e1000: move tbi workaround code into helper function
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
1 /*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30 #include <net/ip6_checksum.h>
31 #include <linux/io.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
35
36 char e1000_driver_name[] = "e1000";
37 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
38 #define DRV_VERSION "7.3.21-k8-NAPI"
39 const char e1000_driver_version[] = DRV_VERSION;
40 static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
49 static const struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
87 /* required last entry */
88 {0,}
89 };
90
91 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
93 int e1000_up(struct e1000_adapter *adapter);
94 void e1000_down(struct e1000_adapter *adapter);
95 void e1000_reinit_locked(struct e1000_adapter *adapter);
96 void e1000_reset(struct e1000_adapter *adapter);
97 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
101 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
102 struct e1000_tx_ring *txdr);
103 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
104 struct e1000_rx_ring *rxdr);
105 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
106 struct e1000_tx_ring *tx_ring);
107 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
108 struct e1000_rx_ring *rx_ring);
109 void e1000_update_stats(struct e1000_adapter *adapter);
110
111 static int e1000_init_module(void);
112 static void e1000_exit_module(void);
113 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
114 static void e1000_remove(struct pci_dev *pdev);
115 static int e1000_alloc_queues(struct e1000_adapter *adapter);
116 static int e1000_sw_init(struct e1000_adapter *adapter);
117 static int e1000_open(struct net_device *netdev);
118 static int e1000_close(struct net_device *netdev);
119 static void e1000_configure_tx(struct e1000_adapter *adapter);
120 static void e1000_configure_rx(struct e1000_adapter *adapter);
121 static void e1000_setup_rctl(struct e1000_adapter *adapter);
122 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
125 struct e1000_tx_ring *tx_ring);
126 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
127 struct e1000_rx_ring *rx_ring);
128 static void e1000_set_rx_mode(struct net_device *netdev);
129 static void e1000_update_phy_info_task(struct work_struct *work);
130 static void e1000_watchdog(struct work_struct *work);
131 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
132 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
134 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
135 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136 static int e1000_set_mac(struct net_device *netdev, void *p);
137 static irqreturn_t e1000_intr(int irq, void *data);
138 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140 static int e1000_clean(struct napi_struct *napi, int budget);
141 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count);
150 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
151 struct e1000_rx_ring *rx_ring,
152 int cleaned_count);
153 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
154 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
155 int cmd);
156 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
157 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
158 static void e1000_tx_timeout(struct net_device *dev);
159 static void e1000_reset_task(struct work_struct *work);
160 static void e1000_smartspeed(struct e1000_adapter *adapter);
161 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
162 struct sk_buff *skb);
163
164 static bool e1000_vlan_used(struct e1000_adapter *adapter);
165 static void e1000_vlan_mode(struct net_device *netdev,
166 netdev_features_t features);
167 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
168 bool filter_on);
169 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
170 __be16 proto, u16 vid);
171 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
172 __be16 proto, u16 vid);
173 static void e1000_restore_vlan(struct e1000_adapter *adapter);
174
175 #ifdef CONFIG_PM
176 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
177 static int e1000_resume(struct pci_dev *pdev);
178 #endif
179 static void e1000_shutdown(struct pci_dev *pdev);
180
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device *netdev);
184 #endif
185
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
188 module_param(copybreak, uint, 0644);
189 MODULE_PARM_DESC(copybreak,
190 "Maximum size of packet that is copied to a new buffer on receive");
191
192 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
193 pci_channel_state_t state);
194 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
195 static void e1000_io_resume(struct pci_dev *pdev);
196
197 static const struct pci_error_handlers e1000_err_handler = {
198 .error_detected = e1000_io_error_detected,
199 .slot_reset = e1000_io_slot_reset,
200 .resume = e1000_io_resume,
201 };
202
203 static struct pci_driver e1000_driver = {
204 .name = e1000_driver_name,
205 .id_table = e1000_pci_tbl,
206 .probe = e1000_probe,
207 .remove = e1000_remove,
208 #ifdef CONFIG_PM
209 /* Power Management Hooks */
210 .suspend = e1000_suspend,
211 .resume = e1000_resume,
212 #endif
213 .shutdown = e1000_shutdown,
214 .err_handler = &e1000_err_handler
215 };
216
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION);
221
222 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
223 static int debug = -1;
224 module_param(debug, int, 0);
225 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
226
227 /**
228 * e1000_get_hw_dev - return device
229 * used by hardware layer to print debugging information
230 *
231 **/
232 struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
233 {
234 struct e1000_adapter *adapter = hw->back;
235 return adapter->netdev;
236 }
237
238 /**
239 * e1000_init_module - Driver Registration Routine
240 *
241 * e1000_init_module is the first routine called when the driver is
242 * loaded. All it does is register with the PCI subsystem.
243 **/
244 static int __init e1000_init_module(void)
245 {
246 int ret;
247 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
248
249 pr_info("%s\n", e1000_copyright);
250
251 ret = pci_register_driver(&e1000_driver);
252 if (copybreak != COPYBREAK_DEFAULT) {
253 if (copybreak == 0)
254 pr_info("copybreak disabled\n");
255 else
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak);
258 }
259 return ret;
260 }
261
262 module_init(e1000_init_module);
263
264 /**
265 * e1000_exit_module - Driver Exit Cleanup Routine
266 *
267 * e1000_exit_module is called just before the driver is removed
268 * from memory.
269 **/
270 static void __exit e1000_exit_module(void)
271 {
272 pci_unregister_driver(&e1000_driver);
273 }
274
275 module_exit(e1000_exit_module);
276
277 static int e1000_request_irq(struct e1000_adapter *adapter)
278 {
279 struct net_device *netdev = adapter->netdev;
280 irq_handler_t handler = e1000_intr;
281 int irq_flags = IRQF_SHARED;
282 int err;
283
284 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
285 netdev);
286 if (err) {
287 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
288 }
289
290 return err;
291 }
292
293 static void e1000_free_irq(struct e1000_adapter *adapter)
294 {
295 struct net_device *netdev = adapter->netdev;
296
297 free_irq(adapter->pdev->irq, netdev);
298 }
299
300 /**
301 * e1000_irq_disable - Mask off interrupt generation on the NIC
302 * @adapter: board private structure
303 **/
304 static void e1000_irq_disable(struct e1000_adapter *adapter)
305 {
306 struct e1000_hw *hw = &adapter->hw;
307
308 ew32(IMC, ~0);
309 E1000_WRITE_FLUSH();
310 synchronize_irq(adapter->pdev->irq);
311 }
312
313 /**
314 * e1000_irq_enable - Enable default interrupt generation settings
315 * @adapter: board private structure
316 **/
317 static void e1000_irq_enable(struct e1000_adapter *adapter)
318 {
319 struct e1000_hw *hw = &adapter->hw;
320
321 ew32(IMS, IMS_ENABLE_MASK);
322 E1000_WRITE_FLUSH();
323 }
324
325 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
326 {
327 struct e1000_hw *hw = &adapter->hw;
328 struct net_device *netdev = adapter->netdev;
329 u16 vid = hw->mng_cookie.vlan_id;
330 u16 old_vid = adapter->mng_vlan_id;
331
332 if (!e1000_vlan_used(adapter))
333 return;
334
335 if (!test_bit(vid, adapter->active_vlans)) {
336 if (hw->mng_cookie.status &
337 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
338 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
339 adapter->mng_vlan_id = vid;
340 } else {
341 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
342 }
343 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
344 (vid != old_vid) &&
345 !test_bit(old_vid, adapter->active_vlans))
346 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
347 old_vid);
348 } else {
349 adapter->mng_vlan_id = vid;
350 }
351 }
352
353 static void e1000_init_manageability(struct e1000_adapter *adapter)
354 {
355 struct e1000_hw *hw = &adapter->hw;
356
357 if (adapter->en_mng_pt) {
358 u32 manc = er32(MANC);
359
360 /* disable hardware interception of ARP */
361 manc &= ~(E1000_MANC_ARP_EN);
362
363 ew32(MANC, manc);
364 }
365 }
366
367 static void e1000_release_manageability(struct e1000_adapter *adapter)
368 {
369 struct e1000_hw *hw = &adapter->hw;
370
371 if (adapter->en_mng_pt) {
372 u32 manc = er32(MANC);
373
374 /* re-enable hardware interception of ARP */
375 manc |= E1000_MANC_ARP_EN;
376
377 ew32(MANC, manc);
378 }
379 }
380
381 /**
382 * e1000_configure - configure the hardware for RX and TX
383 * @adapter = private board structure
384 **/
385 static void e1000_configure(struct e1000_adapter *adapter)
386 {
387 struct net_device *netdev = adapter->netdev;
388 int i;
389
390 e1000_set_rx_mode(netdev);
391
392 e1000_restore_vlan(adapter);
393 e1000_init_manageability(adapter);
394
395 e1000_configure_tx(adapter);
396 e1000_setup_rctl(adapter);
397 e1000_configure_rx(adapter);
398 /* call E1000_DESC_UNUSED which always leaves
399 * at least 1 descriptor unused to make sure
400 * next_to_use != next_to_clean
401 */
402 for (i = 0; i < adapter->num_rx_queues; i++) {
403 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
404 adapter->alloc_rx_buf(adapter, ring,
405 E1000_DESC_UNUSED(ring));
406 }
407 }
408
409 int e1000_up(struct e1000_adapter *adapter)
410 {
411 struct e1000_hw *hw = &adapter->hw;
412
413 /* hardware has been reset, we need to reload some things */
414 e1000_configure(adapter);
415
416 clear_bit(__E1000_DOWN, &adapter->flags);
417
418 napi_enable(&adapter->napi);
419
420 e1000_irq_enable(adapter);
421
422 netif_wake_queue(adapter->netdev);
423
424 /* fire a link change interrupt to start the watchdog */
425 ew32(ICS, E1000_ICS_LSC);
426 return 0;
427 }
428
429 /**
430 * e1000_power_up_phy - restore link in case the phy was powered down
431 * @adapter: address of board private structure
432 *
433 * The phy may be powered down to save power and turn off link when the
434 * driver is unloaded and wake on lan is not enabled (among others)
435 * *** this routine MUST be followed by a call to e1000_reset ***
436 **/
437 void e1000_power_up_phy(struct e1000_adapter *adapter)
438 {
439 struct e1000_hw *hw = &adapter->hw;
440 u16 mii_reg = 0;
441
442 /* Just clear the power down bit to wake the phy back up */
443 if (hw->media_type == e1000_media_type_copper) {
444 /* according to the manual, the phy will retain its
445 * settings across a power-down/up cycle
446 */
447 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
448 mii_reg &= ~MII_CR_POWER_DOWN;
449 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
450 }
451 }
452
453 static void e1000_power_down_phy(struct e1000_adapter *adapter)
454 {
455 struct e1000_hw *hw = &adapter->hw;
456
457 /* Power down the PHY so no link is implied when interface is down *
458 * The PHY cannot be powered down if any of the following is true *
459 * (a) WoL is enabled
460 * (b) AMT is active
461 * (c) SoL/IDER session is active
462 */
463 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
464 hw->media_type == e1000_media_type_copper) {
465 u16 mii_reg = 0;
466
467 switch (hw->mac_type) {
468 case e1000_82540:
469 case e1000_82545:
470 case e1000_82545_rev_3:
471 case e1000_82546:
472 case e1000_ce4100:
473 case e1000_82546_rev_3:
474 case e1000_82541:
475 case e1000_82541_rev_2:
476 case e1000_82547:
477 case e1000_82547_rev_2:
478 if (er32(MANC) & E1000_MANC_SMBUS_EN)
479 goto out;
480 break;
481 default:
482 goto out;
483 }
484 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
485 mii_reg |= MII_CR_POWER_DOWN;
486 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
487 msleep(1);
488 }
489 out:
490 return;
491 }
492
493 static void e1000_down_and_stop(struct e1000_adapter *adapter)
494 {
495 set_bit(__E1000_DOWN, &adapter->flags);
496
497 cancel_delayed_work_sync(&adapter->watchdog_task);
498
499 /*
500 * Since the watchdog task can reschedule other tasks, we should cancel
501 * it first, otherwise we can run into the situation when a work is
502 * still running after the adapter has been turned down.
503 */
504
505 cancel_delayed_work_sync(&adapter->phy_info_task);
506 cancel_delayed_work_sync(&adapter->fifo_stall_task);
507
508 /* Only kill reset task if adapter is not resetting */
509 if (!test_bit(__E1000_RESETTING, &adapter->flags))
510 cancel_work_sync(&adapter->reset_task);
511 }
512
513 void e1000_down(struct e1000_adapter *adapter)
514 {
515 struct e1000_hw *hw = &adapter->hw;
516 struct net_device *netdev = adapter->netdev;
517 u32 rctl, tctl;
518
519
520 /* disable receives in the hardware */
521 rctl = er32(RCTL);
522 ew32(RCTL, rctl & ~E1000_RCTL_EN);
523 /* flush and sleep below */
524
525 netif_tx_disable(netdev);
526
527 /* disable transmits in the hardware */
528 tctl = er32(TCTL);
529 tctl &= ~E1000_TCTL_EN;
530 ew32(TCTL, tctl);
531 /* flush both disables and wait for them to finish */
532 E1000_WRITE_FLUSH();
533 msleep(10);
534
535 napi_disable(&adapter->napi);
536
537 e1000_irq_disable(adapter);
538
539 /* Setting DOWN must be after irq_disable to prevent
540 * a screaming interrupt. Setting DOWN also prevents
541 * tasks from rescheduling.
542 */
543 e1000_down_and_stop(adapter);
544
545 adapter->link_speed = 0;
546 adapter->link_duplex = 0;
547 netif_carrier_off(netdev);
548
549 e1000_reset(adapter);
550 e1000_clean_all_tx_rings(adapter);
551 e1000_clean_all_rx_rings(adapter);
552 }
553
554 void e1000_reinit_locked(struct e1000_adapter *adapter)
555 {
556 WARN_ON(in_interrupt());
557 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
558 msleep(1);
559 e1000_down(adapter);
560 e1000_up(adapter);
561 clear_bit(__E1000_RESETTING, &adapter->flags);
562 }
563
564 void e1000_reset(struct e1000_adapter *adapter)
565 {
566 struct e1000_hw *hw = &adapter->hw;
567 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
568 bool legacy_pba_adjust = false;
569 u16 hwm;
570
571 /* Repartition Pba for greater than 9k mtu
572 * To take effect CTRL.RST is required.
573 */
574
575 switch (hw->mac_type) {
576 case e1000_82542_rev2_0:
577 case e1000_82542_rev2_1:
578 case e1000_82543:
579 case e1000_82544:
580 case e1000_82540:
581 case e1000_82541:
582 case e1000_82541_rev_2:
583 legacy_pba_adjust = true;
584 pba = E1000_PBA_48K;
585 break;
586 case e1000_82545:
587 case e1000_82545_rev_3:
588 case e1000_82546:
589 case e1000_ce4100:
590 case e1000_82546_rev_3:
591 pba = E1000_PBA_48K;
592 break;
593 case e1000_82547:
594 case e1000_82547_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_30K;
597 break;
598 case e1000_undefined:
599 case e1000_num_macs:
600 break;
601 }
602
603 if (legacy_pba_adjust) {
604 if (hw->max_frame_size > E1000_RXBUFFER_8192)
605 pba -= 8; /* allocate more FIFO for Tx */
606
607 if (hw->mac_type == e1000_82547) {
608 adapter->tx_fifo_head = 0;
609 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
610 adapter->tx_fifo_size =
611 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
612 atomic_set(&adapter->tx_fifo_stall, 0);
613 }
614 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
615 /* adjust PBA for jumbo frames */
616 ew32(PBA, pba);
617
618 /* To maintain wire speed transmits, the Tx FIFO should be
619 * large enough to accommodate two full transmit packets,
620 * rounded up to the next 1KB and expressed in KB. Likewise,
621 * the Rx FIFO should be large enough to accommodate at least
622 * one full receive packet and is similarly rounded up and
623 * expressed in KB.
624 */
625 pba = er32(PBA);
626 /* upper 16 bits has Tx packet buffer allocation size in KB */
627 tx_space = pba >> 16;
628 /* lower 16 bits has Rx packet buffer allocation size in KB */
629 pba &= 0xffff;
630 /* the Tx fifo also stores 16 bytes of information about the Tx
631 * but don't include ethernet FCS because hardware appends it
632 */
633 min_tx_space = (hw->max_frame_size +
634 sizeof(struct e1000_tx_desc) -
635 ETH_FCS_LEN) * 2;
636 min_tx_space = ALIGN(min_tx_space, 1024);
637 min_tx_space >>= 10;
638 /* software strips receive CRC, so leave room for it */
639 min_rx_space = hw->max_frame_size;
640 min_rx_space = ALIGN(min_rx_space, 1024);
641 min_rx_space >>= 10;
642
643 /* If current Tx allocation is less than the min Tx FIFO size,
644 * and the min Tx FIFO size is less than the current Rx FIFO
645 * allocation, take space away from current Rx allocation
646 */
647 if (tx_space < min_tx_space &&
648 ((min_tx_space - tx_space) < pba)) {
649 pba = pba - (min_tx_space - tx_space);
650
651 /* PCI/PCIx hardware has PBA alignment constraints */
652 switch (hw->mac_type) {
653 case e1000_82545 ... e1000_82546_rev_3:
654 pba &= ~(E1000_PBA_8K - 1);
655 break;
656 default:
657 break;
658 }
659
660 /* if short on Rx space, Rx wins and must trump Tx
661 * adjustment or use Early Receive if available
662 */
663 if (pba < min_rx_space)
664 pba = min_rx_space;
665 }
666 }
667
668 ew32(PBA, pba);
669
670 /* flow control settings:
671 * The high water mark must be low enough to fit one full frame
672 * (or the size used for early receive) above it in the Rx FIFO.
673 * Set it to the lower of:
674 * - 90% of the Rx FIFO size, and
675 * - the full Rx FIFO size minus the early receive size (for parts
676 * with ERT support assuming ERT set to E1000_ERT_2048), or
677 * - the full Rx FIFO size minus one full frame
678 */
679 hwm = min(((pba << 10) * 9 / 10),
680 ((pba << 10) - hw->max_frame_size));
681
682 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
683 hw->fc_low_water = hw->fc_high_water - 8;
684 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
685 hw->fc_send_xon = 1;
686 hw->fc = hw->original_fc;
687
688 /* Allow time for pending master requests to run */
689 e1000_reset_hw(hw);
690 if (hw->mac_type >= e1000_82544)
691 ew32(WUC, 0);
692
693 if (e1000_init_hw(hw))
694 e_dev_err("Hardware Error\n");
695 e1000_update_mng_vlan(adapter);
696
697 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
698 if (hw->mac_type >= e1000_82544 &&
699 hw->autoneg == 1 &&
700 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
701 u32 ctrl = er32(CTRL);
702 /* clear phy power management bit if we are in gig only mode,
703 * which if enabled will attempt negotiation to 100Mb, which
704 * can cause a loss of link at power off or driver unload
705 */
706 ctrl &= ~E1000_CTRL_SWDPIN3;
707 ew32(CTRL, ctrl);
708 }
709
710 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
711 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
712
713 e1000_reset_adaptive(hw);
714 e1000_phy_get_info(hw, &adapter->phy_info);
715
716 e1000_release_manageability(adapter);
717 }
718
719 /* Dump the eeprom for users having checksum issues */
720 static void e1000_dump_eeprom(struct e1000_adapter *adapter)
721 {
722 struct net_device *netdev = adapter->netdev;
723 struct ethtool_eeprom eeprom;
724 const struct ethtool_ops *ops = netdev->ethtool_ops;
725 u8 *data;
726 int i;
727 u16 csum_old, csum_new = 0;
728
729 eeprom.len = ops->get_eeprom_len(netdev);
730 eeprom.offset = 0;
731
732 data = kmalloc(eeprom.len, GFP_KERNEL);
733 if (!data)
734 return;
735
736 ops->get_eeprom(netdev, &eeprom, data);
737
738 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
739 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
740 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
741 csum_new += data[i] + (data[i + 1] << 8);
742 csum_new = EEPROM_SUM - csum_new;
743
744 pr_err("/*********************/\n");
745 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
746 pr_err("Calculated : 0x%04x\n", csum_new);
747
748 pr_err("Offset Values\n");
749 pr_err("======== ======\n");
750 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
751
752 pr_err("Include this output when contacting your support provider.\n");
753 pr_err("This is not a software error! Something bad happened to\n");
754 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
755 pr_err("result in further problems, possibly loss of data,\n");
756 pr_err("corruption or system hangs!\n");
757 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
758 pr_err("which is invalid and requires you to set the proper MAC\n");
759 pr_err("address manually before continuing to enable this network\n");
760 pr_err("device. Please inspect the EEPROM dump and report the\n");
761 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
762 pr_err("/*********************/\n");
763
764 kfree(data);
765 }
766
767 /**
768 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
769 * @pdev: PCI device information struct
770 *
771 * Return true if an adapter needs ioport resources
772 **/
773 static int e1000_is_need_ioport(struct pci_dev *pdev)
774 {
775 switch (pdev->device) {
776 case E1000_DEV_ID_82540EM:
777 case E1000_DEV_ID_82540EM_LOM:
778 case E1000_DEV_ID_82540EP:
779 case E1000_DEV_ID_82540EP_LOM:
780 case E1000_DEV_ID_82540EP_LP:
781 case E1000_DEV_ID_82541EI:
782 case E1000_DEV_ID_82541EI_MOBILE:
783 case E1000_DEV_ID_82541ER:
784 case E1000_DEV_ID_82541ER_LOM:
785 case E1000_DEV_ID_82541GI:
786 case E1000_DEV_ID_82541GI_LF:
787 case E1000_DEV_ID_82541GI_MOBILE:
788 case E1000_DEV_ID_82544EI_COPPER:
789 case E1000_DEV_ID_82544EI_FIBER:
790 case E1000_DEV_ID_82544GC_COPPER:
791 case E1000_DEV_ID_82544GC_LOM:
792 case E1000_DEV_ID_82545EM_COPPER:
793 case E1000_DEV_ID_82545EM_FIBER:
794 case E1000_DEV_ID_82546EB_COPPER:
795 case E1000_DEV_ID_82546EB_FIBER:
796 case E1000_DEV_ID_82546EB_QUAD_COPPER:
797 return true;
798 default:
799 return false;
800 }
801 }
802
803 static netdev_features_t e1000_fix_features(struct net_device *netdev,
804 netdev_features_t features)
805 {
806 /* Since there is no support for separate Rx/Tx vlan accel
807 * enable/disable make sure Tx flag is always in same state as Rx.
