d947e3aae1e8b90e8f86de3c902753455427b7f8
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid);
170 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid);
171 static void e1000_restore_vlan(struct e1000_adapter *adapter);
172
173 #ifdef CONFIG_PM
174 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
175 static int e1000_resume(struct pci_dev *pdev);
176 #endif
177 static void e1000_shutdown(struct pci_dev *pdev);
178
179 #ifdef CONFIG_NET_POLL_CONTROLLER
180 /* for netdump / net console */
181 static void e1000_netpoll (struct net_device *netdev);
182 #endif
183
184 #define COPYBREAK_DEFAULT 256
185 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
186 module_param(copybreak, uint, 0644);
187 MODULE_PARM_DESC(copybreak,
188 "Maximum size of packet that is copied to a new buffer on receive");
189
190 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
191 pci_channel_state_t state);
192 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
193 static void e1000_io_resume(struct pci_dev *pdev);
194
195 static const struct pci_error_handlers e1000_err_handler = {
196 .error_detected = e1000_io_error_detected,
197 .slot_reset = e1000_io_slot_reset,
198 .resume = e1000_io_resume,
199 };
200
201 static struct pci_driver e1000_driver = {
202 .name = e1000_driver_name,
203 .id_table = e1000_pci_tbl,
204 .probe = e1000_probe,
205 .remove = e1000_remove,
206 #ifdef CONFIG_PM
207 /* Power Management Hooks */
208 .suspend = e1000_suspend,
209 .resume = e1000_resume,
210 #endif
211 .shutdown = e1000_shutdown,
212 .err_handler = &e1000_err_handler
213 };
214
215 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
216 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
217 MODULE_LICENSE("GPL");
218 MODULE_VERSION(DRV_VERSION);
219
220 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
221 static int debug = -1;
222 module_param(debug, int, 0);
223 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
224
225 /**
226 * e1000_get_hw_dev - return device
227 * used by hardware layer to print debugging information
228 *
229 **/
230 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
231 {
232 struct e1000_adapter *adapter = hw->back;
233 return adapter->netdev;
234 }
235
236 /**
237 * e1000_init_module - Driver Registration Routine
238 *
239 * e1000_init_module is the first routine called when the driver is
240 * loaded. All it does is register with the PCI subsystem.
241 **/
242
243 static int __init e1000_init_module(void)
244 {
245 int ret;
246 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
247
248 pr_info("%s\n", e1000_copyright);
249
250 ret = pci_register_driver(&e1000_driver);
251 if (copybreak != COPYBREAK_DEFAULT) {
252 if (copybreak == 0)
253 pr_info("copybreak disabled\n");
254 else
255 pr_info("copybreak enabled for "
256 "packets <= %u bytes\n", copybreak);
257 }
258 return ret;
259 }
260
261 module_init(e1000_init_module);
262
263 /**
264 * e1000_exit_module - Driver Exit Cleanup Routine
265 *
266 * e1000_exit_module is called just before the driver is removed
267 * from memory.
268 **/
269
270 static void __exit e1000_exit_module(void)
271 {
272 pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304
305 static void e1000_irq_disable(struct e1000_adapter *adapter)
306 {
307 struct e1000_hw *hw = &adapter->hw;
308
309 ew32(IMC, ~0);
310 E1000_WRITE_FLUSH();
311 synchronize_irq(adapter->pdev->irq);
312 }
313
314 /**
315 * e1000_irq_enable - Enable default interrupt generation settings
316 * @adapter: board private structure
317 **/
318
319 static void e1000_irq_enable(struct e1000_adapter *adapter)
320 {
321 struct e1000_hw *hw = &adapter->hw;
322
323 ew32(IMS, IMS_ENABLE_MASK);
324 E1000_WRITE_FLUSH();
325 }
326
327 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
328 {
329 struct e1000_hw *hw = &adapter->hw;
330 struct net_device *netdev = adapter->netdev;
331 u16 vid = hw->mng_cookie.vlan_id;
332 u16 old_vid = adapter->mng_vlan_id;
333
334 if (!e1000_vlan_used(adapter))
335 return;
336
337 if (!test_bit(vid, adapter->active_vlans)) {
338 if (hw->mng_cookie.status &
339 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
340 e1000_vlan_rx_add_vid(netdev, vid);
341 adapter->mng_vlan_id = vid;
342 } else {
343 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
344 }
345 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
346 (vid != old_vid) &&
347 !test_bit(old_vid, adapter->active_vlans))
348 e1000_vlan_rx_kill_vid(netdev, old_vid);
349 } else {
350 adapter->mng_vlan_id = vid;
351 }
352 }
353
354 static void e1000_init_manageability(struct e1000_adapter *adapter)
355 {
356 struct e1000_hw *hw = &adapter->hw;
357
358 if (adapter->en_mng_pt) {
359 u32 manc = er32(MANC);
360
361 /* disable hardware interception of ARP */
362 manc &= ~(E1000_MANC_ARP_EN);
363
364 ew32(MANC, manc);
365 }
366 }
367
368 static void e1000_release_manageability(struct e1000_adapter *adapter)
369 {
370 struct e1000_hw *hw = &adapter->hw;
371
372 if (adapter->en_mng_pt) {
373 u32 manc = er32(MANC);
374
375 /* re-enable hardware interception of ARP */
376 manc |= E1000_MANC_ARP_EN;
377
378 ew32(MANC, manc);
379 }
380 }
381
382 /**
383 * e1000_configure - configure the hardware for RX and TX
384 * @adapter = private board structure
385 **/
386 static void e1000_configure(struct e1000_adapter *adapter)
387 {
388 struct net_device *netdev = adapter->netdev;
389 int i;
390
391 e1000_set_rx_mode(netdev);
392
393 e1000_restore_vlan(adapter);
394 e1000_init_manageability(adapter);
395
396 e1000_configure_tx(adapter);
397 e1000_setup_rctl(adapter);
398 e1000_configure_rx(adapter);
399 /* call E1000_DESC_UNUSED which always leaves
400 * at least 1 descriptor unused to make sure
401 * next_to_use != next_to_clean */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427 }
428
429 /**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 *
437 **/
438
439 void e1000_power_up_phy(struct e1000_adapter *adapter)
440 {
441 struct e1000_hw *hw = &adapter->hw;
442 u16 mii_reg = 0;
443
444 /* Just clear the power down bit to wake the phy back up */
445 if (hw->media_type == e1000_media_type_copper) {
446 /* according to the manual, the phy will retain its
447 * settings across a power-down/up cycle */
448 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
449 mii_reg &= ~MII_CR_POWER_DOWN;
450 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
451 }
452 }
453
454 static void e1000_power_down_phy(struct e1000_adapter *adapter)
455 {
456 struct e1000_hw *hw = &adapter->hw;
457
458 /* Power down the PHY so no link is implied when interface is down *
459 * The PHY cannot be powered down if any of the following is true *
460 * (a) WoL is enabled
461 * (b) AMT is active
462 * (c) SoL/IDER session is active */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489 out:
490 return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 /* Only kill reset task if adapter is not resetting */
498 if (!test_bit(__E1000_RESETTING, &adapter->flags))
499 cancel_work_sync(&adapter->reset_task);
500
501 cancel_delayed_work_sync(&adapter->watchdog_task);
502 cancel_delayed_work_sync(&adapter->phy_info_task);
503 cancel_delayed_work_sync(&adapter->fifo_stall_task);
504 }
505
506 void e1000_down(struct e1000_adapter *adapter)
507 {
508 struct e1000_hw *hw = &adapter->hw;
509 struct net_device *netdev = adapter->netdev;
510 u32 rctl, tctl;
511
512
513 /* disable receives in the hardware */
514 rctl = er32(RCTL);
515 ew32(RCTL, rctl & ~E1000_RCTL_EN);
516 /* flush and sleep below */
517
518 netif_tx_disable(netdev);
519
520 /* disable transmits in the hardware */
521 tctl = er32(TCTL);
522 tctl &= ~E1000_TCTL_EN;
523 ew32(TCTL, tctl);
524 /* flush both disables and wait for them to finish */
525 E1000_WRITE_FLUSH();
526 msleep(10);
527
528 napi_disable(&adapter->napi);
529
530 e1000_irq_disable(adapter);
531
532 /*
533 * Setting DOWN must be after irq_disable to prevent
534 * a screaming interrupt. Setting DOWN also prevents
535 * tasks from rescheduling.
536 */
537 e1000_down_and_stop(adapter);
538
539 adapter->link_speed = 0;
540 adapter->link_duplex = 0;
541 netif_carrier_off(netdev);
542
543 e1000_reset(adapter);
544 e1000_clean_all_tx_rings(adapter);
545 e1000_clean_all_rx_rings(adapter);
546 }
547
548 static void e1000_reinit_safe(struct e1000_adapter *adapter)
549 {
550 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
551 msleep(1);
552 mutex_lock(&adapter->mutex);
553 e1000_down(adapter);
554 e1000_up(adapter);
555 mutex_unlock(&adapter->mutex);
556 clear_bit(__E1000_RESETTING, &adapter->flags);
557 }
558
559 void e1000_reinit_locked(struct e1000_adapter *adapter)
560 {
561 /* if rtnl_lock is not held the call path is bogus */
562 ASSERT_RTNL();
563 WARN_ON(in_interrupt());
564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
565 msleep(1);
566 e1000_down(adapter);
567 e1000_up(adapter);
568 clear_bit(__E1000_RESETTING, &adapter->flags);
569 }
570
571 void e1000_reset(struct e1000_adapter *adapter)
572 {
573 struct e1000_hw *hw = &adapter->hw;
574 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
575 bool legacy_pba_adjust = false;
576 u16 hwm;
577
578 /* Repartition Pba for greater than 9k mtu
579 * To take effect CTRL.RST is required.
580 */
581
582 switch (hw->mac_type) {
583 case e1000_82542_rev2_0:
584 case e1000_82542_rev2_1:
585 case e1000_82543:
586 case e1000_82544:
587 case e1000_82540:
588 case e1000_82541:
589 case e1000_82541_rev_2:
590 legacy_pba_adjust = true;
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82545:
594 case e1000_82545_rev_3:
595 case e1000_82546:
596 case e1000_ce4100:
597 case e1000_82546_rev_3:
598 pba = E1000_PBA_48K;
599 break;
600 case e1000_82547:
601 case e1000_82547_rev_2:
602 legacy_pba_adjust = true;
603 pba = E1000_PBA_30K;
604 break;
605 case e1000_undefined:
606 case e1000_num_macs:
607 break;
608 }
609
610 if (legacy_pba_adjust) {
611 if (hw->max_frame_size > E1000_RXBUFFER_8192)
612 pba -= 8; /* allocate more FIFO for Tx */
613
614 if (hw->mac_type == e1000_82547) {
615 adapter->tx_fifo_head = 0;
616 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
617 adapter->tx_fifo_size =
618 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
619 atomic_set(&adapter->tx_fifo_stall, 0);
620 }
621 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
622 /* adjust PBA for jumbo frames */
623 ew32(PBA, pba);
624
625 /* To maintain wire speed transmits, the Tx FIFO should be
626 * large enough to accommodate two full transmit packets,
627 * rounded up to the next 1KB and expressed in KB. Likewise,
628 * the Rx FIFO should be large enough to accommodate at least
629 * one full receive packet and is similarly rounded up and
630 * expressed in KB. */
631 pba = er32(PBA);
632 /* upper 16 bits has Tx packet buffer allocation size in KB */
633 tx_space = pba >> 16;
634 /* lower 16 bits has Rx packet buffer allocation size in KB */
635 pba &= 0xffff;
636 /*
637 * the tx fifo also stores 16 bytes of information about the tx
638 * but don't include ethernet FCS because hardware appends it
639 */
640 min_tx_space = (hw->max_frame_size +
641 sizeof(struct e1000_tx_desc) -
642 ETH_FCS_LEN) * 2;
643 min_tx_space = ALIGN(min_tx_space, 1024);
644 min_tx_space >>= 10;
645 /* software strips receive CRC, so leave room for it */
646 min_rx_space = hw->max_frame_size;
647 min_rx_space = ALIGN(min_rx_space, 1024);
648 min_rx_space >>= 10;
649
650 /* If current Tx allocation is less than the min Tx FIFO size,
651 * and the min Tx FIFO size is less than the current Rx FIFO
652 * allocation, take space away from current Rx allocation */
653 if (tx_space < min_tx_space &&
654 ((min_tx_space - tx_space) < pba)) {
655 pba = pba - (min_tx_space - tx_space);
656
657 /* PCI/PCIx hardware has PBA alignment constraints */
658 switch (hw->mac_type) {
659 case e1000_82545 ... e1000_82546_rev_3:
660 pba &= ~(E1000_PBA_8K - 1);
661 break;
662 default:
663 break;
664 }
665
666 /* if short on rx space, rx wins and must trump tx
667 * adjustment or use Early Receive if available */
668 if (pba < min_rx_space)
669 pba = min_rx_space;
670 }
671 }
672
673 ew32(PBA, pba);
674
675 /*
676 * flow control settings:
677 * The high water mark must be low enough to fit one full frame
678 * (or the size used for early receive) above it in the Rx FIFO.
679 * Set it to the lower of:
680 * - 90% of the Rx FIFO size, and
681 * - the full Rx FIFO size minus the early receive size (for parts
682 * with ERT support assuming ERT set to E1000_ERT_2048), or
683 * - the full Rx FIFO size minus one full frame
684 */
685 hwm = min(((pba << 10) * 9 / 10),
686 ((pba << 10) - hw->max_frame_size));
687
688 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
689 hw->fc_low_water = hw->fc_high_water - 8;
690 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
691 hw->fc_send_xon = 1;
692 hw->fc = hw->original_fc;
693
694 /* Allow time for pending master requests to run */
695 e1000_reset_hw(hw);
696 if (hw->mac_type >= e1000_82544)
697 ew32(WUC, 0);
698
699 if (e1000_init_hw(hw))
700 e_dev_err("Hardware Error\n");
701 e1000_update_mng_vlan(adapter);
702
703 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
704 if (hw->mac_type >= e1000_82544 &&
705 hw->autoneg == 1 &&
706 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
707 u32 ctrl = er32(CTRL);
708 /* clear phy power management bit if we are in gig only mode,
709 * which if enabled will attempt negotiation to 100Mb, which
710 * can cause a loss of link at power off or driver unload */
711 ctrl &= ~E1000_CTRL_SWDPIN3;
712 ew32(CTRL, ctrl);
713 }
714
715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
717
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
720
721 e1000_release_manageability(adapter);
722 }
723
724 /* Dump the eeprom for users having checksum issues */
725 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
726 {
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
738 if (!data)
739 return;
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
752
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
768
769 kfree(data);
770 }
771
772 /**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778 static int e1000_is_need_ioport(struct pci_dev *pdev)
779 {
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806 }
807
808 static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
810 {
811 /*
812 * Since there is no support for separate rx/tx vlan accel
813 * enable/disable make sure tx flag is always in same state as rx.
814 */
815 if (features & NETIF_F_HW_VLAN_RX)
816 features |= NETIF_F_HW_VLAN_TX;
817 else
818 features &= ~NETIF_F_HW_VLAN_TX;
819
820 return features;
821 }
822
823 static int e1000_set_features(struct net_device *netdev,
824 netdev_features_t features)
825 {
826 struct e1000_adapter *adapter = netdev_priv(netdev);
827 netdev_features_t changed = features ^ netdev->features;
828
829 if (changed & NETIF_F_HW_VLAN_RX)
830 e1000_vlan_mode(netdev, features);
831
832 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
833 return 0;
834
835 netdev->features = features;
836 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
837
838 if (netif_running(netdev))
839 e1000_reinit_locked(adapter);
840 else
841 e1000_reset(adapter);
842
843 return 0;
844 }
845
846 static const struct net_device_ops e1000_netdev_ops = {
847 .ndo_open = e1000_open,
848 .ndo_stop = e1000_close,
849 .ndo_start_xmit = e1000_xmit_frame,
850 .ndo_get_stats = e1000_get_stats,
851 .ndo_set_rx_mode = e1000_set_rx_mode,
852 .ndo_set_mac_address = e1000_set_mac,
853 .ndo_tx_timeout = e1000_tx_timeout,
854 .ndo_change_mtu = e1000_change_mtu,
855 .ndo_do_ioctl = e1000_ioctl,
856 .ndo_validate_addr = eth_validate_addr,
857 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
858 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
859 #ifdef CONFIG_NET_POLL_CONTROLLER
860 .ndo_poll_controller = e1000_netpoll,
861 #endif
862 .ndo_fix_features = e1000_fix_features,
863 .ndo_set_features = e1000_set_features,
864 };
865
866 /**
867 * e1000_init_hw_struct - initialize members of hw struct
868 * @adapter: board private struct
869 * @hw: structure used by e1000_hw.c
870 *
871 * Factors out initialization of the e1000_hw struct to its own function
872 * that can be called very early at init (just after struct allocation).
873 * Fields are initialized based on PCI device information and
874 * OS network device settings (MTU size).
875 * Returns negative error codes if MAC type setup fails.
876 */
877 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
878 struct e1000_hw *hw)
879 {
880 struct pci_dev *pdev = adapter->pdev;
881
882 /* PCI config space info */
883 hw->vendor_id = pdev->vendor;
884 hw->device_id = pdev->device;
885 hw->subsystem_vendor_id = pdev->subsystem_vendor;
886 hw->subsystem_id = pdev->subsystem_device;
887 hw->revision_id = pdev->revision;
888
889 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
890
891 hw->max_frame_size = adapter->netdev->mtu +
892 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
893 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
894
895 /* identify the MAC */
896 if (e1000_set_mac_type(hw)) {
897 e_err(probe, "Unknown MAC Type\n");
898 return -EIO;
899 }
900
901 switch (hw->mac_type) {
902 default:
903 break;
904 case e1000_82541:
905 case e1000_82547:
906 case e1000_82541_rev_2:
907 case e1000_82547_rev_2:
908 hw->phy_init_script = 1;
909 break;
910 }
911
912 e1000_set_media_type(hw);
913 e1000_get_bus_info(hw);
914
915 hw->wait_autoneg_complete = false;
916 hw->tbi_compatibility_en = true;
917 hw->adaptive_ifs = true;
918
919 /* Copper options */
920
921 if (hw->media_type == e1000_media_type_copper) {
922 hw->mdix = AUTO_ALL_MODES;
923 hw->disable_polarity_correction = false;
924 hw->master_slave = E1000_MASTER_SLAVE;
925 }
926
927 return 0;
928 }
929
930 /**
931 * e1000_probe - Device Initialization Routine
932 * @pdev: PCI device information struct
933 * @ent: entry in e1000_pci_tbl
934 *
935 * Returns 0 on success, negative on failure
936 *
937 * e1000_probe initializes an adapter identified by a pci_dev structure.
938 * The OS initialization, configuring of the adapter private structure,
939 * and a hardware reset occur.
