Merge branch 'for-davem' into for-next
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150 {
151 }
152 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163 static void e1000_tx_timeout(struct net_device *dev);
164 static void e1000_reset_task(struct work_struct *work);
165 static void e1000_smartspeed(struct e1000_adapter *adapter);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169 static bool e1000_vlan_used(struct e1000_adapter *adapter);
170 static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178 static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180 #ifdef CONFIG_PM
181 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182 static int e1000_resume(struct pci_dev *pdev);
183 #endif
184 static void e1000_shutdown(struct pci_dev *pdev);
185
186 #ifdef CONFIG_NET_POLL_CONTROLLER
187 /* for netdump / net console */
188 static void e1000_netpoll (struct net_device *netdev);
189 #endif
190
191 #define COPYBREAK_DEFAULT 256
192 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193 module_param(copybreak, uint, 0644);
194 MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200 static void e1000_io_resume(struct pci_dev *pdev);
201
202 static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206 };
207
208 static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213 #ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217 #endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220 };
221
222 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(DRV_VERSION);
226
227 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228 static int debug = -1;
229 module_param(debug, int, 0);
230 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232 /**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238 {
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241 }
242
243 /**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249 static int __init e1000_init_module(void)
250 {
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265 }
266
267 module_init(e1000_init_module);
268
269 /**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275 static void __exit e1000_exit_module(void)
276 {
277 pci_unregister_driver(&e1000_driver);
278 }
279
280 module_exit(e1000_exit_module);
281
282 static int e1000_request_irq(struct e1000_adapter *adapter)
283 {
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296 }
297
298 static void e1000_free_irq(struct e1000_adapter *adapter)
299 {
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303 }
304
305 /**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309 static void e1000_irq_disable(struct e1000_adapter *adapter)
310 {
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316 }
317
318 /**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322 static void e1000_irq_enable(struct e1000_adapter *adapter)
323 {
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328 }
329
330 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331 {
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356 }
357
358 static void e1000_init_manageability(struct e1000_adapter *adapter)
359 {
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370 }
371
372 static void e1000_release_manageability(struct e1000_adapter *adapter)
373 {
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384 }
385
386 /**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390 static void e1000_configure(struct e1000_adapter *adapter)
391 {
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412 }
413
414 int e1000_up(struct e1000_adapter *adapter)
415 {
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432 }
433
434 /**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442 void e1000_power_up_phy(struct e1000_adapter *adapter)
443 {
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456 }
457
458 static void e1000_power_down_phy(struct e1000_adapter *adapter)
459 {
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494 out:
495 return;
496 }
497
498 static void e1000_down_and_stop(struct e1000_adapter *adapter)
499 {
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516 }
517
518 void e1000_down(struct e1000_adapter *adapter)
519 {
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 netif_carrier_off(netdev);
525
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
531 netif_tx_disable(netdev);
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
541 napi_disable(&adapter->napi);
542
543 e1000_irq_disable(adapter);
544
545 /* Setting DOWN must be after irq_disable to prevent
546 * a screaming interrupt. Setting DOWN also prevents
547 * tasks from rescheduling.
548 */
549 e1000_down_and_stop(adapter);
550
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
553
554 e1000_reset(adapter);
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
567 }
568
569 void e1000_reset(struct e1000_adapter *adapter)
570 {
571 struct e1000_hw *hw = &adapter->hw;
572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
573 bool legacy_pba_adjust = false;
574 u16 hwm;
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
580 switch (hw->mac_type) {
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
588 legacy_pba_adjust = true;
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
594 case e1000_ce4100:
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82547:
599 case e1000_82547_rev_2:
600 legacy_pba_adjust = true;
601 pba = E1000_PBA_30K;
602 break;
603 case e1000_undefined:
604 case e1000_num_macs:
605 break;
606 }
607
608 if (legacy_pba_adjust) {
609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
610 pba -= 8; /* allocate more FIFO for Tx */
611
612 if (hw->mac_type == e1000_82547) {
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
620 /* adjust PBA for jumbo frames */
621 ew32(PBA, pba);
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
624 * large enough to accommodate two full transmit packets,
625 * rounded up to the next 1KB and expressed in KB. Likewise,
626 * the Rx FIFO should be large enough to accommodate at least
627 * one full receive packet and is similarly rounded up and
628 * expressed in KB.
629 */
630 pba = er32(PBA);
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
635 /* the Tx fifo also stores 16 bytes of information about the Tx
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
641 min_tx_space = ALIGN(min_tx_space, 1024);
642 min_tx_space >>= 10;
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
645 min_rx_space = ALIGN(min_rx_space, 1024);
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
650 * allocation, take space away from current Rx allocation
651 */
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
657 switch (hw->mac_type) {
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /* flow control settings:
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
692
693 /* Allow time for pending master requests to run */
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
697
698 if (e1000_init_hw(hw))
699 e_dev_err("Hardware Error\n");
700 e1000_update_mng_vlan(adapter);
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
703 if (hw->mac_type >= e1000_82544 &&
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
709 * can cause a loss of link at power off or driver unload
710 */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722 }
723
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770 }
771
772 /**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806 }
807
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810 {
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
813 */
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
816 else
817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
818
819 return features;
820 }
821
822 static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
824 {
825 struct e1000_adapter *adapter = netdev_priv(netdev);
826 netdev_features_t changed = features ^ netdev->features;
827
828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
829 e1000_vlan_mode(netdev, features);
830
831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
832 return 0;
833
834 netdev->features = features;
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843 }
844
845 static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
848 .ndo_start_xmit = e1000_xmit_frame,
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
852 .ndo_tx_timeout = e1000_tx_timeout,
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858 #ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860 #endif
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
863 };
864
865 /**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878 {
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927 }
928
929 /**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
940 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
941 {
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
944 struct e1000_hw *hw;
945
946 static int cards_found = 0;
947 static int global_quad_port_a = 0; /* global ksp3 port a indication */
948 int i, err, pci_using_dac;
949 u16 eeprom_data = 0;
950 u16 tmp = 0;
951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
952 int bars, need_ioport;
953
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
961 err = pci_enable_device_mem(pdev);
962 }
963 if (err)
964 return err;
965
966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
967 if (err)
968 goto err_pci_reg;
969
970 pci_set_master(pdev);
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
974
975 err = -ENOMEM;
976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
977 if (!netdev)
978 goto err_alloc_etherdev;
979
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
983 adapter = netdev_priv(netdev);
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
989
990 hw = &adapter->hw;
991 hw->back = adapter;
992
993 err = -EIO;
994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
995 if (!hw->hw_addr)
996 goto err_ioremap;
997
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1006 }
1007 }
1008
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
1014 /* there is a workaround being applied below that limits
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1021 pci_using_dac = 1;
1022 } else {
1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
1028 }
1029
1030 netdev->netdev_ops = &e1000_netdev_ops;
1031 e1000_set_ethtool_ops(netdev);
1032 netdev->watchdog_timeo = 5 * HZ;
1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1034
1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1036
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
1041 err = e1000_sw_init(adapter);
1042 if (err)
1043 goto err_sw_init;
1044
1045 err = -EIO;
1046 if (hw->mac_type == e1000_ce4100) {
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
1049 pci_resource_len(pdev, BAR_1));
1050
1051 if (!hw->ce4100_gbe_mdio_base_virt)
1052 goto err_mdio_ioremap;
1053 }
1054
1055 if (hw->mac_type >= e1000_82543) {
1056 netdev->hw_features = NETIF_F_SG |
1057 NETIF_F_HW_CSUM |
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1061 }
1062
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
1065 netdev->hw_features |= NETIF_F_TSO;
1066
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
1069 netdev->features |= netdev->hw_features;
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
1073
1074 if (pci_using_dac) {
1075 netdev->features |= NETIF_F_HIGHDMA;
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1078
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
1082
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
1087
1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1089
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw)) {
1092 e_err(probe, "EEPROM initialization failed\n");
1093 goto err_eeprom;
1094 }
1095
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state
1098 */
1099
1100 e1000_reset_hw(hw);
1101
1102 /* make sure the EEPROM is good */
1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1105 e1000_dump_eeprom(adapter);
1106 /* set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1113 memset(hw->mac_addr, 0, netdev->addr_len);
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw))
1117 e_err(probe, "EEPROM Read Error\n");
1118 }
1119 /* don't block initialization here due to bad MAC address */
1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1121
1122 if (!is_valid_ether_addr(netdev->dev_addr))
1123 e_err(probe, "Invalid MAC Address\n");
1124
1125
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1131
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1139 switch (hw->mac_type) {
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1145 e1000_read_eeprom(hw,
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
1151 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1152 e1000_read_eeprom(hw,
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1158 e1000_read_eeprom(hw,
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
1162 if (eeprom_data & eeprom_apme_mask)
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
1167 * wake on lan on a particular port
1168 */
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting
1177 */
1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
1186 adapter->quad_port_a = true;
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1196
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1202 if (tmp == 0 || tmp == 0xFF) {
1203 if (i == 31)
1204 goto err_eeprom;
1205 continue;
1206 } else
1207 break;
1208 }
1209 }
1210
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
1219 e1000_vlan_filter_on_off(adapter, false);
1220
1221 /* print bus type/speed/width info */
1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1230
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1235
1236 cards_found++;
1237 return 0;
1238
1239 err_register:
1240 err_eeprom:
1241 e1000_phy_hw_reset(hw);
1242
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
1247 err_dma:
1248 err_sw_init:
1249 err_mdio_ioremap:
1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1251 iounmap(hw->hw_addr);
1252 err_ioremap:
1253 free_netdev(netdev);
1254 err_alloc_etherdev:
1255 pci_release_selected_regions(pdev, bars);
1256 err_pci_reg:
1257 pci_disable_device(pdev);
1258 return err;
1259 }
1260
1261 /**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
1266 * that it should release a PCI device. The could be caused by a
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
1270 static void e1000_remove(struct pci_dev *pdev)
1271 {
1272 struct net_device *netdev = pci_get_drvdata(pdev);
1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1274 struct e1000_hw *hw = &adapter->hw;
1275
1276 e1000_down_and_stop(adapter);
1277 e1000_release_manageability(adapter);
1278
1279 unregister_netdev(netdev);
1280
1281 e1000_phy_hw_reset(hw);
1282
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
1285
1286 if (hw->mac_type == e1000_ce4100)
1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
1291 pci_release_selected_regions(pdev, adapter->bars);
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296 }
1297
1298 /**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
1303 * e1000_init_hw_struct MUST be called before this function
1304 **/
1305 static int e1000_sw_init(struct e1000_adapter *adapter)
1306 {
1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1308
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
1311
1312 if (e1000_alloc_queues(adapter)) {
1313 e_err(probe, "Unable to allocate memory for queues\n");
1314 return -ENOMEM;
1315 }
1316
1317 /* Explicitly disable IRQ since the NIC can be in any state. */
1318 e1000_irq_disable(adapter);
1319
1320 spin_lock_init(&adapter->stats_lock);
1321
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1324 return 0;
1325 }
1326
1327 /**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1333 **/
1334 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1335 {
1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
1340
1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
1347
1348 return E1000_SUCCESS;
1349 }
1350
1351 /**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
1360 * handler is registered with the OS, the watchdog task is started,
1361 * and the stack is notified that the interface is ready.
1362 **/
1363 static int e1000_open(struct net_device *netdev)
1364 {
1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1366 struct e1000_hw *hw = &adapter->hw;
1367 int err;
1368
1369 /* disallow open during test */
1370 if (test_bit(__E1000_TESTING, &adapter->flags))
1371 return -EBUSY;
1372
1373 netif_carrier_off(netdev);
1374
1375 /* allocate transmit descriptors */
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
1381 err = e1000_setup_all_rx_resources(adapter);
1382 if (err)
1383 goto err_setup_rx;
1384
1385 e1000_power_up_phy(adapter);
1386
1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1388 if ((hw->mng_cookie.status &
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1392
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
1396 * clean_rx handler before we do so.
1397 */
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
1407 napi_enable(&adapter->napi);
1408
1409 e1000_irq_enable(adapter);
1410
1411 netif_start_queue(netdev);
1412
1413 /* fire a link status change interrupt to start the watchdog */
1414 ew32(ICS, E1000_ICS_LSC);
1415
1416 return E1000_SUCCESS;
1417
1418 err_req_irq:
1419 e1000_power_down_phy(adapter);
1420 e1000_free_all_rx_resources(adapter);
1421 err_setup_rx:
1422 e1000_free_all_tx_resources(adapter);
1423 err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427 }
1428
1429 /**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
1440 static int e1000_close(struct net_device *netdev)
1441 {
1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1443 struct e1000_hw *hw = &adapter->hw;
1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1448
1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1450 e1000_down(adapter);
1451 e1000_power_down_phy(adapter);
1452 e1000_free_irq(adapter);
1453
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1456
1457 /* kill manageability vlan ID if supported, but not if a vlan with
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1460 if ((hw->mng_cookie.status &
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
1465 }
1466
1467 return 0;
1468 }
1469
1470 /**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1475 **/
1476 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1478 {
1479 struct e1000_hw *hw = &adapter->hw;
1480 unsigned long begin = (unsigned long)start;
1481 unsigned long end = begin + len;
1482
1483 /* First rev 82545 and 82546 need to not allow any memory
1484 * write location to cross 64k boundary due to errata 23
1485 */
1486 if (hw->mac_type == e1000_82545 ||
1487 hw->mac_type == e1000_ce4100 ||
1488 hw->mac_type == e1000_82546) {
1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1490 }
1491
1492 return true;
1493 }
1494
1495 /**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
1502 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1504 {
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1509 txdr->buffer_info = vzalloc(size);
1510 if (!txdr->buffer_info)
1511 return -ENOMEM;
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1516 txdr->size = ALIGN(txdr->size, 4096);
1517
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
1520 if (!txdr->desc) {
1521 setup_tx_desc_die:
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
1526 /* Fix for errata 23, can't cross 64kB boundary */
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1531 txdr->size, txdr->desc);
1532 /* Try again, without freeing the previous */
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
1535 /* Failed allocation, critical failure */
1536 if (!txdr->desc) {
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 e_err(probe, "Unable to allocate aligned memory "
1549 "for the transmit descriptor ring\n");
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
1553 /* Free old allocation, new allocation was successful */
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564 }
1565
1566 /**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
1571 * Return 0 on success, negative on failure
1572 **/
1573 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1574 {
1575 int i, err = 0;
1576
1577 for (i = 0; i < adapter->num_tx_queues; i++) {
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
1584 break;
1585 }
1586 }
1587
1588 return err;
1589 }
1590
1591 /**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
1597 static void e1000_configure_tx(struct e1000_adapter *adapter)
1598 {
1599 u64 tdba;
1600 struct e1000_hw *hw = &adapter->hw;
1601 u32 tdlen, tctl, tipg;
1602 u32 ipgr1, ipgr2;
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
1606 switch (adapter->num_tx_queues) {
1607 case 1:
1608 default:
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
1621 break;
1622 }
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1625 if ((hw->media_type == e1000_media_type_fiber ||
1626 hw->media_type == e1000_media_type_internal_serdes))
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
1631 switch (hw->mac_type) {
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1637 break;
1638 default:
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1642 }
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1645 ew32(TIPG, tipg);
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1649 ew32(TIDV, adapter->tx_int_delay);
1650 if (hw->mac_type >= e1000_82540)
1651 ew32(TADV, adapter->tx_abs_int_delay);
1652
1653 /* Program the Transmit Control Register */
1654
1655 tctl = er32(TCTL);
1656 tctl &= ~E1000_TCTL_CT;
1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
1660 e1000_config_collision_dist(hw);
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1668
1669 if (hw->mac_type < e1000_82543)
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
1675 * need this to apply a workaround later in the send path.
