SUCCESS;
5601
5602 /* During driver activity LPLU should not be used or it will attain link
5603 * from the lowest speeds starting from 10Mbps. The capability is used
5604 * for Dx transitions and states
5605 */
5606 if (hw->mac_type == e1000_82541_rev_2
5607 || hw->mac_type == e1000_82547_rev_2) {
5608 ret_val =
5609 e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data);
5610 if (ret_val)
5611 return ret_val;
5612 }
5613
5614 if (!active) {
5615 if (hw->mac_type == e1000_82541_rev_2 ||
5616 hw->mac_type == e1000_82547_rev_2) {
5617 phy_data &= ~IGP01E1000_GMII_FLEX_SPD;
5618 ret_val =
5619 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5620 phy_data);
5621 if (ret_val)
5622 return ret_val;
5623 }
5624
5625 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
5626 * during Dx states where the power conservation is most
5627 * important. During driver activity we should enable
5628 * SmartSpeed, so performance is maintained.
5629 */
5630 if (hw->smart_speed == e1000_smart_speed_on) {
5631 ret_val =
5632 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5633 &phy_data);
5634 if (ret_val)
5635 return ret_val;
5636
5637 phy_data |= IGP01E1000_PSCFR_SMART_SPEED;
5638 ret_val =
5639 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5640 phy_data);
5641 if (ret_val)
5642 return ret_val;
5643 } else if (hw->smart_speed == e1000_smart_speed_off) {
5644 ret_val =
5645 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5646 &phy_data);
5647 if (ret_val)
5648 return ret_val;
5649
5650 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5651 ret_val =
5652 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5653 phy_data);
5654 if (ret_val)
5655 return ret_val;
5656 }
5657 } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT)
5658 || (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL)
5659 || (hw->autoneg_advertised ==
5660 AUTONEG_ADVERTISE_10_100_ALL)) {
5661
5662 if (hw->mac_type == e1000_82541_rev_2 ||
5663 hw->mac_type == e1000_82547_rev_2) {
5664 phy_data |= IGP01E1000_GMII_FLEX_SPD;
5665 ret_val =
5666 e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO,
5667 phy_data);
5668 if (ret_val)
5669 return ret_val;
5670 }
5671
5672 /* When LPLU is enabled we should disable SmartSpeed */
5673 ret_val =
5674 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5675 &phy_data);
5676 if (ret_val)
5677 return ret_val;
5678
5679 phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
5680 ret_val =
5681 e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
5682 phy_data);
5683 if (ret_val)
5684 return ret_val;
5685
5686 }
5687 return E1000_SUCCESS;
5688 }
5689
5690 /**
5691 * e1000_set_vco_speed
5692 * @hw: Struct containing variables accessed by shared code
5693 *
5694 * Change VCO speed register to improve Bit Error Rate performance of SERDES.
5695 */
5696 static s32 e1000_set_vco_speed(struct e1000_hw *hw)
5697 {
5698 s32 ret_val;
5699 u16 default_page = 0;
5700 u16 phy_data;
5701
5702 e_dbg("e1000_set_vco_speed");
5703
5704 switch (hw->mac_type) {
5705 case e1000_82545_rev_3:
5706 case e1000_82546_rev_3:
5707 break;
5708 default:
5709 return E1000_SUCCESS;
5710 }
5711
5712 /* Set PHY register 30, page 5, bit 8 to 0 */
5713
5714 ret_val =
5715 e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page);
5716 if (ret_val)
5717 return ret_val;
5718
5719 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005);
5720 if (ret_val)
5721 return ret_val;
5722
5723 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5724 if (ret_val)
5725 return ret_val;
5726
5727 phy_data &= ~M88E1000_PHY_VCO_REG_BIT8;
5728 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5729 if (ret_val)
5730 return ret_val;
5731
5732 /* Set PHY register 30, page 4, bit 11 to 1 */
5733
5734 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004);
5735 if (ret_val)
5736 return ret_val;
5737
5738 ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data);
5739 if (ret_val)
5740 return ret_val;
5741
5742 phy_data |= M88E1000_PHY_VCO_REG_BIT11;
5743 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data);
5744 if (ret_val)
5745 return ret_val;