940 **/
941 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
942 {
943 struct net_device *netdev;
944 struct e1000_adapter *adapter;
945 struct e1000_hw *hw;
946
947 static int cards_found = 0;
948 static int global_quad_port_a = 0; /* global ksp3 port a indication */
949 int i, err, pci_using_dac;
950 u16 eeprom_data = 0;
951 u16 tmp = 0;
952 u16 eeprom_apme_mask = E1000_EEPROM_APME;
953 int bars, need_ioport;
954
955 /* do not allocate ioport bars when not needed */
956 need_ioport = e1000_is_need_ioport(pdev);
957 if (need_ioport) {
958 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
959 err = pci_enable_device(pdev);
960 } else {
961 bars = pci_select_bars(pdev, IORESOURCE_MEM);
962 err = pci_enable_device_mem(pdev);
963 }
964 if (err)
965 return err;
966
967 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
968 if (err)
969 goto err_pci_reg;
970
971 pci_set_master(pdev);
972 err = pci_save_state(pdev);
973 if (err)
974 goto err_alloc_etherdev;
975
976 err = -ENOMEM;
977 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
978 if (!netdev)
979 goto err_alloc_etherdev;
980
981 SET_NETDEV_DEV(netdev, &pdev->dev);
982
983 pci_set_drvdata(pdev, netdev);
984 adapter = netdev_priv(netdev);
985 adapter->netdev = netdev;
986 adapter->pdev = pdev;
987 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
988 adapter->bars = bars;
989 adapter->need_ioport = need_ioport;
990
991 hw = &adapter->hw;
992 hw->back = adapter;
993
994 err = -EIO;
995 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
996 if (!hw->hw_addr)
997 goto err_ioremap;
998
999 if (adapter->need_ioport) {
1000 for (i = BAR_1; i <= BAR_5; i++) {
1001 if (pci_resource_len(pdev, i) == 0)
1002 continue;
1003 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1004 hw->io_base = pci_resource_start(pdev, i);
1005 break;
1006 }
1007 }
1008 }
1009
1010 /* make ready for any if (hw->...) below */
1011 err = e1000_init_hw_struct(adapter, hw);
1012 if (err)
1013 goto err_sw_init;
1014
1015 /*
1016 * there is a workaround being applied below that limits
1017 * 64-bit DMA addresses to 64-bit hardware. There are some
1018 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1019 */
1020 pci_using_dac = 0;
1021 if ((hw->bus_type == e1000_bus_type_pcix) &&
1022 !dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) {
1023 /*
1024 * according to DMA-API-HOWTO, coherent calls will always
1025 * succeed if the set call did
1026 */
1027 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1028 pci_using_dac = 1;
1029 } else {
1030 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1031 if (err) {
1032 pr_err("No usable DMA config, aborting\n");
1033 goto err_dma;
1034 }
1035 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1036 }
1037
1038 netdev->netdev_ops = &e1000_netdev_ops;
1039 e1000_set_ethtool_ops(netdev);
1040 netdev->watchdog_timeo = 5 * HZ;
1041 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1042
1043 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1044
1045 adapter->bd_number = cards_found;
1046
1047 /* setup the private structure */
1048
1049 err = e1000_sw_init(adapter);
1050 if (err)
1051 goto err_sw_init;
1052
1053 err = -EIO;
1054 if (hw->mac_type == e1000_ce4100) {
1055 hw->ce4100_gbe_mdio_base_virt =
1056 ioremap(pci_resource_start(pdev, BAR_1),
1057 pci_resource_len(pdev, BAR_1));
1058
1059 if (!hw->ce4100_gbe_mdio_base_virt)
1060 goto err_mdio_ioremap;
1061 }
1062
1063 if (hw->mac_type >= e1000_82543) {
1064 netdev->hw_features = NETIF_F_SG |
1065 NETIF_F_HW_CSUM |
1066 NETIF_F_HW_VLAN_RX;
1067 netdev->features = NETIF_F_HW_VLAN_TX |
1068 NETIF_F_HW_VLAN_FILTER;
1069 }
1070
1071 if ((hw->mac_type >= e1000_82544) &&
1072 (hw->mac_type != e1000_82547))
1073 netdev->hw_features |= NETIF_F_TSO;
1074
1075 netdev->priv_flags |= IFF_SUPP_NOFCS;
1076
1077 netdev->features |= netdev->hw_features;
1078 netdev->hw_features |= (NETIF_F_RXCSUM |
1079 NETIF_F_RXALL |
1080 NETIF_F_RXFCS);
1081
1082 if (pci_using_dac) {
1083 netdev->features |= NETIF_F_HIGHDMA;
1084 netdev->vlan_features |= NETIF_F_HIGHDMA;
1085 }
1086
1087 netdev->vlan_features |= (NETIF_F_TSO |
1088 NETIF_F_HW_CSUM |
1089 NETIF_F_SG);
1090
1091 netdev->priv_flags |= IFF_UNICAST_FLT;
1092
1093 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1094
1095 /* initialize eeprom parameters */
1096 if (e1000_init_eeprom_params(hw)) {
1097 e_err(probe, "EEPROM initialization failed\n");
1098 goto err_eeprom;
1099 }
1100
1101 /* before reading the EEPROM, reset the controller to
1102 * put the device in a known good starting state */
1103
1104 e1000_reset_hw(hw);
1105
1106 /* make sure the EEPROM is good */
1107 if (e1000_validate_eeprom_checksum(hw) < 0) {
1108 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1109 e1000_dump_eeprom(adapter);
1110 /*
1111 * set MAC address to all zeroes to invalidate and temporary
1112 * disable this device for the user. This blocks regular
1113 * traffic while still permitting ethtool ioctls from reaching
1114 * the hardware as well as allowing the user to run the
1115 * interface after manually setting a hw addr using
1116 * `ip set address`
1117 */
1118 memset(hw->mac_addr, 0, netdev->addr_len);
1119 } else {
1120 /* copy the MAC address out of the EEPROM */
1121 if (e1000_read_mac_addr(hw))
1122 e_err(probe, "EEPROM Read Error\n");
1123 }
1124 /* don't block initalization here due to bad MAC address */
1125 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1126
1127 if (!is_valid_ether_addr(netdev->dev_addr))
1128 e_err(probe, "Invalid MAC Address\n");
1129
1130
1131 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1132 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1133 e1000_82547_tx_fifo_stall_task);
1134 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1135 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1136
1137 e1000_check_options(adapter);
1138
1139 /* Initial Wake on LAN setting
1140 * If APM wake is enabled in the EEPROM,
1141 * enable the ACPI Magic Packet filter
1142 */
1143
1144 switch (hw->mac_type) {
1145 case e1000_82542_rev2_0:
1146 case e1000_82542_rev2_1:
1147 case e1000_82543:
1148 break;
1149 case e1000_82544:
1150 e1000_read_eeprom(hw,
1151 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1152 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1153 break;
1154 case e1000_82546:
1155 case e1000_82546_rev_3:
1156 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1157 e1000_read_eeprom(hw,
1158 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1159 break;
1160 }
1161 /* Fall Through */
1162 default:
1163 e1000_read_eeprom(hw,
1164 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1165 break;
1166 }
1167 if (eeprom_data & eeprom_apme_mask)
1168 adapter->eeprom_wol |= E1000_WUFC_MAG;
1169
1170 /* now that we have the eeprom settings, apply the special cases
1171 * where the eeprom may be wrong or the board simply won't support
1172 * wake on lan on a particular port */
1173 switch (pdev->device) {
1174 case E1000_DEV_ID_82546GB_PCIE:
1175 adapter->eeprom_wol = 0;
1176 break;
1177 case E1000_DEV_ID_82546EB_FIBER:
1178 case E1000_DEV_ID_82546GB_FIBER:
1179 /* Wake events only supported on port A for dual fiber
1180 * regardless of eeprom setting */
1181 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1182 adapter->eeprom_wol = 0;
1183 break;
1184 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1185 /* if quad port adapter, disable WoL on all but port A */
1186 if (global_quad_port_a != 0)
1187 adapter->eeprom_wol = 0;
1188 else
1189 adapter->quad_port_a = true;
1190 /* Reset for multiple quad port adapters */
1191 if (++global_quad_port_a == 4)
1192 global_quad_port_a = 0;
1193 break;
1194 }
1195
1196 /* initialize the wol settings based on the eeprom settings */
1197 adapter->wol = adapter->eeprom_wol;
1198 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1199
1200 /* Auto detect PHY address */
1201 if (hw->mac_type == e1000_ce4100) {
1202 for (i = 0; i < 32; i++) {
1203 hw->phy_addr = i;
1204 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1205 if (tmp == 0 || tmp == 0xFF) {
1206 if (i == 31)
1207 goto err_eeprom;
1208 continue;
1209 } else
1210 break;
1211 }
1212 }
1213
1214 /* reset the hardware with the new settings */
1215 e1000_reset(adapter);
1216
1217 strcpy(netdev->name, "eth%d");
1218 err = register_netdev(netdev);
1219 if (err)
1220 goto err_register;
1221
1222 e1000_vlan_filter_on_off(adapter, false);
1223
1224 /* print bus type/speed/width info */
1225 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1226 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1227 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1228 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1229 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1230 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1231 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1232 netdev->dev_addr);
1233
1234 /* carrier off reporting is important to ethtool even BEFORE open */
1235 netif_carrier_off(netdev);
1236
1237 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1238
1239 cards_found++;
1240 return 0;
1241
1242 err_register:
1243 err_eeprom:
1244 e1000_phy_hw_reset(hw);
1245
1246 if (hw->flash_address)
1247 iounmap(hw->flash_address);
1248 kfree(adapter->tx_ring);
1249 kfree(adapter->rx_ring);
1250 err_dma:
1251 err_sw_init:
1252 err_mdio_ioremap:
1253 iounmap(hw->ce4100_gbe_mdio_base_virt);
1254 iounmap(hw->hw_addr);
1255 err_ioremap:
1256 free_netdev(netdev);
1257 err_alloc_etherdev:
1258 pci_release_selected_regions(pdev, bars);
1259 err_pci_reg:
1260 pci_disable_device(pdev);
1261 return err;
1262 }
1263
1264 /**
1265 * e1000_remove - Device Removal Routine
1266 * @pdev: PCI device information struct
1267 *
1268 * e1000_remove is called by the PCI subsystem to alert the driver
1269 * that it should release a PCI device. The could be caused by a
1270 * Hot-Plug event, or because the driver is going to be removed from
1271 * memory.
1272 **/
1273
1274 static void e1000_remove(struct pci_dev *pdev)
1275 {
1276 struct net_device *netdev = pci_get_drvdata(pdev);
1277 struct e1000_adapter *adapter = netdev_priv(netdev);
1278 struct e1000_hw *hw = &adapter->hw;
1279
1280 e1000_down_and_stop(adapter);
1281 e1000_release_manageability(adapter);
1282
1283 unregister_netdev(netdev);
1284
1285 e1000_phy_hw_reset(hw);
1286
1287 kfree(adapter->tx_ring);
1288 kfree(adapter->rx_ring);
1289
1290 if (hw->mac_type == e1000_ce4100)
1291 iounmap(hw->ce4100_gbe_mdio_base_virt);
1292 iounmap(hw->hw_addr);
1293 if (hw->flash_address)
1294 iounmap(hw->flash_address);
1295 pci_release_selected_regions(pdev, adapter->bars);
1296
1297 free_netdev(netdev);
1298
1299 pci_disable_device(pdev);
1300 }
1301
1302 /**
1303 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1304 * @adapter: board private structure to initialize
1305 *
1306 * e1000_sw_init initializes the Adapter private data structure.
1307 * e1000_init_hw_struct MUST be called before this function
1308 **/
1309
1310 static int e1000_sw_init(struct e1000_adapter *adapter)
1311 {
1312 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1313
1314 adapter->num_tx_queues = 1;
1315 adapter->num_rx_queues = 1;
1316
1317 if (e1000_alloc_queues(adapter)) {
1318 e_err(probe, "Unable to allocate memory for queues\n");
1319 return -ENOMEM;
1320 }
1321
1322 /* Explicitly disable IRQ since the NIC can be in any state. */
1323 e1000_irq_disable(adapter);
1324
1325 spin_lock_init(&adapter->stats_lock);
1326 mutex_init(&adapter->mutex);
1327
1328 set_bit(__E1000_DOWN, &adapter->flags);
1329
1330 return 0;
1331 }
1332
1333 /**
1334 * e1000_alloc_queues - Allocate memory for all rings
1335 * @adapter: board private structure to initialize
1336 *
1337 * We allocate one ring per queue at run-time since we don't know the
1338 * number of queues at compile-time.
1339 **/
1340
1341 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1342 {
1343 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1344 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1345 if (!adapter->tx_ring)
1346 return -ENOMEM;
1347
1348 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1349 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1350 if (!adapter->rx_ring) {
1351 kfree(adapter->tx_ring);
1352 return -ENOMEM;
1353 }
1354
1355 return E1000_SUCCESS;
1356 }
1357
1358 /**
1359 * e1000_open - Called when a network interface is made active
1360 * @netdev: network interface device structure
1361 *
1362 * Returns 0 on success, negative value on failure
1363 *
1364 * The open entry point is called when a network interface is made
1365 * active by the system (IFF_UP). At this point all resources needed
1366 * for transmit and receive operations are allocated, the interrupt
1367 * handler is registered with the OS, the watchdog task is started,
1368 * and the stack is notified that the interface is ready.
1369 **/
1370
1371 static int e1000_open(struct net_device *netdev)
1372 {
1373 struct e1000_adapter *adapter = netdev_priv(netdev);
1374 struct e1000_hw *hw = &adapter->hw;
1375 int err;
1376
1377 /* disallow open during test */
1378 if (test_bit(__E1000_TESTING, &adapter->flags))
1379 return -EBUSY;
1380
1381 netif_carrier_off(netdev);
1382
1383 /* allocate transmit descriptors */
1384 err = e1000_setup_all_tx_resources(adapter);
1385 if (err)
1386 goto err_setup_tx;
1387
1388 /* allocate receive descriptors */
1389 err = e1000_setup_all_rx_resources(adapter);
1390 if (err)
1391 goto err_setup_rx;
1392
1393 e1000_power_up_phy(adapter);
1394
1395 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1396 if ((hw->mng_cookie.status &
1397 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1398 e1000_update_mng_vlan(adapter);
1399 }
1400
1401 /* before we allocate an interrupt, we must be ready to handle it.
1402 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1403 * as soon as we call pci_request_irq, so we have to setup our
1404 * clean_rx handler before we do so. */
1405 e1000_configure(adapter);
1406
1407 err = e1000_request_irq(adapter);
1408 if (err)
1409 goto err_req_irq;
1410
1411 /* From here on the code is the same as e1000_up() */
1412 clear_bit(__E1000_DOWN, &adapter->flags);
1413
1414 napi_enable(&adapter->napi);
1415
1416 e1000_irq_enable(adapter);
1417
1418 netif_start_queue(netdev);
1419
1420 /* fire a link status change interrupt to start the watchdog */
1421 ew32(ICS, E1000_ICS_LSC);
1422
1423 return E1000_SUCCESS;
1424
1425 err_req_irq:
1426 e1000_power_down_phy(adapter);
1427 e1000_free_all_rx_resources(adapter);
1428 err_setup_rx:
1429 e1000_free_all_tx_resources(adapter);
1430 err_setup_tx:
1431 e1000_reset(adapter);
1432
1433 return err;
1434 }
1435
1436 /**
1437 * e1000_close - Disables a network interface
1438 * @netdev: network interface device structure
1439 *
1440 * Returns 0, this is not allowed to fail
1441 *
1442 * The close entry point is called when an interface is de-activated
1443 * by the OS. The hardware is still under the drivers control, but
1444 * needs to be disabled. A global MAC reset is issued to stop the
1445 * hardware, and all transmit and receive resources are freed.
1446 **/
1447
1448 static int e1000_close(struct net_device *netdev)
1449 {
1450 struct e1000_adapter *adapter = netdev_priv(netdev);
1451 struct e1000_hw *hw = &adapter->hw;
1452
1453 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1454 e1000_down(adapter);
1455 e1000_power_down_phy(adapter);
1456 e1000_free_irq(adapter);
1457
1458 e1000_free_all_tx_resources(adapter);
1459 e1000_free_all_rx_resources(adapter);
1460
1461 /* kill manageability vlan ID if supported, but not if a vlan with
1462 * the same ID is registered on the host OS (let 8021q kill it) */
1463 if ((hw->mng_cookie.status &
1464 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1465 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1466 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1467 }
1468
1469 return 0;
1470 }
1471
1472 /**
1473 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1474 * @adapter: address of board private structure
1475 * @start: address of beginning of memory
1476 * @len: length of memory
1477 **/
1478 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1479 unsigned long len)
1480 {
1481 struct e1000_hw *hw = &adapter->hw;
1482 unsigned long begin = (unsigned long)start;
1483 unsigned long end = begin + len;
1484
1485 /* First rev 82545 and 82546 need to not allow any memory
1486 * write location to cross 64k boundary due to errata 23 */
1487 if (hw->mac_type == e1000_82545 ||
1488 hw->mac_type == e1000_ce4100 ||
1489 hw->mac_type == e1000_82546) {
1490 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1491 }
1492
1493 return true;
1494 }
1495
1496 /**
1497 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1498 * @adapter: board private structure
1499 * @txdr: tx descriptor ring (for a specific queue) to setup
1500 *
1501 * Return 0 on success, negative on failure
1502 **/
1503
1504 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1505 struct e1000_tx_ring *txdr)
1506 {
1507 struct pci_dev *pdev = adapter->pdev;
1508 int size;
1509
1510 size = sizeof(struct e1000_buffer) * txdr->count;
1511 txdr->buffer_info = vzalloc(size);
1512 if (!txdr->buffer_info)
1513 return -ENOMEM;
1514
1515 /* round up to nearest 4K */
1516
1517 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1518 txdr->size = ALIGN(txdr->size, 4096);
1519
1520 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1521 GFP_KERNEL);
1522 if (!txdr->desc) {
1523 setup_tx_desc_die:
1524 vfree(txdr->buffer_info);
1525 e_err(probe, "Unable to allocate memory for the Tx descriptor "
1526 "ring\n");
1527 return -ENOMEM;
1528 }
1529
1530 /* Fix for errata 23, can't cross 64kB boundary */
1531 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1532 void *olddesc = txdr->desc;
1533 dma_addr_t olddma = txdr->dma;
1534 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1535 txdr->size, txdr->desc);
1536 /* Try again, without freeing the previous */
1537 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1538 &txdr->dma, GFP_KERNEL);
1539 /* Failed allocation, critical failure */
1540 if (!txdr->desc) {
1541 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1542 olddma);
1543 goto setup_tx_desc_die;
1544 }
1545
1546 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1547 /* give up */
1548 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1549 txdr->dma);
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 e_err(probe, "Unable to allocate aligned memory "
1553 "for the transmit descriptor ring\n");
1554 vfree(txdr->buffer_info);
1555 return -ENOMEM;
1556 } else {
1557 /* Free old allocation, new allocation was successful */
1558 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1559 olddma);
1560 }
1561 }
1562 memset(txdr->desc, 0, txdr->size);
1563
1564 txdr->next_to_use = 0;
1565 txdr->next_to_clean = 0;
1566
1567 return 0;
1568 }
1569
1570 /**
1571 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1572 * (Descriptors) for all queues
1573 * @adapter: board private structure
1574 *
1575 * Return 0 on success, negative on failure
1576 **/
1577
1578 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1579 {
1580 int i, err = 0;
1581
1582 for (i = 0; i < adapter->num_tx_queues; i++) {
1583 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1584 if (err) {
1585 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1586 for (i-- ; i >= 0; i--)
1587 e1000_free_tx_resources(adapter,
1588 &adapter->tx_ring[i]);
1589 break;
1590 }
1591 }
1592
1593 return err;
1594 }
1595
1596 /**
1597 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1598 * @adapter: board private structure
1599 *
1600 * Configure the Tx unit of the MAC after a reset.