1676 */
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
1679 adapter->pcix_82544 = true;
1680
1681 ew32(TCTL, tctl);
1682
1683 }
1684
1685 /**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
1692 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1694 {
1695 struct pci_dev *pdev = adapter->pdev;
1696 int size, desc_len;
1697
1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1699 rxdr->buffer_info = vzalloc(size);
1700 if (!rxdr->buffer_info)
1701 return -ENOMEM;
1702
1703 desc_len = sizeof(struct e1000_rx_desc);
1704
1705 /* Round up to nearest 4K */
1706
1707 rxdr->size = rxdr->count * desc_len;
1708 rxdr->size = ALIGN(rxdr->size, 4096);
1709
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
1712 if (!rxdr->desc) {
1713 setup_rx_desc_die:
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
1718 /* Fix for errata 23, can't cross 64kB boundary */
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1723 rxdr->size, rxdr->desc);
1724 /* Try again, without freeing the previous */
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
1727 /* Failed allocation, critical failure */
1728 if (!rxdr->desc) {
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
1742 goto setup_rx_desc_die;
1743 } else {
1744 /* Free old allocation, new allocation was successful */
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
1753 rxdr->rx_skb_top = NULL;
1754
1755 return 0;
1756 }
1757
1758 /**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
1763 * Return 0 on success, negative on failure
1764 **/
1765 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1766 {
1767 int i, err = 0;
1768
1769 for (i = 0; i < adapter->num_rx_queues; i++) {
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
1776 break;
1777 }
1778 }
1779
1780 return err;
1781 }
1782
1783 /**
1784 * e1000_setup_rctl - configure the receive control registers
1785 * @adapter: Board private structure
1786 **/
1787 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1788 {
1789 struct e1000_hw *hw = &adapter->hw;
1790 u32 rctl;
1791
1792 rctl = er32(RCTL);
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1799
1800 if (hw->tbi_compatibility_on == 1)
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1810 /* Setup buffer sizes */
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
1828 }
1829
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
1833 * in e1000e_set_rx_mode
1834 */
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1847 ew32(RCTL, rctl);
1848 }
1849
1850 /**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
1856 static void e1000_configure_rx(struct e1000_adapter *adapter)
1857 {
1858 u64 rdba;
1859 struct e1000_hw *hw = &adapter->hw;
1860 u32 rdlen, rctl, rxcsum;
1861
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
1864 sizeof(struct e1000_rx_desc);
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(struct e1000_rx_desc);
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1873
1874 /* disable receives while setting up the descriptors */
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1877
1878 /* set the Receive Delay Timer Register */
1879 ew32(RDTR, adapter->rx_int_delay);
1880
1881 if (hw->mac_type >= e1000_82540) {
1882 ew32(RADV, adapter->rx_abs_int_delay);
1883 if (adapter->itr_setting != 0)
1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1885 }
1886
1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
1890 switch (adapter->num_rx_queues) {
1891 case 1:
1892 default:
1893 rdba = adapter->rx_ring[0].dma;
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
1903 break;
1904 }
1905
1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1907 if (hw->mac_type >= e1000_82543) {
1908 rxcsum = er32(RXCSUM);
1909 if (adapter->rx_csum)
1910 rxcsum |= E1000_RXCSUM_TUOFL;
1911 else
1912 /* don't need to clear IPPCSE as it defaults to 0 */
1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1914 ew32(RXCSUM, rxcsum);
1915 }
1916
1917 /* Enable Receives */
1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1919 }
1920
1921 /**
1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1923 * @adapter: board private structure
1924 * @tx_ring: Tx descriptor ring for a specific queue
1925 *
1926 * Free all transmit software resources
1927 **/
1928 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1930 {
1931 struct pci_dev *pdev = adapter->pdev;
1932
1933 e1000_clean_tx_ring(adapter, tx_ring);
1934
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1937
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1940
1941 tx_ring->desc = NULL;
1942 }
1943
1944 /**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
1950 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1951 {
1952 int i;
1953
1954 for (i = 0; i < adapter->num_tx_queues; i++)
1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1956 }
1957
1958 static void
1959 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1961 {
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
1966 else
1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1968 buffer_info->length,
1969 DMA_TO_DEVICE);
1970 buffer_info->dma = 0;
1971 }
1972 if (buffer_info->skb) {
1973 dev_kfree_skb_any(buffer_info->skb);
1974 buffer_info->skb = NULL;
1975 }
1976 buffer_info->time_stamp = 0;
1977 /* buffer_info must be completely set up in the transmit path */
1978 }
1979
1980 /**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
1983 * @tx_ring: ring to be cleaned
1984 **/
1985 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1987 {
1988 struct e1000_hw *hw = &adapter->hw;
1989 struct e1000_tx_buffer *buffer_info;
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
1995 for (i = 0; i < tx_ring->count; i++) {
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2000 netdev_reset_queue(adapter->netdev);
2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
2010 tx_ring->last_tx_tso = false;
2011
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
2014 }
2015
2016 /**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
2020 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2021 {
2022 int i;
2023
2024 for (i = 0; i < adapter->num_tx_queues; i++)
2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2026 }
2027
2028 /**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
2031 * @rx_ring: ring to clean the resources from
2032 *
2033 * Free all receive software resources
2034 **/
2035 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
2037 {
2038 struct pci_dev *pdev = adapter->pdev;
2039
2040 e1000_clean_rx_ring(adapter, rx_ring);
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
2047
2048 rx_ring->desc = NULL;
2049 }
2050
2051 /**
2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2053 * @adapter: board private structure
2054 *
2055 * Free all receive software resources
2056 **/
2057 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2058 {
2059 int i;
2060
2061 for (i = 0; i < adapter->num_rx_queues; i++)
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063 }
2064
2065 #define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066 static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067 {
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070 }
2071
2072 static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073 {
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080 }
2081
2082 static void e1000_free_frag(const void *data)
2083 {
2084 put_page(virt_to_head_page(data));
2085 }
2086
2087 /**
2088 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2089 * @adapter: board private structure
2090 * @rx_ring: ring to free buffers from
2091 **/
2092 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2093 struct e1000_rx_ring *rx_ring)
2094 {
2095 struct e1000_hw *hw = &adapter->hw;
2096 struct e1000_rx_buffer *buffer_info;
2097 struct pci_dev *pdev = adapter->pdev;
2098 unsigned long size;
2099 unsigned int i;
2100
2101 /* Free all the Rx netfrags */
2102 for (i = 0; i < rx_ring->count; i++) {
2103 buffer_info = &rx_ring->buffer_info[i];
2104 if (adapter->clean_rx == e1000_clean_rx_irq) {
2105 if (buffer_info->dma)
2106 dma_unmap_single(&pdev->dev, buffer_info->dma,
2107 adapter->rx_buffer_len,
2108 DMA_FROM_DEVICE);
2109 if (buffer_info->rxbuf.data) {
2110 e1000_free_frag(buffer_info->rxbuf.data);
2111 buffer_info->rxbuf.data = NULL;
2112 }
2113 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2114 if (buffer_info->dma)
2115 dma_unmap_page(&pdev->dev, buffer_info->dma,
2116 adapter->rx_buffer_len,
2117 DMA_FROM_DEVICE);
2118 if (buffer_info->rxbuf.page) {
2119 put_page(buffer_info->rxbuf.page);
2120 buffer_info->rxbuf.page = NULL;
2121 }
2122 }
2123
2124 buffer_info->dma = 0;
2125 }
2126
2127 /* there also may be some cached data from a chained receive */
2128 napi_free_frags(&adapter->napi);
2129 rx_ring->rx_skb_top = NULL;
2130
2131 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2132 memset(rx_ring->buffer_info, 0, size);
2133
2134 /* Zero out the descriptor ring */
2135 memset(rx_ring->desc, 0, rx_ring->size);
2136
2137 rx_ring->next_to_clean = 0;
2138 rx_ring->next_to_use = 0;
2139
2140 writel(0, hw->hw_addr + rx_ring->rdh);
2141 writel(0, hw->hw_addr + rx_ring->rdt);
2142 }
2143
2144 /**
2145 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146 * @adapter: board private structure
2147 **/
2148 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2149 {
2150 int i;
2151
2152 for (i = 0; i < adapter->num_rx_queues; i++)
2153 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2154 }
2155
2156 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2157 * and memory write and invalidate disabled for certain operations
2158 */
2159 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2160 {
2161 struct e1000_hw *hw = &adapter->hw;
2162 struct net_device *netdev = adapter->netdev;
2163 u32 rctl;
2164
2165 e1000_pci_clear_mwi(hw);
2166
2167 rctl = er32(RCTL);
2168 rctl |= E1000_RCTL_RST;
2169 ew32(RCTL, rctl);
2170 E1000_WRITE_FLUSH();
2171 mdelay(5);
2172
2173 if (netif_running(netdev))
2174 e1000_clean_all_rx_rings(adapter);
2175 }
2176
2177 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2178 {
2179 struct e1000_hw *hw = &adapter->hw;
2180 struct net_device *netdev = adapter->netdev;
2181 u32 rctl;
2182
2183 rctl = er32(RCTL);
2184 rctl &= ~E1000_RCTL_RST;
2185 ew32(RCTL, rctl);
2186 E1000_WRITE_FLUSH();
2187 mdelay(5);
2188
2189 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2190 e1000_pci_set_mwi(hw);
2191
2192 if (netif_running(netdev)) {
2193 /* No need to loop, because 82542 supports only 1 queue */
2194 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2195 e1000_configure_rx(adapter);
2196 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2197 }
2198 }
2199
2200 /**
2201 * e1000_set_mac - Change the Ethernet Address of the NIC
2202 * @netdev: network interface device structure
2203 * @p: pointer to an address structure
2204 *
2205 * Returns 0 on success, negative on failure
2206 **/
2207 static int e1000_set_mac(struct net_device *netdev, void *p)
2208 {
2209 struct e1000_adapter *adapter = netdev_priv(netdev);
2210 struct e1000_hw *hw = &adapter->hw;
2211 struct sockaddr *addr = p;
2212
2213 if (!is_valid_ether_addr(addr->sa_data))
2214 return -EADDRNOTAVAIL;
2215
2216 /* 82542 2.0 needs to be in reset to write receive address registers */
2217
2218 if (hw->mac_type == e1000_82542_rev2_0)
2219 e1000_enter_82542_rst(adapter);
2220
2221 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2222 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2223
2224 e1000_rar_set(hw, hw->mac_addr, 0);
2225
2226 if (hw->mac_type == e1000_82542_rev2_0)
2227 e1000_leave_82542_rst(adapter);
2228
2229 return 0;
2230 }
2231
2232 /**
2233 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2234 * @netdev: network interface device structure
2235 *
2236 * The set_rx_mode entry point is called whenever the unicast or multicast
2237 * address lists or the network interface flags are updated. This routine is
2238 * responsible for configuring the hardware for proper unicast, multicast,
2239 * promiscuous mode, and all-multi behavior.
2240 **/
2241 static void e1000_set_rx_mode(struct net_device *netdev)
2242 {
2243 struct e1000_adapter *adapter = netdev_priv(netdev);
2244 struct e1000_hw *hw = &adapter->hw;
2245 struct netdev_hw_addr *ha;
2246 bool use_uc = false;
2247 u32 rctl;
2248 u32 hash_value;
2249 int i, rar_entries = E1000_RAR_ENTRIES;
2250 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2251 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2252
2253 if (!mcarray)
2254 return;
2255
2256 /* Check for Promiscuous and All Multicast modes */
2257
2258 rctl = er32(RCTL);
2259
2260 if (netdev->flags & IFF_PROMISC) {
2261 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2262 rctl &= ~E1000_RCTL_VFE;
2263 } else {
2264 if (netdev->flags & IFF_ALLMULTI)
2265 rctl |= E1000_RCTL_MPE;
2266 else
2267 rctl &= ~E1000_RCTL_MPE;
2268 /* Enable VLAN filter if there is a VLAN */
2269 if (e1000_vlan_used(adapter))
2270 rctl |= E1000_RCTL_VFE;
2271 }
2272
2273 if (netdev_uc_count(netdev) > rar_entries - 1) {
2274 rctl |= E1000_RCTL_UPE;
2275 } else if (!(netdev->flags & IFF_PROMISC)) {
2276 rctl &= ~E1000_RCTL_UPE;
2277 use_uc = true;
2278 }
2279
2280 ew32(RCTL, rctl);
2281
2282 /* 82542 2.0 needs to be in reset to write receive address registers */
2283
2284 if (hw->mac_type == e1000_82542_rev2_0)
2285 e1000_enter_82542_rst(adapter);
2286
2287 /* load the first 14 addresses into the exact filters 1-14. Unicast
2288 * addresses take precedence to avoid disabling unicast filtering
2289 * when possible.
2290 *
2291 * RAR 0 is used for the station MAC address
2292 * if there are not 14 addresses, go ahead and clear the filters
2293 */
2294 i = 1;
2295 if (use_uc)
2296 netdev_for_each_uc_addr(ha, netdev) {
2297 if (i == rar_entries)
2298 break;
2299 e1000_rar_set(hw, ha->addr, i++);
2300 }
2301
2302 netdev_for_each_mc_addr(ha, netdev) {
2303 if (i == rar_entries) {
2304 /* load any remaining addresses into the hash table */
2305 u32 hash_reg, hash_bit, mta;
2306 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2307 hash_reg = (hash_value >> 5) & 0x7F;
2308 hash_bit = hash_value & 0x1F;
2309 mta = (1 << hash_bit);
2310 mcarray[hash_reg] |= mta;
2311 } else {
2312 e1000_rar_set(hw, ha->addr, i++);
2313 }
2314 }
2315
2316 for (; i < rar_entries; i++) {
2317 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2318 E1000_WRITE_FLUSH();
2319 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2320 E1000_WRITE_FLUSH();
2321 }
2322
2323 /* write the hash table completely, write from bottom to avoid
2324 * both stupid write combining chipsets, and flushing each write
2325 */
2326 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2327 /* If we are on an 82544 has an errata where writing odd
2328 * offsets overwrites the previous even offset, but writing
2329 * backwards over the range solves the issue by always
2330 * writing the odd offset first
2331 */
2332 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2333 }
2334 E1000_WRITE_FLUSH();
2335
2336 if (hw->mac_type == e1000_82542_rev2_0)
2337 e1000_leave_82542_rst(adapter);
2338
2339 kfree(mcarray);
2340 }
2341
2342 /**
2343 * e1000_update_phy_info_task - get phy info
2344 * @work: work struct contained inside adapter struct
2345 *
2346 * Need to wait a few seconds after link up to get diagnostic information from
2347 * the phy
2348 */
2349 static void e1000_update_phy_info_task(struct work_struct *work)
2350 {
2351 struct e1000_adapter *adapter = container_of(work,
2352 struct e1000_adapter,
2353 phy_info_task.work);
2354
2355 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2356 }
2357
2358 /**
2359 * e1000_82547_tx_fifo_stall_task - task to complete work
2360 * @work: work struct contained inside adapter struct
2361 **/
2362 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2363 {
2364 struct e1000_adapter *adapter = container_of(work,
2365 struct e1000_adapter,
2366 fifo_stall_task.work);
2367 struct e1000_hw *hw = &adapter->hw;
2368 struct net_device *netdev = adapter->netdev;
2369 u32 tctl;
2370
2371 if (atomic_read(&adapter->tx_fifo_stall)) {
2372 if ((er32(TDT) == er32(TDH)) &&
2373 (er32(TDFT) == er32(TDFH)) &&
2374 (er32(TDFTS) == er32(TDFHS))) {
2375 tctl = er32(TCTL);
2376 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2377 ew32(TDFT, adapter->tx_head_addr);
2378 ew32(TDFH, adapter->tx_head_addr);
2379 ew32(TDFTS, adapter->tx_head_addr);
2380 ew32(TDFHS, adapter->tx_head_addr);
2381 ew32(TCTL, tctl);
2382 E1000_WRITE_FLUSH();
2383
2384 adapter->tx_fifo_head = 0;
2385 atomic_set(&adapter->tx_fifo_stall, 0);
2386 netif_wake_queue(netdev);
2387 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2388 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2389 }
2390 }
2391 }
2392
2393 bool e1000_has_link(struct e1000_adapter *adapter)
2394 {
2395 struct e1000_hw *hw = &adapter->hw;
2396 bool link_active = false;
2397
2398 /* get_link_status is set on LSC (link status) interrupt or rx
2399 * sequence error interrupt (except on intel ce4100).
