net: vlan: rename NETIF_F_HW_VLAN_* feature flags to NETIF_F_HW_VLAN_CTAG_*
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static const struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = e1000_remove,
206 #ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210 #endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234 }
235
236 /**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242 static int __init e1000_init_module(void)
243 {
244 int ret;
245 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
246
247 pr_info("%s\n", e1000_copyright);
248
249 ret = pci_register_driver(&e1000_driver);
250 if (copybreak != COPYBREAK_DEFAULT) {
251 if (copybreak == 0)
252 pr_info("copybreak disabled\n");
253 else
254 pr_info("copybreak enabled for "
255 "packets <= %u bytes\n", copybreak);
256 }
257 return ret;
258 }
259
260 module_init(e1000_init_module);
261
262 /**
263 * e1000_exit_module - Driver Exit Cleanup Routine
264 *
265 * e1000_exit_module is called just before the driver is removed
266 * from memory.
267 **/
268 static void __exit e1000_exit_module(void)
269 {
270 pci_unregister_driver(&e1000_driver);
271 }
272
273 module_exit(e1000_exit_module);
274
275 static int e1000_request_irq(struct e1000_adapter *adapter)
276 {
277 struct net_device *netdev = adapter->netdev;
278 irq_handler_t handler = e1000_intr;
279 int irq_flags = IRQF_SHARED;
280 int err;
281
282 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
283 netdev);
284 if (err) {
285 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
286 }
287
288 return err;
289 }
290
291 static void e1000_free_irq(struct e1000_adapter *adapter)
292 {
293 struct net_device *netdev = adapter->netdev;
294
295 free_irq(adapter->pdev->irq, netdev);
296 }
297
298 /**
299 * e1000_irq_disable - Mask off interrupt generation on the NIC
300 * @adapter: board private structure
301 **/
302 static void e1000_irq_disable(struct e1000_adapter *adapter)
303 {
304 struct e1000_hw *hw = &adapter->hw;
305
306 ew32(IMC, ~0);
307 E1000_WRITE_FLUSH();
308 synchronize_irq(adapter->pdev->irq);
309 }
310
311 /**
312 * e1000_irq_enable - Enable default interrupt generation settings
313 * @adapter: board private structure
314 **/
315 static void e1000_irq_enable(struct e1000_adapter *adapter)
316 {
317 struct e1000_hw *hw = &adapter->hw;
318
319 ew32(IMS, IMS_ENABLE_MASK);
320 E1000_WRITE_FLUSH();
321 }
322
323 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
324 {
325 struct e1000_hw *hw = &adapter->hw;
326 struct net_device *netdev = adapter->netdev;
327 u16 vid = hw->mng_cookie.vlan_id;
328 u16 old_vid = adapter->mng_vlan_id;
329
330 if (!e1000_vlan_used(adapter))
331 return;
332
333 if (!test_bit(vid, adapter->active_vlans)) {
334 if (hw->mng_cookie.status &
335 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
336 e1000_vlan_rx_add_vid(netdev, vid);
337 adapter->mng_vlan_id = vid;
338 } else {
339 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
340 }
341 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
342 (vid != old_vid) &&
343 !test_bit(old_vid, adapter->active_vlans))
344 e1000_vlan_rx_kill_vid(netdev, old_vid);
345 } else {
346 adapter->mng_vlan_id = vid;
347 }
348 }
349
350 static void e1000_init_manageability(struct e1000_adapter *adapter)
351 {
352 struct e1000_hw *hw = &adapter->hw;
353
354 if (adapter->en_mng_pt) {
355 u32 manc = er32(MANC);
356
357 /* disable hardware interception of ARP */
358 manc &= ~(E1000_MANC_ARP_EN);
359
360 ew32(MANC, manc);
361 }
362 }
363
364 static void e1000_release_manageability(struct e1000_adapter *adapter)
365 {
366 struct e1000_hw *hw = &adapter->hw;
367
368 if (adapter->en_mng_pt) {
369 u32 manc = er32(MANC);
370
371 /* re-enable hardware interception of ARP */
372 manc |= E1000_MANC_ARP_EN;
373
374 ew32(MANC, manc);
375 }
376 }
377
378 /**
379 * e1000_configure - configure the hardware for RX and TX
380 * @adapter = private board structure
381 **/
382 static void e1000_configure(struct e1000_adapter *adapter)
383 {
384 struct net_device *netdev = adapter->netdev;
385 int i;
386
387 e1000_set_rx_mode(netdev);
388
389 e1000_restore_vlan(adapter);
390 e1000_init_manageability(adapter);
391
392 e1000_configure_tx(adapter);
393 e1000_setup_rctl(adapter);
394 e1000_configure_rx(adapter);
395 /* call E1000_DESC_UNUSED which always leaves
396 * at least 1 descriptor unused to make sure
397 * next_to_use != next_to_clean
398 */
399 for (i = 0; i < adapter->num_rx_queues; i++) {
400 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
401 adapter->alloc_rx_buf(adapter, ring,
402 E1000_DESC_UNUSED(ring));
403 }
404 }
405
406 int e1000_up(struct e1000_adapter *adapter)
407 {
408 struct e1000_hw *hw = &adapter->hw;
409
410 /* hardware has been reset, we need to reload some things */
411 e1000_configure(adapter);
412
413 clear_bit(__E1000_DOWN, &adapter->flags);
414
415 napi_enable(&adapter->napi);
416
417 e1000_irq_enable(adapter);
418
419 netif_wake_queue(adapter->netdev);
420
421 /* fire a link change interrupt to start the watchdog */
422 ew32(ICS, E1000_ICS_LSC);
423 return 0;
424 }
425
426 /**
427 * e1000_power_up_phy - restore link in case the phy was powered down
428 * @adapter: address of board private structure
429 *
430 * The phy may be powered down to save power and turn off link when the
431 * driver is unloaded and wake on lan is not enabled (among others)
432 * *** this routine MUST be followed by a call to e1000_reset ***
433 **/
434 void e1000_power_up_phy(struct e1000_adapter *adapter)
435 {
436 struct e1000_hw *hw = &adapter->hw;
437 u16 mii_reg = 0;
438
439 /* Just clear the power down bit to wake the phy back up */
440 if (hw->media_type == e1000_media_type_copper) {
441 /* according to the manual, the phy will retain its
442 * settings across a power-down/up cycle
443 */
444 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
445 mii_reg &= ~MII_CR_POWER_DOWN;
446 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
447 }
448 }
449
450 static void e1000_power_down_phy(struct e1000_adapter *adapter)
451 {
452 struct e1000_hw *hw = &adapter->hw;
453
454 /* Power down the PHY so no link is implied when interface is down *
455 * The PHY cannot be powered down if any of the following is true *
456 * (a) WoL is enabled
457 * (b) AMT is active
458 * (c) SoL/IDER session is active
459 */
460 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
461 hw->media_type == e1000_media_type_copper) {
462 u16 mii_reg = 0;
463
464 switch (hw->mac_type) {
465 case e1000_82540:
466 case e1000_82545:
467 case e1000_82545_rev_3:
468 case e1000_82546:
469 case e1000_ce4100:
470 case e1000_82546_rev_3:
471 case e1000_82541:
472 case e1000_82541_rev_2:
473 case e1000_82547:
474 case e1000_82547_rev_2:
475 if (er32(MANC) & E1000_MANC_SMBUS_EN)
476 goto out;
477 break;
478 default:
479 goto out;
480 }
481 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
482 mii_reg |= MII_CR_POWER_DOWN;
483 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
484 msleep(1);
485 }
486 out:
487 return;
488 }
489
490 static void e1000_down_and_stop(struct e1000_adapter *adapter)
491 {
492 set_bit(__E1000_DOWN, &adapter->flags);
493
494 /* Only kill reset task if adapter is not resetting */
495 if (!test_bit(__E1000_RESETTING, &adapter->flags))
496 cancel_work_sync(&adapter->reset_task);
497
498 cancel_delayed_work_sync(&adapter->watchdog_task);
499 cancel_delayed_work_sync(&adapter->phy_info_task);
500 cancel_delayed_work_sync(&adapter->fifo_stall_task);
501 }
502
503 void e1000_down(struct e1000_adapter *adapter)
504 {
505 struct e1000_hw *hw = &adapter->hw;
506 struct net_device *netdev = adapter->netdev;
507 u32 rctl, tctl;
508
509
510 /* disable receives in the hardware */
511 rctl = er32(RCTL);
512 ew32(RCTL, rctl & ~E1000_RCTL_EN);
513 /* flush and sleep below */
514
515 netif_tx_disable(netdev);
516
517 /* disable transmits in the hardware */
518 tctl = er32(TCTL);
519 tctl &= ~E1000_TCTL_EN;
520 ew32(TCTL, tctl);
521 /* flush both disables and wait for them to finish */
522 E1000_WRITE_FLUSH();
523 msleep(10);
524
525 napi_disable(&adapter->napi);
526
527 e1000_irq_disable(adapter);
528
529 /* Setting DOWN must be after irq_disable to prevent
530 * a screaming interrupt. Setting DOWN also prevents
531 * tasks from rescheduling.
532 */
533 e1000_down_and_stop(adapter);
534
535 adapter->link_speed = 0;
536 adapter->link_duplex = 0;
537 netif_carrier_off(netdev);
538
539 e1000_reset(adapter);
540 e1000_clean_all_tx_rings(adapter);
541 e1000_clean_all_rx_rings(adapter);
542 }
543
544 static void e1000_reinit_safe(struct e1000_adapter *adapter)
545 {
546 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
547 msleep(1);
548 mutex_lock(&adapter->mutex);
549 e1000_down(adapter);
550 e1000_up(adapter);
551 mutex_unlock(&adapter->mutex);
552 clear_bit(__E1000_RESETTING, &adapter->flags);
553 }
554
555 void e1000_reinit_locked(struct e1000_adapter *adapter)
556 {
557 /* if rtnl_lock is not held the call path is bogus */
558 ASSERT_RTNL();
559 WARN_ON(in_interrupt());
560 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
561 msleep(1);
562 e1000_down(adapter);
563 e1000_up(adapter);
564 clear_bit(__E1000_RESETTING, &adapter->flags);
565 }
566
567 void e1000_reset(struct e1000_adapter *adapter)
568 {
569 struct e1000_hw *hw = &adapter->hw;
570 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
571 bool legacy_pba_adjust = false;
572 u16 hwm;
573
574 /* Repartition Pba for greater than 9k mtu
575 * To take effect CTRL.RST is required.
576 */
577
578 switch (hw->mac_type) {
579 case e1000_82542_rev2_0:
580 case e1000_82542_rev2_1:
581 case e1000_82543:
582 case e1000_82544:
583 case e1000_82540:
584 case e1000_82541:
585 case e1000_82541_rev_2:
586 legacy_pba_adjust = true;
587 pba = E1000_PBA_48K;
588 break;
589 case e1000_82545:
590 case e1000_82545_rev_3:
591 case e1000_82546:
592 case e1000_ce4100:
593 case e1000_82546_rev_3:
594 pba = E1000_PBA_48K;
595 break;
596 case e1000_82547:
597 case e1000_82547_rev_2:
598 legacy_pba_adjust = true;
599 pba = E1000_PBA_30K;
600 break;
601 case e1000_undefined:
602 case e1000_num_macs:
603 break;
604 }
605
606 if (legacy_pba_adjust) {
607 if (hw->max_frame_size > E1000_RXBUFFER_8192)
608 pba -= 8; /* allocate more FIFO for Tx */
609
610 if (hw->mac_type == e1000_82547) {
611 adapter->tx_fifo_head = 0;
612 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
613 adapter->tx_fifo_size =
614 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
615 atomic_set(&adapter->tx_fifo_stall, 0);
616 }
617 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
618 /* adjust PBA for jumbo frames */
619 ew32(PBA, pba);
620
621 /* To maintain wire speed transmits, the Tx FIFO should be
622 * large enough to accommodate two full transmit packets,
623 * rounded up to the next 1KB and expressed in KB. Likewise,
624 * the Rx FIFO should be large enough to accommodate at least
625 * one full receive packet and is similarly rounded up and
626 * expressed in KB.
627 */
628 pba = er32(PBA);
629 /* upper 16 bits has Tx packet buffer allocation size in KB */
630 tx_space = pba >> 16;
631 /* lower 16 bits has Rx packet buffer allocation size in KB */
632 pba &= 0xffff;
633 /* the Tx fifo also stores 16 bytes of information about the Tx
634 * but don't include ethernet FCS because hardware appends it
635 */
636 min_tx_space = (hw->max_frame_size +
637 sizeof(struct e1000_tx_desc) -
638 ETH_FCS_LEN) * 2;
639 min_tx_space = ALIGN(min_tx_space, 1024);
640 min_tx_space >>= 10;
641 /* software strips receive CRC, so leave room for it */
642 min_rx_space = hw->max_frame_size;
643 min_rx_space = ALIGN(min_rx_space, 1024);
644 min_rx_space >>= 10;
645
646 /* If current Tx allocation is less than the min Tx FIFO size,
647 * and the min Tx FIFO size is less than the current Rx FIFO
648 * allocation, take space away from current Rx allocation
649 */
650 if (tx_space < min_tx_space &&
651 ((min_tx_space - tx_space) < pba)) {
652 pba = pba - (min_tx_space - tx_space);
653
654 /* PCI/PCIx hardware has PBA alignment constraints */
655 switch (hw->mac_type) {
656 case e1000_82545 ... e1000_82546_rev_3:
657 pba &= ~(E1000_PBA_8K - 1);
658 break;
659 default:
660 break;
661 }
662
663 /* if short on Rx space, Rx wins and must trump Tx
664 * adjustment or use Early Receive if available
665 */
666 if (pba < min_rx_space)
667 pba = min_rx_space;
668 }
669 }
670
671 ew32(PBA, pba);
672
673 /* flow control settings:
674 * The high water mark must be low enough to fit one full frame
675 * (or the size used for early receive) above it in the Rx FIFO.
676 * Set it to the lower of:
677 * - 90% of the Rx FIFO size, and
678 * - the full Rx FIFO size minus the early receive size (for parts
679 * with ERT support assuming ERT set to E1000_ERT_2048), or
680 * - the full Rx FIFO size minus one full frame
681 */
682 hwm = min(((pba << 10) * 9 / 10),
683 ((pba << 10) - hw->max_frame_size));
684
685 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
686 hw->fc_low_water = hw->fc_high_water - 8;
687 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
688 hw->fc_send_xon = 1;
689 hw->fc = hw->original_fc;
690
691 /* Allow time for pending master requests to run */
692 e1000_reset_hw(hw);
693 if (hw->mac_type >= e1000_82544)
694 ew32(WUC, 0);
695
696 if (e1000_init_hw(hw))
697 e_dev_err("Hardware Error\n");
698 e1000_update_mng_vlan(adapter);
699
700 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
701 if (hw->mac_type >= e1000_82544 &&
702 hw->autoneg == 1 &&
703 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
704 u32 ctrl = er32(CTRL);
705 /* clear phy power management bit if we are in gig only mode,
706 * which if enabled will attempt negotiation to 100Mb, which
707 * can cause a loss of link at power off or driver unload
708 */
709 ctrl &= ~E1000_CTRL_SWDPIN3;
710 ew32(CTRL, ctrl);
711 }
712
713 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
714 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
715
716 e1000_reset_adaptive(hw);
717 e1000_phy_get_info(hw, &adapter->phy_info);
718
719 e1000_release_manageability(adapter);
720 }
721
722 /* Dump the eeprom for users having checksum issues */
723 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
724 {
725 struct net_device *netdev = adapter->netdev;
726 struct ethtool_eeprom eeprom;
727 const struct ethtool_ops *ops = netdev->ethtool_ops;
728 u8 *data;
729 int i;
730 u16 csum_old, csum_new = 0;
731
732 eeprom.len = ops->get_eeprom_len(netdev);
733 eeprom.offset = 0;
734
735 data = kmalloc(eeprom.len, GFP_KERNEL);
736 if (!data)
737 return;
738
739 ops->get_eeprom(netdev, &eeprom, data);
740
741 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
742 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
743 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
744 csum_new += data[i] + (data[i + 1] << 8);
745 csum_new = EEPROM_SUM - csum_new;
746
747 pr_err("/*********************/\n");
748 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
749 pr_err("Calculated : 0x%04x\n", csum_new);
750
751 pr_err("Offset Values\n");
752 pr_err("======== ======\n");
753 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
754
755 pr_err("Include this output when contacting your support provider.\n");
756 pr_err("This is not a software error! Something bad happened to\n");
757 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
758 pr_err("result in further problems, possibly loss of data,\n");
759 pr_err("corruption or system hangs!\n");
760 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
761 pr_err("which is invalid and requires you to set the proper MAC\n");
762 pr_err("address manually before continuing to enable this network\n");
763 pr_err("device. Please inspect the EEPROM dump and report the\n");
764 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
765 pr_err("/*********************/\n");
766
767 kfree(data);
768 }
769
770 /**
771 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
772 * @pdev: PCI device information struct
773 *
774 * Return true if an adapter needs ioport resources
775 **/
776 static int e1000_is_need_ioport(struct pci_dev *pdev)
777 {
778 switch (pdev->device) {
779 case E1000_DEV_ID_82540EM:
780 case E1000_DEV_ID_82540EM_LOM:
781 case E1000_DEV_ID_82540EP:
782 case E1000_DEV_ID_82540EP_LOM:
783 case E1000_DEV_ID_82540EP_LP:
784 case E1000_DEV_ID_82541EI:
785 case E1000_DEV_ID_82541EI_MOBILE:
786 case E1000_DEV_ID_82541ER:
787 case E1000_DEV_ID_82541ER_LOM:
788 case E1000_DEV_ID_82541GI:
789 case E1000_DEV_ID_82541GI_LF:
790 case E1000_DEV_ID_82541GI_MOBILE:
791 case E1000_DEV_ID_82544EI_COPPER:
792 case E1000_DEV_ID_82544EI_FIBER:
793 case E1000_DEV_ID_82544GC_COPPER:
794 case E1000_DEV_ID_82544GC_LOM:
795 case E1000_DEV_ID_82545EM_COPPER:
796 case E1000_DEV_ID_82545EM_FIBER:
797 case E1000_DEV_ID_82546EB_COPPER:
798 case E1000_DEV_ID_82546EB_FIBER:
799 case E1000_DEV_ID_82546EB_QUAD_COPPER:
800 return true;
801 default:
802 return false;
803 }
804 }
805
806 static netdev_features_t e1000_fix_features(struct net_device *netdev,
807 netdev_features_t features)
808 {
809 /* Since there is no support for separate Rx/Tx vlan accel
810 * enable/disable make sure Tx flag is always in same state as Rx.