1601 **/
1602
1603 static void e1000_configure_tx(struct e1000_adapter *adapter)
1604 {
1605 u64 tdba;
1606 struct e1000_hw *hw = &adapter->hw;
1607 u32 tdlen, tctl, tipg;
1608 u32 ipgr1, ipgr2;
1609
1610 /* Setup the HW Tx Head and Tail descriptor pointers */
1611
1612 switch (adapter->num_tx_queues) {
1613 case 1:
1614 default:
1615 tdba = adapter->tx_ring[0].dma;
1616 tdlen = adapter->tx_ring[0].count *
1617 sizeof(struct e1000_tx_desc);
1618 ew32(TDLEN, tdlen);
1619 ew32(TDBAH, (tdba >> 32));
1620 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1621 ew32(TDT, 0);
1622 ew32(TDH, 0);
1623 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1624 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1625 break;
1626 }
1627
1628 /* Set the default values for the Tx Inter Packet Gap timer */
1629 if ((hw->media_type == e1000_media_type_fiber ||
1630 hw->media_type == e1000_media_type_internal_serdes))
1631 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1632 else
1633 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1634
1635 switch (hw->mac_type) {
1636 case e1000_82542_rev2_0:
1637 case e1000_82542_rev2_1:
1638 tipg = DEFAULT_82542_TIPG_IPGT;
1639 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1641 break;
1642 default:
1643 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1644 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1645 break;
1646 }
1647 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1648 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1649 ew32(TIPG, tipg);
1650
1651 /* Set the Tx Interrupt Delay register */
1652
1653 ew32(TIDV, adapter->tx_int_delay);
1654 if (hw->mac_type >= e1000_82540)
1655 ew32(TADV, adapter->tx_abs_int_delay);
1656
1657 /* Program the Transmit Control Register */
1658
1659 tctl = er32(TCTL);
1660 tctl &= ~E1000_TCTL_CT;
1661 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1662 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1663
1664 e1000_config_collision_dist(hw);
1665
1666 /* Setup Transmit Descriptor Settings for eop descriptor */
1667 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1668
1669 /* only set IDE if we are delaying interrupts using the timers */
1670 if (adapter->tx_int_delay)
1671 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1672
1673 if (hw->mac_type < e1000_82543)
1674 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1675 else
1676 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1677
1678 /* Cache if we're 82544 running in PCI-X because we'll
1679 * need this to apply a workaround later in the send path. */
1680 if (hw->mac_type == e1000_82544 &&
1681 hw->bus_type == e1000_bus_type_pcix)
1682 adapter->pcix_82544 = true;
1683
1684 ew32(TCTL, tctl);
1685
1686 }
1687
1688 /**
1689 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1690 * @adapter: board private structure
1691 * @rxdr: rx descriptor ring (for a specific queue) to setup
1692 *
1693 * Returns 0 on success, negative on failure
1694 **/
1695
1696 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1697 struct e1000_rx_ring *rxdr)
1698 {
1699 struct pci_dev *pdev = adapter->pdev;
1700 int size, desc_len;
1701
1702 size = sizeof(struct e1000_buffer) * rxdr->count;
1703 rxdr->buffer_info = vzalloc(size);
1704 if (!rxdr->buffer_info)
1705 return -ENOMEM;
1706
1707 desc_len = sizeof(struct e1000_rx_desc);
1708
1709 /* Round up to nearest 4K */
1710
1711 rxdr->size = rxdr->count * desc_len;
1712 rxdr->size = ALIGN(rxdr->size, 4096);
1713
1714 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1715 GFP_KERNEL);
1716
1717 if (!rxdr->desc) {
1718 e_err(probe, "Unable to allocate memory for the Rx descriptor "
1719 "ring\n");
1720 setup_rx_desc_die:
1721 vfree(rxdr->buffer_info);
1722 return -ENOMEM;
1723 }
1724
1725 /* Fix for errata 23, can't cross 64kB boundary */
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 void *olddesc = rxdr->desc;
1728 dma_addr_t olddma = rxdr->dma;
1729 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1730 rxdr->size, rxdr->desc);
1731 /* Try again, without freeing the previous */
1732 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1733 &rxdr->dma, GFP_KERNEL);
1734 /* Failed allocation, critical failure */
1735 if (!rxdr->desc) {
1736 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1737 olddma);
1738 e_err(probe, "Unable to allocate memory for the Rx "
1739 "descriptor ring\n");
1740 goto setup_rx_desc_die;
1741 }
1742
1743 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1744 /* give up */
1745 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1746 rxdr->dma);
1747 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1748 olddma);
1749 e_err(probe, "Unable to allocate aligned memory for "
1750 "the Rx descriptor ring\n");
1751 goto setup_rx_desc_die;
1752 } else {
1753 /* Free old allocation, new allocation was successful */
1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 olddma);
1756 }
1757 }
1758 memset(rxdr->desc, 0, rxdr->size);
1759
1760 rxdr->next_to_clean = 0;
1761 rxdr->next_to_use = 0;
1762 rxdr->rx_skb_top = NULL;
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769 * (Descriptors) for all queues
1770 * @adapter: board private structure
1771 *
1772 * Return 0 on success, negative on failure
1773 **/
1774
1775 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1776 {
1777 int i, err = 0;
1778
1779 for (i = 0; i < adapter->num_rx_queues; i++) {
1780 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1781 if (err) {
1782 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1783 for (i-- ; i >= 0; i--)
1784 e1000_free_rx_resources(adapter,
1785 &adapter->rx_ring[i]);
1786 break;
1787 }
1788 }
1789
1790 return err;
1791 }
1792
1793 /**
1794 * e1000_setup_rctl - configure the receive control registers
1795 * @adapter: Board private structure
1796 **/
1797 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1798 {
1799 struct e1000_hw *hw = &adapter->hw;
1800 u32 rctl;
1801
1802 rctl = er32(RCTL);
1803
1804 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1805
1806 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1807 E1000_RCTL_RDMTS_HALF |
1808 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1809
1810 if (hw->tbi_compatibility_on == 1)
1811 rctl |= E1000_RCTL_SBP;
1812 else
1813 rctl &= ~E1000_RCTL_SBP;
1814
1815 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1816 rctl &= ~E1000_RCTL_LPE;
1817 else
1818 rctl |= E1000_RCTL_LPE;
1819
1820 /* Setup buffer sizes */
1821 rctl &= ~E1000_RCTL_SZ_4096;
1822 rctl |= E1000_RCTL_BSEX;
1823 switch (adapter->rx_buffer_len) {
1824 case E1000_RXBUFFER_2048:
1825 default:
1826 rctl |= E1000_RCTL_SZ_2048;
1827 rctl &= ~E1000_RCTL_BSEX;
1828 break;
1829 case E1000_RXBUFFER_4096:
1830 rctl |= E1000_RCTL_SZ_4096;
1831 break;
1832 case E1000_RXBUFFER_8192:
1833 rctl |= E1000_RCTL_SZ_8192;
1834 break;
1835 case E1000_RXBUFFER_16384:
1836 rctl |= E1000_RCTL_SZ_16384;
1837 break;
1838 }
1839
1840 /* This is useful for sniffing bad packets. */
1841 if (adapter->netdev->features & NETIF_F_RXALL) {
1842 /* UPE and MPE will be handled by normal PROMISC logic
1843 * in e1000e_set_rx_mode */
1844 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1845 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1846 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1847
1848 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1849 E1000_RCTL_DPF | /* Allow filtered pause */
1850 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1851 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1852 * and that breaks VLANs.
1853 */
1854 }
1855
1856 ew32(RCTL, rctl);
1857 }
1858
1859 /**
1860 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1861 * @adapter: board private structure
1862 *
1863 * Configure the Rx unit of the MAC after a reset.
1864 **/
1865
1866 static void e1000_configure_rx(struct e1000_adapter *adapter)
1867 {
1868 u64 rdba;
1869 struct e1000_hw *hw = &adapter->hw;
1870 u32 rdlen, rctl, rxcsum;
1871
1872 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1873 rdlen = adapter->rx_ring[0].count *
1874 sizeof(struct e1000_rx_desc);
1875 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1876 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1877 } else {
1878 rdlen = adapter->rx_ring[0].count *
1879 sizeof(struct e1000_rx_desc);
1880 adapter->clean_rx = e1000_clean_rx_irq;
1881 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1882 }
1883
1884 /* disable receives while setting up the descriptors */
1885 rctl = er32(RCTL);
1886 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1887
1888 /* set the Receive Delay Timer Register */
1889 ew32(RDTR, adapter->rx_int_delay);
1890
1891 if (hw->mac_type >= e1000_82540) {
1892 ew32(RADV, adapter->rx_abs_int_delay);
1893 if (adapter->itr_setting != 0)
1894 ew32(ITR, 1000000000 / (adapter->itr * 256));
1895 }
1896
1897 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1898 * the Base and Length of the Rx Descriptor Ring */
1899 switch (adapter->num_rx_queues) {
1900 case 1:
1901 default:
1902 rdba = adapter->rx_ring[0].dma;
1903 ew32(RDLEN, rdlen);
1904 ew32(RDBAH, (rdba >> 32));
1905 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1906 ew32(RDT, 0);
1907 ew32(RDH, 0);
1908 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1909 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1910 break;
1911 }
1912
1913 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1914 if (hw->mac_type >= e1000_82543) {
1915 rxcsum = er32(RXCSUM);
1916 if (adapter->rx_csum)
1917 rxcsum |= E1000_RXCSUM_TUOFL;
1918 else
1919 /* don't need to clear IPPCSE as it defaults to 0 */
1920 rxcsum &= ~E1000_RXCSUM_TUOFL;
1921 ew32(RXCSUM, rxcsum);
1922 }
1923
1924 /* Enable Receives */
1925 ew32(RCTL, rctl | E1000_RCTL_EN);
1926 }
1927
1928 /**
1929 * e1000_free_tx_resources - Free Tx Resources per Queue
1930 * @adapter: board private structure
1931 * @tx_ring: Tx descriptor ring for a specific queue
1932 *
1933 * Free all transmit software resources
1934 **/
1935
1936 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1937 struct e1000_tx_ring *tx_ring)
1938 {
1939 struct pci_dev *pdev = adapter->pdev;
1940
1941 e1000_clean_tx_ring(adapter, tx_ring);
1942
1943 vfree(tx_ring->buffer_info);
1944 tx_ring->buffer_info = NULL;
1945
1946 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1947 tx_ring->dma);
1948
1949 tx_ring->desc = NULL;
1950 }
1951
1952 /**
1953 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1954 * @adapter: board private structure
1955 *
1956 * Free all transmit software resources
1957 **/
1958
1959 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1960 {
1961 int i;
1962
1963 for (i = 0; i < adapter->num_tx_queues; i++)
1964 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1965 }
1966
1967 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1968 struct e1000_buffer *buffer_info)
1969 {
1970 if (buffer_info->dma) {
1971 if (buffer_info->mapped_as_page)
1972 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1973 buffer_info->length, DMA_TO_DEVICE);
1974 else
1975 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1976 buffer_info->length,
1977 DMA_TO_DEVICE);
1978 buffer_info->dma = 0;
1979 }
1980 if (buffer_info->skb) {
1981 dev_kfree_skb_any(buffer_info->skb);
1982 buffer_info->skb = NULL;
1983 }
1984 buffer_info->time_stamp = 0;
1985 /* buffer_info must be completely set up in the transmit path */
1986 }
1987
1988 /**
1989 * e1000_clean_tx_ring - Free Tx Buffers
1990 * @adapter: board private structure
1991 * @tx_ring: ring to be cleaned
1992 **/
1993
1994 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1995 struct e1000_tx_ring *tx_ring)
1996 {
1997 struct e1000_hw *hw = &adapter->hw;
1998 struct e1000_buffer *buffer_info;
1999 unsigned long size;
2000 unsigned int i;
2001
2002 /* Free all the Tx ring sk_buffs */
2003
2004 for (i = 0; i < tx_ring->count; i++) {
2005 buffer_info = &tx_ring->buffer_info[i];
2006 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2007 }
2008
2009 netdev_reset_queue(adapter->netdev);
2010 size = sizeof(struct e1000_buffer) * tx_ring->count;
2011 memset(tx_ring->buffer_info, 0, size);
2012
2013 /* Zero out the descriptor ring */
2014
2015 memset(tx_ring->desc, 0, tx_ring->size);
2016
2017 tx_ring->next_to_use = 0;
2018 tx_ring->next_to_clean = 0;
2019 tx_ring->last_tx_tso = false;
2020
2021 writel(0, hw->hw_addr + tx_ring->tdh);
2022 writel(0, hw->hw_addr + tx_ring->tdt);
2023 }
2024
2025 /**
2026 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2027 * @adapter: board private structure
2028 **/
2029
2030 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2031 {
2032 int i;
2033
2034 for (i = 0; i < adapter->num_tx_queues; i++)
2035 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2036 }
2037
2038 /**
2039 * e1000_free_rx_resources - Free Rx Resources
2040 * @adapter: board private structure
2041 * @rx_ring: ring to clean the resources from
2042 *
2043 * Free all receive software resources
2044 **/
2045
2046 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2047 struct e1000_rx_ring *rx_ring)
2048 {
2049 struct pci_dev *pdev = adapter->pdev;
2050
2051 e1000_clean_rx_ring(adapter, rx_ring);
2052
2053 vfree(rx_ring->buffer_info);
2054 rx_ring->buffer_info = NULL;
2055
2056 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2057 rx_ring->dma);
2058
2059 rx_ring->desc = NULL;
2060 }
2061
2062 /**
2063 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2064 * @adapter: board private structure
2065 *
2066 * Free all receive software resources
2067 **/
2068
2069 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2070 {
2071 int i;
2072
2073 for (i = 0; i < adapter->num_rx_queues; i++)
2074 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2075 }
2076
2077 /**
2078 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2079 * @adapter: board private structure
2080 * @rx_ring: ring to free buffers from
2081 **/
2082
2083 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2084 struct e1000_rx_ring *rx_ring)
2085 {
2086 struct e1000_hw *hw = &adapter->hw;
2087 struct e1000_buffer *buffer_info;
2088 struct pci_dev *pdev = adapter->pdev;
2089 unsigned long size;
2090 unsigned int i;
2091
2092 /* Free all the Rx ring sk_buffs */
2093 for (i = 0; i < rx_ring->count; i++) {
2094 buffer_info = &rx_ring->buffer_info[i];
2095 if (buffer_info->dma &&
2096 adapter->clean_rx == e1000_clean_rx_irq) {
2097 dma_unmap_single(&pdev->dev, buffer_info->dma,
2098 buffer_info->length,
2099 DMA_FROM_DEVICE);
2100 } else if (buffer_info->dma &&
2101 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2102 dma_unmap_page(&pdev->dev, buffer_info->dma,
2103 buffer_info->length,
2104 DMA_FROM_DEVICE);
2105 }
2106
2107 buffer_info->dma = 0;
2108 if (buffer_info->page) {
2109 put_page(buffer_info->page);
2110 buffer_info->page = NULL;
2111 }
2112 if (buffer_info->skb) {
2113 dev_kfree_skb(buffer_info->skb);
2114 buffer_info->skb = NULL;
2115 }
2116 }
2117
2118 /* there also may be some cached data from a chained receive */
2119 if (rx_ring->rx_skb_top) {
2120 dev_kfree_skb(rx_ring->rx_skb_top);
2121 rx_ring->rx_skb_top = NULL;
2122 }
2123
2124 size = sizeof(struct e1000_buffer) * rx_ring->count;
2125 memset(rx_ring->buffer_info, 0, size);
2126
2127 /* Zero out the descriptor ring */
2128 memset(rx_ring->desc, 0, rx_ring->size);
2129
2130 rx_ring->next_to_clean = 0;
2131 rx_ring->next_to_use = 0;
2132
2133 writel(0, hw->hw_addr + rx_ring->rdh);
2134 writel(0, hw->hw_addr + rx_ring->rdt);
2135 }
2136
2137 /**
2138 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2139 * @adapter: board private structure
2140 **/
2141
2142 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2143 {
2144 int i;
2145
2146 for (i = 0; i < adapter->num_rx_queues; i++)
2147 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2148 }
2149
2150 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2151 * and memory write and invalidate disabled for certain operations
2152 */
2153 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2154 {
2155 struct e1000_hw *hw = &adapter->hw;
2156 struct net_device *netdev = adapter->netdev;
2157 u32 rctl;
2158
2159 e1000_pci_clear_mwi(hw);
2160
2161 rctl = er32(RCTL);
2162 rctl |= E1000_RCTL_RST;
2163 ew32(RCTL, rctl);
2164 E1000_WRITE_FLUSH();
2165 mdelay(5);
2166
2167 if (netif_running(netdev))
2168 e1000_clean_all_rx_rings(adapter);
2169 }
2170
2171 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2172 {
2173 struct e1000_hw *hw = &adapter->hw;
2174 struct net_device *netdev = adapter->netdev;
2175 u32 rctl;
2176
2177 rctl = er32(RCTL);
2178 rctl &= ~E1000_RCTL_RST;
2179 ew32(RCTL, rctl);
2180 E1000_WRITE_FLUSH();
2181 mdelay(5);
2182
2183 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2184 e1000_pci_set_mwi(hw);
2185
2186 if (netif_running(netdev)) {
2187 /* No need to loop, because 82542 supports only 1 queue */
2188 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2189 e1000_configure_rx(adapter);
2190 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2191 }
2192 }
2193
2194 /**
2195 * e1000_set_mac - Change the Ethernet Address of the NIC
2196 * @netdev: network interface device structure
2197 * @p: pointer to an address structure
2198 *
2199 * Returns 0 on success, negative on failure
2200 **/
2201
2202 static int e1000_set_mac(struct net_device *netdev, void *p)
2203 {
2204 struct e1000_adapter *adapter = netdev_priv(netdev);
2205 struct e1000_hw *hw = &adapter->hw;
2206 struct sockaddr *addr = p;
2207
2208 if (!is_valid_ether_addr(addr->sa_data))
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
2213 if (hw->mac_type == e1000_82542_rev2_0)
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2218
2219 e1000_rar_set(hw, hw->mac_addr, 0);
2220
2221 if (hw->mac_type == e1000_82542_rev2_0)
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225 }
2226
2227 /**
2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2229 * @netdev: network interface device structure
2230 *
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
2234 * promiscuous mode, and all-multi behavior.