808 */
809 if (features & NETIF_F_HW_VLAN_CTAG_RX)
810 features |= NETIF_F_HW_VLAN_CTAG_TX;
811 else
812 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
813
814 return features;
815 }
816
817 static int e1000_set_features(struct net_device *netdev,
818 netdev_features_t features)
819 {
820 struct e1000_adapter *adapter = netdev_priv(netdev);
821 netdev_features_t changed = features ^ netdev->features;
822
823 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
824 e1000_vlan_mode(netdev, features);
825
826 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
827 return 0;
828
829 netdev->features = features;
830 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
831
832 if (netif_running(netdev))
833 e1000_reinit_locked(adapter);
834 else
835 e1000_reset(adapter);
836
837 return 0;
838 }
839
840 static const struct net_device_ops e1000_netdev_ops = {
841 .ndo_open = e1000_open,
842 .ndo_stop = e1000_close,
843 .ndo_start_xmit = e1000_xmit_frame,
844 .ndo_get_stats = e1000_get_stats,
845 .ndo_set_rx_mode = e1000_set_rx_mode,
846 .ndo_set_mac_address = e1000_set_mac,
847 .ndo_tx_timeout = e1000_tx_timeout,
848 .ndo_change_mtu = e1000_change_mtu,
849 .ndo_do_ioctl = e1000_ioctl,
850 .ndo_validate_addr = eth_validate_addr,
851 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
852 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
853 #ifdef CONFIG_NET_POLL_CONTROLLER
854 .ndo_poll_controller = e1000_netpoll,
855 #endif
856 .ndo_fix_features = e1000_fix_features,
857 .ndo_set_features = e1000_set_features,
858 };
859
860 /**
861 * e1000_init_hw_struct - initialize members of hw struct
862 * @adapter: board private struct
863 * @hw: structure used by e1000_hw.c
864 *
865 * Factors out initialization of the e1000_hw struct to its own function
866 * that can be called very early at init (just after struct allocation).
867 * Fields are initialized based on PCI device information and
868 * OS network device settings (MTU size).
869 * Returns negative error codes if MAC type setup fails.
870 */
871 static int e1000_init_hw_struct(struct e1000_adapter *adapter,
872 struct e1000_hw *hw)
873 {
874 struct pci_dev *pdev = adapter->pdev;
875
876 /* PCI config space info */
877 hw->vendor_id = pdev->vendor;
878 hw->device_id = pdev->device;
879 hw->subsystem_vendor_id = pdev->subsystem_vendor;
880 hw->subsystem_id = pdev->subsystem_device;
881 hw->revision_id = pdev->revision;
882
883 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
884
885 hw->max_frame_size = adapter->netdev->mtu +
886 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
887 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
888
889 /* identify the MAC */
890 if (e1000_set_mac_type(hw)) {
891 e_err(probe, "Unknown MAC Type\n");
892 return -EIO;
893 }
894
895 switch (hw->mac_type) {
896 default:
897 break;
898 case e1000_82541:
899 case e1000_82547:
900 case e1000_82541_rev_2:
901 case e1000_82547_rev_2:
902 hw->phy_init_script = 1;
903 break;
904 }
905
906 e1000_set_media_type(hw);
907 e1000_get_bus_info(hw);
908
909 hw->wait_autoneg_complete = false;
910 hw->tbi_compatibility_en = true;
911 hw->adaptive_ifs = true;
912
913 /* Copper options */
914
915 if (hw->media_type == e1000_media_type_copper) {
916 hw->mdix = AUTO_ALL_MODES;
917 hw->disable_polarity_correction = false;
918 hw->master_slave = E1000_MASTER_SLAVE;
919 }
920
921 return 0;
922 }
923
924 /**
925 * e1000_probe - Device Initialization Routine
926 * @pdev: PCI device information struct
927 * @ent: entry in e1000_pci_tbl
928 *
929 * Returns 0 on success, negative on failure
930 *
931 * e1000_probe initializes an adapter identified by a pci_dev structure.
932 * The OS initialization, configuring of the adapter private structure,
933 * and a hardware reset occur.
934 **/
935 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
936 {
937 struct net_device *netdev;
938 struct e1000_adapter *adapter;
939 struct e1000_hw *hw;
940
941 static int cards_found = 0;
942 static int global_quad_port_a = 0; /* global ksp3 port a indication */
943 int i, err, pci_using_dac;
944 u16 eeprom_data = 0;
945 u16 tmp = 0;
946 u16 eeprom_apme_mask = E1000_EEPROM_APME;
947 int bars, need_ioport;
948
949 /* do not allocate ioport bars when not needed */
950 need_ioport = e1000_is_need_ioport(pdev);
951 if (need_ioport) {
952 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
953 err = pci_enable_device(pdev);
954 } else {
955 bars = pci_select_bars(pdev, IORESOURCE_MEM);
956 err = pci_enable_device_mem(pdev);
957 }
958 if (err)
959 return err;
960
961 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
962 if (err)
963 goto err_pci_reg;
964
965 pci_set_master(pdev);
966 err = pci_save_state(pdev);
967 if (err)
968 goto err_alloc_etherdev;
969
970 err = -ENOMEM;
971 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
972 if (!netdev)
973 goto err_alloc_etherdev;
974
975 SET_NETDEV_DEV(netdev, &pdev->dev);
976
977 pci_set_drvdata(pdev, netdev);
978 adapter = netdev_priv(netdev);
979 adapter->netdev = netdev;
980 adapter->pdev = pdev;
981 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
982 adapter->bars = bars;
983 adapter->need_ioport = need_ioport;
984
985 hw = &adapter->hw;
986 hw->back = adapter;
987
988 err = -EIO;
989 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
990 if (!hw->hw_addr)
991 goto err_ioremap;
992
993 if (adapter->need_ioport) {
994 for (i = BAR_1; i <= BAR_5; i++) {
995 if (pci_resource_len(pdev, i) == 0)
996 continue;
997 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
998 hw->io_base = pci_resource_start(pdev, i);
999 break;
1000 }
1001 }
1002 }
1003
1004 /* make ready for any if (hw->...) below */
1005 err = e1000_init_hw_struct(adapter, hw);
1006 if (err)
1007 goto err_sw_init;
1008
1009 /* there is a workaround being applied below that limits
1010 * 64-bit DMA addresses to 64-bit hardware. There are some
1011 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1012 */
1013 pci_using_dac = 0;
1014 if ((hw->bus_type == e1000_bus_type_pcix) &&
1015 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1016 pci_using_dac = 1;
1017 } else {
1018 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1019 if (err) {
1020 pr_err("No usable DMA config, aborting\n");
1021 goto err_dma;
1022 }
1023 }
1024
1025 netdev->netdev_ops = &e1000_netdev_ops;
1026 e1000_set_ethtool_ops(netdev);
1027 netdev->watchdog_timeo = 5 * HZ;
1028 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1029
1030 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1031
1032 adapter->bd_number = cards_found;
1033
1034 /* setup the private structure */
1035
1036 err = e1000_sw_init(adapter);
1037 if (err)
1038 goto err_sw_init;
1039
1040 err = -EIO;
1041 if (hw->mac_type == e1000_ce4100) {
1042 hw->ce4100_gbe_mdio_base_virt =
1043 ioremap(pci_resource_start(pdev, BAR_1),
1044 pci_resource_len(pdev, BAR_1));
1045
1046 if (!hw->ce4100_gbe_mdio_base_virt)
1047 goto err_mdio_ioremap;
1048 }
1049
1050 if (hw->mac_type >= e1000_82543) {
1051 netdev->hw_features = NETIF_F_SG |
1052 NETIF_F_HW_CSUM |
1053 NETIF_F_HW_VLAN_CTAG_RX;
1054 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1055 NETIF_F_HW_VLAN_CTAG_FILTER;
1056 }
1057
1058 if ((hw->mac_type >= e1000_82544) &&
1059 (hw->mac_type != e1000_82547))
1060 netdev->hw_features |= NETIF_F_TSO;
1061
1062 netdev->priv_flags |= IFF_SUPP_NOFCS;
1063
1064 netdev->features |= netdev->hw_features;
1065 netdev->hw_features |= (NETIF_F_RXCSUM |
1066 NETIF_F_RXALL |
1067 NETIF_F_RXFCS);
1068
1069 if (pci_using_dac) {
1070 netdev->features |= NETIF_F_HIGHDMA;
1071 netdev->vlan_features |= NETIF_F_HIGHDMA;
1072 }
1073
1074 netdev->vlan_features |= (NETIF_F_TSO |
1075 NETIF_F_HW_CSUM |
1076 NETIF_F_SG);
1077
1078 netdev->priv_flags |= IFF_UNICAST_FLT;
1079
1080 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1081
1082 /* initialize eeprom parameters */
1083 if (e1000_init_eeprom_params(hw)) {
1084 e_err(probe, "EEPROM initialization failed\n");
1085 goto err_eeprom;
1086 }
1087
1088 /* before reading the EEPROM, reset the controller to
1089 * put the device in a known good starting state
1090 */
1091
1092 e1000_reset_hw(hw);
1093
1094 /* make sure the EEPROM is good */
1095 if (e1000_validate_eeprom_checksum(hw) < 0) {
1096 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1097 e1000_dump_eeprom(adapter);
1098 /* set MAC address to all zeroes to invalidate and temporary
1099 * disable this device for the user. This blocks regular
1100 * traffic while still permitting ethtool ioctls from reaching
1101 * the hardware as well as allowing the user to run the
1102 * interface after manually setting a hw addr using
1103 * `ip set address`
1104 */
1105 memset(hw->mac_addr, 0, netdev->addr_len);
1106 } else {
1107 /* copy the MAC address out of the EEPROM */
1108 if (e1000_read_mac_addr(hw))
1109 e_err(probe, "EEPROM Read Error\n");
1110 }
1111 /* don't block initalization here due to bad MAC address */
1112 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1113
1114 if (!is_valid_ether_addr(netdev->dev_addr))
1115 e_err(probe, "Invalid MAC Address\n");
1116
1117
1118 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1119 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1120 e1000_82547_tx_fifo_stall_task);
1121 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1122 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1123
1124 e1000_check_options(adapter);
1125
1126 /* Initial Wake on LAN setting
1127 * If APM wake is enabled in the EEPROM,
1128 * enable the ACPI Magic Packet filter
1129 */
1130
1131 switch (hw->mac_type) {
1132 case e1000_82542_rev2_0:
1133 case e1000_82542_rev2_1:
1134 case e1000_82543:
1135 break;
1136 case e1000_82544:
1137 e1000_read_eeprom(hw,
1138 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1139 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1140 break;
1141 case e1000_82546:
1142 case e1000_82546_rev_3:
1143 if (er32(STATUS) & E1000_STATUS_FUNC_1){
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1146 break;
1147 }
1148 /* Fall Through */
1149 default:
1150 e1000_read_eeprom(hw,
1151 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1152 break;
1153 }
1154 if (eeprom_data & eeprom_apme_mask)
1155 adapter->eeprom_wol |= E1000_WUFC_MAG;
1156
1157 /* now that we have the eeprom settings, apply the special cases
1158 * where the eeprom may be wrong or the board simply won't support
1159 * wake on lan on a particular port
1160 */
1161 switch (pdev->device) {
1162 case E1000_DEV_ID_82546GB_PCIE:
1163 adapter->eeprom_wol = 0;
1164 break;
1165 case E1000_DEV_ID_82546EB_FIBER:
1166 case E1000_DEV_ID_82546GB_FIBER:
1167 /* Wake events only supported on port A for dual fiber
1168 * regardless of eeprom setting
1169 */
1170 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1174 /* if quad port adapter, disable WoL on all but port A */
1175 if (global_quad_port_a != 0)
1176 adapter->eeprom_wol = 0;
1177 else
1178 adapter->quad_port_a = true;
1179 /* Reset for multiple quad port adapters */
1180 if (++global_quad_port_a == 4)
1181 global_quad_port_a = 0;
1182 break;
1183 }
1184
1185 /* initialize the wol settings based on the eeprom settings */
1186 adapter->wol = adapter->eeprom_wol;
1187 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1188
1189 /* Auto detect PHY address */
1190 if (hw->mac_type == e1000_ce4100) {
1191 for (i = 0; i < 32; i++) {
1192 hw->phy_addr = i;
1193 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1194 if (tmp == 0 || tmp == 0xFF) {
1195 if (i == 31)
1196 goto err_eeprom;
1197 continue;
1198 } else
1199 break;
1200 }
1201 }
1202
1203 /* reset the hardware with the new settings */
1204 e1000_reset(adapter);
1205
1206 strcpy(netdev->name, "eth%d");
1207 err = register_netdev(netdev);
1208 if (err)
1209 goto err_register;
1210
1211 e1000_vlan_filter_on_off(adapter, false);
1212
1213 /* print bus type/speed/width info */
1214 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1215 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1216 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1217 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1218 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1219 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1220 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1221 netdev->dev_addr);
1222
1223 /* carrier off reporting is important to ethtool even BEFORE open */
1224 netif_carrier_off(netdev);
1225
1226 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1227
1228 cards_found++;
1229 return 0;
1230
1231 err_register:
1232 err_eeprom:
1233 e1000_phy_hw_reset(hw);
1234
1235 if (hw->flash_address)
1236 iounmap(hw->flash_address);
1237 kfree(adapter->tx_ring);
1238 kfree(adapter->rx_ring);
1239 err_dma:
1240 err_sw_init:
1241 err_mdio_ioremap:
1242 iounmap(hw->ce4100_gbe_mdio_base_virt);
1243 iounmap(hw->hw_addr);
1244 err_ioremap:
1245 free_netdev(netdev);
1246 err_alloc_etherdev:
1247 pci_release_selected_regions(pdev, bars);
1248 err_pci_reg:
1249 pci_disable_device(pdev);
1250 return err;
1251 }
1252
1253 /**
1254 * e1000_remove - Device Removal Routine
1255 * @pdev: PCI device information struct
1256 *
1257 * e1000_remove is called by the PCI subsystem to alert the driver
1258 * that it should release a PCI device. The could be caused by a
1259 * Hot-Plug event, or because the driver is going to be removed from
1260 * memory.
1261 **/
1262 static void e1000_remove(struct pci_dev *pdev)
1263 {
1264 struct net_device *netdev = pci_get_drvdata(pdev);
1265 struct e1000_adapter *adapter = netdev_priv(netdev);
1266 struct e1000_hw *hw = &adapter->hw;
1267
1268 e1000_down_and_stop(adapter);
1269 e1000_release_manageability(adapter);
1270
1271 unregister_netdev(netdev);
1272
1273 e1000_phy_hw_reset(hw);
1274
1275 kfree(adapter->tx_ring);
1276 kfree(adapter->rx_ring);
1277
1278 if (hw->mac_type == e1000_ce4100)
1279 iounmap(hw->ce4100_gbe_mdio_base_virt);
1280 iounmap(hw->hw_addr);
1281 if (hw->flash_address)
1282 iounmap(hw->flash_address);
1283 pci_release_selected_regions(pdev, adapter->bars);
1284
1285 free_netdev(netdev);
1286
1287 pci_disable_device(pdev);
1288 }
1289
1290 /**
1291 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1292 * @adapter: board private structure to initialize
1293 *
1294 * e1000_sw_init initializes the Adapter private data structure.
1295 * e1000_init_hw_struct MUST be called before this function
1296 **/
1297 static int e1000_sw_init(struct e1000_adapter *adapter)
1298 {
1299 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1300
1301 adapter->num_tx_queues = 1;
1302 adapter->num_rx_queues = 1;
1303
1304 if (e1000_alloc_queues(adapter)) {
1305 e_err(probe, "Unable to allocate memory for queues\n");
1306 return -ENOMEM;
1307 }
1308
1309 /* Explicitly disable IRQ since the NIC can be in any state. */
1310 e1000_irq_disable(adapter);
1311
1312 spin_lock_init(&adapter->stats_lock);
1313
1314 set_bit(__E1000_DOWN, &adapter->flags);
1315
1316 return 0;
1317 }
1318
1319 /**
1320 * e1000_alloc_queues - Allocate memory for all rings
1321 * @adapter: board private structure to initialize
1322 *
1323 * We allocate one ring per queue at run-time since we don't know the
1324 * number of queues at compile-time.
1325 **/
1326 static int e1000_alloc_queues(struct e1000_adapter *adapter)
1327 {
1328 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1329 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1330 if (!adapter->tx_ring)
1331 return -ENOMEM;
1332
1333 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1334 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1335 if (!adapter->rx_ring) {
1336 kfree(adapter->tx_ring);
1337 return -ENOMEM;
1338 }
1339
1340 return E1000_SUCCESS;
1341 }
1342
1343 /**
1344 * e1000_open - Called when a network interface is made active
1345 * @netdev: network interface device structure
1346 *
1347 * Returns 0 on success, negative value on failure
1348 *
1349 * The open entry point is called when a network interface is made
1350 * active by the system (IFF_UP). At this point all resources needed
1351 * for transmit and receive operations are allocated, the interrupt
1352 * handler is registered with the OS, the watchdog task is started,
1353 * and the stack is notified that the interface is ready.
1354 **/
1355 static int e1000_open(struct net_device *netdev)
1356 {
1357 struct e1000_adapter *adapter = netdev_priv(netdev);
1358 struct e1000_hw *hw = &adapter->hw;
1359 int err;
1360
1361 /* disallow open during test */
1362 if (test_bit(__E1000_TESTING, &adapter->flags))
1363 return -EBUSY;
1364
1365 netif_carrier_off(netdev);
1366
1367 /* allocate transmit descriptors */
1368 err = e1000_setup_all_tx_resources(adapter);
1369 if (err)
1370 goto err_setup_tx;
1371
1372 /* allocate receive descriptors */
1373 err = e1000_setup_all_rx_resources(adapter);
1374 if (err)
1375 goto err_setup_rx;
1376
1377 e1000_power_up_phy(adapter);
1378
1379 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1380 if ((hw->mng_cookie.status &
1381 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1382 e1000_update_mng_vlan(adapter);
1383 }
1384
1385 /* before we allocate an interrupt, we must be ready to handle it.
1386 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1387 * as soon as we call pci_request_irq, so we have to setup our
1388 * clean_rx handler before we do so.
1389 */
1390 e1000_configure(adapter);
1391
1392 err = e1000_request_irq(adapter);
1393 if (err)
1394 goto err_req_irq;
1395
1396 /* From here on the code is the same as e1000_up() */
1397 clear_bit(__E1000_DOWN, &adapter->flags);
1398
1399 napi_enable(&adapter->napi);
1400
1401 e1000_irq_enable(adapter);
1402
1403 netif_start_queue(netdev);
1404
1405 /* fire a link status change interrupt to start the watchdog */
1406 ew32(ICS, E1000_ICS_LSC);
1407
1408 return E1000_SUCCESS;
1409
1410 err_req_irq:
1411 e1000_power_down_phy(adapter);
1412 e1000_free_all_rx_resources(adapter);
1413 err_setup_rx:
1414 e1000_free_all_tx_resources(adapter);
1415 err_setup_tx:
1416 e1000_reset(adapter);
1417
1418 return err;
1419 }
1420
1421 /**
1422 * e1000_close - Disables a network interface
1423 * @netdev: network interface device structure
1424 *
1425 * Returns 0, this is not allowed to fail
1426 *
1427 * The close entry point is called when an interface is de-activated
1428 * by the OS. The hardware is still under the drivers control, but
1429 * needs to be disabled. A global MAC reset is issued to stop the
1430 * hardware, and all transmit and receive resources are freed.