2400 * get_link_status will stay false until the
2401 * e1000_check_for_link establishes link for copper adapters
2402 * ONLY
2403 */
2404 switch (hw->media_type) {
2405 case e1000_media_type_copper:
2406 if (hw->mac_type == e1000_ce4100)
2407 hw->get_link_status = 1;
2408 if (hw->get_link_status) {
2409 e1000_check_for_link(hw);
2410 link_active = !hw->get_link_status;
2411 } else {
2412 link_active = true;
2413 }
2414 break;
2415 case e1000_media_type_fiber:
2416 e1000_check_for_link(hw);
2417 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2418 break;
2419 case e1000_media_type_internal_serdes:
2420 e1000_check_for_link(hw);
2421 link_active = hw->serdes_has_link;
2422 break;
2423 default:
2424 break;
2425 }
2426
2427 return link_active;
2428 }
2429
2430 /**
2431 * e1000_watchdog - work function
2432 * @work: work struct contained inside adapter struct
2433 **/
2434 static void e1000_watchdog(struct work_struct *work)
2435 {
2436 struct e1000_adapter *adapter = container_of(work,
2437 struct e1000_adapter,
2438 watchdog_task.work);
2439 struct e1000_hw *hw = &adapter->hw;
2440 struct net_device *netdev = adapter->netdev;
2441 struct e1000_tx_ring *txdr = adapter->tx_ring;
2442 u32 link, tctl;
2443
2444 link = e1000_has_link(adapter);
2445 if ((netif_carrier_ok(netdev)) && link)
2446 goto link_up;
2447
2448 if (link) {
2449 if (!netif_carrier_ok(netdev)) {
2450 u32 ctrl;
2451 bool txb2b = true;
2452 /* update snapshot of PHY registers on LSC */
2453 e1000_get_speed_and_duplex(hw,
2454 &adapter->link_speed,
2455 &adapter->link_duplex);
2456
2457 ctrl = er32(CTRL);
2458 pr_info("%s NIC Link is Up %d Mbps %s, "
2459 "Flow Control: %s\n",
2460 netdev->name,
2461 adapter->link_speed,
2462 adapter->link_duplex == FULL_DUPLEX ?
2463 "Full Duplex" : "Half Duplex",
2464 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2465 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2466 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2467 E1000_CTRL_TFCE) ? "TX" : "None")));
2468
2469 /* adjust timeout factor according to speed/duplex */
2470 adapter->tx_timeout_factor = 1;
2471 switch (adapter->link_speed) {
2472 case SPEED_10:
2473 txb2b = false;
2474 adapter->tx_timeout_factor = 16;
2475 break;
2476 case SPEED_100:
2477 txb2b = false;
2478 /* maybe add some timeout factor ? */
2479 break;
2480 }
2481
2482 /* enable transmits in the hardware */
2483 tctl = er32(TCTL);
2484 tctl |= E1000_TCTL_EN;
2485 ew32(TCTL, tctl);
2486
2487 netif_carrier_on(netdev);
2488 if (!test_bit(__E1000_DOWN, &adapter->flags))
2489 schedule_delayed_work(&adapter->phy_info_task,
2490 2 * HZ);
2491 adapter->smartspeed = 0;
2492 }
2493 } else {
2494 if (netif_carrier_ok(netdev)) {
2495 adapter->link_speed = 0;
2496 adapter->link_duplex = 0;
2497 pr_info("%s NIC Link is Down\n",
2498 netdev->name);
2499 netif_carrier_off(netdev);
2500
2501 if (!test_bit(__E1000_DOWN, &adapter->flags))
2502 schedule_delayed_work(&adapter->phy_info_task,
2503 2 * HZ);
2504 }
2505
2506 e1000_smartspeed(adapter);
2507 }
2508
2509 link_up:
2510 e1000_update_stats(adapter);
2511
2512 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2513 adapter->tpt_old = adapter->stats.tpt;
2514 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2515 adapter->colc_old = adapter->stats.colc;
2516
2517 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2518 adapter->gorcl_old = adapter->stats.gorcl;
2519 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2520 adapter->gotcl_old = adapter->stats.gotcl;
2521
2522 e1000_update_adaptive(hw);
2523
2524 if (!netif_carrier_ok(netdev)) {
2525 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2526 /* We've lost link, so the controller stops DMA,
2527 * but we've got queued Tx work that's never going
2528 * to get done, so reset controller to flush Tx.
2529 * (Do the reset outside of interrupt context).
2530 */
2531 adapter->tx_timeout_count++;
2532 schedule_work(&adapter->reset_task);
2533 /* exit immediately since reset is imminent */
2534 return;
2535 }
2536 }
2537
2538 /* Simple mode for Interrupt Throttle Rate (ITR) */
2539 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2540 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2541 * Total asymmetrical Tx or Rx gets ITR=8000;
2542 * everyone else is between 2000-8000.
2543 */
2544 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2545 u32 dif = (adapter->gotcl > adapter->gorcl ?
2546 adapter->gotcl - adapter->gorcl :
2547 adapter->gorcl - adapter->gotcl) / 10000;
2548 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2549
2550 ew32(ITR, 1000000000 / (itr * 256));
2551 }
2552
2553 /* Cause software interrupt to ensure rx ring is cleaned */
2554 ew32(ICS, E1000_ICS_RXDMT0);
2555
2556 /* Force detection of hung controller every watchdog period */
2557 adapter->detect_tx_hung = true;
2558
2559 /* Reschedule the task */
2560 if (!test_bit(__E1000_DOWN, &adapter->flags))
2561 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2562 }
2563
2564 enum latency_range {
2565 lowest_latency = 0,
2566 low_latency = 1,
2567 bulk_latency = 2,
2568 latency_invalid = 255
2569 };
2570
2571 /**
2572 * e1000_update_itr - update the dynamic ITR value based on statistics
2573 * @adapter: pointer to adapter
2574 * @itr_setting: current adapter->itr
2575 * @packets: the number of packets during this measurement interval
2576 * @bytes: the number of bytes during this measurement interval
2577 *
2578 * Stores a new ITR value based on packets and byte
2579 * counts during the last interrupt. The advantage of per interrupt
2580 * computation is faster updates and more accurate ITR for the current
2581 * traffic pattern. Constants in this function were computed
2582 * based on theoretical maximum wire speed and thresholds were set based
2583 * on testing data as well as attempting to minimize response time
2584 * while increasing bulk throughput.
2585 * this functionality is controlled by the InterruptThrottleRate module
2586 * parameter (see e1000_param.c)
2587 **/
2588 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2589 u16 itr_setting, int packets, int bytes)
2590 {
2591 unsigned int retval = itr_setting;
2592 struct e1000_hw *hw = &adapter->hw;
2593
2594 if (unlikely(hw->mac_type < e1000_82540))
2595 goto update_itr_done;
2596
2597 if (packets == 0)
2598 goto update_itr_done;
2599
2600 switch (itr_setting) {
2601 case lowest_latency:
2602 /* jumbo frames get bulk treatment*/
2603 if (bytes/packets > 8000)
2604 retval = bulk_latency;
2605 else if ((packets < 5) && (bytes > 512))
2606 retval = low_latency;
2607 break;
2608 case low_latency: /* 50 usec aka 20000 ints/s */
2609 if (bytes > 10000) {
2610 /* jumbo frames need bulk latency setting */
2611 if (bytes/packets > 8000)
2612 retval = bulk_latency;
2613 else if ((packets < 10) || ((bytes/packets) > 1200))
2614 retval = bulk_latency;
2615 else if ((packets > 35))
2616 retval = lowest_latency;
2617 } else if (bytes/packets > 2000)
2618 retval = bulk_latency;
2619 else if (packets <= 2 && bytes < 512)
2620 retval = lowest_latency;
2621 break;
2622 case bulk_latency: /* 250 usec aka 4000 ints/s */
2623 if (bytes > 25000) {
2624 if (packets > 35)
2625 retval = low_latency;
2626 } else if (bytes < 6000) {
2627 retval = low_latency;
2628 }
2629 break;
2630 }
2631
2632 update_itr_done:
2633 return retval;
2634 }
2635
2636 static void e1000_set_itr(struct e1000_adapter *adapter)
2637 {
2638 struct e1000_hw *hw = &adapter->hw;
2639 u16 current_itr;
2640 u32 new_itr = adapter->itr;
2641
2642 if (unlikely(hw->mac_type < e1000_82540))
2643 return;
2644
2645 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2646 if (unlikely(adapter->link_speed != SPEED_1000)) {
2647 current_itr = 0;
2648 new_itr = 4000;
2649 goto set_itr_now;
2650 }
2651
2652 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2653 adapter->total_tx_packets,
2654 adapter->total_tx_bytes);
2655 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2656 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2657 adapter->tx_itr = low_latency;
2658
2659 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2660 adapter->total_rx_packets,
2661 adapter->total_rx_bytes);
2662 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2663 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2664 adapter->rx_itr = low_latency;
2665
2666 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2667
2668 switch (current_itr) {
2669 /* counts and packets in update_itr are dependent on these numbers */
2670 case lowest_latency:
2671 new_itr = 70000;
2672 break;
2673 case low_latency:
2674 new_itr = 20000; /* aka hwitr = ~200 */
2675 break;
2676 case bulk_latency:
2677 new_itr = 4000;
2678 break;
2679 default:
2680 break;
2681 }
2682
2683 set_itr_now:
2684 if (new_itr != adapter->itr) {
2685 /* this attempts to bias the interrupt rate towards Bulk
2686 * by adding intermediate steps when interrupt rate is
2687 * increasing
2688 */
2689 new_itr = new_itr > adapter->itr ?
2690 min(adapter->itr + (new_itr >> 2), new_itr) :
2691 new_itr;
2692 adapter->itr = new_itr;
2693 ew32(ITR, 1000000000 / (new_itr * 256));
2694 }
2695 }
2696
2697 #define E1000_TX_FLAGS_CSUM 0x00000001
2698 #define E1000_TX_FLAGS_VLAN 0x00000002
2699 #define E1000_TX_FLAGS_TSO 0x00000004
2700 #define E1000_TX_FLAGS_IPV4 0x00000008
2701 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2702 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2703 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2704
2705 static int e1000_tso(struct e1000_adapter *adapter,
2706 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2707 __be16 protocol)
2708 {
2709 struct e1000_context_desc *context_desc;
2710 struct e1000_tx_buffer *buffer_info;
2711 unsigned int i;
2712 u32 cmd_length = 0;
2713 u16 ipcse = 0, tucse, mss;
2714 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2715
2716 if (skb_is_gso(skb)) {
2717 int err;
2718
2719 err = skb_cow_head(skb, 0);
2720 if (err < 0)
2721 return err;
2722
2723 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2724 mss = skb_shinfo(skb)->gso_size;
2725 if (protocol == htons(ETH_P_IP)) {
2726 struct iphdr *iph = ip_hdr(skb);
2727 iph->tot_len = 0;
2728 iph->check = 0;
2729 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2730 iph->daddr, 0,
2731 IPPROTO_TCP,
2732 0);
2733 cmd_length = E1000_TXD_CMD_IP;
2734 ipcse = skb_transport_offset(skb) - 1;
2735 } else if (skb_is_gso_v6(skb)) {
2736 ipv6_hdr(skb)->payload_len = 0;
2737 tcp_hdr(skb)->check =
2738 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2739 &ipv6_hdr(skb)->daddr,
2740 0, IPPROTO_TCP, 0);
2741 ipcse = 0;
2742 }
2743 ipcss = skb_network_offset(skb);
2744 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2745 tucss = skb_transport_offset(skb);
2746 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2747 tucse = 0;
2748
2749 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2750 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2751
2752 i = tx_ring->next_to_use;
2753 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2754 buffer_info = &tx_ring->buffer_info[i];
2755
2756 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2757 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2758 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2759 context_desc->upper_setup.tcp_fields.tucss = tucss;
2760 context_desc->upper_setup.tcp_fields.tucso = tucso;
2761 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2762 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2763 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2764 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2765
2766 buffer_info->time_stamp = jiffies;
2767 buffer_info->next_to_watch = i;
2768
2769 if (++i == tx_ring->count) i = 0;
2770 tx_ring->next_to_use = i;
2771
2772 return true;
2773 }
2774 return false;
2775 }
2776
2777 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2778 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2779 __be16 protocol)
2780 {
2781 struct e1000_context_desc *context_desc;
2782 struct e1000_tx_buffer *buffer_info;
2783 unsigned int i;
2784 u8 css;
2785 u32 cmd_len = E1000_TXD_CMD_DEXT;
2786
2787 if (skb->ip_summed != CHECKSUM_PARTIAL)
2788 return false;
2789
2790 switch (protocol) {
2791 case cpu_to_be16(ETH_P_IP):
2792 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2793 cmd_len |= E1000_TXD_CMD_TCP;
2794 break;
2795 case cpu_to_be16(ETH_P_IPV6):
2796 /* XXX not handling all IPV6 headers */
2797 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2798 cmd_len |= E1000_TXD_CMD_TCP;
2799 break;
2800 default:
2801 if (unlikely(net_ratelimit()))
2802 e_warn(drv, "checksum_partial proto=%x!\n",
2803 skb->protocol);
2804 break;
2805 }
2806
2807 css = skb_checksum_start_offset(skb);
2808
2809 i = tx_ring->next_to_use;
2810 buffer_info = &tx_ring->buffer_info[i];
2811 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2812
2813 context_desc->lower_setup.ip_config = 0;
2814 context_desc->upper_setup.tcp_fields.tucss = css;
2815 context_desc->upper_setup.tcp_fields.tucso =
2816 css + skb->csum_offset;
2817 context_desc->upper_setup.tcp_fields.tucse = 0;
2818 context_desc->tcp_seg_setup.data = 0;
2819 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2820
2821 buffer_info->time_stamp = jiffies;
2822 buffer_info->next_to_watch = i;
2823
2824 if (unlikely(++i == tx_ring->count)) i = 0;
2825 tx_ring->next_to_use = i;
2826
2827 return true;
2828 }
2829
2830 #define E1000_MAX_TXD_PWR 12
2831 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2832
2833 static int e1000_tx_map(struct e1000_adapter *adapter,
2834 struct e1000_tx_ring *tx_ring,
2835 struct sk_buff *skb, unsigned int first,
2836 unsigned int max_per_txd, unsigned int nr_frags,
2837 unsigned int mss)
2838 {
2839 struct e1000_hw *hw = &adapter->hw;
2840 struct pci_dev *pdev = adapter->pdev;
2841 struct e1000_tx_buffer *buffer_info;
2842 unsigned int len = skb_headlen(skb);
2843 unsigned int offset = 0, size, count = 0, i;
2844 unsigned int f, bytecount, segs;
2845
2846 i = tx_ring->next_to_use;
2847
2848 while (len) {
2849 buffer_info = &tx_ring->buffer_info[i];
2850 size = min(len, max_per_txd);
2851 /* Workaround for Controller erratum --
2852 * descriptor for non-tso packet in a linear SKB that follows a
2853 * tso gets written back prematurely before the data is fully
2854 * DMA'd to the controller
2855 */
2856 if (!skb->data_len && tx_ring->last_tx_tso &&
2857 !skb_is_gso(skb)) {
2858 tx_ring->last_tx_tso = false;
2859 size -= 4;
2860 }
2861
2862 /* Workaround for premature desc write-backs
2863 * in TSO mode. Append 4-byte sentinel desc
2864 */
2865 if (unlikely(mss && !nr_frags && size == len && size > 8))
2866 size -= 4;
2867 /* work-around for errata 10 and it applies
2868 * to all controllers in PCI-X mode
2869 * The fix is to make sure that the first descriptor of a
2870 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2871 */
2872 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2873 (size > 2015) && count == 0))
2874 size = 2015;
2875
2876 /* Workaround for potential 82544 hang in PCI-X. Avoid
2877 * terminating buffers within evenly-aligned dwords.