811 */
812 if (features & NETIF_F_HW_VLAN_CTAG_RX)
813 features |= NETIF_F_HW_VLAN_CTAG_TX;
814 else
815 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
816
817 return features;
818 }
819
820 static int e1000_set_features(struct net_device *netdev,
821 netdev_features_t features)
822 {
823 struct e1000_adapter *adapter = netdev_priv(netdev);
824 netdev_features_t changed = features ^ netdev->features;
825
826 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
827 e1000_vlan_mode(netdev, features);
828
829 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
830 return 0;
831
832 netdev->features = features;
833 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
834
835 if (netif_running(netdev))
836 e1000_reinit_locked(adapter);
837 else
838 e1000_reset(adapter);
839
840 return 0;
841 }
842
843 static const struct net_device_ops e1000_netdev_ops = {
844 .ndo_open = e1000_open,
845 .ndo_stop = e1000_close,
846 .ndo_start_xmit = e1000_xmit_frame,
847 .ndo_get_stats = e1000_get_stats,
848 .ndo_set_rx_mode = e1000_set_rx_mode,
849 .ndo_set_mac_address = e1000_set_mac,
850 .ndo_tx_timeout = e1000_tx_timeout,
851 .ndo_change_mtu = e1000_change_mtu,
852 .ndo_do_ioctl = e1000_ioctl,
853 .ndo_validate_addr = eth_validate_addr,
854 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
855 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
856 #ifdef CONFIG_NET_POLL_CONTROLLER
857 .ndo_poll_controller = e1000_netpoll,
858 #endif
859 .ndo_fix_features = e1000_fix_features,
860 .ndo_set_features = e1000_set_features,
861 };
862
863 /**
864 * e1000_init_hw_struct - initialize members of hw struct
865 * @adapter: board private struct
866 * @hw: structure used by e1000_hw.c
867 *
868 * Factors out initialization of the e1000_hw struct to its own function
869 * that can be called very early at init (just after struct allocation).
870 * Fields are initialized based on PCI device information and
871 * OS network device settings (MTU size).
872 * Returns negative error codes if MAC type setup fails.
873 */
874 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
875 struct e1000_hw *hw)
876 {
877 struct pci_dev *pdev = adapter->pdev;
878
879 /* PCI config space info */
880 hw->vendor_id = pdev->vendor;
881 hw->device_id = pdev->device;
882 hw->subsystem_vendor_id = pdev->subsystem_vendor;
883 hw->subsystem_id = pdev->subsystem_device;
884 hw->revision_id = pdev->revision;
885
886 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
887
888 hw->max_frame_size = adapter->netdev->mtu +
889 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
890 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
891
892 /* identify the MAC */
893 if (e1000_set_mac_type(hw)) {
894 e_err(probe, "Unknown MAC Type\n");
895 return -EIO;
896 }
897
898 switch (hw->mac_type) {
899 default:
900 break;
901 case e1000_82541:
902 case e1000_82547:
903 case e1000_82541_rev_2:
904 case e1000_82547_rev_2:
905 hw->phy_init_script = 1;
906 break;
907 }
908
909 e1000_set_media_type(hw);
910 e1000_get_bus_info(hw);
911
912 hw->wait_autoneg_complete = false;
913 hw->tbi_compatibility_en = true;
914 hw->adaptive_ifs = true;
915
916 /* Copper options */
917
918 if (hw->media_type == e1000_media_type_copper) {
919 hw->mdix = AUTO_ALL_MODES;
920 hw->disable_polarity_correction = false;
921 hw->master_slave = E1000_MASTER_SLAVE;
922 }
923
924 return 0;
925 }
926
927 /**
928 * e1000_probe - Device Initialization Routine
929 * @pdev: PCI device information struct
930 * @ent: entry in e1000_pci_tbl
931 *
932 * Returns 0 on success, negative on failure
933 *
934 * e1000_probe initializes an adapter identified by a pci_dev structure.
935 * The OS initialization, configuring of the adapter private structure,
936 * and a hardware reset occur.
937 **/
938 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
939 {
940 struct net_device *netdev;
941 struct e1000_adapter *adapter;
942 struct e1000_hw *hw;
943
944 static int cards_found = 0;
945 static int global_quad_port_a = 0; /* global ksp3 port a indication */
946 int i, err, pci_using_dac;
947 u16 eeprom_data = 0;
948 u16 tmp = 0;
949 u16 eeprom_apme_mask = E1000_EEPROM_APME;
950 int bars, need_ioport;
951
952 /* do not allocate ioport bars when not needed */
953 need_ioport = e1000_is_need_ioport(pdev);
954 if (need_ioport) {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
956 err = pci_enable_device(pdev);
957 } else {
958 bars = pci_select_bars(pdev, IORESOURCE_MEM);
959 err = pci_enable_device_mem(pdev);
960 }
961 if (err)
962 return err;
963
964 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
965 if (err)
966 goto err_pci_reg;
967
968 pci_set_master(pdev);
969 err = pci_save_state(pdev);
970 if (err)
971 goto err_alloc_etherdev;
972
973 err = -ENOMEM;
974 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
975 if (!netdev)
976 goto err_alloc_etherdev;
977
978 SET_NETDEV_DEV(netdev, &pdev->dev);
979
980 pci_set_drvdata(pdev, netdev);
981 adapter = netdev_priv(netdev);
982 adapter->netdev = netdev;
983 adapter->pdev = pdev;
984 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
985 adapter->bars = bars;
986 adapter->need_ioport = need_ioport;
987
988 hw = &adapter->hw;
989 hw->back = adapter;
990
991 err = -EIO;
992 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
993 if (!hw->hw_addr)
994 goto err_ioremap;
995
996 if (adapter->need_ioport) {
997 for (i = BAR_1; i <= BAR_5; i++) {
998 if (pci_resource_len(pdev, i) == 0)
999 continue;
1000 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1001 hw->io_base = pci_resource_start(pdev, i);
1002 break;
1003 }
1004 }
1005 }
1006
1007 /* make ready for any if (hw->...) below */
1008 err = e1000_init_hw_struct(adapter, hw);
1009 if (err)
1010 goto err_sw_init;
1011
1012 /* there is a workaround being applied below that limits
1013 * 64-bit DMA addresses to 64-bit hardware. There are some
1014 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1015 */
1016 pci_using_dac = 0;
1017 if ((hw->bus_type == e1000_bus_type_pcix) &&
1018 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1019 /* according to DMA-API-HOWTO, coherent calls will always
1020 * succeed if the set call did
1021 */
1022 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1023 pci_using_dac = 1;
1024 } else {
1025 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1026 if (err) {
1027 pr_err("No usable DMA config, aborting\n");
1028 goto err_dma;
1029 }
1030 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1031 }
1032
1033 netdev->netdev_ops = &e1000_netdev_ops;
1034 e1000_set_ethtool_ops(netdev);
1035 netdev->watchdog_timeo = 5 * HZ;
1036 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1037
1038 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1039
1040 adapter->bd_number = cards_found;
1041
1042 /* setup the private structure */
1043
1044 err = e1000_sw_init(adapter);
1045 if (err)
1046 goto err_sw_init;
1047
1048 err = -EIO;
1049 if (hw->mac_type == e1000_ce4100) {
1050 hw->ce4100_gbe_mdio_base_virt =
1051 ioremap(pci_resource_start(pdev, BAR_1),
1052 pci_resource_len(pdev, BAR_1));
1053
1054 if (!hw->ce4100_gbe_mdio_base_virt)
1055 goto err_mdio_ioremap;
1056 }
1057
1058 if (hw->mac_type >= e1000_82543) {
1059 netdev->hw_features = NETIF_F_SG |
1060 NETIF_F_HW_CSUM |
1061 NETIF_F_HW_VLAN_CTAG_RX;
1062 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1063 NETIF_F_HW_VLAN_CTAG_FILTER;
1064 }
1065
1066 if ((hw->mac_type >= e1000_82544) &&
1067 (hw->mac_type != e1000_82547))
1068 netdev->hw_features |= NETIF_F_TSO;
1069
1070 netdev->priv_flags |= IFF_SUPP_NOFCS;
1071
1072 netdev->features |= netdev->hw_features;
1073 netdev->hw_features |= (NETIF_F_RXCSUM |
1074 NETIF_F_RXALL |
1075 NETIF_F_RXFCS);
1076
1077 if (pci_using_dac) {
1078 netdev->features |= NETIF_F_HIGHDMA;
1079 netdev->vlan_features |= NETIF_F_HIGHDMA;
1080 }
1081
1082 netdev->vlan_features |= (NETIF_F_TSO |
1083 NETIF_F_HW_CSUM |
1084 NETIF_F_SG);
1085
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initalization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 if (tmp == 0 || tmp == 0xFF) {
1203 if (i == 31)
1204 goto err_eeprom;
1205 continue;
1206 } else
1207 break;
1208 }
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239 err_register:
1240 err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252 err_ioremap:
1253 free_netdev(netdev);
1254 err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259 }
1260
1261 /**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. The could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296 }
1297
1298 /**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321 mutex_init(&adapter->mutex);
1322
1323 set_bit(__E1000_DOWN, &adapter->flags);
1324
1325 return 0;
1326 }
1327
1328 /**
1329 * e1000_alloc_queues - Allocate memory for all rings
1330 * @adapter: board private structure to initialize
1331 *
1332 * We allocate one ring per queue at run-time since we don't know the
1333 * number of queues at compile-time.
1334 **/
1335 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1336 {
1337 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1338 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1339 if (!adapter->tx_ring)
1340 return -ENOMEM;
1341
1342 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1343 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1344 if (!adapter->rx_ring) {
1345 kfree(adapter->tx_ring);
1346 return -ENOMEM;
1347 }
1348
1349 return E1000_SUCCESS;
1350 }
1351
1352 /**
1353 * e1000_open - Called when a network interface is made active
1354 * @netdev: network interface device structure
1355 *
1356 * Returns 0 on success, negative value on failure
1357 *
1358 * The open entry point is called when a network interface is made
1359 * active by the system (IFF_UP). At this point all resources needed
1360 * for transmit and receive operations are allocated, the interrupt
1361 * handler is registered with the OS, the watchdog task is started,
1362 * and the stack is notified that the interface is ready.
1363 **/
1364 static int e1000_open(struct net_device *netdev)
1365 {
1366 struct e1000_adapter *adapter = netdev_priv(netdev);
1367 struct e1000_hw *hw = &adapter->hw;
1368 int err;
1369
1370 /* disallow open during test */
1371 if (test_bit(__E1000_TESTING, &adapter->flags))
1372 return -EBUSY;
1373
1374 netif_carrier_off(netdev);
1375
1376 /* allocate transmit descriptors */
1377 err = e1000_setup_all_tx_resources(adapter);
1378 if (err)
1379 goto err_setup_tx;
1380
1381 /* allocate receive descriptors */
1382 err = e1000_setup_all_rx_resources(adapter);
1383 if (err)
1384 goto err_setup_rx;
1385
1386 e1000_power_up_phy(adapter);
1387
1388 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1389 if ((hw->mng_cookie.status &
1390 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1391 e1000_update_mng_vlan(adapter);
1392 }
1393
1394 /* before we allocate an interrupt, we must be ready to handle it.
1395 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1396 * as soon as we call pci_request_irq, so we have to setup our
1397 * clean_rx handler before we do so.
1398 */
1399 e1000_configure(adapter);
1400
1401 err = e1000_request_irq(adapter);
1402 if (err)
1403 goto err_req_irq;
1404
1405 /* From here on the code is the same as e1000_up() */
1406 clear_bit(__E1000_DOWN, &adapter->flags);
1407
1408 napi_enable(&adapter->napi);
1409
1410 e1000_irq_enable(adapter);
1411
1412 netif_start_queue(netdev);
1413
1414 /* fire a link status change interrupt to start the watchdog */
1415 ew32(ICS, E1000_ICS_LSC);
1416
1417 return E1000_SUCCESS;
1418
1419 err_req_irq:
1420 e1000_power_down_phy(adapter);
1421 e1000_free_all_rx_resources(adapter);
1422 err_setup_rx:
1423 e1000_free_all_tx_resources(adapter);
1424 err_setup_tx:
1425 e1000_reset(adapter);
1426
1427 return err;
1428 }
1429
1430 /**
1431 * e1000_close - Disables a network interface
1432 * @netdev: network interface device structure
1433 *
1434 * Returns 0, this is not allowed to fail
1435 *
1436 * The close entry point is called when an interface is de-activated
1437 * by the OS. The hardware is still under the drivers control, but
1438 * needs to be disabled. A global MAC reset is issued to stop the
1439 * hardware, and all transmit and receive resources are freed.