1431 **/
1432 static int e1000_close(struct net_device *netdev)
1433 {
1434 struct e1000_adapter *adapter = netdev_priv(netdev);
1435 struct e1000_hw *hw = &adapter->hw;
1436 int count = E1000_CHECK_RESET_COUNT;
1437
1438 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1439 usleep_range(10000, 20000);
1440
1441 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1442 e1000_down(adapter);
1443 e1000_power_down_phy(adapter);
1444 e1000_free_irq(adapter);
1445
1446 e1000_free_all_tx_resources(adapter);
1447 e1000_free_all_rx_resources(adapter);
1448
1449 /* kill manageability vlan ID if supported, but not if a vlan with
1450 * the same ID is registered on the host OS (let 8021q kill it)
1451 */
1452 if ((hw->mng_cookie.status &
1453 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1454 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1455 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1456 adapter->mng_vlan_id);
1457 }
1458
1459 return 0;
1460 }
1461
1462 /**
1463 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1464 * @adapter: address of board private structure
1465 * @start: address of beginning of memory
1466 * @len: length of memory
1467 **/
1468 static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1469 unsigned long len)
1470 {
1471 struct e1000_hw *hw = &adapter->hw;
1472 unsigned long begin = (unsigned long)start;
1473 unsigned long end = begin + len;
1474
1475 /* First rev 82545 and 82546 need to not allow any memory
1476 * write location to cross 64k boundary due to errata 23
1477 */
1478 if (hw->mac_type == e1000_82545 ||
1479 hw->mac_type == e1000_ce4100 ||
1480 hw->mac_type == e1000_82546) {
1481 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1482 }
1483
1484 return true;
1485 }
1486
1487 /**
1488 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1489 * @adapter: board private structure
1490 * @txdr: tx descriptor ring (for a specific queue) to setup
1491 *
1492 * Return 0 on success, negative on failure
1493 **/
1494 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1495 struct e1000_tx_ring *txdr)
1496 {
1497 struct pci_dev *pdev = adapter->pdev;
1498 int size;
1499
1500 size = sizeof(struct e1000_buffer) * txdr->count;
1501 txdr->buffer_info = vzalloc(size);
1502 if (!txdr->buffer_info)
1503 return -ENOMEM;
1504
1505 /* round up to nearest 4K */
1506
1507 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1508 txdr->size = ALIGN(txdr->size, 4096);
1509
1510 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1511 GFP_KERNEL);
1512 if (!txdr->desc) {
1513 setup_tx_desc_die:
1514 vfree(txdr->buffer_info);
1515 return -ENOMEM;
1516 }
1517
1518 /* Fix for errata 23, can't cross 64kB boundary */
1519 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1520 void *olddesc = txdr->desc;
1521 dma_addr_t olddma = txdr->dma;
1522 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1523 txdr->size, txdr->desc);
1524 /* Try again, without freeing the previous */
1525 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1526 &txdr->dma, GFP_KERNEL);
1527 /* Failed allocation, critical failure */
1528 if (!txdr->desc) {
1529 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1530 olddma);
1531 goto setup_tx_desc_die;
1532 }
1533
1534 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1535 /* give up */
1536 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1537 txdr->dma);
1538 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1539 olddma);
1540 e_err(probe, "Unable to allocate aligned memory "
1541 "for the transmit descriptor ring\n");
1542 vfree(txdr->buffer_info);
1543 return -ENOMEM;
1544 } else {
1545 /* Free old allocation, new allocation was successful */
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
1548 }
1549 }
1550 memset(txdr->desc, 0, txdr->size);
1551
1552 txdr->next_to_use = 0;
1553 txdr->next_to_clean = 0;
1554
1555 return 0;
1556 }
1557
1558 /**
1559 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1560 * (Descriptors) for all queues
1561 * @adapter: board private structure
1562 *
1563 * Return 0 on success, negative on failure
1564 **/
1565 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1566 {
1567 int i, err = 0;
1568
1569 for (i = 0; i < adapter->num_tx_queues; i++) {
1570 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1571 if (err) {
1572 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1573 for (i-- ; i >= 0; i--)
1574 e1000_free_tx_resources(adapter,
1575 &adapter->tx_ring[i]);
1576 break;
1577 }
1578 }
1579
1580 return err;
1581 }
1582
1583 /**
1584 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1585 * @adapter: board private structure
1586 *
1587 * Configure the Tx unit of the MAC after a reset.
1588 **/
1589 static void e1000_configure_tx(struct e1000_adapter *adapter)
1590 {
1591 u64 tdba;
1592 struct e1000_hw *hw = &adapter->hw;
1593 u32 tdlen, tctl, tipg;
1594 u32 ipgr1, ipgr2;
1595
1596 /* Setup the HW Tx Head and Tail descriptor pointers */
1597
1598 switch (adapter->num_tx_queues) {
1599 case 1:
1600 default:
1601 tdba = adapter->tx_ring[0].dma;
1602 tdlen = adapter->tx_ring[0].count *
1603 sizeof(struct e1000_tx_desc);
1604 ew32(TDLEN, tdlen);
1605 ew32(TDBAH, (tdba >> 32));
1606 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1607 ew32(TDT, 0);
1608 ew32(TDH, 0);
1609 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1610 E1000_TDH : E1000_82542_TDH);
1611 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1612 E1000_TDT : E1000_82542_TDT);
1613 break;
1614 }
1615
1616 /* Set the default values for the Tx Inter Packet Gap timer */
1617 if ((hw->media_type == e1000_media_type_fiber ||
1618 hw->media_type == e1000_media_type_internal_serdes))
1619 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1620 else
1621 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1622
1623 switch (hw->mac_type) {
1624 case e1000_82542_rev2_0:
1625 case e1000_82542_rev2_1:
1626 tipg = DEFAULT_82542_TIPG_IPGT;
1627 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1628 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1629 break;
1630 default:
1631 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1633 break;
1634 }
1635 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1636 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1637 ew32(TIPG, tipg);
1638
1639 /* Set the Tx Interrupt Delay register */
1640
1641 ew32(TIDV, adapter->tx_int_delay);
1642 if (hw->mac_type >= e1000_82540)
1643 ew32(TADV, adapter->tx_abs_int_delay);
1644
1645 /* Program the Transmit Control Register */
1646
1647 tctl = er32(TCTL);
1648 tctl &= ~E1000_TCTL_CT;
1649 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1650 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1651
1652 e1000_config_collision_dist(hw);
1653
1654 /* Setup Transmit Descriptor Settings for eop descriptor */
1655 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1656
1657 /* only set IDE if we are delaying interrupts using the timers */
1658 if (adapter->tx_int_delay)
1659 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1660
1661 if (hw->mac_type < e1000_82543)
1662 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1663 else
1664 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1665
1666 /* Cache if we're 82544 running in PCI-X because we'll
1667 * need this to apply a workaround later in the send path.
1668 */
1669 if (hw->mac_type == e1000_82544 &&
1670 hw->bus_type == e1000_bus_type_pcix)
1671 adapter->pcix_82544 = true;
1672
1673 ew32(TCTL, tctl);
1674
1675 }
1676
1677 /**
1678 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1679 * @adapter: board private structure
1680 * @rxdr: rx descriptor ring (for a specific queue) to setup
1681 *
1682 * Returns 0 on success, negative on failure
1683 **/
1684 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1685 struct e1000_rx_ring *rxdr)
1686 {
1687 struct pci_dev *pdev = adapter->pdev;
1688 int size, desc_len;
1689
1690 size = sizeof(struct e1000_buffer) * rxdr->count;
1691 rxdr->buffer_info = vzalloc(size);
1692 if (!rxdr->buffer_info)
1693 return -ENOMEM;
1694
1695 desc_len = sizeof(struct e1000_rx_desc);
1696
1697 /* Round up to nearest 4K */
1698
1699 rxdr->size = rxdr->count * desc_len;
1700 rxdr->size = ALIGN(rxdr->size, 4096);
1701
1702 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1703 GFP_KERNEL);
1704 if (!rxdr->desc) {
1705 setup_rx_desc_die:
1706 vfree(rxdr->buffer_info);
1707 return -ENOMEM;
1708 }
1709
1710 /* Fix for errata 23, can't cross 64kB boundary */
1711 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1712 void *olddesc = rxdr->desc;
1713 dma_addr_t olddma = rxdr->dma;
1714 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1715 rxdr->size, rxdr->desc);
1716 /* Try again, without freeing the previous */
1717 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1718 &rxdr->dma, GFP_KERNEL);
1719 /* Failed allocation, critical failure */
1720 if (!rxdr->desc) {
1721 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1722 olddma);
1723 goto setup_rx_desc_die;
1724 }
1725
1726 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1727 /* give up */
1728 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1729 rxdr->dma);
1730 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1731 olddma);
1732 e_err(probe, "Unable to allocate aligned memory for "
1733 "the Rx descriptor ring\n");
1734 goto setup_rx_desc_die;
1735 } else {
1736 /* Free old allocation, new allocation was successful */
1737 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1738 olddma);
1739 }
1740 }
1741 memset(rxdr->desc, 0, rxdr->size);
1742
1743 rxdr->next_to_clean = 0;
1744 rxdr->next_to_use = 0;
1745 rxdr->rx_skb_top = NULL;
1746
1747 return 0;
1748 }
1749
1750 /**
1751 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1752 * (Descriptors) for all queues
1753 * @adapter: board private structure
1754 *
1755 * Return 0 on success, negative on failure
1756 **/
1757 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1758 {
1759 int i, err = 0;
1760
1761 for (i = 0; i < adapter->num_rx_queues; i++) {
1762 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1763 if (err) {
1764 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1765 for (i-- ; i >= 0; i--)
1766 e1000_free_rx_resources(adapter,
1767 &adapter->rx_ring[i]);
1768 break;
1769 }
1770 }
1771
1772 return err;
1773 }
1774
1775 /**
1776 * e1000_setup_rctl - configure the receive control registers
1777 * @adapter: Board private structure
1778 **/
1779 static void e1000_setup_rctl(struct e1000_adapter *adapter)
1780 {
1781 struct e1000_hw *hw = &adapter->hw;
1782 u32 rctl;
1783
1784 rctl = er32(RCTL);
1785
1786 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1787
1788 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1789 E1000_RCTL_RDMTS_HALF |
1790 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1791
1792 if (hw->tbi_compatibility_on == 1)
1793 rctl |= E1000_RCTL_SBP;
1794 else
1795 rctl &= ~E1000_RCTL_SBP;
1796
1797 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1798 rctl &= ~E1000_RCTL_LPE;
1799 else
1800 rctl |= E1000_RCTL_LPE;
1801
1802 /* Setup buffer sizes */
1803 rctl &= ~E1000_RCTL_SZ_4096;
1804 rctl |= E1000_RCTL_BSEX;
1805 switch (adapter->rx_buffer_len) {
1806 case E1000_RXBUFFER_2048:
1807 default:
1808 rctl |= E1000_RCTL_SZ_2048;
1809 rctl &= ~E1000_RCTL_BSEX;
1810 break;
1811 case E1000_RXBUFFER_4096:
1812 rctl |= E1000_RCTL_SZ_4096;
1813 break;
1814 case E1000_RXBUFFER_8192:
1815 rctl |= E1000_RCTL_SZ_8192;
1816 break;
1817 case E1000_RXBUFFER_16384:
1818 rctl |= E1000_RCTL_SZ_16384;
1819 break;
1820 }
1821
1822 /* This is useful for sniffing bad packets. */
1823 if (adapter->netdev->features & NETIF_F_RXALL) {
1824 /* UPE and MPE will be handled by normal PROMISC logic
1825 * in e1000e_set_rx_mode
1826 */
1827 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1828 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1829 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1830
1831 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1832 E1000_RCTL_DPF | /* Allow filtered pause */
1833 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1834 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1835 * and that breaks VLANs.
1836 */
1837 }
1838
1839 ew32(RCTL, rctl);
1840 }
1841
1842 /**
1843 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844 * @adapter: board private structure
1845 *
1846 * Configure the Rx unit of the MAC after a reset.
1847 **/
1848 static void e1000_configure_rx(struct e1000_adapter *adapter)
1849 {
1850 u64 rdba;
1851 struct e1000_hw *hw = &adapter->hw;
1852 u32 rdlen, rctl, rxcsum;
1853
1854 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1855 rdlen = adapter->rx_ring[0].count *
1856 sizeof(struct e1000_rx_desc);
1857 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1858 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1859 } else {
1860 rdlen = adapter->rx_ring[0].count *
1861 sizeof(struct e1000_rx_desc);
1862 adapter->clean_rx = e1000_clean_rx_irq;
1863 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1864 }
1865
1866 /* disable receives while setting up the descriptors */
1867 rctl = er32(RCTL);
1868 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1869
1870 /* set the Receive Delay Timer Register */
1871 ew32(RDTR, adapter->rx_int_delay);
1872
1873 if (hw->mac_type >= e1000_82540) {
1874 ew32(RADV, adapter->rx_abs_int_delay);
1875 if (adapter->itr_setting != 0)
1876 ew32(ITR, 1000000000 / (adapter->itr * 256));
1877 }
1878
1879 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1880 * the Base and Length of the Rx Descriptor Ring
1881 */
1882 switch (adapter->num_rx_queues) {
1883 case 1:
1884 default:
1885 rdba = adapter->rx_ring[0].dma;
1886 ew32(RDLEN, rdlen);
1887 ew32(RDBAH, (rdba >> 32));
1888 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1889 ew32(RDT, 0);
1890 ew32(RDH, 0);
1891 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1892 E1000_RDH : E1000_82542_RDH);
1893 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1894 E1000_RDT : E1000_82542_RDT);
1895 break;
1896 }
1897
1898 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1899 if (hw->mac_type >= e1000_82543) {
1900 rxcsum = er32(RXCSUM);
1901 if (adapter->rx_csum)
1902 rxcsum |= E1000_RXCSUM_TUOFL;
1903 else
1904 /* don't need to clear IPPCSE as it defaults to 0 */
1905 rxcsum &= ~E1000_RXCSUM_TUOFL;
1906 ew32(RXCSUM, rxcsum);
1907 }
1908
1909 /* Enable Receives */
1910 ew32(RCTL, rctl | E1000_RCTL_EN);
1911 }
1912
1913 /**
1914 * e1000_free_tx_resources - Free Tx Resources per Queue
1915 * @adapter: board private structure
1916 * @tx_ring: Tx descriptor ring for a specific queue
1917 *
1918 * Free all transmit software resources
1919 **/
1920 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1921 struct e1000_tx_ring *tx_ring)
1922 {
1923 struct pci_dev *pdev = adapter->pdev;
1924
1925 e1000_clean_tx_ring(adapter, tx_ring);
1926
1927 vfree(tx_ring->buffer_info);
1928 tx_ring->buffer_info = NULL;
1929
1930 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1931 tx_ring->dma);
1932
1933 tx_ring->desc = NULL;
1934 }
1935
1936 /**
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1939 *
1940 * Free all transmit software resources
1941 **/
1942 void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1943 {
1944 int i;
1945
1946 for (i = 0; i < adapter->num_tx_queues; i++)
1947 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1948 }
1949
1950 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1951 struct e1000_buffer *buffer_info)
1952 {
1953 if (buffer_info->dma) {
1954 if (buffer_info->mapped_as_page)
1955 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1956 buffer_info->length, DMA_TO_DEVICE);
1957 else
1958 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1959 buffer_info->length,
1960 DMA_TO_DEVICE);
1961 buffer_info->dma = 0;
1962 }
1963 if (buffer_info->skb) {
1964 dev_kfree_skb_any(buffer_info->skb);
1965 buffer_info->skb = NULL;
1966 }
1967 buffer_info->time_stamp = 0;
1968 /* buffer_info must be completely set up in the transmit path */
1969 }
1970
1971 /**
1972 * e1000_clean_tx_ring - Free Tx Buffers
1973 * @adapter: board private structure
1974 * @tx_ring: ring to be cleaned
1975 **/
1976 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1977 struct e1000_tx_ring *tx_ring)
1978 {
1979 struct e1000_hw *hw = &adapter->hw;
1980 struct e1000_buffer *buffer_info;
1981 unsigned long size;
1982 unsigned int i;
1983
1984 /* Free all the Tx ring sk_buffs */
1985
1986 for (i = 0; i < tx_ring->count; i++) {
1987 buffer_info = &tx_ring->buffer_info[i];
1988 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1989 }
1990
1991 netdev_reset_queue(adapter->netdev);
1992 size = sizeof(struct e1000_buffer) * tx_ring->count;
1993 memset(tx_ring->buffer_info, 0, size);
1994
1995 /* Zero out the descriptor ring */
1996
1997 memset(tx_ring->desc, 0, tx_ring->size);
1998
1999 tx_ring->next_to_use = 0;
2000 tx_ring->next_to_clean = 0;
2001 tx_ring->last_tx_tso = false;
2002
2003 writel(0, hw->hw_addr + tx_ring->tdh);
2004 writel(0, hw->hw_addr + tx_ring->tdt);
2005 }
2006
2007 /**
2008 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2009 * @adapter: board private structure
2010 **/
2011 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2012 {
2013 int i;
2014
2015 for (i = 0; i < adapter->num_tx_queues; i++)
2016 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2017 }
2018
2019 /**
2020 * e1000_free_rx_resources - Free Rx Resources
2021 * @adapter: board private structure
2022 * @rx_ring: ring to clean the resources from
2023 *
2024 * Free all receive software resources
2025 **/
2026 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2027 struct e1000_rx_ring *rx_ring)
2028 {
2029 struct pci_dev *pdev = adapter->pdev;
2030
2031 e1000_clean_rx_ring(adapter, rx_ring);
2032
2033 vfree(rx_ring->buffer_info);
2034 rx_ring->buffer_info = NULL;
2035
2036 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2037 rx_ring->dma);
2038
2039 rx_ring->desc = NULL;
2040 }
2041
2042 /**
2043 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2044 * @adapter: board private structure
2045 *
2046 * Free all receive software resources
2047 **/
2048 void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2049 {
2050 int i;
2051
2052 for (i = 0; i < adapter->num_rx_queues; i++)
2053 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2054 }
2055
2056 /**
2057 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2058 * @adapter: board private structure
2059 * @rx_ring: ring to free buffers from
2060 **/
2061 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2062 struct e1000_rx_ring *rx_ring)
2063 {
2064 struct e1000_hw *hw = &adapter->hw;
2065 struct e1000_buffer *buffer_info;
2066 struct pci_dev *pdev = adapter->pdev;
2067 unsigned long size;
2068 unsigned int i;
2069
2070 /* Free all the Rx ring sk_buffs */
2071 for (i = 0; i < rx_ring->count; i++) {
2072 buffer_info = &rx_ring->buffer_info[i];
2073 if (buffer_info->dma &&
2074 adapter->clean_rx == e1000_clean_rx_irq) {
2075 dma_unmap_single(&pdev->dev, buffer_info->dma,
2076 buffer_info->length,
2077 DMA_FROM_DEVICE);
2078 } else if (buffer_info->dma &&
2079 adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2080 dma_unmap_page(&pdev->dev, buffer_info->dma,
2081 buffer_info->length,
2082 DMA_FROM_DEVICE);
2083 }
2084
2085 buffer_info->dma = 0;
2086 if (buffer_info->page) {
2087 put_page(buffer_info->page);
2088 buffer_info->page = NULL;
2089 }
2090 if (buffer_info->skb) {
2091 dev_kfree_skb(buffer_info->skb);
2092 buffer_info->skb = NULL;
2093 }
2094 }
2095
2096 /* there also may be some cached data from a chained receive */
2097 if (rx_ring->rx_skb_top) {
2098 dev_kfree_skb(rx_ring->rx_skb_top);
2099 rx_ring->rx_skb_top = NULL;
2100 }
2101
2102 size = sizeof(struct e1000_buffer) * rx_ring->count;
2103 memset(rx_ring->buffer_info, 0, size);
2104
2105 /* Zero out the descriptor ring */
2106 memset(rx_ring->desc, 0, rx_ring->size);
2107
2108 rx_ring->next_to_clean = 0;
2109 rx_ring->next_to_use = 0;
2110
2111 writel(0, hw->hw_addr + rx_ring->rdh);
2112 writel(0, hw->hw_addr + rx_ring->rdt);
2113 }
2114
2115 /**
2116 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2117 * @adapter: board private structure
2118 **/
2119 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2120 {
2121 int i;
2122
2123 for (i = 0; i < adapter->num_rx_queues; i++)
2124 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2125 }
2126
2127 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2128 * and memory write and invalidate disabled for certain operations
2129 */
2130 static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2131 {
2132 struct e1000_hw *hw = &adapter->hw;
2133 struct net_device *netdev = adapter->netdev;
2134 u32 rctl;
2135
2136 e1000_pci_clear_mwi(hw);
2137
2138 rctl = er32(RCTL);
2139 rctl |= E1000_RCTL_RST;
2140 ew32(RCTL, rctl);
2141 E1000_WRITE_FLUSH();
2142 mdelay(5);
2143
2144 if (netif_running(netdev))
2145 e1000_clean_all_rx_rings(adapter);
2146 }
2147
2148 static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2149 {
2150 struct e1000_hw *hw = &adapter->hw;
2151 struct net_device *netdev = adapter->netdev;
2152 u32 rctl;
2153
2154 rctl = er32(RCTL);
2155 rctl &= ~E1000_RCTL_RST;
2156 ew32(RCTL, rctl);
2157 E1000_WRITE_FLUSH();
2158 mdelay(5);
2159
2160 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2161 e1000_pci_set_mwi(hw);
2162
2163 if (netif_running(netdev)) {
2164 /* No need to loop, because 82542 supports only 1 queue */
2165 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2166 e1000_configure_rx(adapter);
2167 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2168 }
2169 }
2170
2171 /**
2172 * e1000_set_mac - Change the Ethernet Address of the NIC
2173 * @netdev: network interface device structure
2174 * @p: pointer to an address structure
2175 *
2176 * Returns 0 on success, negative on failure
2177 **/
2178 static int e1000_set_mac(struct net_device *netdev, void *p)
2179 {
2180 struct e1000_adapter *adapter = netdev_priv(netdev);
2181 struct e1000_hw *hw = &adapter->hw;
2182 struct sockaddr *addr = p;
2183
2184 if (!is_valid_ether_addr(addr->sa_data))
2185 return -EADDRNOTAVAIL;
2186
2187 /* 82542 2.0 needs to be in reset to write receive address registers */
2188
2189 if (hw->mac_type == e1000_82542_rev2_0)
2190 e1000_enter_82542_rst(adapter);
2191
2192 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2193 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2194
2195 e1000_rar_set(hw, hw->mac_addr, 0);
2196
2197 if (hw->mac_type == e1000_82542_rev2_0)
2198 e1000_leave_82542_rst(adapter);
2199
2200 return 0;
2201 }
2202
2203 /**
2204 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2205 * @netdev: network interface device structure
2206 *
2207 * The set_rx_mode entry point is called whenever the unicast or multicast
2208 * address lists or the network interface flags are updated. This routine is
2209 * responsible for configuring the hardware for proper unicast, multicast,
2210 * promiscuous mode, and all-multi behavior.