2878 */
2879 if (unlikely(adapter->pcix_82544 &&
2880 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2881 size > 4))
2882 size -= 4;
2883
2884 buffer_info->length = size;
2885 /* set time_stamp *before* dma to help avoid a possible race */
2886 buffer_info->time_stamp = jiffies;
2887 buffer_info->mapped_as_page = false;
2888 buffer_info->dma = dma_map_single(&pdev->dev,
2889 skb->data + offset,
2890 size, DMA_TO_DEVICE);
2891 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2892 goto dma_error;
2893 buffer_info->next_to_watch = i;
2894
2895 len -= size;
2896 offset += size;
2897 count++;
2898 if (len) {
2899 i++;
2900 if (unlikely(i == tx_ring->count))
2901 i = 0;
2902 }
2903 }
2904
2905 for (f = 0; f < nr_frags; f++) {
2906 const struct skb_frag_struct *frag;
2907
2908 frag = &skb_shinfo(skb)->frags[f];
2909 len = skb_frag_size(frag);
2910 offset = 0;
2911
2912 while (len) {
2913 unsigned long bufend;
2914 i++;
2915 if (unlikely(i == tx_ring->count))
2916 i = 0;
2917
2918 buffer_info = &tx_ring->buffer_info[i];
2919 size = min(len, max_per_txd);
2920 /* Workaround for premature desc write-backs
2921 * in TSO mode. Append 4-byte sentinel desc
2922 */
2923 if (unlikely(mss && f == (nr_frags-1) &&
2924 size == len && size > 8))
2925 size -= 4;
2926 /* Workaround for potential 82544 hang in PCI-X.
2927 * Avoid terminating buffers within evenly-aligned
2928 * dwords.
2929 */
2930 bufend = (unsigned long)
2931 page_to_phys(skb_frag_page(frag));
2932 bufend += offset + size - 1;
2933 if (unlikely(adapter->pcix_82544 &&
2934 !(bufend & 4) &&
2935 size > 4))
2936 size -= 4;
2937
2938 buffer_info->length = size;
2939 buffer_info->time_stamp = jiffies;
2940 buffer_info->mapped_as_page = true;
2941 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2942 offset, size, DMA_TO_DEVICE);
2943 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2944 goto dma_error;
2945 buffer_info->next_to_watch = i;
2946
2947 len -= size;
2948 offset += size;
2949 count++;
2950 }
2951 }
2952
2953 segs = skb_shinfo(skb)->gso_segs ?: 1;
2954 /* multiply data chunks by size of headers */
2955 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2956
2957 tx_ring->buffer_info[i].skb = skb;
2958 tx_ring->buffer_info[i].segs = segs;
2959 tx_ring->buffer_info[i].bytecount = bytecount;
2960 tx_ring->buffer_info[first].next_to_watch = i;
2961
2962 return count;
2963
2964 dma_error:
2965 dev_err(&pdev->dev, "TX DMA map failed\n");
2966 buffer_info->dma = 0;
2967 if (count)
2968 count--;
2969
2970 while (count--) {
2971 if (i==0)
2972 i += tx_ring->count;
2973 i--;
2974 buffer_info = &tx_ring->buffer_info[i];
2975 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2976 }
2977
2978 return 0;
2979 }
2980
2981 static void e1000_tx_queue(struct e1000_adapter *adapter,
2982 struct e1000_tx_ring *tx_ring, int tx_flags,
2983 int count)
2984 {
2985 struct e1000_tx_desc *tx_desc = NULL;
2986 struct e1000_tx_buffer *buffer_info;
2987 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2988 unsigned int i;
2989
2990 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2991 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2992 E1000_TXD_CMD_TSE;
2993 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2994
2995 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2996 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2997 }
2998
2999 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3000 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3001 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3002 }
3003
3004 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3005 txd_lower |= E1000_TXD_CMD_VLE;
3006 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3007 }
3008
3009 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3010 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3011
3012 i = tx_ring->next_to_use;
3013
3014 while (count--) {
3015 buffer_info = &tx_ring->buffer_info[i];
3016 tx_desc = E1000_TX_DESC(*tx_ring, i);
3017 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3018 tx_desc->lower.data =
3019 cpu_to_le32(txd_lower | buffer_info->length);
3020 tx_desc->upper.data = cpu_to_le32(txd_upper);
3021 if (unlikely(++i == tx_ring->count)) i = 0;
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
3033 * such as IA-64).
3034 */
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
3038 }
3039
3040 /* 82547 workaround to avoid controller hang in half-duplex environment.
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
3046 */
3047
3048 #define E1000_FIFO_HDR 0x10
3049 #define E1000_82547_PAD_LEN 0x3E0
3050
3051 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
3053 {
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3056
3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3058
3059 if (adapter->link_duplex != HALF_DUPLEX)
3060 goto no_fifo_stall_required;
3061
3062 if (atomic_read(&adapter->tx_fifo_stall))
3063 return 1;
3064
3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070 no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075 }
3076
3077 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078 {
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
3085 * but since that doesn't exist yet, just open code it.
3086 */
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
3090 * made room available.
3091 */
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
3097 ++adapter->restart_queue;
3098 return 0;
3099 }
3100
3101 static int e1000_maybe_stop_tx(struct net_device *netdev,
3102 struct e1000_tx_ring *tx_ring, int size)
3103 {
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107 }
3108
3109 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3110 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
3112 {
3113 struct e1000_adapter *adapter = netdev_priv(netdev);
3114 struct e1000_hw *hw = &adapter->hw;
3115 struct e1000_tx_ring *tx_ring;
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
3119 unsigned int len = skb_headlen(skb);
3120 unsigned int nr_frags;
3121 unsigned int mss;
3122 int count = 0;
3123 int tso;
3124 unsigned int f;
3125 __be16 protocol = vlan_get_protocol(skb);
3126
3127 /* This goes back to the question of how to logically map a Tx queue
3128 * to a flow. Right now, performance is impacted slightly negatively
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
3132 tx_ring = adapter->tx_ring;
3133
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
3140
3141 mss = skb_shinfo(skb)->gso_size;
3142 /* The controller does a simple calculation to
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
3147 * drops.
3148 */
3149 if (mss) {
3150 u8 hdr_len;
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
3153
3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3155 if (skb->data_len && hdr_len == len) {
3156 switch (hw->mac_type) {
3157 unsigned int pull_size;
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
3168 break;
3169 /* fall through */
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
3174 dev_kfree_skb_any(skb);
3175 return NETDEV_TX_OK;
3176 }
3177 len = skb_headlen(skb);
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
3182 }
3183 }
3184 }
3185
3186 /* reserve a descriptor for the offload context */
3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3188 count++;
3189 count++;
3190
3191 /* Controller Erratum workaround */
3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3193 count++;
3194
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
3197 if (adapter->pcix_82544)
3198 count++;
3199
3200 /* work-around for errata 10 and it applies to all controllers
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3204 (len > 2015)))
3205 count++;
3206
3207 nr_frags = skb_shinfo(skb)->nr_frags;
3208 for (f = 0; f < nr_frags; f++)
3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3210 max_txd_pwr);
3211 if (adapter->pcix_82544)
3212 count += nr_frags;
3213
3214 /* need: count + 2 desc gap to keep tail from touching
3215 * head, otherwise try next time
3216 */
3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3218 return NETDEV_TX_BUSY;
3219
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
3226 }
3227
3228 if (skb_vlan_tag_present(skb)) {
3229 tx_flags |= E1000_TX_FLAGS_VLAN;
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
3232 }
3233
3234 first = tx_ring->next_to_use;
3235
3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
3242 if (likely(tso)) {
3243 if (likely(hw->mac_type != e1000_82544))
3244 tx_ring->last_tx_tso = true;
3245 tx_flags |= E1000_TX_FLAGS_TSO;
3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
3249 if (protocol == htons(ETH_P_IP))
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3256 nr_frags, mss);
3257
3258 if (count) {
3259 netdev_sent_queue(netdev, skb->len);
3260 skb_tx_timestamp(skb);
3261
3262 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3263 /* Make sure there is space in the ring for the next send. */
3264 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3265
3266 if (!skb->xmit_more ||
3267 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3268 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3269 /* we need this if more than one processor can write to
3270 * our tail at a time, it synchronizes IO on IA64/Altix
3271 * systems
3272 */
3273 mmiowb();
3274 }
3275 } else {
3276 dev_kfree_skb_any(skb);
3277 tx_ring->buffer_info[first].time_stamp = 0;
3278 tx_ring->next_to_use = first;
3279 }
3280
3281 return NETDEV_TX_OK;
3282 }
3283
3284 #define NUM_REGS 38 /* 1 based count */
3285 static void e1000_regdump(struct e1000_adapter *adapter)
3286 {
3287 struct e1000_hw *hw = &adapter->hw;
3288 u32 regs[NUM_REGS];
3289 u32 *regs_buff = regs;
3290 int i = 0;
3291
3292 static const char * const reg_name[] = {
3293 "CTRL", "STATUS",
3294 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3295 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3296 "TIDV", "TXDCTL", "TADV", "TARC0",
3297 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3298 "TXDCTL1", "TARC1",
3299 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3300 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3301 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3302 };
3303
3304 regs_buff[0] = er32(CTRL);
3305 regs_buff[1] = er32(STATUS);
3306
3307 regs_buff[2] = er32(RCTL);
3308 regs_buff[3] = er32(RDLEN);
3309 regs_buff[4] = er32(RDH);
3310 regs_buff[5] = er32(RDT);
3311 regs_buff[6] = er32(RDTR);
3312
3313 regs_buff[7] = er32(TCTL);
3314 regs_buff[8] = er32(TDBAL);
3315 regs_buff[9] = er32(TDBAH);
3316 regs_buff[10] = er32(TDLEN);
3317 regs_buff[11] = er32(TDH);
3318 regs_buff[12] = er32(TDT);
3319 regs_buff[13] = er32(TIDV);
3320 regs_buff[14] = er32(TXDCTL);
3321 regs_buff[15] = er32(TADV);
3322 regs_buff[16] = er32(TARC0);
3323
3324 regs_buff[17] = er32(TDBAL1);
3325 regs_buff[18] = er32(TDBAH1);
3326 regs_buff[19] = er32(TDLEN1);
3327 regs_buff[20] = er32(TDH1);
3328 regs_buff[21] = er32(TDT1);
3329 regs_buff[22] = er32(TXDCTL1);
3330 regs_buff[23] = er32(TARC1);
3331 regs_buff[24] = er32(CTRL_EXT);
3332 regs_buff[25] = er32(ERT);
3333 regs_buff[26] = er32(RDBAL0);
3334 regs_buff[27] = er32(RDBAH0);
3335 regs_buff[28] = er32(TDFH);
3336 regs_buff[29] = er32(TDFT);
3337 regs_buff[30] = er32(TDFHS);
3338 regs_buff[31] = er32(TDFTS);
3339 regs_buff[32] = er32(TDFPC);
3340 regs_buff[33] = er32(RDFH);
3341 regs_buff[34] = er32(RDFT);
3342 regs_buff[35] = er32(RDFHS);
3343 regs_buff[36] = er32(RDFTS);
3344 regs_buff[37] = er32(RDFPC);
3345
3346 pr_info("Register dump\n");
3347 for (i = 0; i < NUM_REGS; i++)
3348 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3349 }
3350
3351 /*
3352 * e1000_dump: Print registers, tx ring and rx ring
3353 */
3354 static void e1000_dump(struct e1000_adapter *adapter)
3355 {
3356 /* this code doesn't handle multiple rings */
3357 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3358 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3359 int i;
3360
3361 if (!netif_msg_hw(adapter))
3362 return;
3363
3364 /* Print Registers */
3365 e1000_regdump(adapter);
3366
3367 /* transmit dump */
3368 pr_info("TX Desc ring0 dump\n");
3369
3370 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3371 *
3372 * Legacy Transmit Descriptor
3373 * +--------------------------------------------------------------+
3374 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3375 * +--------------------------------------------------------------+
3376 * 8 | Special | CSS | Status | CMD | CSO | Length |
3377 * +--------------------------------------------------------------+
3378 * 63 48 47 36 35 32 31 24 23 16 15 0
3379 *
3380 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3381 * 63 48 47 40 39 32 31 16 15 8 7 0
3382 * +----------------------------------------------------------------+
3383 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3384 * +----------------------------------------------------------------+
3385 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3386 * +----------------------------------------------------------------+
3387 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3388 *
3389 * Extended Data Descriptor (DTYP=0x1)
3390 * +----------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] |
3392 * +----------------------------------------------------------------+
3393 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3394 * +----------------------------------------------------------------+
3395 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3396 */
3397 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3398 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399
3400 if (!netif_msg_tx_done(adapter))
3401 goto rx_ring_summary;
3402
3403 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3404 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3405 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3406 struct my_u { __le64 a; __le64 b; };
3407 struct my_u *u = (struct my_u *)tx_desc;
3408 const char *type;
3409
3410 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3411 type = "NTC/U";
3412 else if (i == tx_ring->next_to_use)
3413 type = "NTU";
3414 else if (i == tx_ring->next_to_clean)
3415 type = "NTC";
3416 else
3417 type = "";
3418
3419 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3420 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3421 le64_to_cpu(u->a), le64_to_cpu(u->b),
3422 (u64)buffer_info->dma, buffer_info->length,
3423 buffer_info->next_to_watch,
3424 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3425 }
3426
3427 rx_ring_summary:
3428 /* receive dump */
3429 pr_info("\nRX Desc ring dump\n");
3430
3431 /* Legacy Receive Descriptor Format
3432 *
3433 * +-----------------------------------------------------+
3434 * | Buffer Address [63:0] |
3435 * +-----------------------------------------------------+
3436 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3437 * +-----------------------------------------------------+
3438 * 63 48 47 40 39 32 31 16 15 0
3439 */
3440 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3441
3442 if (!netif_msg_rx_status(adapter))
3443 goto exit;
3444
3445 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3446 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3447 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3448 struct my_u { __le64 a; __le64 b; };
3449 struct my_u *u = (struct my_u *)rx_desc;
3450 const char *type;
3451
3452 if (i == rx_ring->next_to_use)
3453 type = "NTU";
3454 else if (i == rx_ring->next_to_clean)
3455 type = "NTC";
3456 else
3457 type = "";
3458
3459 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3460 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3461 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3462 } /* for */
3463
3464 /* dump the descriptor caches */
3465 /* rx */
3466 pr_info("Rx descriptor cache in 64bit format\n");
3467 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3468 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3469 i,
3470 readl(adapter->hw.hw_addr + i+4),
3471 readl(adapter->hw.hw_addr + i),
3472 readl(adapter->hw.hw_addr + i+12),
3473 readl(adapter->hw.hw_addr + i+8));
3474 }
3475 /* tx */
3476 pr_info("Tx descriptor cache in 64bit format\n");
3477 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3478 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3479 i,
3480 readl(adapter->hw.hw_addr + i+4),
3481 readl(adapter->hw.hw_addr + i),
3482 readl(adapter->hw.hw_addr + i+12),
3483 readl(adapter->hw.hw_addr + i+8));
3484 }
3485 exit:
3486 return;
3487 }
3488
3489 /**
3490 * e1000_tx_timeout - Respond to a Tx Hang
3491 * @netdev: network interface device structure
3492 **/
3493 static void e1000_tx_timeout(struct net_device *netdev)
3494 {
3495 struct e1000_adapter *adapter = netdev_priv(netdev);
3496
3497 /* Do the reset outside of interrupt context */
3498 adapter->tx_timeout_count++;
3499 schedule_work(&adapter->reset_task);
3500 }
3501
3502 static void e1000_reset_task(struct work_struct *work)
3503 {
3504 struct e1000_adapter *adapter =
3505 container_of(work, struct e1000_adapter, reset_task);
3506
3507 e_err(drv, "Reset adapter\n");
3508 e1000_reinit_locked(adapter);
3509 }
3510
3511 /**
3512 * e1000_get_stats - Get System Network Statistics
3513 * @netdev: network interface device structure
3514 *
3515 * Returns the address of the device statistics structure.