2235 **/
2236
2237 static void e1000_set_rx_mode(struct net_device *netdev)
2238 {
2239 struct e1000_adapter *adapter = netdev_priv(netdev);
2240 struct e1000_hw *hw = &adapter->hw;
2241 struct netdev_hw_addr *ha;
2242 bool use_uc = false;
2243 u32 rctl;
2244 u32 hash_value;
2245 int i, rar_entries = E1000_RAR_ENTRIES;
2246 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2247 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2248
2249 if (!mcarray)
2250 return;
2251
2252 /* Check for Promiscuous and All Multicast modes */
2253
2254 rctl = er32(RCTL);
2255
2256 if (netdev->flags & IFF_PROMISC) {
2257 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2258 rctl &= ~E1000_RCTL_VFE;
2259 } else {
2260 if (netdev->flags & IFF_ALLMULTI)
2261 rctl |= E1000_RCTL_MPE;
2262 else
2263 rctl &= ~E1000_RCTL_MPE;
2264 /* Enable VLAN filter if there is a VLAN */
2265 if (e1000_vlan_used(adapter))
2266 rctl |= E1000_RCTL_VFE;
2267 }
2268
2269 if (netdev_uc_count(netdev) > rar_entries - 1) {
2270 rctl |= E1000_RCTL_UPE;
2271 } else if (!(netdev->flags & IFF_PROMISC)) {
2272 rctl &= ~E1000_RCTL_UPE;
2273 use_uc = true;
2274 }
2275
2276 ew32(RCTL, rctl);
2277
2278 /* 82542 2.0 needs to be in reset to write receive address registers */
2279
2280 if (hw->mac_type == e1000_82542_rev2_0)
2281 e1000_enter_82542_rst(adapter);
2282
2283 /* load the first 14 addresses into the exact filters 1-14. Unicast
2284 * addresses take precedence to avoid disabling unicast filtering
2285 * when possible.
2286 *
2287 * RAR 0 is used for the station MAC address
2288 * if there are not 14 addresses, go ahead and clear the filters
2289 */
2290 i = 1;
2291 if (use_uc)
2292 netdev_for_each_uc_addr(ha, netdev) {
2293 if (i == rar_entries)
2294 break;
2295 e1000_rar_set(hw, ha->addr, i++);
2296 }
2297
2298 netdev_for_each_mc_addr(ha, netdev) {
2299 if (i == rar_entries) {
2300 /* load any remaining addresses into the hash table */
2301 u32 hash_reg, hash_bit, mta;
2302 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2303 hash_reg = (hash_value >> 5) & 0x7F;
2304 hash_bit = hash_value & 0x1F;
2305 mta = (1 << hash_bit);
2306 mcarray[hash_reg] |= mta;
2307 } else {
2308 e1000_rar_set(hw, ha->addr, i++);
2309 }
2310 }
2311
2312 for (; i < rar_entries; i++) {
2313 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2314 E1000_WRITE_FLUSH();
2315 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2316 E1000_WRITE_FLUSH();
2317 }
2318
2319 /* write the hash table completely, write from bottom to avoid
2320 * both stupid write combining chipsets, and flushing each write */
2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2322 /*
2323 * If we are on an 82544 has an errata where writing odd
2324 * offsets overwrites the previous even offset, but writing
2325 * backwards over the range solves the issue by always
2326 * writing the odd offset first
2327 */
2328 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2329 }
2330 E1000_WRITE_FLUSH();
2331
2332 if (hw->mac_type == e1000_82542_rev2_0)
2333 e1000_leave_82542_rst(adapter);
2334
2335 kfree(mcarray);
2336 }
2337
2338 /**
2339 * e1000_update_phy_info_task - get phy info
2340 * @work: work struct contained inside adapter struct
2341 *
2342 * Need to wait a few seconds after link up to get diagnostic information from
2343 * the phy
2344 */
2345 static void e1000_update_phy_info_task(struct work_struct *work)
2346 {
2347 struct e1000_adapter *adapter = container_of(work,
2348 struct e1000_adapter,
2349 phy_info_task.work);
2350 if (test_bit(__E1000_DOWN, &adapter->flags))
2351 return;
2352 mutex_lock(&adapter->mutex);
2353 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2354 mutex_unlock(&adapter->mutex);
2355 }
2356
2357 /**
2358 * e1000_82547_tx_fifo_stall_task - task to complete work
2359 * @work: work struct contained inside adapter struct
2360 **/
2361 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2362 {
2363 struct e1000_adapter *adapter = container_of(work,
2364 struct e1000_adapter,
2365 fifo_stall_task.work);
2366 struct e1000_hw *hw = &adapter->hw;
2367 struct net_device *netdev = adapter->netdev;
2368 u32 tctl;
2369
2370 if (test_bit(__E1000_DOWN, &adapter->flags))
2371 return;
2372 mutex_lock(&adapter->mutex);
2373 if (atomic_read(&adapter->tx_fifo_stall)) {
2374 if ((er32(TDT) == er32(TDH)) &&
2375 (er32(TDFT) == er32(TDFH)) &&
2376 (er32(TDFTS) == er32(TDFHS))) {
2377 tctl = er32(TCTL);
2378 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2379 ew32(TDFT, adapter->tx_head_addr);
2380 ew32(TDFH, adapter->tx_head_addr);
2381 ew32(TDFTS, adapter->tx_head_addr);
2382 ew32(TDFHS, adapter->tx_head_addr);
2383 ew32(TCTL, tctl);
2384 E1000_WRITE_FLUSH();
2385
2386 adapter->tx_fifo_head = 0;
2387 atomic_set(&adapter->tx_fifo_stall, 0);
2388 netif_wake_queue(netdev);
2389 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2390 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2391 }
2392 }
2393 mutex_unlock(&adapter->mutex);
2394 }
2395
2396 bool e1000_has_link(struct e1000_adapter *adapter)
2397 {
2398 struct e1000_hw *hw = &adapter->hw;
2399 bool link_active = false;
2400
2401 /* get_link_status is set on LSC (link status) interrupt or rx
2402 * sequence error interrupt (except on intel ce4100).
2403 * get_link_status will stay false until the
2404 * e1000_check_for_link establishes link for copper adapters
2405 * ONLY
2406 */
2407 switch (hw->media_type) {
2408 case e1000_media_type_copper:
2409 if (hw->mac_type == e1000_ce4100)
2410 hw->get_link_status = 1;
2411 if (hw->get_link_status) {
2412 e1000_check_for_link(hw);
2413 link_active = !hw->get_link_status;
2414 } else {
2415 link_active = true;
2416 }
2417 break;
2418 case e1000_media_type_fiber:
2419 e1000_check_for_link(hw);
2420 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2421 break;
2422 case e1000_media_type_internal_serdes:
2423 e1000_check_for_link(hw);
2424 link_active = hw->serdes_has_link;
2425 break;
2426 default:
2427 break;
2428 }
2429
2430 return link_active;
2431 }
2432
2433 /**
2434 * e1000_watchdog - work function
2435 * @work: work struct contained inside adapter struct
2436 **/
2437 static void e1000_watchdog(struct work_struct *work)
2438 {
2439 struct e1000_adapter *adapter = container_of(work,
2440 struct e1000_adapter,
2441 watchdog_task.work);
2442 struct e1000_hw *hw = &adapter->hw;
2443 struct net_device *netdev = adapter->netdev;
2444 struct e1000_tx_ring *txdr = adapter->tx_ring;
2445 u32 link, tctl;
2446
2447 if (test_bit(__E1000_DOWN, &adapter->flags))
2448 return;
2449
2450 mutex_lock(&adapter->mutex);
2451 link = e1000_has_link(adapter);
2452 if ((netif_carrier_ok(netdev)) && link)
2453 goto link_up;
2454
2455 if (link) {
2456 if (!netif_carrier_ok(netdev)) {
2457 u32 ctrl;
2458 bool txb2b = true;
2459 /* update snapshot of PHY registers on LSC */
2460 e1000_get_speed_and_duplex(hw,
2461 &adapter->link_speed,
2462 &adapter->link_duplex);
2463
2464 ctrl = er32(CTRL);
2465 pr_info("%s NIC Link is Up %d Mbps %s, "
2466 "Flow Control: %s\n",
2467 netdev->name,
2468 adapter->link_speed,
2469 adapter->link_duplex == FULL_DUPLEX ?
2470 "Full Duplex" : "Half Duplex",
2471 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2472 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2473 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2474 E1000_CTRL_TFCE) ? "TX" : "None")));
2475
2476 /* adjust timeout factor according to speed/duplex */
2477 adapter->tx_timeout_factor = 1;
2478 switch (adapter->link_speed) {
2479 case SPEED_10:
2480 txb2b = false;
2481 adapter->tx_timeout_factor = 16;
2482 break;
2483 case SPEED_100:
2484 txb2b = false;
2485 /* maybe add some timeout factor ? */
2486 break;
2487 }
2488
2489 /* enable transmits in the hardware */
2490 tctl = er32(TCTL);
2491 tctl |= E1000_TCTL_EN;
2492 ew32(TCTL, tctl);
2493
2494 netif_carrier_on(netdev);
2495 if (!test_bit(__E1000_DOWN, &adapter->flags))
2496 schedule_delayed_work(&adapter->phy_info_task,
2497 2 * HZ);
2498 adapter->smartspeed = 0;
2499 }
2500 } else {
2501 if (netif_carrier_ok(netdev)) {
2502 adapter->link_speed = 0;
2503 adapter->link_duplex = 0;
2504 pr_info("%s NIC Link is Down\n",
2505 netdev->name);
2506 netif_carrier_off(netdev);
2507
2508 if (!test_bit(__E1000_DOWN, &adapter->flags))
2509 schedule_delayed_work(&adapter->phy_info_task,
2510 2 * HZ);
2511 }
2512
2513 e1000_smartspeed(adapter);
2514 }
2515
2516 link_up:
2517 e1000_update_stats(adapter);
2518
2519 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2520 adapter->tpt_old = adapter->stats.tpt;
2521 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2522 adapter->colc_old = adapter->stats.colc;
2523
2524 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2525 adapter->gorcl_old = adapter->stats.gorcl;
2526 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2527 adapter->gotcl_old = adapter->stats.gotcl;
2528
2529 e1000_update_adaptive(hw);
2530
2531 if (!netif_carrier_ok(netdev)) {
2532 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2533 /* We've lost link, so the controller stops DMA,
2534 * but we've got queued Tx work that's never going
2535 * to get done, so reset controller to flush Tx.
2536 * (Do the reset outside of interrupt context). */
2537 adapter->tx_timeout_count++;
2538 schedule_work(&adapter->reset_task);
2539 /* exit immediately since reset is imminent */
2540 goto unlock;
2541 }
2542 }
2543
2544 /* Simple mode for Interrupt Throttle Rate (ITR) */
2545 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2546 /*
2547 * Symmetric Tx/Rx gets a reduced ITR=2000;
2548 * Total asymmetrical Tx or Rx gets ITR=8000;
2549 * everyone else is between 2000-8000.
2550 */
2551 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2552 u32 dif = (adapter->gotcl > adapter->gorcl ?
2553 adapter->gotcl - adapter->gorcl :
2554 adapter->gorcl - adapter->gotcl) / 10000;
2555 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2556
2557 ew32(ITR, 1000000000 / (itr * 256));
2558 }
2559
2560 /* Cause software interrupt to ensure rx ring is cleaned */
2561 ew32(ICS, E1000_ICS_RXDMT0);
2562
2563 /* Force detection of hung controller every watchdog period */
2564 adapter->detect_tx_hung = true;
2565
2566 /* Reschedule the task */
2567 if (!test_bit(__E1000_DOWN, &adapter->flags))
2568 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2569
2570 unlock:
2571 mutex_unlock(&adapter->mutex);
2572 }
2573
2574 enum latency_range {
2575 lowest_latency = 0,
2576 low_latency = 1,
2577 bulk_latency = 2,
2578 latency_invalid = 255
2579 };
2580
2581 /**
2582 * e1000_update_itr - update the dynamic ITR value based on statistics
2583 * @adapter: pointer to adapter
2584 * @itr_setting: current adapter->itr
2585 * @packets: the number of packets during this measurement interval
2586 * @bytes: the number of bytes during this measurement interval
2587 *
2588 * Stores a new ITR value based on packets and byte
2589 * counts during the last interrupt. The advantage of per interrupt
2590 * computation is faster updates and more accurate ITR for the current
2591 * traffic pattern. Constants in this function were computed
2592 * based on theoretical maximum wire speed and thresholds were set based
2593 * on testing data as well as attempting to minimize response time
2594 * while increasing bulk throughput.
2595 * this functionality is controlled by the InterruptThrottleRate module
2596 * parameter (see e1000_param.c)
2597 **/
2598 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2599 u16 itr_setting, int packets, int bytes)
2600 {
2601 unsigned int retval = itr_setting;
2602 struct e1000_hw *hw = &adapter->hw;
2603
2604 if (unlikely(hw->mac_type < e1000_82540))
2605 goto update_itr_done;
2606
2607 if (packets == 0)
2608 goto update_itr_done;
2609
2610 switch (itr_setting) {
2611 case lowest_latency:
2612 /* jumbo frames get bulk treatment*/
2613 if (bytes/packets > 8000)
2614 retval = bulk_latency;
2615 else if ((packets < 5) && (bytes > 512))
2616 retval = low_latency;
2617 break;
2618 case low_latency: /* 50 usec aka 20000 ints/s */
2619 if (bytes > 10000) {
2620 /* jumbo frames need bulk latency setting */
2621 if (bytes/packets > 8000)
2622 retval = bulk_latency;
2623 else if ((packets < 10) || ((bytes/packets) > 1200))
2624 retval = bulk_latency;
2625 else if ((packets > 35))
2626 retval = lowest_latency;
2627 } else if (bytes/packets > 2000)
2628 retval = bulk_latency;
2629 else if (packets <= 2 && bytes < 512)
2630 retval = lowest_latency;
2631 break;
2632 case bulk_latency: /* 250 usec aka 4000 ints/s */
2633 if (bytes > 25000) {
2634 if (packets > 35)
2635 retval = low_latency;
2636 } else if (bytes < 6000) {
2637 retval = low_latency;
2638 }
2639 break;
2640 }
2641
2642 update_itr_done:
2643 return retval;
2644 }
2645
2646 static void e1000_set_itr(struct e1000_adapter *adapter)
2647 {
2648 struct e1000_hw *hw = &adapter->hw;
2649 u16 current_itr;
2650 u32 new_itr = adapter->itr;
2651
2652 if (unlikely(hw->mac_type < e1000_82540))
2653 return;
2654
2655 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2656 if (unlikely(adapter->link_speed != SPEED_1000)) {
2657 current_itr = 0;
2658 new_itr = 4000;
2659 goto set_itr_now;
2660 }
2661
2662 adapter->tx_itr = e1000_update_itr(adapter,
2663 adapter->tx_itr,
2664 adapter->total_tx_packets,
2665 adapter->total_tx_bytes);
2666 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668 adapter->tx_itr = low_latency;
2669
2670 adapter->rx_itr = e1000_update_itr(adapter,
2671 adapter->rx_itr,
2672 adapter->total_rx_packets,
2673 adapter->total_rx_bytes);
2674 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2675 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2676 adapter->rx_itr = low_latency;
2677
2678 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2679
2680 switch (current_itr) {
2681 /* counts and packets in update_itr are dependent on these numbers */
2682 case lowest_latency:
2683 new_itr = 70000;
2684 break;
2685 case low_latency:
2686 new_itr = 20000; /* aka hwitr = ~200 */
2687 break;
2688 case bulk_latency:
2689 new_itr = 4000;
2690 break;
2691 default:
2692 break;
2693 }
2694
2695 set_itr_now:
2696 if (new_itr != adapter->itr) {
2697 /* this attempts to bias the interrupt rate towards Bulk
2698 * by adding intermediate steps when interrupt rate is
2699 * increasing */
2700 new_itr = new_itr > adapter->itr ?
2701 min(adapter->itr + (new_itr >> 2), new_itr) :
2702 new_itr;
2703 adapter->itr = new_itr;
2704 ew32(ITR, 1000000000 / (new_itr * 256));
2705 }
2706 }
2707
2708 #define E1000_TX_FLAGS_CSUM 0x00000001
2709 #define E1000_TX_FLAGS_VLAN 0x00000002
2710 #define E1000_TX_FLAGS_TSO 0x00000004
2711 #define E1000_TX_FLAGS_IPV4 0x00000008
2712 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2713 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2714 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2715
2716 static int e1000_tso(struct e1000_adapter *adapter,
2717 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2718 {
2719 struct e1000_context_desc *context_desc;
2720 struct e1000_buffer *buffer_info;
2721 unsigned int i;
2722 u32 cmd_length = 0;
2723 u16 ipcse = 0, tucse, mss;
2724 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2725 int err;
2726
2727 if (skb_is_gso(skb)) {
2728 if (skb_header_cloned(skb)) {
2729 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2730 if (err)
2731 return err;
2732 }
2733
2734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735 mss = skb_shinfo(skb)->gso_size;
2736 if (skb->protocol == htons(ETH_P_IP)) {
2737 struct iphdr *iph = ip_hdr(skb);
2738 iph->tot_len = 0;
2739 iph->check = 0;
2740 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741 iph->daddr, 0,
2742 IPPROTO_TCP,
2743 0);
2744 cmd_length = E1000_TXD_CMD_IP;
2745 ipcse = skb_transport_offset(skb) - 1;
2746 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2747 ipv6_hdr(skb)->payload_len = 0;
2748 tcp_hdr(skb)->check =
2749 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750 &ipv6_hdr(skb)->daddr,
2751 0, IPPROTO_TCP, 0);
2752 ipcse = 0;
2753 }
2754 ipcss = skb_network_offset(skb);
2755 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756 tucss = skb_transport_offset(skb);
2757 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758 tucse = 0;
2759
2760 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762
2763 i = tx_ring->next_to_use;
2764 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765 buffer_info = &tx_ring->buffer_info[i];
2766
2767 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2768 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2769 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2770 context_desc->upper_setup.tcp_fields.tucss = tucss;
2771 context_desc->upper_setup.tcp_fields.tucso = tucso;
2772 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2774 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779
2780 if (++i == tx_ring->count) i = 0;
2781 tx_ring->next_to_use = i;
2782
2783 return true;
2784 }
2785 return false;
2786 }
2787
2788 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2789 struct e1000_tx_ring *tx_ring, struct sk_buff *skb)
2790 {
2791 struct e1000_context_desc *context_desc;
2792 struct e1000_buffer *buffer_info;
2793 unsigned int i;
2794 u8 css;
2795 u32 cmd_len = E1000_TXD_CMD_DEXT;
2796
2797 if (skb->ip_summed != CHECKSUM_PARTIAL)
2798 return false;
2799
2800 switch (skb->protocol) {
2801 case cpu_to_be16(ETH_P_IP):
2802 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2803 cmd_len |= E1000_TXD_CMD_TCP;
2804 break;
2805 case cpu_to_be16(ETH_P_IPV6):
2806 /* XXX not handling all IPV6 headers */
2807 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2808 cmd_len |= E1000_TXD_CMD_TCP;
2809 break;
2810 default:
2811 if (unlikely(net_ratelimit()))
2812 e_warn(drv, "checksum_partial proto=%x!\n",
2813 skb->protocol);
2814 break;
2815 }
2816
2817 css = skb_checksum_start_offset(skb);
2818
2819 i = tx_ring->next_to_use;
2820 buffer_info = &tx_ring->buffer_info[i];
2821 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2822
2823 context_desc->lower_setup.ip_config = 0;
2824 context_desc->upper_setup.tcp_fields.tucss = css;
2825 context_desc->upper_setup.tcp_fields.tucso =
2826 css + skb->csum_offset;
2827 context_desc->upper_setup.tcp_fields.tucse = 0;
2828 context_desc->tcp_seg_setup.data = 0;
2829 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2830
2831 buffer_info->time_stamp = jiffies;
2832 buffer_info->next_to_watch = i;
2833
2834 if (unlikely(++i == tx_ring->count)) i = 0;
2835 tx_ring->next_to_use = i;
2836
2837 return true;
2838 }
2839
2840 #define E1000_MAX_TXD_PWR 12
2841 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2842
2843 static int e1000_tx_map(struct e1000_adapter *adapter,
2844 struct e1000_tx_ring *tx_ring,
2845 struct sk_buff *skb, unsigned int first,
2846 unsigned int max_per_txd, unsigned int nr_frags,
2847 unsigned int mss)
2848 {
2849 struct e1000_hw *hw = &adapter->hw;
2850 struct pci_dev *pdev = adapter->pdev;
2851 struct e1000_buffer *buffer_info;
2852 unsigned int len = skb_headlen(skb);
2853 unsigned int offset = 0, size, count = 0, i;
2854 unsigned int f, bytecount, segs;
2855
2856 i = tx_ring->next_to_use;
2857
2858 while (len) {
2859 buffer_info = &tx_ring->buffer_info[i];
2860 size = min(len, max_per_txd);
2861 /* Workaround for Controller erratum --
2862 * descriptor for non-tso packet in a linear SKB that follows a
2863 * tso gets written back prematurely before the data is fully
2864 * DMA'd to the controller */
2865 if (!skb->data_len && tx_ring->last_tx_tso &&
2866 !skb_is_gso(skb)) {
2867 tx_ring->last_tx_tso = false;
2868 size -= 4;
2869 }
2870
2871 /* Workaround for premature desc write-backs
2872 * in TSO mode. Append 4-byte sentinel desc */
2873 if (unlikely(mss && !nr_frags && size == len && size > 8))
2874 size -= 4;
2875 /* work-around for errata 10 and it applies
2876 * to all controllers in PCI-X mode
2877 * The fix is to make sure that the first descriptor of a
2878 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2879 */
2880 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2881 (size > 2015) && count == 0))
2882 size = 2015;
2883
2884 /* Workaround for potential 82544 hang in PCI-X. Avoid
2885 * terminating buffers within evenly-aligned dwords. */
2886 if (unlikely(adapter->pcix_82544 &&
2887 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2888 size > 4))
2889 size -= 4;
2890
2891 buffer_info->length = size;
2892 /* set time_stamp *before* dma to help avoid a possible race */
2893 buffer_info->time_stamp = jiffies;
2894 buffer_info->mapped_as_page = false;
2895 buffer_info->dma = dma_map_single(&pdev->dev,
2896 skb->data + offset,
2897 size, DMA_TO_DEVICE);
2898 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2899 goto dma_error;
2900 buffer_info->next_to_watch = i;
2901
2902 len -= size;
2903 offset += size;
2904 count++;
2905 if (len) {
2906 i++;
2907 if (unlikely(i == tx_ring->count))
2908 i = 0;
2909 }
2910 }
2911
2912 for (f = 0; f < nr_frags; f++) {
2913 const struct skb_frag_struct *frag;
2914
2915 frag = &skb_shinfo(skb)->frags[f];
2916 len = skb_frag_size(frag);
2917 offset = 0;
2918
2919 while (len) {
2920 unsigned long bufend;
2921 i++;
2922 if (unlikely(i == tx_ring->count))
2923 i = 0;
2924
2925 buffer_info = &tx_ring->buffer_info[i];
2926 size = min(len, max_per_txd);
2927 /* Workaround for premature desc write-backs
2928 * in TSO mode. Append 4-byte sentinel desc */
2929 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2930 size -= 4;
2931 /* Workaround for potential 82544 hang in PCI-X.