1440 **/
1441 static int e1000_close(struct net_device *netdev)
1442 {
1443 struct e1000_adapter *adapter = netdev_priv(netdev);
1444 struct e1000_hw *hw = &adapter->hw;
1445
1446 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1447 e1000_down(adapter);
1448 e1000_power_down_phy(adapter);
1449 e1000_free_irq(adapter);
1450
1451 e1000_free_all_tx_resources(adapter);
1452 e1000_free_all_rx_resources(adapter);
1453
1454 /* kill manageability vlan ID if supported, but not if a vlan with
1455 * the same ID is registered on the host OS (let 8021q kill it)
1456 */
1457 if ((hw->mng_cookie.status &
1458 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1459 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1460 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464 }
1465
1466 /**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474 {
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1486 }
1487
1488 return true;
1489 }
1490
1491 /**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500 {
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517 setup_tx_desc_die:
1518 vfree(txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 txdr->dma);
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560 }
1561
1562 /**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570 {
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585 }
1586
1587 /**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593 static void e1000_configure_tx(struct e1000_adapter *adapter)
1594 {
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679 }
1680
1681 /**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690 {
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709 setup_rx_desc_die:
1710 vfree(rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 rxdr->dma);
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752 }
1753
1754 /**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762 {
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777 }
1778
1779 /**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784 {
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844 }
1845
1846 /**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852 static void e1000_configure_rx(struct e1000_adapter *adapter)
1853 {
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915 }
1916
1917 /**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926 {
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938 }
1939
1940 /**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947 {
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952 }
1953
1954 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1955 struct e1000_buffer *buffer_info)
1956 {
1957 if (buffer_info->dma) {
1958 if (buffer_info->mapped_as_page)
1959 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1960 buffer_info->length, DMA_TO_DEVICE);
1961 else
1962 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1963 buffer_info->length,
1964 DMA_TO_DEVICE);
1965 buffer_info->dma = 0;
1966 }
1967 if (buffer_info->skb) {
1968 dev_kfree_skb_any(buffer_info->skb);
1969 buffer_info->skb = NULL;
1970 }
1971 buffer_info->time_stamp = 0;
1972 /* buffer_info must be completely set up in the transmit path */
1973 }
1974
1975 /**
1976 * e1000_clean_tx_ring - Free Tx Buffers
1977 * @adapter: board private structure
1978 * @tx_ring: ring to be cleaned
1979 **/
1980 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1981 struct e1000_tx_ring *tx_ring)
1982 {
1983 struct e1000_hw *hw = &adapter->hw;
1984 struct e1000_buffer *buffer_info;
1985 unsigned long size;
1986 unsigned int i;
1987
1988 /* Free all the Tx ring sk_buffs */
1989
1990 for (i = 0; i < tx_ring->count; i++) {
1991 buffer_info = &tx_ring->buffer_info[i];
1992 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1993 }
1994
1995 netdev_reset_queue(adapter->netdev);
1996 size = sizeof(struct e1000_buffer) * tx_ring->count;
1997 memset(tx_ring->buffer_info, 0, size);
1998
1999 /* Zero out the descriptor ring */
2000
2001 memset(tx_ring->desc, 0, tx_ring->size);
2002
2003 tx_ring->next_to_use = 0;
2004 tx_ring->next_to_clean = 0;
2005 tx_ring->last_tx_tso = false;
2006
2007 writel(0, hw->hw_addr + tx_ring->tdh);
2008 writel(0, hw->hw_addr + tx_ring->tdt);
2009 }
2010
2011 /**
2012 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2013 * @adapter: board private structure
2014 **/
2015 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2016 {
2017 int i;
2018
2019 for (i = 0; i < adapter->num_tx_queues; i++)
2020 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2021 }
2022
2023 /**
2024 * e1000_free_rx_resources - Free Rx Resources
2025 * @adapter: board private structure
2026 * @rx_ring: ring to clean the resources from
2027 *
2028 * Free all receive software resources
2029 **/
2030 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2031 struct e1000_rx_ring *rx_ring)
2032 {
2033 struct pci_dev *pdev = adapter->pdev;
2034
2035 e1000_clean_rx_ring(adapter, rx_ring);
2036
2037 vfree(rx_ring->buffer_info);
2038 rx_ring->buffer_info = NULL;
2039
2040 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2041 rx_ring->dma);
2042
2043 rx_ring->desc = NULL;
2044 }
2045
2046 /**
2047 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2048 * @adapter: board private structure
2049 *
2050 * Free all receive software resources
2051 **/
2052 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2053 {
2054 int i;
2055
2056 for (i = 0; i < adapter->num_rx_queues; i++)
2057 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2058 }
2059
2060 /**
2061 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062 * @adapter: board private structure
2063 * @rx_ring: ring to free buffers from
2064 **/
2065 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2066 struct e1000_rx_ring *rx_ring)
2067 {
2068 struct e1000_hw *hw = &adapter->hw;
2069 struct e1000_buffer *buffer_info;
2070 struct pci_dev *pdev = adapter->pdev;
2071 unsigned long size;
2072 unsigned int i;
2073
2074 /* Free all the Rx ring sk_buffs */
2075 for (i = 0; i < rx_ring->count; i++) {
2076 buffer_info = &rx_ring->buffer_info[i];
2077 if (buffer_info->dma &&
2078 adapter->clean_rx == e1000_clean_rx_irq) {
2079 dma_unmap_single(&pdev->dev, buffer_info->dma,
2080 buffer_info->length,
2081 DMA_FROM_DEVICE);
2082 } else if (buffer_info->dma &&
2083 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2084 dma_unmap_page(&pdev->dev, buffer_info->dma,
2085 buffer_info->length,
2086 DMA_FROM_DEVICE);
2087 }
2088
2089 buffer_info->dma = 0;
2090 if (buffer_info->page) {
2091 put_page(buffer_info->page);
2092 buffer_info->page = NULL;
2093 }
2094 if (buffer_info->skb) {
2095 dev_kfree_skb(buffer_info->skb);
2096 buffer_info->skb = NULL;
2097 }
2098 }
2099
2100 /* there also may be some cached data from a chained receive */
2101 if (rx_ring->rx_skb_top) {
2102 dev_kfree_skb(rx_ring->rx_skb_top);
2103 rx_ring->rx_skb_top = NULL;
2104 }
2105
2106 size = sizeof(struct e1000_buffer) * rx_ring->count;
2107 memset(rx_ring->buffer_info, 0, size);
2108
2109 /* Zero out the descriptor ring */
2110 memset(rx_ring->desc, 0, rx_ring->size);
2111
2112 rx_ring->next_to_clean = 0;
2113 rx_ring->next_to_use = 0;
2114
2115 writel(0, hw->hw_addr + rx_ring->rdh);
2116 writel(0, hw->hw_addr + rx_ring->rdt);
2117 }
2118
2119 /**
2120 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2121 * @adapter: board private structure
2122 **/
2123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2124 {
2125 int i;
2126
2127 for (i = 0; i < adapter->num_rx_queues; i++)
2128 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2129 }
2130
2131 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2132 * and memory write and invalidate disabled for certain operations
2133 */
2134 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2135 {
2136 struct e1000_hw *hw = &adapter->hw;
2137 struct net_device *netdev = adapter->netdev;
2138 u32 rctl;
2139
2140 e1000_pci_clear_mwi(hw);
2141
2142 rctl = er32(RCTL);
2143 rctl |= E1000_RCTL_RST;
2144 ew32(RCTL, rctl);
2145 E1000_WRITE_FLUSH();
2146 mdelay(5);
2147
2148 if (netif_running(netdev))
2149 e1000_clean_all_rx_rings(adapter);
2150 }
2151
2152 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2153 {
2154 struct e1000_hw *hw = &adapter->hw;
2155 struct net_device *netdev = adapter->netdev;
2156 u32 rctl;
2157
2158 rctl = er32(RCTL);
2159 rctl &= ~E1000_RCTL_RST;
2160 ew32(RCTL, rctl);
2161 E1000_WRITE_FLUSH();
2162 mdelay(5);
2163
2164 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2165 e1000_pci_set_mwi(hw);
2166
2167 if (netif_running(netdev)) {
2168 /* No need to loop, because 82542 supports only 1 queue */
2169 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2170 e1000_configure_rx(adapter);
2171 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2172 }
2173 }
2174
2175 /**
2176 * e1000_set_mac - Change the Ethernet Address of the NIC
2177 * @netdev: network interface device structure
2178 * @p: pointer to an address structure
2179 *
2180 * Returns 0 on success, negative on failure
2181 **/
2182 static int e1000_set_mac(struct net_device *netdev, void *p)
2183 {
2184 struct e1000_adapter *adapter = netdev_priv(netdev);
2185 struct e1000_hw *hw = &adapter->hw;
2186 struct sockaddr *addr = p;
2187
2188 if (!is_valid_ether_addr(addr->sa_data))
2189 return -EADDRNOTAVAIL;
2190
2191 /* 82542 2.0 needs to be in reset to write receive address registers */
2192
2193 if (hw->mac_type == e1000_82542_rev2_0)
2194 e1000_enter_82542_rst(adapter);
2195
2196 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2197 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2198
2199 e1000_rar_set(hw, hw->mac_addr, 0);
2200
2201 if (hw->mac_type == e1000_82542_rev2_0)
2202 e1000_leave_82542_rst(adapter);
2203
2204 return 0;
2205 }
2206
2207 /**
2208 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2209 * @netdev: network interface device structure
2210 *
2211 * The set_rx_mode entry point is called whenever the unicast or multicast
2212 * address lists or the network interface flags are updated. This routine is
2213 * responsible for configuring the hardware for proper unicast, multicast,
2214 * promiscuous mode, and all-multi behavior.
2215 **/
2216 static void e1000_set_rx_mode(struct net_device *netdev)
2217 {
2218 struct e1000_adapter *adapter = netdev_priv(netdev);
2219 struct e1000_hw *hw = &adapter->hw;
2220 struct netdev_hw_addr *ha;
2221 bool use_uc = false;
2222 u32 rctl;
2223 u32 hash_value;
2224 int i, rar_entries = E1000_RAR_ENTRIES;
2225 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2226 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2227
2228 if (!mcarray)
2229 return;
2230
2231 /* Check for Promiscuous and All Multicast modes */
2232
2233 rctl = er32(RCTL);
2234
2235 if (netdev->flags & IFF_PROMISC) {
2236 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2237 rctl &= ~E1000_RCTL_VFE;
2238 } else {
2239 if (netdev->flags & IFF_ALLMULTI)
2240 rctl |= E1000_RCTL_MPE;
2241 else
2242 rctl &= ~E1000_RCTL_MPE;
2243 /* Enable VLAN filter if there is a VLAN */
2244 if (e1000_vlan_used(adapter))
2245 rctl |= E1000_RCTL_VFE;
2246 }
2247
2248 if (netdev_uc_count(netdev) > rar_entries - 1) {
2249 rctl |= E1000_RCTL_UPE;
2250 } else if (!(netdev->flags & IFF_PROMISC)) {
2251 rctl &= ~E1000_RCTL_UPE;
2252 use_uc = true;
2253 }
2254
2255 ew32(RCTL, rctl);
2256
2257 /* 82542 2.0 needs to be in reset to write receive address registers */
2258
2259 if (hw->mac_type == e1000_82542_rev2_0)
2260 e1000_enter_82542_rst(adapter);
2261
2262 /* load the first 14 addresses into the exact filters 1-14. Unicast
2263 * addresses take precedence to avoid disabling unicast filtering
2264 * when possible.
2265 *
2266 * RAR 0 is used for the station MAC address
2267 * if there are not 14 addresses, go ahead and clear the filters
2268 */
2269 i = 1;
2270 if (use_uc)
2271 netdev_for_each_uc_addr(ha, netdev) {
2272 if (i == rar_entries)
2273 break;
2274 e1000_rar_set(hw, ha->addr, i++);
2275 }
2276
2277 netdev_for_each_mc_addr(ha, netdev) {
2278 if (i == rar_entries) {
2279 /* load any remaining addresses into the hash table */
2280 u32 hash_reg, hash_bit, mta;
2281 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2282 hash_reg = (hash_value >> 5) & 0x7F;
2283 hash_bit = hash_value & 0x1F;
2284 mta = (1 << hash_bit);
2285 mcarray[hash_reg] |= mta;
2286 } else {
2287 e1000_rar_set(hw, ha->addr, i++);
2288 }
2289 }
2290
2291 for (; i < rar_entries; i++) {
2292 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2293 E1000_WRITE_FLUSH();
2294 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2295 E1000_WRITE_FLUSH();
2296 }
2297
2298 /* write the hash table completely, write from bottom to avoid
2299 * both stupid write combining chipsets, and flushing each write
2300 */
2301 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2302 /* If we are on an 82544 has an errata where writing odd
2303 * offsets overwrites the previous even offset, but writing
2304 * backwards over the range solves the issue by always
2305 * writing the odd offset first
2306 */
2307 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2308 }
2309 E1000_WRITE_FLUSH();
2310
2311 if (hw->mac_type == e1000_82542_rev2_0)
2312 e1000_leave_82542_rst(adapter);
2313
2314 kfree(mcarray);
2315 }
2316
2317 /**
2318 * e1000_update_phy_info_task - get phy info
2319 * @work: work struct contained inside adapter struct
2320 *
2321 * Need to wait a few seconds after link up to get diagnostic information from
2322 * the phy
2323 */
2324 static void e1000_update_phy_info_task(struct work_struct *work)
2325 {
2326 struct e1000_adapter *adapter = container_of(work,
2327 struct e1000_adapter,
2328 phy_info_task.work);
2329 if (test_bit(__E1000_DOWN, &adapter->flags))
2330 return;
2331 mutex_lock(&adapter->mutex);
2332 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2333 mutex_unlock(&adapter->mutex);
2334 }
2335
2336 /**
2337 * e1000_82547_tx_fifo_stall_task - task to complete work
2338 * @work: work struct contained inside adapter struct
2339 **/
2340 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2341 {
2342 struct e1000_adapter *adapter = container_of(work,
2343 struct e1000_adapter,
2344 fifo_stall_task.work);
2345 struct e1000_hw *hw = &adapter->hw;
2346 struct net_device *netdev = adapter->netdev;
2347 u32 tctl;
2348
2349 if (test_bit(__E1000_DOWN, &adapter->flags))
2350 return;
2351 mutex_lock(&adapter->mutex);
2352 if (atomic_read(&adapter->tx_fifo_stall)) {
2353 if ((er32(TDT) == er32(TDH)) &&
2354 (er32(TDFT) == er32(TDFH)) &&
2355 (er32(TDFTS) == er32(TDFHS))) {
2356 tctl = er32(TCTL);
2357 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2358 ew32(TDFT, adapter->tx_head_addr);
2359 ew32(TDFH, adapter->tx_head_addr);
2360 ew32(TDFTS, adapter->tx_head_addr);
2361 ew32(TDFHS, adapter->tx_head_addr);
2362 ew32(TCTL, tctl);
2363 E1000_WRITE_FLUSH();
2364
2365 adapter->tx_fifo_head = 0;
2366 atomic_set(&adapter->tx_fifo_stall, 0);
2367 netif_wake_queue(netdev);
2368 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2369 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2370 }
2371 }
2372 mutex_unlock(&adapter->mutex);
2373 }
2374
2375 bool e1000_has_link(struct e1000_adapter *adapter)
2376 {
2377 struct e1000_hw *hw = &adapter->hw;
2378 bool link_active = false;
2379
2380 /* get_link_status is set on LSC (link status) interrupt or rx
2381 * sequence error interrupt (except on intel ce4100).
2382 * get_link_status will stay false until the
2383 * e1000_check_for_link establishes link for copper adapters
2384 * ONLY
2385 */
2386 switch (hw->media_type) {
2387 case e1000_media_type_copper:
2388 if (hw->mac_type == e1000_ce4100)
2389 hw->get_link_status = 1;
2390 if (hw->get_link_status) {
2391 e1000_check_for_link(hw);
2392 link_active = !hw->get_link_status;
2393 } else {
2394 link_active = true;
2395 }
2396 break;
2397 case e1000_media_type_fiber:
2398 e1000_check_for_link(hw);
2399 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2400 break;
2401 case e1000_media_type_internal_serdes:
2402 e1000_check_for_link(hw);
2403 link_active = hw->serdes_has_link;
2404 break;
2405 default:
2406 break;
2407 }
2408
2409 return link_active;
2410 }
2411
2412 /**
2413 * e1000_watchdog - work function
2414 * @work: work struct contained inside adapter struct
2415 **/
2416 static void e1000_watchdog(struct work_struct *work)
2417 {
2418 struct e1000_adapter *adapter = container_of(work,
2419 struct e1000_adapter,
2420 watchdog_task.work);
2421 struct e1000_hw *hw = &adapter->hw;
2422 struct net_device *netdev = adapter->netdev;
2423 struct e1000_tx_ring *txdr = adapter->tx_ring;
2424 u32 link, tctl;
2425
2426 if (test_bit(__E1000_DOWN, &adapter->flags))
2427 return;
2428
2429 mutex_lock(&adapter->mutex);
2430 link = e1000_has_link(adapter);
2431 if ((netif_carrier_ok(netdev)) && link)
2432 goto link_up;
2433
2434 if (link) {
2435 if (!netif_carrier_ok(netdev)) {
2436 u32 ctrl;
2437 bool txb2b = true;
2438 /* update snapshot of PHY registers on LSC */
2439 e1000_get_speed_and_duplex(hw,
2440 &adapter->link_speed,
2441 &adapter->link_duplex);
2442
2443 ctrl = er32(CTRL);
2444 pr_info("%s NIC Link is Up %d Mbps %s, "
2445 "Flow Control: %s\n",
2446 netdev->name,
2447 adapter->link_speed,
2448 adapter->link_duplex == FULL_DUPLEX ?
2449 "Full Duplex" : "Half Duplex",
2450 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2451 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2452 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2453 E1000_CTRL_TFCE) ? "TX" : "None")));
2454
2455 /* adjust timeout factor according to speed/duplex */
2456 adapter->tx_timeout_factor = 1;
2457 switch (adapter->link_speed) {
2458 case SPEED_10:
2459 txb2b = false;
2460 adapter->tx_timeout_factor = 16;
2461 break;
2462 case SPEED_100:
2463 txb2b = false;
2464 /* maybe add some timeout factor ? */
2465 break;
2466 }
2467
2468 /* enable transmits in the hardware */
2469 tctl = er32(TCTL);
2470 tctl |= E1000_TCTL_EN;
2471 ew32(TCTL, tctl);
2472
2473 netif_carrier_on(netdev);
2474 if (!test_bit(__E1000_DOWN, &adapter->flags))
2475 schedule_delayed_work(&adapter->phy_info_task,
2476 2 * HZ);
2477 adapter->smartspeed = 0;
2478 }
2479 } else {
2480 if (netif_carrier_ok(netdev)) {
2481 adapter->link_speed = 0;
2482 adapter->link_duplex = 0;
2483 pr_info("%s NIC Link is Down\n",
2484 netdev->name);
2485 netif_carrier_off(netdev);
2486
2487 if (!test_bit(__E1000_DOWN, &adapter->flags))
2488 schedule_delayed_work(&adapter->phy_info_task,
2489 2 * HZ);
2490 }
2491
2492 e1000_smartspeed(adapter);
2493 }
2494
2495 link_up:
2496 e1000_update_stats(adapter);
2497
2498 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2499 adapter->tpt_old = adapter->stats.tpt;
2500 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2501 adapter->colc_old = adapter->stats.colc;
2502
2503 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2504 adapter->gorcl_old = adapter->stats.gorcl;
2505 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2506 adapter->gotcl_old = adapter->stats.gotcl;
2507
2508 e1000_update_adaptive(hw);
2509
2510 if (!netif_carrier_ok(netdev)) {
2511 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2512 /* We've lost link, so the controller stops DMA,
2513 * but we've got queued Tx work that's never going
2514 * to get done, so reset controller to flush Tx.
2515 * (Do the reset outside of interrupt context).
2516 */
2517 adapter->tx_timeout_count++;
2518 schedule_work(&adapter->reset_task);
2519 /* exit immediately since reset is imminent */
2520 goto unlock;
2521 }
2522 }
2523
2524 /* Simple mode for Interrupt Throttle Rate (ITR) */
2525 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2526 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2527 * Total asymmetrical Tx or Rx gets ITR=8000;
2528 * everyone else is between 2000-8000.
2529 */
2530 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2531 u32 dif = (adapter->gotcl > adapter->gorcl ?