3516 * The statistics are actually updated from the watchdog.
3517 **/
3518 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3519 {
3520 /* only return the current stats */
3521 return &netdev->stats;
3522 }
3523
3524 /**
3525 * e1000_change_mtu - Change the Maximum Transfer Unit
3526 * @netdev: network interface device structure
3527 * @new_mtu: new value for maximum frame size
3528 *
3529 * Returns 0 on success, negative on failure
3530 **/
3531 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3532 {
3533 struct e1000_adapter *adapter = netdev_priv(netdev);
3534 struct e1000_hw *hw = &adapter->hw;
3535 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3536
3537 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3538 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3539 e_err(probe, "Invalid MTU setting\n");
3540 return -EINVAL;
3541 }
3542
3543 /* Adapter-specific max frame size limits. */
3544 switch (hw->mac_type) {
3545 case e1000_undefined ... e1000_82542_rev2_1:
3546 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3547 e_err(probe, "Jumbo Frames not supported.\n");
3548 return -EINVAL;
3549 }
3550 break;
3551 default:
3552 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3553 break;
3554 }
3555
3556 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3557 msleep(1);
3558 /* e1000_down has a dependency on max_frame_size */
3559 hw->max_frame_size = max_frame;
3560 if (netif_running(netdev)) {
3561 /* prevent buffers from being reallocated */
3562 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3563 e1000_down(adapter);
3564 }
3565
3566 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3567 * means we reserve 2 more, this pushes us to allocate from the next
3568 * larger slab size.
3569 * i.e. RXBUFFER_2048 --> size-4096 slab
3570 * however with the new *_jumbo_rx* routines, jumbo receives will use
3571 * fragmented skbs
3572 */
3573
3574 if (max_frame <= E1000_RXBUFFER_2048)
3575 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3576 else
3577 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3578 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3579 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3580 adapter->rx_buffer_len = PAGE_SIZE;
3581 #endif
3582
3583 /* adjust allocation if LPE protects us, and we aren't using SBP */
3584 if (!hw->tbi_compatibility_on &&
3585 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3586 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3587 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3588
3589 pr_info("%s changing MTU from %d to %d\n",
3590 netdev->name, netdev->mtu, new_mtu);
3591 netdev->mtu = new_mtu;
3592
3593 if (netif_running(netdev))
3594 e1000_up(adapter);
3595 else
3596 e1000_reset(adapter);
3597
3598 clear_bit(__E1000_RESETTING, &adapter->flags);
3599
3600 return 0;
3601 }
3602
3603 /**
3604 * e1000_update_stats - Update the board statistics counters
3605 * @adapter: board private structure
3606 **/
3607 void e1000_update_stats(struct e1000_adapter *adapter)
3608 {
3609 struct net_device *netdev = adapter->netdev;
3610 struct e1000_hw *hw = &adapter->hw;
3611 struct pci_dev *pdev = adapter->pdev;
3612 unsigned long flags;
3613 u16 phy_tmp;
3614
3615 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3616
3617 /* Prevent stats update while adapter is being reset, or if the pci
3618 * connection is down.
3619 */
3620 if (adapter->link_speed == 0)
3621 return;
3622 if (pci_channel_offline(pdev))
3623 return;
3624
3625 spin_lock_irqsave(&adapter->stats_lock, flags);
3626
3627 /* these counters are modified from e1000_tbi_adjust_stats,
3628 * called from the interrupt context, so they must only
3629 * be written while holding adapter->stats_lock
3630 */
3631
3632 adapter->stats.crcerrs += er32(CRCERRS);
3633 adapter->stats.gprc += er32(GPRC);
3634 adapter->stats.gorcl += er32(GORCL);
3635 adapter->stats.gorch += er32(GORCH);
3636 adapter->stats.bprc += er32(BPRC);
3637 adapter->stats.mprc += er32(MPRC);
3638 adapter->stats.roc += er32(ROC);
3639
3640 adapter->stats.prc64 += er32(PRC64);
3641 adapter->stats.prc127 += er32(PRC127);
3642 adapter->stats.prc255 += er32(PRC255);
3643 adapter->stats.prc511 += er32(PRC511);
3644 adapter->stats.prc1023 += er32(PRC1023);
3645 adapter->stats.prc1522 += er32(PRC1522);
3646
3647 adapter->stats.symerrs += er32(SYMERRS);
3648 adapter->stats.mpc += er32(MPC);
3649 adapter->stats.scc += er32(SCC);
3650 adapter->stats.ecol += er32(ECOL);
3651 adapter->stats.mcc += er32(MCC);
3652 adapter->stats.latecol += er32(LATECOL);
3653 adapter->stats.dc += er32(DC);
3654 adapter->stats.sec += er32(SEC);
3655 adapter->stats.rlec += er32(RLEC);
3656 adapter->stats.xonrxc += er32(XONRXC);
3657 adapter->stats.xontxc += er32(XONTXC);
3658 adapter->stats.xoffrxc += er32(XOFFRXC);
3659 adapter->stats.xofftxc += er32(XOFFTXC);
3660 adapter->stats.fcruc += er32(FCRUC);
3661 adapter->stats.gptc += er32(GPTC);
3662 adapter->stats.gotcl += er32(GOTCL);
3663 adapter->stats.gotch += er32(GOTCH);
3664 adapter->stats.rnbc += er32(RNBC);
3665 adapter->stats.ruc += er32(RUC);
3666 adapter->stats.rfc += er32(RFC);
3667 adapter->stats.rjc += er32(RJC);
3668 adapter->stats.torl += er32(TORL);
3669 adapter->stats.torh += er32(TORH);
3670 adapter->stats.totl += er32(TOTL);
3671 adapter->stats.toth += er32(TOTH);
3672 adapter->stats.tpr += er32(TPR);
3673
3674 adapter->stats.ptc64 += er32(PTC64);
3675 adapter->stats.ptc127 += er32(PTC127);
3676 adapter->stats.ptc255 += er32(PTC255);
3677 adapter->stats.ptc511 += er32(PTC511);
3678 adapter->stats.ptc1023 += er32(PTC1023);
3679 adapter->stats.ptc1522 += er32(PTC1522);
3680
3681 adapter->stats.mptc += er32(MPTC);
3682 adapter->stats.bptc += er32(BPTC);
3683
3684 /* used for adaptive IFS */
3685
3686 hw->tx_packet_delta = er32(TPT);
3687 adapter->stats.tpt += hw->tx_packet_delta;
3688 hw->collision_delta = er32(COLC);
3689 adapter->stats.colc += hw->collision_delta;
3690
3691 if (hw->mac_type >= e1000_82543) {
3692 adapter->stats.algnerrc += er32(ALGNERRC);
3693 adapter->stats.rxerrc += er32(RXERRC);
3694 adapter->stats.tncrs += er32(TNCRS);
3695 adapter->stats.cexterr += er32(CEXTERR);
3696 adapter->stats.tsctc += er32(TSCTC);
3697 adapter->stats.tsctfc += er32(TSCTFC);
3698 }
3699
3700 /* Fill out the OS statistics structure */
3701 netdev->stats.multicast = adapter->stats.mprc;
3702 netdev->stats.collisions = adapter->stats.colc;
3703
3704 /* Rx Errors */
3705
3706 /* RLEC on some newer hardware can be incorrect so build
3707 * our own version based on RUC and ROC
3708 */
3709 netdev->stats.rx_errors = adapter->stats.rxerrc +
3710 adapter->stats.crcerrs + adapter->stats.algnerrc +
3711 adapter->stats.ruc + adapter->stats.roc +
3712 adapter->stats.cexterr;
3713 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3714 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3715 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3716 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3717 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3718
3719 /* Tx Errors */
3720 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3721 netdev->stats.tx_errors = adapter->stats.txerrc;
3722 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3723 netdev->stats.tx_window_errors = adapter->stats.latecol;
3724 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3725 if (hw->bad_tx_carr_stats_fd &&
3726 adapter->link_duplex == FULL_DUPLEX) {
3727 netdev->stats.tx_carrier_errors = 0;
3728 adapter->stats.tncrs = 0;
3729 }
3730
3731 /* Tx Dropped needs to be maintained elsewhere */
3732
3733 /* Phy Stats */
3734 if (hw->media_type == e1000_media_type_copper) {
3735 if ((adapter->link_speed == SPEED_1000) &&
3736 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3737 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3738 adapter->phy_stats.idle_errors += phy_tmp;
3739 }
3740
3741 if ((hw->mac_type <= e1000_82546) &&
3742 (hw->phy_type == e1000_phy_m88) &&
3743 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3744 adapter->phy_stats.receive_errors += phy_tmp;
3745 }
3746
3747 /* Management Stats */
3748 if (hw->has_smbus) {
3749 adapter->stats.mgptc += er32(MGTPTC);
3750 adapter->stats.mgprc += er32(MGTPRC);
3751 adapter->stats.mgpdc += er32(MGTPDC);
3752 }
3753
3754 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3755 }
3756
3757 /**
3758 * e1000_intr - Interrupt Handler
3759 * @irq: interrupt number
3760 * @data: pointer to a network interface device structure
3761 **/
3762 static irqreturn_t e1000_intr(int irq, void *data)
3763 {
3764 struct net_device *netdev = data;
3765 struct e1000_adapter *adapter = netdev_priv(netdev);
3766 struct e1000_hw *hw = &adapter->hw;
3767 u32 icr = er32(ICR);
3768
3769 if (unlikely((!icr)))
3770 return IRQ_NONE; /* Not our interrupt */
3771
3772 /* we might have caused the interrupt, but the above
3773 * read cleared it, and just in case the driver is
3774 * down there is nothing to do so return handled
3775 */
3776 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3777 return IRQ_HANDLED;
3778
3779 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3780 hw->get_link_status = 1;
3781 /* guard against interrupt when we're going down */
3782 if (!test_bit(__E1000_DOWN, &adapter->flags))
3783 schedule_delayed_work(&adapter->watchdog_task, 1);
3784 }
3785
3786 /* disable interrupts, without the synchronize_irq bit */
3787 ew32(IMC, ~0);
3788 E1000_WRITE_FLUSH();
3789
3790 if (likely(napi_schedule_prep(&adapter->napi))) {
3791 adapter->total_tx_bytes = 0;
3792 adapter->total_tx_packets = 0;
3793 adapter->total_rx_bytes = 0;
3794 adapter->total_rx_packets = 0;
3795 __napi_schedule(&adapter->napi);
3796 } else {
3797 /* this really should not happen! if it does it is basically a
3798 * bug, but not a hard error, so enable ints and continue
3799 */
3800 if (!test_bit(__E1000_DOWN, &adapter->flags))
3801 e1000_irq_enable(adapter);
3802 }
3803
3804 return IRQ_HANDLED;
3805 }
3806
3807 /**
3808 * e1000_clean - NAPI Rx polling callback
3809 * @adapter: board private structure
3810 **/
3811 static int e1000_clean(struct napi_struct *napi, int budget)
3812 {
3813 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3814 napi);
3815 int tx_clean_complete = 0, work_done = 0;
3816
3817 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3818
3819 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3820
3821 if (!tx_clean_complete)
3822 work_done = budget;
3823
3824 /* If budget not fully consumed, exit the polling mode */
3825 if (work_done < budget) {
3826 if (likely(adapter->itr_setting & 3))
3827 e1000_set_itr(adapter);
3828 napi_complete(napi);
3829 if (!test_bit(__E1000_DOWN, &adapter->flags))
3830 e1000_irq_enable(adapter);
3831 }
3832
3833 return work_done;
3834 }
3835
3836 /**
3837 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3838 * @adapter: board private structure
3839 **/
3840 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3841 struct e1000_tx_ring *tx_ring)
3842 {
3843 struct e1000_hw *hw = &adapter->hw;
3844 struct net_device *netdev = adapter->netdev;
3845 struct e1000_tx_desc *tx_desc, *eop_desc;
3846 struct e1000_tx_buffer *buffer_info;
3847 unsigned int i, eop;
3848 unsigned int count = 0;
3849 unsigned int total_tx_bytes=0, total_tx_packets=0;
3850 unsigned int bytes_compl = 0, pkts_compl = 0;
3851
3852 i = tx_ring->next_to_clean;
3853 eop = tx_ring->buffer_info[i].next_to_watch;
3854 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3855
3856 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3857 (count < tx_ring->count)) {
3858 bool cleaned = false;
3859 rmb(); /* read buffer_info after eop_desc */
3860 for ( ; !cleaned; count++) {
3861 tx_desc = E1000_TX_DESC(*tx_ring, i);
3862 buffer_info = &tx_ring->buffer_info[i];
3863 cleaned = (i == eop);
3864
3865 if (cleaned) {
3866 total_tx_packets += buffer_info->segs;
3867 total_tx_bytes += buffer_info->bytecount;
3868 if (buffer_info->skb) {
3869 bytes_compl += buffer_info->skb->len;
3870 pkts_compl++;
3871 }
3872
3873 }
3874 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3875 tx_desc->upper.data = 0;
3876
3877 if (unlikely(++i == tx_ring->count)) i = 0;
3878 }
3879
3880 eop = tx_ring->buffer_info[i].next_to_watch;
3881 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3882 }
3883
3884 tx_ring->next_to_clean = i;
3885
3886 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3887
3888 #define TX_WAKE_THRESHOLD 32
3889 if (unlikely(count && netif_carrier_ok(netdev) &&
3890 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3891 /* Make sure that anybody stopping the queue after this
3892 * sees the new next_to_clean.