2932 * Avoid terminating buffers within evenly-aligned
2933 * dwords. */
2934 bufend = (unsigned long)
2935 page_to_phys(skb_frag_page(frag));
2936 bufend += offset + size - 1;
2937 if (unlikely(adapter->pcix_82544 &&
2938 !(bufend & 4) &&
2939 size > 4))
2940 size -= 4;
2941
2942 buffer_info->length = size;
2943 buffer_info->time_stamp = jiffies;
2944 buffer_info->mapped_as_page = true;
2945 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2946 offset, size, DMA_TO_DEVICE);
2947 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2948 goto dma_error;
2949 buffer_info->next_to_watch = i;
2950
2951 len -= size;
2952 offset += size;
2953 count++;
2954 }
2955 }
2956
2957 segs = skb_shinfo(skb)->gso_segs ?: 1;
2958 /* multiply data chunks by size of headers */
2959 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2960
2961 tx_ring->buffer_info[i].skb = skb;
2962 tx_ring->buffer_info[i].segs = segs;
2963 tx_ring->buffer_info[i].bytecount = bytecount;
2964 tx_ring->buffer_info[first].next_to_watch = i;
2965
2966 return count;
2967
2968 dma_error:
2969 dev_err(&pdev->dev, "TX DMA map failed\n");
2970 buffer_info->dma = 0;
2971 if (count)
2972 count--;
2973
2974 while (count--) {
2975 if (i==0)
2976 i += tx_ring->count;
2977 i--;
2978 buffer_info = &tx_ring->buffer_info[i];
2979 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2980 }
2981
2982 return 0;
2983 }
2984
2985 static void e1000_tx_queue(struct e1000_adapter *adapter,
2986 struct e1000_tx_ring *tx_ring, int tx_flags,
2987 int count)
2988 {
2989 struct e1000_hw *hw = &adapter->hw;
2990 struct e1000_tx_desc *tx_desc = NULL;
2991 struct e1000_buffer *buffer_info;
2992 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2993 unsigned int i;
2994
2995 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2996 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2997 E1000_TXD_CMD_TSE;
2998 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2999
3000 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3001 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3002 }
3003
3004 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3005 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3006 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3007 }
3008
3009 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3010 txd_lower |= E1000_TXD_CMD_VLE;
3011 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3012 }
3013
3014 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3015 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3016
3017 i = tx_ring->next_to_use;
3018
3019 while (count--) {
3020 buffer_info = &tx_ring->buffer_info[i];
3021 tx_desc = E1000_TX_DESC(*tx_ring, i);
3022 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3023 tx_desc->lower.data =
3024 cpu_to_le32(txd_lower | buffer_info->length);
3025 tx_desc->upper.data = cpu_to_le32(txd_upper);
3026 if (unlikely(++i == tx_ring->count)) i = 0;
3027 }
3028
3029 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3030
3031 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3032 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3033 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3034
3035 /* Force memory writes to complete before letting h/w
3036 * know there are new descriptors to fetch. (Only
3037 * applicable for weak-ordered memory model archs,
3038 * such as IA-64). */
3039 wmb();
3040
3041 tx_ring->next_to_use = i;
3042 writel(i, hw->hw_addr + tx_ring->tdt);
3043 /* we need this if more than one processor can write to our tail
3044 * at a time, it syncronizes IO on IA64/Altix systems */
3045 mmiowb();
3046 }
3047
3048 /* 82547 workaround to avoid controller hang in half-duplex environment.
3049 * The workaround is to avoid queuing a large packet that would span
3050 * the internal Tx FIFO ring boundary by notifying the stack to resend
3051 * the packet at a later time. This gives the Tx FIFO an opportunity to
3052 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3053 * to the beginning of the Tx FIFO.
3054 */
3055
3056 #define E1000_FIFO_HDR 0x10
3057 #define E1000_82547_PAD_LEN 0x3E0
3058
3059 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3060 struct sk_buff *skb)
3061 {
3062 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3063 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3064
3065 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3066
3067 if (adapter->link_duplex != HALF_DUPLEX)
3068 goto no_fifo_stall_required;
3069
3070 if (atomic_read(&adapter->tx_fifo_stall))
3071 return 1;
3072
3073 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3074 atomic_set(&adapter->tx_fifo_stall, 1);
3075 return 1;
3076 }
3077
3078 no_fifo_stall_required:
3079 adapter->tx_fifo_head += skb_fifo_len;
3080 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3081 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3082 return 0;
3083 }
3084
3085 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3086 {
3087 struct e1000_adapter *adapter = netdev_priv(netdev);
3088 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3089
3090 netif_stop_queue(netdev);
3091 /* Herbert's original patch had:
3092 * smp_mb__after_netif_stop_queue();
3093 * but since that doesn't exist yet, just open code it. */
3094 smp_mb();
3095
3096 /* We need to check again in a case another CPU has just
3097 * made room available. */
3098 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3099 return -EBUSY;
3100
3101 /* A reprieve! */
3102 netif_start_queue(netdev);
3103 ++adapter->restart_queue;
3104 return 0;
3105 }
3106
3107 static int e1000_maybe_stop_tx(struct net_device *netdev,
3108 struct e1000_tx_ring *tx_ring, int size)
3109 {
3110 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3111 return 0;
3112 return __e1000_maybe_stop_tx(netdev, size);
3113 }
3114
3115 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3116 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3117 struct net_device *netdev)
3118 {
3119 struct e1000_adapter *adapter = netdev_priv(netdev);
3120 struct e1000_hw *hw = &adapter->hw;
3121 struct e1000_tx_ring *tx_ring;
3122 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3123 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3124 unsigned int tx_flags = 0;
3125 unsigned int len = skb_headlen(skb);
3126 unsigned int nr_frags;
3127 unsigned int mss;
3128 int count = 0;
3129 int tso;
3130 unsigned int f;
3131
3132 /* This goes back to the question of how to logically map a tx queue
3133 * to a flow. Right now, performance is impacted slightly negatively
3134 * if using multiple tx queues. If the stack breaks away from a
3135 * single qdisc implementation, we can look at this again. */
3136 tx_ring = adapter->tx_ring;
3137
3138 if (unlikely(skb->len <= 0)) {
3139 dev_kfree_skb_any(skb);
3140 return NETDEV_TX_OK;
3141 }
3142
3143 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3144 * packets may get corrupted during padding by HW.
3145 * To WA this issue, pad all small packets manually.
3146 */
3147 if (skb->len < ETH_ZLEN) {
3148 if (skb_pad(skb, ETH_ZLEN - skb->len))
3149 return NETDEV_TX_OK;
3150 skb->len = ETH_ZLEN;
3151 skb_set_tail_pointer(skb, ETH_ZLEN);
3152 }
3153
3154 mss = skb_shinfo(skb)->gso_size;
3155 /* The controller does a simple calculation to
3156 * make sure there is enough room in the FIFO before
3157 * initiating the DMA for each buffer. The calc is:
3158 * 4 = ceil(buffer len/mss). To make sure we don't
3159 * overrun the FIFO, adjust the max buffer len if mss
3160 * drops. */
3161 if (mss) {
3162 u8 hdr_len;
3163 max_per_txd = min(mss << 2, max_per_txd);
3164 max_txd_pwr = fls(max_per_txd) - 1;
3165
3166 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3167 if (skb->data_len && hdr_len == len) {
3168 switch (hw->mac_type) {
3169 unsigned int pull_size;
3170 case e1000_82544:
3171 /* Make sure we have room to chop off 4 bytes,
3172 * and that the end alignment will work out to
3173 * this hardware's requirements
3174 * NOTE: this is a TSO only workaround
3175 * if end byte alignment not correct move us
3176 * into the next dword */
3177 if ((unsigned long)(skb_tail_pointer(skb) - 1) & 4)
3178 break;
3179 /* fall through */
3180 pull_size = min((unsigned int)4, skb->data_len);
3181 if (!__pskb_pull_tail(skb, pull_size)) {
3182 e_err(drv, "__pskb_pull_tail "
3183 "failed.\n");
3184 dev_kfree_skb_any(skb);
3185 return NETDEV_TX_OK;
3186 }
3187 len = skb_headlen(skb);
3188 break;
3189 default:
3190 /* do nothing */
3191 break;
3192 }
3193 }
3194 }
3195
3196 /* reserve a descriptor for the offload context */
3197 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3198 count++;
3199 count++;
3200
3201 /* Controller Erratum workaround */
3202 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3203 count++;
3204
3205 count += TXD_USE_COUNT(len, max_txd_pwr);
3206
3207 if (adapter->pcix_82544)
3208 count++;
3209
3210 /* work-around for errata 10 and it applies to all controllers
3211 * in PCI-X mode, so add one more descriptor to the count
3212 */
3213 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3214 (len > 2015)))
3215 count++;
3216
3217 nr_frags = skb_shinfo(skb)->nr_frags;
3218 for (f = 0; f < nr_frags; f++)
3219 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3220 max_txd_pwr);
3221 if (adapter->pcix_82544)
3222 count += nr_frags;
3223
3224 /* need: count + 2 desc gap to keep tail from touching
3225 * head, otherwise try next time */
3226 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3227 return NETDEV_TX_BUSY;
3228
3229 if (unlikely((hw->mac_type == e1000_82547) &&
3230 (e1000_82547_fifo_workaround(adapter, skb)))) {
3231 netif_stop_queue(netdev);
3232 if (!test_bit(__E1000_DOWN, &adapter->flags))
3233 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3234 return NETDEV_TX_BUSY;
3235 }
3236
3237 if (vlan_tx_tag_present(skb)) {
3238 tx_flags |= E1000_TX_FLAGS_VLAN;
3239 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3240 }
3241
3242 first = tx_ring->next_to_use;
3243
3244 tso = e1000_tso(adapter, tx_ring, skb);
3245 if (tso < 0) {
3246 dev_kfree_skb_any(skb);
3247 return NETDEV_TX_OK;
3248 }
3249
3250 if (likely(tso)) {
3251 if (likely(hw->mac_type != e1000_82544))
3252 tx_ring->last_tx_tso = true;
3253 tx_flags |= E1000_TX_FLAGS_TSO;
3254 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3255 tx_flags |= E1000_TX_FLAGS_CSUM;
3256
3257 if (likely(skb->protocol == htons(ETH_P_IP)))
3258 tx_flags |= E1000_TX_FLAGS_IPV4;
3259
3260 if (unlikely(skb->no_fcs))
3261 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3262
3263 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3264 nr_frags, mss);
3265
3266 if (count) {
3267 netdev_sent_queue(netdev, skb->len);
3268 skb_tx_timestamp(skb);
3269
3270 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3271 /* Make sure there is space in the ring for the next send. */
3272 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3273
3274 } else {
3275 dev_kfree_skb_any(skb);
3276 tx_ring->buffer_info[first].time_stamp = 0;
3277 tx_ring->next_to_use = first;
3278 }
3279
3280 return NETDEV_TX_OK;
3281 }
3282
3283 #define NUM_REGS 38 /* 1 based count */
3284 static void e1000_regdump(struct e1000_adapter *adapter)
3285 {
3286 struct e1000_hw *hw = &adapter->hw;
3287 u32 regs[NUM_REGS];
3288 u32 *regs_buff = regs;
3289 int i = 0;
3290
3291 static const char * const reg_name[] = {
3292 "CTRL", "STATUS",
3293 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3294 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3295 "TIDV", "TXDCTL", "TADV", "TARC0",
3296 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3297 "TXDCTL1", "TARC1",
3298 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3299 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3300 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3301 };
3302
3303 regs_buff[0] = er32(CTRL);
3304 regs_buff[1] = er32(STATUS);
3305
3306 regs_buff[2] = er32(RCTL);
3307 regs_buff[3] = er32(RDLEN);
3308 regs_buff[4] = er32(RDH);
3309 regs_buff[5] = er32(RDT);
3310 regs_buff[6] = er32(RDTR);
3311
3312 regs_buff[7] = er32(TCTL);
3313 regs_buff[8] = er32(TDBAL);
3314 regs_buff[9] = er32(TDBAH);
3315 regs_buff[10] = er32(TDLEN);
3316 regs_buff[11] = er32(TDH);
3317 regs_buff[12] = er32(TDT);
3318 regs_buff[13] = er32(TIDV);
3319 regs_buff[14] = er32(TXDCTL);
3320 regs_buff[15] = er32(TADV);
3321 regs_buff[16] = er32(TARC0);
3322
3323 regs_buff[17] = er32(TDBAL1);
3324 regs_buff[18] = er32(TDBAH1);
3325 regs_buff[19] = er32(TDLEN1);
3326 regs_buff[20] = er32(TDH1);
3327 regs_buff[21] = er32(TDT1);
3328 regs_buff[22] = er32(TXDCTL1);
3329 regs_buff[23] = er32(TARC1);
3330 regs_buff[24] = er32(CTRL_EXT);
3331 regs_buff[25] = er32(ERT);
3332 regs_buff[26] = er32(RDBAL0);
3333 regs_buff[27] = er32(RDBAH0);
3334 regs_buff[28] = er32(TDFH);
3335 regs_buff[29] = er32(TDFT);
3336 regs_buff[30] = er32(TDFHS);
3337 regs_buff[31] = er32(TDFTS);
3338 regs_buff[32] = er32(TDFPC);
3339 regs_buff[33] = er32(RDFH);
3340 regs_buff[34] = er32(RDFT);
3341 regs_buff[35] = er32(RDFHS);
3342 regs_buff[36] = er32(RDFTS);
3343 regs_buff[37] = er32(RDFPC);
3344
3345 pr_info("Register dump\n");
3346 for (i = 0; i < NUM_REGS; i++)
3347 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3348 }
3349
3350 /*
3351 * e1000_dump: Print registers, tx ring and rx ring
3352 */
3353 static void e1000_dump(struct e1000_adapter *adapter)
3354 {
3355 /* this code doesn't handle multiple rings */
3356 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3357 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3358 int i;
3359
3360 if (!netif_msg_hw(adapter))
3361 return;
3362
3363 /* Print Registers */
3364 e1000_regdump(adapter);
3365
3366 /*
3367 * transmit dump
3368 */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428 rx_ring_summary:
3429 /*
3430 * receive dump
3431 */
3432 pr_info("\nRX Desc ring dump\n");
3433
3434 /* Legacy Receive Descriptor Format
3435 *
3436 * +-----------------------------------------------------+
3437 * | Buffer Address [63:0] |
3438 * +-----------------------------------------------------+
3439 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3440 * +-----------------------------------------------------+
3441 * 63 48 47 40 39 32 31 16 15 0
3442 */
3443 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3444
3445 if (!netif_msg_rx_status(adapter))
3446 goto exit;
3447
3448 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3449 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3450 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3451 struct my_u { __le64 a; __le64 b; };
3452 struct my_u *u = (struct my_u *)rx_desc;
3453 const char *type;
3454
3455 if (i == rx_ring->next_to_use)
3456 type = "NTU";
3457 else if (i == rx_ring->next_to_clean)
3458 type = "NTC";
3459 else
3460 type = "";
3461
3462 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3463 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3464 (u64)buffer_info->dma, buffer_info->skb, type);
3465 } /* for */
3466
3467 /* dump the descriptor caches */
3468 /* rx */
3469 pr_info("Rx descriptor cache in 64bit format\n");
3470 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3471 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3472 i,
3473 readl(adapter->hw.hw_addr + i+4),
3474 readl(adapter->hw.hw_addr + i),
3475 readl(adapter->hw.hw_addr + i+12),
3476 readl(adapter->hw.hw_addr + i+8));
3477 }
3478 /* tx */
3479 pr_info("Tx descriptor cache in 64bit format\n");
3480 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3481 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3482 i,
3483 readl(adapter->hw.hw_addr + i+4),
3484 readl(adapter->hw.hw_addr + i),
3485 readl(adapter->hw.hw_addr + i+12),
3486 readl(adapter->hw.hw_addr + i+8));
3487 }
3488 exit:
3489 return;
3490 }
3491
3492 /**
3493 * e1000_tx_timeout - Respond to a Tx Hang
3494 * @netdev: network interface device structure
3495 **/
3496
3497 static void e1000_tx_timeout(struct net_device *netdev)
3498 {
3499 struct e1000_adapter *adapter = netdev_priv(netdev);
3500
3501 /* Do the reset outside of interrupt context */
3502 adapter->tx_timeout_count++;
3503 schedule_work(&adapter->reset_task);
3504 }
3505
3506 static void e1000_reset_task(struct work_struct *work)
3507 {
3508 struct e1000_adapter *adapter =
3509 container_of(work, struct e1000_adapter, reset_task);
3510
3511 if (test_bit(__E1000_DOWN, &adapter->flags))
3512 return;
3513 e_err(drv, "Reset adapter\n");
3514 e1000_reinit_safe(adapter);
3515 }
3516
3517 /**
3518 * e1000_get_stats - Get System Network Statistics
3519 * @netdev: network interface device structure
3520 *
3521 * Returns the address of the device statistics structure.