2532 adapter->gotcl - adapter->gorcl :
2533 adapter->gorcl - adapter->gotcl) / 10000;
2534 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2535
2536 ew32(ITR, 1000000000 / (itr * 256));
2537 }
2538
2539 /* Cause software interrupt to ensure rx ring is cleaned */
2540 ew32(ICS, E1000_ICS_RXDMT0);
2541
2542 /* Force detection of hung controller every watchdog period */
2543 adapter->detect_tx_hung = true;
2544
2545 /* Reschedule the task */
2546 if (!test_bit(__E1000_DOWN, &adapter->flags))
2547 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2548
2549 unlock:
2550 mutex_unlock(&adapter->mutex);
2551 }
2552
2553 enum latency_range {
2554 lowest_latency = 0,
2555 low_latency = 1,
2556 bulk_latency = 2,
2557 latency_invalid = 255
2558 };
2559
2560 /**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 * Stores a new ITR value based on packets and byte
2568 * counts during the last interrupt. The advantage of per interrupt
2569 * computation is faster updates and more accurate ITR for the current
2570 * traffic pattern. Constants in this function were computed
2571 * based on theoretical maximum wire speed and thresholds were set based
2572 * on testing data as well as attempting to minimize response time
2573 * while increasing bulk throughput.
2574 * this functionality is controlled by the InterruptThrottleRate module
2575 * parameter (see e1000_param.c)
2576 **/
2577 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578 u16 itr_setting, int packets, int bytes)
2579 {
2580 unsigned int retval = itr_setting;
2581 struct e1000_hw *hw = &adapter->hw;
2582
2583 if (unlikely(hw->mac_type < e1000_82540))
2584 goto update_itr_done;
2585
2586 if (packets == 0)
2587 goto update_itr_done;
2588
2589 switch (itr_setting) {
2590 case lowest_latency:
2591 /* jumbo frames get bulk treatment*/
2592 if (bytes/packets > 8000)
2593 retval = bulk_latency;
2594 else if ((packets < 5) && (bytes > 512))
2595 retval = low_latency;
2596 break;
2597 case low_latency: /* 50 usec aka 20000 ints/s */
2598 if (bytes > 10000) {
2599 /* jumbo frames need bulk latency setting */
2600 if (bytes/packets > 8000)
2601 retval = bulk_latency;
2602 else if ((packets < 10) || ((bytes/packets) > 1200))
2603 retval = bulk_latency;
2604 else if ((packets > 35))
2605 retval = lowest_latency;
2606 } else if (bytes/packets > 2000)
2607 retval = bulk_latency;
2608 else if (packets <= 2 && bytes < 512)
2609 retval = lowest_latency;
2610 break;
2611 case bulk_latency: /* 250 usec aka 4000 ints/s */
2612 if (bytes > 25000) {
2613 if (packets > 35)
2614 retval = low_latency;
2615 } else if (bytes < 6000) {
2616 retval = low_latency;
2617 }
2618 break;
2619 }
2620
2621 update_itr_done:
2622 return retval;
2623 }
2624
2625 static void e1000_set_itr(struct e1000_adapter *adapter)
2626 {
2627 struct e1000_hw *hw = &adapter->hw;
2628 u16 current_itr;
2629 u32 new_itr = adapter->itr;
2630
2631 if (unlikely(hw->mac_type < e1000_82540))
2632 return;
2633
2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635 if (unlikely(adapter->link_speed != SPEED_1000)) {
2636 current_itr = 0;
2637 new_itr = 4000;
2638 goto set_itr_now;
2639 }
2640
2641 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2642 adapter->total_tx_packets,
2643 adapter->total_tx_bytes);
2644 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2645 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2646 adapter->tx_itr = low_latency;
2647
2648 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2649 adapter->total_rx_packets,
2650 adapter->total_rx_bytes);
2651 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2652 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2653 adapter->rx_itr = low_latency;
2654
2655 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2656
2657 switch (current_itr) {
2658 /* counts and packets in update_itr are dependent on these numbers */
2659 case lowest_latency:
2660 new_itr = 70000;
2661 break;
2662 case low_latency:
2663 new_itr = 20000; /* aka hwitr = ~200 */
2664 break;
2665 case bulk_latency:
2666 new_itr = 4000;
2667 break;
2668 default:
2669 break;
2670 }
2671
2672 set_itr_now:
2673 if (new_itr != adapter->itr) {
2674 /* this attempts to bias the interrupt rate towards Bulk
2675 * by adding intermediate steps when interrupt rate is
2676 * increasing
2677 */
2678 new_itr = new_itr > adapter->itr ?
2679 min(adapter->itr + (new_itr >> 2), new_itr) :
2680 new_itr;
2681 adapter->itr = new_itr;
2682 ew32(ITR, 1000000000 / (new_itr * 256));
2683 }
2684 }
2685
2686 #define E1000_TX_FLAGS_CSUM 0x00000001
2687 #define E1000_TX_FLAGS_VLAN 0x00000002
2688 #define E1000_TX_FLAGS_TSO 0x00000004
2689 #define E1000_TX_FLAGS_IPV4 0x00000008
2690 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2691 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2692 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2693
2694 static int e1000_tso(struct e1000_adapter *adapter,
2695 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2696 {
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_buffer *buffer_info;
2699 unsigned int i;
2700 u32 cmd_length = 0;
2701 u16 ipcse = 0, tucse, mss;
2702 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703 int err;
2704
2705 if (skb_is_gso(skb)) {
2706 if (skb_header_cloned(skb)) {
2707 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2708 if (err)
2709 return err;
2710 }
2711
2712 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2713 mss = skb_shinfo(skb)->gso_size;
2714 if (skb->protocol == htons(ETH_P_IP)) {
2715 struct iphdr *iph = ip_hdr(skb);
2716 iph->tot_len = 0;
2717 iph->check = 0;
2718 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2719 iph->daddr, 0,
2720 IPPROTO_TCP,
2721 0);
2722 cmd_length = E1000_TXD_CMD_IP;
2723 ipcse = skb_transport_offset(skb) - 1;
2724 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2725 ipv6_hdr(skb)->payload_len = 0;
2726 tcp_hdr(skb)->check =
2727 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2728 &ipv6_hdr(skb)->daddr,
2729 0, IPPROTO_TCP, 0);
2730 ipcse = 0;
2731 }
2732 ipcss = skb_network_offset(skb);
2733 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2734 tucss = skb_transport_offset(skb);
2735 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2736 tucse = 0;
2737
2738 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2739 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2740
2741 i = tx_ring->next_to_use;
2742 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2743 buffer_info = &tx_ring->buffer_info[i];
2744
2745 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2746 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2747 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2748 context_desc->upper_setup.tcp_fields.tucss = tucss;
2749 context_desc->upper_setup.tcp_fields.tucso = tucso;
2750 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2751 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2752 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2753 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2754
2755 buffer_info->time_stamp = jiffies;
2756 buffer_info->next_to_watch = i;
2757
2758 if (++i == tx_ring->count) i = 0;
2759 tx_ring->next_to_use = i;
2760
2761 return true;
2762 }
2763 return false;
2764 }
2765
2766 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2767 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2768 {
2769 struct e1000_context_desc *context_desc;
2770 struct e1000_buffer *buffer_info;
2771 unsigned int i;
2772 u8 css;
2773 u32 cmd_len = E1000_TXD_CMD_DEXT;
2774
2775 if (skb->ip_summed != CHECKSUM_PARTIAL)
2776 return false;
2777
2778 switch (skb->protocol) {
2779 case cpu_to_be16(ETH_P_IP):
2780 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2781 cmd_len |= E1000_TXD_CMD_TCP;
2782 break;
2783 case cpu_to_be16(ETH_P_IPV6):
2784 /* XXX not handling all IPV6 headers */
2785 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2786 cmd_len |= E1000_TXD_CMD_TCP;
2787 break;
2788 default:
2789 if (unlikely(net_ratelimit()))
2790 e_warn(drv, "checksum_partial proto=%x!\n",
2791 skb->protocol);
2792 break;
2793 }
2794
2795 css = skb_checksum_start_offset(skb);
2796
2797 i = tx_ring->next_to_use;
2798 buffer_info = &tx_ring->buffer_info[i];
2799 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2800
2801 context_desc->lower_setup.ip_config = 0;
2802 context_desc->upper_setup.tcp_fields.tucss = css;
2803 context_desc->upper_setup.tcp_fields.tucso =
2804 css + skb->csum_offset;
2805 context_desc->upper_setup.tcp_fields.tucse = 0;
2806 context_desc->tcp_seg_setup.data = 0;
2807 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2808
2809 buffer_info->time_stamp = jiffies;
2810 buffer_info->next_to_watch = i;
2811
2812 if (unlikely(++i == tx_ring->count)) i = 0;
2813 tx_ring->next_to_use = i;
2814
2815 return true;
2816 }
2817
2818 #define E1000_MAX_TXD_PWR 12
2819 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820
2821 static int e1000_tx_map(struct e1000_adapter *adapter,
2822 struct e1000_tx_ring *tx_ring,
2823 struct sk_buff *skb, unsigned int first,
2824 unsigned int max_per_txd, unsigned int nr_frags,
2825 unsigned int mss)
2826 {
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct pci_dev *pdev = adapter->pdev;
2829 struct e1000_buffer *buffer_info;
2830 unsigned int len = skb_headlen(skb);
2831 unsigned int offset = 0, size, count = 0, i;
2832 unsigned int f, bytecount, segs;
2833
2834 i = tx_ring->next_to_use;
2835
2836 while (len) {
2837 buffer_info = &tx_ring->buffer_info[i];
2838 size = min(len, max_per_txd);
2839 /* Workaround for Controller erratum --
2840 * descriptor for non-tso packet in a linear SKB that follows a
2841 * tso gets written back prematurely before the data is fully
2842 * DMA'd to the controller
2843 */
2844 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 !skb_is_gso(skb)) {
2846 tx_ring->last_tx_tso = false;
2847 size -= 4;
2848 }
2849
2850 /* Workaround for premature desc write-backs
2851 * in TSO mode. Append 4-byte sentinel desc
2852 */
2853 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 size -= 4;
2855 /* work-around for errata 10 and it applies
2856 * to all controllers in PCI-X mode
2857 * The fix is to make sure that the first descriptor of a
2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 */
2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 (size > 2015) && count == 0))
2862 size = 2015;
2863
2864 /* Workaround for potential 82544 hang in PCI-X. Avoid
2865 * terminating buffers within evenly-aligned dwords.
2866 */
2867 if (unlikely(adapter->pcix_82544 &&
2868 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 size > 4))
2870 size -= 4;
2871
2872 buffer_info->length = size;
2873 /* set time_stamp *before* dma to help avoid a possible race */
2874 buffer_info->time_stamp = jiffies;
2875 buffer_info->mapped_as_page = false;
2876 buffer_info->dma = dma_map_single(&pdev->dev,
2877 skb->data + offset,
2878 size, DMA_TO_DEVICE);
2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 goto dma_error;
2881 buffer_info->next_to_watch = i;
2882
2883 len -= size;
2884 offset += size;
2885 count++;
2886 if (len) {
2887 i++;
2888 if (unlikely(i == tx_ring->count))
2889 i = 0;
2890 }
2891 }
2892
2893 for (f = 0; f < nr_frags; f++) {
2894 const struct skb_frag_struct *frag;
2895
2896 frag = &skb_shinfo(skb)->frags[f];
2897 len = skb_frag_size(frag);
2898 offset = 0;
2899
2900 while (len) {
2901 unsigned long bufend;
2902 i++;
2903 if (unlikely(i == tx_ring->count))
2904 i = 0;
2905
2906 buffer_info = &tx_ring->buffer_info[i];
2907 size = min(len, max_per_txd);
2908 /* Workaround for premature desc write-backs
2909 * in TSO mode. Append 4-byte sentinel desc
2910 */
2911 if (unlikely(mss && f == (nr_frags-1) &&
2912 size == len && size > 8))
2913 size -= 4;
2914 /* Workaround for potential 82544 hang in PCI-X.
2915 * Avoid terminating buffers within evenly-aligned
2916 * dwords.
2917 */
2918 bufend = (unsigned long)
2919 page_to_phys(skb_frag_page(frag));
2920 bufend += offset + size - 1;
2921 if (unlikely(adapter->pcix_82544 &&
2922 !(bufend & 4) &&
2923 size > 4))
2924 size -= 4;
2925
2926 buffer_info->length = size;
2927 buffer_info->time_stamp = jiffies;
2928 buffer_info->mapped_as_page = true;
2929 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2930 offset, size, DMA_TO_DEVICE);
2931 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2932 goto dma_error;
2933 buffer_info->next_to_watch = i;
2934
2935 len -= size;
2936 offset += size;
2937 count++;
2938 }
2939 }
2940
2941 segs = skb_shinfo(skb)->gso_segs ?: 1;
2942 /* multiply data chunks by size of headers */
2943 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2944
2945 tx_ring->buffer_info[i].skb = skb;
2946 tx_ring->buffer_info[i].segs = segs;
2947 tx_ring->buffer_info[i].bytecount = bytecount;
2948 tx_ring->buffer_info[first].next_to_watch = i;
2949
2950 return count;
2951
2952 dma_error:
2953 dev_err(&pdev->dev, "TX DMA map failed\n");
2954 buffer_info->dma = 0;
2955 if (count)
2956 count--;
2957
2958 while (count--) {
2959 if (i==0)
2960 i += tx_ring->count;
2961 i--;
2962 buffer_info = &tx_ring->buffer_info[i];
2963 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2964 }
2965
2966 return 0;
2967 }
2968
2969 static void e1000_tx_queue(struct e1000_adapter *adapter,
2970 struct e1000_tx_ring *tx_ring, int tx_flags,
2971 int count)
2972 {
2973 struct e1000_hw *hw = &adapter->hw;
2974 struct e1000_tx_desc *tx_desc = NULL;
2975 struct e1000_buffer *buffer_info;
2976 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2977 unsigned int i;
2978
2979 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2980 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2981 E1000_TXD_CMD_TSE;
2982 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2983
2984 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2985 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2986 }
2987
2988 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2989 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2990 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2991 }
2992
2993 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2994 txd_lower |= E1000_TXD_CMD_VLE;
2995 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2996 }
2997
2998 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2999 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3000
3001 i = tx_ring->next_to_use;
3002
3003 while (count--) {
3004 buffer_info = &tx_ring->buffer_info[i];
3005 tx_desc = E1000_TX_DESC(*tx_ring, i);
3006 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3007 tx_desc->lower.data =
3008 cpu_to_le32(txd_lower | buffer_info->length);
3009 tx_desc->upper.data = cpu_to_le32(txd_upper);
3010 if (unlikely(++i == tx_ring->count)) i = 0;
3011 }
3012
3013 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3014
3015 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3016 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3017 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3018
3019 /* Force memory writes to complete before letting h/w
3020 * know there are new descriptors to fetch. (Only
3021 * applicable for weak-ordered memory model archs,
3022 * such as IA-64).
3023 */
3024 wmb();
3025
3026 tx_ring->next_to_use = i;
3027 writel(i, hw->hw_addr + tx_ring->tdt);
3028 /* we need this if more than one processor can write to our tail
3029 * at a time, it synchronizes IO on IA64/Altix systems
3030 */
3031 mmiowb();
3032 }
3033
3034 /* 82547 workaround to avoid controller hang in half-duplex environment.
3035 * The workaround is to avoid queuing a large packet that would span
3036 * the internal Tx FIFO ring boundary by notifying the stack to resend
3037 * the packet at a later time. This gives the Tx FIFO an opportunity to
3038 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3039 * to the beginning of the Tx FIFO.
3040 */
3041
3042 #define E1000_FIFO_HDR 0x10
3043 #define E1000_82547_PAD_LEN 0x3E0
3044
3045 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3046 struct sk_buff *skb)
3047 {
3048 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3049 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3050
3051 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3052
3053 if (adapter->link_duplex != HALF_DUPLEX)
3054 goto no_fifo_stall_required;
3055
3056 if (atomic_read(&adapter->tx_fifo_stall))
3057 return 1;
3058
3059 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3060 atomic_set(&adapter->tx_fifo_stall, 1);
3061 return 1;
3062 }
3063
3064 no_fifo_stall_required:
3065 adapter->tx_fifo_head += skb_fifo_len;
3066 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3067 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3068 return 0;
3069 }
3070
3071 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3072 {
3073 struct e1000_adapter *adapter = netdev_priv(netdev);
3074 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3075
3076 netif_stop_queue(netdev);
3077 /* Herbert's original patch had:
3078 * smp_mb__after_netif_stop_queue();
3079 * but since that doesn't exist yet, just open code it.
3080 */
3081 smp_mb();
3082
3083 /* We need to check again in a case another CPU has just
3084 * made room available.