2211 **/
2212 static void e1000_set_rx_mode(struct net_device *netdev)
2213 {
2214 struct e1000_adapter *adapter = netdev_priv(netdev);
2215 struct e1000_hw *hw = &adapter->hw;
2216 struct netdev_hw_addr *ha;
2217 bool use_uc = false;
2218 u32 rctl;
2219 u32 hash_value;
2220 int i, rar_entries = E1000_RAR_ENTRIES;
2221 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2222 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2223
2224 if (!mcarray)
2225 return;
2226
2227 /* Check for Promiscuous and All Multicast modes */
2228
2229 rctl = er32(RCTL);
2230
2231 if (netdev->flags & IFF_PROMISC) {
2232 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2233 rctl &= ~E1000_RCTL_VFE;
2234 } else {
2235 if (netdev->flags & IFF_ALLMULTI)
2236 rctl |= E1000_RCTL_MPE;
2237 else
2238 rctl &= ~E1000_RCTL_MPE;
2239 /* Enable VLAN filter if there is a VLAN */
2240 if (e1000_vlan_used(adapter))
2241 rctl |= E1000_RCTL_VFE;
2242 }
2243
2244 if (netdev_uc_count(netdev) > rar_entries - 1) {
2245 rctl |= E1000_RCTL_UPE;
2246 } else if (!(netdev->flags & IFF_PROMISC)) {
2247 rctl &= ~E1000_RCTL_UPE;
2248 use_uc = true;
2249 }
2250
2251 ew32(RCTL, rctl);
2252
2253 /* 82542 2.0 needs to be in reset to write receive address registers */
2254
2255 if (hw->mac_type == e1000_82542_rev2_0)
2256 e1000_enter_82542_rst(adapter);
2257
2258 /* load the first 14 addresses into the exact filters 1-14. Unicast
2259 * addresses take precedence to avoid disabling unicast filtering
2260 * when possible.
2261 *
2262 * RAR 0 is used for the station MAC address
2263 * if there are not 14 addresses, go ahead and clear the filters
2264 */
2265 i = 1;
2266 if (use_uc)
2267 netdev_for_each_uc_addr(ha, netdev) {
2268 if (i == rar_entries)
2269 break;
2270 e1000_rar_set(hw, ha->addr, i++);
2271 }
2272
2273 netdev_for_each_mc_addr(ha, netdev) {
2274 if (i == rar_entries) {
2275 /* load any remaining addresses into the hash table */
2276 u32 hash_reg, hash_bit, mta;
2277 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2278 hash_reg = (hash_value >> 5) & 0x7F;
2279 hash_bit = hash_value & 0x1F;
2280 mta = (1 << hash_bit);
2281 mcarray[hash_reg] |= mta;
2282 } else {
2283 e1000_rar_set(hw, ha->addr, i++);
2284 }
2285 }
2286
2287 for (; i < rar_entries; i++) {
2288 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2289 E1000_WRITE_FLUSH();
2290 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2291 E1000_WRITE_FLUSH();
2292 }
2293
2294 /* write the hash table completely, write from bottom to avoid
2295 * both stupid write combining chipsets, and flushing each write
2296 */
2297 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2298 /* If we are on an 82544 has an errata where writing odd
2299 * offsets overwrites the previous even offset, but writing
2300 * backwards over the range solves the issue by always
2301 * writing the odd offset first
2302 */
2303 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2304 }
2305 E1000_WRITE_FLUSH();
2306
2307 if (hw->mac_type == e1000_82542_rev2_0)
2308 e1000_leave_82542_rst(adapter);
2309
2310 kfree(mcarray);
2311 }
2312
2313 /**
2314 * e1000_update_phy_info_task - get phy info
2315 * @work: work struct contained inside adapter struct
2316 *
2317 * Need to wait a few seconds after link up to get diagnostic information from
2318 * the phy
2319 */
2320 static void e1000_update_phy_info_task(struct work_struct *work)
2321 {
2322 struct e1000_adapter *adapter = container_of(work,
2323 struct e1000_adapter,
2324 phy_info_task.work);
2325
2326 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2327 }
2328
2329 /**
2330 * e1000_82547_tx_fifo_stall_task - task to complete work
2331 * @work: work struct contained inside adapter struct
2332 **/
2333 static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2334 {
2335 struct e1000_adapter *adapter = container_of(work,
2336 struct e1000_adapter,
2337 fifo_stall_task.work);
2338 struct e1000_hw *hw = &adapter->hw;
2339 struct net_device *netdev = adapter->netdev;
2340 u32 tctl;
2341
2342 if (atomic_read(&adapter->tx_fifo_stall)) {
2343 if ((er32(TDT) == er32(TDH)) &&
2344 (er32(TDFT) == er32(TDFH)) &&
2345 (er32(TDFTS) == er32(TDFHS))) {
2346 tctl = er32(TCTL);
2347 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2348 ew32(TDFT, adapter->tx_head_addr);
2349 ew32(TDFH, adapter->tx_head_addr);
2350 ew32(TDFTS, adapter->tx_head_addr);
2351 ew32(TDFHS, adapter->tx_head_addr);
2352 ew32(TCTL, tctl);
2353 E1000_WRITE_FLUSH();
2354
2355 adapter->tx_fifo_head = 0;
2356 atomic_set(&adapter->tx_fifo_stall, 0);
2357 netif_wake_queue(netdev);
2358 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2359 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2360 }
2361 }
2362 }
2363
2364 bool e1000_has_link(struct e1000_adapter *adapter)
2365 {
2366 struct e1000_hw *hw = &adapter->hw;
2367 bool link_active = false;
2368
2369 /* get_link_status is set on LSC (link status) interrupt or rx
2370 * sequence error interrupt (except on intel ce4100).
2371 * get_link_status will stay false until the
2372 * e1000_check_for_link establishes link for copper adapters
2373 * ONLY
2374 */
2375 switch (hw->media_type) {
2376 case e1000_media_type_copper:
2377 if (hw->mac_type == e1000_ce4100)
2378 hw->get_link_status = 1;
2379 if (hw->get_link_status) {
2380 e1000_check_for_link(hw);
2381 link_active = !hw->get_link_status;
2382 } else {
2383 link_active = true;
2384 }
2385 break;
2386 case e1000_media_type_fiber:
2387 e1000_check_for_link(hw);
2388 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2389 break;
2390 case e1000_media_type_internal_serdes:
2391 e1000_check_for_link(hw);
2392 link_active = hw->serdes_has_link;
2393 break;
2394 default:
2395 break;
2396 }
2397
2398 return link_active;
2399 }
2400
2401 /**
2402 * e1000_watchdog - work function
2403 * @work: work struct contained inside adapter struct
2404 **/
2405 static void e1000_watchdog(struct work_struct *work)
2406 {
2407 struct e1000_adapter *adapter = container_of(work,
2408 struct e1000_adapter,
2409 watchdog_task.work);
2410 struct e1000_hw *hw = &adapter->hw;
2411 struct net_device *netdev = adapter->netdev;
2412 struct e1000_tx_ring *txdr = adapter->tx_ring;
2413 u32 link, tctl;
2414
2415 link = e1000_has_link(adapter);
2416 if ((netif_carrier_ok(netdev)) && link)
2417 goto link_up;
2418
2419 if (link) {
2420 if (!netif_carrier_ok(netdev)) {
2421 u32 ctrl;
2422 bool txb2b = true;
2423 /* update snapshot of PHY registers on LSC */
2424 e1000_get_speed_and_duplex(hw,
2425 &adapter->link_speed,
2426 &adapter->link_duplex);
2427
2428 ctrl = er32(CTRL);
2429 pr_info("%s NIC Link is Up %d Mbps %s, "
2430 "Flow Control: %s\n",
2431 netdev->name,
2432 adapter->link_speed,
2433 adapter->link_duplex == FULL_DUPLEX ?
2434 "Full Duplex" : "Half Duplex",
2435 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2436 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2437 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2438 E1000_CTRL_TFCE) ? "TX" : "None")));
2439
2440 /* adjust timeout factor according to speed/duplex */
2441 adapter->tx_timeout_factor = 1;
2442 switch (adapter->link_speed) {
2443 case SPEED_10:
2444 txb2b = false;
2445 adapter->tx_timeout_factor = 16;
2446 break;
2447 case SPEED_100:
2448 txb2b = false;
2449 /* maybe add some timeout factor ? */
2450 break;
2451 }
2452
2453 /* enable transmits in the hardware */
2454 tctl = er32(TCTL);
2455 tctl |= E1000_TCTL_EN;
2456 ew32(TCTL, tctl);
2457
2458 netif_carrier_on(netdev);
2459 if (!test_bit(__E1000_DOWN, &adapter->flags))
2460 schedule_delayed_work(&adapter->phy_info_task,
2461 2 * HZ);
2462 adapter->smartspeed = 0;
2463 }
2464 } else {
2465 if (netif_carrier_ok(netdev)) {
2466 adapter->link_speed = 0;
2467 adapter->link_duplex = 0;
2468 pr_info("%s NIC Link is Down\n",
2469 netdev->name);
2470 netif_carrier_off(netdev);
2471
2472 if (!test_bit(__E1000_DOWN, &adapter->flags))
2473 schedule_delayed_work(&adapter->phy_info_task,
2474 2 * HZ);
2475 }
2476
2477 e1000_smartspeed(adapter);
2478 }
2479
2480 link_up:
2481 e1000_update_stats(adapter);
2482
2483 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2484 adapter->tpt_old = adapter->stats.tpt;
2485 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2486 adapter->colc_old = adapter->stats.colc;
2487
2488 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2489 adapter->gorcl_old = adapter->stats.gorcl;
2490 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2491 adapter->gotcl_old = adapter->stats.gotcl;
2492
2493 e1000_update_adaptive(hw);
2494
2495 if (!netif_carrier_ok(netdev)) {
2496 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2497 /* We've lost link, so the controller stops DMA,
2498 * but we've got queued Tx work that's never going
2499 * to get done, so reset controller to flush Tx.
2500 * (Do the reset outside of interrupt context).
2501 */
2502 adapter->tx_timeout_count++;
2503 schedule_work(&adapter->reset_task);
2504 /* exit immediately since reset is imminent */
2505 return;
2506 }
2507 }
2508
2509 /* Simple mode for Interrupt Throttle Rate (ITR) */
2510 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2511 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2512 * Total asymmetrical Tx or Rx gets ITR=8000;
2513 * everyone else is between 2000-8000.
2514 */
2515 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2516 u32 dif = (adapter->gotcl > adapter->gorcl ?
2517 adapter->gotcl - adapter->gorcl :
2518 adapter->gorcl - adapter->gotcl) / 10000;
2519 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2520
2521 ew32(ITR, 1000000000 / (itr * 256));
2522 }
2523
2524 /* Cause software interrupt to ensure rx ring is cleaned */
2525 ew32(ICS, E1000_ICS_RXDMT0);
2526
2527 /* Force detection of hung controller every watchdog period */
2528 adapter->detect_tx_hung = true;
2529
2530 /* Reschedule the task */
2531 if (!test_bit(__E1000_DOWN, &adapter->flags))
2532 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2533 }
2534
2535 enum latency_range {
2536 lowest_latency = 0,
2537 low_latency = 1,
2538 bulk_latency = 2,
2539 latency_invalid = 255
2540 };
2541
2542 /**
2543 * e1000_update_itr - update the dynamic ITR value based on statistics
2544 * @adapter: pointer to adapter
2545 * @itr_setting: current adapter->itr
2546 * @packets: the number of packets during this measurement interval
2547 * @bytes: the number of bytes during this measurement interval
2548 *
2549 * Stores a new ITR value based on packets and byte
2550 * counts during the last interrupt. The advantage of per interrupt
2551 * computation is faster updates and more accurate ITR for the current
2552 * traffic pattern. Constants in this function were computed
2553 * based on theoretical maximum wire speed and thresholds were set based
2554 * on testing data as well as attempting to minimize response time
2555 * while increasing bulk throughput.
2556 * this functionality is controlled by the InterruptThrottleRate module
2557 * parameter (see e1000_param.c)
2558 **/
2559 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2560 u16 itr_setting, int packets, int bytes)
2561 {
2562 unsigned int retval = itr_setting;
2563 struct e1000_hw *hw = &adapter->hw;
2564
2565 if (unlikely(hw->mac_type < e1000_82540))
2566 goto update_itr_done;
2567
2568 if (packets == 0)
2569 goto update_itr_done;
2570
2571 switch (itr_setting) {
2572 case lowest_latency:
2573 /* jumbo frames get bulk treatment*/
2574 if (bytes/packets > 8000)
2575 retval = bulk_latency;
2576 else if ((packets < 5) && (bytes > 512))
2577 retval = low_latency;
2578 break;
2579 case low_latency: /* 50 usec aka 20000 ints/s */
2580 if (bytes > 10000) {
2581 /* jumbo frames need bulk latency setting */
2582 if (bytes/packets > 8000)
2583 retval = bulk_latency;
2584 else if ((packets < 10) || ((bytes/packets) > 1200))
2585 retval = bulk_latency;
2586 else if ((packets > 35))
2587 retval = lowest_latency;
2588 } else if (bytes/packets > 2000)
2589 retval = bulk_latency;
2590 else if (packets <= 2 && bytes < 512)
2591 retval = lowest_latency;
2592 break;
2593 case bulk_latency: /* 250 usec aka 4000 ints/s */
2594 if (bytes > 25000) {
2595 if (packets > 35)
2596 retval = low_latency;
2597 } else if (bytes < 6000) {
2598 retval = low_latency;
2599 }
2600 break;
2601 }
2602
2603 update_itr_done:
2604 return retval;
2605 }
2606
2607 static void e1000_set_itr(struct e1000_adapter *adapter)
2608 {
2609 struct e1000_hw *hw = &adapter->hw;
2610 u16 current_itr;
2611 u32 new_itr = adapter->itr;
2612
2613 if (unlikely(hw->mac_type < e1000_82540))
2614 return;
2615
2616 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2617 if (unlikely(adapter->link_speed != SPEED_1000)) {
2618 current_itr = 0;
2619 new_itr = 4000;
2620 goto set_itr_now;
2621 }
2622
2623 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2624 adapter->total_tx_packets,
2625 adapter->total_tx_bytes);
2626 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2627 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2628 adapter->tx_itr = low_latency;
2629
2630 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2631 adapter->total_rx_packets,
2632 adapter->total_rx_bytes);
2633 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2634 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2635 adapter->rx_itr = low_latency;
2636
2637 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2638
2639 switch (current_itr) {
2640 /* counts and packets in update_itr are dependent on these numbers */
2641 case lowest_latency:
2642 new_itr = 70000;
2643 break;
2644 case low_latency:
2645 new_itr = 20000; /* aka hwitr = ~200 */
2646 break;
2647 case bulk_latency:
2648 new_itr = 4000;
2649 break;
2650 default:
2651 break;
2652 }
2653
2654 set_itr_now:
2655 if (new_itr != adapter->itr) {
2656 /* this attempts to bias the interrupt rate towards Bulk
2657 * by adding intermediate steps when interrupt rate is
2658 * increasing
2659 */
2660 new_itr = new_itr > adapter->itr ?