3522 * The statistics are actually updated from the watchdog.
3523 **/
3524
3525 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3526 {
3527 /* only return the current stats */
3528 return &netdev->stats;
3529 }
3530
3531 /**
3532 * e1000_change_mtu - Change the Maximum Transfer Unit
3533 * @netdev: network interface device structure
3534 * @new_mtu: new value for maximum frame size
3535 *
3536 * Returns 0 on success, negative on failure
3537 **/
3538
3539 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3540 {
3541 struct e1000_adapter *adapter = netdev_priv(netdev);
3542 struct e1000_hw *hw = &adapter->hw;
3543 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3544
3545 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3546 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3547 e_err(probe, "Invalid MTU setting\n");
3548 return -EINVAL;
3549 }
3550
3551 /* Adapter-specific max frame size limits. */
3552 switch (hw->mac_type) {
3553 case e1000_undefined ... e1000_82542_rev2_1:
3554 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3555 e_err(probe, "Jumbo Frames not supported.\n");
3556 return -EINVAL;
3557 }
3558 break;
3559 default:
3560 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3561 break;
3562 }
3563
3564 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3565 msleep(1);
3566 /* e1000_down has a dependency on max_frame_size */
3567 hw->max_frame_size = max_frame;
3568 if (netif_running(netdev))
3569 e1000_down(adapter);
3570
3571 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3572 * means we reserve 2 more, this pushes us to allocate from the next
3573 * larger slab size.
3574 * i.e. RXBUFFER_2048 --> size-4096 slab
3575 * however with the new *_jumbo_rx* routines, jumbo receives will use
3576 * fragmented skbs */
3577
3578 if (max_frame <= E1000_RXBUFFER_2048)
3579 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3580 else
3581 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3582 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3583 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3584 adapter->rx_buffer_len = PAGE_SIZE;
3585 #endif
3586
3587 /* adjust allocation if LPE protects us, and we aren't using SBP */
3588 if (!hw->tbi_compatibility_on &&
3589 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3590 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3591 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3592
3593 pr_info("%s changing MTU from %d to %d\n",
3594 netdev->name, netdev->mtu, new_mtu);
3595 netdev->mtu = new_mtu;
3596
3597 if (netif_running(netdev))
3598 e1000_up(adapter);
3599 else
3600 e1000_reset(adapter);
3601
3602 clear_bit(__E1000_RESETTING, &adapter->flags);
3603
3604 return 0;
3605 }
3606
3607 /**
3608 * e1000_update_stats - Update the board statistics counters
3609 * @adapter: board private structure
3610 **/
3611
3612 void e1000_update_stats(struct e1000_adapter *adapter)
3613 {
3614 struct net_device *netdev = adapter->netdev;
3615 struct e1000_hw *hw = &adapter->hw;
3616 struct pci_dev *pdev = adapter->pdev;
3617 unsigned long flags;
3618 u16 phy_tmp;
3619
3620 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3621
3622 /*
3623 * Prevent stats update while adapter is being reset, or if the pci
3624 * connection is down.
3625 */
3626 if (adapter->link_speed == 0)
3627 return;
3628 if (pci_channel_offline(pdev))
3629 return;
3630
3631 spin_lock_irqsave(&adapter->stats_lock, flags);
3632
3633 /* these counters are modified from e1000_tbi_adjust_stats,
3634 * called from the interrupt context, so they must only
3635 * be written while holding adapter->stats_lock
3636 */
3637
3638 adapter->stats.crcerrs += er32(CRCERRS);
3639 adapter->stats.gprc += er32(GPRC);
3640 adapter->stats.gorcl += er32(GORCL);
3641 adapter->stats.gorch += er32(GORCH);
3642 adapter->stats.bprc += er32(BPRC);
3643 adapter->stats.mprc += er32(MPRC);
3644 adapter->stats.roc += er32(ROC);
3645
3646 adapter->stats.prc64 += er32(PRC64);
3647 adapter->stats.prc127 += er32(PRC127);
3648 adapter->stats.prc255 += er32(PRC255);
3649 adapter->stats.prc511 += er32(PRC511);
3650 adapter->stats.prc1023 += er32(PRC1023);
3651 adapter->stats.prc1522 += er32(PRC1522);
3652
3653 adapter->stats.symerrs += er32(SYMERRS);
3654 adapter->stats.mpc += er32(MPC);
3655 adapter->stats.scc += er32(SCC);
3656 adapter->stats.ecol += er32(ECOL);
3657 adapter->stats.mcc += er32(MCC);
3658 adapter->stats.latecol += er32(LATECOL);
3659 adapter->stats.dc += er32(DC);
3660 adapter->stats.sec += er32(SEC);
3661 adapter->stats.rlec += er32(RLEC);
3662 adapter->stats.xonrxc += er32(XONRXC);
3663 adapter->stats.xontxc += er32(XONTXC);
3664 adapter->stats.xoffrxc += er32(XOFFRXC);
3665 adapter->stats.xofftxc += er32(XOFFTXC);
3666 adapter->stats.fcruc += er32(FCRUC);
3667 adapter->stats.gptc += er32(GPTC);
3668 adapter->stats.gotcl += er32(GOTCL);
3669 adapter->stats.gotch += er32(GOTCH);
3670 adapter->stats.rnbc += er32(RNBC);
3671 adapter->stats.ruc += er32(RUC);
3672 adapter->stats.rfc += er32(RFC);
3673 adapter->stats.rjc += er32(RJC);
3674 adapter->stats.torl += er32(TORL);
3675 adapter->stats.torh += er32(TORH);
3676 adapter->stats.totl += er32(TOTL);
3677 adapter->stats.toth += er32(TOTH);
3678 adapter->stats.tpr += er32(TPR);
3679
3680 adapter->stats.ptc64 += er32(PTC64);
3681 adapter->stats.ptc127 += er32(PTC127);
3682 adapter->stats.ptc255 += er32(PTC255);
3683 adapter->stats.ptc511 += er32(PTC511);
3684 adapter->stats.ptc1023 += er32(PTC1023);
3685 adapter->stats.ptc1522 += er32(PTC1522);
3686
3687 adapter->stats.mptc += er32(MPTC);
3688 adapter->stats.bptc += er32(BPTC);
3689
3690 /* used for adaptive IFS */
3691
3692 hw->tx_packet_delta = er32(TPT);
3693 adapter->stats.tpt += hw->tx_packet_delta;
3694 hw->collision_delta = er32(COLC);
3695 adapter->stats.colc += hw->collision_delta;
3696
3697 if (hw->mac_type >= e1000_82543) {
3698 adapter->stats.algnerrc += er32(ALGNERRC);
3699 adapter->stats.rxerrc += er32(RXERRC);
3700 adapter->stats.tncrs += er32(TNCRS);
3701 adapter->stats.cexterr += er32(CEXTERR);
3702 adapter->stats.tsctc += er32(TSCTC);
3703 adapter->stats.tsctfc += er32(TSCTFC);
3704 }
3705
3706 /* Fill out the OS statistics structure */
3707 netdev->stats.multicast = adapter->stats.mprc;
3708 netdev->stats.collisions = adapter->stats.colc;
3709
3710 /* Rx Errors */
3711
3712 /* RLEC on some newer hardware can be incorrect so build
3713 * our own version based on RUC and ROC */
3714 netdev->stats.rx_errors = adapter->stats.rxerrc +
3715 adapter->stats.crcerrs + adapter->stats.algnerrc +
3716 adapter->stats.ruc + adapter->stats.roc +
3717 adapter->stats.cexterr;
3718 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3719 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3720 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3721 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3722 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3723
3724 /* Tx Errors */
3725 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3726 netdev->stats.tx_errors = adapter->stats.txerrc;
3727 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3728 netdev->stats.tx_window_errors = adapter->stats.latecol;
3729 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3730 if (hw->bad_tx_carr_stats_fd &&
3731 adapter->link_duplex == FULL_DUPLEX) {
3732 netdev->stats.tx_carrier_errors = 0;
3733 adapter->stats.tncrs = 0;
3734 }
3735
3736 /* Tx Dropped needs to be maintained elsewhere */
3737
3738 /* Phy Stats */
3739 if (hw->media_type == e1000_media_type_copper) {
3740 if ((adapter->link_speed == SPEED_1000) &&
3741 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3742 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3743 adapter->phy_stats.idle_errors += phy_tmp;
3744 }
3745
3746 if ((hw->mac_type <= e1000_82546) &&
3747 (hw->phy_type == e1000_phy_m88) &&
3748 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3749 adapter->phy_stats.receive_errors += phy_tmp;
3750 }
3751
3752 /* Management Stats */
3753 if (hw->has_smbus) {
3754 adapter->stats.mgptc += er32(MGTPTC);
3755 adapter->stats.mgprc += er32(MGTPRC);
3756 adapter->stats.mgpdc += er32(MGTPDC);
3757 }
3758
3759 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3760 }
3761
3762 /**
3763 * e1000_intr - Interrupt Handler
3764 * @irq: interrupt number
3765 * @data: pointer to a network interface device structure
3766 **/
3767
3768 static irqreturn_t e1000_intr(int irq, void *data)
3769 {
3770 struct net_device *netdev = data;
3771 struct e1000_adapter *adapter = netdev_priv(netdev);
3772 struct e1000_hw *hw = &adapter->hw;
3773 u32 icr = er32(ICR);
3774
3775 if (unlikely((!icr)))
3776 return IRQ_NONE; /* Not our interrupt */
3777
3778 /*
3779 * we might have caused the interrupt, but the above
3780 * read cleared it, and just in case the driver is
3781 * down there is nothing to do so return handled
3782 */
3783 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3784 return IRQ_HANDLED;
3785
3786 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3787 hw->get_link_status = 1;
3788 /* guard against interrupt when we're going down */
3789 if (!test_bit(__E1000_DOWN, &adapter->flags))
3790 schedule_delayed_work(&adapter->watchdog_task, 1);
3791 }
3792
3793 /* disable interrupts, without the synchronize_irq bit */
3794 ew32(IMC, ~0);
3795 E1000_WRITE_FLUSH();
3796
3797 if (likely(napi_schedule_prep(&adapter->napi))) {
3798 adapter->total_tx_bytes = 0;
3799 adapter->total_tx_packets = 0;
3800 adapter->total_rx_bytes = 0;
3801 adapter->total_rx_packets = 0;
3802 __napi_schedule(&adapter->napi);
3803 } else {
3804 /* this really should not happen! if it does it is basically a
3805 * bug, but not a hard error, so enable ints and continue */
3806 if (!test_bit(__E1000_DOWN, &adapter->flags))
3807 e1000_irq_enable(adapter);
3808 }
3809
3810 return IRQ_HANDLED;
3811 }
3812
3813 /**
3814 * e1000_clean - NAPI Rx polling callback
3815 * @adapter: board private structure
3816 **/
3817 static int e1000_clean(struct napi_struct *napi, int budget)
3818 {
3819 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
3820 int tx_clean_complete = 0, work_done = 0;
3821
3822 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3823
3824 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3825
3826 if (!tx_clean_complete)
3827 work_done = budget;
3828
3829 /* If budget not fully consumed, exit the polling mode */
3830 if (work_done < budget) {
3831 if (likely(adapter->itr_setting & 3))
3832 e1000_set_itr(adapter);
3833 napi_complete(napi);
3834 if (!test_bit(__E1000_DOWN, &adapter->flags))
3835 e1000_irq_enable(adapter);
3836 }
3837
3838 return work_done;
3839 }
3840
3841 /**
3842 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3843 * @adapter: board private structure
3844 **/
3845 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3846 struct e1000_tx_ring *tx_ring)
3847 {
3848 struct e1000_hw *hw = &adapter->hw;
3849 struct net_device *netdev = adapter->netdev;
3850 struct e1000_tx_desc *tx_desc, *eop_desc;
3851 struct e1000_buffer *buffer_info;
3852 unsigned int i, eop;
3853 unsigned int count = 0;
3854 unsigned int total_tx_bytes=0, total_tx_packets=0;
3855 unsigned int bytes_compl = 0, pkts_compl = 0;
3856
3857 i = tx_ring->next_to_clean;
3858 eop = tx_ring->buffer_info[i].next_to_watch;
3859 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3860
3861 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3862 (count < tx_ring->count)) {
3863 bool cleaned = false;
3864 rmb(); /* read buffer_info after eop_desc */
3865 for ( ; !cleaned; count++) {
3866 tx_desc = E1000_TX_DESC(*tx_ring, i);
3867 buffer_info = &tx_ring->buffer_info[i];
3868 cleaned = (i == eop);
3869
3870 if (cleaned) {
3871 total_tx_packets += buffer_info->segs;
3872 total_tx_bytes += buffer_info->bytecount;
3873 if (buffer_info->skb) {
3874 bytes_compl += buffer_info->skb->len;
3875 pkts_compl++;
3876 }
3877
3878 }
3879 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3880 tx_desc->upper.data = 0;
3881
3882 if (unlikely(++i == tx_ring->count)) i = 0;
3883 }
3884
3885 eop = tx_ring->buffer_info[i].next_to_watch;
3886 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3887 }
3888
3889 tx_ring->next_to_clean = i;
3890
3891 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3892
3893 #define TX_WAKE_THRESHOLD 32
3894 if (unlikely(count && netif_carrier_ok(netdev) &&
3895 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3896 /* Make sure that anybody stopping the queue after this
3897 * sees the new next_to_clean.