3085 */
3086 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3087 return -EBUSY;
3088
3089 /* A reprieve! */
3090 netif_start_queue(netdev);
3091 ++adapter->restart_queue;
3092 return 0;
3093 }
3094
3095 static int e1000_maybe_stop_tx(struct net_device *netdev,
3096 struct e1000_tx_ring *tx_ring, int size)
3097 {
3098 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3099 return 0;
3100 return __e1000_maybe_stop_tx(netdev, size);
3101 }
3102
3103 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3104 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3105 struct net_device *netdev)
3106 {
3107 struct e1000_adapter *adapter = netdev_priv(netdev);
3108 struct e1000_hw *hw = &adapter->hw;
3109 struct e1000_tx_ring *tx_ring;
3110 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3111 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3112 unsigned int tx_flags = 0;
3113 unsigned int len = skb_headlen(skb);
3114 unsigned int nr_frags;
3115 unsigned int mss;
3116 int count = 0;
3117 int tso;
3118 unsigned int f;
3119
3120 /* This goes back to the question of how to logically map a Tx queue
3121 * to a flow. Right now, performance is impacted slightly negatively
3122 * if using multiple Tx queues. If the stack breaks away from a
3123 * single qdisc implementation, we can look at this again.
3124 */
3125 tx_ring = adapter->tx_ring;
3126
3127 if (unlikely(skb->len <= 0)) {
3128 dev_kfree_skb_any(skb);
3129 return NETDEV_TX_OK;
3130 }
3131
3132 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3133 * packets may get corrupted during padding by HW.
3134 * To WA this issue, pad all small packets manually.
3135 */
3136 if (skb->len < ETH_ZLEN) {
3137 if (skb_pad(skb, ETH_ZLEN - skb->len))
3138 return NETDEV_TX_OK;
3139 skb->len = ETH_ZLEN;
3140 skb_set_tail_pointer(skb, ETH_ZLEN);
3141 }
3142
3143 mss = skb_shinfo(skb)->gso_size;
3144 /* The controller does a simple calculation to
3145 * make sure there is enough room in the FIFO before
3146 * initiating the DMA for each buffer. The calc is:
3147 * 4 = ceil(buffer len/mss). To make sure we don't
3148 * overrun the FIFO, adjust the max buffer len if mss
3149 * drops.
3150 */
3151 if (mss) {
3152 u8 hdr_len;
3153 max_per_txd = min(mss << 2, max_per_txd);
3154 max_txd_pwr = fls(max_per_txd) - 1;
3155
3156 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3157 if (skb->data_len && hdr_len == len) {
3158 switch (hw->mac_type) {
3159 unsigned int pull_size;
3160 case e1000_82544:
3161 /* Make sure we have room to chop off 4 bytes,
3162 * and that the end alignment will work out to
3163 * this hardware's requirements
3164 * NOTE: this is a TSO only workaround
3165 * if end byte alignment not correct move us
3166 * into the next dword
3167 */
3168 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3169 & 4)
3170 break;
3171 /* fall through */
3172 pull_size = min((unsigned int)4, skb->data_len);
3173 if (!__pskb_pull_tail(skb, pull_size)) {
3174 e_err(drv, "__pskb_pull_tail "
3175 "failed.\n");
3176 dev_kfree_skb_any(skb);
3177 return NETDEV_TX_OK;
3178 }
3179 len = skb_headlen(skb);
3180 break;
3181 default:
3182 /* do nothing */
3183 break;
3184 }
3185 }
3186 }
3187
3188 /* reserve a descriptor for the offload context */
3189 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3190 count++;
3191 count++;
3192
3193 /* Controller Erratum workaround */
3194 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3195 count++;
3196
3197 count += TXD_USE_COUNT(len, max_txd_pwr);
3198
3199 if (adapter->pcix_82544)
3200 count++;
3201
3202 /* work-around for errata 10 and it applies to all controllers
3203 * in PCI-X mode, so add one more descriptor to the count
3204 */
3205 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3206 (len > 2015)))
3207 count++;
3208
3209 nr_frags = skb_shinfo(skb)->nr_frags;
3210 for (f = 0; f < nr_frags; f++)
3211 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3212 max_txd_pwr);
3213 if (adapter->pcix_82544)
3214 count += nr_frags;
3215
3216 /* need: count + 2 desc gap to keep tail from touching
3217 * head, otherwise try next time
3218 */
3219 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3220 return NETDEV_TX_BUSY;
3221
3222 if (unlikely((hw->mac_type == e1000_82547) &&
3223 (e1000_82547_fifo_workaround(adapter, skb)))) {
3224 netif_stop_queue(netdev);
3225 if (!test_bit(__E1000_DOWN, &adapter->flags))
3226 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3227 return NETDEV_TX_BUSY;
3228 }
3229
3230 if (vlan_tx_tag_present(skb)) {
3231 tx_flags |= E1000_TX_FLAGS_VLAN;
3232 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3233 }
3234
3235 first = tx_ring->next_to_use;
3236
3237 tso = e1000_tso(adapter, tx_ring, skb);
3238 if (tso < 0) {
3239 dev_kfree_skb_any(skb);
3240 return NETDEV_TX_OK;
3241 }
3242
3243 if (likely(tso)) {
3244 if (likely(hw->mac_type != e1000_82544))
3245 tx_ring->last_tx_tso = true;
3246 tx_flags |= E1000_TX_FLAGS_TSO;
3247 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3248 tx_flags |= E1000_TX_FLAGS_CSUM;
3249
3250 if (likely(skb->protocol == htons(ETH_P_IP)))
3251 tx_flags |= E1000_TX_FLAGS_IPV4;
3252
3253 if (unlikely(skb->no_fcs))
3254 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3255
3256 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3257 nr_frags, mss);
3258
3259 if (count) {
3260 netdev_sent_queue(netdev, skb->len);
3261 skb_tx_timestamp(skb);
3262
3263 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3264 /* Make sure there is space in the ring for the next send. */
3265 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3266
3267 } else {
3268 dev_kfree_skb_any(skb);
3269 tx_ring->buffer_info[first].time_stamp = 0;
3270 tx_ring->next_to_use = first;
3271 }
3272
3273 return NETDEV_TX_OK;
3274 }
3275
3276 #define NUM_REGS 38 /* 1 based count */
3277 static void e1000_regdump(struct e1000_adapter *adapter)
3278 {
3279 struct e1000_hw *hw = &adapter->hw;
3280 u32 regs[NUM_REGS];
3281 u32 *regs_buff = regs;
3282 int i = 0;
3283
3284 static const char * const reg_name[] = {
3285 "CTRL", "STATUS",
3286 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3287 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3288 "TIDV", "TXDCTL", "TADV", "TARC0",
3289 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3290 "TXDCTL1", "TARC1",
3291 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3292 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3293 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3294 };
3295
3296 regs_buff[0] = er32(CTRL);
3297 regs_buff[1] = er32(STATUS);
3298
3299 regs_buff[2] = er32(RCTL);
3300 regs_buff[3] = er32(RDLEN);
3301 regs_buff[4] = er32(RDH);
3302 regs_buff[5] = er32(RDT);
3303 regs_buff[6] = er32(RDTR);
3304
3305 regs_buff[7] = er32(TCTL);
3306 regs_buff[8] = er32(TDBAL);
3307 regs_buff[9] = er32(TDBAH);
3308 regs_buff[10] = er32(TDLEN);
3309 regs_buff[11] = er32(TDH);
3310 regs_buff[12] = er32(TDT);
3311 regs_buff[13] = er32(TIDV);
3312 regs_buff[14] = er32(TXDCTL);
3313 regs_buff[15] = er32(TADV);
3314 regs_buff[16] = er32(TARC0);
3315
3316 regs_buff[17] = er32(TDBAL1);
3317 regs_buff[18] = er32(TDBAH1);
3318 regs_buff[19] = er32(TDLEN1);
3319 regs_buff[20] = er32(TDH1);
3320 regs_buff[21] = er32(TDT1);
3321 regs_buff[22] = er32(TXDCTL1);
3322 regs_buff[23] = er32(TARC1);
3323 regs_buff[24] = er32(CTRL_EXT);
3324 regs_buff[25] = er32(ERT);
3325 regs_buff[26] = er32(RDBAL0);
3326 regs_buff[27] = er32(RDBAH0);
3327 regs_buff[28] = er32(TDFH);
3328 regs_buff[29] = er32(TDFT);
3329 regs_buff[30] = er32(TDFHS);
3330 regs_buff[31] = er32(TDFTS);
3331 regs_buff[32] = er32(TDFPC);
3332 regs_buff[33] = er32(RDFH);
3333 regs_buff[34] = er32(RDFT);
3334 regs_buff[35] = er32(RDFHS);
3335 regs_buff[36] = er32(RDFTS);
3336 regs_buff[37] = er32(RDFPC);
3337
3338 pr_info("Register dump\n");
3339 for (i = 0; i < NUM_REGS; i++)
3340 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3341 }
3342
3343 /*
3344 * e1000_dump: Print registers, tx ring and rx ring
3345 */
3346 static void e1000_dump(struct e1000_adapter *adapter)
3347 {
3348 /* this code doesn't handle multiple rings */
3349 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3350 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3351 int i;
3352
3353 if (!netif_msg_hw(adapter))
3354 return;
3355
3356 /* Print Registers */
3357 e1000_regdump(adapter);
3358
3359 /* transmit dump */
3360 pr_info("TX Desc ring0 dump\n");
3361
3362 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3363 *
3364 * Legacy Transmit Descriptor
3365 * +--------------------------------------------------------------+
3366 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3367 * +--------------------------------------------------------------+
3368 * 8 | Special | CSS | Status | CMD | CSO | Length |
3369 * +--------------------------------------------------------------+
3370 * 63 48 47 36 35 32 31 24 23 16 15 0
3371 *
3372 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3373 * 63 48 47 40 39 32 31 16 15 8 7 0
3374 * +----------------------------------------------------------------+
3375 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3376 * +----------------------------------------------------------------+
3377 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3378 * +----------------------------------------------------------------+
3379 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3380 *
3381 * Extended Data Descriptor (DTYP=0x1)
3382 * +----------------------------------------------------------------+
3383 * 0 | Buffer Address [63:0] |
3384 * +----------------------------------------------------------------+
3385 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3388 */
3389 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3390 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3391
3392 if (!netif_msg_tx_done(adapter))
3393 goto rx_ring_summary;
3394
3395 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3396 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3397 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3398 struct my_u { __le64 a; __le64 b; };
3399 struct my_u *u = (struct my_u *)tx_desc;
3400 const char *type;
3401
3402 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3403 type = "NTC/U";
3404 else if (i == tx_ring->next_to_use)
3405 type = "NTU";
3406 else if (i == tx_ring->next_to_clean)
3407 type = "NTC";
3408 else
3409 type = "";
3410
3411 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3412 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3413 le64_to_cpu(u->a), le64_to_cpu(u->b),
3414 (u64)buffer_info->dma, buffer_info->length,
3415 buffer_info->next_to_watch,
3416 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3417 }
3418
3419 rx_ring_summary:
3420 /* receive dump */
3421 pr_info("\nRX Desc ring dump\n");
3422
3423 /* Legacy Receive Descriptor Format
3424 *
3425 * +-----------------------------------------------------+
3426 * | Buffer Address [63:0] |
3427 * +-----------------------------------------------------+
3428 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3429 * +-----------------------------------------------------+
3430 * 63 48 47 40 39 32 31 16 15 0
3431 */
3432 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3433
3434 if (!netif_msg_rx_status(adapter))
3435 goto exit;
3436
3437 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3438 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3439 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3440 struct my_u { __le64 a; __le64 b; };
3441 struct my_u *u = (struct my_u *)rx_desc;
3442 const char *type;
3443
3444 if (i == rx_ring->next_to_use)
3445 type = "NTU";
3446 else if (i == rx_ring->next_to_clean)
3447 type = "NTC";
3448 else
3449 type = "";
3450
3451 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3452 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3453 (u64)buffer_info->dma, buffer_info->skb, type);
3454 } /* for */
3455
3456 /* dump the descriptor caches */
3457 /* rx */
3458 pr_info("Rx descriptor cache in 64bit format\n");
3459 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3460 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3461 i,
3462 readl(adapter->hw.hw_addr + i+4),
3463 readl(adapter->hw.hw_addr + i),
3464 readl(adapter->hw.hw_addr + i+12),
3465 readl(adapter->hw.hw_addr + i+8));
3466 }
3467 /* tx */
3468 pr_info("Tx descriptor cache in 64bit format\n");
3469 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3470 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3471 i,
3472 readl(adapter->hw.hw_addr + i+4),
3473 readl(adapter->hw.hw_addr + i),
3474 readl(adapter->hw.hw_addr + i+12),
3475 readl(adapter->hw.hw_addr + i+8));
3476 }
3477 exit:
3478 return;
3479 }
3480
3481 /**
3482 * e1000_tx_timeout - Respond to a Tx Hang
3483 * @netdev: network interface device structure
3484 **/
3485 static void e1000_tx_timeout(struct net_device *netdev)
3486 {
3487 struct e1000_adapter *adapter = netdev_priv(netdev);
3488
3489 /* Do the reset outside of interrupt context */
3490 adapter->tx_timeout_count++;
3491 schedule_work(&adapter->reset_task);
3492 }
3493
3494 static void e1000_reset_task(struct work_struct *work)
3495 {
3496 struct e1000_adapter *adapter =
3497 container_of(work, struct e1000_adapter, reset_task);
3498
3499 if (test_bit(__E1000_DOWN, &adapter->flags))
3500 return;
3501 e_err(drv, "Reset adapter\n");
3502 e1000_reinit_safe(adapter);
3503 }
3504
3505 /**
3506 * e1000_get_stats - Get System Network Statistics
3507 * @netdev: network interface device structure
3508 *
3509 * Returns the address of the device statistics structure.
3510 * The statistics are actually updated from the watchdog.
3511 **/
3512 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3513 {
3514 /* only return the current stats */
3515 return &netdev->stats;
3516 }
3517
3518 /**
3519 * e1000_change_mtu - Change the Maximum Transfer Unit
3520 * @netdev: network interface device structure
3521 * @new_mtu: new value for maximum frame size
3522 *
3523 * Returns 0 on success, negative on failure
3524 **/
3525 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3526 {
3527 struct e1000_adapter *adapter = netdev_priv(netdev);
3528 struct e1000_hw *hw = &adapter->hw;
3529 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3530
3531 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3532 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3533 e_err(probe, "Invalid MTU setting\n");
3534 return -EINVAL;
3535 }
3536
3537 /* Adapter-specific max frame size limits. */
3538 switch (hw->mac_type) {
3539 case e1000_undefined ... e1000_82542_rev2_1:
3540 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3541 e_err(probe, "Jumbo Frames not supported.\n");
3542 return -EINVAL;
3543 }
3544 break;
3545 default:
3546 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3547 break;
3548 }
3549
3550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3551 msleep(1);
3552 /* e1000_down has a dependency on max_frame_size */
3553 hw->max_frame_size = max_frame;
3554 if (netif_running(netdev))
3555 e1000_down(adapter);
3556
3557 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3558 * means we reserve 2 more, this pushes us to allocate from the next
3559 * larger slab size.
3560 * i.e. RXBUFFER_2048 --> size-4096 slab
3561 * however with the new *_jumbo_rx* routines, jumbo receives will use
3562 * fragmented skbs
3563 */
3564
3565 if (max_frame <= E1000_RXBUFFER_2048)
3566 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3567 else
3568 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3569 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3570 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3571 adapter->rx_buffer_len = PAGE_SIZE;
3572 #endif
3573
3574 /* adjust allocation if LPE protects us, and we aren't using SBP */
3575 if (!hw->tbi_compatibility_on &&
3576 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3577 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3578 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3579
3580 pr_info("%s changing MTU from %d to %d\n",
3581 netdev->name, netdev->mtu, new_mtu);
3582 netdev->mtu = new_mtu;
3583
3584 if (netif_running(netdev))
3585 e1000_up(adapter);
3586 else
3587 e1000_reset(adapter);
3588
3589 clear_bit(__E1000_RESETTING, &adapter->flags);
3590
3591 return 0;
3592 }
3593
3594 /**
3595 * e1000_update_stats - Update the board statistics counters
3596 * @adapter: board private structure
3597 **/
3598 void e1000_update_stats(struct e1000_adapter *adapter)
3599 {
3600 struct net_device *netdev = adapter->netdev;
3601 struct e1000_hw *hw = &adapter->hw;
3602 struct pci_dev *pdev = adapter->pdev;
3603 unsigned long flags;
3604 u16 phy_tmp;
3605
3606 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3607
3608 /* Prevent stats update while adapter is being reset, or if the pci
3609 * connection is down.