2661 min(adapter->itr + (new_itr >> 2), new_itr) :
2662 new_itr;
2663 adapter->itr = new_itr;
2664 ew32(ITR, 1000000000 / (new_itr * 256));
2665 }
2666 }
2667
2668 #define E1000_TX_FLAGS_CSUM 0x00000001
2669 #define E1000_TX_FLAGS_VLAN 0x00000002
2670 #define E1000_TX_FLAGS_TSO 0x00000004
2671 #define E1000_TX_FLAGS_IPV4 0x00000008
2672 #define E1000_TX_FLAGS_NO_FCS 0x00000010
2673 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2674 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2675
2676 static int e1000_tso(struct e1000_adapter *adapter,
2677 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2678 __be16 protocol)
2679 {
2680 struct e1000_context_desc *context_desc;
2681 struct e1000_buffer *buffer_info;
2682 unsigned int i;
2683 u32 cmd_length = 0;
2684 u16 ipcse = 0, tucse, mss;
2685 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2686
2687 if (skb_is_gso(skb)) {
2688 int err;
2689
2690 err = skb_cow_head(skb, 0);
2691 if (err < 0)
2692 return err;
2693
2694 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2695 mss = skb_shinfo(skb)->gso_size;
2696 if (protocol == htons(ETH_P_IP)) {
2697 struct iphdr *iph = ip_hdr(skb);
2698 iph->tot_len = 0;
2699 iph->check = 0;
2700 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2701 iph->daddr, 0,
2702 IPPROTO_TCP,
2703 0);
2704 cmd_length = E1000_TXD_CMD_IP;
2705 ipcse = skb_transport_offset(skb) - 1;
2706 } else if (skb_is_gso_v6(skb)) {
2707 ipv6_hdr(skb)->payload_len = 0;
2708 tcp_hdr(skb)->check =
2709 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2710 &ipv6_hdr(skb)->daddr,
2711 0, IPPROTO_TCP, 0);
2712 ipcse = 0;
2713 }
2714 ipcss = skb_network_offset(skb);
2715 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2716 tucss = skb_transport_offset(skb);
2717 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2718 tucse = 0;
2719
2720 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2721 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2722
2723 i = tx_ring->next_to_use;
2724 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2725 buffer_info = &tx_ring->buffer_info[i];
2726
2727 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2728 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2729 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2730 context_desc->upper_setup.tcp_fields.tucss = tucss;
2731 context_desc->upper_setup.tcp_fields.tucso = tucso;
2732 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2733 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2734 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2735 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2736
2737 buffer_info->time_stamp = jiffies;
2738 buffer_info->next_to_watch = i;
2739
2740 if (++i == tx_ring->count) i = 0;
2741 tx_ring->next_to_use = i;
2742
2743 return true;
2744 }
2745 return false;
2746 }
2747
2748 static bool e1000_tx_csum(struct e1000_adapter *adapter,
2749 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2750 __be16 protocol)
2751 {
2752 struct e1000_context_desc *context_desc;
2753 struct e1000_buffer *buffer_info;
2754 unsigned int i;
2755 u8 css;
2756 u32 cmd_len = E1000_TXD_CMD_DEXT;
2757
2758 if (skb->ip_summed != CHECKSUM_PARTIAL)
2759 return false;
2760
2761 switch (protocol) {
2762 case cpu_to_be16(ETH_P_IP):
2763 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2764 cmd_len |= E1000_TXD_CMD_TCP;
2765 break;
2766 case cpu_to_be16(ETH_P_IPV6):
2767 /* XXX not handling all IPV6 headers */
2768 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2769 cmd_len |= E1000_TXD_CMD_TCP;
2770 break;
2771 default:
2772 if (unlikely(net_ratelimit()))
2773 e_warn(drv, "checksum_partial proto=%x!\n",
2774 skb->protocol);
2775 break;
2776 }
2777
2778 css = skb_checksum_start_offset(skb);
2779
2780 i = tx_ring->next_to_use;
2781 buffer_info = &tx_ring->buffer_info[i];
2782 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2783
2784 context_desc->lower_setup.ip_config = 0;
2785 context_desc->upper_setup.tcp_fields.tucss = css;
2786 context_desc->upper_setup.tcp_fields.tucso =
2787 css + skb->csum_offset;
2788 context_desc->upper_setup.tcp_fields.tucse = 0;
2789 context_desc->tcp_seg_setup.data = 0;
2790 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2791
2792 buffer_info->time_stamp = jiffies;
2793 buffer_info->next_to_watch = i;
2794
2795 if (unlikely(++i == tx_ring->count)) i = 0;
2796 tx_ring->next_to_use = i;
2797
2798 return true;
2799 }
2800
2801 #define E1000_MAX_TXD_PWR 12
2802 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2803
2804 static int e1000_tx_map(struct e1000_adapter *adapter,
2805 struct e1000_tx_ring *tx_ring,
2806 struct sk_buff *skb, unsigned int first,
2807 unsigned int max_per_txd, unsigned int nr_frags,
2808 unsigned int mss)
2809 {
2810 struct e1000_hw *hw = &adapter->hw;
2811 struct pci_dev *pdev = adapter->pdev;
2812 struct e1000_buffer *buffer_info;
2813 unsigned int len = skb_headlen(skb);
2814 unsigned int offset = 0, size, count = 0, i;
2815 unsigned int f, bytecount, segs;
2816
2817 i = tx_ring->next_to_use;
2818
2819 while (len) {
2820 buffer_info = &tx_ring->buffer_info[i];
2821 size = min(len, max_per_txd);
2822 /* Workaround for Controller erratum --
2823 * descriptor for non-tso packet in a linear SKB that follows a
2824 * tso gets written back prematurely before the data is fully
2825 * DMA'd to the controller
2826 */
2827 if (!skb->data_len && tx_ring->last_tx_tso &&
2828 !skb_is_gso(skb)) {
2829 tx_ring->last_tx_tso = false;
2830 size -= 4;
2831 }
2832
2833 /* Workaround for premature desc write-backs
2834 * in TSO mode. Append 4-byte sentinel desc
2835 */
2836 if (unlikely(mss && !nr_frags && size == len && size > 8))
2837 size -= 4;
2838 /* work-around for errata 10 and it applies
2839 * to all controllers in PCI-X mode
2840 * The fix is to make sure that the first descriptor of a
2841 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2842 */
2843 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2844 (size > 2015) && count == 0))
2845 size = 2015;
2846
2847 /* Workaround for potential 82544 hang in PCI-X. Avoid
2848 * terminating buffers within evenly-aligned dwords.
2849 */
2850 if (unlikely(adapter->pcix_82544 &&
2851 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2852 size > 4))
2853 size -= 4;
2854
2855 buffer_info->length = size;
2856 /* set time_stamp *before* dma to help avoid a possible race */
2857 buffer_info->time_stamp = jiffies;
2858 buffer_info->mapped_as_page = false;
2859 buffer_info->dma = dma_map_single(&pdev->dev,
2860 skb->data + offset,
2861 size, DMA_TO_DEVICE);
2862 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2863 goto dma_error;
2864 buffer_info->next_to_watch = i;
2865
2866 len -= size;
2867 offset += size;
2868 count++;
2869 if (len) {
2870 i++;
2871 if (unlikely(i == tx_ring->count))
2872 i = 0;
2873 }
2874 }
2875
2876 for (f = 0; f < nr_frags; f++) {
2877 const struct skb_frag_struct *frag;
2878
2879 frag = &skb_shinfo(skb)->frags[f];
2880 len = skb_frag_size(frag);
2881 offset = 0;
2882
2883 while (len) {
2884 unsigned long bufend;
2885 i++;
2886 if (unlikely(i == tx_ring->count))
2887 i = 0;
2888
2889 buffer_info = &tx_ring->buffer_info[i];
2890 size = min(len, max_per_txd);
2891 /* Workaround for premature desc write-backs
2892 * in TSO mode. Append 4-byte sentinel desc
2893 */
2894 if (unlikely(mss && f == (nr_frags-1) &&
2895 size == len && size > 8))
2896 size -= 4;
2897 /* Workaround for potential 82544 hang in PCI-X.
2898 * Avoid terminating buffers within evenly-aligned
2899 * dwords.
2900 */
2901 bufend = (unsigned long)
2902 page_to_phys(skb_frag_page(frag));
2903 bufend += offset + size - 1;
2904 if (unlikely(adapter->pcix_82544 &&
2905 !(bufend & 4) &&
2906 size > 4))
2907 size -= 4;
2908
2909 buffer_info->length = size;
2910 buffer_info->time_stamp = jiffies;
2911 buffer_info->mapped_as_page = true;
2912 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2913 offset, size, DMA_TO_DEVICE);
2914 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2915 goto dma_error;
2916 buffer_info->next_to_watch = i;
2917
2918 len -= size;
2919 offset += size;
2920 count++;
2921 }
2922 }
2923
2924 segs = skb_shinfo(skb)->gso_segs ?: 1;
2925 /* multiply data chunks by size of headers */
2926 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2927
2928 tx_ring->buffer_info[i].skb = skb;
2929 tx_ring->buffer_info[i].segs = segs;
2930 tx_ring->buffer_info[i].bytecount = bytecount;
2931 tx_ring->buffer_info[first].next_to_watch = i;
2932
2933 return count;
2934
2935 dma_error:
2936 dev_err(&pdev->dev, "TX DMA map failed\n");
2937 buffer_info->dma = 0;
2938 if (count)
2939 count--;
2940
2941 while (count--) {
2942 if (i==0)
2943 i += tx_ring->count;
2944 i--;
2945 buffer_info = &tx_ring->buffer_info[i];
2946 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2947 }
2948
2949 return 0;
2950 }
2951
2952 static void e1000_tx_queue(struct e1000_adapter *adapter,
2953 struct e1000_tx_ring *tx_ring, int tx_flags,
2954 int count)
2955 {
2956 struct e1000_hw *hw = &adapter->hw;
2957 struct e1000_tx_desc *tx_desc = NULL;
2958 struct e1000_buffer *buffer_info;
2959 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2960 unsigned int i;
2961
2962 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2963 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2964 E1000_TXD_CMD_TSE;
2965 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2966
2967 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2968 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2969 }
2970
2971 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2972 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2973 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2974 }
2975
2976 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2977 txd_lower |= E1000_TXD_CMD_VLE;
2978 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2979 }
2980
2981 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2982 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2983
2984 i = tx_ring->next_to_use;
2985
2986 while (count--) {
2987 buffer_info = &tx_ring->buffer_info[i];
2988 tx_desc = E1000_TX_DESC(*tx_ring, i);
2989 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2990 tx_desc->lower.data =
2991 cpu_to_le32(txd_lower | buffer_info->length);
2992 tx_desc->upper.data = cpu_to_le32(txd_upper);
2993 if (unlikely(++i == tx_ring->count)) i = 0;
2994 }
2995
2996 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2997
2998 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
2999 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3000 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3001
3002 /* Force memory writes to complete before letting h/w
3003 * know there are new descriptors to fetch. (Only
3004 * applicable for weak-ordered memory model archs,
3005 * such as IA-64).
3006 */
3007 wmb();
3008
3009 tx_ring->next_to_use = i;
3010 writel(i, hw->hw_addr + tx_ring->tdt);
3011 /* we need this if more than one processor can write to our tail
3012 * at a time, it synchronizes IO on IA64/Altix systems
3013 */
3014 mmiowb();
3015 }
3016
3017 /* 82547 workaround to avoid controller hang in half-duplex environment.
3018 * The workaround is to avoid queuing a large packet that would span
3019 * the internal Tx FIFO ring boundary by notifying the stack to resend
3020 * the packet at a later time. This gives the Tx FIFO an opportunity to
3021 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3022 * to the beginning of the Tx FIFO.
3023 */
3024
3025 #define E1000_FIFO_HDR 0x10
3026 #define E1000_82547_PAD_LEN 0x3E0
3027
3028 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3029 struct sk_buff *skb)
3030 {
3031 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3032 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3033
3034 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3035
3036 if (adapter->link_duplex != HALF_DUPLEX)
3037 goto no_fifo_stall_required;
3038
3039 if (atomic_read(&adapter->tx_fifo_stall))
3040 return 1;
3041
3042 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3043 atomic_set(&adapter->tx_fifo_stall, 1);
3044 return 1;
3045 }
3046
3047 no_fifo_stall_required:
3048 adapter->tx_fifo_head += skb_fifo_len;
3049 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3050 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3051 return 0;
3052 }
3053
3054 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3055 {
3056 struct e1000_adapter *adapter = netdev_priv(netdev);
3057 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3058
3059 netif_stop_queue(netdev);
3060 /* Herbert's original patch had:
3061 * smp_mb__after_netif_stop_queue();
3062 * but since that doesn't exist yet, just open code it.
3063 */
3064 smp_mb();
3065
3066 /* We need to check again in a case another CPU has just
3067 * made room available.
3068 */
3069 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3070 return -EBUSY;
3071
3072 /* A reprieve! */
3073 netif_start_queue(netdev);
3074 ++adapter->restart_queue;
3075 return 0;
3076 }
3077
3078 static int e1000_maybe_stop_tx(struct net_device *netdev,
3079 struct e1000_tx_ring *tx_ring, int size)
3080 {
3081 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3082 return 0;
3083 return __e1000_maybe_stop_tx(netdev, size);
3084 }
3085
3086 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3087 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3088 struct net_device *netdev)
3089 {
3090 struct e1000_adapter *adapter = netdev_priv(netdev);
3091 struct e1000_hw *hw = &adapter->hw;
3092 struct e1000_tx_ring *tx_ring;
3093 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3094 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3095 unsigned int tx_flags = 0;
3096 unsigned int len = skb_headlen(skb);
3097 unsigned int nr_frags;
3098 unsigned int mss;
3099 int count = 0;
3100 int tso;
3101 unsigned int f;
3102 __be16 protocol = vlan_get_protocol(skb);
3103
3104 /* This goes back to the question of how to logically map a Tx queue
3105 * to a flow. Right now, performance is impacted slightly negatively
3106 * if using multiple Tx queues. If the stack breaks away from a
3107 * single qdisc implementation, we can look at this again.
3108 */
3109 tx_ring = adapter->tx_ring;
3110
3111 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3112 * packets may get corrupted during padding by HW.
3113 * To WA this issue, pad all small packets manually.
3114 */
3115 if (skb->len < ETH_ZLEN) {
3116 if (skb_pad(skb, ETH_ZLEN - skb->len))
3117 return NETDEV_TX_OK;
3118 skb->len = ETH_ZLEN;
3119 skb_set_tail_pointer(skb, ETH_ZLEN);
3120 }
3121
3122 mss = skb_shinfo(skb)->gso_size;
3123 /* The controller does a simple calculation to
3124 * make sure there is enough room in the FIFO before
3125 * initiating the DMA for each buffer. The calc is:
3126 * 4 = ceil(buffer len/mss). To make sure we don't
3127 * overrun the FIFO, adjust the max buffer len if mss
3128 * drops.
3129 */
3130 if (mss) {
3131 u8 hdr_len;
3132 max_per_txd = min(mss << 2, max_per_txd);
3133 max_txd_pwr = fls(max_per_txd) - 1;
3134
3135 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3136 if (skb->data_len && hdr_len == len) {
3137 switch (hw->mac_type) {
3138 unsigned int pull_size;
3139 case e1000_82544:
3140 /* Make sure we have room to chop off 4 bytes,
3141 * and that the end alignment will work out to
3142 * this hardware's requirements
3143 * NOTE: this is a TSO only workaround
3144 * if end byte alignment not correct move us
3145 * into the next dword
3146 */
3147 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3148 & 4)
3149 break;
3150 /* fall through */
3151 pull_size = min((unsigned int)4, skb->data_len);
3152 if (!__pskb_pull_tail(skb, pull_size)) {
3153 e_err(drv, "__pskb_pull_tail "
3154 "failed.\n");
3155 dev_kfree_skb_any(skb);
3156 return NETDEV_TX_OK;
3157 }
3158 len = skb_headlen(skb);
3159 break;
3160 default:
3161 /* do nothing */
3162 break;
3163 }
3164 }
3165 }
3166
3167 /* reserve a descriptor for the offload context */
3168 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3169 count++;
3170 count++;
3171
3172 /* Controller Erratum workaround */
3173 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3174 count++;
3175
3176 count += TXD_USE_COUNT(len, max_txd_pwr);
3177
3178 if (adapter->pcix_82544)
3179 count++;
3180
3181 /* work-around for errata 10 and it applies to all controllers
3182 * in PCI-X mode, so add one more descriptor to the count
3183 */
3184 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3185 (len > 2015)))
3186 count++;
3187
3188 nr_frags = skb_shinfo(skb)->nr_frags;
3189 for (f = 0; f < nr_frags; f++)
3190 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3191 max_txd_pwr);
3192 if (adapter->pcix_82544)
3193 count += nr_frags;
3194
3195 /* need: count + 2 desc gap to keep tail from touching
3196 * head, otherwise try next time
3197 */
3198 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3199 return NETDEV_TX_BUSY;
3200
3201 if (unlikely((hw->mac_type == e1000_82547) &&
3202 (e1000_82547_fifo_workaround(adapter, skb)))) {
3203 netif_stop_queue(netdev);
3204 if (!test_bit(__E1000_DOWN, &adapter->flags))
3205 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3206 return NETDEV_TX_BUSY;
3207 }
3208
3209 if (vlan_tx_tag_present(skb)) {
3210 tx_flags |= E1000_TX_FLAGS_VLAN;
3211 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3212 }
3213
3214 first = tx_ring->next_to_use;
3215
3216 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3217 if (tso < 0) {
3218 dev_kfree_skb_any(skb);
3219 return NETDEV_TX_OK;
3220 }
3221
3222 if (likely(tso)) {
3223 if (likely(hw->mac_type != e1000_82544))
3224 tx_ring->last_tx_tso = true;
3225 tx_flags |= E1000_TX_FLAGS_TSO;
3226 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3227 tx_flags |= E1000_TX_FLAGS_CSUM;
3228
3229 if (protocol == htons(ETH_P_IP))
3230 tx_flags |= E1000_TX_FLAGS_IPV4;
3231
3232 if (unlikely(skb->no_fcs))
3233 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3234
3235 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3236 nr_frags, mss);
3237
3238 if (count) {
3239 netdev_sent_queue(netdev, skb->len);
3240 skb_tx_timestamp(skb);
3241
3242 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3243 /* Make sure there is space in the ring for the next send. */
3244 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3245
3246 } else {
3247 dev_kfree_skb_any(skb);
3248 tx_ring->buffer_info[first].time_stamp = 0;
3249 tx_ring->next_to_use = first;
3250 }
3251
3252 return NETDEV_TX_OK;
3253 }
3254
3255 #define NUM_REGS 38 /* 1 based count */
3256 static void e1000_regdump(struct e1000_adapter *adapter)
3257 {
3258 struct e1000_hw *hw = &adapter->hw;
3259 u32 regs[NUM_REGS];
3260 u32 *regs_buff = regs;
3261 int i = 0;
3262
3263 static const char * const reg_name[] = {
3264 "CTRL", "STATUS",
3265 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3266 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3267 "TIDV", "TXDCTL", "TADV", "TARC0",
3268 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3269 "TXDCTL1", "TARC1",
3270 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3271 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3272 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3273 };
3274
3275 regs_buff[0] = er32(CTRL);
3276 regs_buff[1] = er32(STATUS);
3277
3278 regs_buff[2] = er32(RCTL);
3279 regs_buff[3] = er32(RDLEN);
3280 regs_buff[4] = er32(RDH);
3281 regs_buff[5] = er32(RDT);
3282 regs_buff[6] = er32(RDTR);
3283
3284 regs_buff[7] = er32(TCTL);
3285 regs_buff[8] = er32(TDBAL);
3286 regs_buff[9] = er32(TDBAH);
3287 regs_buff[10] = er32(TDLEN);
3288 regs_buff[11] = er32(TDH);
3289 regs_buff[12] = er32(TDT);
3290 regs_buff[13] = er32(TIDV);
3291 regs_buff[14] = er32(TXDCTL);
3292 regs_buff[15] = er32(TADV);
3293 regs_buff[16] = er32(TARC0);
3294
3295 regs_buff[17] = er32(TDBAL1);
3296 regs_buff[18] = er32(TDBAH1);
3297 regs_buff[19] = er32(TDLEN1);
3298 regs_buff[20] = er32(TDH1);
3299 regs_buff[21] = er32(TDT1);
3300 regs_buff[22] = er32(TXDCTL1);
3301 regs_buff[23] = er32(TARC1);
3302 regs_buff[24] = er32(CTRL_EXT);
3303 regs_buff[25] = er32(ERT);
3304 regs_buff[26] = er32(RDBAL0);
3305 regs_buff[27] = er32(RDBAH0);
3306 regs_buff[28] = er32(TDFH);
3307 regs_buff[29] = er32(TDFT);
3308 regs_buff[30] = er32(TDFHS);
3309 regs_buff[31] = er32(TDFTS);
3310 regs_buff[32] = er32(TDFPC);
3311 regs_buff[33] = er32(RDFH);
3312 regs_buff[34] = er32(RDFT);
3313 regs_buff[35] = er32(RDFHS);
3314 regs_buff[36] = er32(RDFTS);
3315 regs_buff[37] = er32(RDFPC);
3316
3317 pr_info("Register dump\n");
3318 for (i = 0; i < NUM_REGS; i++)
3319 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3320 }
3321
3322 /*
3323 * e1000_dump: Print registers, tx ring and rx ring
3324 */
3325 static void e1000_dump(struct e1000_adapter *adapter)
3326 {
3327 /* this code doesn't handle multiple rings */
3328 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3329 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3330 int i;
3331
3332 if (!netif_msg_hw(adapter))
3333 return;
3334
3335 /* Print Registers */
3336 e1000_regdump(adapter);
3337
3338 /* transmit dump */
3339 pr_info("TX Desc ring0 dump\n");
3340
3341 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3342 *
3343 * Legacy Transmit Descriptor
3344 * +--------------------------------------------------------------+
3345 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3346 * +--------------------------------------------------------------+
3347 * 8 | Special | CSS | Status | CMD | CSO | Length |
3348 * +--------------------------------------------------------------+
3349 * 63 48 47 36 35 32 31 24 23 16 15 0
3350 *
3351 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3352 * 63 48 47 40 39 32 31 16 15 8 7 0
3353 * +----------------------------------------------------------------+
3354 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3355 * +----------------------------------------------------------------+
3356 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3357 * +----------------------------------------------------------------+
3358 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3359 *
3360 * Extended Data Descriptor (DTYP=0x1)
3361 * +----------------------------------------------------------------+
3362 * 0 | Buffer Address [63:0] |
3363 * +----------------------------------------------------------------+
3364 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3365 * +----------------------------------------------------------------+
3366 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3367 */
3368 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3369 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3370
3371 if (!netif_msg_tx_done(adapter))
3372 goto rx_ring_summary;
3373
3374 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3375 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3376 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[i];
3377 struct my_u { __le64 a; __le64 b; };
3378 struct my_u *u = (struct my_u *)tx_desc;
3379 const char *type;
3380
3381 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3382 type = "NTC/U";
3383 else if (i == tx_ring->next_to_use)
3384 type = "NTU";
3385 else if (i == tx_ring->next_to_clean)
3386 type = "NTC";
3387 else
3388 type = "";
3389
3390 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3391 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3392 le64_to_cpu(u->a), le64_to_cpu(u->b),
3393 (u64)buffer_info->dma, buffer_info->length,
3394 buffer_info->next_to_watch,
3395 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3396 }
3397
3398 rx_ring_summary:
3399 /* receive dump */
3400 pr_info("\nRX Desc ring dump\n");
3401
3402 /* Legacy Receive Descriptor Format
3403 *
3404 * +-----------------------------------------------------+
3405 * | Buffer Address [63:0] |
3406 * +-----------------------------------------------------+
3407 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3408 * +-----------------------------------------------------+
3409 * 63 48 47 40 39 32 31 16 15 0
3410 */
3411 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3412
3413 if (!netif_msg_rx_status(adapter))
3414 goto exit;
3415
3416 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3417 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3418 struct e1000_buffer *buffer_info = &rx_ring->buffer_info[i];
3419 struct my_u { __le64 a; __le64 b; };
3420 struct my_u *u = (struct my_u *)rx_desc;
3421 const char *type;
3422
3423 if (i == rx_ring->next_to_use)
3424 type = "NTU";
3425 else if (i == rx_ring->next_to_clean)
3426 type = "NTC";
3427 else
3428 type = "";
3429
3430 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3431 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3432 (u64)buffer_info->dma, buffer_info->skb, type);
3433 } /* for */
3434
3435 /* dump the descriptor caches */
3436 /* rx */
3437 pr_info("Rx descriptor cache in 64bit format\n");
3438 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3439 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3440 i,
3441 readl(adapter->hw.hw_addr + i+4),
3442 readl(adapter->hw.hw_addr + i),
3443 readl(adapter->hw.hw_addr + i+12),
3444 readl(adapter->hw.hw_addr + i+8));
3445 }
3446 /* tx */
3447 pr_info("Tx descriptor cache in 64bit format\n");
3448 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3449 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3450 i,
3451 readl(adapter->hw.hw_addr + i+4),
3452 readl(adapter->hw.hw_addr + i),
3453 readl(adapter->hw.hw_addr + i+12),
3454 readl(adapter->hw.hw_addr + i+8));
3455 }
3456 exit:
3457 return;
3458 }
3459
3460 /**
3461 * e1000_tx_timeout - Respond to a Tx Hang
3462 * @netdev: network interface device structure
3463 **/
3464 static void e1000_tx_timeout(struct net_device *netdev)
3465 {
3466 struct e1000_adapter *adapter = netdev_priv(netdev);
3467
3468 /* Do the reset outside of interrupt context */
3469 adapter->tx_timeout_count++;
3470 schedule_work(&adapter->reset_task);
3471 }
3472
3473 static void e1000_reset_task(struct work_struct *work)
3474 {
3475 struct e1000_adapter *adapter =
3476 container_of(work, struct e1000_adapter, reset_task);
3477
3478 e_err(drv, "Reset adapter\n");
3479 e1000_reinit_locked(adapter);
3480 }
3481
3482 /**
3483 * e1000_get_stats - Get System Network Statistics
3484 * @netdev: network interface device structure
3485 *
3486 * Returns the address of the device statistics structure.