3898 */
3899 smp_mb();
3900
3901 if (netif_queue_stopped(netdev) &&
3902 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3903 netif_wake_queue(netdev);
3904 ++adapter->restart_queue;
3905 }
3906 }
3907
3908 if (adapter->detect_tx_hung) {
3909 /* Detect a transmit hang in hardware, this serializes the
3910 * check with the clearing of time_stamp and movement of i */
3911 adapter->detect_tx_hung = false;
3912 if (tx_ring->buffer_info[eop].time_stamp &&
3913 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3914 (adapter->tx_timeout_factor * HZ)) &&
3915 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3916
3917 /* detected Tx unit hang */
3918 e_err(drv, "Detected Tx Unit Hang\n"
3919 " Tx Queue <%lu>\n"
3920 " TDH <%x>\n"
3921 " TDT <%x>\n"
3922 " next_to_use <%x>\n"
3923 " next_to_clean <%x>\n"
3924 "buffer_info[next_to_clean]\n"
3925 " time_stamp <%lx>\n"
3926 " next_to_watch <%x>\n"
3927 " jiffies <%lx>\n"
3928 " next_to_watch.status <%x>\n",
3929 (unsigned long)((tx_ring - adapter->tx_ring) /
3930 sizeof(struct e1000_tx_ring)),
3931 readl(hw->hw_addr + tx_ring->tdh),
3932 readl(hw->hw_addr + tx_ring->tdt),
3933 tx_ring->next_to_use,
3934 tx_ring->next_to_clean,
3935 tx_ring->buffer_info[eop].time_stamp,
3936 eop,
3937 jiffies,
3938 eop_desc->upper.fields.status);
3939 e1000_dump(adapter);
3940 netif_stop_queue(netdev);
3941 }
3942 }
3943 adapter->total_tx_bytes += total_tx_bytes;
3944 adapter->total_tx_packets += total_tx_packets;
3945 netdev->stats.tx_bytes += total_tx_bytes;
3946 netdev->stats.tx_packets += total_tx_packets;
3947 return count < tx_ring->count;
3948 }
3949
3950 /**
3951 * e1000_rx_checksum - Receive Checksum Offload for 82543
3952 * @adapter: board private structure
3953 * @status_err: receive descriptor status and error fields
3954 * @csum: receive descriptor csum field
3955 * @sk_buff: socket buffer with received data
3956 **/
3957
3958 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3959 u32 csum, struct sk_buff *skb)
3960 {
3961 struct e1000_hw *hw = &adapter->hw;
3962 u16 status = (u16)status_err;
3963 u8 errors = (u8)(status_err >> 24);
3964
3965 skb_checksum_none_assert(skb);
3966
3967 /* 82543 or newer only */
3968 if (unlikely(hw->mac_type < e1000_82543)) return;
3969 /* Ignore Checksum bit is set */
3970 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3971 /* TCP/UDP checksum error bit is set */
3972 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3973 /* let the stack verify checksum errors */
3974 adapter->hw_csum_err++;
3975 return;
3976 }
3977 /* TCP/UDP Checksum has not been calculated */
3978 if (!(status & E1000_RXD_STAT_TCPCS))
3979 return;
3980
3981 /* It must be a TCP or UDP packet with a valid checksum */
3982 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3983 /* TCP checksum is good */
3984 skb->ip_summed = CHECKSUM_UNNECESSARY;
3985 }
3986 adapter->hw_csum_good++;
3987 }
3988
3989 /**
3990 * e1000_consume_page - helper function
3991 **/
3992 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3993 u16 length)
3994 {
3995 bi->page = NULL;
3996 skb->len += length;
3997 skb->data_len += length;
3998 skb->truesize += PAGE_SIZE;
3999 }
4000
4001 /**
4002 * e1000_receive_skb - helper function to handle rx indications
4003 * @adapter: board private structure
4004 * @status: descriptor status field as written by hardware
4005 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4006 * @skb: pointer to sk_buff to be indicated to stack
4007 */
4008 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4009 __le16 vlan, struct sk_buff *skb)
4010 {
4011 skb->protocol = eth_type_trans(skb, adapter->netdev);
4012
4013 if (status & E1000_RXD_STAT_VP) {
4014 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4015
4016 __vlan_hwaccel_put_tag(skb, vid);
4017 }
4018 napi_gro_receive(&adapter->napi, skb);
4019 }
4020
4021 /**
4022 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4023 * @adapter: board private structure
4024 * @rx_ring: ring to clean
4025 * @work_done: amount of napi work completed this call
4026 * @work_to_do: max amount of work allowed for this call to do
4027 *
4028 * the return value indicates whether actual cleaning was done, there
4029 * is no guarantee that everything was cleaned
4030 */
4031 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4032 struct e1000_rx_ring *rx_ring,
4033 int *work_done, int work_to_do)
4034 {
4035 struct e1000_hw *hw = &adapter->hw;
4036 struct net_device *netdev = adapter->netdev;
4037 struct pci_dev *pdev = adapter->pdev;
4038 struct e1000_rx_desc *rx_desc, *next_rxd;
4039 struct e1000_buffer *buffer_info, *next_buffer;
4040 unsigned long irq_flags;
4041 u32 length;
4042 unsigned int i;
4043 int cleaned_count = 0;
4044 bool cleaned = false;
4045 unsigned int total_rx_bytes=0, total_rx_packets=0;
4046
4047 i = rx_ring->next_to_clean;
4048 rx_desc = E1000_RX_DESC(*rx_ring, i);
4049 buffer_info = &rx_ring->buffer_info[i];
4050
4051 while (rx_desc->status & E1000_RXD_STAT_DD) {
4052 struct sk_buff *skb;
4053 u8 status;
4054
4055 if (*work_done >= work_to_do)
4056 break;
4057 (*work_done)++;
4058 rmb(); /* read descriptor and rx_buffer_info after status DD */
4059
4060 status = rx_desc->status;
4061 skb = buffer_info->skb;
4062 buffer_info->skb = NULL;
4063
4064 if (++i == rx_ring->count) i = 0;
4065 next_rxd = E1000_RX_DESC(*rx_ring, i);
4066 prefetch(next_rxd);
4067
4068 next_buffer = &rx_ring->buffer_info[i];
4069
4070 cleaned = true;
4071 cleaned_count++;
4072 dma_unmap_page(&pdev->dev, buffer_info->dma,
4073 buffer_info->length, DMA_FROM_DEVICE);
4074 buffer_info->dma = 0;
4075
4076 length = le16_to_cpu(rx_desc->length);
4077
4078 /* errors is only valid for DD + EOP descriptors */
4079 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4080 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4081 u8 *mapped;
4082 u8 last_byte;
4083
4084 mapped = page_address(buffer_info->page);
4085 last_byte = *(mapped + length - 1);
4086 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4087 last_byte)) {
4088 spin_lock_irqsave(&adapter->stats_lock,
4089 irq_flags);
4090 e1000_tbi_adjust_stats(hw, &adapter->stats,
4091 length, mapped);
4092 spin_unlock_irqrestore(&adapter->stats_lock,
4093 irq_flags);
4094 length--;
4095 } else {
4096 if (netdev->features & NETIF_F_RXALL)
4097 goto process_skb;
4098 /* recycle both page and skb */
4099 buffer_info->skb = skb;
4100 /* an error means any chain goes out the window
4101 * too */
4102 if (rx_ring->rx_skb_top)
4103 dev_kfree_skb(rx_ring->rx_skb_top);
4104 rx_ring->rx_skb_top = NULL;
4105 goto next_desc;
4106 }
4107 }
4108
4109 #define rxtop rx_ring->rx_skb_top
4110 process_skb:
4111 if (!(status & E1000_RXD_STAT_EOP)) {
4112 /* this descriptor is only the beginning (or middle) */
4113 if (!rxtop) {
4114 /* this is the beginning of a chain */
4115 rxtop = skb;
4116 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4117 0, length);
4118 } else {
4119 /* this is the middle of a chain */
4120 skb_fill_page_desc(rxtop,
4121 skb_shinfo(rxtop)->nr_frags,
4122 buffer_info->page, 0, length);
4123 /* re-use the skb, only consumed the page */
4124 buffer_info->skb = skb;
4125 }
4126 e1000_consume_page(buffer_info, rxtop, length);
4127 goto next_desc;
4128 } else {
4129 if (rxtop) {
4130 /* end of the chain */
4131 skb_fill_page_desc(rxtop,
4132 skb_shinfo(rxtop)->nr_frags,
4133 buffer_info->page, 0, length);
4134 /* re-use the current skb, we only consumed the
4135 * page */
4136 buffer_info->skb = skb;
4137 skb = rxtop;
4138 rxtop = NULL;
4139 e1000_consume_page(buffer_info, skb, length);
4140 } else {
4141 /* no chain, got EOP, this buf is the packet
4142 * copybreak to save the put_page/alloc_page */
4143 if (length <= copybreak &&
4144 skb_tailroom(skb) >= length) {
4145 u8 *vaddr;
4146 vaddr = kmap_atomic(buffer_info->page);
4147 memcpy(skb_tail_pointer(skb), vaddr, length);
4148 kunmap_atomic(vaddr);
4149 /* re-use the page, so don't erase
4150 * buffer_info->page */
4151 skb_put(skb, length);
4152 } else {
4153 skb_fill_page_desc(skb, 0,
4154 buffer_info->page, 0,
4155 length);
4156 e1000_consume_page(buffer_info, skb,
4157 length);
4158 }
4159 }
4160 }
4161
4162 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4163 e1000_rx_checksum(adapter,
4164 (u32)(status) |
4165 ((u32)(rx_desc->errors) << 24),
4166 le16_to_cpu(rx_desc->csum), skb);
4167
4168 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4169 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4170 pskb_trim(skb, skb->len - 4);
4171 total_rx_packets++;
4172
4173 /* eth type trans needs skb->data to point to something */
4174 if (!pskb_may_pull(skb, ETH_HLEN)) {
4175 e_err(drv, "pskb_may_pull failed.\n");
4176 dev_kfree_skb(skb);
4177 goto next_desc;
4178 }
4179
4180 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4181
4182 next_desc:
4183 rx_desc->status = 0;
4184
4185 /* return some buffers to hardware, one at a time is too slow */
4186 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4187 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4188 cleaned_count = 0;
4189 }
4190
4191 /* use prefetched values */
4192 rx_desc = next_rxd;
4193 buffer_info = next_buffer;
4194 }
4195 rx_ring->next_to_clean = i;
4196
4197 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4198 if (cleaned_count)
4199 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4200
4201 adapter->total_rx_packets += total_rx_packets;
4202 adapter->total_rx_bytes += total_rx_bytes;
4203 netdev->stats.rx_bytes += total_rx_bytes;
4204 netdev->stats.rx_packets += total_rx_packets;
4205 return cleaned;
4206 }
4207
4208 /*
4209 * this should improve performance for small packets with large amounts
4210 * of reassembly being done in the stack
4211 */
4212 static void e1000_check_copybreak(struct net_device *netdev,
4213 struct e1000_buffer *buffer_info,
4214 u32 length, struct sk_buff **skb)
4215 {
4216 struct sk_buff *new_skb;
4217
4218 if (length > copybreak)
4219 return;
4220
4221 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4222 if (!new_skb)
4223 return;
4224
4225 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4226 (*skb)->data - NET_IP_ALIGN,
4227 length + NET_IP_ALIGN);
4228 /* save the skb in buffer_info as good */
4229 buffer_info->skb = *skb;
4230 *skb = new_skb;
4231 }
4232
4233 /**
4234 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4235 * @adapter: board private structure
4236 * @rx_ring: ring to clean
4237 * @work_done: amount of napi work completed this call
4238 * @work_to_do: max amount of work allowed for this call to do
4239 */
4240 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4241 struct e1000_rx_ring *rx_ring,
4242 int *work_done, int work_to_do)
4243 {
4244 struct e1000_hw *hw = &adapter->hw;
4245 struct net_device *netdev = adapter->netdev;
4246 struct pci_dev *pdev = adapter->pdev;
4247 struct e1000_rx_desc *rx_desc, *next_rxd;
4248 struct e1000_buffer *buffer_info, *next_buffer;
4249 unsigned long flags;
4250 u32 length;
4251 unsigned int i;
4252 int cleaned_count = 0;
4253 bool cleaned = false;
4254 unsigned int total_rx_bytes=0, total_rx_packets=0;
4255
4256 i = rx_ring->next_to_clean;
4257 rx_desc = E1000_RX_DESC(*rx_ring, i);
4258 buffer_info = &rx_ring->buffer_info[i];
4259
4260 while (rx_desc->status & E1000_RXD_STAT_DD) {
4261 struct sk_buff *skb;
4262 u8 status;
4263
4264 if (*work_done >= work_to_do)
4265 break;
4266 (*work_done)++;
4267 rmb(); /* read descriptor and rx_buffer_info after status DD */
4268
4269 status = rx_desc->status;
4270 skb = buffer_info->skb;
4271 buffer_info->skb = NULL;
4272
4273 prefetch(skb->data - NET_IP_ALIGN);
4274
4275 if (++i == rx_ring->count) i = 0;
4276 next_rxd = E1000_RX_DESC(*rx_ring, i);
4277 prefetch(next_rxd);
4278
4279 next_buffer = &rx_ring->buffer_info[i];
4280
4281 cleaned = true;
4282 cleaned_count++;
4283 dma_unmap_single(&pdev->dev, buffer_info->dma,
4284 buffer_info->length, DMA_FROM_DEVICE);
4285 buffer_info->dma = 0;
4286
4287 length = le16_to_cpu(rx_desc->length);
4288 /* !EOP means multiple descriptors were used to store a single
4289 * packet, if thats the case we need to toss it. In fact, we
4290 * to toss every packet with the EOP bit clear and the next
4291 * frame that _does_ have the EOP bit set, as it is by
4292 * definition only a frame fragment
4293 */
4294 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4295 adapter->discarding = true;
4296
4297 if (adapter->discarding) {
4298 /* All receives must fit into a single buffer */
4299 e_dbg("Receive packet consumed multiple buffers\n");
4300 /* recycle */
4301 buffer_info->skb = skb;
4302 if (status & E1000_RXD_STAT_EOP)
4303 adapter->discarding = false;
4304 goto next_desc;
4305 }
4306
4307 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4308 u8 last_byte = *(skb->data + length - 1);
4309 if (TBI_ACCEPT(hw, status, rx_desc->errors, length,
4310 last_byte)) {
4311 spin_lock_irqsave(&adapter->stats_lock, flags);
4312 e1000_tbi_adjust_stats(hw, &adapter->stats,
4313 length, skb->data);
4314 spin_unlock_irqrestore(&adapter->stats_lock,
4315 flags);
4316 length--;
4317 } else {
4318 if (netdev->features & NETIF_F_RXALL)
4319 goto process_skb;
4320 /* recycle */
4321 buffer_info->skb = skb;
4322 goto next_desc;
4323 }
4324 }
4325
4326 process_skb:
4327 total_rx_bytes += (length - 4); /* don't count FCS */
4328 total_rx_packets++;
4329
4330 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4331 /* adjust length to remove Ethernet CRC, this must be
4332 * done after the TBI_ACCEPT workaround above
4333 */
4334 length -= 4;
4335
4336 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4337
4338 skb_put(skb, length);
4339
4340 /* Receive Checksum Offload */
4341 e1000_rx_checksum(adapter,
4342 (u32)(status) |
4343 ((u32)(rx_desc->errors) << 24),
4344 le16_to_cpu(rx_desc->csum), skb);
4345
4346 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4347
4348 next_desc:
4349 rx_desc->status = 0;
4350
4351 /* return some buffers to hardware, one at a time is too slow */
4352 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4353 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4354 cleaned_count = 0;
4355 }
4356
4357 /* use prefetched values */
4358 rx_desc = next_rxd;
4359 buffer_info = next_buffer;
4360 }
4361 rx_ring->next_to_clean = i;
4362
4363 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4364 if (cleaned_count)
4365 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4366
4367 adapter->total_rx_packets += total_rx_packets;
4368 adapter->total_rx_bytes += total_rx_bytes;
4369 netdev->stats.rx_bytes += total_rx_bytes;
4370 netdev->stats.rx_packets += total_rx_packets;
4371 return cleaned;
4372 }
4373
4374 /**
4375 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4376 * @adapter: address of board private structure
4377 * @rx_ring: pointer to receive ring structure
4378 * @cleaned_count: number of buffers to allocate this pass
4379 **/
4380
4381 static void
4382 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4383 struct e1000_rx_ring *rx_ring, int cleaned_count)
4384 {
4385 struct net_device *netdev = adapter->netdev;
4386 struct pci_dev *pdev = adapter->pdev;
4387 struct e1000_rx_desc *rx_desc;
4388 struct e1000_buffer *buffer_info;
4389 struct sk_buff *skb;
4390 unsigned int i;
4391 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4392
4393 i = rx_ring->next_to_use;
4394 buffer_info = &rx_ring->buffer_info[i];
4395
4396 while (cleaned_count--) {
4397 skb = buffer_info->skb;
4398 if (skb) {
4399 skb_trim(skb, 0);
4400 goto check_page;
4401 }
4402
4403 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4404 if (unlikely(!skb)) {
4405 /* Better luck next round */
4406 adapter->alloc_rx_buff_failed++;
4407 break;
4408 }
4409
4410 buffer_info->skb = skb;
4411 buffer_info->length = adapter->rx_buffer_len;
4412 check_page:
4413 /* allocate a new page if necessary */
4414 if (!buffer_info->page) {
4415 buffer_info->page = alloc_page(GFP_ATOMIC);
4416 if (unlikely(!buffer_info->page)) {
4417 adapter->alloc_rx_buff_failed++;
4418 break;
4419 }
4420 }
4421
4422 if (!buffer_info->dma) {
4423 buffer_info->dma = dma_map_page(&pdev->dev,
4424 buffer_info->page, 0,
4425 buffer_info->length,
4426 DMA_FROM_DEVICE);
4427 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4428 put_page(buffer_info->page);
4429 dev_kfree_skb(skb);
4430 buffer_info->page = NULL;
4431 buffer_info->skb = NULL;
4432 buffer_info->dma = 0;
4433 adapter->alloc_rx_buff_failed++;
4434 break; /* while !buffer_info->skb */
4435 }
4436 }
4437
4438 rx_desc = E1000_RX_DESC(*rx_ring, i);
4439 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4440
4441 if (unlikely(++i == rx_ring->count))
4442 i = 0;
4443 buffer_info = &rx_ring->buffer_info[i];
4444 }
4445
4446 if (likely(rx_ring->next_to_use != i)) {
4447 rx_ring->next_to_use = i;
4448 if (unlikely(i-- == 0))
4449 i = (rx_ring->count - 1);
4450
4451 /* Force memory writes to complete before letting h/w
4452 * know there are new descriptors to fetch. (Only
4453 * applicable for weak-ordered memory model archs,
4454 * such as IA-64). */
4455 wmb();
4456 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4457 }
4458 }
4459
4460 /**
4461 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4462 * @adapter: address of board private structure
4463 **/
4464
4465 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4466 struct e1000_rx_ring *rx_ring,
4467 int cleaned_count)
4468 {
4469 struct e1000_hw *hw = &adapter->hw;
4470 struct net_device *netdev = adapter->netdev;
4471 struct pci_dev *pdev = adapter->pdev;
4472 struct e1000_rx_desc *rx_desc;
4473 struct e1000_buffer *buffer_info;
4474 struct sk_buff *skb;
4475 unsigned int i;
4476 unsigned int bufsz = adapter->rx_buffer_len;
4477
4478 i = rx_ring->next_to_use;
4479 buffer_info = &rx_ring->buffer_info[i];
4480
4481 while (cleaned_count--) {
4482 skb = buffer_info->skb;
4483 if (skb) {
4484 skb_trim(skb, 0);
4485 goto map_skb;
4486 }
4487
4488 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4489 if (unlikely(!skb)) {
4490 /* Better luck next round */
4491 adapter->alloc_rx_buff_failed++;
4492 break;
4493 }
4494
4495 /* Fix for errata 23, can't cross 64kB boundary */
4496 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4497 struct sk_buff *oldskb = skb;
4498 e_err(rx_err, "skb align check failed: %u bytes at "
4499 "%p\n", bufsz, skb->data);
4500 /* Try again, without freeing the previous */
4501 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4502 /* Failed allocation, critical failure */
4503 if (!skb) {
4504 dev_kfree_skb(oldskb);
4505 adapter->alloc_rx_buff_failed++;
4506 break;
4507 }
4508
4509 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4510 /* give up */
4511 dev_kfree_skb(skb);
4512 dev_kfree_skb(oldskb);
4513 adapter->alloc_rx_buff_failed++;
4514 break; /* while !buffer_info->skb */
4515 }
4516
4517 /* Use new allocation */
4518 dev_kfree_skb(oldskb);
4519 }
4520 buffer_info->skb = skb;
4521 buffer_info->length = adapter->rx_buffer_len;
4522 map_skb:
4523 buffer_info->dma = dma_map_single(&pdev->dev,
4524 skb->data,