3610 */
3611 if (adapter->link_speed == 0)
3612 return;
3613 if (pci_channel_offline(pdev))
3614 return;
3615
3616 spin_lock_irqsave(&adapter->stats_lock, flags);
3617
3618 /* these counters are modified from e1000_tbi_adjust_stats,
3619 * called from the interrupt context, so they must only
3620 * be written while holding adapter->stats_lock
3621 */
3622
3623 adapter->stats.crcerrs += er32(CRCERRS);
3624 adapter->stats.gprc += er32(GPRC);
3625 adapter->stats.gorcl += er32(GORCL);
3626 adapter->stats.gorch += er32(GORCH);
3627 adapter->stats.bprc += er32(BPRC);
3628 adapter->stats.mprc += er32(MPRC);
3629 adapter->stats.roc += er32(ROC);
3630
3631 adapter->stats.prc64 += er32(PRC64);
3632 adapter->stats.prc127 += er32(PRC127);
3633 adapter->stats.prc255 += er32(PRC255);
3634 adapter->stats.prc511 += er32(PRC511);
3635 adapter->stats.prc1023 += er32(PRC1023);
3636 adapter->stats.prc1522 += er32(PRC1522);
3637
3638 adapter->stats.symerrs += er32(SYMERRS);
3639 adapter->stats.mpc += er32(MPC);
3640 adapter->stats.scc += er32(SCC);
3641 adapter->stats.ecol += er32(ECOL);
3642 adapter->stats.mcc += er32(MCC);
3643 adapter->stats.latecol += er32(LATECOL);
3644 adapter->stats.dc += er32(DC);
3645 adapter->stats.sec += er32(SEC);
3646 adapter->stats.rlec += er32(RLEC);
3647 adapter->stats.xonrxc += er32(XONRXC);
3648 adapter->stats.xontxc += er32(XONTXC);
3649 adapter->stats.xoffrxc += er32(XOFFRXC);
3650 adapter->stats.xofftxc += er32(XOFFTXC);
3651 adapter->stats.fcruc += er32(FCRUC);
3652 adapter->stats.gptc += er32(GPTC);
3653 adapter->stats.gotcl += er32(GOTCL);
3654 adapter->stats.gotch += er32(GOTCH);
3655 adapter->stats.rnbc += er32(RNBC);
3656 adapter->stats.ruc += er32(RUC);
3657 adapter->stats.rfc += er32(RFC);
3658 adapter->stats.rjc += er32(RJC);
3659 adapter->stats.torl += er32(TORL);
3660 adapter->stats.torh += er32(TORH);
3661 adapter->stats.totl += er32(TOTL);
3662 adapter->stats.toth += er32(TOTH);
3663 adapter->stats.tpr += er32(TPR);
3664
3665 adapter->stats.ptc64 += er32(PTC64);
3666 adapter->stats.ptc127 += er32(PTC127);
3667 adapter->stats.ptc255 += er32(PTC255);
3668 adapter->stats.ptc511 += er32(PTC511);
3669 adapter->stats.ptc1023 += er32(PTC1023);
3670 adapter->stats.ptc1522 += er32(PTC1522);
3671
3672 adapter->stats.mptc += er32(MPTC);
3673 adapter->stats.bptc += er32(BPTC);
3674
3675 /* used for adaptive IFS */
3676
3677 hw->tx_packet_delta = er32(TPT);
3678 adapter->stats.tpt += hw->tx_packet_delta;
3679 hw->collision_delta = er32(COLC);
3680 adapter->stats.colc += hw->collision_delta;
3681
3682 if (hw->mac_type >= e1000_82543) {
3683 adapter->stats.algnerrc += er32(ALGNERRC);
3684 adapter->stats.rxerrc += er32(RXERRC);
3685 adapter->stats.tncrs += er32(TNCRS);
3686 adapter->stats.cexterr += er32(CEXTERR);
3687 adapter->stats.tsctc += er32(TSCTC);
3688 adapter->stats.tsctfc += er32(TSCTFC);
3689 }
3690
3691 /* Fill out the OS statistics structure */
3692 netdev->stats.multicast = adapter->stats.mprc;
3693 netdev->stats.collisions = adapter->stats.colc;
3694
3695 /* Rx Errors */
3696
3697 /* RLEC on some newer hardware can be incorrect so build
3698 * our own version based on RUC and ROC
3699 */
3700 netdev->stats.rx_errors = adapter->stats.rxerrc +
3701 adapter->stats.crcerrs + adapter->stats.algnerrc +
3702 adapter->stats.ruc + adapter->stats.roc +
3703 adapter->stats.cexterr;
3704 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3705 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3706 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3707 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3708 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3709
3710 /* Tx Errors */
3711 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3712 netdev->stats.tx_errors = adapter->stats.txerrc;
3713 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3714 netdev->stats.tx_window_errors = adapter->stats.latecol;
3715 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3716 if (hw->bad_tx_carr_stats_fd &&
3717 adapter->link_duplex == FULL_DUPLEX) {
3718 netdev->stats.tx_carrier_errors = 0;
3719 adapter->stats.tncrs = 0;
3720 }
3721
3722 /* Tx Dropped needs to be maintained elsewhere */
3723
3724 /* Phy Stats */
3725 if (hw->media_type == e1000_media_type_copper) {
3726 if ((adapter->link_speed == SPEED_1000) &&
3727 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3728 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3729 adapter->phy_stats.idle_errors += phy_tmp;
3730 }
3731
3732 if ((hw->mac_type <= e1000_82546) &&
3733 (hw->phy_type == e1000_phy_m88) &&
3734 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3735 adapter->phy_stats.receive_errors += phy_tmp;
3736 }
3737
3738 /* Management Stats */
3739 if (hw->has_smbus) {
3740 adapter->stats.mgptc += er32(MGTPTC);
3741 adapter->stats.mgprc += er32(MGTPRC);
3742 adapter->stats.mgpdc += er32(MGTPDC);
3743 }
3744
3745 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3746 }
3747
3748 /**
3749 * e1000_intr - Interrupt Handler
3750 * @irq: interrupt number
3751 * @data: pointer to a network interface device structure
3752 **/
3753 static irqreturn_t e1000_intr(int irq, void *data)
3754 {
3755 struct net_device *netdev = data;
3756 struct e1000_adapter *adapter = netdev_priv(netdev);
3757 struct e1000_hw *hw = &adapter->hw;
3758 u32 icr = er32(ICR);
3759
3760 if (unlikely((!icr)))
3761 return IRQ_NONE; /* Not our interrupt */
3762
3763 /* we might have caused the interrupt, but the above
3764 * read cleared it, and just in case the driver is
3765 * down there is nothing to do so return handled
3766 */
3767 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3768 return IRQ_HANDLED;
3769
3770 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3771 hw->get_link_status = 1;
3772 /* guard against interrupt when we're going down */
3773 if (!test_bit(__E1000_DOWN, &adapter->flags))
3774 schedule_delayed_work(&adapter->watchdog_task, 1);
3775 }
3776
3777 /* disable interrupts, without the synchronize_irq bit */
3778 ew32(IMC, ~0);
3779 E1000_WRITE_FLUSH();
3780
3781 if (likely(napi_schedule_prep(&adapter->napi))) {
3782 adapter->total_tx_bytes = 0;
3783 adapter->total_tx_packets = 0;
3784 adapter->total_rx_bytes = 0;
3785 adapter->total_rx_packets = 0;
3786 __napi_schedule(&adapter->napi);
3787 } else {
3788 /* this really should not happen! if it does it is basically a
3789 * bug, but not a hard error, so enable ints and continue
3790 */
3791 if (!test_bit(__E1000_DOWN, &adapter->flags))
3792 e1000_irq_enable(adapter);
3793 }
3794
3795 return IRQ_HANDLED;
3796 }
3797
3798 /**
3799 * e1000_clean - NAPI Rx polling callback
3800 * @adapter: board private structure
3801 **/
3802 static int e1000_clean(struct napi_struct *napi, int budget)
3803 {
3804 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3805 napi);
3806 int tx_clean_complete = 0, work_done = 0;
3807
3808 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3809
3810 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3811
3812 if (!tx_clean_complete)
3813 work_done = budget;
3814
3815 /* If budget not fully consumed, exit the polling mode */
3816 if (work_done < budget) {
3817 if (likely(adapter->itr_setting & 3))
3818 e1000_set_itr(adapter);
3819 napi_complete(napi);
3820 if (!test_bit(__E1000_DOWN, &adapter->flags))
3821 e1000_irq_enable(adapter);
3822 }
3823
3824 return work_done;
3825 }
3826
3827 /**
3828 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3829 * @adapter: board private structure
3830 **/
3831 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3832 struct e1000_tx_ring *tx_ring)
3833 {
3834 struct e1000_hw *hw = &adapter->hw;
3835 struct net_device *netdev = adapter->netdev;
3836 struct e1000_tx_desc *tx_desc, *eop_desc;
3837 struct e1000_buffer *buffer_info;
3838 unsigned int i, eop;
3839 unsigned int count = 0;
3840 unsigned int total_tx_bytes=0, total_tx_packets=0;
3841 unsigned int bytes_compl = 0, pkts_compl = 0;
3842
3843 i = tx_ring->next_to_clean;
3844 eop = tx_ring->buffer_info[i].next_to_watch;
3845 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3846
3847 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3848 (count < tx_ring->count)) {
3849 bool cleaned = false;
3850 rmb(); /* read buffer_info after eop_desc */
3851 for ( ; !cleaned; count++) {
3852 tx_desc = E1000_TX_DESC(*tx_ring, i);
3853 buffer_info = &tx_ring->buffer_info[i];
3854 cleaned = (i == eop);
3855
3856 if (cleaned) {
3857 total_tx_packets += buffer_info->segs;
3858 total_tx_bytes += buffer_info->bytecount;
3859 if (buffer_info->skb) {
3860 bytes_compl += buffer_info->skb->len;
3861 pkts_compl++;
3862 }
3863
3864 }
3865 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3866 tx_desc->upper.data = 0;
3867
3868 if (unlikely(++i == tx_ring->count)) i = 0;
3869 }
3870
3871 eop = tx_ring->buffer_info[i].next_to_watch;
3872 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3873 }
3874
3875 tx_ring->next_to_clean = i;
3876
3877 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879 #define TX_WAKE_THRESHOLD 32
3880 if (unlikely(count && netif_carrier_ok(netdev) &&
3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886
3887 if (netif_queue_stopped(netdev) &&
3888 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889 netif_wake_queue(netdev);
3890 ++adapter->restart_queue;
3891 }
3892 }
3893
3894 if (adapter->detect_tx_hung) {
3895 /* Detect a transmit hang in hardware, this serializes the
3896 * check with the clearing of time_stamp and movement of i
3897 */
3898 adapter->detect_tx_hung = false;
3899 if (tx_ring->buffer_info[eop].time_stamp &&
3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901 (adapter->tx_timeout_factor * HZ)) &&
3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904 /* detected Tx unit hang */
3905 e_err(drv, "Detected Tx Unit Hang\n"
3906 " Tx Queue <%lu>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " next_to_watch.status <%x>\n",
3916 (unsigned long)((tx_ring - adapter->tx_ring) /
3917 sizeof(struct e1000_tx_ring)),
3918 readl(hw->hw_addr + tx_ring->tdh),
3919 readl(hw->hw_addr + tx_ring->tdt),
3920 tx_ring->next_to_use,
3921 tx_ring->next_to_clean,
3922 tx_ring->buffer_info[eop].time_stamp,
3923 eop,
3924 jiffies,
3925 eop_desc->upper.fields.status);
3926 e1000_dump(adapter);
3927 netif_stop_queue(netdev);
3928 }
3929 }
3930 adapter->total_tx_bytes += total_tx_bytes;
3931 adapter->total_tx_packets += total_tx_packets;
3932 netdev->stats.tx_bytes += total_tx_bytes;
3933 netdev->stats.tx_packets += total_tx_packets;
3934 return count < tx_ring->count;
3935 }
3936
3937 /**
3938 * e1000_rx_checksum - Receive Checksum Offload for 82543
3939 * @adapter: board private structure
3940 * @status_err: receive descriptor status and error fields
3941 * @csum: receive descriptor csum field
3942 * @sk_buff: socket buffer with received data
3943 **/
3944 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3945 u32 csum, struct sk_buff *skb)
3946 {
3947 struct e1000_hw *hw = &adapter->hw;
3948 u16 status = (u16)status_err;
3949 u8 errors = (u8)(status_err >> 24);
3950
3951 skb_checksum_none_assert(skb);
3952
3953 /* 82543 or newer only */
3954 if (unlikely(hw->mac_type < e1000_82543)) return;
3955 /* Ignore Checksum bit is set */
3956 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3957 /* TCP/UDP checksum error bit is set */
3958 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3959 /* let the stack verify checksum errors */
3960 adapter->hw_csum_err++;
3961 return;
3962 }
3963 /* TCP/UDP Checksum has not been calculated */
3964 if (!(status & E1000_RXD_STAT_TCPCS))
3965 return;
3966
3967 /* It must be a TCP or UDP packet with a valid checksum */
3968 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3969 /* TCP checksum is good */
3970 skb->ip_summed = CHECKSUM_UNNECESSARY;
3971 }
3972 adapter->hw_csum_good++;
3973 }
3974
3975 /**
3976 * e1000_consume_page - helper function
3977 **/
3978 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3979 u16 length)
3980 {
3981 bi->page = NULL;
3982 skb->len += length;
3983 skb->data_len += length;
3984 skb->truesize += PAGE_SIZE;
3985 }
3986
3987 /**
3988 * e1000_receive_skb - helper function to handle rx indications
3989 * @adapter: board private structure
3990 * @status: descriptor status field as written by hardware
3991 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3992 * @skb: pointer to sk_buff to be indicated to stack
3993 */
3994 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3995 __le16 vlan, struct sk_buff *skb)
3996 {
3997 skb->protocol = eth_type_trans(skb, adapter->netdev);
3998
3999 if (status & E1000_RXD_STAT_VP) {
4000 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4001
4002 __vlan_hwaccel_put_tag(skb, vid);
4003 }
4004 napi_gro_receive(&adapter->napi, skb);
4005 }
4006
4007 /**
4008 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4009 * @adapter: board private structure
4010 * @rx_ring: ring to clean
4011 * @work_done: amount of napi work completed this call
4012 * @work_to_do: max amount of work allowed for this call to do
4013 *
4014 * the return value indicates whether actual cleaning was done, there
4015 * is no guarantee that everything was cleaned
4016 */
4017 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4018 struct e1000_rx_ring *rx_ring,
4019 int *work_done, int work_to_do)
4020 {
4021 struct e1000_hw *hw = &adapter->hw;
4022 struct net_device *netdev = adapter->netdev;
4023 struct pci_dev *pdev = adapter->pdev;
4024 struct e1000_rx_desc *rx_desc, *next_rxd;
4025 struct e1000_buffer *buffer_info, *next_buffer;
4026 unsigned long irq_flags;
4027 u32 length;
4028 unsigned int i;
4029 int cleaned_count = 0;
4030 bool cleaned = false;
4031 unsigned int total_rx_bytes=0, total_rx_packets=0;
4032
4033 i = rx_ring->next_to_clean;
4034 rx_desc = E1000_RX_DESC(*rx_ring, i);
4035 buffer_info = &rx_ring->buffer_info[i];
4036
4037 while (rx_desc->status & E1000_RXD_STAT_DD) {
4038 struct sk_buff *skb;
4039 u8 status;
4040
4041 if (*work_done >= work_to_do)
4042 break;
4043 (*work_done)++;
4044 rmb(); /* read descriptor and rx_buffer_info after status DD */
4045
4046 status = rx_desc->status;
4047 skb = buffer_info->skb;
4048 buffer_info->skb = NULL;
4049
4050 if (++i == rx_ring->count) i = 0;
4051 next_rxd = E1000_RX_DESC(*rx_ring, i);
4052 prefetch(next_rxd);
4053
4054 next_buffer = &rx_ring->buffer_info[i];
4055
4056 cleaned = true;
4057 cleaned_count++;
4058 dma_unmap_page(&pdev->dev, buffer_info->dma,
4059 buffer_info->length, DMA_FROM_DEVICE);
4060 buffer_info->dma = 0;
4061
4062 length = le16_to_cpu(rx_desc->length);
4063
4064 /* errors is only valid for DD + EOP descriptors */
4065 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4066 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4067 u8 *mapped;