3487 * The statistics are actually updated from the watchdog.
3488 **/
3489 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
3490 {
3491 /* only return the current stats */
3492 return &netdev->stats;
3493 }
3494
3495 /**
3496 * e1000_change_mtu - Change the Maximum Transfer Unit
3497 * @netdev: network interface device structure
3498 * @new_mtu: new value for maximum frame size
3499 *
3500 * Returns 0 on success, negative on failure
3501 **/
3502 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3503 {
3504 struct e1000_adapter *adapter = netdev_priv(netdev);
3505 struct e1000_hw *hw = &adapter->hw;
3506 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3507
3508 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3509 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3510 e_err(probe, "Invalid MTU setting\n");
3511 return -EINVAL;
3512 }
3513
3514 /* Adapter-specific max frame size limits. */
3515 switch (hw->mac_type) {
3516 case e1000_undefined ... e1000_82542_rev2_1:
3517 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3518 e_err(probe, "Jumbo Frames not supported.\n");
3519 return -EINVAL;
3520 }
3521 break;
3522 default:
3523 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3524 break;
3525 }
3526
3527 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3528 msleep(1);
3529 /* e1000_down has a dependency on max_frame_size */
3530 hw->max_frame_size = max_frame;
3531 if (netif_running(netdev))
3532 e1000_down(adapter);
3533
3534 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3535 * means we reserve 2 more, this pushes us to allocate from the next
3536 * larger slab size.
3537 * i.e. RXBUFFER_2048 --> size-4096 slab
3538 * however with the new *_jumbo_rx* routines, jumbo receives will use
3539 * fragmented skbs
3540 */
3541
3542 if (max_frame <= E1000_RXBUFFER_2048)
3543 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3544 else
3545 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3546 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3547 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3548 adapter->rx_buffer_len = PAGE_SIZE;
3549 #endif
3550
3551 /* adjust allocation if LPE protects us, and we aren't using SBP */
3552 if (!hw->tbi_compatibility_on &&
3553 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3554 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3555 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3556
3557 pr_info("%s changing MTU from %d to %d\n",
3558 netdev->name, netdev->mtu, new_mtu);
3559 netdev->mtu = new_mtu;
3560
3561 if (netif_running(netdev))
3562 e1000_up(adapter);
3563 else
3564 e1000_reset(adapter);
3565
3566 clear_bit(__E1000_RESETTING, &adapter->flags);
3567
3568 return 0;
3569 }
3570
3571 /**
3572 * e1000_update_stats - Update the board statistics counters
3573 * @adapter: board private structure
3574 **/
3575 void e1000_update_stats(struct e1000_adapter *adapter)
3576 {
3577 struct net_device *netdev = adapter->netdev;
3578 struct e1000_hw *hw = &adapter->hw;
3579 struct pci_dev *pdev = adapter->pdev;
3580 unsigned long flags;
3581 u16 phy_tmp;
3582
3583 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3584
3585 /* Prevent stats update while adapter is being reset, or if the pci
3586 * connection is down.
3587 */
3588 if (adapter->link_speed == 0)
3589 return;
3590 if (pci_channel_offline(pdev))
3591 return;
3592
3593 spin_lock_irqsave(&adapter->stats_lock, flags);
3594
3595 /* these counters are modified from e1000_tbi_adjust_stats,
3596 * called from the interrupt context, so they must only
3597 * be written while holding adapter->stats_lock
3598 */
3599
3600 adapter->stats.crcerrs += er32(CRCERRS);
3601 adapter->stats.gprc += er32(GPRC);
3602 adapter->stats.gorcl += er32(GORCL);
3603 adapter->stats.gorch += er32(GORCH);
3604 adapter->stats.bprc += er32(BPRC);
3605 adapter->stats.mprc += er32(MPRC);
3606 adapter->stats.roc += er32(ROC);
3607
3608 adapter->stats.prc64 += er32(PRC64);
3609 adapter->stats.prc127 += er32(PRC127);
3610 adapter->stats.prc255 += er32(PRC255);
3611 adapter->stats.prc511 += er32(PRC511);
3612 adapter->stats.prc1023 += er32(PRC1023);
3613 adapter->stats.prc1522 += er32(PRC1522);
3614
3615 adapter->stats.symerrs += er32(SYMERRS);
3616 adapter->stats.mpc += er32(MPC);
3617 adapter->stats.scc += er32(SCC);
3618 adapter->stats.ecol += er32(ECOL);
3619 adapter->stats.mcc += er32(MCC);
3620 adapter->stats.latecol += er32(LATECOL);
3621 adapter->stats.dc += er32(DC);
3622 adapter->stats.sec += er32(SEC);
3623 adapter->stats.rlec += er32(RLEC);
3624 adapter->stats.xonrxc += er32(XONRXC);
3625 adapter->stats.xontxc += er32(XONTXC);
3626 adapter->stats.xoffrxc += er32(XOFFRXC);
3627 adapter->stats.xofftxc += er32(XOFFTXC);
3628 adapter->stats.fcruc += er32(FCRUC);
3629 adapter->stats.gptc += er32(GPTC);
3630 adapter->stats.gotcl += er32(GOTCL);
3631 adapter->stats.gotch += er32(GOTCH);
3632 adapter->stats.rnbc += er32(RNBC);
3633 adapter->stats.ruc += er32(RUC);
3634 adapter->stats.rfc += er32(RFC);
3635 adapter->stats.rjc += er32(RJC);
3636 adapter->stats.torl += er32(TORL);
3637 adapter->stats.torh += er32(TORH);
3638 adapter->stats.totl += er32(TOTL);
3639 adapter->stats.toth += er32(TOTH);
3640 adapter->stats.tpr += er32(TPR);
3641
3642 adapter->stats.ptc64 += er32(PTC64);
3643 adapter->stats.ptc127 += er32(PTC127);
3644 adapter->stats.ptc255 += er32(PTC255);
3645 adapter->stats.ptc511 += er32(PTC511);
3646 adapter->stats.ptc1023 += er32(PTC1023);
3647 adapter->stats.ptc1522 += er32(PTC1522);
3648
3649 adapter->stats.mptc += er32(MPTC);
3650 adapter->stats.bptc += er32(BPTC);
3651
3652 /* used for adaptive IFS */
3653
3654 hw->tx_packet_delta = er32(TPT);
3655 adapter->stats.tpt += hw->tx_packet_delta;
3656 hw->collision_delta = er32(COLC);
3657 adapter->stats.colc += hw->collision_delta;
3658
3659 if (hw->mac_type >= e1000_82543) {
3660 adapter->stats.algnerrc += er32(ALGNERRC);
3661 adapter->stats.rxerrc += er32(RXERRC);
3662 adapter->stats.tncrs += er32(TNCRS);
3663 adapter->stats.cexterr += er32(CEXTERR);
3664 adapter->stats.tsctc += er32(TSCTC);
3665 adapter->stats.tsctfc += er32(TSCTFC);
3666 }
3667
3668 /* Fill out the OS statistics structure */
3669 netdev->stats.multicast = adapter->stats.mprc;
3670 netdev->stats.collisions = adapter->stats.colc;
3671
3672 /* Rx Errors */
3673
3674 /* RLEC on some newer hardware can be incorrect so build
3675 * our own version based on RUC and ROC
3676 */
3677 netdev->stats.rx_errors = adapter->stats.rxerrc +
3678 adapter->stats.crcerrs + adapter->stats.algnerrc +
3679 adapter->stats.ruc + adapter->stats.roc +
3680 adapter->stats.cexterr;
3681 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3682 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3683 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3684 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3685 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3686
3687 /* Tx Errors */
3688 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3689 netdev->stats.tx_errors = adapter->stats.txerrc;
3690 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3691 netdev->stats.tx_window_errors = adapter->stats.latecol;
3692 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3693 if (hw->bad_tx_carr_stats_fd &&
3694 adapter->link_duplex == FULL_DUPLEX) {
3695 netdev->stats.tx_carrier_errors = 0;
3696 adapter->stats.tncrs = 0;
3697 }
3698
3699 /* Tx Dropped needs to be maintained elsewhere */
3700
3701 /* Phy Stats */
3702 if (hw->media_type == e1000_media_type_copper) {
3703 if ((adapter->link_speed == SPEED_1000) &&
3704 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3705 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3706 adapter->phy_stats.idle_errors += phy_tmp;
3707 }
3708
3709 if ((hw->mac_type <= e1000_82546) &&
3710 (hw->phy_type == e1000_phy_m88) &&
3711 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3712 adapter->phy_stats.receive_errors += phy_tmp;
3713 }
3714
3715 /* Management Stats */
3716 if (hw->has_smbus) {
3717 adapter->stats.mgptc += er32(MGTPTC);
3718 adapter->stats.mgprc += er32(MGTPRC);
3719 adapter->stats.mgpdc += er32(MGTPDC);
3720 }
3721
3722 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3723 }
3724
3725 /**
3726 * e1000_intr - Interrupt Handler
3727 * @irq: interrupt number
3728 * @data: pointer to a network interface device structure
3729 **/
3730 static irqreturn_t e1000_intr(int irq, void *data)
3731 {
3732 struct net_device *netdev = data;
3733 struct e1000_adapter *adapter = netdev_priv(netdev);
3734 struct e1000_hw *hw = &adapter->hw;
3735 u32 icr = er32(ICR);
3736
3737 if (unlikely((!icr)))
3738 return IRQ_NONE; /* Not our interrupt */
3739
3740 /* we might have caused the interrupt, but the above
3741 * read cleared it, and just in case the driver is
3742 * down there is nothing to do so return handled
3743 */
3744 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3745 return IRQ_HANDLED;
3746
3747 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3748 hw->get_link_status = 1;
3749 /* guard against interrupt when we're going down */
3750 if (!test_bit(__E1000_DOWN, &adapter->flags))
3751 schedule_delayed_work(&adapter->watchdog_task, 1);
3752 }
3753
3754 /* disable interrupts, without the synchronize_irq bit */
3755 ew32(IMC, ~0);
3756 E1000_WRITE_FLUSH();
3757
3758 if (likely(napi_schedule_prep(&adapter->napi))) {
3759 adapter->total_tx_bytes = 0;
3760 adapter->total_tx_packets = 0;
3761 adapter->total_rx_bytes = 0;
3762 adapter->total_rx_packets = 0;
3763 __napi_schedule(&adapter->napi);
3764 } else {
3765 /* this really should not happen! if it does it is basically a
3766 * bug, but not a hard error, so enable ints and continue
3767 */
3768 if (!test_bit(__E1000_DOWN, &adapter->flags))
3769 e1000_irq_enable(adapter);
3770 }
3771
3772 return IRQ_HANDLED;
3773 }
3774
3775 /**
3776 * e1000_clean - NAPI Rx polling callback
3777 * @adapter: board private structure
3778 **/
3779 static int e1000_clean(struct napi_struct *napi, int budget)
3780 {
3781 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3782 napi);
3783 int tx_clean_complete = 0, work_done = 0;
3784
3785 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3786
3787 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3788
3789 if (!tx_clean_complete)
3790 work_done = budget;
3791
3792 /* If budget not fully consumed, exit the polling mode */
3793 if (work_done < budget) {
3794 if (likely(adapter->itr_setting & 3))
3795 e1000_set_itr(adapter);
3796 napi_complete(napi);
3797 if (!test_bit(__E1000_DOWN, &adapter->flags))
3798 e1000_irq_enable(adapter);
3799 }
3800
3801 return work_done;
3802 }
3803
3804 /**
3805 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3806 * @adapter: board private structure
3807 **/
3808 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3809 struct e1000_tx_ring *tx_ring)
3810 {
3811 struct e1000_hw *hw = &adapter->hw;
3812 struct net_device *netdev = adapter->netdev;
3813 struct e1000_tx_desc *tx_desc, *eop_desc;
3814 struct e1000_buffer *buffer_info;
3815 unsigned int i, eop;
3816 unsigned int count = 0;
3817 unsigned int total_tx_bytes=0, total_tx_packets=0;
3818 unsigned int bytes_compl = 0, pkts_compl = 0;
3819
3820 i = tx_ring->next_to_clean;
3821 eop = tx_ring->buffer_info[i].next_to_watch;
3822 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3823
3824 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3825 (count < tx_ring->count)) {
3826 bool cleaned = false;
3827 rmb(); /* read buffer_info after eop_desc */
3828 for ( ; !cleaned; count++) {
3829 tx_desc = E1000_TX_DESC(*tx_ring, i);
3830 buffer_info = &tx_ring->buffer_info[i];
3831 cleaned = (i == eop);
3832
3833 if (cleaned) {
3834 total_tx_packets += buffer_info->segs;
3835 total_tx_bytes += buffer_info->bytecount;
3836 if (buffer_info->skb) {
3837 bytes_compl += buffer_info->skb->len;
3838 pkts_compl++;
3839 }
3840
3841 }
3842 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3843 tx_desc->upper.data = 0;
3844
3845 if (unlikely(++i == tx_ring->count)) i = 0;
3846 }
3847
3848 eop = tx_ring->buffer_info[i].next_to_watch;
3849 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3850 }
3851
3852 tx_ring->next_to_clean = i;
3853
3854 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3855
3856 #define TX_WAKE_THRESHOLD 32
3857 if (unlikely(count && netif_carrier_ok(netdev) &&
3858 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3859 /* Make sure that anybody stopping the queue after this
3860 * sees the new next_to_clean.
3861 */
3862 smp_mb();
3863
3864 if (netif_queue_stopped(netdev) &&
3865 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3866 netif_wake_queue(netdev);
3867 ++adapter->restart_queue;
3868 }
3869 }
3870
3871 if (adapter->detect_tx_hung) {
3872 /* Detect a transmit hang in hardware, this serializes the
3873 * check with the clearing of time_stamp and movement of i
3874 */
3875 adapter->detect_tx_hung = false;
3876 if (tx_ring->buffer_info[eop].time_stamp &&
3877 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3878 (adapter->tx_timeout_factor * HZ)) &&
3879 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3880
3881 /* detected Tx unit hang */
3882 e_err(drv, "Detected Tx Unit Hang\n"
3883 " Tx Queue <%lu>\n"
3884 " TDH <%x>\n"
3885 " TDT <%x>\n"
3886 " next_to_use <%x>\n"
3887 " next_to_clean <%x>\n"
3888 "buffer_info[next_to_clean]\n"
3889 " time_stamp <%lx>\n"
3890 " next_to_watch <%x>\n"
3891 " jiffies <%lx>\n"
3892 " next_to_watch.status <%x>\n",
3893 (unsigned long)(tx_ring - adapter->tx_ring),
3894 readl(hw->hw_addr + tx_ring->tdh),
3895 readl(hw->hw_addr + tx_ring->tdt),
3896 tx_ring->next_to_use,
3897 tx_ring->next_to_clean,
3898 tx_ring->buffer_info[eop].time_stamp,
3899 eop,
3900 jiffies,
3901 eop_desc->upper.fields.status);
3902 e1000_dump(adapter);
3903 netif_stop_queue(netdev);
3904 }
3905 }
3906 adapter->total_tx_bytes += total_tx_bytes;
3907 adapter->total_tx_packets += total_tx_packets;
3908 netdev->stats.tx_bytes += total_tx_bytes;
3909 netdev->stats.tx_packets += total_tx_packets;
3910 return count < tx_ring->count;
3911 }
3912
3913 /**
3914 * e1000_rx_checksum - Receive Checksum Offload for 82543
3915 * @adapter: board private structure
3916 * @status_err: receive descriptor status and error fields
3917 * @csum: receive descriptor csum field
3918 * @sk_buff: socket buffer with received data
3919 **/
3920 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3921 u32 csum, struct sk_buff *skb)
3922 {
3923 struct e1000_hw *hw = &adapter->hw;
3924 u16 status = (u16)status_err;
3925 u8 errors = (u8)(status_err >> 24);
3926
3927 skb_checksum_none_assert(skb);
3928
3929 /* 82543 or newer only */
3930 if (unlikely(hw->mac_type < e1000_82543)) return;
3931 /* Ignore Checksum bit is set */
3932 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3933 /* TCP/UDP checksum error bit is set */
3934 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3935 /* let the stack verify checksum errors */
3936 adapter->hw_csum_err++;
3937 return;
3938 }
3939 /* TCP/UDP Checksum has not been calculated */
3940 if (!(status & E1000_RXD_STAT_TCPCS))
3941 return;
3942
3943 /* It must be a TCP or UDP packet with a valid checksum */
3944 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3945 /* TCP checksum is good */
3946 skb->ip_summed = CHECKSUM_UNNECESSARY;
3947 }
3948 adapter->hw_csum_good++;
3949 }
3950
3951 /**
3952 * e1000_consume_page - helper function
3953 **/
3954 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
3955 u16 length)
3956 {
3957 bi->page = NULL;
3958 skb->len += length;
3959 skb->data_len += length;
3960 skb->truesize += PAGE_SIZE;
3961 }
3962
3963 /**
3964 * e1000_receive_skb - helper function to handle rx indications
3965 * @adapter: board private structure
3966 * @status: descriptor status field as written by hardware
3967 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3968 * @skb: pointer to sk_buff to be indicated to stack
3969 */
3970 static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3971 __le16 vlan, struct sk_buff *skb)
3972 {
3973 skb->protocol = eth_type_trans(skb, adapter->netdev);
3974
3975 if (status & E1000_RXD_STAT_VP) {
3976 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
3977
3978 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
3979 }
3980 napi_gro_receive(&adapter->napi, skb);
3981 }
3982
3983 /**
3984 * e1000_tbi_adjust_stats
3985 * @hw: Struct containing variables accessed by shared code
3986 * @frame_len: The length of the frame in question
3987 * @mac_addr: The Ethernet destination address of the frame in question
3988 *
3989 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
3990 */
3991 static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
3992 struct e1000_hw_stats *stats,
3993 u32 frame_len, const u8 *mac_addr)
3994 {
3995 u64 carry_bit;
3996
3997 /* First adjust the frame length. */
3998 frame_len--;
3999 /* We need to adjust the statistics counters, since the hardware
4000 * counters overcount this packet as a CRC error and undercount
4001 * the packet as a good packet
4002 */
4003 /* This packet should not be counted as a CRC error. */
4004 stats->crcerrs--;
4005 /* This packet does count as a Good Packet Received. */
4006 stats->gprc++;
4007
4008 /* Adjust the Good Octets received counters */
4009 carry_bit = 0x80000000 & stats->gorcl;
4010 stats->gorcl += frame_len;
4011 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4012 * Received Count) was one before the addition,
4013 * AND it is zero after, then we lost the carry out,
4014 * need to add one to Gorch (Good Octets Received Count High).