3893 */
3894 smp_mb();
3895
3896 if (netif_queue_stopped(netdev) &&
3897 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3898 netif_wake_queue(netdev);
3899 ++adapter->restart_queue;
3900 }
3901 }
3902
3903 if (adapter->detect_tx_hung) {
3904 /* Detect a transmit hang in hardware, this serializes the
3905 * check with the clearing of time_stamp and movement of i
3906 */
3907 adapter->detect_tx_hung = false;
3908 if (tx_ring->buffer_info[eop].time_stamp &&
3909 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3910 (adapter->tx_timeout_factor * HZ)) &&
3911 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3912
3913 /* detected Tx unit hang */
3914 e_err(drv, "Detected Tx Unit Hang\n"
3915 " Tx Queue <%lu>\n"
3916 " TDH <%x>\n"
3917 " TDT <%x>\n"
3918 " next_to_use <%x>\n"
3919 " next_to_clean <%x>\n"
3920 "buffer_info[next_to_clean]\n"
3921 " time_stamp <%lx>\n"
3922 " next_to_watch <%x>\n"
3923 " jiffies <%lx>\n"
3924 " next_to_watch.status <%x>\n",
3925 (unsigned long)(tx_ring - adapter->tx_ring),
3926 readl(hw->hw_addr + tx_ring->tdh),
3927 readl(hw->hw_addr + tx_ring->tdt),
3928 tx_ring->next_to_use,
3929 tx_ring->next_to_clean,
3930 tx_ring->buffer_info[eop].time_stamp,
3931 eop,
3932 jiffies,
3933 eop_desc->upper.fields.status);
3934 e1000_dump(adapter);
3935 netif_stop_queue(netdev);
3936 }
3937 }
3938 adapter->total_tx_bytes += total_tx_bytes;
3939 adapter->total_tx_packets += total_tx_packets;
3940 netdev->stats.tx_bytes += total_tx_bytes;
3941 netdev->stats.tx_packets += total_tx_packets;
3942 return count < tx_ring->count;
3943 }
3944
3945 /**
3946 * e1000_rx_checksum - Receive Checksum Offload for 82543
3947 * @adapter: board private structure
3948 * @status_err: receive descriptor status and error fields
3949 * @csum: receive descriptor csum field
3950 * @sk_buff: socket buffer with received data
3951 **/
3952 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3953 u32 csum, struct sk_buff *skb)
3954 {
3955 struct e1000_hw *hw = &adapter->hw;
3956 u16 status = (u16)status_err;
3957 u8 errors = (u8)(status_err >> 24);
3958
3959 skb_checksum_none_assert(skb);
3960
3961 /* 82543 or newer only */
3962 if (unlikely(hw->mac_type < e1000_82543)) return;
3963 /* Ignore Checksum bit is set */
3964 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3965 /* TCP/UDP checksum error bit is set */
3966 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3967 /* let the stack verify checksum errors */
3968 adapter->hw_csum_err++;
3969 return;
3970 }
3971 /* TCP/UDP Checksum has not been calculated */
3972 if (!(status & E1000_RXD_STAT_TCPCS))
3973 return;
3974
3975 /* It must be a TCP or UDP packet with a valid checksum */
3976 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3977 /* TCP checksum is good */
3978 skb->ip_summed = CHECKSUM_UNNECESSARY;
3979 }
3980 adapter->hw_csum_good++;
3981 }
3982
3983 /**
3984 * e1000_consume_page - helper function for jumbo Rx path
3985 **/
3986 static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3987 u16 length)
3988 {
3989 bi->rxbuf.page = NULL;
3990 skb->len += length;
3991 skb->data_len += length;
3992 skb->truesize += PAGE_SIZE;
3993 }
3994
3995 /**
3996 * e1000_receive_skb - helper function to handle rx indications
3997 * @adapter: board private structure
3998 * @status: descriptor status field as written by hardware
3999 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4000 * @skb: pointer to sk_buff to be indicated to stack
4001 */
4002 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4003 __le16 vlan, struct sk_buff *skb)
4004 {
4005 skb->protocol = eth_type_trans(skb, adapter->netdev);
4006
4007 if (status & E1000_RXD_STAT_VP) {
4008 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4009
4010 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4011 }
4012 napi_gro_receive(&adapter->napi, skb);
4013 }
4014
4015 /**
4016 * e1000_tbi_adjust_stats
4017 * @hw: Struct containing variables accessed by shared code
4018 * @frame_len: The length of the frame in question
4019 * @mac_addr: The Ethernet destination address of the frame in question
4020 *
4021 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4022 */
4023 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4024 struct e1000_hw_stats *stats,
4025 u32 frame_len, const u8 *mac_addr)
4026 {
4027 u64 carry_bit;
4028
4029 /* First adjust the frame length. */
4030 frame_len--;
4031 /* We need to adjust the statistics counters, since the hardware
4032 * counters overcount this packet as a CRC error and undercount
4033 * the packet as a good packet
4034 */
4035 /* This packet should not be counted as a CRC error. */
4036 stats->crcerrs--;
4037 /* This packet does count as a Good Packet Received. */
4038 stats->gprc++;
4039
4040 /* Adjust the Good Octets received counters */
4041 carry_bit = 0x80000000 & stats->gorcl;
4042 stats->gorcl += frame_len;
4043 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4044 * Received Count) was one before the addition,
4045 * AND it is zero after, then we lost the carry out,
4046 * need to add one to Gorch (Good Octets Received Count High).
4047 * This could be simplified if all environments supported
4048 * 64-bit integers.
4049 */
4050 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4051 stats->gorch++;
4052 /* Is this a broadcast or multicast? Check broadcast first,
4053 * since the test for a multicast frame will test positive on
4054 * a broadcast frame.
4055 */
4056 if (is_broadcast_ether_addr(mac_addr))
4057 stats->bprc++;
4058 else if (is_multicast_ether_addr(mac_addr))
4059 stats->mprc++;
4060
4061 if (frame_len == hw->max_frame_size) {
4062 /* In this case, the hardware has overcounted the number of
4063 * oversize frames.
4064 */
4065 if (stats->roc > 0)
4066 stats->roc--;
4067 }
4068
4069 /* Adjust the bin counters when the extra byte put the frame in the
4070 * wrong bin. Remember that the frame_len was adjusted above.
4071 */
4072 if (frame_len == 64) {
4073 stats->prc64++;
4074 stats->prc127--;
4075 } else if (frame_len == 127) {
4076 stats->prc127++;
4077 stats->prc255--;
4078 } else if (frame_len == 255) {
4079 stats->prc255++;
4080 stats->prc511--;
4081 } else if (frame_len == 511) {
4082 stats->prc511++;
4083 stats->prc1023--;
4084 } else if (frame_len == 1023) {
4085 stats->prc1023++;
4086 stats->prc1522--;
4087 } else if (frame_len == 1522) {
4088 stats->prc1522++;
4089 }
4090 }
4091
4092 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4093 u8 status, u8 errors,
4094 u32 length, const u8 *data)
4095 {
4096 struct e1000_hw *hw = &adapter->hw;
4097 u8 last_byte = *(data + length - 1);
4098
4099 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4100 unsigned long irq_flags;
4101
4102 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4103 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4104 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4105
4106 return true;
4107 }
4108
4109 return false;
4110 }
4111
4112 static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4113 unsigned int bufsz)
4114 {
4115 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4116
4117 if (unlikely(!skb))
4118 adapter->alloc_rx_buff_failed++;
4119 return skb;
4120 }
4121
4122 /**
4123 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4124 * @adapter: board private structure
4125 * @rx_ring: ring to clean
4126 * @work_done: amount of napi work completed this call
4127 * @work_to_do: max amount of work allowed for this call to do
4128 *
4129 * the return value indicates whether actual cleaning was done, there
4130 * is no guarantee that everything was cleaned
4131 */
4132 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4133 struct e1000_rx_ring *rx_ring,
4134 int *work_done, int work_to_do)
4135 {
4136 struct net_device *netdev = adapter->netdev;
4137 struct pci_dev *pdev = adapter->pdev;
4138 struct e1000_rx_desc *rx_desc, *next_rxd;
4139 struct e1000_rx_buffer *buffer_info, *next_buffer;
4140 u32 length;
4141 unsigned int i;
4142 int cleaned_count = 0;
4143 bool cleaned = false;
4144 unsigned int total_rx_bytes=0, total_rx_packets=0;
4145
4146 i = rx_ring->next_to_clean;
4147 rx_desc = E1000_RX_DESC(*rx_ring, i);
4148 buffer_info = &rx_ring->buffer_info[i];
4149
4150 while (rx_desc->status & E1000_RXD_STAT_DD) {
4151 struct sk_buff *skb;
4152 u8 status;
4153
4154 if (*work_done >= work_to_do)
4155 break;
4156 (*work_done)++;
4157 rmb(); /* read descriptor and rx_buffer_info after status DD */
4158
4159 status = rx_desc->status;
4160
4161 if (++i == rx_ring->count) i = 0;
4162 next_rxd = E1000_RX_DESC(*rx_ring, i);
4163 prefetch(next_rxd);
4164
4165 next_buffer = &rx_ring->buffer_info[i];
4166
4167 cleaned = true;
4168 cleaned_count++;
4169 dma_unmap_page(&pdev->dev, buffer_info->dma,
4170 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4171 buffer_info->dma = 0;
4172
4173 length = le16_to_cpu(rx_desc->length);
4174
4175 /* errors is only valid for DD + EOP descriptors */
4176 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4177 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4178 u8 *mapped = page_address(buffer_info->rxbuf.page);
4179
4180 if (e1000_tbi_should_accept(adapter, status,
4181 rx_desc->errors,
4182 length, mapped)) {
4183 length--;
4184 } else if (netdev->features & NETIF_F_RXALL) {
4185 goto process_skb;
4186 } else {
4187 /* an error means any chain goes out the window
4188 * too
4189 */
4190 if (rx_ring->rx_skb_top)
4191 dev_kfree_skb(rx_ring->rx_skb_top);
4192 rx_ring->rx_skb_top = NULL;
4193 goto next_desc;
4194 }
4195 }
4196
4197 #define rxtop rx_ring->rx_skb_top
4198 process_skb:
4199 if (!(status & E1000_RXD_STAT_EOP)) {
4200 /* this descriptor is only the beginning (or middle) */
4201 if (!rxtop) {
4202 /* this is the beginning of a chain */
4203 rxtop = napi_get_frags(&adapter->napi);
4204 if (!rxtop)
4205 break;
4206
4207 skb_fill_page_desc(rxtop, 0,
4208 buffer_info->rxbuf.page,
4209 0, length);
4210 } else {
4211 /* this is the middle of a chain */
4212 skb_fill_page_desc(rxtop,
4213 skb_shinfo(rxtop)->nr_frags,
4214 buffer_info->rxbuf.page, 0, length);
4215 }
4216 e1000_consume_page(buffer_info, rxtop, length);
4217 goto next_desc;
4218 } else {
4219 if (rxtop) {
4220 /* end of the chain */
4221 skb_fill_page_desc(rxtop,
4222 skb_shinfo(rxtop)->nr_frags,
4223 buffer_info->rxbuf.page, 0, length);
4224 skb = rxtop;
4225 rxtop = NULL;
4226 e1000_consume_page(buffer_info, skb, length);
4227 } else {
4228 struct page *p;
4229 /* no chain, got EOP, this buf is the packet
4230 * copybreak to save the put_page/alloc_page
4231 */
4232 p = buffer_info->rxbuf.page;
4233 if (length <= copybreak) {
4234 u8 *vaddr;
4235
4236 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4237 length -= 4;
4238 skb = e1000_alloc_rx_skb(adapter,
4239 length);
4240 if (!skb)
4241 break;
4242
4243 vaddr = kmap_atomic(p);
4244 memcpy(skb_tail_pointer(skb), vaddr,
4245 length);
4246 kunmap_atomic(vaddr);
4247 /* re-use the page, so don't erase
4248 * buffer_info->rxbuf.page
4249 */
4250 skb_put(skb, length);
4251 e1000_rx_checksum(adapter,
4252 status | rx_desc->errors << 24,
4253 le16_to_cpu(rx_desc->csum), skb);
4254
4255 total_rx_bytes += skb->len;
4256 total_rx_packets++;
4257
4258 e1000_receive_skb(adapter, status,
4259 rx_desc->special, skb);
4260 goto next_desc;
4261 } else {
4262 skb = napi_get_frags(&adapter->napi);
4263 if (!skb) {
4264 adapter->alloc_rx_buff_failed++;
4265 break;
4266 }
4267 skb_fill_page_desc(skb, 0, p, 0,
4268 length);
4269 e1000_consume_page(buffer_info, skb,
4270 length);
4271 }
4272 }
4273 }
4274
4275 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4276 e1000_rx_checksum(adapter,
4277 (u32)(status) |
4278 ((u32)(rx_desc->errors) << 24),
4279 le16_to_cpu(rx_desc->csum), skb);
4280
4281 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4282 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4283 pskb_trim(skb, skb->len - 4);
4284 total_rx_packets++;
4285
4286 if (status & E1000_RXD_STAT_VP) {
4287 __le16 vlan = rx_desc->special;
4288 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4289
4290 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4291 }
4292
4293 napi_gro_frags(&adapter->napi);
4294
4295 next_desc:
4296 rx_desc->status = 0;
4297
4298 /* return some buffers to hardware, one at a time is too slow */
4299 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4300 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4301 cleaned_count = 0;
4302 }
4303
4304 /* use prefetched values */
4305 rx_desc = next_rxd;
4306 buffer_info = next_buffer;
4307 }
4308 rx_ring->next_to_clean = i;
4309
4310 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4311 if (cleaned_count)
4312 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4313
4314 adapter->total_rx_packets += total_rx_packets;
4315 adapter->total_rx_bytes += total_rx_bytes;
4316 netdev->stats.rx_bytes += total_rx_bytes;
4317 netdev->stats.rx_packets += total_rx_packets;
4318 return cleaned;
4319 }
4320
4321 /* this should improve performance for small packets with large amounts
4322 * of reassembly being done in the stack
4323 */
4324 static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4325 struct e1000_rx_buffer *buffer_info,
4326 u32 length, const void *data)
4327 {
4328 struct sk_buff *skb;
4329
4330 if (length > copybreak)
4331 return NULL;
4332
4333 skb = e1000_alloc_rx_skb(adapter, length);
4334 if (!skb)
4335 return NULL;
4336
4337 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4338 length, DMA_FROM_DEVICE);
4339
4340 memcpy(skb_put(skb, length), data, length);
4341
4342 return skb;
4343 }
4344