4068 u8 last_byte;
4069
4070 mapped = page_address(buffer_info->page);
4071 last_byte = *(mapped + length - 1);
4072 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4073 last_byte)) {
4074 spin_lock_irqsave(&adapter->stats_lock,
4075 irq_flags);
4076 e1000_tbi_adjust_stats(hw, &adapter->stats,
4077 length, mapped);
4078 spin_unlock_irqrestore(&adapter->stats_lock,
4079 irq_flags);
4080 length--;
4081 } else {
4082 if (netdev->features & NETIF_F_RXALL)
4083 goto process_skb;
4084 /* recycle both page and skb */
4085 buffer_info->skb = skb;
4086 /* an error means any chain goes out the window
4087 * too
4088 */
4089 if (rx_ring->rx_skb_top)
4090 dev_kfree_skb(rx_ring->rx_skb_top);
4091 rx_ring->rx_skb_top = NULL;
4092 goto next_desc;
4093 }
4094 }
4095
4096 #define rxtop rx_ring->rx_skb_top
4097 process_skb:
4098 if (!(status & E1000_RXD_STAT_EOP)) {
4099 /* this descriptor is only the beginning (or middle) */
4100 if (!rxtop) {
4101 /* this is the beginning of a chain */
4102 rxtop = skb;
4103 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4104 0, length);
4105 } else {
4106 /* this is the middle of a chain */
4107 skb_fill_page_desc(rxtop,
4108 skb_shinfo(rxtop)->nr_frags,
4109 buffer_info->page, 0, length);
4110 /* re-use the skb, only consumed the page */
4111 buffer_info->skb = skb;
4112 }
4113 e1000_consume_page(buffer_info, rxtop, length);
4114 goto next_desc;
4115 } else {
4116 if (rxtop) {
4117 /* end of the chain */
4118 skb_fill_page_desc(rxtop,
4119 skb_shinfo(rxtop)->nr_frags,
4120 buffer_info->page, 0, length);
4121 /* re-use the current skb, we only consumed the
4122 * page
4123 */
4124 buffer_info->skb = skb;
4125 skb = rxtop;
4126 rxtop = NULL;
4127 e1000_consume_page(buffer_info, skb, length);
4128 } else {
4129 /* no chain, got EOP, this buf is the packet
4130 * copybreak to save the put_page/alloc_page
4131 */
4132 if (length <= copybreak &&
4133 skb_tailroom(skb) >= length) {
4134 u8 *vaddr;
4135 vaddr = kmap_atomic(buffer_info->page);
4136 memcpy(skb_tail_pointer(skb), vaddr,
4137 length);
4138 kunmap_atomic(vaddr);
4139 /* re-use the page, so don't erase
4140 * buffer_info->page
4141 */
4142 skb_put(skb, length);
4143 } else {
4144 skb_fill_page_desc(skb, 0,
4145 buffer_info->page, 0,
4146 length);
4147 e1000_consume_page(buffer_info, skb,
4148 length);
4149 }
4150 }
4151 }
4152
4153 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4154 e1000_rx_checksum(adapter,
4155 (u32)(status) |
4156 ((u32)(rx_desc->errors) << 24),
4157 le16_to_cpu(rx_desc->csum), skb);
4158
4159 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4160 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4161 pskb_trim(skb, skb->len - 4);
4162 total_rx_packets++;
4163
4164 /* eth type trans needs skb->data to point to something */
4165 if (!pskb_may_pull(skb, ETH_HLEN)) {
4166 e_err(drv, "pskb_may_pull failed.\n");
4167 dev_kfree_skb(skb);
4168 goto next_desc;
4169 }
4170
4171 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4172
4173 next_desc:
4174 rx_desc->status = 0;
4175
4176 /* return some buffers to hardware, one at a time is too slow */
4177 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4178 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4179 cleaned_count = 0;
4180 }
4181
4182 /* use prefetched values */
4183 rx_desc = next_rxd;
4184 buffer_info = next_buffer;
4185 }
4186 rx_ring->next_to_clean = i;
4187
4188 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4189 if (cleaned_count)
4190 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4191
4192 adapter->total_rx_packets += total_rx_packets;
4193 adapter->total_rx_bytes += total_rx_bytes;
4194 netdev->stats.rx_bytes += total_rx_bytes;
4195 netdev->stats.rx_packets += total_rx_packets;
4196 return cleaned;
4197 }
4198
4199 /* this should improve performance for small packets with large amounts
4200 * of reassembly being done in the stack
4201 */
4202 static void e1000_check_copybreak(struct net_device *netdev,
4203 struct e1000_buffer *buffer_info,
4204 u32 length, struct sk_buff **skb)
4205 {
4206 struct sk_buff *new_skb;
4207
4208 if (length > copybreak)
4209 return;
4210
4211 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4212 if (!new_skb)
4213 return;
4214
4215 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4216 (*skb)->data - NET_IP_ALIGN,
4217 length + NET_IP_ALIGN);
4218 /* save the skb in buffer_info as good */
4219 buffer_info->skb = *skb;
4220 *skb = new_skb;
4221 }
4222
4223 /**
4224 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4225 * @adapter: board private structure
4226 * @rx_ring: ring to clean
4227 * @work_done: amount of napi work completed this call
4228 * @work_to_do: max amount of work allowed for this call to do
4229 */
4230 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4231 struct e1000_rx_ring *rx_ring,
4232 int *work_done, int work_to_do)
4233 {
4234 struct e1000_hw *hw = &adapter->hw;
4235 struct net_device *netdev = adapter->netdev;
4236 struct pci_dev *pdev = adapter->pdev;
4237 struct e1000_rx_desc *rx_desc, *next_rxd;
4238 struct e1000_buffer *buffer_info, *next_buffer;
4239 unsigned long flags;
4240 u32 length;
4241 unsigned int i;
4242 int cleaned_count = 0;
4243 bool cleaned = false;
4244 unsigned int total_rx_bytes=0, total_rx_packets=0;
4245
4246 i = rx_ring->next_to_clean;
4247 rx_desc = E1000_RX_DESC(*rx_ring, i);
4248 buffer_info = &rx_ring->buffer_info[i];
4249
4250 while (rx_desc->status & E1000_RXD_STAT_DD) {
4251 struct sk_buff *skb;
4252 u8 status;
4253
4254 if (*work_done >= work_to_do)
4255 break;
4256 (*work_done)++;
4257 rmb(); /* read descriptor and rx_buffer_info after status DD */
4258
4259 status = rx_desc->status;
4260 skb = buffer_info->skb;
4261 buffer_info->skb = NULL;
4262
4263 prefetch(skb->data - NET_IP_ALIGN);
4264
4265 if (++i == rx_ring->count) i = 0;
4266 next_rxd = E1000_RX_DESC(*rx_ring, i);
4267 prefetch(next_rxd);
4268
4269 next_buffer = &rx_ring->buffer_info[i];
4270
4271 cleaned = true;
4272 cleaned_count++;
4273 dma_unmap_single(&pdev->dev, buffer_info->dma,
4274 buffer_info->length, DMA_FROM_DEVICE);
4275 buffer_info->dma = 0;
4276
4277 length = le16_to_cpu(rx_desc->length);
4278 /* !EOP means multiple descriptors were used to store a single
4279 * packet, if thats the case we need to toss it. In fact, we
4280 * to toss every packet with the EOP bit clear and the next
4281 * frame that _does_ have the EOP bit set, as it is by
4282 * definition only a frame fragment
4283 */
4284 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4285 adapter->discarding = true;
4286
4287 if (adapter->discarding) {
4288 /* All receives must fit into a single buffer */
4289 e_dbg("Receive packet consumed multiple buffers\n");
4290 /* recycle */
4291 buffer_info->skb = skb;
4292 if (status & E1000_RXD_STAT_EOP)
4293 adapter->discarding = false;
4294 goto next_desc;
4295 }
4296
4297 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4298 u8 last_byte = *(skb->data + length - 1);
4299 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4300 last_byte)) {
4301 spin_lock_irqsave(&adapter->stats_lock, flags);
4302 e1000_tbi_adjust_stats(hw, &adapter->stats,
4303 length, skb->data);
4304 spin_unlock_irqrestore(&adapter->stats_lock,
4305 flags);
4306 length--;
4307 } else {
4308 if (netdev->features & NETIF_F_RXALL)
4309 goto process_skb;
4310 /* recycle */
4311 buffer_info->skb = skb;
4312 goto next_desc;
4313 }
4314 }
4315
4316 process_skb:
4317 total_rx_bytes += (length - 4); /* don't count FCS */
4318 total_rx_packets++;
4319
4320 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4321 /* adjust length to remove Ethernet CRC, this must be
4322 * done after the TBI_ACCEPT workaround above
4323 */
4324 length -= 4;
4325
4326 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4327
4328 skb_put(skb, length);
4329
4330 /* Receive Checksum Offload */
4331 e1000_rx_checksum(adapter,
4332 (u32)(status) |
4333 ((u32)(rx_desc->errors) << 24),
4334 le16_to_cpu(rx_desc->csum), skb);
4335
4336 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4337
4338 next_desc:
4339 rx_desc->status = 0;
4340
4341 /* return some buffers to hardware, one at a time is too slow */
4342 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4343 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4344 cleaned_count = 0;
4345 }
4346
4347 /* use prefetched values */
4348 rx_desc = next_rxd;
4349 buffer_info = next_buffer;
4350 }
4351 rx_ring->next_to_clean = i;
4352
4353 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4354 if (cleaned_count)
4355 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4356
4357 adapter->total_rx_packets += total_rx_packets;
4358 adapter->total_rx_bytes += total_rx_bytes;
4359 netdev->stats.rx_bytes += total_rx_bytes;
4360 netdev->stats.rx_packets += total_rx_packets;
4361 return cleaned;
4362 }
4363
4364 /**
4365 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4366 * @adapter: address of board private structure
4367 * @rx_ring: pointer to receive ring structure
4368 * @cleaned_count: number of buffers to allocate this pass
4369 **/
4370 static void
4371 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4372 struct e1000_rx_ring *rx_ring, int cleaned_count)
4373 {
4374 struct net_device *netdev = adapter->netdev;
4375 struct pci_dev *pdev = adapter->pdev;
4376 struct e1000_rx_desc *rx_desc;
4377 struct e1000_buffer *buffer_info;
4378 struct sk_buff *skb;
4379 unsigned int i;
4380 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4381
4382 i = rx_ring->next_to_use;
4383 buffer_info = &rx_ring->buffer_info[i];
4384
4385 while (cleaned_count--) {
4386 skb = buffer_info->skb;
4387 if (skb) {
4388 skb_trim(skb, 0);
4389 goto check_page;
4390 }
4391
4392 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4393 if (unlikely(!skb)) {
4394 /* Better luck next round */
4395 adapter->alloc_rx_buff_failed++;
4396 break;
4397 }
4398
4399 buffer_info->skb = skb;
4400 buffer_info->length = adapter->rx_buffer_len;
4401 check_page:
4402 /* allocate a new page if necessary */
4403 if (!buffer_info->page) {
4404 buffer_info->page = alloc_page(GFP_ATOMIC);
4405 if (unlikely(!buffer_info->page)) {
4406 adapter->alloc_rx_buff_failed++;
4407 break;
4408 }
4409 }
4410
4411 if (!buffer_info->dma) {
4412 buffer_info->dma = dma_map_page(&pdev->dev,
4413 buffer_info->page, 0,
4414 buffer_info->length,
4415 DMA_FROM_DEVICE);
4416 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4417 put_page(buffer_info->page);
4418 dev_kfree_skb(skb);
4419 buffer_info->page = NULL;
4420 buffer_info->skb = NULL;
4421 buffer_info->dma = 0;
4422 adapter->alloc_rx_buff_failed++;
4423 break; /* while !buffer_info->skb */
4424 }
4425 }
4426
4427 rx_desc = E1000_RX_DESC(*rx_ring, i);
4428 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4429
4430 if (unlikely(++i == rx_ring->count))
4431 i = 0;
4432 buffer_info = &rx_ring->buffer_info[i];
4433 }
4434
4435 if (likely(rx_ring->next_to_use != i)) {
4436 rx_ring->next_to_use = i;
4437 if (unlikely(i-- == 0))
4438 i = (rx_ring->count - 1);
4439
4440 /* Force memory writes to complete before letting h/w
4441 * know there are new descriptors to fetch. (Only
4442 * applicable for weak-ordered memory model archs,
4443 * such as IA-64).
4444 */
4445 wmb();
4446 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4447 }
4448 }
4449
4450 /**
4451 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4452 * @adapter: address of board private structure
4453 **/
4454 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4455 struct e1000_rx_ring *rx_ring,
4456 int cleaned_count)
4457 {
4458 struct e1000_hw *hw = &adapter->hw;
4459 struct net_device *netdev = adapter->netdev;
4460 struct pci_dev *pdev = adapter->pdev;
4461 struct e1000_rx_desc *rx_desc;
4462 struct e1000_buffer *buffer_info;
4463 struct sk_buff *skb;
4464 unsigned int i;
4465 unsigned int bufsz = adapter->rx_buffer_len;
4466
4467 i = rx_ring->next_to_use;
4468 buffer_info = &rx_ring->buffer_info[i];
4469
4470 while (cleaned_count--) {
4471 skb = buffer_info->skb;
4472 if (skb) {
4473 skb_trim(skb, 0);
4474 goto map_skb;
4475 }
4476
4477 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4478 if (unlikely(!skb)) {
4479 /* Better luck next round */
4480 adapter->alloc_rx_buff_failed++;
4481 break;
4482 }
4483
4484 /* Fix for errata 23, can't cross 64kB boundary */
4485 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4486 struct sk_buff *oldskb = skb;
4487 e_err(rx_err, "skb align check failed: %u bytes at "
4488 "%p\n", bufsz, skb->data);
4489 /* Try again, without freeing the previous */
4490 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4491 /* Failed allocation, critical failure */
4492 if (!skb) {
4493 dev_kfree_skb(oldskb);
4494 adapter->alloc_rx_buff_failed++;
4495 break;
4496 }
4497
4498 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4499 /* give up */
4500 dev_kfree_skb(skb);
4501 dev_kfree_skb(oldskb);
4502 adapter->alloc_rx_buff_failed++;
4503 break; /* while !buffer_info->skb */
4504 }
4505
4506 /* Use new allocation */
4507 dev_kfree_skb(oldskb);
4508 }
4509 buffer_info->skb = skb;
4510 buffer_info->length = adapter->rx_buffer_len;
4511 map_skb:
4512 buffer_info->dma = dma_map_single(&pdev->dev,
4513 skb->data,
4514 buffer_info->length,
4515 DMA_FROM_DEVICE);
4516 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4517 dev_kfree_skb(skb);
4518 buffer_info->skb = NULL;
4519 buffer_info->dma = 0;
4520 adapter->alloc_rx_buff_failed++;
4521 break; /* while !buffer_info->skb */
4522 }
4523
4524 /* XXX if it was allocated cleanly it will never map to a
4525 * boundary crossing
4526 */
4527
4528 /* Fix for errata 23, can't cross 64kB boundary */
4529 if (!e1000_check_64k_bound(adapter,
4530 (void *)(unsigned long)buffer_info->dma,
4531 adapter->rx_buffer_len)) {
4532 e_err(rx_err, "dma align check failed: %u bytes at "
4533 "%p\n", adapter->rx_buffer_len,
4534 (void *)(unsigned long)buffer_info->dma);
4535 dev_kfree_skb(skb);
4536 buffer_info->skb = NULL;
4537
4538 dma_unmap_single(&pdev->dev, buffer_info->dma,
4539 adapter->rx_buffer_len,
4540 DMA_FROM_DEVICE);
4541 buffer_info->dma = 0;
4542
4543 adapter->alloc_rx_buff_failed++;
4544 break; /* while !buffer_info->skb */
4545 }
4546 rx_desc = E1000_RX_DESC(*rx_ring, i);
4547 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4548
4549 if (unlikely(++i == rx_ring->count))
4550 i = 0;
4551 buffer_info = &rx_ring->buffer_info[i];
4552 }
4553
4554 if (likely(rx_ring->next_to_use != i)) {
4555 rx_ring->next_to_use = i;
4556 if (unlikely(i-- == 0))
4557 i = (rx_ring->count - 1);
4558
4559 /* Force memory writes to complete before letting h/w
4560 * know there are new descriptors to fetch. (Only
4561 * applicable for weak-ordered memory model archs,
4562 * such as IA-64).