4015 * This could be simplified if all environments supported
4016 * 64-bit integers.
4017 */
4018 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4019 stats->gorch++;
4020 /* Is this a broadcast or multicast? Check broadcast first,
4021 * since the test for a multicast frame will test positive on
4022 * a broadcast frame.
4023 */
4024 if (is_broadcast_ether_addr(mac_addr))
4025 stats->bprc++;
4026 else if (is_multicast_ether_addr(mac_addr))
4027 stats->mprc++;
4028
4029 if (frame_len == hw->max_frame_size) {
4030 /* In this case, the hardware has overcounted the number of
4031 * oversize frames.
4032 */
4033 if (stats->roc > 0)
4034 stats->roc--;
4035 }
4036
4037 /* Adjust the bin counters when the extra byte put the frame in the
4038 * wrong bin. Remember that the frame_len was adjusted above.
4039 */
4040 if (frame_len == 64) {
4041 stats->prc64++;
4042 stats->prc127--;
4043 } else if (frame_len == 127) {
4044 stats->prc127++;
4045 stats->prc255--;
4046 } else if (frame_len == 255) {
4047 stats->prc255++;
4048 stats->prc511--;
4049 } else if (frame_len == 511) {
4050 stats->prc511++;
4051 stats->prc1023--;
4052 } else if (frame_len == 1023) {
4053 stats->prc1023++;
4054 stats->prc1522--;
4055 } else if (frame_len == 1522) {
4056 stats->prc1522++;
4057 }
4058 }
4059
4060 static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4061 u8 status, u8 errors,
4062 u32 length, const u8 *data)
4063 {
4064 struct e1000_hw *hw = &adapter->hw;
4065 u8 last_byte = *(data + length - 1);
4066
4067 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4068 unsigned long irq_flags;
4069
4070 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4071 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4072 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4073
4074 return true;
4075 }
4076
4077 return false;
4078 }
4079
4080 /**
4081 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4082 * @adapter: board private structure
4083 * @rx_ring: ring to clean
4084 * @work_done: amount of napi work completed this call
4085 * @work_to_do: max amount of work allowed for this call to do
4086 *
4087 * the return value indicates whether actual cleaning was done, there
4088 * is no guarantee that everything was cleaned
4089 */
4090 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4091 struct e1000_rx_ring *rx_ring,
4092 int *work_done, int work_to_do)
4093 {
4094 struct net_device *netdev = adapter->netdev;
4095 struct pci_dev *pdev = adapter->pdev;
4096 struct e1000_rx_desc *rx_desc, *next_rxd;
4097 struct e1000_buffer *buffer_info, *next_buffer;
4098 u32 length;
4099 unsigned int i;
4100 int cleaned_count = 0;
4101 bool cleaned = false;
4102 unsigned int total_rx_bytes=0, total_rx_packets=0;
4103
4104 i = rx_ring->next_to_clean;
4105 rx_desc = E1000_RX_DESC(*rx_ring, i);
4106 buffer_info = &rx_ring->buffer_info[i];
4107
4108 while (rx_desc->status & E1000_RXD_STAT_DD) {
4109 struct sk_buff *skb;
4110 u8 status;
4111
4112 if (*work_done >= work_to_do)
4113 break;
4114 (*work_done)++;
4115 rmb(); /* read descriptor and rx_buffer_info after status DD */
4116
4117 status = rx_desc->status;
4118 skb = buffer_info->skb;
4119 buffer_info->skb = NULL;
4120
4121 if (++i == rx_ring->count) i = 0;
4122 next_rxd = E1000_RX_DESC(*rx_ring, i);
4123 prefetch(next_rxd);
4124
4125 next_buffer = &rx_ring->buffer_info[i];
4126
4127 cleaned = true;
4128 cleaned_count++;
4129 dma_unmap_page(&pdev->dev, buffer_info->dma,
4130 buffer_info->length, DMA_FROM_DEVICE);
4131 buffer_info->dma = 0;
4132
4133 length = le16_to_cpu(rx_desc->length);
4134
4135 /* errors is only valid for DD + EOP descriptors */
4136 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4137 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4138 u8 *mapped = page_address(buffer_info->page);
4139
4140 if (e1000_tbi_should_accept(adapter, status,
4141 rx_desc->errors,
4142 length, mapped)) {
4143 length--;
4144 } else if (netdev->features & NETIF_F_RXALL) {
4145 goto process_skb;
4146 } else {
4147 /* recycle both page and skb */
4148 buffer_info->skb = skb;
4149 /* an error means any chain goes out the window
4150 * too
4151 */
4152 if (rx_ring->rx_skb_top)
4153 dev_kfree_skb(rx_ring->rx_skb_top);
4154 rx_ring->rx_skb_top = NULL;
4155 goto next_desc;
4156 }
4157 }
4158
4159 #define rxtop rx_ring->rx_skb_top
4160 process_skb:
4161 if (!(status & E1000_RXD_STAT_EOP)) {
4162 /* this descriptor is only the beginning (or middle) */
4163 if (!rxtop) {
4164 /* this is the beginning of a chain */
4165 rxtop = skb;
4166 skb_fill_page_desc(rxtop, 0, buffer_info->page,
4167 0, length);
4168 } else {
4169 /* this is the middle of a chain */
4170 skb_fill_page_desc(rxtop,
4171 skb_shinfo(rxtop)->nr_frags,
4172 buffer_info->page, 0, length);
4173 /* re-use the skb, only consumed the page */
4174 buffer_info->skb = skb;
4175 }
4176 e1000_consume_page(buffer_info, rxtop, length);
4177 goto next_desc;
4178 } else {
4179 if (rxtop) {
4180 /* end of the chain */
4181 skb_fill_page_desc(rxtop,
4182 skb_shinfo(rxtop)->nr_frags,
4183 buffer_info->page, 0, length);
4184 /* re-use the current skb, we only consumed the
4185 * page
4186 */
4187 buffer_info->skb = skb;
4188 skb = rxtop;
4189 rxtop = NULL;
4190 e1000_consume_page(buffer_info, skb, length);
4191 } else {
4192 /* no chain, got EOP, this buf is the packet
4193 * copybreak to save the put_page/alloc_page
4194 */
4195 if (length <= copybreak &&
4196 skb_tailroom(skb) >= length) {
4197 u8 *vaddr;
4198 vaddr = kmap_atomic(buffer_info->page);
4199 memcpy(skb_tail_pointer(skb), vaddr,
4200 length);
4201 kunmap_atomic(vaddr);
4202 /* re-use the page, so don't erase
4203 * buffer_info->page
4204 */
4205 skb_put(skb, length);
4206 } else {
4207 skb_fill_page_desc(skb, 0,
4208 buffer_info->page, 0,
4209 length);
4210 e1000_consume_page(buffer_info, skb,
4211 length);
4212 }
4213 }
4214 }
4215
4216 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4217 e1000_rx_checksum(adapter,
4218 (u32)(status) |
4219 ((u32)(rx_desc->errors) << 24),
4220 le16_to_cpu(rx_desc->csum), skb);
4221
4222 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4223 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4224 pskb_trim(skb, skb->len - 4);
4225 total_rx_packets++;
4226
4227 /* eth type trans needs skb->data to point to something */
4228 if (!pskb_may_pull(skb, ETH_HLEN)) {
4229 e_err(drv, "pskb_may_pull failed.\n");
4230 dev_kfree_skb(skb);
4231 goto next_desc;
4232 }
4233
4234 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4235
4236 next_desc:
4237 rx_desc->status = 0;
4238
4239 /* return some buffers to hardware, one at a time is too slow */
4240 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4241 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4242 cleaned_count = 0;
4243 }
4244
4245 /* use prefetched values */
4246 rx_desc = next_rxd;
4247 buffer_info = next_buffer;
4248 }
4249 rx_ring->next_to_clean = i;
4250
4251 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4252 if (cleaned_count)
4253 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4254
4255 adapter->total_rx_packets += total_rx_packets;
4256 adapter->total_rx_bytes += total_rx_bytes;
4257 netdev->stats.rx_bytes += total_rx_bytes;
4258 netdev->stats.rx_packets += total_rx_packets;
4259 return cleaned;
4260 }
4261
4262 /* this should improve performance for small packets with large amounts
4263 * of reassembly being done in the stack
4264 */
4265 static void e1000_check_copybreak(struct net_device *netdev,
4266 struct e1000_buffer *buffer_info,
4267 u32 length, struct sk_buff **skb)
4268 {
4269 struct sk_buff *new_skb;
4270
4271 if (length > copybreak)
4272 return;
4273
4274 new_skb = netdev_alloc_skb_ip_align(netdev, length);
4275 if (!new_skb)
4276 return;
4277
4278 skb_copy_to_linear_data_offset(new_skb, -NET_IP_ALIGN,
4279 (*skb)->data - NET_IP_ALIGN,
4280 length + NET_IP_ALIGN);
4281 /* save the skb in buffer_info as good */
4282 buffer_info->skb = *skb;
4283 *skb = new_skb;
4284 }
4285
4286 /**
4287 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4288 * @adapter: board private structure
4289 * @rx_ring: ring to clean
4290 * @work_done: amount of napi work completed this call
4291 * @work_to_do: max amount of work allowed for this call to do
4292 */
4293 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4294 struct e1000_rx_ring *rx_ring,
4295 int *work_done, int work_to_do)
4296 {
4297 struct net_device *netdev = adapter->netdev;
4298 struct pci_dev *pdev = adapter->pdev;
4299 struct e1000_rx_desc *rx_desc, *next_rxd;
4300 struct e1000_buffer *buffer_info, *next_buffer;
4301 u32 length;
4302 unsigned int i;
4303 int cleaned_count = 0;
4304 bool cleaned = false;
4305 unsigned int total_rx_bytes=0, total_rx_packets=0;
4306
4307 i = rx_ring->next_to_clean;
4308 rx_desc = E1000_RX_DESC(*rx_ring, i);
4309 buffer_info = &rx_ring->buffer_info[i];
4310
4311 while (rx_desc->status & E1000_RXD_STAT_DD) {
4312 struct sk_buff *skb;
4313 u8 status;
4314
4315 if (*work_done >= work_to_do)
4316 break;
4317 (*work_done)++;
4318 rmb(); /* read descriptor and rx_buffer_info after status DD */
4319
4320 status = rx_desc->status;
4321 skb = buffer_info->skb;
4322 buffer_info->skb = NULL;
4323
4324 prefetch(skb->data - NET_IP_ALIGN);
4325
4326 if (++i == rx_ring->count) i = 0;
4327 next_rxd = E1000_RX_DESC(*rx_ring, i);
4328 prefetch(next_rxd);
4329
4330 next_buffer = &rx_ring->buffer_info[i];
4331
4332 cleaned = true;
4333 cleaned_count++;
4334 dma_unmap_single(&pdev->dev, buffer_info->dma,
4335 buffer_info->length, DMA_FROM_DEVICE);
4336 buffer_info->dma = 0;
4337
4338 length = le16_to_cpu(rx_desc->length);
4339 /* !EOP means multiple descriptors were used to store a single
4340 * packet, if thats the case we need to toss it. In fact, we
4341 * to toss every packet with the EOP bit clear and the next
4342 * frame that _does_ have the EOP bit set, as it is by
4343 * definition only a frame fragment
4344 */
4345 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4346 adapter->discarding = true;
4347
4348 if (adapter->discarding) {
4349 /* All receives must fit into a single buffer */
4350 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4351 /* recycle */
4352 buffer_info->skb = skb;
4353 if (status & E1000_RXD_STAT_EOP)
4354 adapter->discarding = false;
4355 goto next_desc;
4356 }
4357
4358 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4359 if (e1000_tbi_should_accept(adapter, status,
4360 rx_desc->errors,
4361 length, skb->data)) {
4362 length--;
4363 } else if (netdev->features & NETIF_F_RXALL) {
4364 goto process_skb;
4365 } else {
4366 /* recycle */
4367 buffer_info->skb = skb;
4368 goto next_desc;
4369 }
4370 }
4371
4372 process_skb:
4373 total_rx_bytes += (length - 4); /* don't count FCS */
4374 total_rx_packets++;
4375
4376 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4377 /* adjust length to remove Ethernet CRC, this must be
4378 * done after the TBI_ACCEPT workaround above
4379 */
4380 length -= 4;
4381
4382 e1000_check_copybreak(netdev, buffer_info, length, &skb);
4383
4384 skb_put(skb, length);
4385
4386 /* Receive Checksum Offload */
4387 e1000_rx_checksum(adapter,
4388 (u32)(status) |
4389 ((u32)(rx_desc->errors) << 24),
4390 le16_to_cpu(rx_desc->csum), skb);
4391
4392 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4393
4394 next_desc:
4395 rx_desc->status = 0;
4396
4397 /* return some buffers to hardware, one at a time is too slow */
4398 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4399 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4400 cleaned_count = 0;
4401 }
4402
4403 /* use prefetched values */
4404 rx_desc = next_rxd;
4405 buffer_info = next_buffer;
4406 }
4407 rx_ring->next_to_clean = i;
4408
4409 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4410 if (cleaned_count)
4411 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4412
4413 adapter->total_rx_packets += total_rx_packets;
4414 adapter->total_rx_bytes += total_rx_bytes;
4415 netdev->stats.rx_bytes += total_rx_bytes;
4416 netdev->stats.rx_packets += total_rx_packets;
4417 return cleaned;
4418 }
4419
4420 /**
4421 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4422 * @adapter: address of board private structure
4423 * @rx_ring: pointer to receive ring structure
4424 * @cleaned_count: number of buffers to allocate this pass
4425 **/
4426 static void
4427 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4428 struct e1000_rx_ring *rx_ring, int cleaned_count)
4429 {
4430 struct net_device *netdev = adapter->netdev;
4431 struct pci_dev *pdev = adapter->pdev;
4432 struct e1000_rx_desc *rx_desc;
4433 struct e1000_buffer *buffer_info;
4434 struct sk_buff *skb;
4435 unsigned int i;
4436 unsigned int bufsz = 256 - 16 /*for skb_reserve */ ;
4437
4438 i = rx_ring->next_to_use;
4439 buffer_info = &rx_ring->buffer_info[i];
4440
4441 while (cleaned_count--) {
4442 skb = buffer_info->skb;
4443 if (skb) {
4444 skb_trim(skb, 0);
4445 goto check_page;
4446 }
4447
4448 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4449 if (unlikely(!skb)) {
4450 /* Better luck next round */
4451 adapter->alloc_rx_buff_failed++;
4452 break;
4453 }
4454
4455 buffer_info->skb = skb;
4456 buffer_info->length = adapter->rx_buffer_len;
4457 check_page:
4458 /* allocate a new page if necessary */
4459 if (!buffer_info->page) {
4460 buffer_info->page = alloc_page(GFP_ATOMIC);
4461 if (unlikely(!buffer_info->page)) {
4462 adapter->alloc_rx_buff_failed++;
4463 break;
4464 }
4465 }
4466
4467 if (!buffer_info->dma) {
4468 buffer_info->dma = dma_map_page(&pdev->dev,
4469 buffer_info->page, 0,
4470 buffer_info->length,
4471 DMA_FROM_DEVICE);
4472 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4473 put_page(buffer_info->page);
4474 dev_kfree_skb(skb);
4475 buffer_info->page = NULL;
4476 buffer_info->skb = NULL;
4477 buffer_info->dma = 0;
4478 adapter->alloc_rx_buff_failed++;
4479 break; /* while !buffer_info->skb */
4480 }
4481 }
4482
4483 rx_desc = E1000_RX_DESC(*rx_ring, i);
4484 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4485
4486 if (unlikely(++i == rx_ring->count))
4487 i = 0;
4488 buffer_info = &rx_ring->buffer_info[i];
4489 }
4490
4491 if (likely(rx_ring->next_to_use != i)) {
4492 rx_ring->next_to_use = i;
4493 if (unlikely(i-- == 0))
4494 i = (rx_ring->count - 1);
4495
4496 /* Force memory writes to complete before letting h/w
4497 * know there are new descriptors to fetch. (Only
4498 * applicable for weak-ordered memory model archs,
4499 * such as IA-64).
4500 */
4501 wmb();
4502 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4503 }
4504 }
4505
4506 /**
4507 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4508 * @adapter: address of board private structure
4509 **/
4510 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4511 struct e1000_rx_ring *rx_ring,
4512 int cleaned_count)
4513 {
4514 struct e1000_hw *hw = &adapter->hw;
4515 struct net_device *netdev = adapter->netdev;
4516 struct pci_dev *pdev = adapter->pdev;
4517 struct e1000_rx_desc *rx_desc;
4518 struct e1000_buffer *buffer_info;
4519 struct sk_buff *skb;
4520 unsigned int i;
4521 unsigned int bufsz = adapter->rx_buffer_len;
4522
4523 i = rx_ring->next_to_use;
4524 buffer_info = &rx_ring->buffer_info[i];
4525
4526 while (cleaned_count--) {
4527 skb = buffer_info->skb;
4528 if (skb) {
4529 skb_trim(skb, 0);
4530 goto map_skb;
4531 }
4532
4533 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4534 if (unlikely(!skb)) {
4535 /* Better luck next round */
4536 adapter->alloc_rx_buff_failed++;
4537 break;
4538 }
4539
4540 /* Fix for errata 23, can't cross 64kB boundary */
4541 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4542 struct sk_buff *oldskb = skb;
4543 e_err(rx_err, "skb align check failed: %u bytes at "
4544 "%p\n", bufsz, skb->data);
4545 /* Try again, without freeing the previous */
4546 skb = netdev_alloc_skb_ip_align(netdev, bufsz);
4547 /* Failed allocation, critical failure */
4548 if (!skb) {
4549 dev_kfree_skb(oldskb);
4550 adapter->alloc_rx_buff_failed++;
4551 break;
4552 }
4553
4554 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4555 /* give up */
4556 dev_kfree_skb(skb);
4557 dev_kfree_skb(oldskb);
4558 adapter->alloc_rx_buff_failed++;
4559 break; /* while !buffer_info->skb */
4560 }
4561
4562 /* Use new allocation */
4563 dev_kfree_skb(oldskb);
4564 }
4565 buffer_info->skb = skb;
4566 buffer_info->length = adapter->rx_buffer_len;
4567 map_skb:
4568 buffer_info->dma = dma_map_single(&pdev->dev,
4569 skb->data,
4570 buffer_info->length,
4571 DMA_FROM_DEVICE);
4572 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4573 dev_kfree_skb(skb);
4574 buffer_info->skb = NULL;
4575 buffer_info->dma = 0;
4576 adapter->alloc_rx_buff_failed++;
4577 break; /* while !buffer_info->skb */
4578 }
4579
4580 /* XXX if it was allocated cleanly it will never map to a
4581 * boundary crossing
4582 */
4583
4584 /* Fix for errata 23, can't cross 64kB boundary */
4585 if (!e1000_check_64k_bound(adapter,
4586 (void *)(unsigned long)buffer_info->dma,
4587 adapter->rx_buffer_len)) {
4588 e_err(rx_err, "dma align check failed: %u bytes at "
4589 "%p\n", adapter->rx_buffer_len,
4590 (void *)(unsigned long)buffer_info->dma);
4591 dev_kfree_skb(skb);
4592 buffer_info->skb = NULL;
4593
4594 dma_unmap_single(&pdev->dev, buffer_info->dma,
4595 adapter->rx_buffer_len,
4596 DMA_FROM_DEVICE);
4597 buffer_info->dma = 0;
4598
4599 adapter->alloc_rx_buff_failed++;
4600 break; /* while !buffer_info->skb */
4601 }
4602 rx_desc = E1000_RX_DESC(*rx_ring, i);
4603 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4604
4605 if (unlikely(++i == rx_ring->count))
4606 i = 0;
4607 buffer_info = &rx_ring->buffer_info[i];
4608 }
4609
4610 if (likely(rx_ring->next_to_use != i)) {
4611 rx_ring->next_to_use = i;
4612 if (unlikely(i-- == 0))
4613 i = (rx_ring->count - 1);
4614
4615 /* Force memory writes to complete before letting h/w
4616 * know there are new descriptors to fetch. (Only
4617 * applicable for weak-ordered memory model archs,
4618 * such as IA-64).