4345 /**
4346 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4347 * @adapter: board private structure
4348 * @rx_ring: ring to clean
4349 * @work_done: amount of napi work completed this call
4350 * @work_to_do: max amount of work allowed for this call to do
4351 */
4352 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4353 struct e1000_rx_ring *rx_ring,
4354 int *work_done, int work_to_do)
4355 {
4356 struct net_device *netdev = adapter->netdev;
4357 struct pci_dev *pdev = adapter->pdev;
4358 struct e1000_rx_desc *rx_desc, *next_rxd;
4359 struct e1000_rx_buffer *buffer_info, *next_buffer;
4360 u32 length;
4361 unsigned int i;
4362 int cleaned_count = 0;
4363 bool cleaned = false;
4364 unsigned int total_rx_bytes=0, total_rx_packets=0;
4365
4366 i = rx_ring->next_to_clean;
4367 rx_desc = E1000_RX_DESC(*rx_ring, i);
4368 buffer_info = &rx_ring->buffer_info[i];
4369
4370 while (rx_desc->status & E1000_RXD_STAT_DD) {
4371 struct sk_buff *skb;
4372 u8 *data;
4373 u8 status;
4374
4375 if (*work_done >= work_to_do)
4376 break;
4377 (*work_done)++;
4378 rmb(); /* read descriptor and rx_buffer_info after status DD */
4379
4380 status = rx_desc->status;
4381 length = le16_to_cpu(rx_desc->length);
4382
4383 data = buffer_info->rxbuf.data;
4384 prefetch(data);
4385 skb = e1000_copybreak(adapter, buffer_info, length, data);
4386 if (!skb) {
4387 unsigned int frag_len = e1000_frag_len(adapter);
4388
4389 skb = build_skb(data - E1000_HEADROOM, frag_len);
4390 if (!skb) {
4391 adapter->alloc_rx_buff_failed++;
4392 break;
4393 }
4394
4395 skb_reserve(skb, E1000_HEADROOM);
4396 dma_unmap_single(&pdev->dev, buffer_info->dma,
4397 adapter->rx_buffer_len,
4398 DMA_FROM_DEVICE);
4399 buffer_info->dma = 0;
4400 buffer_info->rxbuf.data = NULL;
4401 }
4402
4403 if (++i == rx_ring->count) i = 0;
4404 next_rxd = E1000_RX_DESC(*rx_ring, i);
4405 prefetch(next_rxd);
4406
4407 next_buffer = &rx_ring->buffer_info[i];
4408
4409 cleaned = true;
4410 cleaned_count++;
4411
4412 /* !EOP means multiple descriptors were used to store a single
4413 * packet, if thats the case we need to toss it. In fact, we
4414 * to toss every packet with the EOP bit clear and the next
4415 * frame that _does_ have the EOP bit set, as it is by
4416 * definition only a frame fragment
4417 */
4418 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4419 adapter->discarding = true;
4420
4421 if (adapter->discarding) {
4422 /* All receives must fit into a single buffer */
4423 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4424 dev_kfree_skb(skb);
4425 if (status & E1000_RXD_STAT_EOP)
4426 adapter->discarding = false;
4427 goto next_desc;
4428 }
4429
4430 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4431 if (e1000_tbi_should_accept(adapter, status,
4432 rx_desc->errors,
4433 length, data)) {
4434 length--;
4435 } else if (netdev->features & NETIF_F_RXALL) {
4436 goto process_skb;
4437 } else {
4438 dev_kfree_skb(skb);
4439 goto next_desc;
4440 }
4441 }
4442
4443 process_skb:
4444 total_rx_bytes += (length - 4); /* don't count FCS */
4445 total_rx_packets++;
4446
4447 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4448 /* adjust length to remove Ethernet CRC, this must be
4449 * done after the TBI_ACCEPT workaround above
4450 */
4451 length -= 4;
4452
4453 if (buffer_info->rxbuf.data == NULL)
4454 skb_put(skb, length);
4455 else /* copybreak skb */
4456 skb_trim(skb, length);
4457
4458 /* Receive Checksum Offload */
4459 e1000_rx_checksum(adapter,
4460 (u32)(status) |
4461 ((u32)(rx_desc->errors) << 24),
4462 le16_to_cpu(rx_desc->csum), skb);
4463
4464 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4465
4466 next_desc:
4467 rx_desc->status = 0;
4468
4469 /* return some buffers to hardware, one at a time is too slow */
4470 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4471 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4472 cleaned_count = 0;
4473 }
4474
4475 /* use prefetched values */
4476 rx_desc = next_rxd;
4477 buffer_info = next_buffer;
4478 }
4479 rx_ring->next_to_clean = i;
4480
4481 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4482 if (cleaned_count)
4483 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4484
4485 adapter->total_rx_packets += total_rx_packets;
4486 adapter->total_rx_bytes += total_rx_bytes;
4487 netdev->stats.rx_bytes += total_rx_bytes;
4488 netdev->stats.rx_packets += total_rx_packets;
4489 return cleaned;
4490 }
4491
4492 /**
4493 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4494 * @adapter: address of board private structure
4495 * @rx_ring: pointer to receive ring structure
4496 * @cleaned_count: number of buffers to allocate this pass
4497 **/
4498 static void
4499 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4500 struct e1000_rx_ring *rx_ring, int cleaned_count)
4501 {
4502 struct pci_dev *pdev = adapter->pdev;
4503 struct e1000_rx_desc *rx_desc;
4504 struct e1000_rx_buffer *buffer_info;
4505 unsigned int i;
4506
4507 i = rx_ring->next_to_use;
4508 buffer_info = &rx_ring->buffer_info[i];
4509
4510 while (cleaned_count--) {
4511 /* allocate a new page if necessary */
4512 if (!buffer_info->rxbuf.page) {
4513 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4514 if (unlikely(!buffer_info->rxbuf.page)) {
4515 adapter->alloc_rx_buff_failed++;
4516 break;
4517 }
4518 }
4519
4520 if (!buffer_info->dma) {
4521 buffer_info->dma = dma_map_page(&pdev->dev,
4522 buffer_info->rxbuf.page, 0,
4523 adapter->rx_buffer_len,
4524 DMA_FROM_DEVICE);
4525 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4526 put_page(buffer_info->rxbuf.page);
4527 buffer_info->rxbuf.page = NULL;
4528 buffer_info->dma = 0;
4529 adapter->alloc_rx_buff_failed++;
4530 break;
4531 }
4532 }
4533
4534 rx_desc = E1000_RX_DESC(*rx_ring, i);
4535 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4536
4537 if (unlikely(++i == rx_ring->count))
4538 i = 0;
4539 buffer_info = &rx_ring->buffer_info[i];
4540 }
4541
4542 if (likely(rx_ring->next_to_use != i)) {
4543 rx_ring->next_to_use = i;
4544 if (unlikely(i-- == 0))
4545 i = (rx_ring->count - 1);
4546
4547 /* Force memory writes to complete before letting h/w
4548 * know there are new descriptors to fetch. (Only
4549 * applicable for weak-ordered memory model archs,
4550 * such as IA-64).
4551 */
4552 wmb();
4553 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4554 }
4555 }
4556
4557 /**
4558 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4559 * @adapter: address of board private structure
4560 **/
4561 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4562 struct e1000_rx_ring *rx_ring,
4563 int cleaned_count)
4564 {
4565 struct e1000_hw *hw = &adapter->hw;
4566 struct pci_dev *pdev = adapter->pdev;
4567 struct e1000_rx_desc *rx_desc;
4568 struct e1000_rx_buffer *buffer_info;
4569 unsigned int i;
4570 unsigned int bufsz = adapter->rx_buffer_len;
4571
4572 i = rx_ring->next_to_use;
4573 buffer_info = &rx_ring->buffer_info[i];
4574
4575 while (cleaned_count--) {
4576 void *data;
4577
4578 if (buffer_info->rxbuf.data)
4579 goto skip;
4580
4581 data = e1000_alloc_frag(adapter);
4582 if (!data) {
4583 /* Better luck next round */
4584 adapter->alloc_rx_buff_failed++;
4585 break;
4586 }
4587
4588 /* Fix for errata 23, can't cross 64kB boundary */
4589 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4590 void *olddata = data;
4591 e_err(rx_err, "skb align check failed: %u bytes at "
4592 "%p\n", bufsz, data);
4593 /* Try again, without freeing the previous */
4594 data = e1000_alloc_frag(adapter);
4595 /* Failed allocation, critical failure */
4596 if (!data) {
4597 e1000_free_frag(olddata);
4598 adapter->alloc_rx_buff_failed++;
4599 break;
4600 }
4601
4602 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4603 /* give up */
4604 e1000_free_frag(data);
4605 e1000_free_frag(olddata);
4606 adapter->alloc_rx_buff_failed++;
4607 break;
4608 }
4609
4610 /* Use new allocation */
4611 e1000_free_frag(olddata);
4612 }
4613 buffer_info->dma = dma_map_single(&pdev->dev,
4614 data,
4615 adapter->rx_buffer_len,
4616 DMA_FROM_DEVICE);
4617 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4618 e1000_free_frag(data);
4619 buffer_info->dma = 0;
4620 adapter->alloc_rx_buff_failed++;
4621 break;
4622 }
4623
4624 /* XXX if it was allocated cleanly it will never map to a
4625 * boundary crossing
4626 */
4627
4628 /* Fix for errata 23, can't cross 64kB boundary */
4629 if (!e1000_check_64k_bound(adapter,
4630 (void *)(unsigned long)buffer_info->dma,
4631 adapter->rx_buffer_len)) {
4632 e_err(rx_err, "dma align check failed: %u bytes at "
4633 "%p\n", adapter->rx_buffer_len,
4634 (void *)(unsigned long)buffer_info->dma);
4635
4636 dma_unmap_single(&pdev->dev, buffer_info->dma,
4637 adapter->rx_buffer_len,
4638 DMA_FROM_DEVICE);
4639
4640 e1000_free_frag(data);
4641 buffer_info->rxbuf.data = NULL;
4642 buffer_info->dma = 0;
4643
4644 adapter->alloc_rx_buff_failed++;
4645 break;
4646 }
4647 buffer_info->rxbuf.data = data;
4648 skip:
4649 rx_desc = E1000_RX_DESC(*rx_ring, i);
4650 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4651
4652 if (unlikely(++i == rx_ring->count))
4653 i = 0;
4654 buffer_info = &rx_ring->buffer_info[i];
4655 }
4656
4657 if (likely(rx_ring->next_to_use != i)) {
4658 rx_ring->next_to_use = i;
4659 if (unlikely(i-- == 0))
4660 i = (rx_ring->count - 1);
4661
4662 /* Force memory writes to complete before letting h/w
4663 * know there are new descriptors to fetch. (Only
4664 * applicable for weak-ordered memory model archs,
4665 * such as IA-64).
4666 */
4667 wmb();
4668 writel(i, hw->hw_addr + rx_ring->rdt);
4669 }
4670 }
4671
4672 /**
4673 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4674 * @adapter:
4675 **/
4676 static void e1000_smartspeed(struct e1000_adapter *adapter)
4677 {
4678 struct e1000_hw *hw = &adapter->hw;
4679 u16 phy_status;
4680 u16 phy_ctrl;
4681
4682 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4683 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4684 return;
4685
4686 if (adapter->smartspeed == 0) {
4687 /* If Master/Slave config fault is asserted twice,
4688 * we assume back-to-back
4689 */
4690 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4691 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4694 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4695 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4696 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4697 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4698 phy_ctrl);
4699 adapter->smartspeed++;
4700 if (!e1000_phy_setup_autoneg(hw) &&
4701 !e1000_read_phy_reg(hw, PHY_CTRL,
4702 &phy_ctrl)) {
4703 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4704 MII_CR_RESTART_AUTO_NEG);
4705 e1000_write_phy_reg(hw, PHY_CTRL,
4706 phy_ctrl);
4707 }
4708 }
4709 return;
4710 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4711 /* If still no link, perhaps using 2/3 pair cable */
4712 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4713 phy_ctrl |= CR_1000T_MS_ENABLE;
4714 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4715 if (!e1000_phy_setup_autoneg(hw) &&
4716 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4717 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4718 MII_CR_RESTART_AUTO_NEG);
4719 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4720 }
4721 }
4722 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4723 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4724 adapter->smartspeed = 0;
4725 }
4726
4727 /**
4728 * e1000_ioctl -
4729 * @netdev:
4730 * @ifreq:
4731 * @cmd:
4732 **/
4733 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4734 {
4735 switch (cmd) {
4736 case SIOCGMIIPHY:
4737 case SIOCGMIIREG:
4738 case SIOCSMIIREG:
4739 return e1000_mii_ioctl(netdev, ifr, cmd);
4740 default:
4741 return -EOPNOTSUPP;
4742 }
4743 }
4744
4745 /**
4746 * e1000_mii_ioctl -
4747 * @netdev:
4748 * @ifreq:
4749 * @cmd:
4750 **/
4751 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4752 int cmd)
4753 {
4754 struct e1000_adapter *adapter = netdev_priv(netdev);
4755 struct e1000_hw *hw = &adapter->hw;
4756 struct mii_ioctl_data *data = if_mii(ifr);
4757 int retval;
4758 u16 mii_reg;
4759 unsigned long flags;
4760
4761 if (hw->media_type != e1000_media_type_copper)
4762 return -EOPNOTSUPP;
4763
4764 switch (cmd) {
4765 case SIOCGMIIPHY:
4766 data->phy_id = hw->phy_addr;
4767 break;
4768 case SIOCGMIIREG:
4769 spin_lock_irqsave(&adapter->stats_lock, flags);
4770 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4771 &data->val_out)) {
4772 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4773 return -EIO;
4774 }
4775 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4776 break;
4777 case SIOCSMIIREG:
4778 if (data->reg_num & ~(0x1F))
4779 return -EFAULT;
4780 mii_reg = data->val_in;
4781 spin_lock_irqsave(&adapter->stats_lock, flags);
4782 if (e1000_write_phy_reg(hw, data->reg_num,
4783 mii_reg)) {
4784 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4785 return -EIO;
4786 }
4787 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4788 if (hw->media_type == e1000_media_type_copper) {
4789 switch (data->reg_num) {
4790 case PHY_CTRL:
4791 if (mii_reg & MII_CR_POWER_DOWN)
4792 break;
4793 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4794 hw->autoneg = 1;
4795 hw->autoneg_advertised = 0x2F;
4796 } else {
4797 u32 speed;
4798 if (mii_reg & 0x40)
4799 speed = SPEED_1000;
4800 else if (mii_reg & 0x2000)
4801 speed = SPEED_100;
4802 else
4803 speed = SPEED_10;
4804 retval = e1000_set_spd_dplx(
4805 adapter, speed,
4806 ((mii_reg & 0x100)
4807 ? DUPLEX_FULL :
4808 DUPLEX_HALF));