5746
5747 ret_val =
5748 e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page);
5749 if (ret_val)
5750 return ret_val;
5751
5752 return E1000_SUCCESS;
5753 }
5754
5755
5756 /**
5757 * e1000_enable_mng_pass_thru - check for bmc pass through
5758 * @hw: Struct containing variables accessed by shared code
5759 *
5760 * Verifies the hardware needs to allow ARPs to be processed by the host
5761 * returns: - true/false
5762 */
5763 u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw)
5764 {
5765 u32 manc;
5766
5767 if (hw->asf_firmware_present) {
5768 manc = er32(MANC);
5769
5770 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
5771 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
5772 return false;
5773 if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN))
5774 return true;
5775 }
5776 return false;
5777 }
5778
5779 static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw)
5780 {
5781 s32 ret_val;
5782 u16 mii_status_reg;
5783 u16 i;
5784
5785 /* Polarity reversal workaround for forced 10F/10H links. */
5786
5787 /* Disable the transmitter on the PHY */
5788
5789 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5790 if (ret_val)
5791 return ret_val;
5792 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF);
5793 if (ret_val)
5794 return ret_val;
5795
5796 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5797 if (ret_val)
5798 return ret_val;
5799
5800 /* This loop will early-out if the NO link condition has been met. */
5801 for (i = PHY_FORCE_TIME; i > 0; i--) {
5802 /* Read the MII Status Register and wait for Link Status bit
5803 * to be clear.
5804 */
5805
5806 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5807 if (ret_val)
5808 return ret_val;
5809
5810 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5811 if (ret_val)
5812 return ret_val;
5813
5814 if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0)
5815 break;
5816 msleep(100);
5817 }
5818
5819 /* Recommended delay time after link has been lost */
5820 msleep(1000);
5821
5822 /* Now we will re-enable th transmitter on the PHY */
5823
5824 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019);
5825 if (ret_val)
5826 return ret_val;
5827 msleep(50);
5828 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0);
5829 if (ret_val)
5830 return ret_val;
5831 msleep(50);
5832 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00);
5833 if (ret_val)
5834 return ret_val;
5835 msleep(50);
5836 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000);
5837 if (ret_val)
5838 return ret_val;
5839
5840 ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000);
5841 if (ret_val)
5842 return ret_val;
5843
5844 /* This loop will early-out if the link condition has been met. */
5845 for (i = PHY_FORCE_TIME; i > 0; i--) {
5846 /* Read the MII Status Register and wait for Link Status bit
5847 * to be set.
5848 */
5849
5850 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5851 if (ret_val)
5852 return ret_val;
5853
5854 ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg);
5855 if (ret_val)
5856 return ret_val;
5857
5858 if (mii_status_reg & MII_SR_LINK_STATUS)
5859 break;
5860 msleep(100);
5861 }
5862 return E1000_SUCCESS;
5863 }
5864
5865 /**
5866 * e1000_get_auto_rd_done
5867 * @hw: Struct containing variables accessed by shared code
5868 *
5869 * Check for EEPROM Auto Read bit done.
5870 * returns: - E1000_ERR_RESET if fail to reset MAC
5871 * E1000_SUCCESS at any other case.
5872 */
5873 static s32 e1000_get_auto_rd_done(struct e1000_hw *hw)
5874 {
5875 e_dbg("e1000_get_auto_rd_done");
5876 msleep(5);
5877 return E1000_SUCCESS;
5878 }
5879
5880 /**
5881 * e1000_get_phy_cfg_done
5882 * @hw: Struct containing variables accessed by shared code
5883 *
5884 * Checks if the PHY configuration is done
5885 * returns: - E1000_ERR_RESET if fail to reset MAC
5886 * E1000_SUCCESS at any other case.
5887 */
5888 static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw)
5889 {
5890 e_dbg("e1000_get_phy_cfg_done");
5891 msleep(10);
5892 return E1000_SUCCESS;
5893 }
This page took 0.213119 seconds and 5 git commands to generate.