4563 */
4564 wmb();
4565 writel(i, hw->hw_addr + rx_ring->rdt);
4566 }
4567 }
4568
4569 /**
4570 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4571 * @adapter:
4572 **/
4573 static void e1000_smartspeed(struct e1000_adapter *adapter)
4574 {
4575 struct e1000_hw *hw = &adapter->hw;
4576 u16 phy_status;
4577 u16 phy_ctrl;
4578
4579 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4580 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4581 return;
4582
4583 if (adapter->smartspeed == 0) {
4584 /* If Master/Slave config fault is asserted twice,
4585 * we assume back-to-back
4586 */
4587 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4588 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4589 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4590 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4591 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4592 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4593 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4594 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4595 phy_ctrl);
4596 adapter->smartspeed++;
4597 if (!e1000_phy_setup_autoneg(hw) &&
4598 !e1000_read_phy_reg(hw, PHY_CTRL,
4599 &phy_ctrl)) {
4600 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4601 MII_CR_RESTART_AUTO_NEG);
4602 e1000_write_phy_reg(hw, PHY_CTRL,
4603 phy_ctrl);
4604 }
4605 }
4606 return;
4607 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4608 /* If still no link, perhaps using 2/3 pair cable */
4609 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4610 phy_ctrl |= CR_1000T_MS_ENABLE;
4611 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4612 if (!e1000_phy_setup_autoneg(hw) &&
4613 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4614 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4615 MII_CR_RESTART_AUTO_NEG);
4616 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4617 }
4618 }
4619 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4620 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4621 adapter->smartspeed = 0;
4622 }
4623
4624 /**
4625 * e1000_ioctl -
4626 * @netdev:
4627 * @ifreq:
4628 * @cmd:
4629 **/
4630 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4631 {
4632 switch (cmd) {
4633 case SIOCGMIIPHY:
4634 case SIOCGMIIREG:
4635 case SIOCSMIIREG:
4636 return e1000_mii_ioctl(netdev, ifr, cmd);
4637 default:
4638 return -EOPNOTSUPP;
4639 }
4640 }
4641
4642 /**
4643 * e1000_mii_ioctl -
4644 * @netdev:
4645 * @ifreq:
4646 * @cmd:
4647 **/
4648 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4649 int cmd)
4650 {
4651 struct e1000_adapter *adapter = netdev_priv(netdev);
4652 struct e1000_hw *hw = &adapter->hw;
4653 struct mii_ioctl_data *data = if_mii(ifr);
4654 int retval;
4655 u16 mii_reg;
4656 unsigned long flags;
4657
4658 if (hw->media_type != e1000_media_type_copper)
4659 return -EOPNOTSUPP;
4660
4661 switch (cmd) {
4662 case SIOCGMIIPHY:
4663 data->phy_id = hw->phy_addr;
4664 break;
4665 case SIOCGMIIREG:
4666 spin_lock_irqsave(&adapter->stats_lock, flags);
4667 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4668 &data->val_out)) {
4669 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4670 return -EIO;
4671 }
4672 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4673 break;
4674 case SIOCSMIIREG:
4675 if (data->reg_num & ~(0x1F))
4676 return -EFAULT;
4677 mii_reg = data->val_in;
4678 spin_lock_irqsave(&adapter->stats_lock, flags);
4679 if (e1000_write_phy_reg(hw, data->reg_num,
4680 mii_reg)) {
4681 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4682 return -EIO;
4683 }
4684 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4685 if (hw->media_type == e1000_media_type_copper) {
4686 switch (data->reg_num) {
4687 case PHY_CTRL:
4688 if (mii_reg & MII_CR_POWER_DOWN)
4689 break;
4690 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4691 hw->autoneg = 1;
4692 hw->autoneg_advertised = 0x2F;
4693 } else {
4694 u32 speed;
4695 if (mii_reg & 0x40)
4696 speed = SPEED_1000;
4697 else if (mii_reg & 0x2000)
4698 speed = SPEED_100;
4699 else
4700 speed = SPEED_10;
4701 retval = e1000_set_spd_dplx(
4702 adapter, speed,
4703 ((mii_reg & 0x100)
4704 ? DUPLEX_FULL :
4705 DUPLEX_HALF));
4706 if (retval)
4707 return retval;
4708 }
4709 if (netif_running(adapter->netdev))
4710 e1000_reinit_locked(adapter);
4711 else
4712 e1000_reset(adapter);
4713 break;
4714 case M88E1000_PHY_SPEC_CTRL:
4715 case M88E1000_EXT_PHY_SPEC_CTRL:
4716 if (e1000_phy_reset(hw))
4717 return -EIO;
4718 break;
4719 }
4720 } else {
4721 switch (data->reg_num) {
4722 case PHY_CTRL:
4723 if (mii_reg & MII_CR_POWER_DOWN)
4724 break;
4725 if (netif_running(adapter->netdev))
4726 e1000_reinit_locked(adapter);
4727 else
4728 e1000_reset(adapter);
4729 break;
4730 }
4731 }
4732 break;
4733 default:
4734 return -EOPNOTSUPP;
4735 }
4736 return E1000_SUCCESS;
4737 }
4738
4739 void e1000_pci_set_mwi(struct e1000_hw *hw)
4740 {
4741 struct e1000_adapter *adapter = hw->back;
4742 int ret_val = pci_set_mwi(adapter->pdev);
4743
4744 if (ret_val)
4745 e_err(probe, "Error in setting MWI\n");
4746 }
4747
4748 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4749 {
4750 struct e1000_adapter *adapter = hw->back;
4751
4752 pci_clear_mwi(adapter->pdev);
4753 }
4754
4755 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4756 {
4757 struct e1000_adapter *adapter = hw->back;
4758 return pcix_get_mmrbc(adapter->pdev);
4759 }
4760
4761 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4762 {
4763 struct e1000_adapter *adapter = hw->back;
4764 pcix_set_mmrbc(adapter->pdev, mmrbc);
4765 }
4766
4767 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4768 {
4769 outl(value, port);
4770 }
4771
4772 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4773 {
4774 u16 vid;
4775
4776 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4777 return true;
4778 return false;
4779 }
4780
4781 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4782 netdev_features_t features)
4783 {
4784 struct e1000_hw *hw = &adapter->hw;
4785 u32 ctrl;
4786
4787 ctrl = er32(CTRL);
4788 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4789 /* enable VLAN tag insert/strip */
4790 ctrl |= E1000_CTRL_VME;
4791 } else {
4792 /* disable VLAN tag insert/strip */
4793 ctrl &= ~E1000_CTRL_VME;
4794 }
4795 ew32(CTRL, ctrl);
4796 }
4797 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4798 bool filter_on)
4799 {
4800 struct e1000_hw *hw = &adapter->hw;
4801 u32 rctl;
4802
4803 if (!test_bit(__E1000_DOWN, &adapter->flags))
4804 e1000_irq_disable(adapter);
4805
4806 __e1000_vlan_mode(adapter, adapter->netdev->features);
4807 if (filter_on) {
4808 /* enable VLAN receive filtering */
4809 rctl = er32(RCTL);
4810 rctl &= ~E1000_RCTL_CFIEN;
4811 if (!(adapter->netdev->flags & IFF_PROMISC))
4812 rctl |= E1000_RCTL_VFE;
4813 ew32(RCTL, rctl);
4814 e1000_update_mng_vlan(adapter);
4815 } else {
4816 /* disable VLAN receive filtering */
4817 rctl = er32(RCTL);
4818 rctl &= ~E1000_RCTL_VFE;
4819 ew32(RCTL, rctl);
4820 }
4821
4822 if (!test_bit(__E1000_DOWN, &adapter->flags))
4823 e1000_irq_enable(adapter);
4824 }
4825
4826 static void e1000_vlan_mode(struct net_device *netdev,
4827 netdev_features_t features)
4828 {
4829 struct e1000_adapter *adapter = netdev_priv(netdev);
4830
4831 if (!test_bit(__E1000_DOWN, &adapter->flags))
4832 e1000_irq_disable(adapter);
4833
4834 __e1000_vlan_mode(adapter, features);
4835
4836 if (!test_bit(__E1000_DOWN, &adapter->flags))
4837 e1000_irq_enable(adapter);
4838 }
4839
4840 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4841 {
4842 struct e1000_adapter *adapter = netdev_priv(netdev);
4843 struct e1000_hw *hw = &adapter->hw;
4844 u32 vfta, index;
4845
4846 if ((hw->mng_cookie.status &
4847 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4848 (vid == adapter->mng_vlan_id))
4849 return 0;
4850
4851 if (!e1000_vlan_used(adapter))
4852 e1000_vlan_filter_on_off(adapter, true);
4853
4854 /* add VID to filter table */
4855 index = (vid >> 5) & 0x7F;
4856 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4857 vfta |= (1 << (vid & 0x1F));
4858 e1000_write_vfta(hw, index, vfta);
4859
4860 set_bit(vid, adapter->active_vlans);
4861
4862 return 0;
4863 }
4864
4865 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4866 {
4867 struct e1000_adapter *adapter = netdev_priv(netdev);
4868 struct e1000_hw *hw = &adapter->hw;
4869 u32 vfta, index;
4870
4871 if (!test_bit(__E1000_DOWN, &adapter->flags))
4872 e1000_irq_disable(adapter);
4873 if (!test_bit(__E1000_DOWN, &adapter->flags))
4874 e1000_irq_enable(adapter);
4875
4876 /* remove VID from filter table */
4877 index = (vid >> 5) & 0x7F;
4878 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4879 vfta &= ~(1 << (vid & 0x1F));
4880 e1000_write_vfta(hw, index, vfta);
4881
4882 clear_bit(vid, adapter->active_vlans);
4883
4884 if (!e1000_vlan_used(adapter))
4885 e1000_vlan_filter_on_off(adapter, false);
4886
4887 return 0;
4888 }
4889
4890 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4891 {
4892 u16 vid;
4893
4894 if (!e1000_vlan_used(adapter))
4895 return;
4896
4897 e1000_vlan_filter_on_off(adapter, true);
4898 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4899 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4900 }
4901
4902 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4903 {
4904 struct e1000_hw *hw = &adapter->hw;
4905
4906 hw->autoneg = 0;
4907
4908 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4909 * for the switch() below to work
4910 */
4911 if ((spd & 1) || (dplx & ~1))
4912 goto err_inval;
4913
4914 /* Fiber NICs only allow 1000 gbps Full duplex */
4915 if ((hw->media_type == e1000_media_type_fiber) &&
4916 spd != SPEED_1000 &&
4917 dplx != DUPLEX_FULL)
4918 goto err_inval;
4919
4920 switch (spd + dplx) {
4921 case SPEED_10 + DUPLEX_HALF:
4922 hw->forced_speed_duplex = e1000_10_half;
4923 break;
4924 case SPEED_10 + DUPLEX_FULL:
4925 hw->forced_speed_duplex = e1000_10_full;
4926 break;
4927 case SPEED_100 + DUPLEX_HALF:
4928 hw->forced_speed_duplex = e1000_100_half;
4929 break;
4930 case SPEED_100 + DUPLEX_FULL:
4931 hw->forced_speed_duplex = e1000_100_full;
4932 break;
4933 case SPEED_1000 + DUPLEX_FULL:
4934 hw->autoneg = 1;
4935 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4936 break;
4937 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4938 default:
4939 goto err_inval;
4940 }
4941
4942 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4943 hw->mdix = AUTO_ALL_MODES;
4944
4945 return 0;
4946
4947 err_inval:
4948 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4949 return -EINVAL;
4950 }
4951
4952 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4953 {
4954 struct net_device *netdev = pci_get_drvdata(pdev);
4955 struct e1000_adapter *adapter = netdev_priv(netdev);
4956 struct e1000_hw *hw = &adapter->hw;
4957 u32 ctrl, ctrl_ext, rctl, status;
4958 u32 wufc = adapter->wol;
4959 #ifdef CONFIG_PM
4960 int retval = 0;
4961 #endif
4962
4963 netif_device_detach(netdev);
4964
4965 if (netif_running(netdev)) {
4966 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4967 e1000_down(adapter);
4968 }
4969
4970 #ifdef CONFIG_PM
4971 retval = pci_save_state(pdev);
4972 if (retval)
4973 return retval;
4974 #endif
4975
4976 status = er32(STATUS);
4977 if (status & E1000_STATUS_LU)
4978 wufc &= ~E1000_WUFC_LNKC;
4979
4980 if (wufc) {
4981 e1000_setup_rctl(adapter);
4982 e1000_set_rx_mode(netdev);
4983
4984 rctl = er32(RCTL);
4985
4986 /* turn on all-multi mode if wake on multicast is enabled */
4987 if (wufc & E1000_WUFC_MC)
4988 rctl |= E1000_RCTL_MPE;
4989
4990 /* enable receives in the hardware */
4991 ew32(RCTL, rctl | E1000_RCTL_EN);
4992
4993 if (hw->mac_type >= e1000_82540) {
4994 ctrl = er32(CTRL);
4995 /* advertise wake from D3Cold */
4996 #define E1000_CTRL_ADVD3WUC 0x00100000
4997 /* phy power management enable */
4998 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4999 ctrl |= E1000_CTRL_ADVD3WUC |
5000 E1000_CTRL_EN_PHY_PWR_MGMT;
5001 ew32(CTRL, ctrl);
5002 }
5003
5004 if (hw->media_type == e1000_media_type_fiber ||
5005 hw->media_type == e1000_media_type_internal_serdes) {
5006 /* keep the laser running in D3 */
5007 ctrl_ext = er32(CTRL_EXT);
5008 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5009 ew32(CTRL_EXT, ctrl_ext);
5010 }
5011
5012 ew32(WUC, E1000_WUC_PME_EN);
5013 ew32(WUFC, wufc);
5014 } else {
5015 ew32(WUC, 0);
5016 ew32(WUFC, 0);
5017 }
5018
5019 e1000_release_manageability(adapter);
5020
5021 *enable_wake = !!wufc;
5022
5023 /* make sure adapter isn't asleep if manageability is enabled */
5024 if (adapter->en_mng_pt)
5025 *enable_wake = true;
5026
5027 if (netif_running(netdev))
5028 e1000_free_irq(adapter);
5029
5030 pci_disable_device(pdev);
5031
5032 return 0;
5033 }
5034
5035 #ifdef CONFIG_PM
5036 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5037 {
5038 int retval;
5039 bool wake;
5040
5041 retval = __e1000_shutdown(pdev, &wake);
5042 if (retval)
5043 return retval;
5044
5045 if (wake) {
5046 pci_prepare_to_sleep(pdev);
5047 } else {
5048 pci_wake_from_d3(pdev, false);
5049 pci_set_power_state(pdev, PCI_D3hot);
5050 }
5051
5052 return 0;
5053 }
5054
5055 static int e1000_resume(struct pci_dev *pdev)
5056 {
5057 struct net_device *netdev = pci_get_drvdata(pdev);
5058 struct e1000_adapter *adapter = netdev_priv(netdev);
5059 struct e1000_hw *hw = &adapter->hw;
5060 u32 err;
5061
5062 pci_set_power_state(pdev, PCI_D0);
5063 pci_restore_state(pdev);
5064 pci_save_state(pdev);
5065
5066 if (adapter->need_ioport)
5067 err = pci_enable_device(pdev);
5068 else
5069 err = pci_enable_device_mem(pdev);
5070 if (err) {
5071 pr_err("Cannot enable PCI device from suspend\n");
5072 return err;
5073 }
5074 pci_set_master(pdev);
5075
5076 pci_enable_wake(pdev, PCI_D3hot, 0);
5077 pci_enable_wake(pdev, PCI_D3cold, 0);
5078
5079 if (netif_running(netdev)) {
5080 err = e1000_request_irq(adapter);
5081 if (err)
5082 return err;
5083 }
5084
5085 e1000_power_up_phy(adapter);
5086 e1000_reset(adapter);
5087 ew32(WUS, ~0);
5088
5089 e1000_init_manageability(adapter);
5090
5091 if (netif_running(netdev))
5092 e1000_up(adapter);
5093
5094 netif_device_attach(netdev);
5095
5096 return 0;
5097 }
5098 #endif
5099
5100 static void e1000_shutdown(struct pci_dev *pdev)
5101 {
5102 bool wake;
5103
5104 __e1000_shutdown(pdev, &wake);
5105
5106 if (system_state == SYSTEM_POWER_OFF) {
5107 pci_wake_from_d3(pdev, wake);
5108 pci_set_power_state(pdev, PCI_D3hot);
5109 }
5110 }
5111
5112 #ifdef CONFIG_NET_POLL_CONTROLLER
5113 /* Polling 'interrupt' - used by things like netconsole to send skbs
5114 * without having to re-enable interrupts. It's not called while
5115 * the interrupt routine is executing.
5116 */
5117 static void e1000_netpoll(struct net_device *netdev)
5118 {
5119 struct e1000_adapter *adapter = netdev_priv(netdev);
5120
5121 disable_irq(adapter->pdev->irq);
5122 e1000_intr(adapter->pdev->irq, netdev);
5123 enable_irq(adapter->pdev->irq);
5124 }
5125 #endif
5126
5127 /**
5128 * e1000_io_error_detected - called when PCI error is detected
5129 * @pdev: Pointer to PCI device
5130 * @state: The current pci connection state
5131 *
5132 * This function is called after a PCI bus error affecting
5133 * this device has been detected.
5134 */
5135 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5136 pci_channel_state_t state)
5137 {
5138 struct net_device *netdev = pci_get_drvdata(pdev);
5139 struct e1000_adapter *adapter = netdev_priv(netdev);
5140
5141 netif_device_detach(netdev);
5142
5143 if (state == pci_channel_io_perm_failure)
5144 return PCI_ERS_RESULT_DISCONNECT;
5145
5146 if (netif_running(netdev))
5147 e1000_down(adapter);
5148 pci_disable_device(pdev);
5149
5150 /* Request a slot slot reset. */
5151 return PCI_ERS_RESULT_NEED_RESET;
5152 }
5153
5154 /**
5155 * e1000_io_slot_reset - called after the pci bus has been reset.
5156 * @pdev: Pointer to PCI device
5157 *
5158 * Restart the card from scratch, as if from a cold-boot. Implementation
5159 * resembles the first-half of the e1000_resume routine.
5160 */
5161 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5162 {
5163 struct net_device *netdev = pci_get_drvdata(pdev);
5164 struct e1000_adapter *adapter = netdev_priv(netdev);
5165 struct e1000_hw *hw = &adapter->hw;
5166 int err;
5167
5168 if (adapter->need_ioport)
5169 err = pci_enable_device(pdev);
5170 else
5171 err = pci_enable_device_mem(pdev);
5172 if (err) {
5173 pr_err("Cannot re-enable PCI device after reset.\n");
5174 return PCI_ERS_RESULT_DISCONNECT;
5175 }
5176 pci_set_master(pdev);
5177
5178 pci_enable_wake(pdev, PCI_D3hot, 0);
5179 pci_enable_wake(pdev, PCI_D3cold, 0);
5180
5181 e1000_reset(adapter);
5182 ew32(WUS, ~0);
5183
5184 return PCI_ERS_RESULT_RECOVERED;
5185 }
5186
5187 /**
5188 * e1000_io_resume - called when traffic can start flowing again.
5189 * @pdev: Pointer to PCI device
5190 *
5191 * This callback is called when the error recovery driver tells us that
5192 * its OK to resume normal operation. Implementation resembles the
5193 * second-half of the e1000_resume routine.
5194 */
5195 static void e1000_io_resume(struct pci_dev *pdev)
5196 {
5197 struct net_device *netdev = pci_get_drvdata(pdev);
5198 struct e1000_adapter *adapter = netdev_priv(netdev);
5199
5200 e1000_init_manageability(adapter);
5201
5202 if (netif_running(netdev)) {
5203 if (e1000_up(adapter)) {
5204 pr_info("can't bring device back up after reset\n");
5205 return;
5206 }
5207 }
5208
5209 netif_device_attach(netdev);
5210 }
5211
5212 /* e1000_main.c */
This page took 0.223266 seconds and 5 git commands to generate.