4809 if (retval)
4810 return retval;
4811 }
4812 if (netif_running(adapter->netdev))
4813 e1000_reinit_locked(adapter);
4814 else
4815 e1000_reset(adapter);
4816 break;
4817 case M88E1000_PHY_SPEC_CTRL:
4818 case M88E1000_EXT_PHY_SPEC_CTRL:
4819 if (e1000_phy_reset(hw))
4820 return -EIO;
4821 break;
4822 }
4823 } else {
4824 switch (data->reg_num) {
4825 case PHY_CTRL:
4826 if (mii_reg & MII_CR_POWER_DOWN)
4827 break;
4828 if (netif_running(adapter->netdev))
4829 e1000_reinit_locked(adapter);
4830 else
4831 e1000_reset(adapter);
4832 break;
4833 }
4834 }
4835 break;
4836 default:
4837 return -EOPNOTSUPP;
4838 }
4839 return E1000_SUCCESS;
4840 }
4841
4842 void e1000_pci_set_mwi(struct e1000_hw *hw)
4843 {
4844 struct e1000_adapter *adapter = hw->back;
4845 int ret_val = pci_set_mwi(adapter->pdev);
4846
4847 if (ret_val)
4848 e_err(probe, "Error in setting MWI\n");
4849 }
4850
4851 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4852 {
4853 struct e1000_adapter *adapter = hw->back;
4854
4855 pci_clear_mwi(adapter->pdev);
4856 }
4857
4858 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4859 {
4860 struct e1000_adapter *adapter = hw->back;
4861 return pcix_get_mmrbc(adapter->pdev);
4862 }
4863
4864 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4865 {
4866 struct e1000_adapter *adapter = hw->back;
4867 pcix_set_mmrbc(adapter->pdev, mmrbc);
4868 }
4869
4870 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4871 {
4872 outl(value, port);
4873 }
4874
4875 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4876 {
4877 u16 vid;
4878
4879 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4880 return true;
4881 return false;
4882 }
4883
4884 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4885 netdev_features_t features)
4886 {
4887 struct e1000_hw *hw = &adapter->hw;
4888 u32 ctrl;
4889
4890 ctrl = er32(CTRL);
4891 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4892 /* enable VLAN tag insert/strip */
4893 ctrl |= E1000_CTRL_VME;
4894 } else {
4895 /* disable VLAN tag insert/strip */
4896 ctrl &= ~E1000_CTRL_VME;
4897 }
4898 ew32(CTRL, ctrl);
4899 }
4900 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4901 bool filter_on)
4902 {
4903 struct e1000_hw *hw = &adapter->hw;
4904 u32 rctl;
4905
4906 if (!test_bit(__E1000_DOWN, &adapter->flags))
4907 e1000_irq_disable(adapter);
4908
4909 __e1000_vlan_mode(adapter, adapter->netdev->features);
4910 if (filter_on) {
4911 /* enable VLAN receive filtering */
4912 rctl = er32(RCTL);
4913 rctl &= ~E1000_RCTL_CFIEN;
4914 if (!(adapter->netdev->flags & IFF_PROMISC))
4915 rctl |= E1000_RCTL_VFE;
4916 ew32(RCTL, rctl);
4917 e1000_update_mng_vlan(adapter);
4918 } else {
4919 /* disable VLAN receive filtering */
4920 rctl = er32(RCTL);
4921 rctl &= ~E1000_RCTL_VFE;
4922 ew32(RCTL, rctl);
4923 }
4924
4925 if (!test_bit(__E1000_DOWN, &adapter->flags))
4926 e1000_irq_enable(adapter);
4927 }
4928
4929 static void e1000_vlan_mode(struct net_device *netdev,
4930 netdev_features_t features)
4931 {
4932 struct e1000_adapter *adapter = netdev_priv(netdev);
4933
4934 if (!test_bit(__E1000_DOWN, &adapter->flags))
4935 e1000_irq_disable(adapter);
4936
4937 __e1000_vlan_mode(adapter, features);
4938
4939 if (!test_bit(__E1000_DOWN, &adapter->flags))
4940 e1000_irq_enable(adapter);
4941 }
4942
4943 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4944 __be16 proto, u16 vid)
4945 {
4946 struct e1000_adapter *adapter = netdev_priv(netdev);
4947 struct e1000_hw *hw = &adapter->hw;
4948 u32 vfta, index;
4949
4950 if ((hw->mng_cookie.status &
4951 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4952 (vid == adapter->mng_vlan_id))
4953 return 0;
4954
4955 if (!e1000_vlan_used(adapter))
4956 e1000_vlan_filter_on_off(adapter, true);
4957
4958 /* add VID to filter table */
4959 index = (vid >> 5) & 0x7F;
4960 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4961 vfta |= (1 << (vid & 0x1F));
4962 e1000_write_vfta(hw, index, vfta);
4963
4964 set_bit(vid, adapter->active_vlans);
4965
4966 return 0;
4967 }
4968
4969 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4970 __be16 proto, u16 vid)
4971 {
4972 struct e1000_adapter *adapter = netdev_priv(netdev);
4973 struct e1000_hw *hw = &adapter->hw;
4974 u32 vfta, index;
4975
4976 if (!test_bit(__E1000_DOWN, &adapter->flags))
4977 e1000_irq_disable(adapter);
4978 if (!test_bit(__E1000_DOWN, &adapter->flags))
4979 e1000_irq_enable(adapter);
4980
4981 /* remove VID from filter table */
4982 index = (vid >> 5) & 0x7F;
4983 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4984 vfta &= ~(1 << (vid & 0x1F));
4985 e1000_write_vfta(hw, index, vfta);
4986
4987 clear_bit(vid, adapter->active_vlans);
4988
4989 if (!e1000_vlan_used(adapter))
4990 e1000_vlan_filter_on_off(adapter, false);
4991
4992 return 0;
4993 }
4994
4995 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4996 {
4997 u16 vid;
4998
4999 if (!e1000_vlan_used(adapter))
5000 return;
5001
5002 e1000_vlan_filter_on_off(adapter, true);
5003 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5004 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5005 }
5006
5007 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5008 {
5009 struct e1000_hw *hw = &adapter->hw;
5010
5011 hw->autoneg = 0;
5012
5013 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5014 * for the switch() below to work
5015 */
5016 if ((spd & 1) || (dplx & ~1))
5017 goto err_inval;
5018
5019 /* Fiber NICs only allow 1000 gbps Full duplex */
5020 if ((hw->media_type == e1000_media_type_fiber) &&
5021 spd != SPEED_1000 &&
5022 dplx != DUPLEX_FULL)
5023 goto err_inval;
5024
5025 switch (spd + dplx) {
5026 case SPEED_10 + DUPLEX_HALF:
5027 hw->forced_speed_duplex = e1000_10_half;
5028 break;
5029 case SPEED_10 + DUPLEX_FULL:
5030 hw->forced_speed_duplex = e1000_10_full;
5031 break;
5032 case SPEED_100 + DUPLEX_HALF:
5033 hw->forced_speed_duplex = e1000_100_half;
5034 break;
5035 case SPEED_100 + DUPLEX_FULL:
5036 hw->forced_speed_duplex = e1000_100_full;
5037 break;
5038 case SPEED_1000 + DUPLEX_FULL:
5039 hw->autoneg = 1;
5040 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5041 break;
5042 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5043 default:
5044 goto err_inval;
5045 }
5046
5047 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5048 hw->mdix = AUTO_ALL_MODES;
5049
5050 return 0;
5051
5052 err_inval:
5053 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5054 return -EINVAL;
5055 }
5056
5057 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5058 {
5059 struct net_device *netdev = pci_get_drvdata(pdev);
5060 struct e1000_adapter *adapter = netdev_priv(netdev);
5061 struct e1000_hw *hw = &adapter->hw;
5062 u32 ctrl, ctrl_ext, rctl, status;
5063 u32 wufc = adapter->wol;
5064 #ifdef CONFIG_PM
5065 int retval = 0;
5066 #endif
5067
5068 netif_device_detach(netdev);
5069
5070 if (netif_running(netdev)) {
5071 int count = E1000_CHECK_RESET_COUNT;
5072
5073 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5074 usleep_range(10000, 20000);
5075
5076 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5077 e1000_down(adapter);
5078 }
5079
5080 #ifdef CONFIG_PM
5081 retval = pci_save_state(pdev);
5082 if (retval)
5083 return retval;
5084 #endif
5085
5086 status = er32(STATUS);
5087 if (status & E1000_STATUS_LU)
5088 wufc &= ~E1000_WUFC_LNKC;
5089
5090 if (wufc) {
5091 e1000_setup_rctl(adapter);
5092 e1000_set_rx_mode(netdev);
5093
5094 rctl = er32(RCTL);
5095
5096 /* turn on all-multi mode if wake on multicast is enabled */
5097 if (wufc & E1000_WUFC_MC)
5098 rctl |= E1000_RCTL_MPE;
5099
5100 /* enable receives in the hardware */
5101 ew32(RCTL, rctl | E1000_RCTL_EN);
5102
5103 if (hw->mac_type >= e1000_82540) {
5104 ctrl = er32(CTRL);
5105 /* advertise wake from D3Cold */
5106 #define E1000_CTRL_ADVD3WUC 0x00100000
5107 /* phy power management enable */
5108 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5109 ctrl |= E1000_CTRL_ADVD3WUC |
5110 E1000_CTRL_EN_PHY_PWR_MGMT;
5111 ew32(CTRL, ctrl);
5112 }
5113
5114 if (hw->media_type == e1000_media_type_fiber ||
5115 hw->media_type == e1000_media_type_internal_serdes) {
5116 /* keep the laser running in D3 */
5117 ctrl_ext = er32(CTRL_EXT);
5118 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5119 ew32(CTRL_EXT, ctrl_ext);
5120 }
5121
5122 ew32(WUC, E1000_WUC_PME_EN);
5123 ew32(WUFC, wufc);
5124 } else {
5125 ew32(WUC, 0);
5126 ew32(WUFC, 0);
5127 }
5128
5129 e1000_release_manageability(adapter);
5130
5131 *enable_wake = !!wufc;
5132
5133 /* make sure adapter isn't asleep if manageability is enabled */
5134 if (adapter->en_mng_pt)
5135 *enable_wake = true;
5136
5137 if (netif_running(netdev))
5138 e1000_free_irq(adapter);
5139
5140 pci_disable_device(pdev);
5141
5142 return 0;
5143 }
5144
5145 #ifdef CONFIG_PM
5146 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5147 {
5148 int retval;
5149 bool wake;
5150
5151 retval = __e1000_shutdown(pdev, &wake);
5152 if (retval)
5153 return retval;
5154
5155 if (wake) {
5156 pci_prepare_to_sleep(pdev);
5157 } else {
5158 pci_wake_from_d3(pdev, false);
5159 pci_set_power_state(pdev, PCI_D3hot);
5160 }
5161
5162 return 0;
5163 }
5164
5165 static int e1000_resume(struct pci_dev *pdev)
5166 {
5167 struct net_device *netdev = pci_get_drvdata(pdev);
5168 struct e1000_adapter *adapter = netdev_priv(netdev);
5169 struct e1000_hw *hw = &adapter->hw;
5170 u32 err;
5171
5172 pci_set_power_state(pdev, PCI_D0);
5173 pci_restore_state(pdev);
5174 pci_save_state(pdev);
5175
5176 if (adapter->need_ioport)
5177 err = pci_enable_device(pdev);
5178 else
5179 err = pci_enable_device_mem(pdev);
5180 if (err) {
5181 pr_err("Cannot enable PCI device from suspend\n");
5182 return err;
5183 }
5184 pci_set_master(pdev);
5185
5186 pci_enable_wake(pdev, PCI_D3hot, 0);
5187 pci_enable_wake(pdev, PCI_D3cold, 0);
5188
5189 if (netif_running(netdev)) {
5190 err = e1000_request_irq(adapter);
5191 if (err)
5192 return err;
5193 }
5194
5195 e1000_power_up_phy(adapter);
5196 e1000_reset(adapter);
5197 ew32(WUS, ~0);
5198
5199 e1000_init_manageability(adapter);
5200
5201 if (netif_running(netdev))
5202 e1000_up(adapter);
5203
5204 netif_device_attach(netdev);
5205
5206 return 0;
5207 }
5208 #endif
5209
5210 static void e1000_shutdown(struct pci_dev *pdev)
5211 {
5212 bool wake;
5213
5214 __e1000_shutdown(pdev, &wake);
5215
5216 if (system_state == SYSTEM_POWER_OFF) {
5217 pci_wake_from_d3(pdev, wake);
5218 pci_set_power_state(pdev, PCI_D3hot);
5219 }
5220 }
5221
5222 #ifdef CONFIG_NET_POLL_CONTROLLER
5223 /* Polling 'interrupt' - used by things like netconsole to send skbs
5224 * without having to re-enable interrupts. It's not called while
5225 * the interrupt routine is executing.
5226 */
5227 static void e1000_netpoll(struct net_device *netdev)
5228 {
5229 struct e1000_adapter *adapter = netdev_priv(netdev);
5230
5231 disable_irq(adapter->pdev->irq);
5232 e1000_intr(adapter->pdev->irq, netdev);
5233 enable_irq(adapter->pdev->irq);
5234 }
5235 #endif
5236
5237 /**
5238 * e1000_io_error_detected - called when PCI error is detected
5239 * @pdev: Pointer to PCI device
5240 * @state: The current pci connection state
5241 *
5242 * This function is called after a PCI bus error affecting
5243 * this device has been detected.
5244 */
5245 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5246 pci_channel_state_t state)
5247 {
5248 struct net_device *netdev = pci_get_drvdata(pdev);
5249 struct e1000_adapter *adapter = netdev_priv(netdev);
5250
5251 netif_device_detach(netdev);
5252
5253 if (state == pci_channel_io_perm_failure)
5254 return PCI_ERS_RESULT_DISCONNECT;
5255
5256 if (netif_running(netdev))
5257 e1000_down(adapter);
5258 pci_disable_device(pdev);
5259
5260 /* Request a slot slot reset. */
5261 return PCI_ERS_RESULT_NEED_RESET;
5262 }
5263
5264 /**
5265 * e1000_io_slot_reset - called after the pci bus has been reset.
5266 * @pdev: Pointer to PCI device
5267 *
5268 * Restart the card from scratch, as if from a cold-boot. Implementation
5269 * resembles the first-half of the e1000_resume routine.
5270 */
5271 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5272 {
5273 struct net_device *netdev = pci_get_drvdata(pdev);
5274 struct e1000_adapter *adapter = netdev_priv(netdev);
5275 struct e1000_hw *hw = &adapter->hw;
5276 int err;
5277
5278 if (adapter->need_ioport)
5279 err = pci_enable_device(pdev);
5280 else
5281 err = pci_enable_device_mem(pdev);
5282 if (err) {
5283 pr_err("Cannot re-enable PCI device after reset.\n");
5284 return PCI_ERS_RESULT_DISCONNECT;
5285 }
5286 pci_set_master(pdev);
5287
5288 pci_enable_wake(pdev, PCI_D3hot, 0);
5289 pci_enable_wake(pdev, PCI_D3cold, 0);
5290
5291 e1000_reset(adapter);
5292 ew32(WUS, ~0);
5293
5294 return PCI_ERS_RESULT_RECOVERED;
5295 }
5296
5297 /**
5298 * e1000_io_resume - called when traffic can start flowing again.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * This callback is called when the error recovery driver tells us that
5302 * its OK to resume normal operation. Implementation resembles the
5303 * second-half of the e1000_resume routine.
5304 */
5305 static void e1000_io_resume(struct pci_dev *pdev)
5306 {
5307 struct net_device *netdev = pci_get_drvdata(pdev);
5308 struct e1000_adapter *adapter = netdev_priv(netdev);
5309
5310 e1000_init_manageability(adapter);
5311
5312 if (netif_running(netdev)) {
5313 if (e1000_up(adapter)) {
5314 pr_info("can't bring device back up after reset\n");
5315 return;
5316 }
5317 }
5318
5319 netif_device_attach(netdev);
5320 }
5321
5322 /* e1000_main.c */
This page took 0.142079 seconds and 5 git commands to generate.