4525 buffer_info->length,
4526 DMA_FROM_DEVICE);
4527 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4528 dev_kfree_skb(skb);
4529 buffer_info->skb = NULL;
4530 buffer_info->dma = 0;
4531 adapter->alloc_rx_buff_failed++;
4532 break; /* while !buffer_info->skb */
4533 }
4534
4535 /*
4536 * XXX if it was allocated cleanly it will never map to a
4537 * boundary crossing
4538 */
4539
4540 /* Fix for errata 23, can't cross 64kB boundary */
4541 if (!e1000_check_64k_bound(adapter,
4542 (void *)(unsigned long)buffer_info->dma,
4543 adapter->rx_buffer_len)) {
4544 e_err(rx_err, "dma align check failed: %u bytes at "
4545 "%p\n", adapter->rx_buffer_len,
4546 (void *)(unsigned long)buffer_info->dma);
4547 dev_kfree_skb(skb);
4548 buffer_info->skb = NULL;
4549
4550 dma_unmap_single(&pdev->dev, buffer_info->dma,
4551 adapter->rx_buffer_len,
4552 DMA_FROM_DEVICE);
4553 buffer_info->dma = 0;
4554
4555 adapter->alloc_rx_buff_failed++;
4556 break; /* while !buffer_info->skb */
4557 }
4558 rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561 if (unlikely(++i == rx_ring->count))
4562 i = 0;
4563 buffer_info = &rx_ring->buffer_info[i];
4564 }
4565
4566 if (likely(rx_ring->next_to_use != i)) {
4567 rx_ring->next_to_use = i;
4568 if (unlikely(i-- == 0))
4569 i = (rx_ring->count - 1);
4570
4571 /* Force memory writes to complete before letting h/w
4572 * know there are new descriptors to fetch. (Only
4573 * applicable for weak-ordered memory model archs,
4574 * such as IA-64). */
4575 wmb();
4576 writel(i, hw->hw_addr + rx_ring->rdt);
4577 }
4578 }
4579
4580 /**
4581 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4582 * @adapter:
4583 **/
4584
4585 static void e1000_smartspeed(struct e1000_adapter *adapter)
4586 {
4587 struct e1000_hw *hw = &adapter->hw;
4588 u16 phy_status;
4589 u16 phy_ctrl;
4590
4591 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4592 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4593 return;
4594
4595 if (adapter->smartspeed == 0) {
4596 /* If Master/Slave config fault is asserted twice,
4597 * we assume back-to-back */
4598 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4599 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4600 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4601 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4602 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4603 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4604 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4605 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4606 phy_ctrl);
4607 adapter->smartspeed++;
4608 if (!e1000_phy_setup_autoneg(hw) &&
4609 !e1000_read_phy_reg(hw, PHY_CTRL,
4610 &phy_ctrl)) {
4611 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4612 MII_CR_RESTART_AUTO_NEG);
4613 e1000_write_phy_reg(hw, PHY_CTRL,
4614 phy_ctrl);
4615 }
4616 }
4617 return;
4618 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4619 /* If still no link, perhaps using 2/3 pair cable */
4620 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4621 phy_ctrl |= CR_1000T_MS_ENABLE;
4622 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4623 if (!e1000_phy_setup_autoneg(hw) &&
4624 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4625 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4626 MII_CR_RESTART_AUTO_NEG);
4627 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4628 }
4629 }
4630 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4631 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4632 adapter->smartspeed = 0;
4633 }
4634
4635 /**
4636 * e1000_ioctl -
4637 * @netdev:
4638 * @ifreq:
4639 * @cmd:
4640 **/
4641
4642 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4643 {
4644 switch (cmd) {
4645 case SIOCGMIIPHY:
4646 case SIOCGMIIREG:
4647 case SIOCSMIIREG:
4648 return e1000_mii_ioctl(netdev, ifr, cmd);
4649 default:
4650 return -EOPNOTSUPP;
4651 }
4652 }
4653
4654 /**
4655 * e1000_mii_ioctl -
4656 * @netdev:
4657 * @ifreq:
4658 * @cmd:
4659 **/
4660
4661 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4662 int cmd)
4663 {
4664 struct e1000_adapter *adapter = netdev_priv(netdev);
4665 struct e1000_hw *hw = &adapter->hw;
4666 struct mii_ioctl_data *data = if_mii(ifr);
4667 int retval;
4668 u16 mii_reg;
4669 unsigned long flags;
4670
4671 if (hw->media_type != e1000_media_type_copper)
4672 return -EOPNOTSUPP;
4673
4674 switch (cmd) {
4675 case SIOCGMIIPHY:
4676 data->phy_id = hw->phy_addr;
4677 break;
4678 case SIOCGMIIREG:
4679 spin_lock_irqsave(&adapter->stats_lock, flags);
4680 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4681 &data->val_out)) {
4682 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4683 return -EIO;
4684 }
4685 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4686 break;
4687 case SIOCSMIIREG:
4688 if (data->reg_num & ~(0x1F))
4689 return -EFAULT;
4690 mii_reg = data->val_in;
4691 spin_lock_irqsave(&adapter->stats_lock, flags);
4692 if (e1000_write_phy_reg(hw, data->reg_num,
4693 mii_reg)) {
4694 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4695 return -EIO;
4696 }
4697 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4698 if (hw->media_type == e1000_media_type_copper) {
4699 switch (data->reg_num) {
4700 case PHY_CTRL:
4701 if (mii_reg & MII_CR_POWER_DOWN)
4702 break;
4703 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4704 hw->autoneg = 1;
4705 hw->autoneg_advertised = 0x2F;
4706 } else {
4707 u32 speed;
4708 if (mii_reg & 0x40)
4709 speed = SPEED_1000;
4710 else if (mii_reg & 0x2000)
4711 speed = SPEED_100;
4712 else
4713 speed = SPEED_10;
4714 retval = e1000_set_spd_dplx(
4715 adapter, speed,
4716 ((mii_reg & 0x100)
4717 ? DUPLEX_FULL :
4718 DUPLEX_HALF));
4719 if (retval)
4720 return retval;
4721 }
4722 if (netif_running(adapter->netdev))
4723 e1000_reinit_locked(adapter);
4724 else
4725 e1000_reset(adapter);
4726 break;
4727 case M88E1000_PHY_SPEC_CTRL:
4728 case M88E1000_EXT_PHY_SPEC_CTRL:
4729 if (e1000_phy_reset(hw))
4730 return -EIO;
4731 break;
4732 }
4733 } else {
4734 switch (data->reg_num) {
4735 case PHY_CTRL:
4736 if (mii_reg & MII_CR_POWER_DOWN)
4737 break;
4738 if (netif_running(adapter->netdev))
4739 e1000_reinit_locked(adapter);
4740 else
4741 e1000_reset(adapter);
4742 break;
4743 }
4744 }
4745 break;
4746 default:
4747 return -EOPNOTSUPP;
4748 }
4749 return E1000_SUCCESS;
4750 }
4751
4752 void e1000_pci_set_mwi(struct e1000_hw *hw)
4753 {
4754 struct e1000_adapter *adapter = hw->back;
4755 int ret_val = pci_set_mwi(adapter->pdev);
4756
4757 if (ret_val)
4758 e_err(probe, "Error in setting MWI\n");
4759 }
4760
4761 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4762 {
4763 struct e1000_adapter *adapter = hw->back;
4764
4765 pci_clear_mwi(adapter->pdev);
4766 }
4767
4768 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4769 {
4770 struct e1000_adapter *adapter = hw->back;
4771 return pcix_get_mmrbc(adapter->pdev);
4772 }
4773
4774 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4775 {
4776 struct e1000_adapter *adapter = hw->back;
4777 pcix_set_mmrbc(adapter->pdev, mmrbc);
4778 }
4779
4780 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4781 {
4782 outl(value, port);
4783 }
4784
4785 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4786 {
4787 u16 vid;
4788
4789 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4790 return true;
4791 return false;
4792 }
4793
4794 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4795 netdev_features_t features)
4796 {
4797 struct e1000_hw *hw = &adapter->hw;
4798 u32 ctrl;
4799
4800 ctrl = er32(CTRL);
4801 if (features & NETIF_F_HW_VLAN_RX) {
4802 /* enable VLAN tag insert/strip */
4803 ctrl |= E1000_CTRL_VME;
4804 } else {
4805 /* disable VLAN tag insert/strip */
4806 ctrl &= ~E1000_CTRL_VME;
4807 }
4808 ew32(CTRL, ctrl);
4809 }
4810 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4811 bool filter_on)
4812 {
4813 struct e1000_hw *hw = &adapter->hw;
4814 u32 rctl;
4815
4816 if (!test_bit(__E1000_DOWN, &adapter->flags))
4817 e1000_irq_disable(adapter);
4818
4819 __e1000_vlan_mode(adapter, adapter->netdev->features);
4820 if (filter_on) {
4821 /* enable VLAN receive filtering */
4822 rctl = er32(RCTL);
4823 rctl &= ~E1000_RCTL_CFIEN;
4824 if (!(adapter->netdev->flags & IFF_PROMISC))
4825 rctl |= E1000_RCTL_VFE;
4826 ew32(RCTL, rctl);
4827 e1000_update_mng_vlan(adapter);
4828 } else {
4829 /* disable VLAN receive filtering */
4830 rctl = er32(RCTL);
4831 rctl &= ~E1000_RCTL_VFE;
4832 ew32(RCTL, rctl);
4833 }
4834
4835 if (!test_bit(__E1000_DOWN, &adapter->flags))
4836 e1000_irq_enable(adapter);
4837 }
4838
4839 static void e1000_vlan_mode(struct net_device *netdev,
4840 netdev_features_t features)
4841 {
4842 struct e1000_adapter *adapter = netdev_priv(netdev);
4843
4844 if (!test_bit(__E1000_DOWN, &adapter->flags))
4845 e1000_irq_disable(adapter);
4846
4847 __e1000_vlan_mode(adapter, features);
4848
4849 if (!test_bit(__E1000_DOWN, &adapter->flags))
4850 e1000_irq_enable(adapter);
4851 }
4852
4853 static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
4854 {
4855 struct e1000_adapter *adapter = netdev_priv(netdev);
4856 struct e1000_hw *hw = &adapter->hw;
4857 u32 vfta, index;
4858
4859 if ((hw->mng_cookie.status &
4860 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4861 (vid == adapter->mng_vlan_id))
4862 return 0;
4863
4864 if (!e1000_vlan_used(adapter))
4865 e1000_vlan_filter_on_off(adapter, true);
4866
4867 /* add VID to filter table */
4868 index = (vid >> 5) & 0x7F;
4869 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4870 vfta |= (1 << (vid & 0x1F));
4871 e1000_write_vfta(hw, index, vfta);
4872
4873 set_bit(vid, adapter->active_vlans);
4874
4875 return 0;
4876 }
4877
4878 static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
4879 {
4880 struct e1000_adapter *adapter = netdev_priv(netdev);
4881 struct e1000_hw *hw = &adapter->hw;
4882 u32 vfta, index;
4883
4884 if (!test_bit(__E1000_DOWN, &adapter->flags))
4885 e1000_irq_disable(adapter);
4886 if (!test_bit(__E1000_DOWN, &adapter->flags))
4887 e1000_irq_enable(adapter);
4888
4889 /* remove VID from filter table */
4890 index = (vid >> 5) & 0x7F;
4891 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4892 vfta &= ~(1 << (vid & 0x1F));
4893 e1000_write_vfta(hw, index, vfta);
4894
4895 clear_bit(vid, adapter->active_vlans);
4896
4897 if (!e1000_vlan_used(adapter))
4898 e1000_vlan_filter_on_off(adapter, false);
4899
4900 return 0;
4901 }
4902
4903 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4904 {
4905 u16 vid;
4906
4907 if (!e1000_vlan_used(adapter))
4908 return;
4909
4910 e1000_vlan_filter_on_off(adapter, true);
4911 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4912 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4913 }
4914
4915 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4916 {
4917 struct e1000_hw *hw = &adapter->hw;
4918
4919 hw->autoneg = 0;
4920
4921 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4922 * for the switch() below to work */
4923 if ((spd & 1) || (dplx & ~1))
4924 goto err_inval;
4925
4926 /* Fiber NICs only allow 1000 gbps Full duplex */
4927 if ((hw->media_type == e1000_media_type_fiber) &&
4928 spd != SPEED_1000 &&
4929 dplx != DUPLEX_FULL)
4930 goto err_inval;
4931
4932 switch (spd + dplx) {
4933 case SPEED_10 + DUPLEX_HALF:
4934 hw->forced_speed_duplex = e1000_10_half;
4935 break;
4936 case SPEED_10 + DUPLEX_FULL:
4937 hw->forced_speed_duplex = e1000_10_full;
4938 break;
4939 case SPEED_100 + DUPLEX_HALF:
4940 hw->forced_speed_duplex = e1000_100_half;
4941 break;
4942 case SPEED_100 + DUPLEX_FULL:
4943 hw->forced_speed_duplex = e1000_100_full;
4944 break;
4945 case SPEED_1000 + DUPLEX_FULL:
4946 hw->autoneg = 1;
4947 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4948 break;
4949 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4950 default:
4951 goto err_inval;
4952 }
4953
4954 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4955 hw->mdix = AUTO_ALL_MODES;
4956
4957 return 0;
4958
4959 err_inval:
4960 e_err(probe, "Unsupported Speed/Duplex configuration\n");
4961 return -EINVAL;
4962 }
4963
4964 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
4965 {
4966 struct net_device *netdev = pci_get_drvdata(pdev);
4967 struct e1000_adapter *adapter = netdev_priv(netdev);
4968 struct e1000_hw *hw = &adapter->hw;
4969 u32 ctrl, ctrl_ext, rctl, status;
4970 u32 wufc = adapter->wol;
4971 #ifdef CONFIG_PM
4972 int retval = 0;
4973 #endif
4974
4975 netif_device_detach(netdev);
4976
4977 if (netif_running(netdev)) {
4978 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4979 e1000_down(adapter);
4980 }
4981
4982 #ifdef CONFIG_PM
4983 retval = pci_save_state(pdev);
4984 if (retval)
4985 return retval;
4986 #endif
4987
4988 status = er32(STATUS);
4989 if (status & E1000_STATUS_LU)
4990 wufc &= ~E1000_WUFC_LNKC;
4991
4992 if (wufc) {
4993 e1000_setup_rctl(adapter);
4994 e1000_set_rx_mode(netdev);
4995
4996 rctl = er32(RCTL);
4997
4998 /* turn on all-multi mode if wake on multicast is enabled */
4999 if (wufc & E1000_WUFC_MC)
5000 rctl |= E1000_RCTL_MPE;
5001
5002 /* enable receives in the hardware */
5003 ew32(RCTL, rctl | E1000_RCTL_EN);
5004
5005 if (hw->mac_type >= e1000_82540) {
5006 ctrl = er32(CTRL);
5007 /* advertise wake from D3Cold */
5008 #define E1000_CTRL_ADVD3WUC 0x00100000
5009 /* phy power management enable */
5010 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5011 ctrl |= E1000_CTRL_ADVD3WUC |
5012 E1000_CTRL_EN_PHY_PWR_MGMT;
5013 ew32(CTRL, ctrl);
5014 }
5015
5016 if (hw->media_type == e1000_media_type_fiber ||
5017 hw->media_type == e1000_media_type_internal_serdes) {
5018 /* keep the laser running in D3 */
5019 ctrl_ext = er32(CTRL_EXT);
5020 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5021 ew32(CTRL_EXT, ctrl_ext);
5022 }
5023
5024 ew32(WUC, E1000_WUC_PME_EN);
5025 ew32(WUFC, wufc);
5026 } else {
5027 ew32(WUC, 0);
5028 ew32(WUFC, 0);
5029 }
5030
5031 e1000_release_manageability(adapter);
5032
5033 *enable_wake = !!wufc;
5034
5035 /* make sure adapter isn't asleep if manageability is enabled */
5036 if (adapter->en_mng_pt)
5037 *enable_wake = true;
5038
5039 if (netif_running(netdev))
5040 e1000_free_irq(adapter);
5041
5042 pci_disable_device(pdev);
5043
5044 return 0;
5045 }
5046
5047 #ifdef CONFIG_PM
5048 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5049 {
5050 int retval;
5051 bool wake;
5052
5053 retval = __e1000_shutdown(pdev, &wake);
5054 if (retval)
5055 return retval;
5056
5057 if (wake) {
5058 pci_prepare_to_sleep(pdev);
5059 } else {
5060 pci_wake_from_d3(pdev, false);
5061 pci_set_power_state(pdev, PCI_D3hot);
5062 }
5063
5064 return 0;
5065 }
5066
5067 static int e1000_resume(struct pci_dev *pdev)
5068 {
5069 struct net_device *netdev = pci_get_drvdata(pdev);
5070 struct e1000_adapter *adapter = netdev_priv(netdev);
5071 struct e1000_hw *hw = &adapter->hw;
5072 u32 err;
5073
5074 pci_set_power_state(pdev, PCI_D0);
5075 pci_restore_state(pdev);
5076 pci_save_state(pdev);
5077
5078 if (adapter->need_ioport)
5079 err = pci_enable_device(pdev);
5080 else
5081 err = pci_enable_device_mem(pdev);
5082 if (err) {
5083 pr_err("Cannot enable PCI device from suspend\n");
5084 return err;
5085 }
5086 pci_set_master(pdev);
5087
5088 pci_enable_wake(pdev, PCI_D3hot, 0);
5089 pci_enable_wake(pdev, PCI_D3cold, 0);
5090
5091 if (netif_running(netdev)) {
5092 err = e1000_request_irq(adapter);
5093 if (err)
5094 return err;
5095 }
5096
5097 e1000_power_up_phy(adapter);
5098 e1000_reset(adapter);
5099 ew32(WUS, ~0);
5100
5101 e1000_init_manageability(adapter);
5102
5103 if (netif_running(netdev))
5104 e1000_up(adapter);
5105
5106 netif_device_attach(netdev);
5107
5108 return 0;
5109 }
5110 #endif
5111
5112 static void e1000_shutdown(struct pci_dev *pdev)
5113 {
5114 bool wake;
5115
5116 __e1000_shutdown(pdev, &wake);
5117
5118 if (system_state == SYSTEM_POWER_OFF) {
5119 pci_wake_from_d3(pdev, wake);
5120 pci_set_power_state(pdev, PCI_D3hot);
5121 }
5122 }
5123
5124 #ifdef CONFIG_NET_POLL_CONTROLLER
5125 /*
5126 * Polling 'interrupt' - used by things like netconsole to send skbs
5127 * without having to re-enable interrupts. It's not called while
5128 * the interrupt routine is executing.
5129 */
5130 static void e1000_netpoll(struct net_device *netdev)
5131 {
5132 struct e1000_adapter *adapter = netdev_priv(netdev);
5133
5134 disable_irq(adapter->pdev->irq);
5135 e1000_intr(adapter->pdev->irq, netdev);
5136 enable_irq(adapter->pdev->irq);
5137 }
5138 #endif
5139
5140 /**
5141 * e1000_io_error_detected - called when PCI error is detected
5142 * @pdev: Pointer to PCI device
5143 * @state: The current pci connection state
5144 *
5145 * This function is called after a PCI bus error affecting
5146 * this device has been detected.
5147 */
5148 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5149 pci_channel_state_t state)
5150 {
5151 struct net_device *netdev = pci_get_drvdata(pdev);
5152 struct e1000_adapter *adapter = netdev_priv(netdev);
5153
5154 netif_device_detach(netdev);
5155
5156 if (state == pci_channel_io_perm_failure)
5157 return PCI_ERS_RESULT_DISCONNECT;
5158
5159 if (netif_running(netdev))
5160 e1000_down(adapter);
5161 pci_disable_device(pdev);
5162
5163 /* Request a slot slot reset. */
5164 return PCI_ERS_RESULT_NEED_RESET;
5165 }
5166
5167 /**
5168 * e1000_io_slot_reset - called after the pci bus has been reset.
5169 * @pdev: Pointer to PCI device
5170 *
5171 * Restart the card from scratch, as if from a cold-boot. Implementation
5172 * resembles the first-half of the e1000_resume routine.
5173 */
5174 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5175 {
5176 struct net_device *netdev = pci_get_drvdata(pdev);
5177 struct e1000_adapter *adapter = netdev_priv(netdev);
5178 struct e1000_hw *hw = &adapter->hw;
5179 int err;
5180
5181 if (adapter->need_ioport)
5182 err = pci_enable_device(pdev);
5183 else
5184 err = pci_enable_device_mem(pdev);
5185 if (err) {
5186 pr_err("Cannot re-enable PCI device after reset.\n");
5187 return PCI_ERS_RESULT_DISCONNECT;
5188 }
5189 pci_set_master(pdev);
5190
5191 pci_enable_wake(pdev, PCI_D3hot, 0);
5192 pci_enable_wake(pdev, PCI_D3cold, 0);
5193
5194 e1000_reset(adapter);
5195 ew32(WUS, ~0);
5196
5197 return PCI_ERS_RESULT_RECOVERED;
5198 }
5199
5200 /**
5201 * e1000_io_resume - called when traffic can start flowing again.
5202 * @pdev: Pointer to PCI device
5203 *
5204 * This callback is called when the error recovery driver tells us that
5205 * its OK to resume normal operation. Implementation resembles the
5206 * second-half of the e1000_resume routine.
5207 */
5208 static void e1000_io_resume(struct pci_dev *pdev)
5209 {
5210 struct net_device *netdev = pci_get_drvdata(pdev);
5211 struct e1000_adapter *adapter = netdev_priv(netdev);
5212
5213 e1000_init_manageability(adapter);
5214
5215 if (netif_running(netdev)) {
5216 if (e1000_up(adapter)) {
5217 pr_info("can't bring device back up after reset\n");
5218 return;
5219 }
5220 }
5221
5222 netif_device_attach(netdev);
5223 }
5224
5225 /* e1000_main.c */
This page took 0.139223 seconds and 4 git commands to generate.