4619 */
4620 wmb();
4621 writel(i, hw->hw_addr + rx_ring->rdt);
4622 }
4623 }
4624
4625 /**
4626 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4627 * @adapter:
4628 **/
4629 static void e1000_smartspeed(struct e1000_adapter *adapter)
4630 {
4631 struct e1000_hw *hw = &adapter->hw;
4632 u16 phy_status;
4633 u16 phy_ctrl;
4634
4635 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4636 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4637 return;
4638
4639 if (adapter->smartspeed == 0) {
4640 /* If Master/Slave config fault is asserted twice,
4641 * we assume back-to-back
4642 */
4643 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4644 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4645 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4646 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4647 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4648 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4649 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4650 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4651 phy_ctrl);
4652 adapter->smartspeed++;
4653 if (!e1000_phy_setup_autoneg(hw) &&
4654 !e1000_read_phy_reg(hw, PHY_CTRL,
4655 &phy_ctrl)) {
4656 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4657 MII_CR_RESTART_AUTO_NEG);
4658 e1000_write_phy_reg(hw, PHY_CTRL,
4659 phy_ctrl);
4660 }
4661 }
4662 return;
4663 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4664 /* If still no link, perhaps using 2/3 pair cable */
4665 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4666 phy_ctrl |= CR_1000T_MS_ENABLE;
4667 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4668 if (!e1000_phy_setup_autoneg(hw) &&
4669 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4670 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4671 MII_CR_RESTART_AUTO_NEG);
4672 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4673 }
4674 }
4675 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4676 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4677 adapter->smartspeed = 0;
4678 }
4679
4680 /**
4681 * e1000_ioctl -
4682 * @netdev:
4683 * @ifreq:
4684 * @cmd:
4685 **/
4686 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4687 {
4688 switch (cmd) {
4689 case SIOCGMIIPHY:
4690 case SIOCGMIIREG:
4691 case SIOCSMIIREG:
4692 return e1000_mii_ioctl(netdev, ifr, cmd);
4693 default:
4694 return -EOPNOTSUPP;
4695 }
4696 }
4697
4698 /**
4699 * e1000_mii_ioctl -
4700 * @netdev:
4701 * @ifreq:
4702 * @cmd:
4703 **/
4704 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4705 int cmd)
4706 {
4707 struct e1000_adapter *adapter = netdev_priv(netdev);
4708 struct e1000_hw *hw = &adapter->hw;
4709 struct mii_ioctl_data *data = if_mii(ifr);
4710 int retval;
4711 u16 mii_reg;
4712 unsigned long flags;
4713
4714 if (hw->media_type != e1000_media_type_copper)
4715 return -EOPNOTSUPP;
4716
4717 switch (cmd) {
4718 case SIOCGMIIPHY:
4719 data->phy_id = hw->phy_addr;
4720 break;
4721 case SIOCGMIIREG:
4722 spin_lock_irqsave(&adapter->stats_lock, flags);
4723 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4724 &data->val_out)) {
4725 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4726 return -EIO;
4727 }
4728 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4729 break;
4730 case SIOCSMIIREG:
4731 if (data->reg_num & ~(0x1F))
4732 return -EFAULT;
4733 mii_reg = data->val_in;
4734 spin_lock_irqsave(&adapter->stats_lock, flags);
4735 if (e1000_write_phy_reg(hw, data->reg_num,
4736 mii_reg)) {
4737 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4738 return -EIO;
4739 }
4740 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4741 if (hw->media_type == e1000_media_type_copper) {
4742 switch (data->reg_num) {
4743 case PHY_CTRL:
4744 if (mii_reg & MII_CR_POWER_DOWN)
4745 break;
4746 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4747 hw->autoneg = 1;
4748 hw->autoneg_advertised = 0x2F;
4749 } else {
4750 u32 speed;
4751 if (mii_reg & 0x40)
4752 speed = SPEED_1000;
4753 else if (mii_reg & 0x2000)
4754 speed = SPEED_100;
4755 else
4756 speed = SPEED_10;
4757 retval = e1000_set_spd_dplx(
4758 adapter, speed,
4759 ((mii_reg & 0x100)
4760 ? DUPLEX_FULL :
4761 DUPLEX_HALF));
4762 if (retval)
4763 return retval;
4764 }
4765 if (netif_running(adapter->netdev))
4766 e1000_reinit_locked(adapter);
4767 else
4768 e1000_reset(adapter);
4769 break;
4770 case M88E1000_PHY_SPEC_CTRL:
4771 case M88E1000_EXT_PHY_SPEC_CTRL:
4772 if (e1000_phy_reset(hw))
4773 return -EIO;
4774 break;
4775 }
4776 } else {
4777 switch (data->reg_num) {
4778 case PHY_CTRL:
4779 if (mii_reg & MII_CR_POWER_DOWN)
4780 break;
4781 if (netif_running(adapter->netdev))
4782 e1000_reinit_locked(adapter);
4783 else
4784 e1000_reset(adapter);
4785 break;
4786 }
4787 }
4788 break;
4789 default:
4790 return -EOPNOTSUPP;
4791 }
4792 return E1000_SUCCESS;
4793 }
4794
4795 void e1000_pci_set_mwi(struct e1000_hw *hw)
4796 {
4797 struct e1000_adapter *adapter = hw->back;
4798 int ret_val = pci_set_mwi(adapter->pdev);
4799
4800 if (ret_val)
4801 e_err(probe, "Error in setting MWI\n");
4802 }
4803
4804 void e1000_pci_clear_mwi(struct e1000_hw *hw)
4805 {
4806 struct e1000_adapter *adapter = hw->back;
4807
4808 pci_clear_mwi(adapter->pdev);
4809 }
4810
4811 int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4812 {
4813 struct e1000_adapter *adapter = hw->back;
4814 return pcix_get_mmrbc(adapter->pdev);
4815 }
4816
4817 void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4818 {
4819 struct e1000_adapter *adapter = hw->back;
4820 pcix_set_mmrbc(adapter->pdev, mmrbc);
4821 }
4822
4823 void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4824 {
4825 outl(value, port);
4826 }
4827
4828 static bool e1000_vlan_used(struct e1000_adapter *adapter)
4829 {
4830 u16 vid;
4831
4832 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4833 return true;
4834 return false;
4835 }
4836
4837 static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4838 netdev_features_t features)
4839 {
4840 struct e1000_hw *hw = &adapter->hw;
4841 u32 ctrl;
4842
4843 ctrl = er32(CTRL);
4844 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4845 /* enable VLAN tag insert/strip */
4846 ctrl |= E1000_CTRL_VME;
4847 } else {
4848 /* disable VLAN tag insert/strip */
4849 ctrl &= ~E1000_CTRL_VME;
4850 }
4851 ew32(CTRL, ctrl);
4852 }
4853 static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4854 bool filter_on)
4855 {
4856 struct e1000_hw *hw = &adapter->hw;
4857 u32 rctl;
4858
4859 if (!test_bit(__E1000_DOWN, &adapter->flags))
4860 e1000_irq_disable(adapter);
4861
4862 __e1000_vlan_mode(adapter, adapter->netdev->features);
4863 if (filter_on) {
4864 /* enable VLAN receive filtering */
4865 rctl = er32(RCTL);
4866 rctl &= ~E1000_RCTL_CFIEN;
4867 if (!(adapter->netdev->flags & IFF_PROMISC))
4868 rctl |= E1000_RCTL_VFE;
4869 ew32(RCTL, rctl);
4870 e1000_update_mng_vlan(adapter);
4871 } else {
4872 /* disable VLAN receive filtering */
4873 rctl = er32(RCTL);
4874 rctl &= ~E1000_RCTL_VFE;
4875 ew32(RCTL, rctl);
4876 }
4877
4878 if (!test_bit(__E1000_DOWN, &adapter->flags))
4879 e1000_irq_enable(adapter);
4880 }
4881
4882 static void e1000_vlan_mode(struct net_device *netdev,
4883 netdev_features_t features)
4884 {
4885 struct e1000_adapter *adapter = netdev_priv(netdev);
4886
4887 if (!test_bit(__E1000_DOWN, &adapter->flags))
4888 e1000_irq_disable(adapter);
4889
4890 __e1000_vlan_mode(adapter, features);
4891
4892 if (!test_bit(__E1000_DOWN, &adapter->flags))
4893 e1000_irq_enable(adapter);
4894 }
4895
4896 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4897 __be16 proto, u16 vid)
4898 {
4899 struct e1000_adapter *adapter = netdev_priv(netdev);
4900 struct e1000_hw *hw = &adapter->hw;
4901 u32 vfta, index;
4902
4903 if ((hw->mng_cookie.status &
4904 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4905 (vid == adapter->mng_vlan_id))
4906 return 0;
4907
4908 if (!e1000_vlan_used(adapter))
4909 e1000_vlan_filter_on_off(adapter, true);
4910
4911 /* add VID to filter table */
4912 index = (vid >> 5) & 0x7F;
4913 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4914 vfta |= (1 << (vid & 0x1F));
4915 e1000_write_vfta(hw, index, vfta);
4916
4917 set_bit(vid, adapter->active_vlans);
4918
4919 return 0;
4920 }
4921
4922 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4923 __be16 proto, u16 vid)
4924 {
4925 struct e1000_adapter *adapter = netdev_priv(netdev);
4926 struct e1000_hw *hw = &adapter->hw;
4927 u32 vfta, index;
4928
4929 if (!test_bit(__E1000_DOWN, &adapter->flags))
4930 e1000_irq_disable(adapter);
4931 if (!test_bit(__E1000_DOWN, &adapter->flags))
4932 e1000_irq_enable(adapter);
4933
4934 /* remove VID from filter table */
4935 index = (vid >> 5) & 0x7F;
4936 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4937 vfta &= ~(1 << (vid & 0x1F));
4938 e1000_write_vfta(hw, index, vfta);
4939
4940 clear_bit(vid, adapter->active_vlans);
4941
4942 if (!e1000_vlan_used(adapter))
4943 e1000_vlan_filter_on_off(adapter, false);
4944
4945 return 0;
4946 }
4947
4948 static void e1000_restore_vlan(struct e1000_adapter *adapter)
4949 {
4950 u16 vid;
4951
4952 if (!e1000_vlan_used(adapter))
4953 return;
4954
4955 e1000_vlan_filter_on_off(adapter, true);
4956 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4957 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
4958 }
4959
4960 int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
4961 {
4962 struct e1000_hw *hw = &adapter->hw;
4963
4964 hw->autoneg = 0;
4965
4966 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4967 * for the switch() below to work
4968 */
4969 if ((spd & 1) || (dplx & ~1))
4970 goto err_inval;
4971
4972 /* Fiber NICs only allow 1000 gbps Full duplex */
4973 if ((hw->media_type == e1000_media_type_fiber) &&
4974 spd != SPEED_1000 &&
4975 dplx != DUPLEX_FULL)
4976 goto err_inval;
4977
4978 switch (spd + dplx) {
4979 case SPEED_10 + DUPLEX_HALF:
4980 hw->forced_speed_duplex = e1000_10_half;
4981 break;
4982 case SPEED_10 + DUPLEX_FULL:
4983 hw->forced_speed_duplex = e1000_10_full;
4984 break;
4985 case SPEED_100 + DUPLEX_HALF:
4986 hw->forced_speed_duplex = e1000_100_half;
4987 break;
4988 case SPEED_100 + DUPLEX_FULL:
4989 hw->forced_speed_duplex = e1000_100_full;
4990 break;
4991 case SPEED_1000 + DUPLEX_FULL:
4992 hw->autoneg = 1;
4993 hw->autoneg_advertised = ADVERTISE_1000_FULL;
4994 break;
4995 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4996 default:
4997 goto err_inval;
4998 }
4999
5000 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5001 hw->mdix = AUTO_ALL_MODES;
5002
5003 return 0;
5004
5005 err_inval:
5006 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5007 return -EINVAL;
5008 }
5009
5010 static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5011 {
5012 struct net_device *netdev = pci_get_drvdata(pdev);
5013 struct e1000_adapter *adapter = netdev_priv(netdev);
5014 struct e1000_hw *hw = &adapter->hw;
5015 u32 ctrl, ctrl_ext, rctl, status;
5016 u32 wufc = adapter->wol;
5017 #ifdef CONFIG_PM
5018 int retval = 0;
5019 #endif
5020
5021 netif_device_detach(netdev);
5022
5023 if (netif_running(netdev)) {
5024 int count = E1000_CHECK_RESET_COUNT;
5025
5026 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5027 usleep_range(10000, 20000);
5028
5029 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5030 e1000_down(adapter);
5031 }
5032
5033 #ifdef CONFIG_PM
5034 retval = pci_save_state(pdev);
5035 if (retval)
5036 return retval;
5037 #endif
5038
5039 status = er32(STATUS);
5040 if (status & E1000_STATUS_LU)
5041 wufc &= ~E1000_WUFC_LNKC;
5042
5043 if (wufc) {
5044 e1000_setup_rctl(adapter);
5045 e1000_set_rx_mode(netdev);
5046
5047 rctl = er32(RCTL);
5048
5049 /* turn on all-multi mode if wake on multicast is enabled */
5050 if (wufc & E1000_WUFC_MC)
5051 rctl |= E1000_RCTL_MPE;
5052
5053 /* enable receives in the hardware */
5054 ew32(RCTL, rctl | E1000_RCTL_EN);
5055
5056 if (hw->mac_type >= e1000_82540) {
5057 ctrl = er32(CTRL);
5058 /* advertise wake from D3Cold */
5059 #define E1000_CTRL_ADVD3WUC 0x00100000
5060 /* phy power management enable */
5061 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5062 ctrl |= E1000_CTRL_ADVD3WUC |
5063 E1000_CTRL_EN_PHY_PWR_MGMT;
5064 ew32(CTRL, ctrl);
5065 }
5066
5067 if (hw->media_type == e1000_media_type_fiber ||
5068 hw->media_type == e1000_media_type_internal_serdes) {
5069 /* keep the laser running in D3 */
5070 ctrl_ext = er32(CTRL_EXT);
5071 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5072 ew32(CTRL_EXT, ctrl_ext);
5073 }
5074
5075 ew32(WUC, E1000_WUC_PME_EN);
5076 ew32(WUFC, wufc);
5077 } else {
5078 ew32(WUC, 0);
5079 ew32(WUFC, 0);
5080 }
5081
5082 e1000_release_manageability(adapter);
5083
5084 *enable_wake = !!wufc;
5085
5086 /* make sure adapter isn't asleep if manageability is enabled */
5087 if (adapter->en_mng_pt)
5088 *enable_wake = true;
5089
5090 if (netif_running(netdev))
5091 e1000_free_irq(adapter);
5092
5093 pci_disable_device(pdev);
5094
5095 return 0;
5096 }
5097
5098 #ifdef CONFIG_PM
5099 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5100 {
5101 int retval;
5102 bool wake;
5103
5104 retval = __e1000_shutdown(pdev, &wake);
5105 if (retval)
5106 return retval;
5107
5108 if (wake) {
5109 pci_prepare_to_sleep(pdev);
5110 } else {
5111 pci_wake_from_d3(pdev, false);
5112 pci_set_power_state(pdev, PCI_D3hot);
5113 }
5114
5115 return 0;
5116 }
5117
5118 static int e1000_resume(struct pci_dev *pdev)
5119 {
5120 struct net_device *netdev = pci_get_drvdata(pdev);
5121 struct e1000_adapter *adapter = netdev_priv(netdev);
5122 struct e1000_hw *hw = &adapter->hw;
5123 u32 err;
5124
5125 pci_set_power_state(pdev, PCI_D0);
5126 pci_restore_state(pdev);
5127 pci_save_state(pdev);
5128
5129 if (adapter->need_ioport)
5130 err = pci_enable_device(pdev);
5131 else
5132 err = pci_enable_device_mem(pdev);
5133 if (err) {
5134 pr_err("Cannot enable PCI device from suspend\n");
5135 return err;
5136 }
5137 pci_set_master(pdev);
5138
5139 pci_enable_wake(pdev, PCI_D3hot, 0);
5140 pci_enable_wake(pdev, PCI_D3cold, 0);
5141
5142 if (netif_running(netdev)) {
5143 err = e1000_request_irq(adapter);
5144 if (err)
5145 return err;
5146 }
5147
5148 e1000_power_up_phy(adapter);
5149 e1000_reset(adapter);
5150 ew32(WUS, ~0);
5151
5152 e1000_init_manageability(adapter);
5153
5154 if (netif_running(netdev))
5155 e1000_up(adapter);
5156
5157 netif_device_attach(netdev);
5158
5159 return 0;
5160 }
5161 #endif
5162
5163 static void e1000_shutdown(struct pci_dev *pdev)
5164 {
5165 bool wake;
5166
5167 __e1000_shutdown(pdev, &wake);
5168
5169 if (system_state == SYSTEM_POWER_OFF) {
5170 pci_wake_from_d3(pdev, wake);
5171 pci_set_power_state(pdev, PCI_D3hot);
5172 }
5173 }
5174
5175 #ifdef CONFIG_NET_POLL_CONTROLLER
5176 /* Polling 'interrupt' - used by things like netconsole to send skbs
5177 * without having to re-enable interrupts. It's not called while
5178 * the interrupt routine is executing.
5179 */
5180 static void e1000_netpoll(struct net_device *netdev)
5181 {
5182 struct e1000_adapter *adapter = netdev_priv(netdev);
5183
5184 disable_irq(adapter->pdev->irq);
5185 e1000_intr(adapter->pdev->irq, netdev);
5186 enable_irq(adapter->pdev->irq);
5187 }
5188 #endif
5189
5190 /**
5191 * e1000_io_error_detected - called when PCI error is detected
5192 * @pdev: Pointer to PCI device
5193 * @state: The current pci connection state
5194 *
5195 * This function is called after a PCI bus error affecting
5196 * this device has been detected.
5197 */
5198 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5199 pci_channel_state_t state)
5200 {
5201 struct net_device *netdev = pci_get_drvdata(pdev);
5202 struct e1000_adapter *adapter = netdev_priv(netdev);
5203
5204 netif_device_detach(netdev);
5205
5206 if (state == pci_channel_io_perm_failure)
5207 return PCI_ERS_RESULT_DISCONNECT;
5208
5209 if (netif_running(netdev))
5210 e1000_down(adapter);
5211 pci_disable_device(pdev);
5212
5213 /* Request a slot slot reset. */
5214 return PCI_ERS_RESULT_NEED_RESET;
5215 }
5216
5217 /**
5218 * e1000_io_slot_reset - called after the pci bus has been reset.
5219 * @pdev: Pointer to PCI device
5220 *
5221 * Restart the card from scratch, as if from a cold-boot. Implementation
5222 * resembles the first-half of the e1000_resume routine.
5223 */
5224 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5225 {
5226 struct net_device *netdev = pci_get_drvdata(pdev);
5227 struct e1000_adapter *adapter = netdev_priv(netdev);
5228 struct e1000_hw *hw = &adapter->hw;
5229 int err;
5230
5231 if (adapter->need_ioport)
5232 err = pci_enable_device(pdev);
5233 else
5234 err = pci_enable_device_mem(pdev);
5235 if (err) {
5236 pr_err("Cannot re-enable PCI device after reset.\n");
5237 return PCI_ERS_RESULT_DISCONNECT;
5238 }
5239 pci_set_master(pdev);
5240
5241 pci_enable_wake(pdev, PCI_D3hot, 0);
5242 pci_enable_wake(pdev, PCI_D3cold, 0);
5243
5244 e1000_reset(adapter);
5245 ew32(WUS, ~0);
5246
5247 return PCI_ERS_RESULT_RECOVERED;
5248 }
5249
5250 /**
5251 * e1000_io_resume - called when traffic can start flowing again.
5252 * @pdev: Pointer to PCI device
5253 *
5254 * This callback is called when the error recovery driver tells us that
5255 * its OK to resume normal operation. Implementation resembles the
5256 * second-half of the e1000_resume routine.
5257 */
5258 static void e1000_io_resume(struct pci_dev *pdev)
5259 {
5260 struct net_device *netdev = pci_get_drvdata(pdev);
5261 struct e1000_adapter *adapter = netdev_priv(netdev);
5262
5263 e1000_init_manageability(adapter);
5264
5265 if (netif_running(netdev)) {
5266 if (e1000_up(adapter)) {
5267 pr_info("can't bring device back up after reset\n");
5268 return;
5269 }
5270 }
5271
5272 netif_device_attach(netdev);
5273 }
5274
5275 /* e1000_main.c */
This page took 0.148855 seconds and 5 git commands to generate.